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Foreword 

This book on the history of mathematics may, to a certain extent, be regarded 
as a biography. However, it does not tell the story of the life of a specific person 
(or the stories of two people, as the title may lead one to think), but the story 
of the evolution of a rather general concept, that of symmetry. It is my firm 
belief that of all the general scientific ideas which arose in the nineteenth 
century and were inherited by our century, none contributed so much to the 
intellectual atmosphere of our time as the idea of symmetry. This is confirmed 
by the abundance of books in different categories and genres devoted to 
symmetry in physics, to symmetry in chemistry, to symmetry in biology and 
so on, or to the general (occasionally philosophical) concept of symmetry. The 
major role played by symmetry notions in modern education is attested even 
by the cover designs of many textbooks, for instance H.R. Jacobs's Geometry 
(Freeman, 1974). Symmetry also plays a role in art, as evidenced by, say, the 
interest shown for the works ofthe well-known Dutch "mathematical" designer 
Maurits Cornelis Escher. Thus it seems fitting to describe the rise and evolu
tion of ideas of mathematical symmetry. This is done in this book, which is 
intended for a wide range of readers, including nonexperts with an interest in 
the history of mathematics and in general scientific problems. 

It is natural to link an account of the genesis and development of the idea 
of symmetry with the names of two mathematicians: the German Felix Klein 
and the Norwegian Sophus Lie, who played leading roles in discerning the 
importance of the relevant notions and created the mathematical apparatus 
capable of reflecting them. The history of the theory of symmetry, at least its 
mathematical part, is not very long. However, the very origins of mathematics 
involved the idea of symmetry, as indicated by the first manifestations of 
mathematical thought dating back to the Paleolithic period and due to the 
predecessors of modern man known as the Cro-Magnons. Here we find 
objects with geometric patterns displaying an exceptional sense of form and 
note the first attempts, closely related to symmetry, to make these patterns 
more regular: bracelets with numbers depicted as patterns of dashes, cuts or 
holes based on certain symmetry relationships, with an obvious preference for 
the numbers 7 and 14, underlying many rituals. Passing to the origins of 
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mathematical science (the Greek mathematics of proofs), we again see the role 
of symmetry in the Ionic school of Thales of Miletus and the south Italian 
school of the Pythagoreans. A list of theorems attributed to Thales (congru
ence of the base angles in an isoceles triangle; congruence of vertical angles; 
the fact that the diameter divides a circle into congruent parts and that the 
angle subtended by a diameter is a right angle; congruence of two triangles 
with equal side and equal adjacent angles, etc.) clearly shows that their proofs, 
as given in the Ionic school, were based on symmetry and on motion ("iso
metry"), because such proofs are undoubtedly most natural for these theorems. 
It is also known that the Pythagoreans sought to reveal universal harmony, 
one of whose manifestations was the symmetry of numbers and of numerical 
relations; hence their great interest in numbers with some sort of internal 
symmetry. However, the more evolved mathematics of the Athenian and 
Alexandrian periods rejected both the emphasis on geometric symmetry typical 
of the Ionic school and the numerical mysticism of the first Pythagoreans. 
Moreover, the scholars of the post-Aristotelian period regarded the wide use 
of graphic illustrations and symmetry notions as Thales' weakness, which had 
to be overcome. Euclid's Elements, the canonical collection of the mathe
matical knowledge of the high classical age, contains virtually no mention of 
symmetry. One gets the clear impression that Euclid tried to avoid any 
mention of motion-though in this he was not consistent. The symmetry 
concept is closely associated with the last books of Euclid's Elements devoted 
to regular polyhedra. But even these books (which were added to the main 
body of the Elements after Euclid and demonstrate the tenacity of Pythagorean 
traditions in ancient science) contain no direct references to symmetry and 
motion (isometry). 

The subsequent development of mathematics, under Euclid's influence, 
hardly changed the sceptical attitude toward the notion of symmetry and its 
use. Of the European scholars of the modern age who revived the study of 
mathematics and of the natural sciences-after a break of more than a 
thousand years-Johann Kepler was closest to the Pythagoreans, and his keen 
interest in, say, regular polyhedra was not accidental. However, Kepler was 
primarily an astronomer and not a mathematician. Also, his influence on later 
generations of scholars was not very great. Newton's antipathy toward Kepler, 
reflected, for instance, in the almost total lack of reference to Kepler even in 
works based on Kepler's achievements, was due to the sharp difference in the 
intellectual qualities of these two founders of European science. It is striking 
that the extreme mystic Newton referred more readily to the rationalist 
Galileo than to Kepler, a mystic like himself! In its subsequent development, 
European science firmly acknowledged Newton rather than Kepler as its 
teacher and ideologist. Thus any account of the rise of ideas of symmetry in 
modern mathematics may well begin at the turn of the nineteenth century, as 
does the present book. 

While sufficient attention is paid in the book to the origins of the concept 
of symmetry in the "new" European mathematics, the further development of 
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the relevant ideas is not exhaustively treated here. The ideas derived from 
Klein and Lie had a profound impact on all of twentieth-century mathematics; 
in the present book the narrative is largely restricted to the nineteenth century. 
We deal neither with the rather extensive nineteenth-century research in the 
natural sciences related to the rise of scientific crystallography nor with the 
massive twentieth-century applications of symmetry in theoretical physics in 
general and in the theory of elementary particles in particular. But then this 
simple introductory book does not claim to be in any sense exhaustive. Our 
purpose is to kindle the reader's interest and to prompt him or her to explore 
the relevant literature. 

In order to read the book it is enough to know high school mathematics. 
The book is meant for different groups of readers, such as college undergrad
uates majoring in mathematics, high school students, high school and college 
teachers, and persons without mathematical training but with an interest in 
the history of science and in general scientific problems. This explains the 
unusual structure of the book: the main text is followed by numerous and often 
extensive notes which contain, among other things, most of the numerous 
references to the literature. When reading the book for the first time, the reader 
is advised to ignore the notes or to make selective use of them. The biblio
graphical references are intended only for those readers who expect to con
tinue to study the questions considered in the book. 

The possible variety of interests and backgrounds of the book's prospective 
readers has resulted in the diversity of its contents. Some parts may interest 
the mathematician, while other parts are addressed to people who are more 
interested in history in general and in the history of science in particular. This 
is why the levels of difficulty of the references vary greatly. 

The formulas displayed in the book are denoted by two numbers in paren
theses, separated by a dot, to the right of the formula; thus, the number (X.Y) 
stands for formula Y in Chapter X. 

The book is based on the author's lectures to graduate-level students 
majoring in "pure" mathematics at Yaroslavl University, most of whom 
subsequently go on to teach in secondary schools; this probably influenced 
the choice of material and the nature of the narrative. The book was signifi
cantly influenced by discussions on the subject with the author's friends and 
colleagues, in particular S.C. Gindikin, B.A. Rosenfeld, and A.M. Yaglom. 
However, the author assumes full responsibility for the book's content, in 
particular for the thoughts which may occasionally seem controversial. The 
author would like to express his gratitude to the translator, Sergei Sossinsky, 
for his precise rendering of the Russian original into English, to my colleague 
Alexei Sossinsky for his assistance, and to Hardy Grant and Abe Shenitzer 
for editing the English text. 

I.M. YAGLOM 
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CHAPTER 1 

The Precursors: Evariste Galois and 
Camille Jordan 

On the morning of May 30, 1832, a French peasant taking vegetables to the 
Paris market picked up a wounded youth and transported him to a hospital. 
One day later the young man died, in the presence of his younger brother
and it was the dying man who had to offer consolation to his brother. 

The deceased, not yet twenty-one, was Evariste Galois ( 181 1- 1832), a 
mathematician and a well-known revolutionary, recently released from prison. 
It is believed that the duel in which he had been fatally wounded had been 
instigated by the police. 1 

Galois's short life was not marked by success. Twice he tried to enter the 
best college in France, the famed Ecole Polytechnique in Paris, but he failed 
both times, although the examiners were no doubt mathematicians of much 
lower caliber than the examinee;2 he was expelled for political reasons from 
the Ecole Normale, a second-best school at the time, after his first year of 
study;3 his scientific achievements were unrecognized.4 Galois wrote about 
his results to the leading contemporary mathematicians, the academicians 
Augustin Louis Cauchy ( 1789-1857) and Simeon Denis Poisson (1781-1840), 
but Cauchy did not answer at all, while Poisson found the paper incom
prehensible and returned it to the author. Galois was certain that Cauchy, a 
conservative and a royalist, had deliberately suppressed the results obtained 
a by confirmed republican. However, he was being unfair: Cauchy could not 
have understood Galois's results. Indeed, no one was in a position to appreci
ate them at the time. If Cauchy had read Galois's letter, his response would 
most likely have been similar to Poisson's. But at that time Cauchy was 
concerned with other matters. He had left France, refusing to pledge allegiance 
to Louis Philippe of Orleans, who, in 1 830, had replaced the Bourbons, to 
whom Cauchy had always been loyal. 5 (The Bourbons, in turn, had honored 
Cauchy: Charles X had even bestowed the title of baron on him.) Cauchy did 
not return to Paris until many years later, having obtained special permission 
not to pledge allegiance to the new government. Undoubtedly, Cauchy had 
not read Galois's letter. As we shall see, this proved to be very fortunate indeed. 

Cauchy died in 1 857. In the 1 860s it was decided to publish his collected 
works, 6 and a leading mathematician of the time, Camille Jordan (1832-1922), 
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Evariste Galois 

was appointed to examine his papers in order to find unpublished works which 
could be included in the new edition. 

Jordan failed to find any unpublished works by Cauchy, but among the 
latter's papers he discovered Galois's letter, which had lain idle for more than 
thirty years and had apparently never been read; he was amazed by it. In the 
interim, major successes had been achieved in mathematics; the groundwork 
had largely been laid 7 for Galois's work to be recognized, and Jordan was just 
the man to give credit where it was due. Ideas close to those contained in 
Galois's remarkable letter had probably interested Jordan at an earlier date, 
and now they seriously engaged his attention. Jordan attempted to find all of 
Galois's works published during his lifetime or, as most had been, posthu
mously, and a number of Jordan's papers in the 1860s were devoted to 
explaining and elaborating the same ideas. Eventually, Jordan decided to 
write a large monograph about that branch of mathematics. The book came 
out in 1870; it was entitled Traite des substitutions et des equations algebriques. 
It is difficult to overestimate its importance in popularizing and elaborating 
Galois's ideas. 
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What was Galois's contribution to mathematics? His main result is related 
to the important question of the solvability of algebraic equations in radicals. 
But however important the theorems proved by Galois, the methods by which 
these results were obtained were more important still. It is not only (and not 
so much) what Galois proved but, mainly, how he proved it. In order to explain 
the meaning of his results we must turn to the history of algebra and, in 
particular, to the progress in the theory of(algebraic) equations before Galois's 
time. 

It is well known that the roots of any quadratic equation x2 + px + q = 0 
may be found from the simple formula x = -p/2 ± j(p/2)2 - q. This 
formula was known to the ancient Babylonians: the cuneiform inscriptions 
serving to instruct future priests many thousands of years ago contain large 
groups of problems on quadratic equations solved with the aid of tables of 
square roots. These problems were often of a geometric nature but could be 
reduced to quadratic equations by means of the Pythagorean theorem on right 
triangles, which was known to the Babylonians (not by that name, of course). 
In ancient Greece, where geometry prevailed over algebra, the method for 
solving quadratic equations was given in geometric form: the formula was 
replaced by rules (different for different signs of the equation's coefficients) 
for constructing the segment x from known segments p and q such that 
x2 ± px ± q2 = 0. The knowledge of Greek mathematicians, extensive in 
geometry and even in the elements of the differential and integral calculus, 
was rather limited in algebra. They went no further than the solution of 
quadratic equations, despite the fact that the geometric problems which they 
considered included quite a few involving the solution of cubic equations.8 

A lively interest in cubic equations was shown by medieval Arab mathe
maticians,9 who generally paid much more attention to algebra than the 
Greeks. The word "algebra" itself is of Arabic origin, deriving from a term 
for a specific method of solving equations used by Arab mathematicians 
(transferring terms of an equation from one side to the other with a change 
of sign). Some cubic equations were also considered by medieval European 
scholars, in particular by the most outstanding medieval mathematician, the 
Italian merchant Leonardo Pisano ( 1 180-1240), better known as Fibonacci 
(which means son of the good-natured man-Bonacco was the nickname of 
Leonardo's father). However, no decisive breakthroughs were made, perhaps 
because the creative potential of these mathematicians was checked by exces
sive respect for the ancient Greeks, an a priori belief that the Greeks could 
not be surpassed. The solution of cubic and quartic equations, achieved by 
mathematicians of the Renaissance, was important mainly because it finally 
put an end to that extremely harmful delusion. 

The rule of Frederick II Hohenstaufen ( 1 194-1250) in the Kingdom of the 
Two Sicilies was a rehearsal of sorts for the Renaissance. Frederick II became 
king in 1 197 at the age of three, and emperor of the Holy Roman Empire in 
1215. But he disliked bleak Germany and was in love with southern Italy. He 
also disliked the tournaments relished by medieval knights (in particular by 
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his grandfather Frederick I Barbarossa), in which armed men mutilated each 
other; in Italy he patronized less bloody competitions in which the opponents 
did not exchange blows with sword or lance but foiled each other with 
mathematical problems. It was at these bouts that Leonardo Pisano's talent 
first flourished; there he showed his ability to solve cubic equations (probably 
chosen by Leonardo himself, because his constant rival Johannes of Palermo, 
a Sicilian merchant and later a university professor, was Leonardo's good 
friend). The tradition of mathematical tournaments was continued in Renais
sance Italy, and it played a considerable role in the first serious successes 
scored by European science. 

Apparently, the cubic equation 

x3 + px + q = 0 (1 .1)  

(any cubic equation can be reduced to the form (1 .W0) was solved for the first 
time by Scipione del Ferro (1456-1526), a professor at Bologna University, 
which was one of the leading and best known universities of Northern Italy. 1 1  
Del Ferro communicated the solution to a relative, Anton Maria Fior. Having 
gained possession of the formula for solving cubic equations, Fior challenged 
the first mathematician ofltaly, Niccolo Tartaglia (1500-1557), 12 to a mathe
matical tournament. At first, Tartaglia was not worried in the least, knowing 
Fior to be a mediocre mathematician. However, not long before the competi
tion was to begin, he was told that Fior possessed a formula for solving any 
cubic equation, an invaluable asset for competitions of that kind, which he 
had obtained from his relative del Ferro. Urged on by vanity and the fear of 
being defeated, Tartaglia soon found the same formula on his own. As a result, 
he vanquished Fior. First Tartaglia very quickly solved all the problems 
offered by Fior (they all involved the solution of cubic equations), and after 
that the upset Fior could not solve a single one of Tartaglia's problems. 

On learning of Tartaglia's discovery, another outstanding mathematician 
of the time, Girolamo Cardano (1501-1576),13 was anxious to include it in 
the algebra textbook he was writing (Ars magna14). He succeeded in luring 
Tartaglia to a small inn in a provincial town where, intimidated by Cardano, 
Tartaglia described in Latin verse1 5 the key to the formula for the solution of 
equation (1 . 1). Tartaglia claimed that Cardano promised not to publish the 
corresponding result, which Tartaglia was saving for the book that he himself 
was preparing. We can imagine his indignation when he saw the formula for 
solving the cubic equation (1 .1)  in Cardano's Ars magna. Here is how it appears 
in modern form:1 6  

X=� - q/2 + j(q/2)2 + (p/3)3 + � - q/2 - j(q/2)2 + (p/3)3• (1.2) 

This formula is still called the Cardano formula, despite the fact that Cardano 
made no claims to its discovery and actually wrote that he had learned it from 
Tartaglia. 1 7 (Some of the difficulties connected with formula (1 .2), due to the 
fact that real roots of equation ( 1 . 1 )  are often given by the formula in the form 
of a combination of expressions involving complex numbers, 18 were explained 
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by the last of Bologna University's outstanding mathematicians-Raffaele 
Bombelli (c. 1 526-1573) in his book L'Algebra written about 1560 and 
published in 1 572.) 

Cardano's Ars magna contains another outstanding result: rules for solving 
any quartic equation19 

x4 + px2 + qx + r = 0, (1 .3) 

rules obtained by Cardano's pupil Ludovico Ferrari (1 522-1565).2° Ferrari 
rewrote ( 1.3) as 

(x2 + p/2)2 = x4 + px2 + (p/2)2 = -qx - r + (p/2)2, 

added the expression 2(x2 + p/2)y + y2, where y is an unspecified number, to 
both sides of the equation and obtained the equality 

(x2 + p/2 + y)2 = 2yx2 - qx + (y2 + PY - r + (p/2)2). 

Here we have a complete square on the left-hand side; on the right-hand side 
we have the quadratic trinomial Ax2 + Bx + C in the unknown x, which also 
becomes a complete square if B2 = 4AC, i.e., if 

(1.4) 

Equation (1.4) is a cubic equation in the unknown y, now called Ferrari's 
resolvent for equation (1.3). If y0 is a root of equation (1 .4) (which can be found 
by using formula (1.2)), then (1 .3) turns into a combination of two quadratic 
equations 

x2 + p/2 + Yo = ±J2Yo(x - q/(4yo)), 

whose roots coincide with the roots of the initial equation (1 .3). 
Thus the problem of solving all cubic and quartic equations proved not to 

be very difficult; the discovery of the relevant formulas was the first triumph 
achieved by European mathematical thought, awakening from the thousand
year slumber of the Middle Ages.21 It was only natural that the question of 
solving the (general) quintic equation arose at this point. However, several 
centuries of trials yielded only numerous incorrect solutions: no one could 
find the correct one! 

The hypothesis that the general fifth-degree equation cannot be solved at 
all, i.e., there is no formula similar to (1 .2) for finding the roots of the equation 
from its coefficients by means of a finite number of algebraic operations 
(addition and subtraction, multiplication and division, raising to a power 
and extracting roots), was first put forward by Joseph Louis Lagrange 
( 1736-1814), who came from a French family which had settled in Italy and 
become ltalianized to some extent. Lagrange's brilliant mathematical abilities 
became apparent when he was very young. At 19 he was appointed professor 
of the Artillery Academy in his native Turin, 22 and a year later he took an 
active part in founding the Turin Academy of Sciences (actually, the scientific 
society organized by Lagrange and his friends acquired this name somewhat 
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later). The Academy's publications contained many of Lagrange's papers on 
mathematics, mechanics, and physics. In 1759, on the recommendation of the 
famous Leonhard Euler (1707-1783), 23 the twenty-three-year-old Lagrange 
was elected foreign member of one of the most influential scientific societies 
in Europe, the Berlin (Prussian) Academy of Sciences. Following Euler's 
departure from Berlin to St. Petersburg (to the St. Petersburg Academy 
of Sciences, with which Euler was connected practically all his life), King 
Frederick II of Prussia, advised by Euler and encouraged by the Parisian 
Jean le Rond d'Alembert (see Note 176 below) whom he deeply respected, 
appointed the thirty-year-old Lagrange head of the Berlin Academy's mathe
matical class (a post held previously by Euler).24 It was during Lagrange's 
Berlin period, which lasted until 1787, that he carried out his fundamental 
studies in algebra. 

Lagrange devoted a long memoir (over 200 pages) to the theory of equa
tions. Reflexions sur la resolution algebrique des equations (1770-73) served as 
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the starting point for Galois as well as for Ruffini, Abel, and Cauchy (see Note 
7). Lagrange began his memoir by critically reviewing all previous attempts 
to solve quintic equations, in order to determine the general reasons for their 
failure. He pointed out that the reduction of cubic equations to quadratics 
(see Note 15) and of quartic equations to cubics is essentially based on a 
common idea: it consists in writing out Lagrange's resolvent and then finding 
Tartaglia's resolvent in the case of cubic equations (see Note 15) and Ferrari's 
resolvent in the case of quartic equations (as explained in the text above). 
However, an application of this method to a quintic equation transforms it 
into an equation of the sixth degree and, generally, for all n � 5, the degree of 
Lagrange's resolvent for an nth degree equation proves to be higher than the 
degree of the initial equation. This led Lagrange to doubt the existence of a 
formula for solving nth degree equations for n � 5.1t is particularly important 
that the main role in Lagrange's studies was played by certain permutations 
of the equation's roots. Lagrange even made a truly prophetic statement to 
the effect that the theory of permutations was the real crux of the question (of 
the solution of algebraic equations in radicals). Subsequently, that rather 
vague assumption found its brilliant confirmation in the works of Galois. It 
should be noted that although Lagrange did not know the term "group" 
(which will be dealt with below) and did not introduce the notion anywhere, 
he was led to it by the study of permutations of roots. This is why one of the 
first theorems of group theory is named after him. 25 

The first proof that it is impossible to solve the general equations of the 
fifth and higher degrees in radicals was given by the Italian doctor and 
outstanding amateur mathematician Paolo Ruffini ( 1765-1822); it was set 
forth in the algebra textbook he published at his own expense in 1799 under 
the rather long title Teoria generale delle equazioni, in cia si dimonstra im
possibili Ia soluzione algebraica delle equazioni generali di grado superiore al 
quatro. This remarkable book was hardly noticed outside ltaly;26 while in 
Italy it encountered intense opposition on the part of mathematicians headed 
by the authoritative Gianfrancesco Malfatti (173 1-1807), professor at the 
university of Ferrara, known for his many unsuccessful attempts to find a 
formula for the solution of quintic equations.27 Evidently, mathematicians 
were displeased by a doctor's intrusion into a field they regarded as their own; 
nevertheless, at the end of his life Ruffini became a professor of mathematics 
at the university of Modena. Ruffini's proof that the general quintic equation 
can not be solved was not irreproachable, but the author himself probably 
knew that best of all. He later made several attempts to improve the proof 
in a long series of papers ( 1801-18 13), but he was only partly successful. 
This notwithstanding, it is often said that modern algebra began with the 
appearance of Ruffini's works, which were not appreciated by anyone in their 
time. 

A "flawless" proof that a formula, involving only the operations of addition, 
subtraction, multiplication, division, raising to a power, and extracting roots, 
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Niels Henrik Abel 

for finding the solutions of the general quintic equation ax5 + bx4 + cx3 + 
dx2 + ex + f = 0 in terms of the coefficients a, b, c, d, e, and f was presented 
in 1824-1826 by one of the greatest mathematicians of the nineteenth cen
tury, a young Norwegian (still a student at the time), Niels Henrik Abel 
(1802-1829), whose life, like Galois's, was profoundly tragic. 28 In Abel's life
time (as well as later, see Chapters 2 and 8) Norway was extremely provincial; 
there were no qualified persons who could guide his studies. It was very 
fortunate that there happened to be a good teacher at his school who recog
nized the pupil's talent and drew his attention to the works of Newton, Euler, 
and Lagrange. There were no mathematicians at Christiania (Oslo) University 
who could read his papers; in particular, no one was able to find the mistake 
in the formula for solving the general quintic equation given by Abel in 1823.29 
However, Abel soon realized that his solution had been erroneous and, in 
1824, published as a separate booklet an extremely concise proof that the 
general quintic could not be solved in radicals.30 Abel's patrons, who admired 
the poor young man's diligence and indubitable talent but lacked the com
petence to check or guide his research, succeeded in obtaining for him a 
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scholarship from the Norwegian government. This enabled Abel, who had 
suffered from poverty all his life, to visit Germany and France, consult mathe
maticians in those countries, and refine his knowledge at famous universities. 
That trip proved very profitable for Abel despite the fact that, due to his 
modesty and shyness, he was unable to establish personal relations with 
prominent French and German scientists. It is striking that virtually the only 
person to acknowledge Abel's talent was not a professional scientist but 
the prominent German engineer, entrepreneur, and amateur mathematician 
August Leopold Crelle (1780-1855), an excellent judge of people, who had no 
substantial scientific achievements to his credit and therefore was not highly 
respected in academic circles. Crelle was a member of the Berlin Academy of 
Sciences, although he was elected more for his accomplishments as an engineer 
and for his organizational activities than for his purely scientific results. He 
was also a very rich man: at the time, most German railways were built 
according to his proposals. Crelle's profound faith in Abel and in J. Steiner, 
a Swiss amateur unknown to established scientists (more about him below), 
prompted him to found the first specialized mathematical journal in Germany. 
It was called Journal fiir reine und angewandte Mathematik; contrary to 
Crelle's intentions, the magazine soon came to be ironically called in scientific 
circles Journal fiir reine unangewandte Mathematik. It went on play a major 
role in German science. The first volumes were filled with Abel's (and Steiner's) 
papers. In particular, the first issue of the Crelle Journal, as almost immediately 
it began to be called for short, contained, among other works, a long French 
memoir by Abel called, Demonstration de l'impossibilite de la resolution alge
brique des equations generales qui passent le quatrieme degre ( 1826), which 
made his results accessible to all mathematicians. 

Abel's paper published in Crelle's journal attracted the attention of the 
famous C. Jacobi (see Note 240); it was Jacobi who introduced such terms as 
"Abelian integrals," "Abelian functions," and the like, and of other German 
scientists. Due to their efforts Abel was elected professor at Berlin University 
in 1 828, but the official notice reached Christiania (Oslo) several days after 
his death from tuberculosis at the age of twenty-seven (Abel did get a private 
communication of his election-a last consolation before his death). 

Ruffini's works apparently remained unknown to Galois; however, he knew 
Abel's papers and valued them highly. But the Ruffini-Abel theorem only 
asserted the absence of a general formula for the solution of every quintic 
equation, but failed to prove the existence of specific equations whose roots 
could not be expressed by means of radicals (they could, conceivably, be so 
expressed by means of a formula appropriate only for the given equation but 
not for all the others). Also, it did not determine whether a given equation 
could or could not be solved in radicals, 31 nor indicate how to find the solution 
if one existed. It was Galois who first answered all these questions, and the 
methods and notions he applied were destined to play an outstanding part in 
all of nineteenth and twentieth-century mathematics. 
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Galois based his works on certain appraisals of the "degree of symmetry" 
of an algebraic equation. It is obvious that the quintic equation x5 - 1 = 0 
whose (complex) roots are depicted in Fig. 1 (a) is "more symmetric" than the 
equation x5- x

4 + x3 + x2 + 2 = 0 (see Fig. 1 (b), in which the roots of this 
equation are shown), and the latter is "more symmetric" than the equation 
2x5- 1 5x

4 + 29x
3 + 6x

2
- 40x = O with the roots x1 = - 1, x2 = 0, x3 = 2, 

x4 = 2!, x5 = 4 (Fig. 1 (c)). Similarly, a square, say, is more symmetric than 
an equilateral trapezoid (Fig. 2(b)), and the latter is more symmetric than the 
scalene quadrangle depicted in Fig. 2(c). The mathematical degree of sym
metry of a polygon is judged by the set of distance-preserving maps of the 
polygon onto itself. Thus, for the square A1A2A3A4 (see Fig. 2(a)), that set 
includes the rotation of the square by 90° about its centre 0 which sends 
the vertices A1, A2, A3, and A4 into A2, A3, A4, and A1 respectively (we 
will write this rotation as A1A2A3A4 __.. A2A3A4A1 or denote it by the 
permutation n � l t), which indicates that vertex number 1 is sent to vertex 
number 2, vertex number 2 to vertex number 3, and so on); the rotation 
A1 A2A3A4 __.. A3A4A1 A2, or (j � � i), about the point 0 by 180° (or reflection 
in 0); the rotation A1A2A3A4_.A4A1A2A3, or (igj), about 0 by 270°; 
the reflections AlA2A3A4 __.. AlA4A3Az, or n �H), and AlA2A3A4 __.. 

A3A2A1A4, or (j � � !), in the diagonals A1A3 and A2A4; the reflections 
A1A2A3A4 __.. A4A3A2A1, or (i ��f), and A1A2A3A4 __.. A2A1A4A3, or 
(� i l j ), in the midlines KL and M N and, of course, the identity transformation 
A1 A2A3A4 __.. A1 A2A3A4, or (f ��!), which does not move any of the quad
rangle's vertices. In short, the set of transformations of a square onto itself is 
given by the 8 permutations 

(1 23 4) 7!:1 =
23 4 1 ' (1 23 4) 1tz = 3 4 1 2  ' (1 23 4) 7!:3 = 

4 1 2  3 ' (1 23 4) Pl = 
1 43 2 ' 

(1 23 4) Pz = 3 2 1 4  ' (1 23 4) Ul= 
43 2 1 ' (1 23 4) Uz = 

2 1 4  3 , and (1 23 4) e = 
1 23 4 ' 

(1 .5) 
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and is thus relatively varied. On the other hand, the set of distance-preserving 
maps of for the trapezoid A1A2A3A4 in Fig. 2(b) onto itself is much poorer, 
for it consists of just the reflection A1A2A3A4-+ A2A1A4A3, or n Uj), and 
the identity map; and the set of distance-preserving maps of the scalene 
quadrangle in Fig. 2(c) onto itself consists of the identity map alone. 

Similarly, according to Galois, the degree of symmetry of an nth-degree 
equation f(x) = 0 with rational coefficients is described by the set of permuta
tions of its roots x1, x2, • • •  , x, that preserve all the algebraic relationships 
between them (expressed by equations of the form P(xl> x2, • • •  , x,.) = 0 where 
P(x1, x2, . . . , x,.) is a polynomial inn variables xt> x2, . .. , x, with integer 
coefficients which may, of course, depend on some, rather than all n variables). 
Thus, in the case of the so-called cyclic polynomial x5 - 1 = 0, all the relations 
between the roots reduce to the equality x5 = 1 and the relations xf = x2, 
x� = x3, x� = x4, and so on. The set of these relations is invariant under 
the permutations (x1, x2, x3, x4, x5 )-+ (x2, x4, x1, x3, x5 ), or (U g n, (for 
instance, under this permutation the relation xf = x2 becomes xi = x3); 
(xl' X2, x3, x4, Xs)-+ (x3, xl' x4, x2, Xs), or (j I l � n; (xl' x2, x3, x4, Xs)-+ 
(x4, X3, X2, X1, Xs), Or (g �in; and, of COUrse, the identity SUbStitution 
(xl, x2, x3, x4, Xs)-+ (xl, x2, x3, x4, Xs), or n � �! n. Thus, the set in question 
consists of only 4 permutations: 

(12 345) 't"l= 24135 '  
(12345) 't"2= 
31425 ' 

(12345) e= 12345 · 

(12345) "3 = 
4 3 2 1 5 ' and 

(1. 6) 

All the algebraic relations between the roots of the equation x5 - x
4 + 

x
3 + x2 + 2 = 0 reduce to the equalities x1 = -1; x� = -1; x2 + x3 = 0; 

xi-2x4 + 2 = 0; x4 + x5 = 2. The set of these relations is invariant under 
the identity permutation as well as under the permutations t1: (x1, x2, x3, x4, 
x5 )-+ (x1, x3, X2, x4, xs), orO��! n; t2: (x1, X2, x3, x4, xs)-+ (x1, x2,x3, Xs, X4), 
or n g t �) and t3: (xl' x2, x3, x4, Xs)-+ (xl' x3, x2, Xs, x4), or 0 n t �). Thus, 
the family of permutations preserving the set of all algebraic relations between 
the roots of the equation under consideration consists of 
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(12345) t1= 13245 ' 

Felix Klein and Sophus Lie 

(12345) t2 = 123 54 ' 
(1234 5) t3= 132 54 ' 

(12345) and, of course, e = 1 2 3 4 5 
. (1.7) 

Finally, since the equalities x1 = -1, x2 = 0, x3 = 2, 2x4 = 5, x5 = 4 are 
among the algebraic relations linking the roots of the equation 2x5 - 15x4 + 
29x3 + 6x2 - 40x = 0, the only permutation preserving all these relations is 
the identity e = ( i � �! �). It is clear that the set of distance-preserving maps IF of the quadrangle 

F = A1A2A3A4(or then-sided polygonF = A1A2A3 ···A,, or of an arbitrary 
figure F) onto itself must contain the identity map (the identity permuta
tion e = (} � � ::: �) of the vertices of the polygon). Further, if u = (� ; ::: : ) 1 2 " 
and .. = a t :: : b ) are two vertex permutations corresponding to distance-' 2 n 
preserving maps of the polygon F = A1 A2 ···A, onto itself, then their product 

is contained in the set IF (if both u and • map F onto itself, then so does their 
product ru (first u, then r!)). Finally, if 1t = (;, ;2 ::: �J is the permutation 
corresponding to a distance-preserving map of the polygon F = A1A2 ···A,. 
onto itself, then the inverse map corresponds to the inverse permutation 

1t-1 = (P1 P2 · · · p,) ( = (1 2 · · · n ) )  . 1 2 ·· ·n q1q2···q, 

Here q1, say, is a number such that Pq, = 1; it should be pointed out that in 
the notation for the permutation 1t = (;, ;2 ::��J what matters are only the 
columns(;,), (;,), . . .  , GJ and not their order, so that the permutation 1t can 
also be written as n=(pi, Pi2 :::pi"), where (i1, i2, • • •  , i,) is an arbitrary per-it i:z in 
mutation of the numbers ( 1, 2, . . .  , n). Indeed, the map n sends the polygon 
F = A1 A2 ·· · A,. into the same polygon F' = A P ,AP2 · · · Ap,, while the inverse 
map n-1 sends F' into F, i.e., it is also a distance-preserving map ofF onto 
itself. 

It is clear that the set f§ of permutations of the roots of the algebraic 
equation f(x) = 0 which transform all algebraic relations between the roots 
into (other) relations between roots of the same equation has the following 
three properties: 

(1) f§ contains the (unique) identity permutation e = n � ::: �); 
(2) together with every two permutations (1 = (�, ;2::: :J and .. = a, t2::: t) 

(where the equality r = u is not excluded), f§ contains their product -(1 2 ... , )·(1 2 ... ,. )-(1 2 ... , )• 't"(J - b1 b2 • • • b a1 a2 .. ·a - b b • • • b ' n n a1 a2 an 
(3) together with every permutation u = (�, ;2::: :J the set f§ also contains the 
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· t t" -1 (a1 a2 • • · a ) ( 1 2 · · · n ) h · · 1 2 Inverse permu a IOn (f = 1 2 ···n" = a,a,···an , W ere 1Xa1 = l, l = , , 
... ,n. 

Galois called any set of permutations satisfying conditions (1), (2), and (3) 
a group of permutations. Essentially, the notion of a group (now regarded as 
one of the most important notions in all of mathematics32) had appeared 
before Galois.33 Its presence in Lagrange's works has already been pointed 
out. Ruffini's and Abel's research had also involved profound group-theoretic 
ideas, although these were not set down in a clear fashion. 34 On the other 
hand, Galois's understanding of the role of group theory in the study of 
(algebraic) equations was much clearer than that of his precursors; the very 
fact that the new notion was given a specific name (and that the terminology 
of group theory had been worked out) was undoubtedly of major importance. 
The main idea, clearly outlined by Galois, consisted in characterizing each 
equation by the "degree of symmetry" determined by the group of permuta
tions of the roots which leave the algebraic relations between the roots of the 
equation unchanged. Galois called this group the group of the equation; it is 
now known as the Galois group (of the equation). The simplest (smallest) such 
group is, of course, the group consisting of the identity permutation.The 
example of the equation 2x5 -15x4 + 29x3 + 6x2 + 40x = 0 shows that to 
the simplest Galois group there correspond the simplest equations-those 
whose solutions are rational, i.e., can be written without using radicals. 

The notion of a group in the theory of equations was insufficient for Galois; 
equally important for him was the more complex notion of a field, also 
essentially originating in Lagrange's work. While a number of mathemati
cians, including Abel, had studied fields, it was Galois who named the concept 
and defined it rigorously. For Galois, a number field was a set of numbers 
closed with respect to the operations of addition and multiplication (i.e., a set 
such that the sum and product of any two numbers in that set also belongs 
to the set); this set of numbers must contain the numbers 0 and 1, as well as 
the difference and quotient (with nonzero denominator) of any two numbers 
in it. The best known examples of fields are the field Q of rational numbers, 
the field R of real numbers, and the field C of complex numbers; an inter
mediate field between Q and R (or C) can be obtained by extending Q by 
"adjoining" the root of some equation which cannot be solved in Q (if the role 
of. such an equation is played by the quadratic equations x2 -2 = 0 or 
x2 + 1 = 0, then we obtain the respective fields of numbers of the form 
a + bfi and a + bi, where i2 = -1 35 )-such an "algebraic extension of 
fields," which Galois considered following Lagrange, played a major role in 
his constructions. The notion of a field arose in connection with the primary 
concept of the (Galois) group of an equation: in the definition of a Galois 
group '§ one must indicate over what field F the group is to be considered. 
Specifically, the Galois group preserves the set of algebraic relations between 
the roots x1, x2, • • •  , xn of the initial equation f(x) = 0 which are expressed by 
the condition that certain polynomials P(x1, x2, • • •  , Xn) in n variables with 
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coefficients from the given field F are equal to zero. The fundamental theorem 
of algebra, which asserts that in the field C of complex numbers every nth
degree equation f(x) = 0 has exactly n roots x1 = c1, x2 = c2, • • •  , xn = en, 
implies that the Galois group of any equation' is trivial over that field, i.e., 
consists of the identity substitution e only. The theory constructed by Galois 
comes down to the parallel consideration of two processes: the extension of 
the main field F (containing the coefficients in the relations P(x1, x2, . • •  , xn) 
between the roots of the equation) and the simultaneous reduction of the 
Galois group �-

In order to understand the rather complex constructions arising in the 
branch of algebra now known as Galois theory (many substantial books36 
are devoted to it; courses on Galois theory are studied in the mathematics 
departments of all the universities in the world37), Galois had to gain a 
deep insight into the theory of groups and fields. He introduced the basic 
terminology of group theory including such terms as group, subgroup (a subset 
of the group's elements, itself forming a group with respect to the operation 
of "multiplication of elements" in the given group), and order of a group 
(the number of elements in a group; see Note 25). He also introduced such 
important notions as normal subgroup (see below) and singled out such 
important classes of groups as simple groups and solvable groups38 (however, 
it should be kept in mind that some of Galois's definitions were rather sketchy 
and most of his theorems were not proved39). Galois's main result consisted 
in describing the Galois groups of equations that are solvable in radicals; he 
found the necessary and sufficient conditions for such solvability, and it was 
precisely the groups of solvable equations which he called solvable. 

It is clear that the set of distance-preserving maps of a polygon F (or an 
arbitrary figure F) onto itself is also a group; nowadays that group is called 
the symmetry group of that figure. Of course, the maps included in the sym
metry group ofF do not necessarily have to be thought of as permutations; 
thus, for example, the symmetry group (1 .5) of the square F = A1A2A3A4 
consists of four rotations n1, n2, n3, and e (where e is a rotation by 360° or 
the identity map) and four reflections p1, p2, a1 and a2 with the following 
"multiplication table" of the group's elements: 

(Second factor) 
e 1t1 1t2 1t3 P1 P2 0'1 0'2 

e e 1t1 1t2 1t3 P1 P2 0'1 0'2 '§' 1t 1 1t1 1t2 1t3 e 0'2 0'1 P1 P2 
u 1t2 1t2 1t3 e 1t1 P2 P1 0'2 0'1 ..::! 1t3 e 1t1 1t2 0'1 0'2 P1 P2 (1.5') ..... 1t3 "' 
.!:: P1 P1 0'1 P2 0'2 e 1t2 1t1 1t3 � '-' P2 P2 0'2 P1 0'1 1t2 e 1tJ 1t1 

0'1 0'1 P2 0'2 P1 1t3 1t1 e 1t2 
0'2 0'2 P1 0'1 P2 1t1 1t3 1t2 e 
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More generally, a group (an arbitrary group not necessarily consisting of 
permutations) is any (finite or infinite) family f'§ = { tX, {3, y, . . .  ; 6} of elements 
(the element 6 of the group plays a spe<;ial role) for which there is defined a 
"multiplication" that assigns to every two elements tX and P of the group 
a third element, their "product" {J = tX[j, in such a way that the following 
requirements hold: 
(1) (tX[j)y = tX(fjy) for all tX, p, y e f'§ (associativity); 
(2) tX8 = 8tX = tX for all tX e f'§ (the element 6 is known as the identity element of 

the group); 
(3) for every tX e f'§ there exists an element tX-1 e f'§, such that tXtX-1 = tX-1 tX = 6 

(the element tX-1 is known as the inverse of tX). 
If, moreover, 
(4) tX{3 = fjtX for all tX, p e f'§ (commutativity), then the group f'§ is said to be 

commutative. 

This "abstract" approach to the notion of a group (in which neither the 
nature of the group elements nor the meaning of the "group operation" 
("multiplication") are specified) originated in the work of Cauchy mentioned 
in Note 7. The idea of defining a group by the "multiplication table" of its 
elements, similar to table (5') (of course such a table can be written out only 
for a finite group, that is, a group with a finite number of elements) is due to 
the English mathematician A. Cayley, whose name will appear many times in 
this book. Such tables are called Cayley tables. It is clear that a multiplication 
table of the type ( 1.5') defines a group if and only if it satisfies certain conditions, 
corresponding to the properties (1)-(3): thus, for example, it must begin with 
the "identity row" and "identity column" corresponding to the element 6 which 
repeat the row and column of factors (this corresponds to the conditions 
6tl = tX8 = tX for all tX);40 the element 6 must appear once and only once in each 
row and column, etc. 

Commutative groups-under another name-played an important role in 
the investigations of Ruffini and, especially, of Abel. Such groups are now 
called abelian, after Abel.41 

It is now clear that the "greater symmetry" of a square as against an isosceles 
trapezoid, or, even more, a scalene quadrangle, is expressed by the larger size 
of the square's symmetry group: the group (1.5) of symmetries of a square 
contains eight elements while the symmetry group of an isosceles trapezoid 
consists of only two isometries, and the symmetry group of a scalene 
quadrangle contains only the identity map 6 (which is an element of the 
symmetry group of every figure). But now our conclusion about the greater 
symmetry of the "cyclic" equation x5 - 1 = 0 compared to that of the equa
tion x5 - x4 + x3 + x2 + 2 = 0, which seemed obvious at the start, must be 
re-examined: the Galois groups (over the field of rational numbers) of these 
equations contain the same number (four) of elements; these groups-(1. 6) 
and (1.7)-differ only in their "multiplication tables" (their Cayley tables)42: 
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e r1 r2 LJ 

e e r1 r2 r3 
r1 r1 r3 e r2 ( 1 .6') 
r2 r2 e r3 r1 
r3 r3 r2 r1 e 

and 

e t1 t2 t3 

e e t1 t2 t3 
t1 t1 e t3 t2 (1 .7') 
t2 t2 t3 e t1 
t3 t3 t2 t1 e 

Now let us again consider an arbitrary group r§. In group theory (and in 
group-theoretic constructions of Galois groups) an especially important role 
is played by the so-called normal subgroups. Suppose 

c 2 3 · · · n ) 
and et = c 2 · · · n ) 

a =  
a1 a2 a3 . . .  an et1 et2 · · · etn 

are any two permutations. The image of the permutation a (of the permutation 
i --+ a1) under the permutation et (the permutation i--+ et1) is the permutation 
a': et1 --+eta,; thus, for example, the permutation et = (i � � j) sends the permuta
tion a = (i � � 1) into the permutation a' = {j i � i) or a' = (� i i j). (Recall 
that the order of the columns of the permutation is immaterial.) More gener
ally, the image of the map a: x--+ f(x), under the map et: x--+ <p(x) is the map 
a': <p(x) --+ <p(f(x)); it is not too hard to see that a' = etaet-1 . Similarly, one says 
that the permutation (transformation) et sends the set of permutations (trans
formations) {a, b, c, . . . } into the set {a', b', c', . . .  } = {etaet-\etbet-\etcet-1, • • •  }. 
The subgroup .Yt' of a group r§ of permutations (transformations) is said to 
be normal if all the permutations (transformations) in r§ send .Yt' into itself. 

This definition can be restated as follows. Suppose r§ is a group and .Yt' is 
its subgroup consisting of the elements e (the identity permutation, or identity 
element of the group) K, A., . . . . For each element et of the ("large") group r§ 
define the set 

et.Yt' = { ete = et, etK, etA., . . .  } 

of elements in r§. If et E .Yt', then, obviously, all the elements from et.Yt' belong 
to .Yt'; it is also easy to check that, in this case, et.Yt' coincides with .Yt'. If et does 
not belong to .Yt', then none of the elements of the set et.Yt' belongs to .Yt'. 
Similarly, if et and fJ are two elements in r§, then either the sets 
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FIGURE 3 

rx.Jt' = { rx., OCK, rx.A., . . .  } 

and 
{JJt' = { /J, /JK, {JA., . . .  } 

of elements in t:§ coincide (this will be the case if rx.-1 fJ e Jt' and therefore 
p-1 rx. e Jt' since, as can easily be checked, p-1 rx. = (rx.-1 p)-1) or rx.Jt' and fJJt' 
have no common elements. 

Now consider all possible sets of elements of the form Jt'( = e:Yt'), rx.Jt', fJJt', 
y:K, . . .  , where e, rx., fJ, y, . . .  are all the elements of t:§. Some of these sets coin
cide, and some have no common elements. Thus we obtain a partition of the 
entire group into "classes" rx.Jt', fJJt', . . .  etc. (including the subgroup Jt' itself 
which may be written in the form e:K or in the form y:K for any element y in 
Jt'). Such a partition of t:§ into nonoverlapping subsets (see the schematic 
Fig. 3) is known as a partition of t:§ into left cosets of the group t:§ with respect 
to the subgroup Jt'. Similarly, one defines right cosets oft:§ by Jt': 

Jt'( = Jt'e), Jt'rx., Jt'fJ, . . . . 

A normal subgroup Jt' of the group t:§ can be defined by the property that the 
set of left cosets of t:§ by Jt' coincides with the set of right cosets (so that in 
this case we can speak of cosets of t:§ by Jt' without using the adjectives "left" 
and "right"). Here it is possible to introduce an "arithmetic" of sorts into the 
set of cosets itself, since if f and .fL7 are two cosets of t:§ by Jt' (where Jt' is a 
normal subgroup of the group t:§) then the set of all possible products K2 where 
" e  f and A. e .ft7, is itself a coset (which can be viewed as the product of the 
classes f and .fL7 and denoted by f.ft7). It is easy to verify that the set of cosets 
of the group t:§ by its normal subgroup Jt' is itself a group whose identity 
element is the subgroup Jt' while the element inverse to the class rx.Jt' is the 
class rx.-1 Jt'; the "group of cosets" is called the quotient group of t:§ by Jt' and 
is denoted by t:§j:K. It seems that this construction was already known to 
Galois. This is a guess, however, since there is no mention of it in Galois's 
notes. The notion of a quotient group (together with the term "quotient group" 
and the symbol t:§j:K) was introduced by C. Jordan. 
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It is clear that for a commutative ( abelian) group <§ there is no difference 
between left and right cosets ( since for such a group lXV = viX for all IX, v e <§ 
and therefore IX.Yt' = Jt' IX for any IX e <§ and any subgroup Jt' of the group <§); 
therefore each subgroup of a commutative group is normal. It is also clear 
that any subgroup Jt' of index 2 in the group <§, i.e., such that the family 
of cosets of <§ with respect to Jt' consists of just two elements, namely the 
subgroup Jt' itself and the elements of <§ not in Jt', is normal; indeed, here 
we have only one possibility of partitioning <§ into a family ( a  pair) of non
intersecting cosets regardless of whether we have in mind "left" cosets of 
"right" ones. In particular, the possibility of partitioning all permutations 
(f, t, : : :  7J into "even" and "odd" permutations43 goes back to Lagrange. The 
product of any two even permutations is again even, and the inverse of an 
even permutation is even. Accordingly, the family of all even permutations 
constitutes a subgroup of the group of all permutations ( the group Sn of all 
permutations of n elements is now called the symmetric group of degree n and 
the corresponding group An of even permutations is called the alternating 
group of degree n); since this is a subgroup of index 2, it is always normal. The 
quotient group of a group <§ by its subgroup Jt' of index 2 ( say, the quotient 
group Sn/ An) consists of only two elements; its "structure" is obviously that of 
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the simplest group of the two numbers 1 and - 1  with the multiplication table: 

ffi 1 1 (1 .8) 

Another example of a normal subgroup is the subgroup of all translations 
in the group of isometries of the plane or the subgroup of all isometries of the 
plane in the group of similitudes of the plane (why?). The quotient groups 
5 I !T and f/ I 5, where !T is the group of translations, f the group of isometries 
and f/ the group of similitudes, have the same "structure" as, respectively, the 
group 50 of "centered" isometries, i.e., isometries which leave a point 0 of the 
plane fixed, and the group R+ of all positive real numbers (the ratios that 
characterize the individual transformations u E f/) under multiplication (the 
proof is left to the reader).44 

It is clear that each group t'§ is a normal subgroup of itself (here the 
"partition into cosets" consists of only one element t'§, and surely, in this case, 
there can be no difference between left and right cosets). Another normal 
subgroup of any group t'§ is its so-called "trivial" (identity) subgroup ..;V 
consisting of the identity element (it is clear that for the family ..;V = { 8} with 
the "group operation" 8 · 8 = 8 all the conditions characterizing a group hold); 
here the partition of t'§ into (right or left) cosets is simply the partition of the 
group into its distinct elements. Galois called a group t'§ with no "nontrivial" 
normal subgroups, that is, with no normal subgroups different from t'§ and 
JV, simple -a concept that reminds one of the definition of a prime (natural) 
number n as a number with no "nontrivial" divisors, that is, with no divisors 
other than 1 and n. For n � 3, the symmetric group Sn (the group of all 
permutations of n elements) is not simple (it is "composite"), since it contains 
the (nontrivial) normal subgroup An. But is An itself simple? Galois showed 
that the group A4 of order 12 (i.e., the group contains 12 elements) is not simple 
and that all the other alternating groups An, n =F 4, are simple. The difference, 
in this respect, between the groups A4 (nonsimple) and A5 (simple) reflects the 
difference between the general quartic equation (which is solvable in radicals) 
and the general quintic equation (which is not). Thus Galois touched. on the 
topic of finite simple groups (cf. Note 260). 

Little could he anticipate the explosive development of this complex topic 
in the second half of the twentieth century!45 

At the present time, a field (not necessarily numerical) is  defined as a set 
.A = {a, {J, y, . . .  } of arbitrary elements with two operations ("addition" and 
"multiplication"). These operations assign to every two elements a, {J E .A two 
new elements denoted respectively by a + {J (the "sum" of a and {J) and a{J 
(their "product"), and satisfy a number of conditions. One condition is that 
the elements of the field must form a commutative group with respect to 
addition. It is convenient to call the neutral element of this group, i.e., the 
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element which does not change any element to which it is added (previously 
this element was referred to as the "unit" element) the "zero element" or simply 
the "zero" of the field and to denote it by, say, the Greek letter o: 

a + o = a, for all a E Jt 

(sometimes the zero element is denoted by the number 0). A second condition 
is that all the nonzero elements of the field must form a (commutative )4 6 group 
with respect to multiplication; the fact that we excluded zero here is, of course, 
necessary, since it follows from the properties of the field (including the 
property of distributivity which will be mentioned below) that for each element 
a of the field we have ao = o. A third condition is that addition and multi
plication of the elements of the field are related by the distributive law: 

(a + fJ)y = ay + {Jy, for all a, {J, y E .A, 

Galois showed his deep insight into the theory of fields by producing a list 
of all possible finite fields. The simplest of these is, of course, the field consisting 
of two elements, which may be denoted by the numbers 0 and 1 ,  satisfying the 
following rules4 7 :  

(1 .9) 

It turns out that a field with n elements can exist if and only if the number n 
is of the form pq, where p is a prime: in this case for every n of the form pq 
there is exactly one (up to the manner of denoting the elements) field of order 
n = pq. All such fields are called Galois fields. We note that Galois fields, which 
have hitherto been viewed as somewhat "exotic", have recently acquired great 
significance as a result of many applications: they can be used very efficiently 
in coding theory, which studies the most effective means of channeling infor
mation by, say, radio or telegraph. In particular, for channels by means of 
which one can send n = pq different signals (say, 4 = 22 or 8 = 23 signals) the 
theory of fields yields a convenient system for grouping the signals for coding 
different letters, so that the (coded) letters are very different from each other 
and cannot be confused, whereas for channels for which the number m of 
possible signals is not of the form pq (say with 6 = 2 · 3 signals) such a 
convenient coding system does not exist. 

It was, above all, a realization of the varied (and sophisticated) uses of 
groups that led Jordan to study the work of Galois. This study inspired 
his Treatise on permutations . . .  , which was the first systematic textbook on 
Galois theory and, at the same time, the first systematic textbook on group 
theory in world literature. This remarkable book4 8 introduces and studies all 
the main group-theoretic terms and notions which Galois had no time to 
discover: the notion of a quotient group (see above) and the so-called normal 
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series of a group C§, consisting of a nested sequence of normal subgroups 
C§ => £'1 ::::> � ::::> · · · ::::> % (1.10) 

(the quotient groups C§j� , £'1/£'2, . . .  etc. are called the factors of the normal 
series (10)); the main part of the so-called Jordan-Holder theorem on normal 
series,4 9 the notions of transitivity (and intransitivity) and primitiveness (and 
imprimitiveness) (due to Ruffini but not defined precisely by him), and so on. 
This list does not exhaust Jordan's achievements in the study of group theory. 
In the sequel we shall have occasion to return to yet another of his important 
contributions-a contribution which is very close to the main topic of the 
present book (see Chapter 6 and Note 229). 



CHAPTER 2 

Jordan's Pupils 

In the period when Camille Jordan was absorbed by his book and inspired 
by relevant ideas, two young mathematicians were studying with him. They 
had finished their university studies and had come to Paris to enlarge their 
vision and begin independent research. They were the Norwegian Sophus Lie 
and the German Felix Klein. Their position was that of Jordan's postgraduate 
students, and they proved to be fine pupils indeed. As fate would have it, Lie's 
and Klein's studies with Jordan lasted for a very short time. However, they 
struck deep roots, and the ideas of Galois and Jordan played a crucial role in 
the subsequent scientific careers of both mathematicians. 

Sophus Lie was born in 1 842 into the family of a pastor in Norway. His 
childhood was passed in his parents' home on the shore of the ocean near 
Bergen. He travelled the length and breadth of the country on foot and all 
his life retained a passionate love for the beauty of Norwegian fiords and 
Norway's natural scenes. At school Lie mastered all subjects equally well, and 
after finishing school was at first unable to choose an occupation. His father 
wanted him to follow in his footsteps and become a pastor, and Sophus gave 
serious thought to studying theology. It was much later, after considerable 
thought and not without painful doubts, that he undertook the study of 
mathematics and natural sciences. At first, his studies at Christiania University 
failed to put an end to his doubts. The breakthrough came in 1 868, when Lie 
read the works of V. Poncelet and J. Plucker (to which we will return below). 
These outstanding geometers made the strongest impression on the young 
Lie. Their works led to his first publications, which were followed by a 
continuous stream of papers, uninterrupted for several decades. To continue 
his education Lie moved to Berlin in 1 870. There he met and immediately 
made friends with Klein, who was seven years his junior; the first joint work 
by Lie and Klein, described below, comes from the same year. The close 
personal and scientific relationship between Lie and Klein, which began then 
in Berlin, played a major role in the life of both mathematicians and continued 
until Lie's death. 

The two made a visit to Paris, prompted by their desire to meet Jordan and 
also Gaston Darboux ( 1824- 1917). Darboux was the best known specialist in 
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Gaston Darboux 

differential geometry, which applies the differential calculus to the study of 
local properties (i.e., properties dealing only with small neighborhoods of a 
point) of curves and surfaces. 50 Darboux's voluminous and profound works 
(mention should be made, above all, of Lefons sur Ia theorie generale des 
su�faces et les applications geometriques du calcul infinitesimal, Vol. 1 -4, Paris, 
Gauthier-Villars, 1 887- 1 896; second edition 1914-1925) influenced both 
Klein and, especially, Lie. In particular, many of Lie's works were inspired by 
the approach of the General Theory of Surfaces, which organically combines 
differential geometry and the theory of differential equations. Here geometric 
questions are very efficiently reduced to analytic ones, and both approaches 
are used to study differential equations. All of this compels us to write about 
Darboux in greater detail. 

Darboux was born in Nimes in the south of France, but his whole life as a 
researcher and teacher was associated with Paris. He lived continuously in 
Paris from the age of eighteen and played an outstanding role in its intellectual 
life, above all as head of L'lnstitut and, as such, a member of the French 
Academie (see Notes 65 and 1 76). Darboux's name is linked to a considerable 
degree with the flourishing of the Ecole Normale, as well as the tradition 
whereby all outstanding French mathematicians taught in secondary school 
after graduating from college. Darboux was virtually the first outstanding 
mathematician to study at the Ecole Normale (a teachers' college), then a 
school less well known than the Ecole Polytechnique (see Chapter 1). Sub
sequently he taught at the Ecole Normale for many years. The respect enjoyed 
by Darboux even in government circles soon proved to be of great use to Lie 
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(see below). In other cases, however, Darboux's influence was less favorable: 
for example Darboux, somewhat conservative in his mathematical tastes, 
opposed the defense of Henri Leon Lebesgue's ( 1875-1941) doctoral thesis. 
Only the influence of Emile Picard (1856-1941), Darboux's future successor 
as presideht of the Institut, sanctioned the defense of Lebesgue's thesis, which 
was to play an outstanding role in twentieth-century mathematics. 

Klein and Lie were not destined to remain in Paris for a long time; neverthe
less, the personal contacts of both mathematicians with Jordan (and Darboux) 
played an enormous role in their subsequent research (see Chapter 8). Actually, 
the two friends were planning to stay in Paris long enough to become familiar 
with the main achievements of the French mathematical school, and then 
move on to London for contacts with English mathematicians. The Franco
Prussian war broke out in 1871 and the German Klein had to leave France 
in a hurry. (0 idyllic age when Klein was not even detained in Paris and could 
freely leave for Germany!) He intended to reenter France with the Prussian 
troops, but his military career was aborted-he contracted typhus and, in the 
meantime, France was rapidly routed. Left without his friend, Lie-who was 
an experienced hiker-decided to take advantage of the forced interruption 
in their studies to make a trek through all of France, the Alps, and Italy. But 
in the wartime atmosphere the plan proved to be rather unfortunate. Because 
of his poor French, conspicuous height and handsome but purely Nordic 
appearance, 5 1 Lie was immediately arrested as a German spy and imprisoned. 
Apparently, French patriots found Lie's manner of looking around in an 
abstracted way (he was then thinking through some mathematical problem) 
and then fevereshly scribbling in a little notebook (he was making mathemati
caljottings-in Norwegian) extremely suspicious. He spent about a month in 
the prison of Fontainebleau (just southwest of Paris-pretty far from the 
Alps!). As soon as he learned of Lie's arrest, Darboux used all his contacts in 
order to have Lie freed. But conditions in prison were not particularly bad, 
and Lie spent the time pondering over some aspects of Plucker's line geometry, 
to which his attention had been drawn by Klein and about which we shall say 
more below. Upon being freed from prison, Lie, the tireless hiker, went on his 
trek through France and Italy. 

While Lie could be described as a typical nineteenth-century scholar, his 
friend and colleague Felix Klein was a very different individual, both in his 
attitude to science and in character. A born leader, a brilliant polemicist, a 
great teacher, and an excellent organizer, capable of implementing the most 
complex schemes and undertakings, Klein was a precursor of twentieth
century science. Klein combined the qualities of organizer, teacher, and 
researcher to a remarkable extent. (Some of his modern counterparts are, say, 
the Parisian Jean Alexandre Dieudonne (born in 1906), one of the leaders of 
the Bourbaki group, and the Moscow physicist Lev Landau ( 1908-1968).) 

In the relationship between Lie and Klein, the latter, who was the younger 
of the two, played the role of the elder. Thus it was on Klein's initiative that 
the friends set out from Berlin to Paris and London (at that time they failed 
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to reach London), it was Klein who (years later) suggested that Lie move from 
Norway to Germany (Leipzig), and so on. Klein's leadership was readily 
accepted by the unassuming and kindhearted Lie although, perhaps, deep 
down he felt slighted. Like any truly outstanding scientist, Lie was well aware 
of the value of his work and was proud of it (his works will be dealt with in 
detail in Chapter 6). Lie also knew that from the purely scientific standpoint 
his influence on Klein was greater than Klein's on him. In any case, it was a 
question of scientific primacy which provoked the only conflict between Lie 
and Klein in their otherwise remarkably smooth friendship. 52 

Klein was born in 1 849 in Dusseldorf into the family of an official in the 
finance department. His father held extremely conservative, old-Prussian 
views; Felix adhered to some while flatly rejecting the others. In accordance 
with his father's wishes, Klein studied at a classical gymnasium. There, much 
attention was paid to ancient languages and very little to mathematics and 
the natural sciences. The deep antipathy Klein developed for the gymnasium 53 
played an important role in his future pedagogical views. After graduating 
from the gymnasium, Klein entered the university in Bonn. There he was 
immediately noticed and singled out by Julius Plucker ( 1801-1868), who 
headed the departments of (experimental) physics and (pure) mathematics. In 
1 866, the seventeen-year-old Klein became Plucker's assistant in the physics 
department. 

Plucker intended to make a physicist out of Klein. The latter showed a lively 
interest in physics (he was very "physics-minded" -more about that below) 
and had no objections to Plucker's intentions. But these plans were not 
destined to be carried through. In 1 868 Plucker died, and it fell to Klein's lot 
to carry out the painstaking job of preparing for publication his mentor's 
unfinished works, above all the second part of the remarkable Neue Geometrie 
des Raumes, gegrundet auf die Betrachtung der geraden Linien als Raum
element. Work on the book (published in 1 869) inspired Klein, and his first 
series of independent papers grew out of it, contributing to Klein's develop
ment as a mathematician. 

After Plucker's death, Klein lost his post as an assistant, left Bonn and went 
to Gottingen and to Berlin where he became acquainted with the young but 
very influential Gottingen mathematician Rudolf Friedrich Alfred Clebsch 
(1833-1872), the physicist Wilhelm Weber (1804-1891), a friend and colleague 
of the great Gauss, 54 and the head of the Berlin school of mathematics Karl 
Theodor Wilhelm Weierstrass ( 1815-1897). It should be noted that whereas 
Klein's relations with Clebsch and Weber were quite friendly from the begin
ning, his relationship with Weierstrass was marked from the outset by barely 
concealed antipathy on both sides. The roots of that hostility lay in the total 
incompatibility of Klein's and Weierstrass's scientific positions. This deserves 
a more detailed explanation. 

It is now well known that the human brain is not symmetric, and that the 
left and right hemispheres of the cerebrum each have their specific functions. 
The great interest focussed at present on a range of a questions having to do 
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with that asymmetry was reflected, in particular, in the award of the 1981 
Nobel Prize in biology and medicine to the American psychologist Roger 
Sperry for research in that field. In the standard case of the right-handed 
person, the left hemisphere is responsible for analytic, logical thinking, while 
the right hemisphere provides the "pictorial," synthetic vision of the world (of 
course, here we describe the differences between the hemispheres roughly and 
incompletely). With the same degree of approximation as above, it can be said 
that the left hemisphere, undoubtedly linked with speech, writing, 5 5  as well as 
computation and the use of the set of natural numbers in general, controls the 
algebraic aspects of mathematics (since algorithmic procedures have to do 
with linearly arranged algebraic formulas, they undoubtedly belong to the 
domain of the left hemisphere), while the right hemisphere is associated with 
geometric vision, with diagrams and pictures. Possibly, however, it may be 
more correct to link the left hemisphere with logic, and the right one with 
physics, bearing in mind the global approach to nature and to the phenomena 
of the natural sciences characteristic of most physicists. 

The above may go part of the way in explaining the striking fact of the 
existence of two types of mathematicians, opposite in some respects: alge
braists, whose thinking has to do primarily with logic, formulas, and algo
rithmic procedures; and geometers or physicists, who proceed mostly from 
graphic and visual impressions rather than from formulas. The existence of 
these two types of poorly correlated approaches to mathematics, as well as 
the existence of scientists for whom one or the other dimension in mathematics 
is the dominant one, was pointed out in a lecture56 by the eminent mathe
matician Hermann Weyl ( 1885-1955) (we shall come across his name again 
below). 57 In that lecture Weyl mentioned Klein and B. Riemann (see below) 
as examples of "physicists" and Weierstrass as an "algebraist." An earlier 
example is presented by the founder of the differential and integral calculus, 
the great physicist Isaac Newton ( 1642-1727) on the one hand, and the great 
logician Gottfried Wilhelm Leibniz (1646-1716) on the other. It is plausible 
that the mutual antipathy developed by Klein and Weierstrass was fostered 
by analogous differences in their respective scientific outlooks. 58 

Klein's "physical" thinking has already been mentioned; it was reflected 
in many of his research papers, for example, in the remarkable Lectures on 
Riemann Surfaces (a course of lectures delivered in Gottingen and circulated 
in mimeographed form) in which Klein took the liberty of considering the 
distribution of electric charges along a conductor shaped as an abstract 
Riemann surface of extremely complex topological structure in order to 
prove purely mathematical theorems. Klein's teaching (see Note 60) was also 
characterized by a physical and graphic approach, and, in consequence, by a 
certain lack of rigor. Klein's mode of exposition was largely due to the in
fluence of the great Bernhard Riemann. Klein worshipped Riemann, whereas 
Weierstrass, the fanatic advocate of rigor (modern mathematics largely owes 
its spirit and style to him), assailed Riemann and his friend Lejeune Dirichlet 
and considered many of their results unproved or even incorrect. This con-
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structive criticism gave rise to the theory of real numbers and to many 
topological concepts. In this connection, an interesting incident was recounted 
(at second hand) by Arnold Sommerfeld ( 1868-195 1), one of the greatest of 
twentieth-century physicists. Sommerfeld was Klein's pupil and staff member 
for many years; Klein engaged him as his assistant, just as he himself had once 
been appointed assistant in the physics department by Plucker. 59 Sommer
feld told how, in the early 1 860s, Weierstrass and the outstanding German 
physicist, mathematician, biologist, and medical doctor Hermann Helmholtz 
(1821-1894) spent a summer together in the country. Weierstrass had taken 
along Riemann's famous work (the source of the entire modern theory of 
functions of a complex variable) in order to elaborate and analyze it in his free 
time-while the highly "physicsminded" Helmholz could not imagine what 
there was to elaborate (see A. Sommerfeld, "Klein, Riemann und die mathe
matische Physik" Naturwissenschaft, 7 (1919), 300-303).60 

Klein's close friendship with Lie and the latter's significant scientific in
fluence on him made up for the absence of fruitful scientific contacts with 
Weierstrass. We have already described Lie and Klein's joint trip to Paris, 
which played an important role in the careers of both mathematicians. After 
returning from France and recovering from typhus, Klein settled in Gottingen 
not far from Clebsch and Weber; this was an extremely productive time for 
him. However, before dealing in detail with the scientific achievements of Klein 
and Lie, it is necessary to describe briefly the scientists who laid the foundation 
for their successes. 



CHAPTER 3 

Nineteenth-Century Geometry: 
Projective Geometry 

Science never develops evenly. It is marked by rising and ebbing tides, linked 
to external conditions and stimulating the progress of some trend or, on the 
contrary, holding it back. In ancient Greece, geometry61 was the basic branch 
of mathematics; from that time on the word "geometer" has been often used 
interchangeably with "mathematician," something we encounter even in the 
not so distant past (see Note 24). However, subsequently, successes scored in 
mathematics by-passed geometry for a long time. The principal mathematical 
achievements of the Renaissance and the following period were in algebra (see 
Chapter 1), and even medieval Arab (or, to be more exact, Arabic-language) 
mathematics was oriented towards algebra rather than geometry (see Chapter 
1 and Note 9). 

The seventeenth century was marked by the development of the calculus, 
which for centuries afterwards was regarded as the principal branch of mathe
matics. This was reflected in the appearance of the term "higher mathematics" 
(or "hOhere Mathematik" in German), meaning analytic geometry, the dif
ferential and integral calculus, and related fields (e.g., differential equations). 
At the present time this term sounds absurd (surely, probability theory or 
mathematical logic cannot now be regarded as branches of mathematics 
"lower" than the calculus) but is nevertheless widely used, especially in Russian
and German-speaking countries. 

In addition to .the calculus, the seventeenth and eighteenth centuries saw 
the "coming of age" of number theory and probability. In number theory, the 
great names were those of the Frenchman Pierre de Fermat ( 1601-1665) later 
L. Euler and J.L. Lagrange, and, at the very beginning of the nineteenth 
century, C.F. Gauss. In probability theory they were those of Fermat, 
B. Pascal, and the Dutchman Christian Huygens ( 1654-1695) followed by 
Jacob Bernoulli ( 1654-1705) then the French Huguenot and English scientist 
Abraham de Moivre ( 1667-1754) and, in the early nineteenth century, Gauss 
and Laplace. The late eighteenth century was marked by decisive successes in 
algebra due to Lagrange and Ruffini. However, these two centuries, so rich 
in outstanding scientists and brilliant results, were marked by only modest 
success in geometry, where one can only point to the works of the French 
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architect and military engineer Gerard Desargues (1593-1661), obviously 
ahead of their time and soon forgotten, to their continuation and extension 
(also unrecognized at the time) by the great scientist, writer, moralist, and 
religious figure Blaise Pascal (1623-1662),62 and to some results obtained by 
Euler, whose encyclopedic knowledge prevented him from completely avoid
ing geometry and who had to his credit some very substantial works in this 
area.63 

But in the nineteenth century the situation changed fundamentally. This 
can be called the golden age of geometry. According to Nicolas Bourbaki (see 
his Elements d'histoire des mathematiques (Paris, Hermann, 1974)) this period 
extends, roughly, from the publication of Monge's Geometrie descriptive (1795) 
to Klein's Erlanger Programm (1872). Spectacular in the instant flourishing of 
the entire spectrum of geometric fields, in the simultaneous appearance of 
numerous brilliant geometers with different creative approaches, and-alas 
-in the rapid decline and unexpected fall of interest in the most ancient 
stream of mathematical research,64 that age changed the face of geometry, 

Gaspard Monge 
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which emerged from it a completely different science from the one that had 
entered the nineteenth century. 

The founders of nineteenth-century French mathematics were the precur
sors of geometry's coming successes. They included one of the main organizers 
of French science and education, Gaspard Monge ( 1746-18 16), who was at 
one time naval minister in the French revolutionary government, as well as 
Monge's pupil Lazare Nicolas Marguerite Carnot ( 1735-1823),65 scientist 
and politician, famed organizer of the French revolutionary victory, influential 
member of the Public Salvation Committee and, in effect, revolutionary 
France's war minister. 

Gaspard Monge was born in a small town in Burgundy, into the family of 
a shopkeeper. His father was an almost completely uneducated man who, 
however, profoundly respected knowledge and sought to give his sons the best 
education he could; and he was rewarded-Gaspard and his two younger 
brothers subsequently became professors of mathematics, an incredible suc
cess for the family of a poor provincial in pre-revolutionary France. An officer 
who happened to be travelling through Monge's home town saw a map of the 
town and its outskirts very ably compiled by the young Gaspard and arranged 
for him to be enrolled in a military school (or military academy, as we would 
say today; see Note 22) in Mezieres in the Ardennes. This was one ofthe oldest 
and best higher military academies in France. Monge was accepted in the 
auxiliary department, which trained technical personnel for the army, because 
only people of noble origin were permitted to study at the department which 
trained officers. However, having presented the best possible solution of a 
problem concerning the layout of fortifications-he applied the ideas of 
descriptive geometry that he had by then worked out and would subsequently 
describe in the works of the Ecole Polytechnique as the art of depicting three
dimensional objects on a flat piece of paper-,66 Monge was granted the 
privilege of teaching mathematics and, soon thereafter, physics at Mezieres. 
His outstanding pedagogical, scientific, and administrative career began at 
that point. 

When Monge entered the school in Mezieres he was 18; at 19  he became a 
teacher and assistant to the mathematics professor Charles Bossut ( 1730-
1814); at 24 he was appointed full professor of mathematics and physics; and 
at 28 he was elected corresponding member of the French Academy of Sciences 
on a motion by Bossut and the famous d'Alembert (whose name will be 
encountered below) and Antoine Nicolas de Condorcet (1743-1794). In 1780 
Monge became an academician. At first he combined teaching in Mezieres 
with long stays in Paris, where he took part in the Academy's sessions, and 
later he moved permanently to Paris. 

As a commoner Monge was elated by the revolution of 1789. His short 
term as naval minister was not particularly successful; yet his organizational 
activities in the revolutionary years were quite important. He took part in 
organizing the manufacture of gunpowder and the casting of cannons; he also 
played a major role in the commission which supervised France's transition 
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to  the metric system. But his greatest achievement was his participation in the 
founding of a new type of college, soon to be called the Ecole Polytechnique. 67 

Monge's Ecole Polytechnique was set up to train highly qualified engineers. 
It offered a three-year course, after which the graduates could continue their 
education in more specialized advanced institutions or military academies. 
The curriculum at the Ecole Polytechnique was restricted to general fields, 
i.e., mathematics, theoretical mechanics, and physics; however, the level of 
instruction was extremely high because of a brilliant staff of lecturers and 
teachers, to whose selection Monge assigned top priority. Entrance examina
tions were selective and were held simultaneously in many places throughout 
the country. The examinees were supposed to solve a number of problems 
that they would select from a large list offered to them. (Of course, the list was 
the same for all of them: the examinees would open the envelopes with the 
problems simultaneously in all the places where the examination was held; 
the solution of each problem was worth a certain number of points.) 

Solution of difficult problems continued to play an important role in the 
teaching process at the school, and the points gained during the studies were 
taken into account upon graduation. The subsequent careers of the graduates 
were heavily dependent on the places they had earned at graduation. Initially 
the school "headmaster" was changed every month, and, on Monge's sugges
tion, Lagrange was appointed the first headmaster; Monge himself was the 
second. Later, the inconvenient system of monthly changes in administration 
was abandoned, and Monge was the sole head for many years. 

The Ecole Polytechnique played a major role in nineteenth-century Euro
pean science. In particular, it set an example for Klein in his activities at 
Gottingen University in Germany.68 Undoubtedly, the example of the Ecole 
Polytechnique was taken into account in the setting up of the German 
Technische H ochschulen in the late nineteenth and early twentieth century (in 
Zurich, Munich, Prague, and elsewhere); it was also instrumental in the 
founding of the famous American technological institutes (MIT, Cal Tech) 
and the Moscow Physics and Technology Institute in the town of Dolgopru
dnaya near Moscow. The lectures delivered by Monge at the Ecole Polytech
nique, and in part at the Ecole Normale, served as the basis for two textbooks 
in the new fields of geometry which he had in effect founded: Geometrie 
descriptive (1795), mentioned above, and Application de I' analyse a la geometrie 
(1795, 2nd ed. 1801; 3rd ed. 1807; and 4th ed. 1809).69 

Monge's scientific, pedagogical, and organizational activities were held in 
high esteem by Napoleon, who bestowed numerous distinctions upon him. 
He was the first civilian to receive the Legion of Honor award instituted by 
Napoleon; he was made a senator and given the title of count. For his part, 
Monge was completely loyal to Napoleon. Monge's support of Napoleon 
during the hundred days when the latter attempted to regain power following 
the restoration of the Bourbons 70 was held against him when the Bourbons 
returned to power a second time: he was expelled from the Academy of 
Sciences and stripped of all titles, the Ecole Polytechnique was temporarily 
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closed, and Monge was no longer on its staff after it reopened. All this had a 
telling effect on the old professor. Monge was in a state of depression from 
the time of Napoleon's second defeat in 18 15  until his own death in 1 818. The 
pupils of the Ecole Polytechnique were strictly forbidden to attend Monge's 
funeral; this, however, did not prevent them from collecting money to buy 
flowers which they lavished on his tomb the first Sunday after his burial. 

We have called Monge (and Carnot) the precursors of the flourishing of 
geometry in the nineteenth century. Probably the first truly great geometer of 
that century was another French officer, Monge's pupil at the Ecole Poly
technique, Jean Victor Poncelet ( 1788-1867). 

Poncelet was an officer in Napoleon's army and was taken prisoner during 
the Russian campaign of 1812, spending two years as a prisoner of war in 
a village near Saratov on the Volga. However, living conditions were not 
particularly harsh for French officers, and, in order to while away the time, 
Poncelet began to lecture on geometry to a group of his fellow officers, mostly 
graduates of the Ecole Polytechnique and like himself, former pupils of 
Monge. On returning home, the young officer read the existing literature and 
discovered that the ideas he set forth in the Saratov lectures were quite original 
and could serve as the basis for a completely new branch of geometry that 
Poncelet called projective geometry. 

Poncelet summed up the results obtained while a prisoner of war in his 
large Traite des proprietes projectives des figures (1822) which brought its 
author fame. In later years, for example when publishing a new edition of the 
Traite (1864-1866), Poncelet-now a general-would complain bitterly of 
that early renown. The success of the book put out by the young officer in 
1 822 launched his administrative career. Poncelet attained extremely high 
military and scientific posts, including membership in the National Defence 
Committee and direction of the famous Ecole Polytechnique, where he had 
once studied so fruitfully; he also took a leading part in organizing the London 
(1851) and Paris (1855) international expositions. But the duties attached to 
the high titles and ranks almost completely separated Poncelet from the 
science he loved so much 7 1-thus, for example, the triumphs of projective 
geometry which followed the appearance of his Traite were achieved almost 
completely without his participation, a fact he bitterly deplored in the last 
years of his life. The old conflict between vita activa and vita contemplativa 
introduced a certain dissonance to those final years, as Klein pointed out in 
his biography. 

Poncelet started from Monge's lectures on the descriptive geometry which 
he had created while studying the representation of three-dimensional figures 
in the plane (say, on a piece of paper). Since it is impossible to put a three
dimensional figure F in a plane, one must use the representation obtained by 
projecting all of its points on an image plane. Monge preferred orthogonal 
projection, which sends every point A of F to its orthogonal projection A' in 
the image plane (A' is the foot of the perpendicular AA' from A to the plane; 
see Fig. 4(a)). (The Monge method, now widely used in descriptive geometry, 
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(a) (b) 

(c) 
FIGURE 4 

consists in replacing the three-dimensional figure F by its orthogonal projec
tions F1 , F2 , and F3 on three pairwise perpendicular planes. It is clear that the 
three-dimensional figure entirely determines the (plane) figures F1 , F2, and F3 
and that the figures F1 , F2 , and F3 also allow us to recover the figure F.) 

Poncelet, on the other hand, was interested in the relationship between a 
(plane or space) figure F and its central projection F' consisting of the inter
section points A' of the image plane n with all the lines 0 A, where 0 is the 
fixed center of projection and A E F (Fig. 4(b)). 

It is clear that a parallel projection A (sending each point A of the figure F 
to the point A' = A(A) such that A' E n  and AA' lit, where t is a fixed line (if 
t ..L n, then A is called an orthogonal projection)) does not change the figure 
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F very much. Thus if F is a triangle (see Fig. 4(c)), then F' = A.(F) is also a 
triangle, though, in general, F' is different from F. A central projection ( can 
alter a figure much more: thus the projection ( in Fig. 4(b) sends the triangle 
F = ABC into the figure F' = ((F) consisting of two vertical angles at A' in 
one of which the tip is replaced by a segment (B'C'). Poncelet called the 
properties of figures preserved under central projection projective properties 
and the science studying these properties projective geometry. 72 

What are the basic notions of projective geometry? At this point it is 
convenient to compare projective geometry to affine geometry (originating 
with Euler; see Note 63) which studies the properties of figures preserved under 
parallel projections.73 It is clear that a parallel projection A. sends every line 
a (regarded as the set of its points) into a new line a1 = A.(a); that it sends 
parallel lines a and a1 into parallel lines a' = A.(a) and a� = A.(a1 ); and that it 
preserves the "simple ratio" (A, B; C) = AC/BC of three collinear points A, B 
and C (in the notations of Fig. 4(a), A'M'/B'M' = AMjBM). Thus the notions 
of a line (and of a point A belonging to a line a), oflines a and a' being parallel 
(a llad and of the simple ratio (A, B; C) = AC/BC of three points A, B, C e n  
(three points of a line n) are all meaningful in affine geometry. On the other 
hand, parallel projection can transform a circle into an ellipse (see Fig. 5(a), 
where the circle S' in the plane n' is sent by parallel projection into the ellipse 
S of the plane n), and, therefore, the notion of a circle is meaningless in affine 
geometry, while its role is played, in a certain sense, by the ellipse. Similarly, 
a central projection ( transforms a line a into a new line a' = ((a) and preserves 
the so-called cross ratio (A, B; C, D) = (A, B; C)j(A, B; D) = (ACjBC)(AD/BD) 
(the quotient of two simple ratios) of four collinear points; if B, C, M, N E n  
and B' = ((B), C' = ((C), M' = ((M), N' = ((N) (see, for example, Fig. 4(b), 
then (B', C'; M', N') = (B, C; M, N); that is why, in projective geometry, it is 
possible to speak of a line; of a point A belonging to a line a; and of the cross 
ratio (A, B; C, D) of four collinear points. On the other hand, a central projec
tion ( may transform parallel lines into intersecting lines (see Fig. 6, where 
APIIBQ, while A'P' n B'Q' = C', so that the "halfstrip" PABQ becomes the 
triangle A' B' C'); for that reason the notion of parallel lines does not exist in 
projective geometry. In projective geometry the role of circles is played by 
conic sections, i.e., ellipses, parabolas, and hyperbolas-in other words, by 
curves which can be obtained from a circle by means of central projection. 
Thus in Fig. 5(b) the central projection with center 0 transforms the circle ( 
in the plane n' into the ellipse ( in the plane n1 , or into the parabola ( in the 
plane n2 , or into the hyperbola ( in the plane n3 • 

Figure 6 sheds light on another important fact: that a central projection ( 
does not establish a one-to-one correspondence between the points of a given 
plane n and the image plane n' -no point C' E n' corresponds to the point 
C e n  since OC' I In. Thus neither n nor n' in the mapping (: n -+  n' can be 
thought of as the usual (Euclidean or affine) planes, i.e., the very notion of a 
plane in projective geometry must be somewhat modified. Namely, we suppose 
that the image of the point C' under the projection ( : n' -+ n shown in Fig. 6 
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FIGURE 7 

is the "point at infinity" C in which the lines AP and BQ intersect (although 
they do not intersect in the ordinary plane!), i.e., that ':  C -+  C' or '(C) = C'. 
Now, since a sheaf of lines intersecting at the point M and contained in the 
plane n can be transformed by the central projection ': n -+ n' into a sheaf of 
parallel lines in the plane n' (Fig. 7), it is convenient to assume that, from the 
point of view of projective geometry, all the lines of the (Euclidean or affine) 
plane parallel to some definite line in that plane converge to a single "point 
at infinity." (Thus, "from the affine point of view," we may assume that "points 
at infinity" are simply sheaves of parallel lines, just as an ordinary point M 
may be identified with the sheaf oflines intersecting at M.) It is useful to assume 
that all the "points at infinity" of the projective plane n belong to the same 
"line at infinity" o (whose image under the central projection ': n -+  n' with 
center 0 is the line o' in which the plane .,r intersects the plane (J) passing 
through 0 parallel to n). The "Euclidean differences" between ellipses, para
bolas, and hyperbolas can now be explained by saying that the ellipse contains 
no points at infinity, the parabola contains exactly one such point (corre
sponding to the direction of its axis of symmetry, along which the parabola 
"goes to infinity"), while the hyperbola contains two points at infinity (corre
sponding to the directions of its asymptotes-it is in these directions that the 
hyperbola "goes to infinity"). 

Thus the projective plane, the "domain of action" of projective geometry, 
differs from the ordinary Euclidean plane in that to each line of the latter one 
must add a point (the point at infinity, which does not exist in Euclidean 
geometry) so that all the points at infinity of a sheaf of parallel lines coincide 
and the set of all the points at infinity of the projective plane constitutes a 
single "line at infinity." Of course, such a description of the projective plane 
is based on our ordinary (Euclidean) ideas, which are meaningless in projective 
geometry; actually, in projective geometry the "points at infinity" are indis
tinguishable from other points, since central projection can transform any 
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ordinary point into a point at infinity and conversely. The relationship be
tween the notions of a projective plane and of a central projection leads us to 
the following "model" of the projective plane, which often turns out to be 
useful: the projective plane is the sheaf of all lines and planes of space passing 
through a fixed point 0 ("the center of projection"); here, the lines passing 
through 0 are called "points" of the projective plane n and the planes passing 
through 0 are called "lines." 

Note that any two lines a and b of the projective plane necessarily intersect 
in a unique point (an ordinary point if a-11' b in the Euclidean or affine plane n0 
from which the projective plane n was obtained by adding the line at infinity 
o, or a point at infinity if a II b or if one of the lines a or b is o ); this fact determines 
a complete analogy between the properties of points and lines in the projective 
plane. Indeed, in the Euclidean plane, the analogy between the properties of 
points and lines breaks down because there exist nonintersecting (parallel) 
lines, while any two points belong to precisely one line; in the projective plane, 
however, there are no parallel lines. The analogy between the properties of 
points and lines may be stated in the form of the so-called duality principle of 
projective geometry, which states that in any theorem of projective geometry 
one can replace the word "point" by the word "line" and conversely, the 
expression "lies on" by the expression ••passes through" and conversely, and 
the new theorem thus obtained (called dual to the given theorem) will be true 
precisely if the original theorem was true. The duality principle is one of the 
cornerstones of projective geometry. Unfortunately, its discovery was marred 
by a rather unpleasant argument over authorship between Poncelet and 
another French geometer, Joseph Diaz Gergonne (1771-1859), both of whom 
claimed priority. 74 

The nineteenth century was the golden age of projective geometry, which 
was undoubtedly the leading branch of geometry in that period.75 Besides 
Poncelet and Gergonne, Michel Chasles (1793-1880), another prominent 
French geometer and for many years a professor at the Ecole Polytechnique 
(where a geometry department was specially created for him in 1 846), played 
an active role in the development of projective geometry. Chasles was only 
four years younger than Poncelet, but their scientific activities belonged to 
different epochs: whereas Poncelet did mathematical research only in his 
youth, Chasles realized his scientific potential only in later years. His first 
research public\ltion appeared when he was a student at the Ecole Polytech
nique; but after completing his course of study Chasles was in no hurry to 
begin working in science, believing that he should first provide for himself, in 
material terms, by other means. He settled in his native city of Chartres, where 
he quickly gained fame as an entrepreneur and highly successful financial 
expert. Having become rich as a result of his banking activities, he switched 
to geometry. His first publication was the long Aperru historique sur l'origine 
et le developpement des methodes de Ia geometrie (1837).76 That review served 
as the starting point of research for many geometers, and above all, for Chasles 
himself. His other publications followed in quick succession. Chasles's courses 
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on higher geometry 77 at the Ecole Polytechnique were particularly influential. 
Chasles was fully committed to the "analytic trend" which cultivated coor
dinate methods in geometry (about which more will be said below); and he 
possessed a unique analytic intuition that enabled him to obtain great 
numbers of impressive geometric facts from the store of faceless formulas. 
Unfortunately, Chasles's last years were tainted by a scandal which had wide 
repercussions in Paris. It turned out that the famous scientist and professor 
at France's leading college, who had been an avid collector of manuscripts 
for many years, inexplicably fell prey to a swindler who supplied him with 
obviously forged documents, such as Cleopatra's letters to Julius Caesar. 
That incident lent Chasles the dubious honor of being the prototype of the 
hero in Alphonse Daudet's The Immortal (Daudet, however, did not make 
his protagonist a member, like Chasles, of L'Institut but rather a member of 
the French Academy, to which only men of letters are elected (see Note 176 
below)). 

The analytic approach to geometry cultivated by Chasles was based on the 
research of the German geometer August Ferdinand Mobius ( 1790-1868). 
Mobius in tum readily acknowledged his indebtedness to the Frenchmen 
Poncelet and Gergonne; the development of science is always international, 
and the export of scientific ideas beyond state frontiers has never been re-
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garded as smuggling. Mobius and Chasles who headed the analytic trend in 
French geometry were scientific equals. On the other hand, in purely human 
terms, the two were very different and, it must be said, Mobius's was a far 
more attractive personality.78 

August Mobius was born in Saxony, in the royal school in Schulpfort not 
far from Leipzig. His father was a dance teacher at the court. (Readers who 
like to ponder problems of heredity may be interested in the fact that August 
Mobius's son later became a celebrated neurologist and the author of a 
notorious book about the physiological weakness of women.) Mobius finished 
secondary school in Schulpfort and entered Leipzig University in 1 809 where 
he first studied law and then physics and mathematics. In 1813-14, the young 
Mobius was studying at Gottingen under Gauss who, however, only prepared 
him for a career as an astronomer and failed to discover his student's out
standing mathematical abilities. 79 Nevertheless, his studies at Gottingen made 
a lasting impression on Mobius and throughout his life he considered himself 
a pupil of Gauss, each of whose letters was the object of childlike pride on 
Mobius's part. In 1 8 14, Mobius returned to Leipzig University. After gradua
tion he accepted a post at the astronomical observatory in Pleisenburg, a 
suburb of Leipzig. He worked there for more than fifty years, until his death 
in 1 868; he rose from the rank of a lower staff member to the position of 
observatory director (he combined the latter job at the end of his life with 
professorial duties at Leipzig University). Mobius's whole life passed within 
the walls of the Pleisenburg Observatory; his study, the flat in which he lived 
with his wife and children, and the hall where he was always glad to lecture, 
were all in this building. It was characteristic of Mobius that he took his 
observatory duties very seriously. He wrote a number of works on practical 
astronomy, including investigations concerning the improvement of the op
tical systems of telescopes, and his manuals on astronomical observations 
were still very popular in Germany in the 1920s (the last edition was dated 
1916). 

As a person, Mobius was the epitome of the absentminded professor. He 
was shy and unsociable, timid with unfamiliar people, and so absorbed in his 
thoughts that he was forced to work out a whole system of mnemonic rules 
(which did not always work) so as not to forget his keys or his inseparable 
umbrella and handkerchief when he set out from home for a walk or for the 
university. His entire life passed in one city and in one building. His study in 
Gottingen and two or three short excursions through Germany in his youth 
were his principal "adventures." A complete picture of his life can be gained 
from the scientific diary Mobius wrote every night and by which we can trace 
the evolution of his views, interests, and ideas, the only things which changed 
in that fully regulated life. It is paradoxical that modesty and even shyness in 
everyday life combined in that impressive figure with boldness, fantasy and 
inventiveness in science, profound thoughts, and outstanding teaching abili
ties. All of Mobius's works, including two of his long books Der barycentrische 
Calcul ( 1827) and the two-volume Lehrbuch der Statik ( 1837) are distinguished 
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not only by innovative thinking and deep insights but also by crispness of 
style, clarity of narrative and excellence of structure. The mathematical talent 
of most mathematicians diminishes with age (Poncelet and Klein are relevant 
examples). But time did not diminish Mobius's gifts. What was perhaps his 
most impressive discovery-that of one-sided surfaces such as the famous 
"Mobius strip" 80 -was made when he was almost seventy, and all the works 
found among his papers after his death show the same excellence of form and 
profundity of thought. 

Mobius's attainments stand out even against the background of the 
outstanding achievements that marked nineteenth-century geometry. Unfor
tunately, these achievements were not obtained iri a spirit of cooperation but 
in a context of unending quarrels and bitter rivalry. The advocates of "purely 
geometric" (synthetic) methods attacked the "analysts," members of the 
French school warred against the Germans, and so on. These arguments and 
conflicts involved Poncelet, Chasles, Steiner and Plucker. The modest Mobius 
(like C. von Staudt, similar to him in character and temperament) remained 
aloof from any discussions not of a purely scientific nature. Moreover, in his 
works Mobius introduced a very impressive note of reserve into the debates: 
his works succeeded in uniting the analytic and synthetic approaches in 
geometry and served as the basis for many of its subsequent triumphs. At the 
same time, as pointed out above, Mobius readily conceded the priority of 
French mathematicians in the creation of projective geometry-that remark
able scientist was free not only of personal arrogance but of national prejudice 
as well. 

The key idea in Mobius's view of projective geometry was, above all, the 
idea of projective coordinates, which assign to every point of the projective 
plane a system of numbers-the coordinates of this point. In modern exposi
tions these coordinates are usually introduced as ordinary ("affine") coor
dinates in three-dimensional space IR3 in which sheaves of lines and planes 
(with center at the origin 0 of the coordinate system) form a model of the 
projective plane. From this description it is clear that each point of the 
projective plane (i.e., each of the lines of three-dimensional space passing 
through 0) is described by three coordinates x, y, z or x0, x1 , x2, at least one 
of which does not vanish, while proportional coordinate triples (x0 , x1 , x2) or 
(A.x0, A.x1 , A.x2) (where A. "#  0) describe the same point of the projective plane 
(for if M1 = (x0 , x1 , x2 )  and M2 = (A.x0, A.x1 , A.x2), then OM1 and OM2 denote 
the same line of the sheaf). 

Mobius introduced coordinates in the projective plane in a different way. 
He considered an arbitrary fixed triangle A0A 1 A 2 of the plane 1t and the center 
of gravity of a system of masses m0, m1 , m2 placed at the points A0, A 1 , A2• 
If we assume that the masses are also allowed to be "negative" (i.e., the 
corresponding "weights" may be directed not only vertically downward, but 
also upward), then it is easy to verify that for each point M of the plane we 
can choose a system of numbers m0, m1 , m2 (where m0 + m1 + m2 "# 0) such 
that the center of gravity of the masses A0(m0), A 1 (m1 ), and A2 (m2) coincides 
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with M; it is these numbers m0, m1 , m2 or x0, x1 , x2 which Mobius called the 
barycentric coordinates of the point M (coordinates related to the notion 
of center of gravity or "barycenter"). The numbers m0, m1 , m2 for which 
m0 + m1 + m2 = 0 are the barycentric coordinates of the "points at infinity" 
of the projective plane. Clearly, the (barycentric or projective) coordinates 
x0, x1 , x2 of a point are only determined up to multiplication by a common 
factor A. # 0, i.e., it is only the ratio of these coordinates which is relevant. 
This dictates the suggestive notation M(x0: x1 : x2 ). Mobius now defined 
lines by means of linear homogeneous equations a0x0 + a1x1 + a2x2 = 0 
which relate the (barycentric or projective) coordinates x0, x1 ,  x2 of points on 
a line, and defined conic sections as "second-order curves", i.e., by means of 
homogeneous equations of the form a00x5 + a1 1xi + a22x� + 2a01 x0x1 + 
2a02x0x2 + 2a12x1x2, etc.8 1  

It should be noted that another branch of geometry, which developed 
significantly in the nineteenth century, originated with Mobius. This is the 
so-called circle geometry or inversive geometry, which studies the properties of 
figures invariant under inversions of the plane. An inversion i with center 0 
and degree k is defined as the map i: A - A' which sends each point A of the 
plane into the point A', such that A' belongs to the line OA and OA · OA' = k. 
A characteristic property of inversions is the fact that they transform circles 
(to which, in this context, it is convenient to add "circles of infinite radius"
straight lines) into circles; inversions can transform straight lines into circles. 
Thus in circle geometry the notion of a circle (of finite or infinite radius) is 
meaningful, while the notion of a straight line is meaningless. 82 Finally, by his 
discovery of one-sided surfaces similar to the Mobius strip or the heptahedron 
(see Note 80) Mobius also made a substantial contribution to topology. 

The development of projective geometry in Germany in the nineteenth 
century was quite rapid: the first volume of Crelle's Journal (mentioned above) 
which contained Steiner's early papers appeared in 1826; Mobius's Barycentric 
calculus was published in 1827; the first volume of Plucker's Analytisch
geometrische Entwicklungen appeared in 1828; the first (and, unfortunately, 
also last) volume of Steiner's Systematische Entwicklung der Abhiingigkeit 
geometrischer Gestalten von einander appeared in 1832 and Geometrie der Lage 
by Staudt, which, in a certain sense, completed the evolution of projective 
geometry, appeared in 1847. Steiner headed the synthetic trend based on direct 
inferences from geometric axioms (usually not stated clearly at the time). 
Plucker headed the analytic trend with emphasis on coordinates (recall the 
title of Plucker's book). The two engaged in an endless feud. 

The most colorful figure and the most brilliant geometric talent, in 
nineteenth-century mathematics was a sometime Swiss shepherd named Jacob 
Steiner ( 1796-1863). Steiner was born into a poor peasant family, far from the 
centers of science and culture, and received no education in his childhood. 
Later, he liked to recall that he could hardly write at eighteen, although he 
had gained some knowledge on his own in mathematics and in astronomy, 
which he particularly liked in his youth. The young shepherd's knowledge and 
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interest amazed a colleague ofthe outstanding Swiss teacher Johann Heinrich 
Pestalozzi ( 1746-1827), who happened to meet Steiner, and, with some effort, 
persuaded the youth's father to let the badly needed agricultural hand go to 
Pestalozzi's school. There Steiner first studied and then taught mathematics. 
In 1818  he left Pestalozzi's school for the nearest major university center, 
Heidelberg, in Germany. Forced, however, to give too many private lessons
his only source of income-Steiner failed to graduate from the university 
and his stay in Heidelberg, though he attended several university courses, 
was relatively unprofitable. In 1821, having heard about an opening for a 
mathematics teacher in a Berlin gymnasium, Steiner moved to Berlin, where 
he was to stay until his death. Since he had no diploma, he was required to 
pass an examination. He demonstrated extensive knowledge of geometry, only 
a modest knowledge of algebra and trigonometry, and complete ignorance of 
the calculus; only by virtue of the laudatory recommendations he presented 
and his striking geometric abilities was he allowed to teach mathematics in 
all the classes of the gymnasium except the final one. Steiner taught in that 
secondary school until 1835. Only rarely, when he could no longer bear it, 
would he leave his regular job to earn a living (as he did in his youth) by giving 
private lessons to pupils lagging behind in mathematics (no great pleasure 
either!). Steiner was not very proficient as a schoolmaster, because he was 
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oriented only to the most gifted pupils; the others only irritated him. One of 
the fortunate events in Steiner's life during those years was his acquaintance 
with the rich engineer and mathematics lover A. Crelle (see the reference to 
Crelle and Abel above). Crelle believed in Steiner from the first time he met 
him and supported him in all possible ways: the Crelle journal founded in 
1826 became the rostrum from which the modest schoolmaster could proclaim 
his geometric ideas urbi et orbi. This golden opportunity was not lost by 
Steiner, who possessed exceptional persistence and ability to work. Because 
of his outstanding scientific work, he was elected in 1834 to the Berlin Academy 
of Sciences, and in 1835 he left the gymnasium for good to work permanently 
at :Serlin University. It is curious that whereas Steiner found teaching school 
painful, his university lectures were a tremendous success from the very start. 
This would prove to some extent harmful to geometry: Steiner's courses were 
so influential that, even today, projective geometry courses in many univer
sities are based on his outlines, and use an archaic terminology introduced by 
the former shepherd who never received formal instruction.83 

Another schoolmaster who played a major part in nineteenth-century 
geometry was Christian von Staudt (1796-1868), who was Steiner's opposite 
in all other respects. Staudt came from an aristocratic Franconian family. In 
his youth he studied at Gottingen under Gauss, who, however, failed to detect 
the young man's abilities. After graduation, Staudt taught for many years 
in a gymnasium and a polytechnic school (similar to the modern technical 
college). It was only in 1835 that he became a professor at Erlangen University, 
where Klein later taught. Staudt worked there until his death, hardly com
municating with people, and working unhurriedly on his books. His style was 
very strict and formal, corresponding to the twentieth rather than the nine
teenth century. Since Staudt lacked all pedagogical abilities, the form of his 
works made them difficult to understand, and so they were not immediately 
acknowledged. 84 

Julius PlUcker ( 1801-1868) came from a family of Rhine industrialists but 
was more closely linked to French and British scientists than to any of the 
contemporary German geometers. PlUcker studied at the universities of Bonn 
and Paris, but his position in German mathematics was rather precarious, 
due to his conflict with the extremely influential Steiner (perhaps related to 
differences in the social status of these two outstanding scientists). In the book 
mentioned in Note 68, Klein points out that PlUcker, who alternately devoted 
himself to mathematics and physics, abandoned geometry for a long period, 
only returning to it when he learned of Steiner's death. Another unexpected 
fact is that PlUcker combined (what is very rare) the gift of dealing with the 
most abstract mathematics of his time and the skills of an experimental 
physicist. Some of his physical discoveries (for example, cathode rays85) are 
of interest even today. 

Of course it would be impossible to describe in any detail the basic scientific 
achievements of Steiner, Staudt, and PlUcker. Steiner's chief accomplishment 
in projective geometry was perhaps the (synthetic) theory of conic sections.86 
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An inveterate opponent of analytic methods, Steiner rejected the definition of 
conic sections by means of quadratic equations (see above) and defined them 
geometrically instead; the definition associated with Fig. 5(b) relates the 
concept of a conic section to the concept of circle (which does not exist in 
projective geometry87). An even greater triumph of synthetic geometry was 
the purely geometric introduction by Staudt of projective "coordinates" of 
points and lines (involving geometric constructions rather than numbers) and 
the cross ratio of collinear points (or concurrent lines). Staudt's refined con
structions88 provided the finishing touch for the proof that projective geom
etry was not self-contradictory and could be developed without appealing to 
Euclidean geometry. 

Finally, an important achievement of Plucker was his line geometry, which 
made a profound impression both on Klein (who prepared for publication the 
second volume of his teacher's work in this field) and on Lie. It follows from 
the duality principle of plane projective geometry that if we take the straight 
line as the basic element (a kind of point) of plane projective geometry, we 
arrive at a geometric system in no way different from the initial one. Things 
are quite different in the case of projective geometry in space: here the duality 
principle asserts that the geometry of planes (and not lines!) in projective space 
(the geometry in which the plane is taken as its basic element) does not differ 
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from ordinary projective space geometry. However, the geometry of lines in 
(projective) space is something quite new, if only for the reason that the set of 
lines in space is four-dimensional, i.e., the position of a line is determined by 
means off our parameters (coordinates); one can take as such coordinates, say, 
the coordinates (x, y) of the point M in which the line l intersects the horizontal 
plane xOy and the coordinates (x1 , z) of the point N of intersection of l with 
the plane xOz (Fig. 8). Thus Plucker's new geometry of space, in which the 
line is the basic element, is a four-dimensional geometry. Pliicker developed 
that geometry with great depth and skill, using the aptly introduced and 
extremely convenient (extra) coordinates of the line known today as Pliicker 
coordinates. 89 



CHAPTER 4 

Nineteenth-Century Geometry: 
Non-Euclidean Geometries 

In our review of the development of geometry in the nineteenth century we 
have so far completely left out an extremely important achievement-the 
discovery of the first non-Euclidean geometry, known as Lobachevskian or 
hyperbolic geometry and, in this connection, the refutation of the belief that 
there is, in principle, only one geometric system capable of "modelling" (to 
use a purely mathematical term) the real (physical) space surrounding us. Of 
course, Euler's affine geometry and Poncelet's projective geometry already were 
non-Euclidean systems, differing basically from the traditional geometry of 
Euclid studied at school; but it was the depth of the differences between affine 
(or projective) geometry and "classical" (or school) geometry which made it 
difficult to compare them and to realize that there are many possible geometric 
systems which deserve attention (similar in variety to the algebraic systems 
studied by mathematicians-groups, rings, fields, lattices, etc.). Spherical 
geometry (geometry on the surface of the Euclidean sphere) is much closer to 
Euclidean geometry and was well known in antiquity.90 But spherical geom
etry was regarded as a mere chapter of Euclidean space geometry, studying 
spheres in Euclidean three-space (much as circles are studied in plane geom
etry). Riemann (or perhaps Lambert; see below) was the first to point out 
the independent significance of this chapter of geometry. The first truly non
Euclidean geometric system was hyperbolic geometry,91 developed almost 
simultaneously and independently by the German Carl Friedrich Gauss 
(1777-1855), the Hungarian Janos Bolyai ( 1802-1860), and the Russian 
Nikolai Lobachevsky ( 1792-1856) of Kazan.92 

Quite a large body of literature is devoted to the rise of non-Euclidean 
geometry.93 Our own account will be cursory. We begin with the list of(rather 
unexpected) postulates given in most versions of Euclid's Elements that have 
come down to us. The list includes only five statements, of strikingly varied 
character. Postulates I-III assert that it is possible to draw a straight line 
through any two given points, to draw a circle with a given center and a given 
radius, and to produce any line segment indefinitely. 94 These statements explain 
Euclid's understanding of geometric constructions (mathematical rather than 
physical, i.e., having to do with theory rather than with actual drawing); such 
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is the essential meaning of the "construction axiom" to which any construction 
problem must be reduced (such a reduction is called the solution of the 
problem).94 Postulate IV, asserting the equality of all right angles, is not an 
axiom but a theorem: this proposition is easily proved.95 Finally, there is the 
famous Postulate V: If a straight line falling on two straight lines make the 
interior angles on the same side less than two right angles, the two straight lines, 
if produced indefinitely, meet on that side on which the angles are together less 
than the two right angles. This clumsy and rather complicated statement96 
attracts one's attention-one wonders whether it is possible to do without 
this involved postulate. 

Attempts to prove Euclid's fifth postulate began in antiquity and continued 
for centuries.97 The Italian Jesuit Girolamo Saccheri (1667-1773) and, inde
pendently, the Alsatian Johann Heinrich Lambert ( 1728-1777),98 one of the 
leading mathematicians of the eighteenth century, who worked in Munich and 
Berlin, probably came closest to discovering hyperbolic geometry. Saccheri's 
and Lambert's trains of thought were quite similar: Saccheri considered a 
symmetric "birectangle" ABCD with L A  = L B = 90° and AD = BC (Fig. 
9(a)); Lambert considered a "trirectangle" AMND with L A = L M  = L N  = 
90° (Fig. 9(b)); it is easy to see that the axis of symmetry MN of a Saccheri 
quadrilateral divides it into two Lambert quadrilaterals.99 Saccheri showed 
that Euclid's fifth postulate is equivalent to the assertion that the (obviously 
equal) angles C and D in a Saccheri's quadrilateral are right angles; similarly, 
Lambert found that Euclid's fifth postulate holds if and only if angle D in a 
Lambert quadrilateral is a right angle. 

Then Saccheri and Lambert considered three logical possibilities: the right
angle hypothesis (the assumption that D is a right angle, leading to Euclidean 
geometry); the obtuse-angle hypothesis (the assumption that the angle D is 
obtuse); and the acute-angle hypothesis (the assumption that the angle D is 
acute). The obtuse-angle hypothesis was rejected because, as Saccheri easily 
found, it contradicts the basic axioms of geometry and therefore "disproves 
itself." Lambert paid more attention to the hypothesis of the obtuse angle, 
noting that it is satisfied in spherical geometry. He even showed how certain 
facts known in spherical geometry follow from this hypothesis; two such facts 
are that the angle sum in every triangle PQR is more then n and the difference 
L P + L Q + L R - n (the angular excess of a triangle) is proportional to the 
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triangle's area. In view of the elegance and inner logic of the consequences 
derived by Lambert from the obtuse-angle hypothesis, as well as the existence 
of a simple and well known model-spherical geometry-in which both the 
hypothesis and all its consequences hold, Lambert was reluctant to reject this 
hypothesis out of hand; in fact, he dealt at some length with the "geometry" 
obtained from these assumptions. 

Saccheri and Lambert next considered the acute-angle hypothesis (it should 
be recalled that their research was completely independent-Lambert was 
not familiar with Saccheri's results, published fifty years earlier100). Both 
obtained a number of profound geometric consequences from that hypothesis 
-theorems of hyperbolic geometry, as we would call them today. Saccheri 
rejected the hypothesis as implying that two coplanar lines either intersect, or 
have a common perpendicular on both sides of which they diverge indefinitely, 
or else diverge indefinitely on one side of any transversal and converge indefi
nitely on the other becoming "tangent to each other at infinity." This, in his 
opinion, contradicts the nature of a straight line. However, probing researcher 
that he was, Saccheri could not abstain from making a comparison: there is 
(he said) a difference between the refutations of the two hypotheses. In the 
obtuse-angle hypothesis everything is "as clear as the light of God's day," while 
the refutation of the acute-angle hypothesis seemed much less convincing. 

Lambert went even further in the study of the geometry arising from the 
acute-angle hypothesis. He noted with surprise the absence of contradictions 
and the elegance of the consequences obtained, as well as the "converse 
similarity" of these consequences to those which arise from the obtuse-angle 
hypothesis and appear in spherical geometry: thus, here, the sum L P + 
L Q  + L R  of the angles of any triangle PQR is less than n and its area is 
proportional to the difference n - L P - L Q - L R-the triangle's angular 
defect. 101 Still unable to disprove the hypothesis of the acute angle, Lambert 
made a truly prophetic statement: "I have almost reached the conclusion that 
the third hypothesis holds on some imaginary sphere-there must be some
thing which makes it difficult to disprove it in the plane for so long." In what 
follows we will repeatedly recall Lambert's words concerning the imaginary 
sphere (the sphere of imaginary radius) on which the acute-angle hypothesis 
holds. 

But both Lambert and Saccheri were convinced that Euclidean geometry 
is the only possible geometry and that the hypothesis of the acute angle does 
not hold. 1 02 The first person to state in writing that a geometric system 
differing from the traditional geometry of Euclid is possible was Ferdinand 
Karl Schweikart (1780-1859). Schweikart was not a mathematician but a 
lawyer, at that time professor of jurisprudence at Kharkov University in 
Russia (actually in the Ukraine). Schweikart had no formal mathematical 
education; this may explain the fact that he was not shackled by traditional 
ideas on geometry and on the nature of space. 103 In any case, in 1818 
Schweikart gave Gauss's friend, the astronomer Christian Ludwig Gerling 
(1788-1864), a note for Gauss in which he asserted that there exist two 
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geometries: the usual Euclidean geometry and an "astral" geometry which 
Schweikart supposed to hold on some distant stars. Schweikart took the sum 
of the angles of some triangle in astral geometry to be different from n. 
Proceeding on this assumption, he rigorously proved that this sum is less than 
n for all triangles, and that the larger the area of the triangle, the smaller this 
sum is. In addition, Schweikart established the existence of a "natural" (or 
"geometric") unit oflength in astral geometry which he called the constant and 
defined as the limit of the height of a right isoceles triangle as its sides increase 
indefinitely. At the time everything Schweikart had written was familiar to 
Gauss. While he failed to support Schweikart or even to write to him (to say 
nothing of recommending the remarkable note he had received for publica
tion), Gauss nevertheless wrote to Gerling: "Professor Schweikart's note 
caused me no end of joy, and please convey as many kind words to him as 
possible in my name. Almost all this has been copied from my soul." 

The first printed expositions of elements of hyperbolic geometry were 
two booklets published at the expense of Schweikart's nephew Franz Adolf 
Taurinus (1794-1874), who was strongly influenced by his uncle: Theorie der 
Parallellinien (Cologne, 1 825) and Geometriae prima elementa (Cologne, 1826). 
The first booklet in effect set forth the assumptions made in Schweikart's 
note. Taurinus emphasized the possibility of the existence of a large number of 
"astral'' geometries corresponding to different values of Schweikart's constant, 
which he called the parameter (Taurinus tended to regard the multiplicity of 
values ofSchweikart's constant as a serious shortcoming of the new geometry). 
In the second booklet Taurinus developed elements of "astral trigonometry" 
and pointed out that one can obtain the relevant formulas from those of 
spherical trigonometry by replacing the radius of a sphere by a pure imaginary 
number (recall Lambert's imaginary sphere, on which the acute angle hy
pothesis holds!); in astral trigonometry the role of trigonometric functions is 
played by the so-called hyperbolic functions: 104 

( ex + e-x) 
cosh x = cos ix 

2 
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2
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Unfortunately, Taurinus's insistence that Gauss also publish his views on the 
question, expressed in particular in the introduction to the first booklet, only 
angered Gauss, who had previously given a favorable answer to Taurinus's 
letter. Gauss stopped writing to Taurinus who, receiving no answers to his 
letters was driven to despair, ceased his geometric studies, bought up the 
booklets he had published, and burned them. 

Though Schweikart and Taurinus knew about the existence of a new 
non-Euclidean geometry (which Schweikart called Astralgeometrie), they are 
not usually regarded as being among the founders of hyperbolic geometry. 
Indeed, the jurist Schweikart never published anything on non-Euclidean 
geometry; it also seems that Schweikart regarded the very existence of his 
constant (Taurinus's "parameter") as a certain refutation of the new geometric 
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system. Taurinus, on the other hand, apparently repudiated his uncle's ideas: 
he burned all the booklets he could get his hands on and never mentioned 
them again. 

It is striking that the new geometric system was discovered almost simul
taneously and independently by three researchers (Gauss, Lobachevsky, 
Bolyai) differing in scientific training and psychological traits (below we will 
tell about the differences between Lobachevsky and Bolyai in the approach 
to their discovery). The momentous words of Farkas Bolyai ( 1775-1856), who 
wrote to his brilliant son Janos that "when the time comes, scientific ideas 
are conceived by different people at the same time, like violets blossoming 
wherever the sun shines," point out, but fail to explain, the coincidence. Gauss 
repeatedly referred to the similarity between his own thoughts and the con
structions of Lobachevsky and Bolyai (and, earlier, those of Schweikart and 
Taurinus) as "miraculous." For a long time Janos Bolyai refused to concede 
that he had not been the only person to reach his conclusions on geometry. 
He believed that Gauss had learned of the new geometry from works sent to 
him by Janos's father Farkas, had plagiarized these, and had concealed this 
fact by publishing an account of non-Euclidean geometry under the pen name 
"Nicolaus Lobatschevsky aus Kasan". Much later, Felix Klein argued against 
the simultaneous and independent discovery of hyperbolic geometry by three 
authors. In the first mimeographed variant of his book on non-Euclidean 
geometry/05 he claimed that Gauss should be considered the only discoverer 
of the new geometric system: Janos Bolyai undoubtedly learned about it 
from his father, who had been Gauss's friend during his student years, while 
Lobachevsky learned about it from his teacher Johann Bartels ( 1769-1836), 
who had once taught Gauss in secondary school and was Gauss's bosom 
friend. When one compares Klein's different books, it is obvious how stub
bornly he refused to abandon his mistaken idea-which was completely 
disproved by two of Lie's pupils, Paul Stackel, 1862-1916, and Friedrich 
Engel, 1 861-1941, who wrote an extensive history of non-Euclidean geom
etry. 1 06 In Klein's book on the history of mathematics mentioned in Note 68 
the same assertion on Gauss's priority is made in less categorical form, so that 



52 

(a) 

Felix Klein and Sophus Lie 

M 

a � p a 

(b)  

FIGURE 10 

the ways in which Lobachevsky and Bolyai learned about Gauss's views are 
made to seem rather mysterious. In the printed edition of Klein's Lectures on 
Non-Euclidean Geometry107 issued after his death, Gauss is still accorded 
priority among the discoverers of non-Euclidean geometry, but there is no 
trace of the assertion that Lobachevsky and Bolyai borrowed from Gauss! 

Turning to the ways in which Gauss, Lobachevsky, and Bolyai came to 
hyperbolic geometry, it should be pointed out that there was an important 
difference in the basic assumptions of Lobachevsky and Gauss on the one 
hand, and Bolyai on the other. The starting point for all three scientists was 
apparently an attempt to prove Euclid's fifth postulate (or, what is the same 
thing, Playfair's axiom on parallel lines); at one time Lobachevsky even 
believed that he had a proof. However, having taken as the starting point the 
assertion that through a point A not on a line a one can pass two lines not 
intersecting the line a and using the reductio ad absurdum method of proof, all 
three authors gradually reached the conclusion that there were no contra
dictions in the geometric system which follows from these assumptions. They 
saw that the theorems obtained were unusual and strange but free of contra
dictions; in fact, they had, collectively, a certain elegance and perfection 
characteristic of all errorless mathematical theories. (It is clear that the asser
tion on the existence of two straight lines c1 and c2 passing through A and 
not intersecting a is equivalent to the assertion that an infinite set of such lines 
exists-here all the lines passing through A and enclosed within one of the 
pairs of vertical angles formed by c1 and c2 do not intersect a-see Fig. lO(b)). 
Of course it was not easy to take the step which Saccheri and Lambert 
had not dared to take in their time, i.e., to acknowledge that there is not 
one but there are two true geometric systems, equally valid in a certain 
sense-but Gauss, Bolyai, and Lobachevsky took that step, which required 
considerable scientific courage. 

Gauss had become interested in the theory of parallel lines at the close of 
the eighteenth century. In 1799 he wrote to his friend Farkas Bolyai about his 
attempts to prove the fifth postulate: "It is true that I have achieved a great 
deal which, for most, would be sufficient as proof, but as I see it this proves 
absolutely nothing. For example, if someone were able to prove that a triangle 
whose area is greater than any given area is possible, I would be able to give 
a rigorous proof of all of geometry. Most would regard this as an axiom, I do 
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not. Thus it is possible that the area of a triangle will always be less than some 
limit, however far the triangle's vertices may be from one another. I have many 
such propositions, but I do not find a single one satisfactory for the founda
tions of geometry." For many years Gauss apparently hoped to prove the fifth 
postulate, but in the mid-18 10s108 he finally concluded that two equally valid 
geometric systems exist. This fact completely contradicted not only all the 
views developed during previous centuries but also the beliefs (formerly fully 
shared by Gauss!) of the leading philosopher of the time, Immanuel Kant 
(1724-1804). According to Kant, the concepts of space and time are given to 
us a priori, and since geometry is the doctrine of space, it is necessarily unique. 
A letter, extremely important in this respect, was sent by Gauss in 1817 to his 
older friend, the astronomer Wilhelm Olbers (1758-1840). "I have increasingly 
come to believe," he wrote, "that the necessity of our geometry cannot be 
proved-at least not by human reason and for human reason. Perhaps in 
another life we will have different views on the nature of space which are 
inaccessible to us here. So far geometry has to be regarded as being on a par 
not with arithmetic, which exists a priori, but rather with mechanics." Thus 
here Gauss assigns geometry not to "mathematical" or "logical" fields like 
arithmetic (the theory of numbers with which he was absorbed) but to the 
natural (experimental) sciences like physics and mechanics. If this view were 
correct, then whether non-Euclidean geometry (as Gauss called his new geo
metric system) was true or false could be determined experimentally-and 
Gauss the geodesist attempted to measure, with utmost precision, the sum of 
the angles of a large triangle, whose vertices were the observer (Gauss himself) 
and the summits of two distant mountains. In this non-Euclidean geometry 
the sum of a triangle's angles is less than n-and the greater the area of the 
triangle, the more the sum differs from n. Had Gauss found that the sum of 
the angles of the triangle he considered was less than 180°, that would have 
meant that non-Euclidean rather than Euclidean geometry holds in the real 
world. 109 But Gauss failed to discover any significant difference between the 
sum of the angles in the triangle he examined and 180°, at least with the 
precision allowed by his measuring devices. 

Lobachevsky regarded geometry much as Gauss did. In his general philo
sophical and methodological principles, if not in his views on non-Euclidean 
geometry and the nature of space, Lobachevsky may have been indirectly 
influenced by Gauss through the German professors teaching at Kazan, in 
particular by Bartels. Of course Lobachevsky was not a scientist of Gauss's 
stature, 1 10  but the general level of teaching in physics and mathematics was 
quite high in Kazan, despite its great distance from the main scientific 
centers-Lobachevsky's education had been reasonably thorough. 1 1 1  From 
the point of view of the foundations of geometry the geometry textbook 
written by Lobachevsky in 1 823 on instructions from the superintendent of 
the Kazan educational district M.L. Magnitsky1 1 2 is especially interesting. 
Owing to a very negative review by a well-known mathematician of the time, 
Euler's pupil and colleague, academician Nikolai Fuss (1755-1826), the text-
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book was never published in the author's lifetime. 1 1 3 The traditionalist Fuss 
disliked the book because its author tried to represent geometry not in Euclid's 
spirit, i.e., not as a series of scholastically interpreted deductions from stated 
axioms, 1 14 but as a science concerning (real) space, in which measurements 
of geometric magnitudes play a leading role and in which transformations 
("motions") are freely used in proofs of theorems; transformations had been 
avoided by Euclid because of his metaphysical principles, originating with 
Zeno ofElea (c. 490-c. 430 B.C.) and Aristotle. Lobachevsky's principles were 
derived from the large entry "Geometry" in Diderot's and d' Alembert's famous 
Encyclopedia, written (as were all the other mathematical or natural science 
entries in that monumental work) by d'Alembert. In all likelihood, the con
temporary textbook employed these principles as fully and consistently as did 
Lobachevsky's. Fuss's negative review was thus due not to real shortcomings, 
but rather to the merits of the textbook, to the fact that it differed in a positive 
way from all existing textbooks. This the conservative Fuss refused to ac
knowledge. l 1 5 What is most interesting for us here is the author's "physical" 
(one can say "materialistic") approach to geometry, largely derived from 
d' Alembert, the brilliant figure of the French Enlightenment, which in some 
ways even contradicted Lobachevsky's traditional religious convictions. 

It has already been mentioned that at first Lobachevsky believed that he 
had proved the fifth postulate. Later, in 1826, he came to firmly believe 
that the geometric system which denies the fifth postulate is true (and non
contradictory). Lobachevsky called that system "Imaginary Geometry" (a 
name subsequently criticized by Gauss), and later "Pangeometry" (by which 
name Lobachevsky sought to stress that Euclid's classical geometry may be 
obtained from his geometric system by means of a passage to the limit: by 
letting Schweikart's constant tend to infinity). In 1826 Lobachevsky delivered 
the first lecture on the new geometry at a session of the physics and mathe
matics department of Kazan University. The French text of the lecture, 
prepared for publication in the department's Research Papers, was sent to 
three university professors to be reviewed. But Lobachevsky's colleagues failed 
to understand his work. Since they did not want to write negative reviews they 
simply "lost" the text. As a result, the first publication on hyperbolic geometry 
was not this (apparently brief) report, but Lobachevsky's long two-part 
memoir "On the Elements of Geometry," published in the Kazan Vestnik (a 
Kazan university publication) in 1829-1830 and containing an advanced 
description of the foundations of the new geometry. 1 1 6 From that moment 
on, Lobachevsky's scientific and literary activities did not cease for several 
decades: he published a number of detailed works-papers and books-on 
the new geometry. In them he developed, among other things, analytic and 
differential geometry in non-Euclidean space, obtaining numerous specific 
results; compared to Gauss and Bolyai, Lobachevsky developed the new 
geometry furthest (see Note 125). His last presentation of hyperbolic geometry, 
published in 1855 in Russian and in 1856 in French under the concise title 
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Pangeometry, was dictated by Lobachevsky, blind by that time, to his pupils 
and colleagues; perhaps that was why the Pangeometry did not contain a single 
sketch, but numerous painstaking analytical passages apparently worked out 
by the author in his mind. Here-and not for the first time-Lobachevsky 
pondered which geometry-Euclid's or hyperbolic-operates in the space 
surrounding us; he concluded that the question could be answered by mea
suring the angle sum of a large triangle. Earlier Lobachevsky himself had 
attempted to find the sum of the angles of the triangle formed by the Earth 
and two fixed stars but, like Gauss, had failed to discover a significant 
difference from 180°. 

Janos Bolyai's approach to hyperbolic geometry was somewhat different. 
Bolyai's attitude was that of a logician and not a physicist: he considered 
geometry as a purely logical system based on axioms, and not as a set of facts 
relating to real space. Accordingly, Janos would never have thought of actually 
measuring the angle sum of some triangle, since this would not prove anything 
(except the inadequacy of Euclid's geometry as a mathematical model of 
physical space). Characteristically, Bolyai devised for his exposition a sym
bolic language, to some extent comparable to the modern language of mathe
matical logic. This symbolic language, using a minimum of words, made it 
very difficult for Bolyai's contemporaries to read his great work. Bolyai's other 
works, which were not published during his lifetime, were also in the nature 
of logical treatises, in which utmost attention was paid to the language. It is 
not by chance that Janos Bolyai's only serious work not connected with 
non-Euclidean geometry contained a short but quite advanced account of the 
formal theory of complex numbers; this too was not correctly appraised 
during his lifetime. 

Bolyai's idea of constructing an "absolute" geometry that does not depend 
on the parallel postulate and includes both some results from hyperbolic 
geometry and some of the theorems of Euclid's classical geometry was a 
brilliant and completely unexpected idea for its time.1 1  7 Bolyai sought to 
formulate his definitions so that they would be relevant both to hyperbolic 
and to Euclidean geometry. Thus, for example, a parallel (in Bolyai's termi
nology, asymptotic) line passing through a point A not on a line a was defined 
by Bolyai as a line AM not intersecting a such that all the lines enclosed within 
the angle MAP, where P is the projection of A on a, intersect a. This definition 
is meaningful not only in Euclid's geometry, where just one parallel line passes 
through A, but in hyperbolic geometry as well, where there are two such lines 
(see Figs. lO(a) and (b)). Again, the sine theorem for triangles, say, is written 
by Bolyai in the following way (we have altered his symbols somewhat): 1 1 8 

sin A sin B sin C 
s(a) s(b) s(c) 

(4. 1) 

where A, B, C are the angles of a triangle, a, b, c are respectively the sides 
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opposite to them, and s(x) is the length of the circle with radius x. In this form 
the theorem remains valid both in Euclidean and in hyperbolic geometry, 
despite the fact that the formulas for the circumference of a circle are different 
in the two cases. 

From today's vantage point we must conclude that Bolyai's understanding 
of the logical structure of the new geometry was deeper than that of either 
Gauss or Lobachevsky. No wonder Bolyai was so upset by the absence of a 
complete proof of the fact that hyperbolic geometry is free of contradictions
he devoted many years of his life to finding such a proof. However, his 
mathematical training was obviously insufficient for the purpose. It should be 
noted that Lobachevsky nearly proved that the new geometry was free of 
contradictions. In effect his works contain what are now called the Beltrami 
coordinates of the hyperbolic plane or space; had he assigned to each point of 
the hyperbolic plane the Beltrami coordinates x and y of the point (x, y) in the 
Euclidean plane, he would have come to Beltrami's model, 1 19 and would have 
proved that hyperbolic geometry was free of contradictions. But, like Gauss, 
Lobachevsky was not greatly interested in the purely logical proof of the 
fact that the geometric scheme he had created was free of contradictions. 
Lobachevsky and Gauss were mostly concerned with that geometry's relation 
to physical space, a question far removed from any logical-axiomatic thinking. 
That was why Lobachevsky, having almost found a rigorous proof of the fact 
that hyperbolic geometry is free of contradictions, a proof Bolyai sought so 
avidly, failed to notice the treasure within his reach! 

Now we can return to the history of non-Euclidean geometry. As we have 
already remarked, Gauss was the first to work out the new geometric system; 
however, he never published his results. Quite satisfied with his position 
as the world's leading mathematician, mathematicorum princeps, 1 20 Gauss 
readily shared his ideas with people who were close to him, but had no 
intention of making them public, fearing the "hornets that will rise above my 
head if l disturb their nest" (the phrase is from a letter to Gerling in 18 18) or 
"the criticism of the Boeotians," as he wrote somewhat later to Friedrich Bessel 
(1784-1846). (Apparently by "hornets" and "Boeotians" Gauss meant the 
advocates of Kant's a priori philosophy.) Typically, at the end of a friendly 
and revealing letter to Taurinus, Gauss warned his correspondent not to make 
anything known about his views: when Taurinus urged Gauss to set forth his 
ideas in print, Gauss immediately broke off all relations with him. 

Gauss's attitude had a tragic effect on the fates of Lobachevsky and Bolyai. 
Outwardly, Lobachevsky lived a life that could be called highly successful: in 
spite of the fact that he came from a poor family1 2 1 he reached the rank of 
acting state councillor, corresponding to a general in the military bureau
cracy;122 this automatically gave him a hereditary title and a coat of arms. 
For many years he was rector of one of Russia's six universities and a leading 
figure in the Kazan educational district; he received many awards, including 
the highest ones. Nevertheless, he did not feel happy: he was respected only 
as an administrator, although he regarded himself as a scientist. Lobachevsky 
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was no doubt an outstanding administrator in public education, and did a 
great deal of good for the university of his native Kazan. Those who sur
rounded him thought that such a distinguished person could be excused for 
his eccentricity-let him putter around with the imaginary geometry which 
no one needs and publish his incomprehensible works. Alas, not everyone 
thought so: in 1 834 derogatory reviews of Lobachevsky's On the Elements of 
Geometry appeared in two St. Petersburg journals, signed with the initials S.S. 
and couched in coarse language. Subsequently, even the influential political 
author Nikolai Chernyshevsky123 took part in the press campaign against 
Lobachevsky. Academician Victor Bunyakovsky ( 1804-1889), one ofthe most 
prominent mathematicians of the age, reviewed Lobachevsky's works for the 
Russian Academy of Sciences. His review was extremely negative. Bunyakov
sky failed to understand Lobachevsky's idea; he was probably associated with 
the person hiding under the initials S.S. The book Geometrische Untersuc
hungen zur Theorie der Parallellinien, published in 1 840 in Germany, received 
a very negative review which appeared in the same year in the German 
Gersdorff's Repertorium. Concerning this review, Gauss wrote in a letter to 
his friend Gerling that any competent person would immediately see that it 
was due to a completely uninformed author; and in another letter he called it 
"absurd." But Lobachevsky knew nothing about these words, nor did he learn 
about the numerous laudatory references to him by Gauss in his letters and 
conversations, and he knew nothing of the fact that Gauss studied Russian so 
as to be able to read Lobachevsky's works.1 24 Thus, although Lobachevsky 
was honored by universities and scientific societies (he was professor honoris 
causa of Moscow and Kazan universities, member of the highly regarded 
Gottingen scientific society, to which he was elected on Gauss's initiative-but 
he knew nothing about Gauss's role in that event), Lobachevsky thought that 
it was not his scientific but his administrative achievement that was being 
marked. The recollections of Lobachevsky's son, as well as other memoirs, 
paint him in his last years as a sullen misanthrope, unhappy in family life and 
almost without friends. 

Yet by contrast with Janos Bolyai's life, Lobachevsky's fate was idyllic! To 
begin with, Bolyai did not receive the education he deserved. When Farkas 
Bolyai, once Gauss's close friend, having described the interests and abilities 
of the schoolboy Janos to his old friend asked Gauss to lodge the young man 
in his house, Gauss did not even bother to answer that (rather tactless) letter. 
Janos was thus forced to abandon forever his dreams of attending Gottingen 
University. He entered one of the Hungarian military academies; there he 
obtained a respectable but limited education in physics and mathematics
but he could never forgive his father that he studied neither in a university 
nor at home under Farkas's tutorship. Janos was compelled to become an 
officer, although he had never been attracted to a military career. Janos had 
very bad relations with his fellow officers because he thought himself above 
the circle that surrounded him, a view that the other officers naturally were 
not inclined to accept. He was helped by his reputation as an excellent swords-
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man; it was not safe to quarrel with him. Nevertheless, the number of duels he 
fought was incredibly high: in one particular day he fought twelve(!), only 
asking permission to play the violin between bouts for a rest; and he won 
all twelve encounters. Difficult material circumstances prevented him from 
marrying; and he had hardly any friends, with the possible exception of the 
mathematician Karl Szasz, with whom he had begun studying the theory of 
parallel lines. At the earliest opportunity, Bolyai left the military service he 
hated. Since he had no other source of income, he suffered from dire poverty 
for the rest of his life. 

A full exposition ofBolyai's ideas on non-Euclidean geometry (brilliant, but 
extremely difficult to understand) was apparently ready in 1 824. Janos could 
not afford to publish his work, but continued to improve it. Fortunately, his 
father agreed to publish the work (at his son's expense) as an Appendix to the 
first volume of his own book, known under the Latin title Tentamen (the first 
word in the long title of the older Bolyai's work). Tentamen appeared in print 
in 183U25 A copy was immediately sent to Gauss with an urgent request to 
review Janos's work: "my son relies on your review more than on the opinion 
of all of Europe," Farkas wrote to his old friend. 

Apparently, Bolyai's Appendix made a profound impression on Gauss. On 
the very day after he received the book, Gauss wrote to Gerling that he had 
received a remarkable work from F. Bolyai, whose author (Janos Bolyai) was 
"a genius of the first magnitude." But Gauss wrote to Bolyai only a month 
later-and it was a gruelling month for Janos. What was even worse, the tone 
of the letter sent to Bolyai differed considerably from that of the letter ad
dressed to Gerling. Gauss wrote to Farkas Bolyai that all of Janos's work was 
familiar to him, so he could not praise Janos because that would mean praising 
himself. (Actually Gauss's claim was not true: not only did Janos Bolyai's 
approach differ from that of Gauss, but also a number of concrete results 
contained in the Appendix-for example, the statement that in hyperbolic 
geometry there are solvable problems related to the quadrature of the circle
were undoubtedly new to Gauss). 

We have already described how Janos responded to the letter and how 
offended he was by Lobachevsky's Geometrische Untersuchungen, to which 
Gauss drew his attention. And Janos could not long console himself with the 
thought of his priority: at the beginning of his book Lobachevsky wrote that 
a full exposition of the same ideas had been published by him in Russian in 
1829-1830, i.e., before Bolyai's Appendix had appeared (Gauss had even 
written to Bolyai that since these publications were in Russian, they could be 
easily read by the Hungarian Janos; Gauss was under the mistaken impression 
that Hungarian belongs to the same language group as Russian). Janos wrote 
a profound, though in some ways biased, commentary on Lobachevsky's 
Geometrische Untersuchungen-still he had to acknowledge that Lobachev
sky held priority. Bolyai was also offended by an account of Gauss's talk with 
another mathematician in which Gauss, referring to the theory of parallel 
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lines, heaped praise on Lobachevsky's work (alas-Lobachevsky never knew 
about it) but failed even to mention Bolyai's Appendix. 1 26 

The subsequent years of Janos Bolyai's life were not productive. It has 
already been noted that his excellent memoir on the theory of complex num
bers, written in Janos's laconic and cryptic style, was not appreciated. Janos 
sent it to a contest held by the Leipzig scientific society, but the sponsors failed 
to understand the work and it did not receive a prize. In the hope of eclipsing 
Gauss and Lobachevsky, Bolyai attempted to solve other problems but met 
with failure due to his lack of formal mathematical training. Thus he tried to 
prove that every algebraic equation can be solved in radicals and to obtain a 
general formula for the solution; he was unaware that by then Abel had 
already proved that no such formula exists. He attempted to prove that the 
integral of every algebraic function is expressible in terms of algebraic func
tions; this, as we know, is not true. He also tried to find a general formula for 
the nth prime number. In Tentamen, Farkas Bolyai proved for the first time 
that any two polygons of equal area are equidecomposable, i.e., can be cut up 
into smaller ones and reassembled into congruent polygons); Janos tried to 
extend that result to polyhedra in space-a problem that Gauss once studied 
but quickly abandoned as too difficult or perhaps incorrect (now we know 
that it is incorrect, but this was proved only in the twentieth century127). An 
even stranger impression is produced by Bolyai's founding of a "Science of 
Universal Welfare" which greatly concerned him for many years and to which 
he gave the German name "Allheillehre." Despite attempts to apply mathe
matics, his notes on the subject that have come down to us are closer to 
religion than to the natural sciences or the humanities. The genius Janos 
Bolyai, now celebrated as the glory of the Hungarian people, 128 died in a state 
of profound depression due to a serious mental illness. His life was also 
poisoned by many years of conflict with his father. 

Thus in the first third of the nineteenth century, it seemed to have been 
finally established1 29 that not only one but two equally valid geometries exist: 
Euclid's geometry and the geometry of Lobachevsky-Bolyai-Gauss (of course, 
at the time no one thought that Euler's affine geometry, Poncelet's projec
tive geometry, and even Ptolemy's spherical geometry were comparable with 
Euclid's geometry or with non-Euclidean systems). However, the view that 
there are just two geometries, firmly held by Gauss, Lobachevsky, and Bolyai, 
was not to remain in force for long. The nineteenth century was a period of 
explosive development of different geometries. Further (and very considerable) 
progress of geometry was associated above all with the name of Georg 
Friedrich Bernhard Riemann (1826-1866), undoubtedly one of the greatest 
mathematicians in history and one of the two supreme mathematicians (with 
Gauss) of the nineteenth century. 

The son of a poor clergyman, Riemann was sent by his father in 1846 to 
Gottingen, at the time the world's leading mathematical center (Gauss taught 
at Gottingen), 130 not to study mathematics but to study theology. Neverthe-
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Georg Friedrich Bernhard Riemann 

less, his mathematical interests soon prevailed and, despite family traditions, 
Riemann changed his course of study and devoted himself completely to 
mathematics. Riemann's short life in mathematics was entirely linked with 
Gottingen-at first as a student, then as a Privatdozent, then as an "extra
ordinary" professor and, finally, as an "ordinary" professor (the latter rank 
implied tenure). 1 3 1  Riemann's teaching career was not strewn with roses: shy 
and insecure, he was not a successful lecturer. Nor did he count on such 
success. In the autumn of 1 854 he proudly wrote to his father that his course 
had attracted eight listeners. Only three students attended his remarkable 
course on functions of a complex variable, delivered in the winter of 1 855/56 
and in the summer of 1 856. This course, incredibly rich in ideas, gave rise to 
the entire theory of functions of the nineteenth and early twentieth century, 
and many other fields of mathematics, for example topology, derived numer
ous ideas from it. Fortunately, in both cases the listeners included Richard 
Dedekind (183 1 - 1916), the most gifted and dedicated of Riemann's pupils, 
whose contribution to orgainizing (mostly only posthumously) the publica
tion of Riemann's works and of his books of lecture notes (which unfortu-
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nately are not very precise) is difficult to overestimate. Nevertheless, the 
modest position Riemann occupied at the university, where many much less 
talented colleagues treated him condescendingly, distinctly hurt Riemann, 
who was well aware of his own pot�ntial. The loyalty of the young Dedekind 
and a warm friendship with the Berlin professor P. Lejeune Dirichlet (1805-
1859)1 32 could not offset the slight to his self-esteem. 

Riemann's position at the university improved with the return to Gottingen 
of the inflential Wilhelm Weber (1804-1891)13 3 :  Weber immediately recog
nized Riemann's talent and supported him in all possible ways. Weber also 
improved Riemann's formal status at the faculty, by inviting him to be an 
assistant in the department of experimental physics he headed-in view of 
Riemann's varied interests in physics, he was not at all troubled by having to 
perform the duties of an assistant professor in the practical seminar for physics 
students. Riemann began to feel even more sure of himself when, following 
Gauss's death, the latter's position was given to Riemann's friend Dirichlet. 
It was at this time that Riemann was raised to the rank of extraordinary 
professor, largely due to the efforts of Weber and Dirichlet, as well as to 
Dedekind, who had become quite influential by then. Upon Dirichlet's death, 
Riemann took over Gauss's chair. Now he could recover from the slights he 
had experienced in his youth-and even marry, something the shy Riemann 
had earlier deemed impossible. But unfortunately he had little time left. He 
married in 1 862, but fell seriously ill in the same year. Three trips to Italy, 
arranged by Weber at the university's expense, failed to restore his health, and 
he died in Italy of tuberculosis at the age of 40. 

Riemann's works greatly changed the face of modern mathematics. Klein's 
words that "No one had a more decisive impact on modern mathematics than 
Riemann" can hardly be regarded as outdated even today. The amazing thing 
is the scope of Riemann's scientific interests, extending to almost all the fields 
of the mathematics of his time (and sometimes even going beyond their 
bounds: thus Riemann may be regarded as the precursor of topology, which 
arose only in the twentieth century), to theoretical and applied physics, to the 
physiology of the sensory organs, and to the philosophy of natural science. 
He was a direct predecessor of Albert Einstein, whose "general theory of 
relativity" is wholly based on Riemann's ideas. 

In the summer of 1 854 Riemann was granted the opportunity to deliver a 
lecture on a subject of his own choice in the presence of the board members 
of Gottingen University. According to a custom existing at German univer
sities, such lectures served as the basis for allowing the lecturer to assume his 
teaching duties (see below, page 129; in this case it concerned Riemann's 
appointment to the post of assistant professor1 34). Riemann offered a choice 
of completely different subjects in physics (which was quite natural for a 
colleague of Weber), analysis, and geometry. Apparently not without the 
influence of the elderly Gauss, the choice fell to a subject in geometry. The 
audience listened attentively to Riemann's lecture "Ober die Hypothesen, 
welche der Geometrie zu Grunde liegen" but did not understand it. Riemann's 
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brilliant ideas, creating a totally new and extremely profound concept of 
geometry, were so far ahead of their time that perhaps only Gauss could have 
understood them-and support of young talent, as we know, was not to be 
expected from the world's foremost mathematician. 1 3 5  Still, all those who 
were present noticed that Gauss left the lecture in deep thought; Dedekind 
even recalled that Gauss praised Riemann's work in a talk with Weber, with 
whom he returned from the session. Riemann was granted the right to teach 
at the university. 

That lecture was first published by Dedekind in 1868, two years after 
Riemann's premature death; but Dedekind hardly realized the work's depth. 
In 1876 Dedekind issued for the first time the Collected Works of Riemann, 
which included the above-mentioned lecture. Subsequently, the Collected 
Works were republished many times and translated into other languages
now Riemann's lecture is available in practically all the European languages. 
But Riemann's ideas were truly appreciated only after they were revised by 
the outstanding twentieth-century mathematician Hermann Weyl and by 
Albert Einstein. In 1919 Weyl published a new edition of Riemann's lecture 
with penetrating comments1 36 establishing the connection between Rie
mann's constructions (in the oral lecture they were, unavoidably, presented in 
very general form and almost without formulas)1 37 and contemporary (tensor) 
approaches to what is now known as the theory of Riemannian spaces. On 
the other hand, Einstein's famous memoir of 1916, Grundlagen der allgemeinen 
Relativitiitstheorie, 1 38 contained a very detailed -and remarkably clear and 
well written-examination of Riemann's ideas; possibly this reflected the 
influence of Weyl, Einstein's colleague at the department of the Technische 
Hochschule in Ziirich in 1913-1914. 139 

Riemann's geometric ideas began with Gauss's remarkable memoir Dis
quisitiones generales circa superficies curvas (1828), 140 a work that continued 
and developed the trend in mathematics originating in ideas of Euler and 
Monge and now known as differential geometry. This subject is the study of 
local properties (i.e., properties only related to a small neighborhood of the 
selected point) of curves and surfaces and uses the apparatus of the differen
tial calculus. Gauss's work, which arose from his practical activities (he was 
directed by the King of Hannover to do a detailed geodesic survey of the 
kingdom), developed the concept of the intrinsic geometry of an arbitrary 
(curved) surface ci> in three-dimensional space. The intrinsic geometry of ci> 
consists of those geometric properties of ci> which can be determined "without 
leaving ct>" i.e., with the help of measurements carried out "in ct>." Thus, for 
example, Gauss defines the distance between two points A, B E  ci> as the length 
of the shortest curve in ci> joining A and B. (A colorful description of the 
intrinsic geometry of a surface was proposed by the mathematician, naturalist, 
and medical doctor Hermann von Helmholtz (1821-1894), an outstanding 
German scientist with an incredibly wide range of interests. He started with 
the (purely speculative) assumption that the water bugs we see skimming 
over the surface of ponds possess a two-dimensional psyche, i.e., are just as 
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incapable of imagining three-dimensional space as we are of imagining four
dimensional space. He then suggested that one define all the facts and theo
rems which such "two-dimensionally minded" creatures living on the given 
curved surface could discover as comprising the "inner geometry of the surface 
<1>." 141 ) Gauss's main result was that it is possible to calculate the (intrinsic 
or Gaussian) curvature142 at every point of a surface within the framework of 
its intrinsic geometry. If the curvature is identically zero, then the surface can 
be developed on a plane. 

Instead of surfaces located in ordinary space (of dimension three), Riemann 
proposed to consider arbitrary "curved" manifolds of any dimension (more 
about this notion below) in which the "metric" is defined by a formula enabling 
one to measure the distance between any two points in the given manifold 
(today such manifolds with a metric are called Riemannian spaces). An impor
tant role in Riemann's constructions was played by the notion of curvature 
of space. Special types of manifolds with a metric are spaces (homogeneous and 
isotropic, i.e., such that all their points are equivalent and no direction at any 
point differs from any other) that have constant curvature: Euclidean space of 
zero curvature, hyperbolic space of negative curvature, and elliptic space of 
positive curvature. Take the case of two-dimensional manifolds. Here a mani
fold of zero curvature is exemplified by the Euclidean plane, the intrinsic 
geometry of the hyperbolic plane does not differ from that of the Lobachevsky 
plane, while the elliptic plane is "shaped" just like the surface of an ordinary 
Euclidean sphere. 143 

Thus three spaces occupy a special place among the infinite variety of 
curved spaces considered in Riemann's lecture; they are Euclidean space and 
two other spaces (which are in a certain sense just as "good" as the former)
the hyperbolic Lobachevskian space, and elliptic space, now often called 
Riemann's non-Euclidean space. 144 Of course, it is not these two spaces, in 
effect known earlier, which constituted Riemann's major contribution to 
non-Euclidean geometry. Much more important is the fact that he introduced 
in his lecture a wide class of non-Euclidean spaces with different curvatures. 
These spaces were to play an essential role in Einstein's subsequent attempts 
to include the distribution of mass (which brings about gravitational effects) 
directly into the geometry of the universe. 

We know that the sphere is a two-dimensional space of constant positive 
curvature (two-dimensional elliptic space). However, by the non-Euclidean 
Riemann plane (the elliptic plane) one usually means a geometric entity differing 
somewhat from the sphere. The thing is that any pair of the sphere's great 
circles (the curves of the sphere's intersection with planes passing through its 
center), which play the role of straight lines in spherical geometry, intersect 
not in one but in two points. That circumstance creates a sharp but not 
fundamental difference between plane and spherical geometry, which may be 
eliminated if the sphere is viewed as the set of diametrically opposite pairs of 
points, and each such pair is taken to be the basic element of the geometry. 
Such a gluing of opposite points may be imagined as the result of removing 
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FIGURE 1 1  

one (say the upper) hemisphere followed by the identification (gluing) of 
diametrically opposite points of the "equator" bounding the removed hemi
sphere (Fig. 1 1). It is this geometric entity (the hemisphere with glued boundary 
points or the sphere viewed as a set of pairs of antipodal points) that is most 
often called Riemann's elliptic space. 144 

It has already been mentioned that Riemann's lecture, which now appeals 
so strongly to our imagination, was not appreciated by mathematicians in its 
time because of its profound and unusual insights and the implicit nature of 
its content. Although Riemann's last years were marked by truly international 
recognition by academies and scientific societies, 145 his "Ober die Hypo the
sen" was never mentioned. Thus when Riemann was appointed corresponding 
member of the Berlin (Prussian) academy of sciences in 1 859 and (foreign146) 
member of the same academy in 1 866, neither of the relevant recommenda
tions, largely written by the respected Berlin mathematician Karl Weierstrass, 
made the slightest reference to that great address. (Weierstrass was as much 
a pure "logician" (or algebraist) as Riemann was a pure "physicist" (or geom
eter).) This is all the more noteworthy because Weierstrass's recommendations 
included references to Riemann's works on the theory of functions, much 
admired but at the same time severely criticized by Weierstrass. (This, inciden
tally, made itselffelt in the slowness with which Riemann's achievements were 
recognized in the scientific community.) Many of Riemann's works were based 
on the Dirichlet principle, borrowed from one of the latter's lecture courses, a 
principle that seemed rather doubtful to Weierstrass. 147 Characteristically, 
the first acknowledgment of Riemann's lecture came from a man who was 
not regarded by others or by himself (wrongly, as we see it) as a mathe
matician. In 1 868, Hermann Helmholtz responded to Riemann's great lecture 
by a revealing paper "Ober die Thatsachen, die der Geometrie zu Grunde 
liegen."148 Helmholtz's paper was based on his research into the physiology 
of vision, 149 and its title was all but a copy of the title of Riemann's lecture. 1 50 
Helmholtz's idea was to describe spaces of constant curvature by their charac
teristic properties of homogeneity and isotropy (free mobility and monodromy, 
in Helmholtz's terminology) as the most important properties for physics. 1 5 1 
Helmholtz's problem of describing spaces, which we would now, in the spirit 
of Chapter 1, describe as having maximal symmetry, was subsequently specified 
and somewhat reinterpreted by Sophus Lie1 52 on the basis of his theory of 
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continuous groups, to which we will return below; today that problem is called 
the Helmholtz-Lie problem. 

Another attempt to expand Lobachevsky's geometry by including it in a 
system of new geometric structures/53 was made by Felix Klein, one of the 
two protagonists of our story. Compared with Riemann's grandiose construc
tions, this attempt was more limited and, perhaps for that very reason, its 
publication evoked a much more lively response. It is conceivable that this 
attempt played a leading role in forming Klein's general views on the nature 
of geometry, views we will deal with in greater detail below. 

Klein started from a work by the English algebraist Arthur Cayley. In 
1854-1 859, in six memoirs on "quantics" in the London Philosophical Trans
actions, Cayley considered homogeneous algebraic polynomials (forms or 
quantics, as he called them) of the second degree or higher. The methods 
developed by Cayley were purely algebraic, but the space of variables on which 
the polynomials depended could, of course, be interpreted as projective space 
(described in projective coordinates). This space is two-dimensional (the pro
jective plane) or three-dimensional projective space, according as the number 
of independent variables is three or four. (Recall that a point in the projective 
plane has 3 homogeneous coordinates, while a point in projective space has 
4 such coordinates.) From this geometric standpoint, the "Sixth Memoir upon 
Quantics,"1 54 which appeared in 1859, could be regarded as an attempt to 
introduce a "metric" of sorts into projective space, enabling the distance 
between points in space or angles between lines to be measured by means of 
a quadratic form defined on that space. Depending on the type of the form, 
Cayley obtained different kinds of "projective metrics." In February 1870, 
during Klein's visit to Berlin, he delivered a report at Weierstrass's seminar 
on Cayley's work. In particular, he suggested that Cayley's work might be 
linked with Lobachevsky's non-Euclidean geometry (which Klein knew only 
very superficially at the time1 55). But Weierstrass, the purist and fanatical 
believer in mathematical rigor, did not take kindly to Klein's thought, which 
was still in the formative stage. Weierstrass could not abide hastily conceived 
ideas and recognized only completely finished and formally impeccable con
structions in mathematics. He severely criticized Klein. For only a brief period 
of time, however, did Klein abandon the thought that the results of the 
algebraist Cayley and those of the geometer Lobachevsky are closely related. 
He asked his friend Stoltz (who was very widely educated in mathematics and 
had acquainted Klein with Staudt's research; see Note 84) to give him a 
detailed account of Lobachevsky's and Bolyai's results. Klein's talks with 
Stoltz resulted in a long paper by Klein called "Ober die sogennante nichteuk
lidische Geometrie" ( 1 871 ), 1 56 containing a broad interpretation ofthe projec
tive metric systems in the plane and in space (today, they are called Cayley
Klein geometries). 1 57 

Only one of the geometric systems considered by Klein was classical 
Euclidean geometry in which (in the plane case) the distance dAA, between 
the points A(x, y) and A1 (x1 , y1 ) is determined by the formula dAA, = 



66 

y 
M 

> X  

(a) 

Felix Klein and Sophus Lie 

y y 

/ M 

./ 
Q(a, b)  

----�or--;----�-x 

(b) (c) 

j(x1 - x)2 + (y1 - y)2 (see Fig. 12(a), showing the Euclidean circle with 
center Q(a, b) and radius r-the set of points at a distance r from Q). 
In a certain sense, they are matched by the pseudo-Euclidean and semi
Euclidean geometries in which the distance dAA,  between the points A(x, y) 
and A1 (x1 ,yd is determined by the formulas dAA, = j(x1 - x)2 - (y1 - y)2, 
dAA, = j(x1 - x)2 = lx1 - x l  respectively (see Figs. 12(b) and (c), in which the 
pseudo-Euclidean and semi-Euclidean circles are shown). These two simple 
geometries possess significant mechanical interpretations: semi-Euclidean 
geometry is used to describe Newton's classical mechanics, while pseudo
Euclidean geometry was proposed by Hermann Minkowski (1864-1909) for 
the geometric interpretation of Einstein's (special) theory of relativity, 1 58 with 
which we cannot deal in greater detail here. 1 59 

Klein also singled out Lobachevsky's hyperbolic geometry and Riemann's 
elliptic geometry, which form part of the system of "projective measurement" 
under consideration. In particular, Klein interpreted Lobachevskian (plane) 
geometry as the geometry of the interior of a conic section (bounded, say, by 
the circle f; see Fig. 1 3). Here, the points of the interior of the disk bounded 
by the circle f are called the "points of the Lobachevskian plane"; the (open, 
i.e., without ends) chords of the circle are the "straight lines"; the "distance" 
dAB between the points A and B of the Lobachevskian plane is computed by 
means of the simple formula 

[AUIAV] 
dAB = log( A, B; U, V) = log BU BV , (4.2) 

where U and V are the points in which the line AB = m intersects the absolute 
f of our non-Euclidean plane, while the choice of a definite logarithmic base 
is equivalent to the choice of a unit of length (Fig. 1 3; it follows directly from 
formula (4.2) that the entire non-Euclidean line UV = m or even the non
Euclidean half-lines AU and AV are infinite). It is easy to see from Fig. 1 3  that 
through a point M not on the line m there pass infinitely many lines (such as 
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FIGURE 1 3  

the line M A) that intersect m and infinitely many lines (such as PQ and RS) 
that do not intersect m; the lines MU and MV separating the lines of the first 
kind from those of the second kind are called parallel to the line m in the sense 
of Lobachevsky (or Bolyai). This "model" of Lobachevskian geometry is very 
easy to imagine and is very often used in the teaching of Lobachevskian 
geometry. 160 

It was due largely to the latter circumstance that Klein's works provoked 
wide repercussions. At first the discovery of a large class of new geometries, 
including the systems of Euclid, Lobachevsky, and Riemann as special cases, 
did not evoke particular enthusiasm among mathematicians. Some scientists 
(even Arthur Cayley, whose name is (fittingly) linked with the geometric 
systems described by Klein) never accepted that discovery, for they suspected 
the presence of contradictions in this theory. Perhaps this was an unconscious 
reaction against the overabundance of geometries. 16 1 In this connection 
we note that Klein himself, in his 1 871  paper (as well as in the long book 
mentioned in Note 107), saw his main achievement not in the discovery of a 
large number of new geometric systems, but merely in the discovery of a new 
(and general) approach that linked the previously known hyperbolic and 
elliptic geometries with (traditional) Euclidean geometry and, at the same 
time, established their consistency. 1 62 It is striking that Klein did not even 
bother to count the number of geometries he had obtained. A complete 
classification of these geometries was first produced in 1910 by the English 
geometer Duncan Sommerville ( 1879-1934). 163 According to Sommerville, 
there are 9 Cayley-Klein geometries in the plane-Euclid's geometry and 
8 non-Euclidean geometries164; 27 Cayley-Klein geometries in space, and 
3" n-dimensional Cayley-Klein geometries, when n is any natural number. 

Thus the part of Klein's long 1 871 memoir that was immediately accepted 
by many and became quite popular was his simple model of Lobachevsky's 
hyperbolic geometry presented in Fig. 1 3, which graphically illustrated the 
basic facts of that geometry and convincingly demonstrated its freedom from 
contradictions. However, at the time it was believed that the noncontradictory 
nature of Lobachevskian geometry had already been proved by the Italian 
mathematician Eugenio Beltrami ( 1835-1900), 165 who seemed to have shown 
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FIGURE 14 

in 1 868 that Lobachevskian (plane) geometry can be realized on a certain 
surface in Euclidean space (in the form of the "intrinsic geometry" of a surface 
with constant negative curvature/66 for example on the so-called pseudo
sphere depicted in Fig. 14). 167 Since the pseudosphere can be determined by 
a simple equation in space, 1 68 Beltrami's result, if correct, implied that if plane 
Euclidean geometry does not lead to contradictions, then neither does plane 
Lobachevskian geometry. It was readily conceded that for teaching purposes 
Beltrami's model on the pseudosphere was less persuasive than Klein's very 
simple model, much better suited to give one an initial idea of hyperbolic 
geometry. But this is not the end of the story. 

In 1903, Hilbert discovered fundamental and insurmountable flaws in 
Beltrami's pseudosphere model of Lobachevsky's hyperbolic geometry: he 
showed that the presence of the acute "edge" of the pseudosphere, seen in Fig. 
14, does not allow us to establish a one-to-one correspondence between all 
the points in the Lobachevskian plane and all the points on the pseudosphere. 
Similarly, it is possible to map only part of the Lobachevskian plane on any 
other surface of constant negative curvature. 169 In view of this, the pseudo
sphere (or any surface of constant negative curvature) could not be considered 
as a model of Lobachevskian geometry as a whole-and today Beltrami's 
pseudosphere construction is no longer regarded as proving the logical 
consistency of the axioms of Lobachevskian geometry. However, following 
his striking (but, as Hilbert showed, improper) model on the pseudosphere, 
Beltrami (in the first 1 868 paper mentioned in Note 167) briefly indicates 
another "model in a disk" of hyperbolic geometry, completely coincident with 
the one shown in Fig. 13. At the time, this conclusion of Beltrami's memoir 
did not attract sufficient attention, and Klein himself failed to notice it. At the 
present time, the model of the non-Euclidean Lobachevskian plane shown in 
Fig. 13  is appropriately called the Beltrami-Klein model. 1 70 

Finally, we point out another interpretation (or model) of hyperbolic geom-
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etry, this one due to the famous French mathematician and physicist Henri 
Poincare. 1 7 1 That model prompts us once again to recall Lambert's prophetic 
words about an imaginary sphere on which Lobachevsky's non-Euclidean 
geometry would be realized if such a sphere were to exist (see page 49). We 
have already pointed out that spherical geometry may serve as a model of 
Riemann's elliptic geometry. Then points of the elliptic plane are by definition 
points of the sphere (or pairs of diametrically opposite points of the sphere, 
or points of a hemisphere with opposite points of the boundary equator 
identified; see Fig. 1 1  on page 64). The great circles of the sphere are the 
straight lines. Rotations of the sphere about its center are the isometries (in 
this case it is more convenient to refer to the set of pairs of diametrically 
opposite points than to the hemisphere model). Of course, it is impossible to 
consider any imaginary sphere or sphere with imaginary radius in Euclidean 
space. 1 72 That is why we pass from Euclidean to pseudo-Euclidean three
dimensional space with coordinates x, y, z and the metric 

(4.3) 

where d is the distance between the points M(x, y,z) and M1 (x1 ,yl > zd. Unlike 
Euclidean space, that space contains spheres of real and imaginary radius; for 
example, the sphere of radius i and center 0(0, 0, 0) is the set of points at an 
(imaginary!) distance i from the origin that satisfy the equation 

(4.3a) 

in Euclidean space (x, y, z). This set is a surface known as a two-sheeted 
hyperboloid. One sheet (part) of the hyperboloid (Fig. 15), singled out, say, by 
the condition z > 0, may serve as the imaginary hemisphere, similar to the 

z 

y 

X 

FIGURE 1 5  
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real (ordinary) hemisphere depicted in Fig. 1 1. If we take the points of this 
imaginary "hemisphere" to be the points of the new (non-Euclidean) plane, 
the sections of the "hemisphere" by planes passing through the origin (the 
center of this "sphere") to be the straight lines and the "pseudo-Euclidean 
rotations" of the sphere that preserve the pseudo-Euclidean distances between 
points to be the isometries, then we obtain (a model of) Lobachevsky's 
hyperbolic geometry. 1 73 



CHAPTER 5 

Nineteenth-Century Geometry: 
Multidimensional Spaces; Vectors 

and (Hyper) Complex Numbers 

The subject matter of this chapter is somewhat removed from the ideas of 
symmetry and their evolution through the 19th century, which form the core 
of the book, but is needed to understand Klein's and Lie's work. 

In antiquity, mathematicians had already noticed the analogies between a 
segment of a straight line, a triangle in a plane, and a tetrahedron (a triangular 
pyramid) in space (Fig. 16(a)); pairs of points on a line, a circle in a plane, and 
a sphere in space (Fig. 16(b)); a closed interval on a line, a parallelogram in 
a plane, and a parallelepiped in space (Fig. 16(c)). 1 74. Even before the introduc
tion of coordinates, mathematicians could express the difference between the 
straight line, where figures possess one dimension-their length a; the plane, 
where figures can be characterized by two dimensions-length a and breadth 
b; and space, where every solid has three dimensions-length a, breadth b, 
and height c (see Fig. 17). Once coordinates are introduced, this difference can 
be conveniently expressed as follows: a point on a (one-dimensional) line is 
characterized by a single number-its single coordinate (the abscissa) x; a 
point in a two-dimensional plane has two coordinates (its abcissa x and its 
ordinate y); finally, in three-dimensional space the position of a point is 
determined by three numbers (coordinates)-the abscissa x, the ordinate y, 
and the applicate z (compare Fig. 16(c)). A segment on a line can be described 
as a set of points M(x) with 0 � x � a, a rectangle in the plane as a set of 
points M(x,y) with 0 � x � a, 0 � y � b, and a parallelepiped in space as a 
set of points M(x, y, z) with 0 � x � a, 0 � y � b, 0 � z � c (see Fig. 16(c)). 

Rudiments of the idea of "multidimensional" spaces-spaces of four or 
more dimensions-turn up, in implicit, and sometimes semi-mystical form, 
in the works of many mathematicians and philosophers of different nation
alities. 1 7 5  A clear understanding of the fact that the world we live in is 
four-dimensional, and that, therefore, every event is characterized by three 
"space" coordinates x, y, z, and time t, was expressed by the famous French 
mathematician and philosopher Jean le Rond d'Alembert (1717-1783). 1 76 
D'Alembert and Denis Diderot (1713-1764) were the joint editors of the 
35-volume Encyclopedie or Dictionnaire raisonne des sciences, des arts and des 
metiers (Paris, 1751-1780). The volume which appeared in 1764 contained an 
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Arthur Cayley 

entry ("dimension") remarkable for an eighteenth-century encyclopaedia, in 
which d' Alembert wrote that "One could consider time as a fourth dimension, 
so that the product of time by volume would, in a certain sense, be the product 
of four dimensions; this idea is perhaps debatable, but I feel that it has certain 
merits . . . .  " 

It seems that the term "n-dimensional geometry" was first used by the 
outstanding English algebraist Arthur Cayley (1821-1895), repeatedly men
tioned above, in the article "Chapters on the Analytical Geometry of n 
Dimensions." 1 77 Cayley came from a well-to-do English family. Owing to 
business affairs, Cayley's father lived in St. Petersburg, in Russia, where young 
Arthur spent his childhood. Cayley studied at Cambridge, where he became 
senior wrangler and the first winner of Smith's prize. His first scientific papers 
appeared in the year of his graduation. But since he felt that mathematics did 
not guarantee sufficient material rewards, he began to study law. Soon he 
became a well-known and successful London lawyer. However, in contrast to 
M. Chasles, who also postponed the pursuit of an academic career because of 
financial considerations (see page 37), Cayley never suspended his mathe
matical work during his time as a lawyer, combining his practice with intense 
and extremely fruitful research activity. In 1 864, considering himself sufficiently 
well off, Cayley left the bar for a professorship at Cambridge University, 
where he remained until his death. 
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Paradoxically, Cayley's science combined profound creativity with caution 
and conservatism which often hampered his deeper understanding of the 
achievements of others as well as his own. Thus while he was practically the 
first important mathematician to comment in writing on Lobachevsky's non
Euclidean geometry (see above), he did not for a time understand its real 
significance. Similarly, he never acquired a deep appreciation of the geo
metric systems now known as projective metrics or Cayley geometries1 78 (see 
page 67). Cayley's conservatism also appears in the paper "Chapters on the 
Analytical Geometry of n Dimensions." In his profound analysis of certain 
facts of (n - I)-dimensional projective geometry1 77 and in his proofs of im
portant theorems in this field, Cayley is very cautious in the use of geometric 
terminology (except for the title) and symbolism which was obviously appro
priate but not yet fully established. Only at the end of the paper does he note 
that in the three-dimensional case (why only this one?) his algebraic results 
(algebraic only in form, not in content) are equivalent to meaningful theorems 
of geometry. 1 79 Similarly, in his famous "Memoirs upon Quantics," particu
larly in the Sixth Memoir where the foundations of "Cayley metrics or geom
etries" are set forth, he deals exclusively with second-order curves in the 
projective plane and with surfaces in three-dimensional space, although the 
extension of all these results to the general (n-dimensional) case is obvious. 
Incidentally, Klein's famous 1871  paper "On so-called non-Euclidean geom
etry" considers in detail only plane (two-dimensional) and space (three
dimensional) geometries, and mentions the possibility of extensions to n 
dimensions only in a single sentence at the end of the paper. 

Despite all his cautiousness, it is hard to overestimate Cayley's role in the 
creation of the concept of n-dimensional space and his contribution, by no 
means limited to the Chapters article, to the development of"multi-dimensional 
intuition". Cayley's research, as well as that of his followers, friends, and 
sometime rivals (in particular the indomitable traveller, the Anglo-American 
James Joseph Sylvester ( 18 14-1897) who moved from country to country and 
from one activity to another, 180 and the Irish mathematician and theologian 
George Salmon (1 8 19-1904)), 1 8 1 was mainly devoted to the development of 
linear algebra (which, in its geometric aspect, reduces to the study of linear 
and quadratic loci planes and quadrics in multidimensional affine and pro
jective space) and to the theory of invariants, arising in the affine and projec
tive classification of quadrics in the plane and in space. And perhaps it is to 
this "invariant trio," as they were called by the famous French analyst Charles 
Hermite ( 1 822-1901 ), that we owe the fact that by the end of the 1 870s the 
notion of an n-dimensional vector space became accessible even to average 
students of mathematics. In connection with Cayley, we should also mention 
that he created the theory of matrices, i.e., tables of numbers (square at first 
and then rectangular when the theory developed), which provide an important 
tool in the theory of n-dimensional vector spaces as well as a meaningful 
example of an n2-dimensional space (cf. page 99; see A. Cayley, "Memoir 
on the Theory of Matrices" (Philos. Transactions, 1 858) which also appears 
in Cayley's Collected Works). 
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Hermann Gunther Grassmann 

And yet the true founder of the concept of n-dimensional space is probably 
the German Hermann Gunther Grassmann (1809-1877), one of the most 
original (and for that reason unrecognized in his time) mathematicians of the 
nineteenth century. Grassmann's Die lineale Ausdehnungslehre1 82 appeared in 
1 844, the same year as Cayley's Chapters, while the second, completely revised, 
text of the same work (Die Ausdehnungslehre) came out seventeen years later 
(in 1 861). The vector calculus, closely related to n-dimensional geometry, was 
created simultaneously and independently by Grassman and by the famous 
Irishman William Rowan Hamilton ( 1805-1865). (This is yet another instance 
of a phenomenon that we encountered and described on a few occasions 
above.) Hamilton was an outstanding physicist (we recall that according to 
some modern views physics "belongs" to the right hemisphere of the brain) 
and Grassmann a leading linguist (everything having to do with linguistics is 
associated with the left hemisphere. 

Hermann Grassmann1 83 was born in Stettin, a provincial German town with 
which practically his entire life is connected. His family had long been known 
for its religious and scientific interests, and both aspects of intellectual life were 
always very close to Grassmann. His grandfather was a pastor; his father, who 
influenced Hermann greatly, was also a clergyman until his scientific interests 
prevailed and he became professor of physics and mathematics in the Stettin 
gymnasium from which his son graduated and where he taught for many years. 
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The senior Grassmann also wrote several works on physics, technology, and 
elementary mathematics. After graduating from the gymnasium, Hermann 
Grassmann studied for three years at Berlin University. He studied not 
mathematics but philosophy, psychology, philology, and theology; following 
family tradition, he thought seriously of becoming a clergyman, and only 
abandoned the idea completely while working on his Ausdehnungslehre (later 
he repeatedly expressed regret at not having become a pastor). After complet
ing the university course, Grassmann passed an examination granting him the 
right to teach, and he taught at a secondary school in Berlin for one-and-a-half 
years. Then, after passing two comprehensive examinations in theology (at 
the time he still intended to become a pastor), and then a state examination 
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for the right to teach in the higher forms of the gymnasium (all these exami
nations took place in Berlin), Grassmann received a document certifying that 
he was superbly qualified to teach mathematics, physics, mineralogy, and 
chemistry, as well as theology or religion. From 1836 onwards Grassmann 
worked exclusively in Stettin, where at first he taught at the Friedrich Wilhelm 
secondary school, and then, after his father's death, occupied the latter's post 
in the city gymnasium He moved to Stettin, where at different times he taught 
German, Latin, chemistry, mineralogy, physics, and mathematics. Most of the 
time his teaching load was very heavy-up to twenty hours a week of different 
subjects. It is remarkable then that Grassman found the time to do significant 
research in various fields-in addition to mathematics he obtained significant 
results in physics; in particular in the theory of electricity and colors (this work 
was highly valued by the famous Helmholtz). Grassmann studied music and 
its theory and the theory of vowels; he had a very keen ear, which in these 
fields served him well. For a long time he was also an editor or (with his 
younger brother Robert) a co-editor of, and an active contributor to the local 
newspaper, as well as a prominent Freemason and church figure. We will yet 
have occasion to discuss Grassmann's philological interests and contribu
tions, which are regarded by some as the most important part of his intense 
intellectual life. Klein ends his highly sympathetic biographical essay on 
Grassmann with the following words: "It is not surprising that in view of such 
a variety of activities, there was one field Grassmann failed to master: he was 
a very poor teacher" (compare this with what we said about Jacob Steiner on 
pages 42-43). Mildmannered and friendly with everyone, Grassmann was 
unable to maintain the needed discipline in class. He only talked with a few 
of the most interested pupils, while the rest "had a good time". 

Grassmann's "theory of extension" was certainly not his only achievement 
in pure mathematics, 1 84 but here it is appropriate to examine only his two 
basic books in the 1 844 and 1861 editions. In effect both of these books 
present the theory of n-dimensional space (nonmetric "linear" or "affine" space 
in the 1 844 book; n-dimensional Euclidean space in the 1 86 1  book) and 
employ, respectively, the two basic methods adopted today. In Die lineale 
Ausdehnungslehre, the author, unfortunately, keeps his promise, given to the 
readers in the introduction, to set forth his work "proceeding from general 
philosophical notions without the help of any formulas." These notions 
correspond to a modern theory of linear (vector) spaces; more specifically, to 
their axiomatic, i.e., descriptive, development. Nowadays, all mathematics 
students (and even some secondary school pupils) know that a vector space 
is a set of (undefined) objects a, b, c, . . .  , called vectors (Hamilton's term; 
Grassmann talks about "extensive magnitudes") closed under two opera
tions, namely addition and scalar multiplication, and satisfying the following 
axioms: 

a + b = b + a (commutativity of addition); 

A.(Jw) = (A.Jl)a; 
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(a + b) + c = a + (b + c) (associativity of addition); 

la = a; a + 0 = a; a + ( - a) = 0 

(A + JJ.)a = Aa + Jla, A(a + b) = Aa + Ab (distributive laws); 

here 0 is called the zero vector, and ( - a) the additive inverse of the vector a. 
(Dieudonne's Linear Algebra and Elementary Geometry, intended for second
ary school teachers, opens with the axioms for a vector space; it seems that 
Dieudonne believes that the school geometry course should begin in that 
way). 1 8 5 However, in Grassmann's time, the reader was totally unprepared 
for such a manner of presentation and for such an approach to the essence of 
mathematics (regardless of the fact that it goes back to Pythagoras and Plato, 
or, at the very least, to Leibniz). Neither could Grassmann's general philo
sophical standpoint, 1 86 completely shared by Hankel (see Note 1 89) and 
George Boole (1815-1864), 1 87 be generally absorbed at that time (and perhaps 
not even today). Readers were unprepared for Grassmann's approach and for 
his idiosyncratic style, in particular, his use of many strange terms of his 
own invention; if the lawyer Cayley was excessively cautious in using new 
terms, the linguist Grassmann obviously enjoyed inventing them! Hence 
Grassmann's first book was ignored by mathematicians. There was not a 
single reference to it, nor one review; and, 20 years after its appearance, about 
600 copies of the book (of the 900 which seem to have been printed) were 
disposed of as waste (the other unsold copies were distributed free to anyone 
who wanted one). Neither was the book supported by Gauss, to whom 
Grassmann sent a copy. Gauss responded as usual, thanking the author in a 
short letter; instead of appraising the book, he said: "The tendencies in your 
book partly intersect the roads along which I wandered for almost half a 
century." Gauss failed to respond to Grassmann's calculus (or algebra), the 
most important thing in Die Ausdehnungslehre. We deal with it below. 

Grassmann was not at all so philosophical as to be indifferent to his failure. 
In the introduction to the book's second version (1861) he stressed that it "was 
completely revised and presented in the rigorous language of mathematical 
formulas." Indeed, the underlying approach here is the "arithmetic" (construc
tive) approach, i.e., all the constructions are based on "arithmetic" or "co
ordinate" space-a set of"points" defined by their coordinates (x1 , x2 , • • •  , xn), 
or, in modern terms, the set of n-tuples of (real) numbers (x1 , x2, • • •  , xn). 
The respective operations of addition of points x = (x1 , x2 , • • •  , Xn), and 
y = (y1 , y2, • • •  , yn) and of multiplication of a point x by a number A, are 
defined as follows: 

X + Y = (x1 + Y1 , X2 + Yz , . . .  , Xn + Yn) 

Ax = (Ax1 , Ax2, • • .  , Axn). 

Linear subspaces of the space are defined as the solution sets of one (or several) 
linear homogeneous equations relating the coordinates of points: 

A 1x1 + A2x2 + · · · + AnXn = 0. 
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Grassmann introduces, for the first time, the crucial notion of linear 
dependence of points a 1 , a2, • • •  , ak (we would now say vectors; Grassmann 
talks of "extensive magnitudes" instead). The points in question are linearly 
dependent if there is a relation 

A1a 1 + A.2a2 + · · · + A.kak = 0, 

where 0 = (0, 0, . . .  , 0) is the zero point (vector) and not all the numbers 
A-1 , A-2, • • •  , A.k are equal to zero. This notion enables him to define the dimension 
of the entire space (or of the associated linear space) as the largest possible 
number of linearly independent points. One consequence of that definition, is 
the simple Grassmann formula 

dim U + dim V = dim(U · V) + dim(U + V). 

The notation is modern; dim means dimension, U and V are two linear 
subspaces, U · V = U n V is their intersection, while U + V is their (vector) 
sum. 188 Another consequence is what is now called a Grassmann algebra 
(see below), described in a clear "formula form." In the second version of 
Die lineale Ausdehnungslehre, Grassmann introduces a metric defined by the 
expression J xi + x� + · · · + x; into the manifold under consideration and 
thus transforms it into an (n-dimensional!) Euclidean space. (Riemann's 
famous lecture "LJber die Hypothesen," where n-dimensional manifolds with 
much more general metrics were considered, had already been delivered at 
the time; however, Grassmann had no way of knowing about it, because he 
lived far away from scientific centers in total isolation from mathematical 
circles; not even the best-known research journals reached him.) Although 
the book's second version could be more easily understood by a persistent 
and favorably-inclined reader it too was presented in severely abstract form 
and abounded in new terms; it seems that it attracted even less attention than 
the 1844 edition. In his last years Grassmann prepared a new edition of the 
first version of his book; this came out in 1 878, a year after the author's death. 
It should be noted that the awkward language, more philosophical than 
mathematical, of both versions of his book and the abundance of new terms, 
unfamiliar to the reader, served as an obstacle to Grassmann's being invited 
to teach at the university. Twice he applied for a university post and twice 
he was rejected, and once a negative review of his works (stressing the above
mentioned shortcomings) was written by the well-known mathematician 
Ernst Eduard Kummer ( 18 10-1893). 

It seems that the first mathematician who really appreciated Grassmann's 
achievements was W.R. Hamilton. In 1 853 Hamilton wrote a number of 
letters to the Cambridge algebraist and logician Augustus de Morgan in which 
he explained and praised Grassmann's Ausdehnungslehre. Hamilton's long 
Lectures on Quaternions appeared in the same year. The author attached 
special importance to these lectures and in the introduction gave credit to 
his German colleague's accomplishments. Unfortunately, Grassmann never 
learned of the impression his works made on Hamilton. Still, the established 



80 Felix Klein and Sophus Lie 

German mathematician Hermann Hankel ( 1 839-1873), who learned of the 
Ausdehnungslehre from Hamilton's lectures, sent Grassmann an enthusiastic 
letter189 in 1 866. In 1871 Grassmann was elected a corresponding member 
of the Gottingen scientific society, but this belated (and far from adequate) 
recognition came at a time when Grassmann had already largely forsaken 
mathematics for the purely philological studies to which he had always been 
inclined. As early as 1 843, Grassmann and his brother Robert,l90 put out an 
elementary textbook of the German language with exercises ("mit zahlreichen 
Obungen"). 19 1 Its fourth edition appeared in 1 876. Grassmann's extensive 
work on German names of plants was much more substantial, 1 91 as was his 
study of German folklore and, in particular, his collections of German folk 
songs. In his last years his scientific interests focussed on his study (now 
regarded as a classic) of the famous literary and religious work of ancient India 
known as the Rig-Veda. In 1873, Brockhaus, a Leipzig publishing house, issued 
Grassmann's extensive dictionary for the Rig-Veda (written in Sanskrit) and 
in 1876-1877 (Grassmann died in 1877) the same publisher issued his two
volume translation of this outstanding work into German. These were the 
only scientific works for which Grassmann was awarded a degree: the remark
able scholar was made doctor of philosophy honoris causa by Tiibingen 
University. Recognition of Grassmann's mathematical achievements came 
only after his death, and was due to the high praise bestowed on his work 
by Felix Klein and Sophus Lie. In particular, much space was devoted 
to Grassmann in Klein's history of nineteenth-century mathematics. 192 In 
1 894-191 1,  largely on Lie's initiative, B.G. Teubner publishers of Leipzig 
(with whom Lie was closely associated) issued Gesammelte mathematische und 
physikalische Werke von Hermann Grassmann in three volumes (six substantial 
books). An active part in the publication was taken by Lie's closest pupils 
Georg Scheffers and, especially, Friedrich Engel, who was the editor of the 
whole work. The last of the six books contained a biography of Grassmann, 
written by Engel (see Note 1 83). 

Surprisingly, in view of the few contemporary comments on Grassmann's 
n-dimensional geometry, the relevant ideas very quickly became common 
knowledge. In 1 851,  the Swiss Ludwig SchHifli (18 14-1895), a professor at 
Bern University, presented a large work, Theorie der vielfachen Kontinuitiit, 
to the Vienna Academy of Sciences; however, it was published only fifty years 
later (Basel, 1901). In his introduction (which he may have written without 
knowing Grassmann's work) SchHifli states that his book "sets out to describe 
the foundations of a new branch of analysis, a sort of analytical geometry in 
n dimensions, containing ordinary analytic geometry of the surface and of 
space when n = 2 and 3." SchHifli's terminology and notations were very close 
to the modern ones. He also solved a number of specific problems of n
dimensional (Euclidean) geometry, such as extension to n dimensions of the 
famous Euler formula193 linking the number of vertices, edges, and faces 
of an arbitrary (convex) polyhedron, and drawing up a list of regular poly
hedra in n-dimensional Euclidean space. 194 Despite their delayed publication, 
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Schliifli's results became known to mathematicians from his published papers 
(and perhaps from manuscripts circulating in Vienna and Bern). Of the two 
specific problems mentioned above, Euler's n-dimensional formula (although 
it seems to have been rediscovered by Poincare, who makes no reference to 
Schlafli) is today associated with the Schlafli's name. The classification of 
regular polyhedra in n-dimensional space is, unfortunately, often attributed 
in the literature to later authors. 195 In any case, Klein points out in his his
tory of nineteenth-century mathematics that in the 1 870s the notion of n
dimensional space was widely known. In his 1872 Erlangen program Klein 
himself considered only two- and three-dimensional geometries but noted (in 
a single sentence in the memoir On the so-called non-Euclidean geometry) that 
his main ideas obviously hold in the general (n-dimensional) case. Finally, our 
account would be incomplete if we failed to mention our "old acquaintance" 
Camille Jordan who, in a long memoir Essai sur la geometrie a n  dimensions196 
offered a substantial presentation, quite modern in form, of n-dimensional 
Euclidean geometry, including solutions of the problem of finding the angles 
between two linear subspaces (known as stationary angle.s-their number 
depends on the dimensions of the subspaces) and of the shortest distance 
between them. 197 Jordan also developed the differential geometry of(smooth) 
curves in n-dimensional Euclidean space in two short notes in 1 874 (both were 
included in Vol. 3 of the Works196), and laid the basis for differential geometry 
of m-dimensional surfaces in n-dimensional space (where m � n - 1;  the sim
plest cases are m = 1 (curves) and m = n - 1 (hypersurfaces)). 

Let us now turn to the second subject cited in this Chapter's title and closely 
related to the topic of n-dimensional space, namely the rise of vector calculus. 
Gottfried Leibniz (1646-1716) had dreamed of a geometric calculus dealing 
directly with geometric objects rather than with numbers. Monge's pupil 
Lazare Carnot (see Note 65) outlined a rather inadequate model of such a 
calculus in his Geometrie de Position (Paris, 1803). Leibniz's dream was realized 
by Grassmann and Hamilton, who came to their respective calculi from 
completely different directions. 

In accordance with his philosophical and general scientific interests, Grass
mann had a very respectful attitude toward Leibniz. Grassmann devoted a 
special work to the explanation of Leibniz's geometric ideas: Geometrische 
Analyse gekniipft an die von Leibniz erfundene geometrische Charakteristik 
(Leipzig, 1 847). Incidentally, this was the only work of Grassmann that 
mathematicians noticed: it received an award at an all-German contest of 
scientific works and was published in Leipzig (not in Stettin, an extremely 
provincial town in terms of science) with an introductory "explanatory 
essay" (mit einer erliiuternden Abhandlung) by Mobius. This term, apparently 
originating with Mobius, shows clearly that Mobius, a master of lucid ex
position, hardly sympathized with Grassmann's awkward "philosophemas". 
Grassmann regarded his calculus, in which purely geometric objects were 
added, subtracted, multiplied and divided (and admitted scalar multiplication) 
as a precise realization of Leibniz's program. 
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It is very easy to explain Grassmann's algebra in modern terms. Proceeding 
from n-dimensional space (Euclidean, although much of the theory does not 
require a Euclidean metric), Grassmann introduces n (linearly independent!) 
basis vectors or units e1 , e2 , . . .  , en and examines the formal sums of these 
units and their products subject to the rule that products of units are anti
commutative, 

[e;, eJ = - [ei, e;] when i # j, [e;, e;] = [ef] = 0, 

and associative. We thus have products of units and "products of pro
ducts" [e; e,. · · · e; ] · [e1- e1. • • • e1. ], which are nonzero only if all the indices i1 , 1 2 p 1 2 q 
i2 , . . . , iP are different, all the indices j1 , j2, • • •  , jq are different, and no i. 
(s = 1, . . .  , p) is equal to ajt (t = 1, . . .  , q). If this is the case, then such a product 
can be written in the form 

± ek, ek2 · · · ek.• where 1 � k1 < k2 < · · ·  < k, � n, r = p + q. 

Thus the Grassmann algebra has to do with "ordinary" (n-dimensional) 
vectors 

x1e1 + x2e2 + · · ·  + Xnen 

where the X; are numbers, as well as with more complicated sums 

x0 + L X;e; + L xiieii + L xiikeiik + · · · + x12 . . .  nel 2 · · · no (5. 1)  

where the x's still denote numbers and, for example, 

It is precisely such expressions that Grassmann called "extensive magnitudes". 
The great importance of Grassmann's "exterior algebra" for mathematical 

analysis (without going into details, we point out that in any multiple integral 
the expression under the integral sign contains the exterior product of dif
ferentials of the independent variables), for geometry and for topology (which 
was in its infancy in Grassmann's time) could not have been anticipated 
at the time. Nor could it have been anticipated by the school of fanatical 
Grassmannites which arose soon after his death (see pages 88-89). The im
portance of this algebraic system was fully appreciated only in the twentieth 
century by Henri Poincare, by Elie Cartan, 1 98 one of the leading figures in, 
among other areas, 20th-century geometry, and by the Swiss Georges de 
Rham, who carried out the synthesis of Cartan's algebra and geometry with 
Poincare's analysis and topology. 

In addition to the antisymmetric "exterior" product of units in which 
[e;ei] = - [eie;], Grassmann also considered the symmetric "inner" product 
subject to the rules 

(5.2) 

The inner product of a vector by itself, i.e., the inner or scalar square of a 
vector, was related by Grassmann to its length (in the Euclidean metric). 
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Similarly, Grassmann defined the inner product of arbitrary extensive magni
tudes or expressions. In particular, he related "extensive expressions of the 
second order" Ixiieii ( = Ixii[e;ei]) to surface elements199 (these construc
tions were carried out in verbal geometric form in the first version of the 
Ausdehnungslehre) and the "inner square" of such an expression to the area 
of the surface element. 

It is instructive to look at the Grassmann algebra of vectors in the simplest 
cases of two- and three-dimensional vector spaces. In both cases, the inner 
product operation assigns to each pair of vectors a =  x1 e1 + x2e2( +x3e3) 
and b = Y1 e1 + Yze2( + y3e3) the number (see formula (2))200 

a · b = (a, b) = x1y1 + x2Yz ( + X3YJ). (5.3) 

In the two-dimensional case, the outer or exterior product assigns to each pair 
of vectors a and b the number 

a x  b = [a, b] = (x1 e1 + x2e2) x (y1e1 + y2e2) = (x1y2 - x2y1 )e12; (5.4a) 

we say "number" advisedly since the "vector factor" e1 2 is the same for all 
pairs a and b and may therefore be omitted. In the three-dimensional case the 
outer product of two vectors is also a vector 

a x  b = [a, b] = (x1 e1 + x2e2 + x3e3) x (y1 e1 + y2e2 + Y3e3) 

= (X1Y2 - XzYz)e12 + (XzYJ - X3Y2)e23 + (X3Y1 - X1Y3)e31 
= x1 2e12 + x23e23 + x31e3 1 •  (5.4b) 

in the three-dimensional space with the basis {e12 , e23 , e3 r };201 in the Eucli
dean case this three-dimensional space can be identified with the original space 
by putting e12 = e3 , e23 = e1 , and e3 1  = e2 • S2 = (a x  b) · (a x b), "the inner 
square" of the outer product a x b, is related to the area S of the parallelogram 
spanned by the vectors a and b. Specifically, in the two-dimensional case 
S2 = (x1y2 - x2y1 )2, and in the three-dimensional case S2 = Xf2 + Xi3 + 
X� 1 , that is, S2 = (a x  b) · (a x b). Actually, in the two-dimensional case one 
usually writes 

S = X1Y2 - XzYI •  

where S stands for the so-called "oriented area", i.e., the area of the parallelo
gram spanned by the vectors a and b taken with a plus or minus sign. 

Another way of arriving at the vector calculus involved the geometric 
interpretation of complex numbers z = x + iy, where i2 = - 1, widely used 
by Gauss. Gauss202 assigned to each such number the point of the plane 
with Cartesian (rectangular) coordinates (x, y) and polar coordinates (r, <p ), 
where r = lz l  = Jx2 + y2 and <p = Arg z, i.e., cos <p = xjr, sin <p = yjr, while 
tan <p = yjx (Fig. 1 8). Here the sum 

z1 + z = (x1 + iy1 ) + (x + iy) = (x1 + x) + i(y1 + y) 

is computed according to the parallelogram rule (x, y) + (x1 ,y1 )  = (x + x1 , 
y + y1 ) (Fig. 19(a)) while multiplication z 1 z = (r1 <p1 ) · (r, <p) = (r1 r, <p1 + <p) 
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"rotates" each point z1 through the angle cp and "stretches" it r times (see Fig. 
19(b); note that the operations of "increasing" by z and multiplying by z are 
applied to the entire figure formed by the points z d. Thus it can be said that 
the addition operation ("the adding of z") geometrically expresses a translation 
of the plane, while multiplication by z is a rotation followed by a stretching; 
in particular, if l z l  = 1 ,  then this operation is a pure rotation through the angle 
cp = Arg z). 203 

By "crossing" Gauss's complex numbers and the algebra of Grassmann numbers 
("extensive expressions") we get the Clifford algebra generated by n "units" e 1, e2, • • • , 
en and all their possible products, where the products of units are anticommutative 
(e; . e) = - e, . e;) and associative, but the square of each unit ei . ej = er is not zero, as 
in Grassmann's case, but - 1, as in the algebra of complex numbers (see W.K. Clifford, 
"Application of Grassmann's extensive algebra," Amer. Journ. of Maths., 1 879). As in 
the case of Grassmann numbers, the product of any number of "products of units" 
(e;, e;2 • • • e;,,) and (elt eh · · · e1.) can be written in the form ± ek, ekz · · · ek,• where 1 � k1 < 
k2 < · · · < k, � n, by using the associativity of multiplication of units and the main 
rules e;e1 = - e1e; and er = .- 1. Thus the Clifford algebra involves the same formal 
sums (1) as the Grassmann algebra, but uses somewhat modified rules of operation. 
The Grassmann algebra (called "exterior algebra" because it is based on Grassmann's 
exterior multiplication) plays a fundamental role in modern mathematics. The main 
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"users" of the Clifford algebra are probably physicists rather than mathematicians;204 
the former, liowever, have also expressed interest in Grassmann numbers. 

An important role in the history of mathematics was played by attempts to 
extend ordinary complex numbers from the plane to space by creating new 
numbers with three units instead of two. Gauss had considered this problem 
and arrived at the conclusion that a system of complex numbers of the form 
u = xe1 + ye2 + ze3 was not viable but did not publish his arguments. At
tempts to solve the problem continued on the other side of the Channel-they 
were undertaken by Augustus de Morgan ( 1806- 1871), one of the leaders of 
the Cambridge "formal" school, and Charles Graves ( 1810-1860), an Irish 
mathematician. In a voluminous treatise called On the Foundations of Algebra, 
de Morgan presents, in particular, an axiomatic approach to what he calls 
"the triple algebra."205 A different form of essentially the same algebra appears 
in Graves's article206 "On Algebraic Triplets," published the same year (1847) 
as de Morgan's book. Graves writes his triplets as u = x + ye + ze2, multiplies 
them "the natural way" subject to the rule e3 

= 1, and assigns to each triplet 
the point (x, y, z) in space; he also gives a neat geometric interpretation of his 
multiplication. 207 

The greatest progress in the field we are now concerned with was achieved 
in another attempt to generalize complex numbers and is linked with the name 
of one of the most brilliant nineteenth-century mathematician and physicists 
William Rowan Hamilton ( 1805-1865). Hamilton's mathematical work was 
not directly related to n-dimensional spaces, but there is a deep connection 
between these problems and his research in mechanics. On the other hand, 
the vector calculus (both vector algebra and vector analysis) was entirely 
created by Hamilton, although not quite in the form in which it is presented 
in modem textbooks. 

Hamilton's extraordinary abilities were manifested at an early age. At five, 
he knew, in addition to English, five languages-French, Italian, Latin, Greek, 
and Hebrew; by twelve he had added seven more, including such exotics as 
Arabic, Persian, Sanskrit, and Malay. Hamilton attended (protestant) Trinity 
College in Dublin, which we had occasion to mention before, in connection 
with another alumnus of(and teacher at) this institution (see Note 18 1). There 
he was so highly regarded as a student that he received the rank of a college 
astronomy professor in 1 827 even before he had completed the full college 
course! Soon afterwards, Hamilton occupied the high (and well paid) post of 
Ireland's Astronomer-Royal, which he retained till his death, and he was 
appointed observatory director at Dunsink (on the outskirts of Dublin). 
Besides his outstanding abilities in physics, mathematics, and linguistics, 
Hamilton was also talented in the arts. He was a prolific poet, whose verses 
were appreciated by his friend William Wordsworth (1770-1850). 

Unfortunately, the early and rapid development of Hamilton's outstanding 
talents, and his meteoric career in science and administration, had their tragic 
side. Later in life Hamilton experienced bouts of depression. He attempted to 
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overcome these, and simultaneously to improve his ability to work, with the 
help of alcohol. Persistent drinking reduced his creative capacities still further, 
and undermined his intellectual powers; even such an outstanding mind could 
not withstand the consequences of alcohol abuse. Hamilton died at sixty, but 
his last years were truly tragic. He was broken in mind and in spirit. 

While still a student at Trinity College, and right after his graduation, 
Hamilton carried out superb research on geometric optics, and in 1 834-1835 
he published the basic works on mechanics that were the high point of his 
scientific career. Today, Hamiltonian mechanics forms the foundation of 
quantum mechanics and of many other modern mathematical construc
tions,208 and is learned by all students of mathematics and physics. Despite 
their overall mathematical importance, Hamilton's later works, which he 
regarded as the chief accomplishment of his life and which are of most interest 
for our story, are not as profound as his works in mechanics. 

In 1 837 the Transactions of the Irish Academy published Hamilton's long 
paper (linked to the research of the "Cambridge formal school" mentioned 
above; see page 85 and Note 205), "Theory of Conjugate Functions or Alge
braic Couples," with a "Preliminary and Elementary Essay on Algebra as the 
Science of Pure Time." The second part of the title refers to the following idea, 
which goes back to Kant: geometry, as the science of space, should be con
trasted with algebra conceived as the science of time based on the notion of 
"ordinal" numbers (of course, not only natural numbers and integers!). It turns 
out that a number of ideas in this paper were fairly close to those contained 
in Grassmann's Lehrbuch der Arithmetik (see Note 1 84), a book which Hamil
ton did not know at that time. As to the first part of the paper's title, it refers 
above all to Hamilton's interpretation (actually proposed earlier by Janos 
Bolyai; see page 59) of complex numbers z = x + iy as pairs (x, y) of real 
numbers with the following rules of multiplication and addition 

(x, y) + (xl , Yl ) = (x + X1 , y  + yd; (x, y) · (xl , yd = (xxl - YY1 , XY1 + yxd. 

What especially pleased Hamilton was that he managed to do away with 
the mysterious symbol f-1, a permanent source of difficulty for people 
taught to accept as revealed truth that only positive numbers have square 
roots. Of course, Hamilton kept in mind the usual geometric interpretation 
of complex numbers (as points in the plane); his own interpretation of complex 
numbers (as pairs of real numbers) is essentially the same, since points in the 
plane can be described by their coordinates. 

In subsequent years Hamilton spent much time in several attempts to 
construct a reasonable system of "spatial" complex numbers with three 
units. This led to Hamilton's friendly contacts and correspondence with 
the Cambridge formalists. Here he expressed, among other things, his high 
opinion of Grassmann's work (see page 79). After much thought and consider
able computation, Hamilton concluded that it is not possible to construct a 
system of complex numbers with three units in which division is possible.209 
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He then passed to systems with four complex units and almost immediately 
discovered the quaternions.2 10  Already in his attempts to construct numbers 
with three units Hamilton conceived the idea of assigning to each complex 
unit a rotation in space, just as in the plane case multiplication by the complex 
unit i( = l (cos 90° + i sin 90°)) is equivalent to a rotation of the plane through 
90° (see Fig. 19(b)). (Before Hamilton, and apparently unknown to him, the 
same idea was expressed by the Danish geodesist Caspar Vessel (see Note 
202)). Since rotations in space do not, in general, commute (they form a 
noncommutative group; see page 102), Hamilton was forced to give up the 
requirement of commutativity of multiplication of his complex units. 

We shall not dwell here on the operator theory of quaternions, in which 
each quaternion is viewed as a certain operator in space. This theory is 
sketched in Klein's book mentioned in Note 68, and developed in greater 
detail in Klein's book cited in Note 201 .  Here we come directly to the final 
results. 

Hamilton's quaternions are complex numbers of the form 

q = x0 + x1 i + x2j + x3k, 

where x0, x 1 ,  x2 , x3 are real numbers while i, j, k are complex numbers with 
the following rules of multiplication: 

ij = -ji = k, jk = -kj = i, ki = - ik = j. 

It was essential for Hamilton to split each quaternion q into two summands: 
the number x0 = Sq, which he called the scalar or the scalar part of the 
quaternion (from the Latin word scala, meaning ladder), and the expression 
x;i + x2j + x3k = Vq, which he called the vector or vector part of the quater
nion (from the Latin word vector, meaning carrier).2 1 1  In the case when 

v = xi + yj + zk and v1 = x1 i + y1j + z1 k 

are two vectors, their product vv1 is a "general" quaternion 

vv1 = S(vvd + V(vv1 ), 
where, as can be easily checked, 

S(vvd = - xx1 - yy1 - zz1 ;  

V(vvd = (yz1 - y1z)i + (zx1 - z1x)j + (xy1 - x1y)k. 
(5.5) 

Following Hamilton, the expressions S(vvd and V(vvd (a number and a 
vector!) are called, respectively, the scalar and vector products of the vectors 
v and v1 (more precisely, the scalar and vector parts of the "quaternion" 
product of the two vectors). Comparing relations (5.5) with relations (5.3) and 
(5.4b) due to Grassmann, we are struck by the remarkable similarity between 
Hamilton's scalar and vector products and Grassmann's inner and exterior_ 
products. This similarity has become increasingly clear today, since in the 
further evolution of the vector calculus, Hamilton's scalar product was stripped 
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of its minus sign so that 

Hamilton's rule for dividing quaternions is very similar to the one for 
dividing complex numbers. For each complex number z = x + iy one can 
define the "conjugate" number z = x - iy (obviously, the map z --+ z is geo
metrically equivalent to a reflection in the real axis Ox). We then have 

zz = x2 + y2( = l z l2). 

Now if the number z is not zero and z1 = x1 + iy1 , then, 

zdz = (z1z)/(zz) = (x1 + iy1 ) (x - iy)j(x2 + y2) 

= (xxl + YY1 )/ Iz l2 + [(xyl - xly)/l z l2] i. 

Similarly, if q = s + xi + yi + zk = s + v, so that v = xi + yj + zk, and ij = 
s - v = s - xi - yj - zk, (the map q r--+ ij is obviously equivalent to changing 
the sign of the vector part of the quaternion, or reflecting the vector v in the 
origin), then 

Now if q -# 0 and q1 = s1 + x1 i + yd + z1 k, then 

qifq = (ql ij)/(qij) = (ql ij)/ lq l2• 
which can easily be written as an ordinary quaternion (J + ei + 1'/j + ,k. 

The similarity between quaternions and complex numbers inspired Hamil
ton. He decided to tackle the grandiose problem of carrying over all the results 
of the theory of functions of a complex variable to the theory of quaternions. 
He devoted twenty years of his life to this problem. Hamilton discovered 
quaternions in 1 843; his first publication on the topic is dated 1844. His 
two decades of labor produced two lengthy books, Lectures on Quaternions 
(Dublin, 1 853) and Elements of Quaternions (Dublin, 1866) the latter published 
posthumously; its has been recently republished (N.Y., Dover, 1969).2 1 2 

Hamilton's achievements in the theory of quaternions were considerable, 
yet he himself exaggerated their importance. Quaternions play a far less impor
tant role in mathematics than do complex numbers. Even more than their 
creator, members of the fanatical school of"quaternionists" or "Hamiltonians," 
which arose around Hamilton in Dublin and eventually spread its influence 
over England, exaggerated the importance of quaternions. During the same 
period, in continental Europe, particularly in Germany, these excesses gave 
rise to a suspicious attitude to the topic. In 1 895 the "quaternionists" even 
created a "World Union for the promotion of quaternions." They felt that the 
theory of functions of a quaternion variable is not only comparable to the 
theory of functions of a complex variable, but even superior to it. Also, whereas 
the relations between Hamilton and Grassmann were marked by mutual 
respect, the relations between the quaternionists and the equally fanatical 
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school of Grassmannites, which arose in Germany soon after Grassmann's 
death, immediately became very hostile. 

In modern mathematics Hamilton's quaternions undoubtedly occupy an important, 
but not a central place. It is easy to see that they are actually "second-order Clifford 
numbers" with principal units i and j and compound unit k = i ·j, whence it follows 
by anticommutativity and associativity that 

k2 = (ij)(ij) = i(ji)j = i( -k) -j = -i(kj) = - i · ( - i) = i2 = - 1. 

However, compared to the general "Clifford numbers" (for which, incidentally, we also 
have the operation of conjugation and which have a norm similar to the quaternion 
norm q · q  = !q l2) they have a number of merits, e.g., only quaternions admit of a 
well-defined operation of division by any nonzero number. Arbitrary motions (iso
metries) in space can be conveniently expressed in terms of quaternions. Thus a 
translation in space can be written as 

v' = v + a, 

where v, v' are variable vector quaternions (radius vectors of points) and a is a constant 
vector-the translation operator, and a rotation about the origin can be written as 

(5.6) 

where q is a fixed quaternion, and q-1 is its inverse, i.e., qq-1 = q-1q = 1 ( = 1 + Oi + 
Oj + Ok). It is remarkable that formula (5.6) (written in the language of numerical 
quadruples, which he did not call quaternions) was already known to Gauss, while 
P. Stackel, in his book Gauss als Geometer, referred to in Note 106, states that it was 
already known to Euler. 

We have already pointed out that of all the "reasonable" systems of 
"complex" numbers only the numbers commonly so called, and the quater
nions, admit a well-defined operation of division by nonzero numbers. Now 
we discuss this statement in more detail. The founders of the theory of general 
complex numbers (or hypercomplex numbers, as they were later called) were 
W.R. Hamilton (who began his monograph Lectures on Quaternions with this 
notion) and H. Hankel in the book Theorie der complexen Zahlensysteme 
(Leipzig, Voss, 1867). Hankel here stated the general problems of symbolic or 
axiomatic algebra 2 1 3  in great detail and gave a rigorous definition of arbitrary 
systems of general complex numbers, exemplified by Hamilton's quaternions. 
It was Hankel's theory of general complex numbers that inspired Hamilton's 
admiration for Grassmann's Ausdehnungslehre. Such numbers are understood 
to be systems of symbols 

(5.7) 

where x0,  x1 , • • .  , Xn are arbitrary real numbers and e1 , e2, • • •  , en are complex 
units. The number 0 + Oe1 + · · · + Oen is usually denoted by the digit 0 (or the 
symbol 0) while the number 1 + Oe1 + · · · + Oen is denoted by the digit 1 (or 
the symbol 1). Addition and subtraction of general complex numbers are 
defined in the natural way: if u and v = Yo + y1 e1 + · · · + Ynen are two (hyper) 
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complex numbers, then 

u ± v = (xo ± Yo) +  (xl ± Y1 )e1 + (x2 ± Y2)e2 + · · · + (x, ± y,)e,. 

The product of u and v was introduced by use of the usual rules for eliminating 
brackets in multiplication; these are based on the distributive laws of multi
plication with respect to addition, always assumed true for hypercomplex 
systems: 

uv = (x0 + x1 e1 + x2e2 + . . .  + x,e,) (y0 + y1 e1 + y2e2 + . . .  + y,e,) 

= XoYo + XoY1e 1 + XoY2e2 + . . .  + Xoy,e, + X1Yoe1 + X1 Y1 (e1 )2 

+ X1Y2(e1 e2) + . . · + x,y,(e,)2. (5.8) 

Now in order to be able to view this expression as a number of the same nature 
as u and v, it is necessary to define the pairwise products of units: 

Thus, for example, if n = 1 and the multiplication table of units reduces to the 
(obviously unique) rule ef = - 1, then we get the ordinary complex numbers. 
If ei = 1, then we obtain the double Clifford numbers and if ei = 0 then we 
obtain the dual Clifford numbers (see Note 203). For Hamilton's quaternions 
n equals three, and the multiplication table for the units e1 = i, e2 = j and 
e3 = k is 

el e2 e3 
el - 1  e3 - e2 
e2 - e3 - 1  el ' 
e3 e2 -el - 1  

where the first factor is in the column on the left and the second is in the top 
row (so that, for example, e1e3 = - e2 and e2e3 = et }.2 14 

Under addition (and subtraction, which is the operation inverse to addi
tion), hypercomplex numbers form a (n + !)-dimensional vector space. The 
new properties of the space have to do with the multiplication of numbers (see 
the next chapter, where we return to hypercomplex numbers and even give 
this notion a new name). It is clear that the multiplication of numbers is 
commutative if and only if the multiplication of any two complex units is 
commutative. Thus, for example, for Graves's "triplets" 

u = x0 + x1e + x2e2 

(see Notes 206 and 207) we always have uv = vu, since in that case the units 
e and e2 satisfy eiei = eiei = ei+i, where i,j = 1 or 2 and e3 = 1 .  Multiplication 
is associative (i.e., for any three numbers u, v and w we have (uv)w = u(vw)) if 
the multiplication of any three units ei, e1 and ek, where i, j and k = 1, 2, · . . .  
or n (here the three indices need not be distinct), is associative: (eie1)ek = 

ei(e1ek). (Usually the term "hypercomplex number" already implies associa
tivity.) Thus the multiplication of ordinary complex numbers is associative 
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(since for the unique unit satisfying e2 = - 1 we have (e2 )e = e(e2) = - e), and 
the same is true of the multiplication of dual numbers, double numbers 
and (more importantly) of the multiplication of quaternions (check this!). 
Multiplication of Grassmann numbers is also associative, and so too is 
multiplication of Clifford numbers (why?). 

If a system of numbers is not commutative, then we have two "quotients" 
ujv, namely the two numbers t 1 and t2 satisfying u = t1 v and u = vt2; and 
these two numbers may turn out to be distinct.2 14 Hence the notation ujv is 
inappropriate here and the following more convenient notations are used: 
t1 = uv-1 and t2 = v-1 u.2 1 5 Of course, in the general case the quotients uv-1 
and v-1 u of two given (hyper)complex numbers u and v may not exist. If the 
two numbers t1 ( = uv-1 ) and t2( = v-1 u) do exist, and are unique for each two 
numbers u and v in our system, where v differs from zero (v -=1- 0), then we say 
that the (hyper)complex numbers under consideration constitute a numerical 
system with division. (Division by zero is impossible in any system of hyper
complex numbers (why?).) 

As we have already pointed out, the general notion of hypercomplex 
number is due to the Irishman Hamilton and the German Hankel (and also 
to the Americans B. Peirce and C. Peirce, who will be mentioned in the next 
chapter). However, the main achievements here are due to the algebraic
geometric German school, whose acknowledged leader was Sophus Lie (we 
shall discuss the connection between the (hyper)complex topics and Lie's 
main scientific interests below) and which included E. Study, G. Scheffers,2 16 
and somewhat later Friedrich Heinrich Schur (1856-1932)2 17 and Theodor 
Eduard Molin (1861-1941),2 18 and to the Berlin arithmetical school headed by 
Weierstrass. A member of both German schools-which were headed by Lie 
and Weierstrass respectively-was the Berliner Georg Ferdinand Frobenius 
(1849-1917), one of the leading algebraists of the time. Frobenius proved in 
1878 the theorem, now considered classical, that any associative system of 
hypercomplex numbers with division is either the real numbers (the case n = 0 
in the representation (5.7) of hypercomplex numbers), the ordinary complex 
numbers, or Hamilton's quaternions. The same theorem was proved inde
pendently by the American Charles Peirce (who published his result two 
years later, however). Thus associative systems of hypercomplex numbers (or 
algebras, as Peirce preferred to call them; see Chapter 6) with division can 
have only 1 (  = 2°), 2( = 21 ), or 4( = 22) complex units, which must include 
the real number 1 .2 19 Moreover, for each of the above-mentioned numbers 
of units (1 ,  2, 4) there exists a unique associative system of numbers with 
division. 220 

The Frobenius theorem does not contradict the existence of the so-called Cayley 
numbers, discovered by the latter in 1 845 (see A. Cayley, "On Jacobi's Elliptic func
tions and on quaternions," London-Edinburgh-Dublin Phil. Magazine (3); V. 26, 1 845, 
pp. 208-21 1). Another term, more often used for these numbers, is "octaves," due to 
John Thomas Graves (1806-1870), brother of the Charles Graves mentioned earlier. 
J.T. Graves discovered these numbers independently of Cayley and indeed somewhat 
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earlier (in 1 843). However his paper was not published and mathematicians learned 
about it from an article by Hamilton (published only in 1 848, i.e., later than Cayley's 
article) in which Hamilton related the achievements of his friend Graves. Octaves or 
Cayley numbers are numbers of the form 

(5.9) 

where i2 = j2 = k2 = p2 = q2 = r2 = s2 = - 1  while the product of any two units is 
equal to a third uninaken with a plus or minus sign. Here, as in the case of quaternions, 
the octave units anticommute: the sign of the product changes when the units are 
interchanged (e.g., ij = -ji = k; pq = -qp = k, etc.). A complete multiplication table 
for octaves is easy to set up by means of the "Freudenthal diagram" (named after the 
Dutch mathematician Hans Freudenthal, born in 1905) shown in Fig. 20. This diagram 
depicts a "finite projective plane" with seven points i,j, k, p, q, r, s and seven lines-a 
line being a triple of collinear or concyclic points, where any two points belong to a 
unique line, any two lines intersect in a unique point, each line contains three points, 
and three lines pass through every point. The product of any two units represented by 
neighboring points on a line is always equal to the third point of this line, taken with 
a plus sign if the arrow on the line leads from the first factor to the second one and 
with a minus sign otherwise. Further, the formulas for multiplication of triples of 
"points" on one line are obtained from one another by a cyclic permutation (so that 
for example the relation ij = k implies jk = i and ki = j) and the "complex units" i, j, 
k, . . .  anticommute (so that, say, qr = i implies rq = -i). Thus the system of octaves 
contains seven "quaternion lines": 

a0 + a1 i + a2j + a3k, 

a0 + a1 i + a7s + a4p, 

a0 + a3k + a4p + a5q, 

a0 + a3k + a7s + a6r, 

a0 + a2j + a4p + a6r. 

a0 + a5q + a6r + a1 i, 

a0 + a5q + a7s + a2j, 

There exist other, possibly simpler, descriptions of the system of octaves. Quater
nions may be described as "Clifford numbers of the second order," i.e., as the system 
of numbers with two principal units i and j satisfying i2 = j2 = - 1  and also the 
anticommutativity and associativity conditions for the multiplication of units. Putting 
ij = k, this already implies that ji = -k (anticommutativity!), k2 = - 1  (compare 
page 89), kj = (ij)j = i(jj) = i( - 1) = - i, etc. (here we are constantly using the anti
commutativity and associativity of multiplication of units). Similarly, octaves may be 
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defined as a system of hypercomplex numbers with three principal units i, j, and s 
satisfying i2 = j2 = s2 = - 1  and anticommutativity and associativity for the multi
plication of units. Then, letting ij = k, is = p, si = q and ijs = ks = r, it is easy to show 
that k2 = p2 = q2 = r2 = - 1  and, say, kp = (ij)(is) = -(ji) (is) = -j(ii)s = js = q etc., 
i.e., we again obtain the multiplication table for the eight octave units (including the 
number 1).22 1 

To any octave (5.9) we can associate the conjugate number 

so that the product of two conjugate numbers will be a real positive number: 

uu = a� + ai + a� + a� + ai + a� + a� + a� , 

which it is natural to denote by lu l2 or ! lu ll and to call the norm or the square of the 
absolute value of the octave. (Here we have assumed that the octave u differs from 0; 
in addition, we define 101  = 0.) Therefore for every octave v -:1- 0 one can define the 
inverse octave v-1 = vfl v l2 (satisfying vv-1 = v-1 v = 1)  and hence also the quotient of 
any two octaves u and v #- 0 (to be more precise, two quotients uv-1 and v-1 u).222 

The existence of octaves does not contradict the Frobenius theorem because the 
octaves constitute a nonassociative system of hypercomplex numbers. Thus, for exam
ple, (ij)s = ks = r while i(js) = i( -q) = -iq = -r. Incidentally, "nonassociativity" 
does not imply that for any three octaves u, v, w we have the inequality (uv)w -:f. u(vw). 
It only means that such an inequality holds for at least one triple of octaves, while for 
many other triples we do have (uv)w = u(vw). Thus, for example, we always have 

[(1Xu)(fiu)] (yu) = (!Xu) [({Ju)(yu)] = (1X{Jy)(uuu) = (1Xfjy)u3, 

where IX, p, y are three arbitrary real numbers and u3 = (uu)u = u(uu). Indeed, each 
octave u generates an "octave ray" A.u (where A. is an arbitrary real number); in this 
way any three octaves constitute an associative triple (which is obvious). It is much 
more interesting to note that any two octaves u, v generate an octave plane, the set of 
octaves IXU + Pv where IX and p are arbitrary real numbers; in this plane we also have 
the associativity condition for any three octaves 

Thus, for example, for any two octaves u and v we always have 

(uv)v = u(vv) and (vv)u = v(vu) 

(it is easy to see that (5. 10a) and (5.10) are equivalent). 

(5. 10a) 

Systems of hypercomplex numbers satisfying (5.1 0) (or equivalently (5. 10a)) are 
called "alternative" number systems. Thus alternativity is a kind of generalization of 
associativity. The Frobenius theorem can be extended to the following statement: any 
alternative system of hypercomplex numbers with division is either the (associative 
and commutative) system of real numbers or of ordinary complex numbers, or 
the (associative but not commutative) system of quaternions, or, finally, the (non
commutative and nonassociative, but alternative) system of octaves. 223 (It is clear that 
the associativity requirement is stronger than that of alternativity.)224 The proof of 
this generalized Frobenius theorem resembles that of the theorem about associative 
systems of hypercomplex numbers with division. For this reason the theorem about 
alternative systems is often referred to as Frobenius's theorem, although historically 
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this is not quite appropriate. The first proof of the theorem on alternative systems with 
division is apparently due to the American algebraist Abraham Albert ( 1905- 1972). 
Thus the list of all the alternative hypercomplex systems with division consists of four 
remarkable numerical systems with 1 ( = 2°), 2 = (21 ), 4( = 22) and 8 ( = 23) complex 
units. 

It should be noted that N. Bourbaki in his Elements of the History of Mathematics 
(cf. Note 1 1 7) does not rate the alternative system of octaves very highly, indicating 
that the negation of associativity used by Graves and Cayley, the creators of the system 
of Cayley numbers, did not open up any interesting new directions. But Bourbaki's 
view seems refuted by an "octave boom" now occurring both in mathematics, where 
octaves undoubtedly provide the key-which unfortunately we do not yet know how 
to fully use!-to the puzzle of the "singular semisimple Lie groups" (see pages 105- 106), 
and in physics, where many researchers pounced on octaves, with varying success, in 
trying to decipher the remarkable properties of the elementary particles that build the 
Universe. 225 

One other elegant trait which singles out, among all possible systems of hyper
complex numbers, the four listed above-the real numbers x0, ordinary complex 
numbers x0 + x1 e1 , quaternions x0 + x1 e1 + x2e2 + x3e3 and octaves x0 + x1 e1 + 
x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7-was pointed out by the outstanding 
German analyst AdolfHurwitz ( 1859-1919), a friend of the David Hilbert so frequently 
mentioned in this book. This property is the following: for these numbers, and only 
for them, each number u has a "norm" (the square of the absolute value) lu l2 or !l u ll 
that is a quadratic function in the "coefficients" X; of the number u satisfying i uv i  = 
lu i · l v i  and ! lu ll � 0, where !l u ll = 0 only ifu = 0.226 Actually, if we did not require that 
the norm be positive, and that it vanish only for vanishing numbers, then these 
conditions would be satisfied by one system of real numbers; three systems of complex 
numbers (ordinary complex numbers, double numbers, dual numbers) with the respec
tive norms x5 + xi; x5 - xi and x5; five systems of quaternions with the respective 
norms 

x5 + xi +  x� + x�; x6 + xi - x� - x�, x5 + xi, 

and seven systems of octaves with the respective norms 

X2. O •  

x5 + xi + X� + X� + X� + x; + X� + X�, x6 + xi + X� + X� - X� - x; - X� - X�, 

x5 + xi + x� + x�, x5 + xi - x� - x�, x5 + xi, x5 - xi, x5. 

All these 1 + 3 + 5 + 7 = 16 systems of (hyper)complex numbers are written out on 
pages 24-25 and 221 -223 of the book referred to in Note 203: I.M. Yaglom, Complex 
Numbers in Geometry.227 



CHAPTER 6 

·Sophus Lie and Continuous Groups 

After this unavoidably long digression on to the progress of geometry in the 
nineteenth-century (see Chapters 3-5), we can return to our protagonists, 
Sophus Marius Lie and Felix Christian Klein, whom we left after their return 
from a period of study in Paris with Camille Jordan, whose main research 
interests at the time centered around the theory of groups. Jordan was firmly 
convinced that the theory of groups was destined to play an outstanding role 
in the future development of mathematics and he had imparted this conviction 
to Lie and Klein. To be sure, even Jordan underestimated the impact that 
group theory would have-though in the late 1860s and early 1 870s this was 
hardly forseeable. 228 Credit for introducing group-theoretic concepts into 
literally all branches of mathematics is mainly due to Lie and Klein. 

Jordan believed that in geometry the main role of groups would be played 
by geometric transformation groups,229 such as the group of isometries (or the 
group of similitudes) of the Euclidean plane, the group of affine transfor
mations (without a metric) of the affine plane or the group of projective 
transformations of the projective plane, as well as groups such as the group 
( 1.5) of symmetries of the square, consisting of only eight elements (see Chapter 
1). Jordan drew a clear distinction between discrete groups, such as the group 
of isometries of the square whose elements are "separate", and continuous 
groups, such as the group � of (direct) isometries of the Euclidean plane 

X' =  X COS IX + y sin oc + p, 

y' = - X COS IX + y COS IX + q, 
(6. 1) 

and the more general group � of affine transformations230 of the (affine) plane 
xOy: 

x' = ax + by + p, 

y' = ex + dy + q, 

L\ = I : ! I = ad - be # 0. 

(6.2) 
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Thus the group (6. 1) may be described as the "symmetry group" of the 
Euclidean plane (the group of transformations of this plane which do not 
change any "of its properties). In the next chapter we shall discuss in more 
detail the relationship between groups of geometric transformations and the 
notion of symmetry. Here we shall merely indicate that since the group (6.2) 
of affine transformations is richer in elements than the group ( 6. 1)  of isometries 
(indeed, each element of the latter also belongs to the former, but the converse 
is obviously false), it would seem that we can claim that the affine plane 
is "more symmetric" than the Euclidean plane, just as the square, with a 
(numerically) larger group of symmetries, is "more symmetric" than the 
equilateral trapezoid (see Figs. 2(a), (b)). The resulting connections between 
Euclidean geometry and affine geometry will also be discussed in more detail 
in Chapter 7. 

Discrete groups such as the group (1.5) of symmetries of a square are now 
known as crystallographic groups, because the symmetry groups of crystals 
are of that type. The importance of such groups in the study of crystals was 
fully accepted in the second half of the nineteenth century.23 1 The adjective 
"continuous" in the name of groups such as (6. 1 )  and (6.2) underscores that 
the transformations belonging to the group can be changed continuously by 
slight alteration of the parameters determining a particular element of the 
group. Thus in the case of the group of isometries 3, where every isometry 
b e  3 is determined by the angle IX of the rotation v and the vector t = (p, q) 
that determines the translation -r (see Fig. 21 ,  where A* = v(A) and A' = -r(A *), 
so that A' = -rv(A) = b(A)), a slight alteration of the parameters IX, p and q (the 
coefficients of cos ex, sin ex, p and q in formula (1)) will change the transformation 
b "slightly", i.e., if we replace them by slightly different magnitudes ex1 , p1 , q1 , 
we shall obtain the transformation b1 = b(ex1 , p1 , qd, which is close to the 

y 

X 

FIGURE 2 1  
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transformation b = b(rx, p, q) (see the same Fig. 21 ,  where F' = b(F) and F1 = 
b1 (F)). 

Lie's and Klein's research was to a certain extent inspired by their deep 
interest in the theory of groups and in various aspects of the notion of 
symmetry. However, after the initial period of joint studies their areas of 
scientific work diverged somewhat. Lie devoted his entire life to the theory of 
continuous groups (such groups are now usually known as Lie groups232) and 
was the sole creator of this extensive theory, while Klein was more concerned 
with discrete transformation groups. 

Lie's theory rested on his discovery of the intimate 'connection between 
continuous groups and specific algebraic systems now known as Lie algebras. 
The term "algebra" used here is not new. It appeared under another name in 
Chapter 5. 

When discussing general complex and hypercomplex numbers in Chapter 
5, we gave a relatively detailed description of the relevant contributions of the 
English school (the Englishmen A. de Morgan, A. Cayley, and especially W.K. 
Clifford; the Irishmen C. Graves, J.T. Graves, and especially W.R. Hamilton) 
and of the German school (the Stettin mathematician G. Grassmann; the 
Leipzig group of E. Study, G. Sheffers, T. Molin, and especially G. Hankel 
and S.M. Lie; the Berliners K. Weierstrass and G. Frobenius233). But we 
merely mentioned the Americans B. and C.S. Pierce. We shall fill this gap now. 

Benjamin Pierce ( 1809-1890) was an influential scientist at Harvard who 
specialized in astronomy. He compiled detailed tables of the motion of the 
moon and of Neptune, calculated the orbits of numerous comets, and wrote 
certain theoretical studies (such as the theory of the possible structure and 
equilibrium of Saturn's rings); he also concerned himself with philosophy and 
mathematics. His main mathematical achievements came later in his life and 
were to a certain extent inspired by the research interests of his son Charles 
Sanders Peirce (1839-1914). Some of the mathematical researches of the two 
Peirces were carried out jointly. We mentioned C. Peirce before (in Chapter 
5) as the independent discoverer of Frobenius's theorem on systems of hyper
complex numbers with division. Conversations with W.K. Clifford, which 
took place while B. Peirce was in London in 1871, helped maintain his active 
interest in mathematics in the last years of his life. (Later, both participants 
readily and frequently recalled these conversations.) Actually one of the rea
sons for Peirce's visit to London was his desire to report on his algebraic 
results (already obtained at the time) to the London mathematical society, of 
which he was a member. It should be noted that the astronomical works of 
C.S. Peirce (whose range of scientific interests was very wide) were to a great 
extent due to to his father's influence. 

B. Peirce is the author of the posthumously published fundamental work 
"Linear Associative Algebras" (Amer. Journ. of Math., 4, 1 881,  p. 97-221), in 
which the term "algebra" is used in the sense in which the term hypercomplex 
numbers was then used in Europe. That is, Peirce calls a (linear) algebra any 
finite-dimensional vector space with basis e1 , e2, . • •  , en whose elements are of 
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the form 

(6.3) v = Y1 el + Y2e2 + · · · + y,.e,. 
(compare (5.7); here x1 , x2, . . .  , x,.; y1 , y2, • • .  , y,. are real or complex numbers) 
and are multiplied according to the usual rules (i.e., the distributive law holds 
for algebras) subject to the "structural equations" 

(6.4) 

the constants cfi (for which i,j, t = 1, 2, . . .  , n) are called the structure constants 
of the algebra. The associativity requirement eliminates from our present 
considerations such algebras as the algebra of octaves (the Cayley numbers; 
see Chapter 5 above) or the simpler (and, for us, more important) example of 
the anticommutative algebra of three-dimensional vectors, with the operation 
of vector multiplication, due to Hamilton.234 Indeed, the algebra in this last 
example is not associative: if i, j, and k are three perpendicular unit vectors in 
ordinary space that form a right-hand triple of vectors (see Fig. 22), then 
(compare the multiplication table of quaternion units in Chapter 7) we have 

i o i  = i2 = 0, i oj = -j o i  = k, 

j o k  = - k oj = i, k o i  = - i o k  = j, 

where a o b is the vector product of vectors a and b so that, for example, 

(i o i) oj) = O o j  = 0, 

while 

i o (i oj) = i o k  = -j # (i o i) oj. 

B. and C. Peirce were fully aware of the conditional nature of requirements 
such as associativity and commutativity of multiplication in an algebra. 
Multiplication in an algebra is commutative, i.e., u · v = v · u for any two 
elements of the algebra, if and only if any two basis elements commute: 

for all i,j, t; 
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similarly, multiplication is anticommutative, i.e., u • v = -v • u for all u and v, 
if any two basis elements anticommute: 

ei · ei = - ei · ei or cfi = - cji, for all i, j, t. 
Finally, multiplication is associative if and only iff or any three (not necessarily 
distinct) elements i,j and k we have 

n n 
(ei · ei) • ek = ei • (ei · ek) or L cijc:k = L cfrcjk 

t=l  t=l 
for all i, j, k and s. 

If e1  is the multiplicative identity of the algebra (it is frequently denoted by 
the number 1 ; we did not write it down in the representation of the element u 
in (5.7)), then, obviously, 

cl -. {0, if i =F j, 
l i - 1 , if i = j, 

or, as mathematicians write this last condition, 235 ct = b{. It is to the Peirces 
that we owe our understanding of the fact that the system of (square) matrices 
introduced by Cayley can be viewed as a certain (associative!) system of 
hypercomplex numbers (or an algebra) of dimension n2, where n is the order 
of the matrix, since the matrix A = (xii) (where i, j = 1, 2, . . .  , n ;  here xii is 
the number in the ith row and jth column of the table (matrix)), may be 
represented as the sum 

X u  el l  + X 1 2e1 2  + · · · + Xnenn 

of n2 summands corresponding to the n2 units 

jth column ( 0 : 0 ) 
eiJ = · · ·�· · · t · · -�· · · ith row 

of our algebra: matrices one element of which is 1 while the others are zero. 
The structural equations of such an algebra are of the.form 

ifj =F k, 
ifj = k, 

i.e., here c�t5�kl) = 1 whenever j = k, p = i, q = l, and zero and in all other 
cases; such a choice of structural constants yields Cayley's rule of matrix 
multiplication. 236 

B. Peirce introduced a number of notions which even today play important 
roles in the general theory of algebras, such as the notion of a nilpotent element 
n, defined as an element some power r of which is zero,237 

n' = 0, 
and the notion of an idempotent element e, defined as an element whose square 
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coincides with the element itself:237  

(Obviously, if  e is  an idempotent element of an algebra, then the set of all 
elements of the form xe, where x is a real number, can be viewed as a 
representation of the real numbers). B. Peirce used the apparatus which he 
had developed for the classification of(associative complex) algebras of small 
dimension. Weierstrass had earlier developed a general theory of algebras 
(hypercomplex systems); this was the subject of a course of lectures which 
Weierstrass delivered in 1 861 .  But Weierstrass's results were published only 
in 1 884, in the paper "On the Theory of Complex Magnitudes Generated 
by n Principal Units" ("Zur Theorie der aus n Haupteinheiten gebildeten 
komplexen Grossen," Gott. Nachrichten, 1884; this was republished in the 
second volume of Weierstrass's Mathematical Works (Mathematische Werke)). 

Now suppose m: = { u, v, w, . . .  } is an arbitrary associative algebra, in which 
the multiplication, denoted by a dot " · ", is not assumed to be commutative 
or anticommutative. We can use our multiplication " · " to construct two 
new "multiplications" of elements of our algebra, namely the symmetric 
multiplication 

D * V  = u · v  + v · u  (6.5) 

which has the advantage of being commutative (it is clear that u * v = v * u), 
and the skew symmetric multiplication 

u o v  = u · v - v · u  (6.6) 

which has the advantage of being anticommutative (obviously, u o v = - v o u). 
Unfortunately, these new multiplications of the elements of our algebra are 
not, in general, associative. The connections between the structural constants 
cij and cij of the multiplications " *  .. and " 0 .. and the structural constants cij 
of the (original) multiplication " · "  are given by the respective formulas 

• t t t ( ) cii = cii + cii a , (6.7) 

However, we can say that the definitions (5) and (6) do not destroy associativity 
completely: in algebras with the respective operations (5) and (6), we have 
certain identities which can be viewed as weakened forms of associativity.238 
Thus we always have239 

(u2 * v) * u = u2 * (v * u), where u2 = u * u; 

and (also for all elements u, v and w of the algebra W239) 

(u o v) o w  + (v o w) o u  + (w o u) o v  = 0. 

(6.8) 

(6.9) 

The identity (6.8) can be called the Jordan identity, since an algebra with 
commutative multiplication " * "  satisfying condition (6.8) was first considered 
by the well-known German physicist Pascual Jordan (cf. Note 224 above). 
The identity (6.9) is known as the Jacobi identity after one of the leading 
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German mathematicians of the nineteenth century, Carl Gustav Jacob Jacobi 
(1804-185 1).240 

Algebras (hypercomplex systems) with commutative multiplication satisfy
ing the Jordan condition (6.8) are known as Jordan algebras. Algebras with 
anticommutative multiplication satisfying the Jacobi condition (6.9) are called 
Lie algebras. We have already mentioned the interest and attention which 
Jordan algebras attract today. But at present they are not nearly as important 
as Lie algebras and Lie groups, which constitute two of the central notions of 
mathematical science. 241 A concept whose importance for science in general 
is comparable to that of a Lie algebra is not that of a Jordan algebra but that 
of a Euclidean space. 

In Chapter 5 we saw that Hamilton and Grassmann, the founders of the 
theory of vectors, introduced two types of products of vectors in a vector space 
m = {a, b, c, . . . ; O}, which we shall assume, for the sake of simplicity, to be 
3-dimensional. The scalar product (according to Hamilton) or inner product 
(in Grassmann's terminology) assigns to every two vectors a and b the scalar 
(i.e., number) a ·  b or (a, b), and the vector (outer) product, assigns to these 
two vectors the vector a x b or [a, b]. These products have the following 
properties, which we shall write next to each other for easy comparison: 

scalar (inner) product vector (outer) product242 

(a, b) = (b, a) (commutativity) [a, b] = - [b, a] (anticommutativity) 

(A.a, b) = A.( a, b) 
(associativity with respect to 

[A. b] = A.[a b] multiplication of vectors by numbers) 
a, ' 

(a1 + a2, b) = (a 1 , b) + (a2, b) (distributivity) [a1 + a2, b] = [a1 , b] + [a2, b] 

[ [a, b], c] + [ [b, c], a] + [ [c, a], b] = 0  

(Jacobi identity). 

The two affine operations of vector algebra defined on a vector space are 
addition of vectors and multiplication of vectors by numbers. A vector space 
with an additional operation of scalar multiplication with the three properties 
listed above is called a Euclidean space. A vector space with a vector product 
possessing the four properties listed above is called a Lie algebra. We note 
that there is just one Euclidean space of given dimension with a positive 
definite scalar product, (i.e., such that a ·  a = a2 � 0 and a2 = 0 only if a = 0), 
and that even the problem of listing Euclidean spaces of given dimension, 
without supplementary requirements as to nondegeneracy243 or positive 
definiteness of the scalar product is very simple.244 On the other hand, the 
problem of classifying Lie algebras is extremely difficult, and at present there 
are no approaches that promise its complete solution. 245 

If we compare the properties of scalar and vector products, then it seems that the 
Jacobi identity is superfluous; it is the most complicated of the relations above. It is 
not difficult, however, to clarify its origin. We require that the scalar and vector 
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products be associative with respect to the multiplication of a vector by a number: 
(.A.a) o b = .A.( a o b), where the little circle "o"  denotes either of the two products. 
However, there is no true associativity here. Indeed, for scalar multiplication, where 
the product a o b is an object of a different nature than the factors a and b (it is a 
number, not a vector), ordinary associativity is meaningless. In the case of vector 
multiplication, it is easy to write down the associativity condition, but there is no basis 
for hoping that it holds. Indeed, we are used to the fact that the commutative operation 
a o b "must" also be associative, i.e., that here we usually have (a o b) o c = (b o c) o a = 
(c o a) o b for any a, b, c; but if we replace commutativity a o b = b o a  by anticommuta
tivity a o b + b o a  = 0, as we have done in the case of vector multiplication (in the last 
relation 0 is the zero element of our arithmetic, i.e., the zero vector), then it is natural 
to replace associativity by "antiassociativity" or the Jacobi identity, (a o b) o c + 
(b oc) o a  + (c o a) o b  = 0. 

One of the crucial points of Lie's studies was the possibility of assigning to 
each continuous group a much simpler algebraic object-its Lie algebra. The 
relationship between these two objects can be clarified using the example of 
the group m of (direct) rotations of space with a fixed center of rotation 0. 
All such isometries are rotations about axes passing through 0 and are 
characterized by a straight line l (the axis of rotation) and an angle qJ (the angle 
of rotation); this allows us to split the group m into a family of one-parameter 
subgroups, each of which consists of rotations about a fixed axis 1; it is clear 
that these rotations are characterized by a single parameter, namely the angle 
of rotation qJ. Each element of the group m close to the identity transformation 
is characterized by an axis l (which indicates to which of the above-mentioned 
one-parameter subgroups it belongs) and by a (small!) angle of rotation tJ.qJ. 
If we agree to assume that the transformations under consideration are carried 
out during a fixed (but very small) interval of time tJ.t, then we can replace the 
(small) angle !J.qJ by the "angular velocity" w = tJ.qJjtJ.t of the corresponding 
rotation. If, as is usually done in mechanics, we lay off the angular velocity 
vector I ( i l l  = w) along the axis 1 so that the rotation by the angle !J.qJ observed 
from the tip of the vector I takes place in the positive direction, then we can 
assign to the group m the set of "angular velocity vectors" with origin 0 246 
(a three-dimensional vector space). 

Further, an important role in Lie's theory is played by the specific charac
teristics of noncommutativity of a continuous group. Consider two rotations 
b and b1 , both very close to the identity transformation, or "infinitesimal" 
rotations, and characterized by the angular velocity vectors I and 11 . The 
difference between the transformations bb1 and b1 b is characterized by the 
transformation K = (bb1 )-1 (b1 b) = b11 b-1 b1 b, called the commutator of the 
transformations b and b1 and denoted by the symbol [bb1 ] (cf. Note 38). To 
the transformation K there corresponds its own angular velocity vector k 
which Lie denotes by [111 ] .  Thus to every two vectors I and 11 of our three
dimensional vector space we have assigned a third vector [111 ] = k. A simple 
computation shows that in the case under consideration the vector [111 ] is 
none other than the vector product of the vectors I and It >  i.e., 
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k .l l, 

and that the vectors � 1 1 ,  and k constitute a "positive triple": seen from the 
tip of k the rotation (by the smallest possible angle) from the vector I to the 
vector 11 takes place in the positive direction. Thus Lie assigns to the group 
m the three-dimensional vector space v in which, together with the principal 
operations in any vector space (addition of vectors and multiplication of a 
vector by a number), there is an operation of vector multiplication that assigns 
to each two vectors a and b a new vector [a, b]. This operation satisfies all the 
requirements listed in the right-hand column in the table that compares the 
properties of scalar and vector products (see page 101). 

Lie's main result is the proof that it is always possible to assign to a 
continuous group (Lie group) a corresponding Lie algebra. Lie also worked out 
the converse construction that allows one to assign to each Lie algebra (a 
vector space V with a vector multiplication operation: Va, b e V3!c e V!c = 
[a, b], satisfying all the requirements listed above) a specific Lie group247 
corresponding to this algebra (which Lie considered only locally, i.e., simply 
as a domain (of the continuous group) consisting of elements close to the 
identity (unit) transformation e248). Thus in the case of the commutative group 
:.!: of translations of space, we arrive at the trivial Lie algebra: the three
dimensional vector space V T' where [a, b] = 0 for ail a, bE  V T· In the case of 
the group m of (direct) rotations of space, the "Lie product" (or vector product) 
in three-dimensional space V4 with basis {e1 , e2 , e3 }  corresponding to three 
(infinitesimal) rotations about three perpendicular axes Ox, Oy, Oz (see Fig. 
23(a)) is given by the conditions 

according to which for any two vectors a = (X, Y, Z) ( = X e1  + Ye2 + Z e3) 
and b = (X1 , Y1 , Zd of the space (Lie algebra) V4 we have (compare with 
formulas (5.4b) and (5.5)): 

(I Y z J j z x J jx Y J ) ( J Y z J J z x J Jx Y J ) [a, b] = , , = e1 + e2 + e3 , 
� �  � �  � �  � �  � �  � �  

(6. 10a) 

i.e., [a, b] is the ordinary vector product! For the group � of plane (direct) 
isometries (1) with basis {e1 , e2 , e3 }  the corresponding Lie algebra Ve is 
generated by the (infinitesimal) translations in the directions Ox and Oy and 
the rotations about the origin 0 (see Fig. 23(b)); in this case it is easy to check 
that the Lie multiplication is given by the relation [e1 , e2] = 0 (this relation 
is a trivial consequence of the commutativity of translations in the directions 
of Ox and Oy), [e2 , e3] = e 1 ,  [e1 , e3] = -e2,  so that for arbitrary vectors 
a = (X, Y, Z) ( = Xe1 + Ye2 + Ze3) and b = (X1 , Y1 , Zd we have 

[a, b] = ( J �1 �J � �1 �Jo ) (= I �1 �1 � e1 + � �1 �1 �  e2) . (6. 10b) 
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The obvious similarity between the formulas (6.10a) and (6.10b) is sugges
tive. Clearly, if we consider a sphere with center at the fixed point 0 of the 
rotations under consideration (in three-dimensional Euclidean space where 
the transformation group m acts), then we can interpret the group m as the 
group of spherical isometries or the group of isometries of Riemann's elliptic 
plane (see Chapter 4). On the other hand, if we denote by e1 and e2 the 
vectors corresponding to the infinitesimal translations of the hyperbolic 
(Lobachevskian) plane in the mutually perpendicular directions of the axes 
Ox and Oy (these translations no longer commute) and by e3 the vector 
corresponding to the small rotation of the hyperbolic plane about the origin 
of coordinates 0, then we come to the following system of relations, which 
govern the commutativity laws of the non-Euclidean isometries under 
consideration: 

Thus in the Lie algebra Vn corresponding to the group � of hyperbolic iso
metries, the "vector product" of two vectors a = (X, Y, Z)( = X e1 + Ye2 + Ze3) 
and b = (X1 , Y1 , Zd is defined as follows 

[a, b] 

(6.10c) 

The marked similarity among formulas (lOa-c) determines the close relation
ship between the three types of plane geometry of constant curvature (in 
Riemann's terminology; see Chapter 4), i.e., between Euclidean, elliptic, and 
hyperbolic geometries. 

Lie developed the theory of Lie groups and algebras with rare completeness 
and thoroughness. He devoted to it a series of books and many articles. 
Sophus Lie exemplifies that rare figure in the history of science, a scientist 
with only one love. All his colossal research and its products were devoted 
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to the development of a single topic, the theory of continuous groups. Lie 
analyzed in detail the relationship between Lie groups and Lie algebras, a 
connection which enabled him to carry over to the theory of Lie algebras all 
the specifically group-theoretic notions. Thus to a subgroup g of a Lie group 
(f) there corresponds a subalgebra v of the algebra V, i.e., a set of vectors in V 
closed with respect to the operations of addition of vectors and multiplication 
of vectors by numbers (i.e., a subspace of the vector space), as well as with 
respect to vector multiplication, i.e. such that a, b e v = [a, b] e v. If the sub
group g is a normal subgroup, i.e., g-1 gg = g for all g e m, then the subalgebra 
v is an ideal, i.e., for a e v  and any beV we have [a, b] e v. If the group (f) is 
simple, i.e., it has no nontrivial normal subgroups, normal subgroups other 
than the group (f) itself and the identity subgroup n = {s}, where e is the 
identity element of the group m, then the algebra V is also simple, i.e., has 
no nontrivial ideals, ideals other than the algebra V itself and the zero ideal 
o = {0}, etc. Similarly, Lie defines solvable Lie algebras corresponding to so
called solvable Lie groups,249 analogous to the discrete solvable substitution 
groups of Galois (see Note 49), semisimple Lie algebras and groups,249 etc. 

In addition to posing the problem of classifying all simple Lie algebras Lie also 
posed the problem of classifying all simple Lie groups; indeed the two classification 
problems are equivalent250).25 1 In Lie's time it was generally acknowledged that this 
difficult problem was solved by his pupil and follower Wilhelm Killing (1847- 1923). 252 
Indeed, Killing's list of simple Lie groups was never in doubt. But modern requirements 
of mathematical rigor-requirements sharpened early fn the 20th century in long 
discussions by such outstanding thinkers as David Hilbert and his pupil Hermann 
Weyl (whom we shall often mention again), and realized in the work of the Nicolas 
Bourbaki group-differ notably from the standards of rigor applied to proofs in the 
time of Lie and Klein. (We shall return to this point in connection with Lie and Klein 
themselves.) This being so, modern mathematicians tend to feel that the complicated 
constructions carried out by Killing in 1888-1890253 contain serious and unfillable 
gaps and can only be viewed as heuristic justifications of the completeness of the list 
of simple Lie groups given by Killing or as approaches to the proof of the correspond
ing theorem. The complete solution ofthe classification problem for simple Lie groups 
is now attributed to E. Cartan,254 who solved this problem in his famous dissertation 
(These). Other, perhaps simpler and more meaningful proofs of the classification 
theorem for simple as well as semisimple (see Note 251) Lie groups255 have been 
given by such outstanding twentieth-century mathematicians as the Dutchman Bartel 
Leendert van der Waerden (b. 1903), who lived in the Netherlands, then in Germany, 
then again in the Netherlands256 and E.B. Dynkin (Moscow, then USA; born in 
1924).257 

The main result of the theory of simple Lie groups, known to Killing and therefore 
to his contemporary Lie, is not understood completely even today (see the discussion 
below of the "singular" Lie groups). It can be stated as follows. The complete list 
of simple groups turns out to be rather short. It consists of four large series of 
groups denoted (following Killing) by the symbols A., B., c. (n = 1, 2, 3, . . .  ) and D. 
(n = 3, 4, 5, 0 0 0 ; the groups A I '  Bl ' and cl coincide, B2 coincides with c2 and A3 with 
D3), plus five exceptional or singular groups (i.e., groups which do not fit into the series). 
The dimensions of the Lie algebras corresponding to the singular simple Lie groups 
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are 14, 52, 78, 133, and 248 (i.e., the transformations of these groups depend on 14, 52, 
78, 133, and 248 parameters respectively). These five singular groups also have standard 
notations (indicating specific relationships between them) but the present historical 
review is hardly the place for analyzing them in detail. 

The principal series of simple Lie groups can be uniformly described as follows. The 
groups of the series B and D are simply the groups of direct isometries (i.e., isometries 
with a determinant A equal to + 1 rather than - 1) Euclidean spaces (i.e., vector spaces 
with the standard metric of Ha ll = a2 = xi +  x� + . . .  + x�) of odd dimension N = 
2n + 1 and of even dimension N = 2n, respectively. In order to determine the groups 
of the series A, we must pass to the complex almost-Euclidean space, where the 
expression "almost Euclidean" has the following sufficiently clear meaning. A complex 
vector space differs from a real vector space of the kind described in Chapter 5 only 
by the fact that in it we have the possibility of multiplying vectors by complex numbers; 
in the case of an N -dimensional space, this leads us to identify vectors (or points258) 
of the space with finite sequences (x1 , x2 , . . .  , xN) of N complex numbers-their coordi
nates. The introduction of the usual scalar product into the space yields the formula 

(A) 

for the "norm" or the "squared length" of the vector a(x1 , x2 , . . .  , xN) corresponding 
to the scalar product 

(a, b) = X1Y1 + X2Y2 + ' ' . + XNYN (A') 

of the vectors a and b = b(y1 , y2 , . . .  , yN). However, since the numbers x 1 ,  x2 , . . .  , xN 
are not necessarily real, the expression on the right-hand side of (A) may turn out to 
be nonpositive (or even imaginary), which would lead to unnecessary complications. 
Therefore a more usual version of a complex vector space is the one in which the scalar 
product (a, b) of the vectors a and b is given by the formula 

(B') 

In such a space, we again have the (positive!) norm l l a l l  and length la l  of a vector 
a =  a(x1 , x2 , . . .  , xN): 

l la l l = Ja l2 = (a, a) = xl .Xl + x2x2 + . . .  + xNxN ( = J xd2 + lx2 12 + . . . + lxNI2). (B) 

However, the scalar product (B') is no longer symmetric, for (b, a) = (a,D). (In all cases 
here the bar denotes passage to the conjugate complex number.) The complex vector 
spaces with the "metric" (B') (or (B)) play a much more important role in mathematics 
than the spaces with the metric (A') (or (A)); a space with the scalar product (A) is 
usually called complex Euclidean, while the "almost Euclidean" space with the scalar 
product (B') is known as Hermitian (after the great French analyst Charles Hermite 
(1822- 1901)). Now the simple Lie groups of the series A are just the groups of 
isometries (or, to use a more scientific term, the groups of automorphisms, i.e., oflinear 
transformations preserving the norm (B) of a vector and the scalar product (B')) of the 
complex Hermitian spaces. 

It is now easy to characterize the simple groups of the series C. Killing and 
Cartan described them as the groups of isometries (automorphisms) of the real even
dimensional spaces with skew symmetric (and nondegenerate, in the sense of Note 243) 
scalar product (i.e., such that (b, a) = -(a, b)); such a space is called symplectic and 
plays a notable role in modern mathematics and especially in mechanics (see, for 
example, the book by V.I. Arnold quoted in Note 208). However, today these simple 
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groups are usually described in the same way as the groups of the series A (see, for 
example, the book by C. Chevalley, Theory of Lie Groups, quoted in Note 241), except 
that now one considers not complex but quaternion vector spaces (whose vectors may 
be described as finite sequences (x1 ,  x2 , . . .  , xN) of quaternions) while formulas (B') and 
(B) for the scalar product and the norm (as well as the description of the transformation 
groups as the groups of isometries of the Hermitian quaternion spaces) remain valid. 

Thus the simple Lie groups of the "principal" classes A, B, C, and D can be uniformly 
described as the groups of isometries of real (Euclidean), complex, and quaternion 
(Hermitian) spaces. But where do the five singular simple Lie groups come from? 
According to the Dutchman Hans Freudenthal (born in 1905) and the Belgian Jacques 
Tits (born in 1932) these groups are related to the isometries of octave planes. Here the 
absence of associativity in the algebra of octaves does not allow us to construct a space 
of arbitrary dimension, so that infinite series of corresponding groups cannot appear. 
However, the existence both of a "Euclidean" (or "Hermitian") octave plane, as well 
as a non-Euclidean plane (elliptic or hyperbolic), determines certain simple singular 
groups.259 The details of the geometric construction of singular simple Lie groups 
still remain somewhat mysterious today. The same is true of the question of their 
connection with octaves and octave geometries. We note, however, that the interest of 
contemporary physicists in singular simple Lie groups increases their interest (already 
mentioned in Chapter 5) in octaves and octave geometries. All these factors have 
created the "octave boom" so characteristic of the present time-a boom not antici
pated by as penetrating an analyst of mathematics as Nicolas Bourbaki. 260 

Sophus Lie not only considered continuous groups per se, but went on to 
assign such groups to differential equations. In his variant of Galois theory 
for differential equations (see Chapter 1), the role of the Galois group (or 
symmetry group) of a differential equation is played not by a finite but by a 
continuous group, whose properties enable one to ascertain the existence of 
solutions of the equation in quadratures (i.e., to write down the solution in 
terms of elementary functions and integrals). It turned out that those and only 
those equations which correspond to solvable continuous groups have solutions 
in quadratures (recall the main results of Galois described in Chapter 1). The 
beautiful Lie theory of differential equations was very highly valued by its 
creator. For a time it was extremely popular and its exposition was the high 
point of many large university courses of mathematical analysis. 261 Our 
generation of mathematicians, however, was to live through several periods 
in the development of the mathematical sciences, characterized, in particular, 
by completely different estimates of the significance of Lie's theory of differen
tial equations. Already in the 1930s the main interest of mathematicians 
moved far away from Lie's constructions, which seemed old-fashioned to the 
younger researchers and outside the truly interesting problems of the day. 
Key notions such as those of a Lie algebra and a Lie group retained their 
importance, but the study of Lie groups of differential equations no longer 
elicited much enthusiasm. In the 1940s the first computers appeared and the 
problem of solving differential equations had to be re-evaluated. 262 In the 
1960s the search for such solutions was systematically transferred to com
puters and, in this connection, the notion of solvability of a differential 
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equation in quadratures lost its previous importance and along with it the 
question of finding out whether a differential equation is so solvable or not; 
solvability in quadratures and most of Lie's theory were almost completely 
forgotten. But in the 1970s physicists and after them, of course, mathemati
cians, suddenly remembered that "the Lie group of a differential equation" 
not only characterizes the solvability or unsolvability of the given equation 
in quadratures, but also describes the symmetries of this equation (in this 
connection recall what was mentioned in Chapter 1 about the Galois theory 
of algebraic equations) and therefore the degree of symmetry (or; what 
amounts to the same thing, the "character of invariance"; see Chapter 7) of 
the solutions of this equation. It therefore also describes the symmetries of the 
real objects described (modelled) by the differential equation. Finding the 
symmetries (which are intrinsic to the given object) turned out to be the 
Ariadne thread which not only enables one to find one's way in the hopelessly 
complex labyrinth of elementary particles but, more generally, in the labyrinth 
of natural phenomena dealt with by physicists. And so today we observe a 
new surge of interest in Lie theory, expressed in the huge number of publica
tions on it and the rather surprising number of relevant dissertations. 263 

One other topic in the area of continuous groups which drew Lie's attention 
was the theory of so-called contact transformations. By a contact transforma
tion, Lie meant a transformation " (say of the plane) which sends each point 
(or straight line) into, in general, a curve; a curve y is sent by the transformation 
" into a new curve y' = K(y), but " preserves the tangency of curves: i.e., if y1 
is a curve which is tangent to y and y� = K(y1 ), then the curves y' and y� must 
also be tangent (see Fig. 24). Contact transformations of the plane can be 
described as transformations of the set of tangent elements (points with 
straight lines passing through them): all curves tangent to each other at a point 
A and having the same (tangent) direction a determine a tangent element 
A = (A, a). The transformation " sends these curves into curves (also tangent 
to each other) which determine the tangent element A' = (A', a') = K(A) (see 
the same Fig. 24). However, in order that a transformation n of the set of 
contact elements be a tangent transformation, it must preserve the so-called 
"contact condition" of tangent elements (for otherwise n could send the set of 

a I 

'Y! 

FIGURE 24 
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FIGURE 25 

tangent elements A to a given curve into a set of tangent elements (A' = n(A)) 
which no longer determine any curve; see Fig. 25). 

An important particular case of Lie's contact transformations are the 
circular contact transformations (also discovered by him), which send every 
circle (including circles of zero radius, i.e. points, and circles of infinite radius, 
i.e. straight lines) again into a circle (but both points and straight lines 
transform, in general, into circles). These transformations can be described 
as follows. Above (see Chapter 3) we have already mentioned "pointwise 
inversions" (or "Mobius inversions") which send a point into a point and a 
circle (including a "circle of infinite radius," i.e., a straight line) into a circle 
(see Chapter 3). Considerations related to the projective duality principle 
(see Chapter 3) led the French mathematician Edmond Nicolas Laguerre 
( 1834-1886),264 to the concept of"dual" or "linear" circular transformations, 
now called Laguerre transformations, which send every (directed) line a of the 
plane into a line but send points (as well as arbitrary circles) into circles. These 
transformations are generated by the so-called "linear inversions" (or Laguerre 
inversions) which may be described as follows: an inversion with axis o and 
degree k sends every line a into the line a' intersecting o at the same point as 
a and such that tan!( L (a, o) · tan!( L(a', o)) = k. This definition must also 
be supplemented by a description of the transformation law for those lines 
which do not intersect o. If we carry out successively a series of Mobius circular 
transformations and Laguerre transformations we obtain a circular Lie trans
formation, which no longer preserves either the notion of point or the notion 
of straight line.265 Lie's theory of contact transformations turned out to be 
intimately related to mechanics; it retains its importance today.266 

In a certain sense, we can say that the entire scientific activity of Sophus 
Lie and Felix Klein was inspired by the first (and rather special) joint work 
which they carried out in Berlin before their trip to Paris. This work involved 
the so-called W-curves, whose name they coined. 267 

It is well known that the only homogeneous curves of plane Euclidean 
geometry, i.e., curves no point of which differs from any other, are either 
straight lines or circles. The homogeneity of these curves is related to the 
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(a) ( b )  (c) 
FIGURE 26 

existence of the "self-isometry group" of a curve-the set of isometries which 
send the curve into itself and each of its points into another of its points. In 
the case of a straight line a this self-isometry group (the group of "motions 
along itself" or "symmetries") is the group of translations in the direction of 
a; for a circle s, it is the group of rotations about the center of s (see Figs. 26(a) 
and (b)). However, there exists one more plane curve which has almost the 
same complete degree of homogeneity as the straight line and the circle. This 
is the logarithmic. spiral L, whose equation in polar coordinates r, <p is r = a"' 
(Fig. 26(c)). The point here is that L has "similarity motions" along itself, i.e., 
similarity transformations sending L into itself and every point of L into 
another one of its points. These transformations can be written in polar 
coordinates as r' = acr and <p' = <p + c; they send the point M(r, <p) into the 
point M'(r', <p') and the spiral L into itself. 267 Lie and Klein posed the problem 
of finding each curve W of the plane that has a "complete group of projective 
motions along itself" (projective transformations sending W into itself; the 
adjective "complete" means that there is always a transformation of the group 
which sends a given point of W into any other one of its points). Klein and 
Lie called such curves W-curves. 268 

The work on W-curves turned out to be important for Lie's further research 
because in it he had been studying one-parameter subgroups of a given 
(continuous) group (the group of projective transformations), which were to 
play such an important role in the general construction of Lie algebras. It was 
also important that the authors used the notion of infinitesimal transforma
tion in their search for W-curves. Their paper exhibits key features of Klein's 
later work, namely the group-theoretic approach (based, in this case, on the 
study of a group of projective transformations) to an object of projective 
geometry (such as W-curves) and the definition of W-curves themselves in 
terms of the group of projective symmetries of the curves. Here the topic itself 
was the connection between a geometry (in this case projective geometry) and 
its group of symmetries. This turned out to be so important for Klein, as well 
as for the progress of geometry in the nineteenth century-even for those 
phases of the development of geometry which were anterior to Klein and 
which we discussed in Chapters 3-5-that the entire topic warrants a special 
chapter. 



CHAPTER 7 

Felix Klein and His Erlangen 
Program 

The nineteenth century was a period of intensive development of geomet
ric research, and whereas at the beginning of the century the uniqueness of 
Euclidean geometry was universally taken for granted, so that "geometry" was 
identified with the notion of Euclidean geometry, by the time of Klein and Lie 
the situation had changed radically. The 1820s and the 1830s brought the first 
publications of Lobachevsky and Bolyai on hyperbolic geometry. At the end 
of the 1 860s, Riemann's famous lecture, delivered in 1 854, was finally pub
lished. It postulated, among other things, the equal validity of the three 
geometries of constant curvature: Euclidean, hyperbolic, and elliptic geome
tries. Beginning with Poncelet's treatise, the study of projective geometry 
became an autonomous topic, whose complete independence from Euclidean 
geometry was established by von Staudt. We can say that Mobius discovered 
inversive or circle geometry (or Mobius geometry; see Note 265). Finally in 
the works of Cayley, and especially Klein, the idea of general projective metrics 
was stated, covering classical Euclidean geometry as well as the non-Euclidean 
geometries of Lobachevsky (hyperbolic) and Riemann (elliptic). 

This turbulent expansion of geometry, and the growing mathematical terri
tory under its control, made the question of finding a general description of 
all the geometric systems269 considered by mathematicians the central ques
tion of the day. And no one understood the importance of this problem better 
than Klein who had actively participated in enlarging the list. The influence 
of Jordan, who taught Klein the importance of the notion of group and the 
concept of symmetry, played an important role in the attempt to find a 
group-theoretic approach to the notion of geometry itself. This is how Klein 
argued. 

The content of any science can be specified by naming the objects, and the 
properties of those objects, that the science studies. The properties studied by 
a specific science are always only a few of the many properties possessed by 
real objects. For example, the physicist is interested in the so-called physical 
properties of bodies, such as their mass, the forces applied to these bodies, and 
the velocities and accelerations of their motion, and he is not concerned with 
the inner structure of the body and the elements of which the body is com-



1 12 Felix Klein and Sophus Lie 

posed; the latter relate rather to the interests of the chemist. Likewise, the 
natural numbers, say, first arose as characteristics of arbitrary but finite 
systems of objects. However, mathematics is only interested in one property 
of such systems-the number of objects within the system. Arithmetic arose 
out of the preoccupation with this characteristic of systems of objects and 
the refusal to consider all the data concerning such systems that are not related 
to this characteristic. 

This last example is convenient in the sense that it allows us to understand 
the character of the conditions which single out the family of properties of 
interest to the given scientific discipline. In order to understand what proper
ties we are interested in, it suffices to indicate what properties do not interest 
us, what properties we ignore. In the case of natural numbers, such properties 
are all those which do not relate to the number of objects in the system under 
consideration and are not related to the character of this number. Therefore, 
for example, the possibility of splitting the given system into two parts with 
the same number of elements does interest the mathematician, while the 
possibility of splitting it into two parts of equal weight is of no concern to 
him. In other words, from our viewpoint, all sets containing the same number 
of objects, say the set of eleven soccer players on a team, of eleven cars in a 
parking lot, of eleven geese in the backyard, or of eleven grades in a student's 
grade book must be considered identical (indistinguishable or equal). All the 
properties which interest us in any of these systems are also possessed by any 
of the others. These systems are identical or equal only from the point of view 
considered here; in all other respects, they differ essentially from each other 
(say, a soccer fan will distinguish two teams of eleven soccer players and will 
be amused if he is asked to replace the eleven soccer players by an equal 
number of geese). But all this does not concern the mathematician, who studies 
each system of objects only from the purely arithmetical point of view. 

Now it is easy for us to clarify the content of geometry. In order to 
characterize Euclidean or school geometry, one must indicate the object of 
study and the family of properties under consideration. The objects of concern 
here are all possible plane figures and solids; but instead of the terms "plane" 
or "space figure," we can also speak of point sets in the plane and in space.2 70 
The properties of figures considered in geometry are entirely specified by an 
indication of what figures we consider identical (having the same properties), 
or indistinguishable, or equal. It is well known that in school geometry two 
figures are considered equal (or congruent) if there exists an isometry (a 
transformation of the plane or of space preserving the distance between points) 
sending one figure into the other. Thus we can say that geometry studies those 
and only those properties of the figure F which are shared by F and all the 
figures which are equal to F or (this last formulation will be especially useful 
for us) that geometry studies the properties of figures which are preserved by 
isometries. 

Klein once noted that in most of the problems and theorems of elementary 
Euclidean geometry we identify not only congruent but also similar figures. 
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FIGURE 27 

Two figures F and F' are said to be similar (with ratio k) if they differ only in 
size: the shape of the figure F' does not differ from the shape of the figure F 
but the measurements of F' are k times larger (when k < 1, k times smaller) 
than the corresponding measurements of the figure F. It is possible to establish 
a one-to-one correspondence n between F and F' such that if A and B are 
points of F and A'( = n(A)) and B'( =n(B)) are the corresponding points of F', 
then A' B' = kAB (Fig. 27). An equivalent formulation is the following: F' is 
similar to F � F' = n(F), where n is a similarity transformation, or similitude, 
i.e., the figure F' is obtained from F by a similarity transformation n, defined 
as a transformation of the plane or space which changes all the distances by 
constant factor k or, equivalently, a transformation that preserves the ratio of 
the lengths of segments (the ratio of distances between points). 

The important role of similitudes in geometry is related to the fact that the 
sizes of figures (determined by comparing the distances between points of the 
figure with a chosen unit of length, say the meter, centimeter, or inch) cannot 
be taken into consideration in geometric theorems. Indeed, the choice of the 
unit of length necessarily appeals to considerations that have nothing to do 
with mathematics271 and thus the notion of the length of a segment, i.e., the 
number indicating how many times a segment of unit length "fits into" a given 
segment goes beyond geometry. On the other hand, the measure of an angle 
measured in degrees (or radians or, say, in fractions of a right angle) is relevant 
to geometry. The same is true of the ratio of segments which, in geometry, has 
an objective meaning (i.e., is not related to the choice of the unit of length) 
and therefore can certainly appear in geometric theorems.272 Clearly, simili
tudes which change the size of segments but preserve both the ratio of lengths 
and the size of angles, cannot ·change any "geometric" properties of figures; 
similar figures (which have the same shape but possibly different sizes) are 
clearly identical or equal for the geometer. It is this impossibility of distin
guishing between similar figures which is implicit in the request of a teacher 
who asks his students to "exactly reproduce" in their notel).ooks a picture 
which he has drawn on the blackboard, although this cannot be done without 
proportionally decreasing its size. However, in some cases in geometry we do 
have to deal with theorems in which the choice of a unit of length is assumed 
in advance; such is the case, for example, in theorems on the measurement of 
areas, since the very notion of area presupposes a given unit for measuring 
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area (it is clear that if we do not distinguish between similar figures, then the 
notion of area loses its meaning), and in construction problems, where it is 
assumed in advance that certain segments are given and the length of these 
segments must be taken into consideration in the construction of the required 
figures (and therefore, in this case, of two similar but unequal figures only 
one can be the solution of the given problem273). This circumstance is also 
underscored by the fact that the school geometry course usually begins with 
theorems on the conditions for the equality of triangles (which, in different 
expositions of geometry, are either theorems or axioms). These conditions 
would be meaningless if we did not distinguish between similar figures. 

Thus, in certain theorems and problems in geometry, we must begin with 
the convention that properties of figures are called "geometric" if they are not 
changed by isometries. In most cases it turns out to be natural to assume that 
the object of geometry is the study of properties of figures which are preserved 
under similarity transformations or similitudes. In other words, we can say 
that in school we do not study one subject, "geometry", but rather a somewhat 
involved combination of two different scientific disciplines that investigate, 
respectively, the properties of figures preserved under similitudes and the 
properties preserved under isometries. (We could call these "geometry of 
similitude" and "geometry of isometry" 274.) This circumstance is the basis of 
Klein's general approach. He proposed to fix a certain family (f) of transforma
tions, to study those properties of geometric figures which are preserved by 
these transformations, and to take this to be a definite branch of geometry, 
controlled, so to speak, by the family of transformations ffi. 

For such a general definition of geometry, we must consider identical or 
equal any two figures which can be sent into one another by a transformation 
in the family (f). But if this notion of equality of figures is to be meaningful 
it must satisfy three conditions, which are valid, without exception, for all 
equality relations-the equality ofnumbers, algebraic expressions, distances, 
angles, vectors, geometric figures; the equality of forces, velocities, electrical 
currents or magnetic fields, potentials, heat conduction, valencies, calories; the 
equality of talents, school achievements, courage, artistic or other qualities, 
successes, coordination or cleverness, etc.-and which determine the very 
possibility of using the word "equality". The three conditions are: 

1. Each figure F is "equal" to itself (reflexivity); 
2. If the figure F is "equal" to the figure F1 then, conversely, F1 is "equal" to 

F (symmetry); 
3. If the figure F is "equal" to F1 and F1 is "equal" to F2 , then F is "equal" to 

F2 (transitivity). 

It is clear that in the case of an arbitrary family (f) of transformations the 
notion of "equality" defined by (f) will not, in general, have these properties. 
In order to guarantee their validity, it is natural to require that 

la. The family (f) contains the identity transformation e (which sends each 
figure F into itself (Fig. 28(a)); 
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FIGURE 28 

2a. Together with each transformation G> sending the figure F into the figure 
F1 , the family G> contains the "inverse" transformation cp-1 (which sends 
F1 into F2 (see Fig. 28(b)); 

3a. Together with any two transformations cp and t/J, of which cp sends the 
figure F into the figure F1 and tjJ sends the figure F1 into F2, the family G> 
contains their "product" t/Jcp (first cp, then t/1) (which sends F directly into 
F2 (Fig. 28(c)). 

But conditions la-3a are obviously none other than the requirements 
which define a group of transformations (see Chapter 1); for the "group 
operation" in a family of transformations we take the "multiplication" or 
composition of transformations. Thus we arrive at the following general 
definition of geometry, due to Felix Klein, which came to be known (we will 
tell about this below) as the "Erlangen program": 

Geometry is the science which studies the properties of figures preserved under 
the transformations of a certain group of transformations, or, as one also says, 
the science which studies the invariants of a group of transformations. 

The notion of group which appears in this definition can also be clarified 
as follows. The choice of the properties studied by a specific science reduces 
to the identification or "gluing" of all objects under consideration when all 
the properties which we consider for these objects coincide. These objects 
constitute an equivalence class of indistinguishable objects, and these classes 
are the real objects of study in the given science. Thus in arithmetic the number 
4 may be understood as the common property of all sets of four arbitrary 
elements or, simply, as the set of all systems consisting of four elements. 
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Likewise the object called "triangle" in elementary geometry is really the class 
of all congruent triangles; for, with any other understanding of the term 
"triangle" a statement like "for two given segments a and b and the angle cp 
we can construct a unique triangle ABC such that BC = a, AC = b, L C = cp" 
loses its meaning. But it is well known that the decomposition of any set 
9Jl = { oc, {3, y, . . .  } of objects into arbitrary equivalence classes is really the same 
as the choice of an equivalence relation on 9Jl having the properties 1a-3a 
of reflexivity, symmetry, and transitivity: a """ a for all a E Wl; a """ {3 => {3 """ a; 
a """ {3 and {3 """ y => a  """ y-here the relation a """ oc1 means that the objects a 
and oc1 belong to the same equivalence class.27 5  In arithmetic, as we have 
already indicated, the relation """ links finite sets a and oc1 and means that it is 
possible to establish a one-to-one correspondence between a and oc1 (Fig. 
29(a)). In geometry the relation F """ F1 means that there is a correspondence 
cp: F --.  F1 or F1 = cp(F), where cp belongs to the given family (f) of transforma
tions (Fig. 29(b)). In order that the relation """" " which we have introduced 
between figures be an equivalence relation, the family (f) of transformations 
should be a group. 

Thus, according to Klein, a geometry is determined by a "domain of action" 
d (the plane, space, etc.) and a "group of automorphisms" (or a symmetry 

(a) 

F 

(b) 

FIGURE 29 
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group) (f) acting on the domain d. When we change the group (f) we change 
the geometric scheme under consideration, i.e., we obtain a new "geometry." 
Thus, for example, plane Euclidean geometry is determined by the group of 
isometries .3 (or the group 6 of similarity transformations) acting on the plane 
IT0. Plane affine geometry is determined by choosing as the principal group 
of transformations of the plane d the group of affine transformations �. 
generated by all possible "parallel projections of IT0 onto itself" (i.e., projec
tions on the same plane IT0, which we view as situated in different positions 
in space). 276 Plane projective geometry is determined by the group '.p of pro
jective transformations of the (projective) plane IT generated by all pos
sible central (and parallel) projections of IT onto itself.276 Lobachevsky's 
non-Euclidean geometry (hyperbolic geometry) is determined by the family 
l! of projective transformations of the plane IT which send a circle K (Fig. 1 3) 
into itself (more precisely, send the interior � of the circle K into itself, so that 
the disc � can be viewed as the "domain of action" of Lobachevskian geome
try). Riemann's elliptic geometry in the Cayley-Klein model is determined by 
another subgroup ofthe group of projective transformations, and so on. Thus, 
according to Klein, the main difference between, say, Euclidean and hyper
bolic geometry is not the possibility of constructing one or more lines passing 
through a point A and not intersecting a given line a (this is a secondary and 
unimportant difference) but the difference in the structure of the respective 
groups of symmetries of Euclidean and hyperbolic geometry. 

Finally we note that if two geometric systems r 1 and r 2 with the same 
"domain of action" d are determined by two groups of "isometries" (f) 1 and 
(f)2, where (f)1 => <»2 (i.e., the group (f)1 is larger than the group (f)2, in other 
words, (f)2 is a subgroup of (f)1 ), then the geometry r2 is, in a certain sense, 
larger than the geometry r 1 . Each notion that is meaningful in r 1 is also 
meaningful in r2-for if this notion is not destroyed by transformations in 
(f) 1 , then it will obviously be preserved by all the transformations in the group 
(f)2, which constitute only a part of the transformations in (f)1 . Each theorem 
of r 1 dealing with some property of figures in d preserved by the transforma
tions of the group (f)1 may be viewed in the framework of r2 (since the 
transformations from (f)2 also preserve this property), etc. This relation be
tween geometries can be conditionally written as r2 => r1 . For example, if .3, 
(f and � are, respectively, the group of isometries, the group of similarities 
and the group of affine transformations of the plane, then � => (f => .3 (it is 
clear, for example, that the group (6.2) of affine transformations contains the 
group (6. 1) of isometries, while the group of similitudes occupies an inter
mediate position). Therefore r4 => r. => ra, where the symbols r4, r. and ra 
denote ordinary Euclidean geometry, similarity geometry and affine geome
try.277 Thus each notion of affine geometry (that of a parallelogram, a trape
zoid etc.) and each "affine" theorem (such as the theorem that the medians of 
a triangle intersect in a single point which divides them in the ratio 2 :  1) 
remain valid in ordinary school geometry (as well as in similarity geometry) 
but, of course, the converse is not true. Each theorem of similarity geometry 
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has an "ordinary" or "school" significance, i.e., it relates to the geometry of 
isometric transformations; whereas, say, the school theorem that the area of 
a triangle is equal to half the product of the length of one of its sides by the 
length of the corresponding altitude is meaningless in similarity geometry 
since it deals with notions which do not exist there. 

Thus Klein's Erlangen program is usually understood to say that a geometry is 
determined by a certain domain d (the domain of action of the geometry) and a group 
of transformations ffi acting on the domain d. The object of the geometry is the study 
of those properties of the domain d which are preserved by the transformations in m. 
However, such a description of all possible geometries is not quite complete. 

In order to clarify this it is sufficient to recall what we said at the end of Chapter 3 
about Plucker's geometry of line elements. We indicated there that if the domain d is 
projective space (where (f) is the group of projective transformations of the space d) 
then, if we take the term "geometric point figure" in d to mean any point set belonging 
to d, and "plane figure" in d to mean a set of planes, then we obtain the same 
geometric system. But this will not be the case if by a figure we mean a set of lines: 
then we obtain the "geometry of line elements" which considers figures consisting of 
straight lines in projective space.278 Similarly, whereas in plane projective geometry 
(as noted in Chapter 3 in connection with Plucker's geometry of line elements) the 
geometry of points and the geometry of straight lines coincide apart from namys (due 
to the fact that the role of points in plane line geometry is played by straight lines while 
the role of straight lines is played by points), in plane Euclidean geometry, where there 
is no duality principle, the geometry of points and geometry of lines are entirely 
different subjects. Thus, for example, one of the main properties of a line triangle 
consisting of three straight lines a, b, and c of the Euclidean plane is the fact that the 
sum of"the differences from a to b, b to c and c to a," i.e., the sum of the directed angles 
L(a, b) + L(b, c) + L(c, a) is equal to 2n, i.e., 360° (Fig. 30(a)), whereas for a triangle, 
understood as a triple of points A, B, C, the sum of the distances dAB + dBc + dcA (i.e., 
the perimeter of the triangle-Fig. 30(b)) is different for different triangles. The set of 
lines m characterized by the same "deviation" from the line Q, i.e., by the same directed 
angle L(q, m) = p is a sheaf of parallel lines (Fig. 3 l (a)) and does not resemble the set 
of points M such that dQM = r, where Q is a given point and r is a fixed number, i.e, 
the circle with center Q and radius r (Fig. 3 1 (b)), etc. 

All these considerations bring us to the following more precise formulation of Klein's 
program. In order to determine any geometric system, we must indicate three traits 

c 
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FIGURE 30 
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(a) (b) 

FIGURE 3 1  

which characterize it: the geometric space or the domain of action .91 of the geometry; 
the group ffi of "isometries," i.e., of all the transformations of .91 which preserve all the 
properties of the figures in .91 which interest us; and the generating element e. i.e., an 
"atom" or simplest element of the domain .91 which is the building block of all the 
figures F to be considered. Thus in the case of plane geometry the element e can be 
a point, an oriented or unoriented line, an oriented or unoriented circle of fixed or 
arbitrary radius, or perhaps even some more exotic geometric object, say, a parabola 
or a line element, i.e., a point with a fixed direction at this point. It is natural to build 
figures F from identical (i.e., equal) elements e. Therefore, it is sufficient to choose a 
single element e which is then "scattered" by means of transformations in the group 
ffi over the entire domain d. Thus if the group ffi is the group of plane isometries �. 
then we can choose as e a point, a line, or a circle with fixed radius a, but not a circle 
of arbitrary radius, since two circles with different radii are not equal in the sense of 
the geometry of the group �- On the other hand, if ffi is the group 6 of similarity 
transformations, then we can choose as e a point, a line, or a circle of arbitrary radius, 
but not a circle of fixed radius, since if we "scatter" (by means of the group of similitudes) 
a circle of radius a over the entire plane, then we obtain circles with all possible (finite) 
radii. 

In the language of group theory, the notion of a generating element of a given 
geometric system may also be described as follows. Consider all the transformations 
g in the group ffi which preserve the geometric object e (i.e., which send it into itself). 
These transformations also form a certain group 9 of transformations: the identity 
transformation e sends e into itself; if the transformation g sends e into itself then the 
inverse transformation g-1 sends e into itself; if the transformations gl and g2 send e 
into itself, then their product g2g1 sends e into itself. This group is only a part of the 
group ffi, i.e., a subgroup, called the stabilizer subgroup corresponding to the geometry 
with the given generating element. (If the subgroup 9 consists of all transformations 
of the group ffi, i.e., if all the isometries of our geometry fix the generating element, 
then the domain .91 will not coritain any generating elements different from the element 
e; it is clear that such a geometry will be without content.) Thus, for example, if the 
group ffi consists of all possible isometries ofthe plane279 and the element e is a point, 
then the subgroup 9 consists of all rotations about e. while ifthe element '1 is a straight 
line q, then the subgroup 9 consists of the translations in the direction of '1 and the 
reflections in the points of the line q.279  

We note that if  the generating elements e and '7 of two geometries with the same 
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group of isometries are such that the corresponding stabilizer subgroups are the same, 
then the geometries under consideration are also the same. Consider, for example, two 
geometries whose respective domains of action d coincide with the plane, whose 
respective groups ffi coincide with the group (6.1) ofisometries of the plane, and whose 
respective generating elements e and 'I are a point and a circle with fixed radius a. It 
is clear that the subgroup g of the group of isometries (f) which fixes the point e 
coincides with the subgroup of the group ffi which fixes the circle 'I with center e. This 
implies that the geometry with generating element 'I coincides with the usual "point
wise" geometry. In the geometry with generating element 17 we can define ali the 
notions which exist in pointwise geometry. Clearly, in this geometry, the role of a 
line will be played by the strip between paraiiel lines fiiied with circles of radius a; the 
role of an "angle" with "vertex" 1'/o will be played by two such "lines" with common 
circle 'lo• and its measure wiii be the same as the measure of the "ordinary" angle 
between the midlines of the two corresponding strips; the distance between two circles 
'71 and '72 or, equivalently, their tangential distance (the length of their common 
tangent) will be the ordinary distance between their centers, etc. Then ali the statements 
of this "geometry of circles" will coincide with the statements of ordinary Euclidean 
geometry. For example, here too the distance between the two most distant of three 
circles on a "line" is equal to the sum of the two other pairs of distance between circles. 
Again, the circle 'lo of radius a which does not belong to the "line" l belongs to a unique 
"paraiiel line" 10 to l, i.e., a "line" which has no common circles with l, etc. This identity 
of the geometries with generating elements e and 'I foiiows from the possibility of 
mapping one of these geometries onto the other: it suffices to assign to each circle 'I of 
radius a its center e (or to each point e the circle rJ, of radius a and center e) and then 
each notion in one ofthese two geometries will be transformed into the corresponding 
notion in the other and each statement in one geometry into the analogous statement 
in the other. 

The fact that geometries with the same groups of isometries ffi and identical stabilizer 
subgroups coincide emerges from the following general construction. Consider the set 
of ali transformations of the group ffi as a certain "geometric" object which will 
eventually play the role of the domain of action d of the geometry having ffi as its 
group ofisometries. This space d is caiied the group space corresponding to the group 
ffi (see Chapter 6). Thus if ffi is the group (6. 1) of direct isometries (denoted earlier by 
3), then d is the layer 0 � cc � 2n of three-dimensional space with coordinates (a, b, cc), 
where the planes cc = 0 and cc = 2n that bound the layer must be identified (glued), 
since the values cc = 0 and cc = 2n in the formulas (6. 1) correspond to the same 
transformation (a translation not followed by any rotation). 

We assign to the generating element e of our geometry the subset of elements of the 
group ffi which form the stability subgroup g. Now consider another generating 
element e 1 of our geometry. If g 1 is one of the transformations of the group (f) sending 
e into e1 (see Fig. 32(a), where the elements e and e1 are shown as points), then ali the 
transformations in (f) sending e into e 1 form the set g 1 g of transformations; here by 
g 1 g  we mean the family of ali transformations g 1 g, where g E g. Indeed, any transforma
tions which can be represented in the form g1g sends e into e 1 (since g sends e into 
itself, and g1 sends e into et ). On the other hand, if the transformation g' sends e into 
e1 , and g is a transformation in (f) such that g' = g1 g, then g fixes e, i.e., g belongs to 
the subgroup g. Indeed, g1 ge = e1  implies that oe = g11e1 = e. 

Thus to every generating element e1 in our geometry (different from e) there 
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FIGURE 32 

corresponds a set g 1 g of transformations in ffi. Each set 

g1 g = {the set of all g 1g, where g E g} 

of elements in ffi, as well as the subgroup g itself, which can be written in the form eg, 
where e is the identity transformation, is called a coset of the group ffi with respect to 
the subgroup g (see Chapter 1, in particular Fig. 3). 

We see that in the language of the group ffi the set of generating elements e of the 
geometry under consideration can be described as the set of cosets g 1 g of the group 
ffi with respect to the stabilizer subgroup g. Now suppose g' is an arbitrary transforma
tion of the group ffi. Consider the two generating elements e 1 and e2 of our geometry 
such that g' sends e1  into e2 (Fig. 32(b)) and the corresponding cosets g1g  and g2g. 
We claim that 

g2g = g'(g1 g) ( =(g' g1 )g). 

In other words, if we multiply all the transformations of the coset g1 g on the left by 
the transformation g' (thus forming all possible products g' g, where g is in the coset 
g 1 g), then we obtain transformations belonging to the coset g 2 g. Indeed, since the 
transformation g in g1 g sends e into e 1 ,  and the transformation g' sends e1 into e2, 
their product g' g sends the generating elements e into the element e2, i.e., g' g belongs 
to the coset g2g corresponding to e2 • (Conversely, if the transformation g� = g' g is in 
the coset g2g, then g is in g1 g.) Clearly, the set g'(g1 g) of transformations obtained in 
this way coincides with the coset g2g. 

Finally, we come to the following geometric scheme, which gives an exhaustive 
description of the geometry under consideration. As the domain of action d of our 
geometry we take the set ffi of all transformations. The role of the generating elements 
e is played by the cosets gg of the group ffi with respect to the subgroup g (so that 
"geometric figures" are sets of cosets). The role of isometries in our geometry is played 
by the transformations in the group ffi, and a transformation g in this group sends 
each coset g 1 g into the coset (gg1 )g. Geometric figures (sets of cosets) <1>1 and <1>2 are 
considered equal if they are sent one into the other by some transformation g in the 
group ffi (which acts on the set of cosets in the manner described above). 280 Since the 
geometry just described (more precisely, one of its models whose distinction is that it 
accomodates all the notions and statements pertaining to this geometry), depends only 
on the groups ffi and g, it is clear that two geometries with identical groups ffi and g 
will be identical. 

We suggest that the reader try to find out what this general scheme reduces to in 
the case when ffi is the group � (6. 1 )  of direct isometries of the plane (and then d is 
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the layer 0 � a. � 2n of three-dimensional space (a, b, a.)), while � is a point and, 
respectively, an oriented278 line, i.e., g is the group of rotations 

x' = x cos a. + y sin a., y' = - x sin a. + y cos a. 

about the origin 0 of the coordinate system, and, respectively, the group x' = x + a, 
y' = y of translations along the x-axis. 2 8 1 

We conclude this chapter with the observation that Klein's definition of a 
geometry, which assigns a key role to the notion of a geometric transformation 
that preserves the properties of figures of interest to us (i.e., of a transformation 
that plays the role of an isometry of the corresponding geometry), has an 
interesting reflection in physics. Recall the so-called Galilean principle of 
relativity, which plays a fundamental role in mechanics and asserts that no 
physical experiments carried out within a mechanical system are capable of 
revealing uniform rectilinear motion of the system. According to this principle, 
if we carry out any experiments, say, on a ship which moves in a fixed direction 
with constant velocity, then we shall not be able to discover any effects which 
are due to the motion of the ship. It follows from Galileo's principle of 
relativity that all physical properties are preserved under transformations of 
the physical system which impart to the system a constant velocity (these 
transformations are called Galilean transformations). In other words, the physi
cal properties of bodies can be described as those properties which remain 
unchanged under Galilean transformations -just as the geometric properties 
of figures in Euclidean geometry are those that are unchanged by isometries. 

Galileo's principle of relativity may be stated in a geometric form which is 
clearly related to Klein's definition of a geometry. Let us suppose, for the sake 
of simplicity, that we limit our study to physical processes which take place 
in a plane-for example, to the motions of physical bodies in a limited region 
of the earth's surface (which may be viewed as flat). Let us introduce Cartesian 
coordinates (x, y) in the plane under consideration. Suppose the mechanical 
motion of a mass point is given by the formulas 

{X = f(t), 
y = g(t), 

which show how the coordinates of the point in question change with time t. 
It is clear that transition to another coordinate system cannot influence 
physical laws, which must, therefore, have the same form in the coordinate 
system (x, y) and in the coordinate system (x', y') obtained from the (x, y)
system by an arbitrary rotation of the coordinate axes and a translation of 
the origin (Fig. 33). But the passage from the coordinates (x, y) to the coordi
nates (x', y') is given by the formulas (cf. (6. 1)) 

{x' = x cos oc - y sin oc + a, 
y' = x sin oc + y cos oc + b, 

(7. 1 )  

in which oc denotes the angle formed by the x-axis with the x'-axis, while a, b 
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FIGURE 33 

are the coordinates of the origin 0 of the coordinate system (x, y) in the system 
(x', y'). Hence any statement which has physical meaning must preserve its 
form under the transformations (7.1). Moreover, Galileo's principle of relativity 
asserts that even if the origin and the axes of the coordinate system (x', y') 
move uniformly and rectilinearly with respect to the coordinate system (x, y), 
the descriptions of all the physical processes will have the same form in both 
coordinate system. Now if the origin 0' of the coordinate system (x', y') moves 
with velocity v along the line forming an angle {3 with the x-axis (see Fig. 33), 
then the connection between the coordinates (x', y') and (x, y) is given by the 
equations ,. 

{x' = x cos a - y sin a + cos {J · vt + a, 
(7.2) 

y' = x sin a + y cos a + sin {3 · vt + b; 

so that the descriptions of all the phenomena having physical meaning must 
preserve their form under the transformations (7.2). Also, since our formulas 
involve time t and the choice of the "time origin" must not influence the 
physical essence of any process, it follows that we can rewrite the formulas (7.2) 
in the following somewhat more complete form: 

x' = x cos a - y sin a + cos {J · vt + a, 

y' = x sin a + y cos a + sin {J · vt + b, (7.3) 

t' = t + d, 

here d is the time of the old time origin in the new reference system. Formulas 
(7.3) give a mathematical description of the Galilean transformations. Galileo's 
principle of relativity states that physics (more exactly, mechanics) of plane 
motions can be defined as the science of the properties of three-dimensional 
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spacetime (x, y, t) which are preserved under the transformations (7.3). Since 
the Galilean transformations (7.3) can be easily shown to form a group, this 
description identifies the mechanics of plane motions with a certain geometry 
of a three-dimensional space determined by the choice of the group (7.3) of 
isometrics. 

We should also point out that modem physics has replaced Galileo's 
principle of relativity by the so-called Einstein principle of relativity which is 
the basis of the special theory of relativity. It is therefore necessary to replace 
the Galilean transformations (7.3) by more complicated transformations, 
known as the Lorentz transformations (Hendrik Anton Lorentz (1853-1928) 
was an outstanding Dutch physicist). Lorentz transformations depend on a 
certain parameter c (whose physical meaning is clarified by relativity theory: 
c is the velocity of light in a vacuum). When c -+ oo, these formulas reduce to 
Galilean transformations. The Lorentz transformations also form a group. 
Thus when we pass from the classical mechanics of Galileo and Newton to 
the relativity theory of Einstein and Poincare, we are actually changing our 
view of the geometry of the surrounding world and this geometry, in full 
agreement with Klein's point of view, is determined by prescribing the group 
of transformations which preserve the form of physical laws. 282 



CHAPTER 8 

Biographical Sketches 

We have previously described how Lie and Klein happened to meet in Berlin 
and travelled to Paris; that chance meeting was to play a crucial part in both 
their lives. Let us continue the life stories of these two outstanding scientists. 
We have little left to say about Sophus Lie: his biography was not rich in 
outwardly striking events. The research he ca:rried out at the turn of the 1870s 
(in particular, the results obtained in the Fontainebleau prison) brought him 
wide fame, mostly through Klein's efforts. Klein had the highest regard for 
Lie and had exten�ive contacts in the mathematical world. He used them, and, 
as a result, Lie was offered a professorship at Norway's only university, in 
Christiania (now Oslo). The following year he taught at Lund in Sweder, but 
the passionate Norwegian patriot Lie felt out of place there and returned to 
Oslo. 

In 1 874, Lie, then 32 years old, married Anna Sophie Birch; the marriage 
was a happy one. (The younger Felix Klein had married earlier, also happily.) 
Lie worked in Norway for fourteen years. The university appealed to him by 
its proximity to the fiords he loved so much, providing opportunities for the 
long outdoor hikes he favored. But in scientific terms it was then an extremely 
provincial place, and Lie suffered from a lack of meaningful scientific ex
changes and a shortage of competent pupils. Pupils were indeed needed to 
develop his ideas and solve the problems he made up-Lie could never 
complain of a shortage of ideas and problems! And so he eargerly accepted 
Klein's suggestion, made in 1 886, that he replace Klein as professor of geome
try at Leipzig University. In addition to a higher level of instruction and better 
students, Leipzig offered Lie the opportunity to supervise the printing of his 
books. (All of Lie's books were published by the prominent Leipzig mathe
matics publisher, B.C. Teubner.) 

Lie worked in Leipzig for twelve years. These years were very productive 
in terms of scientific research, but they failed to bring him complete satisfac
tion. Tall and physically very strong, with an open face and loud laugh (people 
who knew Lie often said that he was their idea of a Viking), distinguished by 
rare candor and directness, always convivial with anyone who approached 
him, Lie produced an impression that did not correspond to his inner nature: 
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Sophus Lie 

actually he was very refined and easily hurt. He was always in sore need of 
friends to support him, especially in the last Leipzig years, when his best pupils, 
such as Friedrich Engel ( 1861-1941), Georg Scheffers ( 1866-1945), Friedrich 
Schur ( 1856-1932), Eduard Study (1862-1930) and Felix Hausdorff (1868-
1949), who did not study under Lie for long but whom Lie esteemed highly, 
matured and left their teacher for different German universities. In Norway, 
the nature he loved so much was a source of strength for Lie; in Germany he 
felt himself in large measure an alien. It is also possible that the depression 
Lie suffered at the end of his stay in Leipzig, and for which he had to take a 
cure at a psychiatric clinic in Hannover, was due to extreme exhaustion-there 
will be more about Lie's rare productivity as a mathematician below. 

During this period of Lie's nervous and physical malaise there occurred the 
one unfortunate incident that marred his otherwise closeknit and friendly 
relationship with Klein: in Volume 3 of his joint book with Engel, Theorie der 
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Transformationsgruppen (1893), Lie pointed out with uncharacteristic blunt
ness that many people thought he was Klein's pupil, whereas in fact the 
opposite was true. That rather tactless remark, quite out of place in a purely 
scientific work, hurt Klein very much, perhaps just because Lie was not very 
far off the mark. Nevertheless the remark was uncalled for-there can be no 
doubt that the scientific influence of the friends was mutual. Klein, however, 
chose not to respond. In a short time Lie, apparently also suffering from his 
own tactless act-which had been committed in a state of depression
appeared at Klein's house again, and was of course welcomed as warmly as 
ever. Lie and Klein never returned to this episode, and fortunately their 
friendship did not suffer from-it at all.283 

In 1 892-93 the Kazan physico-mathematical society solemnly celebrated 
N.J. Lobachevsky's centenary. The celebration included the creation of the 
International Lobachevsky prize and medal. The prize was awarded for the 
first time in 1 898 and its first recipient was Sophus Lie. A detailed review of 
his work, requested by the Kazan physico-mathematical society, was written 
by Felix Klein. (The Lobachevsky prize immediately became quite prestigious. 
The second, third, and fourth recipients were W. Killing, D. Hilbert, and F. 
Klein. Later recipients include H. Poincare, H. Weyl, E. Cartan, and, more 
recently, G. de Rham, H. Hopf, and H. Buseman.) 

In 1898 Lie left Leipzig and returned to his alma mater at Christiania-but 
not, alas, for long. He still had time to enjoy the welcoming ceremonies held 
in honor of the man who had made little Norway famous in the scientific 
world, to breathe the North Sea air he loved so dearly and to enjoy the sounds 
of the Norwegian language spoken in the streets. But he had very little time 
left to live and work. He died in Oslo on February 18, 1 899. 

Although devoid of spectacular events, Sophus Lie's life was filled with 
intense creative work to the very end. All the work of this outstanding 
mathematician centered around one subject-the theory of continuous trans
formation groups-but what passion and capacity for work Lie displayed in 
developing the mathematical vein he had discovered! 

Lie devoted many papers and a number of books to the theory of contin
uous groups. Most of his papers (and all of his books) were very long. His 
style was leisurely and polished. He carefully set down details and provided 
many examples. Today Lie's books and articles may seem archaic in some 
ways, and not always up to the standards of rigor achieved in the same 
questions by modern mathematicians.284 His constructions may occasionally 
seem rather involved. Yet on the whole Lie-though a sportsman-did not 
have a competitive attitude in science. He greatly disliked overcoming difficul
ties for their own sake. He believed, quite sensibly, that any "natural" mathe
matical theory should be transparent, and he felt that difficulties in mathe
matics usually arise not from the essence of the problem but from badly 
conceived definitions at the base. 

A committee for the publication of Lie's collected mathematical works was 
created in 1900, but it was hampered from the outset by the size of the project. 
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It was not until 1912, when the "Leipzig Scientific Society" and the Teubner 
publishing house agreed to participate, that work began in earnest. But then 
post-World War I inflation in Germany rendered the collected funds worth
less. Fortunately, the active support of mathematicians from various countries, 
who stressed the international significance of this endeavor, led to a new fund
raising drive which made possible the successful completion of the project. 
The overall editing was done by one of Lie's closest pupils and associates, 
Friedrich Engel, and by the leading Norwegian mathematician of the time, 
Poul Heegard (1871-1948). B.C. Teubner Publishers in Leipzig, and one of 
the largest Norwegian mathematical publishing houses in Christiania (Oslo), 
were responsible for the printing. Publication of the collected works Gesam
melte Abhandlungen (Samlede Avhandlinger), Bd. 1-10, Leipzig, B.C. Teubner; 
Kristiania, H. Aschehoug, 1920-1934; second impression: 1934-1960) took 
fifteen years; the works comprised fifteen large books (five of the ten works 
consisted of two volumes each) and many thousands of pages. Lie's collected 
works did not include the books: Theorie der Transformationsgruppen, Bd. 
1-3, Leipzig, Teubner, 1 888, 1 890, and 1893 (second edition Leipzig, Teubner, 
1930), written jointly with Engel (about 2,000 pages), and three more special 
books, with Lie's pupil Scheffers as coauthor: Vorlesungen iiber Differential
gleichungen mit bekannten infinitesimalen Transformationen, Leipzig, Teubner, 
1891, Vorlesungen iiber continuierliche Gruppen mit geometrischen und anderen 
Anwendungen, Leipzig, Teubner, 1 893, and Geometrie der Beriihrungstrans
formationen, Leipzig, Teubner, 1 896. The striking similarities oflanguage, and 
even of style, of all six books and of Lie's papers suggest that in all cases he 
was the chief writer, or that his influence was so great that it even determined 
the style of the writing. 

It can be said that Lie was one of the last great mathematicians of the 
nineteenth century. There was something of Gauss or Riemann in his scientific 
profile (although in human terms Gauss, Riemann, and Lie were quite different 
personalities). Like his great precursors, Lie hardly needed a milieu: of course 
he valued pupils, but he took nothing from them and gave his ideas generously 
to the young mathematicians he met on his way. 

The nineteenth century gave birth to the legend of the lonely genius-com
poser, philosopher, mathematician, or writer-creating values far away from 
people, by the force of spirit alone. 285 Of course there were really no such great 
hermits even in the nineteenth century and even the likes of Gauss and Balzac, 
say, were greatly influenced by their times. On the other hand, it was no 
accident that the image of the ivory-tower philosopher was particularly dear 
to the people of the nineteenth century. 

As for Klein, he had nothing in common with this nineteenth-century image. 
We have already mentioned that immediately after the Franco-Prussian 

War Klein went to live in Gottingen, to which he was attracted, above all, by 
his friendship with A. Clebsch and W. Weber; but he did not long remain 
there. In 1 872 there was an opening for a professor at the newly organized 
mathematics department at Erlangen University, and the influential Clebsch, 
who held Klein in high esteem, recommended him for the post. 
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Felix Klein 

In Germany at that time a prospective professor was required to deliver a 
public lecture to the Academic Board of the university on a subject chosen by 
the candidate himself. The decision whether to offer the post to the candidate 
was made after the lecture was discussed. The twenty-three-year-old Klein 
chose as his subject a Comparative review of recent research in geometry,286 
(just as, in a similar situation, eighteen years before, Riemann had spoken On 
the hypotheses that lie at the foundations of geometry). 287 The principal ideas 
of Klein's lecture were described in Chapter 7 above. The lecture soon became 
known as The Erlangen Program, a title which underscores both the broad 
vistas opened by Klein for further progress in geometry and his clear stand
point. It greatly enhanced the author's prestige. 

The starting point for the Erlangen program and, at the same time, the 
application of its ideas, were provided by Klein's and Lie's previous concrete 
geometric works, beginning with the paper on W-curves and ending with 
Klein's broad vision of non-Euclidean geometries (these could be spoken of 
in the plural after the paper "Dber die sogennante nicht-Euklidische Geome
trie"; see Chapter 4). At the present time all works in this area are considered 
from the viewpoint of the Erlangen Program. At one time, geometric research 
in this area was very popular and was dealt with in great detail in university 
geometry textbooks, particularly German ones.288 

Klein's Erlangen years (1872-1875) were remarkably productive in the 
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(a) (b) 

FIGURE 34 

scientific sense. As a result he received a very flattering invitation to the 
Technische Hochschule in Munich, which enjoyed a high reputation in Ger
many and where he worked for five more years. In 1 880 Klein joined the 
geometry department of Leipzig University; in 1886 he yielded his post there 
to Lie and moved to Gottingen, where he would remain till the end of his life. 

The period of Klein's greatest scientific productivity was his time in Munich 
and his first years in Leipzig. His works dealt with geometry, mechanics, and 
the theory of functions of a complex variable (theory of automorphic func
tions). He worked with particular intensity in 1 880-1882, when he developed 
the (geometric) theory of automorphic functions, following ideas "combining 
Galois and Riemann," as he explained later, i.e., attempting to imbue Rie
mann's geometric approaches with group-theoretic ideas derived from Galois. 
A significant role in Klein's research was played by pictures of the type shown 
in Figs. 34(a) or (b) and by (discrete) transformation groups (linear fractional 
transformations of a complex variable) related to such pictures (transforming 
Figs. 34(a) and (b) into themselves). These groups proved to be closely linked 
to certain rectilinear polyhedra and the solution of algebraic equations in 
radicals (one of Klein's first books was devoted to that range of questions). 289 
However, Klein failed to notice that the groups he considered could be 
interpreted as (discrete) subgroups of the groups of isometries of the Loba
chevskian plane .P modeled by the interior .Jf' of a circle (or as the half-plane 
£). In this model the role of isometries is played by Mobius's circle trans
formations sending .Jf' (or £) into itself; the "straight lines" of .P are parts of 
circles and straight lines in .Jf' perpendicular to its boundary (or perpendicular 
to the boundary of the half-plane £); "angles" are ordinary angles, etc. (see 
Fig. 35, which shows "straight lines" of the Lobachevskian plane passing 
through the point A and not intersecting line a).290 

At the most intense period of his scientific work Klein came across a cycle 
of articles published in French journals and dealing with much the same 
subjects. They were written by the young French mathematician Henri Poin-
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FIGURE 35  

care ( 1854-1912), who was hardly known at the time.29 1 These articles made 
a profound impression on Klein. In his very first letter to Poincare Klein 
communicated to his younger and less famous colleague everything he knew 
in the field both were interested in-in particular the results of papers he had 
not yet published. This behavior was in sharp contrast to that of many leading 
scientists confronted by rivals working in the same field (no need to list them 
here). But Klein's later activities were marked by acute rivalry with the 
remarkable French mathematician who was developing the same range of 
questions at the same time. In particular it was Poincare who first noticed the 
relationship between circular transformations of the plane and Lobachevsky's 
non-Euclidean geometry. It is after him that the "models" of hyperbolic 
geometry292 in the circle and the half-plane Jt', whose "isometries" are circular 
transformations sending Jt' into itself, are called Poincare models of Loba
chevskian geometry.293 The discovery of a connection between the theory 
of automorphic functions and non-Euclidean geometry impressed Poincare 
greatly and provided him with a "geometric key" to the entire theory, 294 which 
he of course immediately put to good use. This circumstance gave Poincare 
a certain advantage over Klein. Besides, the difference in age was to have a 
telling effect. Pioncare was five years younger than Klein, and mathematics is 
the domain of the young. In any case, as a result of the stress of this acute 
scientific rivalry-which was certainly not conducive to a calm creative effort 
-Klein suffered a serious nervous breakdown, brought on by exhaustion. 
This illness enabled Poincare to celebrate a victory that is reflected in his 
memoirs of that period, and, in particular, in his famous report on mathe
matical discovery delivered at the Paris psychological society in 1908.295 
Especially popular is Poincare's story of how the idea of the connection 
between non-Euclidean isometries and linear fractional transformations z' = 
(az + b)f(cz + d) of the complex variable z (i.e., Mobius's circle transforma
tions296 sending a fixed circle into itself) came to him at the moment he put 
his foot on the footboard of an omnibus, seemingly without any link to his 
previous thoughts. On the other hand, Poincare's victory echoes in the dis-
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appointment exuding from Klein's recollections about this rivalry in Vorle
sungen iiber die Entwicklung der Mathematik. Today, however, conditioned by 
a long period when the attitude towards joint research is quite different from 
the attitude typical for the period between the seventeenth and nineteenth 
centuries, we are perfectly aware of the fact that there are no winners or losers 
in scientific contests. (Was there a winner in the competition between Newton 
and Leibniz for priority in the founding of the calculus? It is incredible how 
much ardor was expended on a rivalry which to us seems senseless.) The view, 
advanced some twenty years ago by the Moscow mathematician Israel Mois
seievich Gelfand (b. 19 13) in his seminar, to the effect that Klein achieved 
greater success than Poincare since the two mathematicians' most important 
ideas and theorems were derived from Klein, seemed paradoxical at the time; 
but that viewpoint (as debatable from our vantage point as the opposite view) 
now finds support in the ubiquity of the term "Klein groups" in modern 
mathematics and in the frequent references in the latest research297 to Klein's 
old works on the theory of automorphic functions. 

Klein's illness, the result of his exhaustion, unfortunately had a marked 
effect on his scientific activity, which never again reached the level of the early 
1880s. Klein became a mature scientist at an early age-not a rare case in our 
discipline. At seventeen he was Plucker's assistant at the university; at eighteen 
he was faced with the formidable task of publishing his teacher's unfinished 
book, a task assigned to him by the also quite young but already very 
influential Clebsch. Klein also published his own first independent research 
at that time. In this respect Klein was different from Lie, who developed 
relatively late as a professional mathematician and hesitated for a long time 
before choosing his future occupation. But Klein's creative period was much 
shorter than Lie's (compare their collected works). In this sense Klein is 
probably closer to Poncelet (of whom he wrote with such regret), and differs 
sharply from, say, Mobius, whose productivity as a mathematician hardly 
seemed to decrease over the years. 

But being very active by nature, Klein immediately made up for his reduced 
creative potential by truly extensive teaching, and by literary, organizational, 
and administrative activities. In 1 872 Clebsch, then thirty-nine years old, 
suddenly died of diphtheria, and Klein immediately took over M athematische 
Annalen, the journal founded and headed by Clebsch. Klein became the 
journal's de facto editor, and in 1 876 its formal editor. Under Klein's leader
ship M athematische Annalen soon gained the reputation of being the world's 
leading mathematics journal. Klein's books began to appear, beginning in 
1 882: Vorlesungen iiber Riemann's Theorie der algebraischen Funktionen und 
ihrer lntegrale ( 1882), Vorlesungen iiber das Jkosaeder und die Atiflosung der 
Gleichungen vom fonften Grade (Leipzig, Teubner, 1 884; see Note 289), four 
volumes, written jointly with Karl Immanuel Robert Fricke ( 1861-1930), 
Klein's pupil and collaborator, of Vorlesungen iiber die Theorie der elliptischen 
Modulfunktionen (Bd. 1, 2, Leipzig, Teubner, 1 890 and 1892) and Vorlesungen 
iiber die Theorie der automorphen Funktionen (Bd. 1, 2, Teubner, 1 897 and 
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1901, 191 1, 1912, the second volume of the book was published in three 
separate issues); four volumes, written jointly with Arnold Sommerfeld, of 
Uber die Theorie des Kreisels (Leipzig, Teubner, 1 897-1910), and others. And 
throughout his time in Gottingen, mimeographed versions of his lecture 
courses were regularly published, and many of these were subsequently
often posthumously-printed as books and translated into many languages. 
Thus, for example, the courses mentioned many times in the present book, 
Lectures on Non-Euclidean Geometry, Lectures on Higher Geometry, or Lec
tures on the Progress of Mathematics in the Nineteenth Century were derived 
from Klein's lecture courses. 

All of Klein's books-not only those which were revisions of mimeo
graphed lecture notes-were conversational in tone, retaining echoes of their 
author's speech. As was usually the custom at German universities,298 Klein 
often assigned to his pupils and associates the task of preparing his books for 
print; in some cases their names (Fricke, 299 Sommerfeld) were placed on the 
book's title page, but more often they were mentioned in the form bearbeitet 
von . . . 300 or simply omitted. Nevertheless, Klein's authorship was never in 
doubt: he produced his books in the course of long discussions with his 
associates, and this form of work was apparently more suitable and common 
for him than writing down the texts himself. 30 1  It is interesting that Klein 
found it easier to assimilate new material through informal conversations than 
through reading scientific works. 30 1  It was for this reason that the memorable 
trip to Paris with Lie, about which so much was said above, proved so fruitful 
for Klein. We mentioned already that Klein first talked about non-Euclidean 
geometry in Weierstrass's seminar when he knew next to nothing about the 
subject and, in any case, without having read anything about it. When it 
became necessary for him to take a closer look at non-Euclidean geometry, 
he turned to his friend Otto Stolz rather than to Lobachevsky or Bolyai, whose 
texts were available at the time. In much the same way, von Staudt's fame was 
largely due to the enthusiasm with which Klein popularized Staudt's ideas
yet Klein apparently never read a single line written by Staudt, his predecessor 
at the university in Erlangen. In this case too he preferred to turn to Stoltz, 
who, by the nature of his interests and talent, was better able to read Staudt's 
ponderous works and more likely to study them (since Staudt was his relative). 

The conversational nature of Klein's books (and also of most of his papers), 
which secured their popularity, had to do, in some sense, with their lack of 
mathematical rigor. If we adhere to the classification of all mathematicians 
into "physicists" and "logicians" (see Chapter 2), then Klein undoubtedly 
belongs to the physicists. The modern mathematician Laurence Young, in 
the often quoted Mathematicians and Their Times, states that Klein did not 
understand what a proof was, at least not in the modern sense of this important 
term. The same assertion was made less bluntly by Hermann Weyl in the 
brilliant article devoted to Klein ("Felix Klein's Stellung in der mathe
matischen Gegenwart." Die Naturwissenschaften, Bd. 18, 1930, S. 4-1 1, re
printed in Weyl's Gesammelte Abhandlungen), where he writes about Klein's 
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almost total lack of interest in questions of mathematical rigor and theory of 
proof. Of course this in itself does the diminish Klein's achievements nor make 
his place in the history of mathematics any less considerable; after all, "intui
tive" mathematicians such as Riemann and Klein have contributed to mathe
matical knowledge no less than "logicians" like Weierstrass and Weyl. 

In 1898 Klein headed the tremendous undertaking of publishing Gauss's 
collected works (the edition was finished only in 1918). He also directed work 
on the Enzyklopiidie der Mathematischen Wissenschaften, whose editors in
tended to include all the results and methods obtained up to the early twen
tieth century in pure and applied mathematics. Today this encyclopedia 
occupies lots of shelf space in many of the world's largest libraries; but it was 
never completed (because gradually people realized that the amount of mate
rial not included did not decrease with time but, on the contrary, grew!), 302 
and unfortunately it has become hopelessly outdated. 

It seems to us that Klein's attempt to create a comprehensive encyclopedia 
of the mathematical sciences deserves particular attention. Klein enlisted the 
most outstanding scientists of his time to work on this project, which aimed 
to offer its readers the key achievements of mathematics and of mathematical 
natural science. Although the attempt failed, it is revealing in many respects. 
Klein realized better than anyone else that the rapid expansion of knowledge 
(which delighted many people) represented a real threat to mathematics: it led 
to excessive specialization and to disregard of adjacent fields. 303 This was the 
unavoidable result of the increasing difficulty of gaining a comprehensive view 
of everything achieved even in the restricted field within which a scientist was 
specializing. It was only natural then that individual creative effort was 
replaced by collective work, a development typical of the twentieth century. 
It is well known that it is difficult, as a rule, to attribute outstanding achieve
ments in physics to a particular person: trans-Uranium elements are dis
covered in our day by groups in Berkeley, at CERN or in Dubna, and not by 
individual researchers such as Seaborg or Flerov. It is less well known that in 
mathematics today collective undertakings are absolutely necessary not only 
in applied research, where it is usual to have large institutes, computer centers. 
with numerous staff-technicians, engineers, mathematicians, and electronics 
experts-and expensive hardware, but also in a number of purely theoretical 
fields (see Note 260). The situation is similar for most of the works of art typical 
of our time-films, TV productions, architectural ensembles, or pop music 
melodies-which are created by large groups where a key figure can be singled 
out only tentatively if at all. It was to this universal twentieth-century trend 
that Klein responded by his encyclopedia, which was meant to present all of 
mathematics to the reader from a single vantage point, with due attention 
paid to the variety of existing interrelations. Klein's attempt was unsuccessful, 
but it had a tremendous influence on, say, the more advanced experiment of 
the Nicolas Bourbaki group. 304 

Klein also approached his activities at Gottingen from this characteristi
cally twentieth-century standpoint! Over many years, even decades, he did 
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everything he could to transform little Gottingen into a world center of physics 
and mathematics. His outstanding eloquence attracted to Gottingen talented 
students from all over the world. He sought to bring together many outstand
ing scientists there; their joint work and mutual consultations created ideal 
conditions for research. 305 The leading role was played by several outstanding 
mathematicians and physicists from Konigsberg whom Klein enticed to 
Gottingen. Among them we must mention, above all, David Hilbert (1862-
1943), whom many regard as the greatest mathematician of the twentieth 
century.306 Following Hilbert, his friend Hermann Minkowski came to Got
tingen. From the late 1 890s until the destruction of this outstanding scientific 
center in the 1930s, Gottingen was firmly associated in the minds of all the 
world's mathematicians with the names of Felix Klein and David Hilbert. 
Klein and Hilbert complemented each other very well. Modest in dealing with 
other people and always engulfed in purely scientific problems, Hilbert di
rected the scientific activities of the Gottingen mathematicians. Administra
tive functions were profoundly alien to him. (It was not by accident that, 
following Klein's death, it was not Hilbert, undoubtedly the leading scientist 
in Gottingen, but his pupil Richard Courant (1888-1972)307 who was ap
pointed director of the mathematical institute there.) On the other hand Klein, 
an outstanding organizer, ruled the mathematical institute-which had been 
created largely by his efforts-rather autocratically. Reminiscences of Klein 
often compare him to Jupiter, whose marble bust decorated the stairway 
leading to Klein's office! 

Klein's search for fresh forces in Konigsberg was quite natural, for he greatly 
valued the Konigsberg mathematics school (which had been founded largely 
by Carl Jacobi). That school had a profound influence on Klein; in particular 
his friend and teacher Adolf Clebsch was a graduate. Subsequently, Gottin
gen's reputation for excellence, due to Klein, Hilbert, and Minkowski, at
tracted scientists from all the other German universities. In addition to the 
Konigsberg "input," the arrival at G6ttingen of several students and teachers 
from Breslau (now Wroclaw in Poland) University was particularly impor
tant. An exceptional role, comparable to the role of the Breslau mathema
ticians Richard Courant and Otto T6plitz (1881-1940), was played by the 
outstanding physicist Max Born (1882-1970), the future Nobel Prize winner 
and director of the Gottingen physics institute. 308 Born headed the Gottingen 
school of theoretical physics, which produced such outstanding scientists 
as the Nobel Prize winner and founder of quantum mechanics Werner 
Heisenberg (1901-1976) and the American physicist J. Robert Oppenheimer 
(1904-1967), who later directed work on the atomic bomb.309 

Klein's method of operation may be epitomized by one typical episode. At 
the International mathematics congress in Heidelberg (Germany) in 1904, 
Klein listened to a communication on hydrodynamics by the then relatively 
obscure German engineer Ludwig Prandtl ( 1875-1953). Profoundly im
pressed, he immediately invited Prandtl to Gottingen appointing the twenty
nine-year-old engineer to direct an applied mathematics institute especially 
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founded for him. Subsequently the world-famous Gottingen school of me
chanics arose from this institute. 

Finally, mention should be made of another aspect of Klein's activities, 
which presaged many features of mathematical life in our day. We have 
already pointed out that Klein detested the classical Prussian gymnasium 
from which he had graduated. He was the first scientist who fully realized the 
need for a fundamental reform of the whole system of school mathematical 
education. He succeeded in rallying many prominent mathematicians and 
teachers to the struggle for such reform. In 1898 he organized an International 
Commission on Mathematics Education which he headed for a number of 
years. The first international congresses on mathematics education were held 
under Klein's direct leadership. He spent much time and effort in popularizing 
his pedagogical views.310 The basic principles expounded by Klein and by 
the commission he headed were: more of the graphic element in teaching, 
greater attention to the functional viewpoint in algebra and analysis, and 
application of geometric transformations in the teaching of geometry. He 
called for the elimination of the "China wall" separating different mathe
matical subjects, for taking into account the needs of related fields in mathe
matics courses, and for decreasing the gap between mathematical education 
and contemporary science. All this was to play an enormous role in furthering 
progress in that sphere. 

Klein gained very high administrative titles in science. In 1913  he was 
elected corresponding member of the German academy of sciences in Berlin. 
He was Geheimrat, a title received by very few German scientists, and a 
representative of Gottingen University in the Chamber of Lords, the upper 
chamber of the Prussian parliament. Klein's political views were moderately 
conservative. However, in one respect he was very far from the German 
obscurantism which began its offensive while Klein was still alive: he was never 
a chauvinist or racist. Thus the destruction of Gottingen University (after his 
death), immediately following the coming to power of the Nazis, when some 
of the professors were expelled and others left voluntarily, may well be ex
plained by the fact that Klein's humanistic traditions were still alive then at 
the university. 

Lie's and Klein's memorable trip to Paris and London, which we have dealt 
with previously, was very rewarding for the two friends. Before the trip, Klein's 
father, who was influential in government circles, attempted to procure a letter 
of recommendation at the Prussian ministry which would help his son estab
lish relations with French and English mathematicians. But Felix received in 
reply an official letter expressing the Prussian officials' firm conviction that a 
German mathematician had nothing to learn from the French or the English. 
Klein did not like to recall the incident later, but whenever he did he spoke 
with extreme indignation about the chauvinism thus revealed. 

At the beginning of World War I, a group of leading German scientists, 
headed by the physicist Wilhelm Ostwald (1853-1932),3 1 1  issued a manifesto 
notorious for its anti-French and anti-British sentiments. Klein, a member of 
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the Chamber of Lords, refused to sign the manifesto. In the book so frequently 
referred to above, Vorlesungen iiber die Entwicklung der Mathematik, Klein 
points out with satisfaction the major contribution to German mathematics 
made by scientists of French origin (such as Pierre Lejeune Dirichlet) or Jewish 
origin (e.g., Gauss's constant rival Carl Jacobi). Concerning the previously 
mentioned Treatise on Substitutions by Jordan, Klein says that this outstand
ing book was written in a dull [langweilig] style-in the German manner 
rather than the French.31 2 

Klein's collected works in three volumes were published by his pupils in 
1918-1924 and were intended to mark the 70th birthday of Herr Geheimrat, 
as stated in the address opening the first volume, but were completed only in 
the year he turned 75. Many papers devoted to Klein were published in 
scientific journals on the appearance of these volumes and on the occasion 
of his seventy-fifth birthday. They were almost immediately followed by 
obituaries-Felix Klein died on July 22, 1925. 
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1 Galois was a conspicuous figure among the Parisian republicans dissatis
fied with the results of the July 1 830 Revolution, which had merely replaced 
the Bourbon dynasty (Charles X) by the Orleans one (Louis-Philippe). His 
first arrest was the result of a toast he proposed to Louis-Philippe at a 
republican banquet: Galois raised his glass and struck it with an open knife. 
This was justly perceived as a call to assassinate the king. One of the frightened 
guests was Alexandre Dumas pere, who escaped through an open window of 
the restaurant so as not to be forced to declare for or against the toast or its 
proposer. Galois's second arrest (leading to imprisonment) was prompted by 
his participation in a republican demonstration. He marched, fully armed, at 
the head of a mob of demonstrators, wearing the uniform of the disbanded 
Garde Nationale. 

On Galois see, for example, the book by Einstein's staff member, the Polish 
physicist Leopold lnfeld (1898-1969), Whom the Gods Love: the Story of 
Evariste Galois (McGraw Hill, 1948); a smaller book by A. Dalmas, Evariste 
Galois revolutionnaire et geometre (Paris, Fasquelle, 1956); or the detailed and 
definitive essay by the French historian P. Dupuy, "La vie d'Evariste Galois" 
(Ann. de !'Ecole Norm. Sup., 13 (2), 1 896, pp. 197-266). A chapter is devoted 
to Galois in the well-known book b-y the American historian and popularizer 
of mathematics Eric Temple Bell (1883-1960) Men of Mathematics, N.Y., 
Simon and Schuster, 1937; this also contains essays on some of the other 
personalities in the present book. Also see the following more recent articles, 
which present different viewpoints on Galois's life: T. Rothman, "Genius and 
Biographers: The Fictionalization of Evariste Galois," Amer. Math. Monthly, 
89 (2), 1982, pp. 84-106; T.R. Rothman, "The short life of Evariste Galois," 
Scient. American, 246 (4), 1982, pp. 136-149; R. Taton, "Evariste Galois and 
his contemporaries," Bull. London Math. Society, 15, 1983, pp. 107- 1 1 8. The 
most complete edition of everything written by Galois is E. Galois, Ecrits et 
memoires mathematique (editors: R. Bourgne, T.P. Azra), Paris, Gauthier
Villars, 1962. This book contains a brilliant article by J. Dieudonne on Galois's 
work. 
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2 It is said that when the examiner asked Galois what logarithms were, he 
simply wrote a geometric progression 

1, q, q2, q3, . . .  

and an arithmetic progression under it 

0, 1, 2, 3, . . .  

and pointed to the lower row. This answer was correct if rather laconic: the 
lower numbers are proportional to the logarithms of the upper numbers to 
any base. The examiner failed to understand what Galois had written and 
declared the answer unsatisfactory; the angry Galois responded by throwing 
a blackboard rag at him. 

3 For these and other details see the book by Infeld mentioned in Note 1 
or Dupuy's essay. It should be pointed out that the Ecole Normale, which 
subsequently raised its reputation considerably, now takes pride in Galois's 
short stay within its walls. This was one of the reasons why a long essay about 
Galois by Sophus Lie was included in a volume devoted to the tOOth anniver
sary of the Ecole Normale. 

4 The first, and for many years the only, document which referred to Galois 
as a mathematician was the official certificate attesting to the death on 
June 1, 1832, at noon, of"Evariste Galois, mathematician, unmarried, born in 
Bourg-la-Reine." 

5 In that age of political instability the range of political sympathies and 
affinities of French mathematicians was rather wide. Thus Lazare Carnot was 
a republican and Gaspard Monge a loyal Bonapartist (these names will be 
encountered below). For these scientists the restoration of the Bourbons was a 
personal calamity. Carnot was exiled while Monge was dismissed from all his 
posts and soon died. As noted above, Cauchy's political views were quite 
different-he was consistently conservative. In contrast to the three men 
mentioned above, the outstanding scientist Pierre Simon Laplace (1749-1827) 
was completely unprincipled and prospered under all regimes. 

6 Cauchy's collected mathematical works only began to appear in 1882; the 
edition, finally completed in 1958, includes 26 volumes. 

7 A major part was played here by Cauchy's works of 1844- 1846, which 
focussed on the notion of a group, the most basic concept in Galois's work 
(see below; Cauchy did not use the term "group"). Cauchy's prestige helped 
kindle interest in that range of questions; in particular, it brought about the 
publication in 1 846 of most of Galois's works by Joseph Liouville ( 1809-1882) 
in the mathematical journal which he edited. 

8 This refers, above all, to problems famous since the ancient Greeks: the 



140 Notes 

trisection of an angle (i.e. its division into three equal parts), and the doubling 
of a cube (i.e. the construction of the side of a cube whose volume is equal to 
double the volume of the cube with the given side). In the 19th century it was 
shown that these problems can not be solved by ruler and compass alone, 
because the cubic equations to which these problems reduce cannot be solved 
in quadratic radicals. The 1 6th century's leading algebraist, Fran�ois Viete (or 
Vieta in the Latin transcription; 1 540-1603) found that every cubic equation 
can be interpreted as corresponding either to the trisection problem for some 
angle or to the problem of constructing two geometric means between two 
given segments (i.e., of constructing two segments x and y such that x2 = ay, 
y2 = bx, where a and b are given; when b = 2a, this reduces to the problem 
of doubling the cube). 

9 In particular, the classification of cubic equations and the discussion of 
the number of, and bounds on, their roots were the subjects of a treatise 
by the outstanding Muslim mathematician (and great Persian poet) Omar 
Khayyam (1048-1 13 1). 

10 Division of the terms of the general cubic ax3 + bx2 + ex + d = 0 by 
a yields an equation of the form x3 + ax2 + Px + y = 0; further, the sub
stitution x = x1 - a/3 transforms the latter into xi + px1 + q = 0, where 
p = a3/3 + p, q = - a3/27 - aP/3 + y. 

1 1  At different times, this university (whose astronomy department alone 
had 16 professors by the end of the 1 5th century) was attended by Albrecht 
Diirer and Nicolas Copernicus, and, before them, by Luca Pacioli (ab. 1445-
ab. 15 15), one of the founders of Renaissance mathematics. Pacioli was the 
tutor and friend of Leonardo da Vinci. 

1 2 This mathematician's real name seems to have been Fontana; the nick
name Tartaglia (Italian for stammerer; it is also the name of one of the main 
heroes of Italian folk theatre-the plump, sanguine hare) was given to him 
because of a speech defect, the result of his having been wounded in the face 
in childhood during the occupation of his native town (Brescia) by the French. 
Poor, and brought up by strangers (his mother died in the same attack that 
disfigured him), Tartaglia revealed outstanding abilities at an early age and 
became a first-rate scholar. It was he who introduced the (restricted) binomial 
theorem, sometimes attributed to Newton: (a + x)" = a" + (i)a"-1 x + · · · + 
x" for any natural number n. Unknown to Tartaglia, the formula had been 
discovered earlier by Arab mathematicians. Newton extended it to arbitrary 
fractional exponents. 

13 An outstanding mathematician, naturalist, and philosopher, Cardano 
was typical of his stormy age. Famous for his scientific, medical, and literary 
achievements (see his absorbing autobiography, The Book of My Life, Dover 
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reprint, 1962), he was also an astrologist, a common adventurer, and perhaps 
a murderer; he introduced complex numbers and the first ideas of probability 
theory (see 0. Ore, Cardano: the Gambling Scholar, Princeton University 
Press, 1953; G. Cardano, The Book on Games of Chance, Holt, Rinehart and 
Winston, 1961). His life was filled with adventure and he had an explosive 
temper. It is said that having drawn up his own horoscope, Cardano com
mitted suicide in order to ensure that the day of his death was predicted 
correctly. 

14 Cardano's Artis magnae, sive de regulis algebraicis liber unus appeared in 
1 545 and was a major event in the history of algebra. (In those years, algebra 
was called ars magna as opposed to ars minor-arithmetic.) 

1 5 Tartaglia's idea was to represent the unknown root of equation (1 . 1) as 
the sum of two auxiliary quantities u and v; substitution of the expression x = 
u + v into (1 .1)  immediately leads to the equality (u + v)3 + (3uv + p)(u + v) + 
q = 0; therefore if u and v are taken such that uv = -pj3, then u3 and v3 may 
be found from the system u3 + v3 = - 9, u3v3 = -p3 /27. This system is 
obviously equivalent to the quadratic equation z2 + qz - p3 /27 = 0. In this 
way the solution of the initial cubic equation (1)  reduces to the solution of a 
quadratic equation. The latter might well be called Tartaglia's resolvent of the 
cubic equation ( 1 . 1). 

16 The values of the cube roots R1. 2 = [ -q/2 ± j(q/2)2 + (p/3)3 ] 1'3 on 
the right side of (1 .2) must satisfy R1R2 = -p/3 (see Note 15). 

1 7 For the dramatic story of the discovery of the formulas for solving cubic 
and quartic equations see, for example, H.-G. Zeuthen, Geschichte der Mathe
matik im XVI und XVII Jahrhundert, Leipzig, Teubner, 1903. 

1 8  Thus, for example, if p = - 1, q = 0, i.e., if equation (1 . 1) is of the form 
x3 - x = 0 (obviously the latter has the roots x1 = 0, x2, 3 = ± 1), then for-

mula ( 1.2) unexpectedly yields x = {./ J - 1/27 + {./ -J - 1/27 . 

19 In order to reduce the general quartic ax4 + bx3 + cx2 + dx + e = 0 or 
x4 + ocx3 + f3x2 + yx + [) = 0 to the form (1 .3), it suffices to put x = x1 - oc/4 
(cf. Note 10). 

20 "A rosy young man with a gentle voice, merry visage, tremendous abili
ties and the temper of a devil," according to Tartaglia's description in Questi 
et inventioni diversi ( 1546), which contains a detailed (though evidently biased) 
account of the discovery of formula (1.2). The pro-Cardano side of the story 
is told in the book Cartelli by L. Ferrari ( 1547-1548). The latter had first been 
Cardano's servant, but Cardano noticed his outstanding abilities and soon 
began to study with him. 
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21 There was a time in the memory of people of the older generation when 
the Middle Ages, also known as the Dark Ages, were regarded as a thousand
year gap in European culture. By now it is widely held that this viewpoint is 
untenable. What is clear to most of us is that medieval culture was based on 
principles other than those of ancient culture, and that the Renaissance built 
on the heritage of antiquity. In particular, mathematics was a serious concern 
of the leading thinkers of antiquity, Plato and Aristotle, and played a most 
important part in the investigation of the universe by ancient Greek philoso
phers, whose basic assumption, due to Thales of Miletus and Pythagoras of 
Samos (6th century B.C.), was that the laws of nature were knowable and that 
the universe was harmonious. Byzantine and medieval European culture were 
based on Christianity and differed in many respects from the pagan culture 
of Greece and Rome. Mathematics played no important part in it, and so 
progress in mathematics was modest over the centuries. The Renaissance 
marked a spiritual revolution in the history of European culture which again 
brought mathematics and the natural sciences to the forefront of European 
thought. 

22 In the 18th and early 19th centuries, the centers for mathematics and the 
natural sciences in Britain, France, Italy and in other countries were not the 
universities, which were preoccupied with philosophy, theology, and the hu
manities, but rather the military, engineering, and naval institutions of higher 
learning, (not quite appropriately) referred to here as military academies. 
Examples of the latter are, in addition to the Turin artillery school, the French 
military school in Mezieres (see Chapter 3) and the British royal military 
school in Woolwich, London. 

23 Leonhard Euler, the leading mathematician of the 1 8th century, was born 
in Basel (Switzerland) into the family of pastor Paul Euler. The conservative 
views and deep religious faith characteristic of his family assumed a rather 
naive form in Leonhard (as when he attempted to prove the existence of God 
mathematically). The mathematician Euler was to retain these views all his life. 

The Euler family was on close terms with the "mathematical" Bernoulli 
family. The elder of the Bernoulli brothers, Jacob ( 1654-1705) had, rather 
reluctantly, taught Paul Euler mathematics. Euler Sr. wanted his son to 
become a clergyman like himself and, conforming to his father's desire, Leon
hard diligently studied theology. However, unfortunately for himself and 
fortunately for the rest of humanity, Paul Euler also gave mathematics lessons 
to Leonhard; the latter turned to Johann Bernoulli ( 1667-1748), Jacob's 
younger brother, for help. Johann was amazed by Leonhard's rapid progress 
and aptitude. He agreed to teach him free of charge once a week. Leonhard 
devoted most of his spare time to mathematics, discussing his most recent 
lesson with Johann's sons, the future outstanding mathematicians Daniel 
Bernoulli ( 1700-1782) and Nikolaus Bernoulli ( 1695-1726), and preparing for 



Chapter 1 143 

the next lesson. With great difficulty, Johann Bernoulli persuaded Paul Euler 
that his son would make a great mathematician and that it would be a sin to 
hold back the development of his remarkable talent in order to make him into 
an ordinary pastor. 

At that time a mathematician could not count on a regular income in 
Switzerland. For example, Johann Bernoulli earned a living by medical prac
tice until the death of his brother Jacob, who held the only mathematics chair 
at Basel University. (Incidentally, Johann made the first attempts to apply the 
newly created differential calculus to the medical problems of muscle contrac
tion.) As for Johann's sons, they went to Russia, to the newly founded St. 
Petersburg Academy of Sciences. They suggested that their friend Euler follow 
their example and informed him of a vacancy in physiology at the academy. 
Euler industriously studied biology and medicine. However, when he arrived 
in St. Petersburg, he immediately began working in the mathematical sciences 
and never again returned to physiology, which was generally alien to him. (At 
one time, following the example of his tutor Johann, he intended to apply 
mathematical methods to physiology.) 

Euler spent most of his long life in St. Petersburg, except for the period 
between 1741 and 1766, when he decided that Russia, then ruled by Biren, a 
favorite of the reigning empress Anna Ioannovna, was no longer a safe place. 
At the invitation of Frederick II he moved to Berlin� where he headed the 
physics and mathematics department of the Prussian Academy of Sciences. 
But even during his stay in Berlin Euler did not break with Russia. He 
continued to publish papers in editions of the St. Petersburg Academy of 
Sciences and even received a small stipend from the Russian government. 

Euler was exceptionally prolific; it seems that no other scientist made a 
comparable contribution to mathematics (in volume and in content). We 
encounter Euler formulas, Euler theorems, and Euler relations in the differential 
and integral calculus, in differential equations, in the theory of functions of a 
complex variable, in the theory of series, in the theory of numbers, in geometry 
and, of course, in the calculus of variations (a branch of mathematics largely 
created by Euler and Lagrange). Euler published many long books and 
innumerable papers. He himself estimated that the articles unpublished in his 
lifetime (but ready for the press) would last the St. Petersburg Academy of 
Sciences for 20 years after his death. Actually, he underestimated his own 
legacy; publication continued until 1 862, four times longer than he had ex
pected. Even the blindness which affiicted him at the end of his life did not 
interrupt the stream of his works and apparently did not reduce his creative 
powers: he dictated his last works to his sons, pupils, and colleagues. 

Leonhard Euler passed away instantly and easily, in his 77th year. Blind, 
he wrote out on a blackboard his calculation of the orbit of the newly 
discovered planet Uranus; he then had some tea, and was playing with his 
grandson when the stroke came-the old mathematician "ceased to calculate 
and live," in the words of de Condorcet, who wrote his obituary in a publi-
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cation of the Paris Academy of Sciences (Euler was a member of the Paris 
Academy of Sciences and the London Royal Society, as well as the academies 
in St. Petersburg and Berlin). 

In Switzerland, just before World War I, it was decided to publish Euler's 
complete works. They were issued in a small number of copies, just enough 
for each country taking part in the undertaking to receive a copy. The number 
of(hefty!) volumes grew from an estimated 40 to 70. Then new notes and letters 
by Euler were discovered in Leningrad-and the number of volumes became 
greater still. The enormous and extremely valuable Collected Works have not 
been completed to this day, so the total number of volumes is still unknown. 

24 In his invitation to Lagrange the king of Prussia, Frederick II, who 
insisted on being called "the Great", wrote, overbearingly, that he would 
like the greatest of geometers to work near the greatest of kings (the word 
"geometer" meant mathematician then). 

Frederick II, who valued science highly and was well-disposed towards 
Lagrange, died in 1786. This immediately made Lagrange's position in Berlin 
intolerable. Matters were exacerbated by the fact that Lagrange had to so1ne 
extent exhausted the subject he had been working on during his stay in Berlin, 
and this led to a certain disenchantment with mathematics. All this resulted 
in a depression, which might have proved quite serious. Under the circum
stances, the invitation to Paris was a blessing for Lagrange. The new flourish
ing of his creative activity in the Paris period was linked to his public duties 
(in particular, his work with the commission which introduced the metric 
system), to his scientific and literary work (described below) and, especially, 
to his professorial post at the Ecole Polytechnique; this last he accepted at the 
suggestion of Napoleon, who held him in high esteem. At the Ecole Polytech
nique Lagrange found a circle of friends and people with the same interests 
(for example, he won the admiration of Jean Baptiste Joseph Fourier, 1 768-
1830, one of the pillars of the analytic trend); he also found new topics for 
research. His lectures on the calculus, delivered at the Ecole Polytechnique, 
were a major event in the history of mathematics and served as a springboard 
for the revision of its foundations by another Ecole Polytechnique professor
Augustin Cauchy. Another major event was the publication of Lagrange's 
textbooks on theoretical mechanics (Mecanique Analytique in two vo!umes, 
1788) and on the calculus (Theorie des fonctions analytiques, 1797; and Lq:ons 
sur le calcul des fonctions, 1 801). The principal ideas of , · -e Mecanique An
alytique date back to the Turin period in Lagrange's lue, but the book's 
publication was mainly due to the efforts of an outstanding mathematician 
and admirer of Lagrange named Adrien Marie Legendre (1752-1833). The 
book appeared before Lagrange became a staff member at the Ecole Poly
technique, in the period when he was still disillusioned with mathematics; 
Lagrange took so little interest in it that it remained unopened on his desk 
for two years. On the other hand, his two-volume calculus textbook (part one, 
Theory of analytic functions; part two, Lectures on the calculus of functions) 
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exactly followed Lagrange's lectures at the Ecole Polytechnique. In the very 
last years of his life Lagrange paid much attention to the publication of the 
Mecanique Analytique, which had previously left him indifferent. 

25 In modern terms (originating with Galois) Lagrange's theorem asserts 
that the order (i.e., number of elements) of any subgroup of a finite group is a 
divisor of the order of the group itself. Lagrange proved the theorem for what 
is known today as the symmetric group sn (of order n !)-the group of all 
permutations of n elements; but his proof holds for any finite group. 

26 The mathematicians who read the book (e.g., Poisson) found it unclear, 
perhaps because Ruffini's ideas were clearly ahead of their time. 

27 It is not for a man to know the fate awaiting his works! In his lifetime 
Malfatti tended to regard himself as Italy's foremost mathematician and 
looked down on Ruffini. Today, Ruffini is the pride of Italian science, while 
Malfatti's name is mostly mentioned only in connection with one minor 
problem in elementary geometry, which Malfatti stated incorrectly and solved 
in an extremely involved algebraic manner. Nowadays, the following is called 
the :'Malfatti Problem": in a given triangle ABC inscribe three nonintersecting 
circles SA, SB and Sc, each of which touches two sides of the triangle and the 
two other circles (circle SA touches the sides AB and AC of the triangle and 
the circles SB and Sc, and so on). By now there are many brilliant, purely 
geometric, solutions of this problem. One of the most beautiful is due to 
J. Steiner (of whom more will be said below). Actually, Malfatti's note Con
cerning a Space Geometry Problem stated a different question, which is easily 
reduced to the problem of finding in a given triangle ABC three nonintersect
ing circles with the largest possible total area. Malfatti took it for granted that 
the required circles are the circles SA, SB, and Sc described above. However, it 
was proved not long ago that there is no triangle ABC in which it is impossible 
to inscribe three nonintersecting circles whose overall area is greater than the 
total area of Malfatti's circles SA, SB, and Sc! 

28 On Abel see, for example, 0. Ore, Niels Henrik Abel: Mathematician 
Extraordinary, University of Minnesota Press, 1957, and the chapter devoted 
to him in the book mentioned in connection with Galois (E.T. Bell, Men of 
Mathematics). 

29 It is interesting that the very same mistake was made later by Galois, 
who also believed for a time that he had found a formula for solving fifth
degree equations. 

30 The special notation !:.,ra, for the kth root of a, and the fact that the 
extraction of the kth root is an operation inverse to raising to the kth power 
(i.e., iterating multiplication), hide what is actually meant by finding an 
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algebraic formula for the equation's roots. It means reducing the equation 
P(x) = 0 to a chain of auxiliary equations of the type yk - a = 0, where k is 
a positive integer (why must we reduce the initial equation to these particular 
equations?). It is not a priori clear that this can be done for an arbitrary 
polynomial P(x). Lagrange, Ruffini, Abel, and Galois were well aware of this 
circumstance which went virtually unnoticed before them. (Perhaps only the 
great Carl Friedrich Gauss, 1777-1855, realized it clearly. His research on the 
solution of algebraic equations in quadratic radicals was a major contribution 
to this trend in scientific thought.) 

3 1 Abel himself understood that shortcoming very well, pondering criteria 
for determining whether a given equation can be solved in radicals or not. 

32 The following quotation is a persuasive endorsement of this view: "I 
believe indeed that the concepts of number, set, function and group are the four 
cornerstones on which the entire edifice of modern mathematics rests and to 
which any other mathematical concept reduces" (P.S. Alexandroff, Introduc
tion to the Theory of Groups, Blackie/Hafner, 1959). Pavel Alexandroff(1896-
1982), an outstanding Soviet mathematician, contributed greatly to the early 
development of modern (general) topology; for more on this subject see below. 

For an elementary introduction to the theory of groups see F.J. Budden, 
The Fascination of Groups, Cambridge University Press, 1972; this book 
includes a detailed bibliography. 

33 See, for example, the following books and essays, generally intended for 
a reader more advanced than the one to whom the present book is addressed: 
J.E. Burns, ''The Foundation Period in the History of Group Theory," Ameri
can Math. Monthly, 20, 1913, pp. 141-148; H.L. Wussing, The Genesis of the 
Abstract Group Concept, MIT Press, 1984; H. Burkhardt, "Die Anfange der 
Gruppentheorie und Paolo Ruffini," Abhandlungen zur Geschichte der Mathe
matik, Heft 6, 1 892, S. 1 19-159; G.A. Miller, History of the Theory of Groups 
to 1900, Collected Works, Vol. 1, pp. 427-467, University of Illinois Press, 
1935. 

34 See Note 41  below. Ruffini's works in effect established a connection 
between the algebraic properties of an equation related to its solvability and 
certain properties of the permutation group of the equation's roots, later called 
intransitivity (i.e., nontransitivity; a transformation group <§ of some set M of 
elements is said to be transitive if for any two elements of M it contains a 
transformation which sends the first element into the second) and imprimitivity 
(i.e., nonprimitivity: a transformation group <§ of a set M is primitive on that 
set if there is no partition of M into "blocks" M1 , M2 , M3 , • • •  , different from 
M and from the partition into "single-element" blocks {IX}, {P}, {y }, . . .  , which 
are preserved by the transformations in <§, i.e., are such that for any block M; 



Chapter 1 147 

and any g E t§  we always have gMi = Mi, where Mi is also a "block". On this 
subject see the article by Burkhardt cited in Note 33. 

35 It is clear that if x = a + br and y = c + dr, where a, b, c, d EQ  
and r = .j2 or r =  i(=.j=t), then x ± y = (a ±  c) + (b ± d)r and xy = 
(ac + bdr2) + (ad + bc)r, where r2 = 2 or r2 = - 1; on the other hand, 
multiplying the numerator and denominator of the fraction xjy by the num
ber y* = c - dr, we obtain xjy = [(ac - bdr2)/(c2 - d2r2)] + [(ad + be)/ 
(c2 - d2r2)]r. Thus when y -#  0( = 0  + Or) the ratio xjy also has the form 
A + Br, where A, BE  Q (note that when c, d E  Q, the relation c2 - d2r2 = 0 
holds only if c = d = 0). 

36 The first description of Galois theory in monograph form was Jordan's 
book mentioned earlier. One of the best popular accounts in Russian was 
written by M. Postnikov (see the English translation: M. Postnikov, Founda
tions of Galois Theory, Oxford University Press, 1962); for a more advanced 
presentation, see, for example, E. Artin, Galois Theory, Notre Dame, 1948. 

37 In Moscow University's mathematics department, the Galois Theory 
course was taught for a number of years by the outstanding algebraist (who 
also specialized in the theory of numbers and discrete geometry) Boris Delonay 
(1890-1980). The course followed exactly Galois's letter to his friend Auguste 
Chevalier, written just before Galois's death. The letter is only about ten 
printed pages long, but the course based on it, in which the lecturer gave 
rigorous definitions of all the concepts and presented all the proofs Galois left 
out for lack of time, required a full academic year. Galois's complete works 
constitute a very slim volume ((Euvres mathematiques, Paris, Gauthier
Villars, 1 897. See also Note 1); it was issued on the initiative of the Societe 
Mathematique de France and edited by the highly regarded Emile Picard 
(1856-1941). 

38 Two elements IX, {3 in a group t§ (for example, two permutations) commute 
if IX{3 = {31X or IX-1 p-1 1X{3 = e, where e is the identity element of t§ (the identity 
permutation). The element [1X{3] = IX-1 p-1 1X{3 is called the commutator of IX 
and {3. The subgroup fZ = fe(t§) of the group t§ generated by all commutators 
[1X{3], where IX, {3 E t§, is called the commutator subgroup of t§; its "size" serves 
as a "measure of commutativity" oft§ (if t§ is commutative, then the commuta
tor subgroup fZ consists of the single element e). For the commutator sub
group fZ = f£1 of t§ we can form its commutator subgroup f£2 = fe(f£1) = 
fe(fe(t§)) (the second commutator, or the commutator of the commutator of 
t§); the third commutator f£3 = fe(f£2 ) is formed in the same way, and so on. 
The group t§ is called solvable if its sequence of commutator subgroups 
t§ :::J f£1 :::J f£2 :::J f£3 :::J · · · ends with the identity element e of the group: {e} = 
fen (for a commutative group this condition holds trivially, and n = 1). Other 
definitions of a solvable group use the concept of a group's normal series, 
introduced by Jordan; see Note 49. 
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39 The fullest review which Galois could make of what he had done in the 
theory of equations was in the letter to his friend Auguste Chevalier, men
tioned in Note 37, written on the eve of the duel: Galois spent that night 
writing the letter. Time, wrote Galois, was running short. He had kept what 
he was putting down on paper in his head for about a year, but lacked the 
opportunity to set it down in greater detail. He was aware and afraid that he 
would be accused of stating theorems for which he did not have full proofs. 
The letter ended with the request that it be published in the Revue encyclope
dique (Chevalier carried out this last wish, but, obviously, the item was not 
understood by anyone at the time and was ignored) and to ask Jacobi or Gauss 
to appear in public, not to state whether the theorems are correct, but to 
appraise their importance; after that, Galois hoped, people would be found 
who would clear up ce gachis. However, there is nothing to show that Jacobi 
or Gauss ever learned about Galois's ideas, and the first person to seriously 
undertake to clear up ce gachis was Camille Jordan, who is often considered 
(unjustly, I think) to be the real author of Galois theory, since Galois's own 
exposition was undoubtedly defective. 

40 Of course, Cayley's tables "begin" with such a row and column only if 
the group's elements begin with the identity element e. Since this need not be 
the case, it would be more correct to say that these tables include such a row 
and column. 

41 The considerable progress achieved by Galois (as compared with Ruffini 
and Abel) was largely due to the fact that he did not consider commutative 
groups only (we note that the equations solvable in radicals considered by 
Abel can nowadays be characterized by the commutativity of their Galois 
groups (and by certain additional conditions); according to the definition in 
Note 38, any commutative group is certainly solvable). 

42 It is easy to see that, apart from notation, there is only one group of order 
two and only one group of order three (both groups are commutative). But 
there are two (very different) groups of order four, namely, the groups (1 .6) (or 
(1 .6')) and (1 .7) (or 1 .7')); the first is called the "cyclic" group (of order four) 
and the second the Klein group. The number of groups of order N grows quite 
rapidly with N: thus, for example, the number of different groups of order 2, 
4, 8, 16, 32 and 64 is equal to 1, 2, 5, 14, 51 ,  and 267 respectively. The interest 
in "finite" objects, typical of present-day mathematics, is illustrated by a 
monograph by the well-known American algebraist Marshall Hall, Jr. and his 
colleague K. James, Sr., published in 1964 and containing a detailed descrip
tion of all these 340 ( = 1 + 2 + 5 + 14 + 51 + 267) groups (see M. Hall, Jr., 
K. James, Sr. The Groups of Order 2n(n � 6), N.Y., MacMillan, 1964). 

43 The permutation (f, [2 f, : : :  iJ is called even (odd) if the finite sequence i1 , 
i2, i3 , . . . , in of natural numbers obtained by rewriting the initial numbers 1,  
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2, 3, . . .  , n in a  different order contains an even (odd) number of transpositions, 
i.e., pairs (ia, ib) of numbers appearing in the "wrong order" (as compared with 
their natural order): pairs (ia, ib) such that a < b but ia > ib. 

44 On the structure of groups of isometries and similitudes see, for instance, 
the very elementary books I.M. Yaglom, Geometric Transformations I, II, N.Y., 
Random House, 1962, 1968, volumes 8 and 21 in the New Mathematical 
Library series, the slightly more advanced, but accessible, book G.E. Martin, 
Tranformation Geometry, N.Y. Springer, 1982, and a book, also meant for 
beginners, which makes rather wide use of the terminology and notations of 
group theory, M. Jeger, Transformation Geometry, London, Allen and Unwin, 
1966. 

45 Recent decades have been marked by a veritable assault on the topic 
of finite groups, involving a wide use of computers by a large number of 
researchers. This peculiar boom (see Note 42) is a very good illustration of the 
switch, characteristic of the second half of the 20th century, from "continuous" 
mathematics (the differential and integral calculus of Newton and Leibniz) to 
"discrete" mathematics; this switch is closely linked to the appearance of 
computers, devices which are discrete in principle. No topic in the theory of 
finite groups is as important as that of the mysterious subject of finite simple 
groups (see Note 260). 

46 Often the definition of a field does not include the requirement that 
multiplication be commutative, and then the multiplicative group of the field, 
consisting of all the nonzero elements, can be nonabelian (non-commutative); 
if the multiplicative group is commutative, then the field is also called commu
tative. If the field is not commutative, then two distributivity conditions are 
required: 

a(b + c) = ab + ac and (a + b)c = ac + be. 

4 7 The elements of a two-element field can be represented as "even" (0) and 
"odd" (1)  numbers; then the addition and multiplication tables of the field 
reflect rules of operation with integers such as: even x even = even, and so 
on. More generally, a field with p elements, where p is a prime, can be 
represented as the set 0, 1, 2, . . .  , p - 1 of residues modulo p, i.e., the set of 
classes of integers characterized by the remainder in the division of its elements 
by p. (If p = 2, then we arrive at the classes of even and odd numbers.) The 
sum a + b and the product ab of elements in the field coincide with the 
respective remainders in the division by p of the arithmetical sum a + b and 
product ab. 

48 Its continuing scientific importance was reaffirmed by the reprinting of 
that classic in 1957 by the Paris publishing house Gauthier-Villars, which 
first issued it in 1870. 
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49 The Jordan-Holder theorem (Otto Holder, 1859-1937, was a German 
mathematician) asserts that the number of terms in a normal series (of which 
it is natural to require maximal "compression" in the sense that (a) any two 
adjacent terms of the series are distinct; and (b) no intermediate group f§ can 
be inserted between two consecutive groups f§; and f§i+1 in the series (a chain 
f§; => f§ => f§i+l would increase the number of subgroups in the normal series 
by one)) is completely determined by the initial group and not by the choice 
of the normal series, which can in fact be chosen in different ways even if our 
additional conditions are fulfilled. If the factors (already "co�pressed to the 
utmost") of the normal series are abelian (commutative), then the group is 
solvable. 

Chapter 2 

50 Of course, the objects considered in differential geometry (curves, sur
faces) must be "smooth," i.e., must be determined analytically by smooth 
(differentiable) functions, otherwise the methods of the calculus cannot be 
applied to them. 

5 1 His appearance being so close to the type admired by the German Nazis, 
Lie might perhaps have been admired by Hitler but the sympathy would 
hardly have been mutual. 

52 This episode is described in greater detail in the last chapter of the book. 

53 It is curious that, unlike Klein, the Italian mathematician Federigo 
Enriques (1871-1946), a well-known expert on the foundation of geometry 
who was slightly younger than Klein and also graduated from a classical 
gymnasium, regarded the study of ancient languages, and, in particular, of an
cient Greek grammar, as a very important element of education, instrumental 
in the development of logical thinking. Apparently Enriques did not think 
that the geometry taught in Italian schools could develop logical thinking! 

54 A monument to Gauss and Weber was unveiled in Gottingen in 1 899; 
it shows them working jointly on the invention of the telegraph. A special 
memorial volume was published on the occasion. It contained two long 
papers: D. Hilbert, The Foundations of Geometry (regarded as continuing 
Gauss's research) and E. Wiechert, The Foundations of Electrodynamics (a 
continuation of Weber's work). Today, the latter has been almost completely 
forgotten, while Hilbert's work was reissued almost immediately as a separate 
book, which has now gone through more than ten continuously improved 
editions in German, has been translated into practically all European lan
guages and seems destined to live a long and glorious life. From the standpoint 
of the psycho-physiological differences between Weierstrass and Klein (as well 
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as between Weierstrass and Riemann; see below) it  is  only natural that Weber 
was on friendly terms with Klein and Riemann, both very "physics-minded" 
scientists. 

55 Things are slightly different in the case of hieroglyphic writing, which is 
more like a picture; this, however, is not the place to deal with the relevant 
details. 

56 The lecture in question is "Topologie und abstrakte Algebra als zwei 
Wege mathematischen VersHindnisses." It was read by Weyl in 193 1 (he was 
then a Swiss gymnasium teacher) and published in U nterrichtsblatter fiir 
Mathematik und Naturwissenschaften, Bd. 38, 1933, S. 177-188; reprinted in 
H. Weyl, Gesammelte Abhandlungen, Bd. 3, Heidelberg, Springer, 1968. 

57 See, for example: I.M. Yaglom, Hermann Weyl, Moscow, Znaniye Pub
lishers, 1967 (in Russian). 

When Weyl's paper was written, topology was definitely considered a part 
of geometry; opposing abstract algebra to topology in the title was the same 
as contrasting algebra with geometry. But, in the second half of the century, 
topology largely changed its character (this is reflected in the term "algebraic 
topology," designating one of the most important parts of the science); this 
undermined some of the most geometrically-minded researchers in topology 
and, in some cases, even resulted in serious psychic disorders. 

58 Further grounds for that antipathy were provided by the fact that 
Leibniz, who valued Newton highly as a mathematician, underestimated his 
achievements in physics, of which Newton was particularly proud. 

59 And equally successful: accepted to the physics department by Plucker 
to prepare for research in physics, Klein became an outstanding mathema
tician. Sommerfeld, who was asked to be an assistant in the mathematics 
department, subsequently became famous as a physicist. Of course, this did 
not prevent Klein and Sommerfeld from being grateful to their respective 
teachers throughout their lives, and from acknowledging how much they owed 
them. 

60 The issue of the journal in which the article was published was entirely 
devoted to Felix Klein. Let us quote a few more sentences from the same 
article, in which Sommerfeld very vividly describes his tutor's style of thinking 
and teaching: " . . .  his conclusions made his thoughts stand out in bold relief. 
His thoughts but not his calculations. The latter played a very modest part in 
Klein's lectures. It was one of the points in which his approach came close to 
Riemann's way of thinking. He defined functions by their properties, regardless 
of their formal representation; the formula was not the basis, but only the 
source of mathematical knowledge!" 
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61 Paradoxically, only recent research in psychology concerning the differ

ent functions of the left and right hemispheres of the brain sheds light on the 
difference between algebraic and geometric thinking, their complementary 
nature and their equal importance in the cognition of reality. And, of course, 
it would be completely incorrect to imagine ancient Greek mathematics as 
pure geometry and the mathematics of the Renaissance as pure algebra: it is 
only a question of one or another trend prevailing, and tentatively at that, 
because there can be a purely algebraic approach to geometric problems (more 
will be said about this in connection with projective geometry) as well as a 
geometric approach to algebraic subjects. The importance attached to the 
concept of(natural) number in the school of Pythagoras ofSamos (6th century 
B.C.), the number mysticism characteristic of that school and its odd reflec
tions in the later works of the neo-Pythagoreans- The Arithmetic (or I ntro
duction to Arithmetic) by Nicomachus of Gerasa (circa 100 A.D.), On the 
Arithmetic of Nicomachus, a work by a Syrian Christian, Iamblichus ofChalcis 
(about 250-about 330 A.D.) commenting and continuing Nicomachus-all 
this contradicts the view of Greek mathematics being pure geometry. Even 
Euclid's Elements, with which our idea of ancient mathematics is primarily 
associated, includes much brilliant material in number theory (like the proof 
that the sequence of prime numbers is infinite), mostly derived from the 
Pythagoreans. Above all, the most brilliant figure in the Greek mathematics 
of the Roman period was Diophantus of Alexandria (most likely 3rd century 
A.D.), whose interests focussed exclusively on arithmetic and algebra. 

62 One of the consequences of Pascal's geometric works being ahead of their 
time and quickly forgotten was the irremediable loss of Pascal's treatise on 
the theory of conic sections, a treatise admired by Leibniz, who had urged 
Pascal's heirs to publish that work (unfortunately, this was not done). Un
like Leibniz, Rene Descartes (1596-1650) underestimated Pascal's geometric 
works. This was one of the reasons for the tense relations between Descartes 
and the group of scientists around Blaise's father, Etienne Pascal ( 1588-1651) 
and Gilles Personne (who called himself de Roberval, 1602-1675), the group 
from which the French academy of sciences subsequently arose (and, even
tually, l'Institut; see Note 65). The intellectual conflict between Descartes and 
Pascal is sometimes explained by the intrinsic incompatibility of Descartes's 
formal algebraic thinking with Pascal's "physical" thinking. Yet the great 
logician Leibniz welcomed Pascal's works enthusiastically (in this connection 
see the main text on Weierstrass's attitude to Riemann). 

63 Thus, for example, Euler introduced the study of a figure's affine proper
ties, and so initiated affine geometry. (The term "affine" is also due to Euler 
and derives from the Latin affinitas-relation by marriage-Euler sought to 
emphasize that although a figure and its affine image are not, strictly speaking, 
similar, they are, nevertheless, related.) 
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64 The decline of interest in geometry characteristic of the 20th century, 
which has relegated it to the position of a second-rate science, led to a 
paradoxical situation: for a time, the five-year course at the Mathematics 
department of Moscow University did not include a single compulsory geo
metric subject (except for a preliminary course in analytic geometry in the first 
semester). This also is to blame for the worldwide confusion concerning the 
teaching of geometry in secondary school, which has led to numerous pro
posals to abolish geometry in secondary school altogether (this viewpoint was 
vigorously supported in the introduction to Jean Dieudonne's Algebre lineaire 
et geometrie elementaire (Paris, Hermann, 1968)). 

65 The hard times in which Carnot lived and worked were clearly reflected 
in the abrupt changes in his position within the French scientific hierarchy. 
In the years of the revolution, as a member of the Committee for Public 
Salvation (in effect the revolutionary government of France), Carnot took an 
active part in organizing the new scientific center, L'Institut, which replaced 
the Royal Academy of Sciences. When the Institut was finally set up in 1796, 
he naturally became one of its members. But by then his position was very 
precarious (this applies to the period after the Thermidor coup d'etat, when 
only the honorary title of "organizer of victory" saved him from trial and 
death). In the very next year, 1 797, Carnot was expelled from the Institut which 
he had founded, and was replaced by a young general-Napoleon Bonaparte. 
In 1 800 Napoleon, seeking reconciliation with Carnot, reinstated him at the 
Institut, and although Carnot's sharp criticism of Napoleon's adopting the 
title of Emperor spoiled his relations with the new ruler, he still remained a 
member of the Institut during Napoleon's entire rule. After Napoleon abdi
cated, the fiery republican Carnot headed a Directoire which assumed full 
power for a short period of time, attempting to organize resistance against the 
interventionist forces in France. Naturally the Bourbons never forgave him 
these actions. Once again, he was expelled from the Institut (as was Monge, 
in 1 816) and sent into exile; he died abroad (in Magdeburg). 

66 Typically, the officers who proposed the problem refused at first to 
consider Monge's solution, being certain that his mathematical training was 
insufficient for solving it. 

67 Monge's role in the founding of the Ecole Polytechnique was such that 
he could later tell one of his pupils, with good reason: "I created the school 
as I deemed necessary." Monge also took part in the setting up of the Paris 
Ecole Normale for the training of future teachers (see above) but here his role 
was minor; this is probably why the Ecole Normale was initially far behind 
the Ecole Polytechnique. 

68 It is only natural that Klein should have pflid a great deal of attention 
to the Ecole Polytechnique in his Vorlesungen uber die Entwicklung der Mathe
matik im XIX Jahrhundert (Teil 1, Heidelberg, Springer, 1979; we shall re-
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peatedly return to his remarkable book below). Chapter 2 of Klein's book is 
entitled "France and L'Ecole Polytechnique in the First Decades of the 19th 
Century," and begins with a section on "The Rise and Organization of the 
School" which describes the principles underlying the institution and its 
curricula. Chapter 3 of Klein's book, "The Flourishing of Mathematics in 
Germany," begins with an introduction called "An Attempt to Create a 
Polytechnical School in Berlin;" here Klein sadly describes the unsuccessful 
endeavor to carry over the French experience to German soil: Alexander von 
Humboldt's (1769-1859) attempt to set up a German counterpart of the Ecole 
Polytechnique to be headed by Gauss. The attempt failed through Gauss's 
refusal to take part. After lengthy discussions, efforts to create an alternative 
school for the training of mathematics teachers for the higher forms of the 
gymnasium (similar to the Paris Ecole Normale) were also abandoned. This 
was due to the death of Abel, who was to have been the leading mathematician 
there. 

69 The original name of the descriptive geometry course was Texte des 
lerons de geometrie descriptive donnees a /'Ecole N ormale, the original title of 
the course in differential geometry was Feuilles d'Analyse appliquee a Ia 
geometrie a / 'usage de /'Ecole Polytechnique; the first edition consisted of 28 
feuilles, the second of 34 feuilles (in the 3rd and 4th editions the feuilles were 
stitched together and therefore entitled Analyse appliquee a la geometrie). 

70 It was at this time that Monge succeeded in persuading Napoleon to visit 
the Ecole Polytechnique, his pride and joy, for the first (and last) time. 

7 1 Poncelet's only substantial contribution to science and pedagogy after 
the appearance of the Traite was the publication of his Cours de M ecanique 
( 1826) based on his lectures at the Ecole Polytechnique; this outstanding book 
played a major role in the further progress of mechanics. 

72 See, for example, Chapter IV in R. Courant and H. Robbins, What is 
Mathematics? London, Oxford University Press, 1948; or Chapter 6 in H.S.M. 
Coxeter and S.L. Greitzer, Geometry Revisited, N.Y., Random House, 1967; 
or H.S.M. Coxeter, Projective Geometry, Waltham (Mass.), Blaisdel, 1964; J.W. 
Young, Projective Geometry, 1938; H.S.M. Coxeter, Introduction to Geometry, 
N.Y., Wiley (Chap. 14); G. Ewald, Geometry: an Introduction, Belmont (Calif.), 
Wadsworth, 1971 (Chap. 5); D. Pedoe, A Course of Geometry for Colleges and 
Universities, Cambridge, Cambridge University Press, 1970 (Chap. 7); D.J., 
Struik, Lectures on Analytic and Projective Geometry, Cambridge (Mass.), 
Addison-Wesley, 1953; H.S.M. Coxeter, The Real Projective Plane, Cam
bridge, Cambridge University Press, 1955 (the books are listed in order of 
increasing difficulty). The following articles may also serve as elementary 
introductions to projective geometry: G. Pickert, R. Stender, and M. Hellwich, 
"From projective to Euclidean Geometry" in Fundamentals of Mathematics, 
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Vol. II (Geometry), The MIT Press, 1974, pp. 385-436 and I.M. Jaglom and 
L.S. Atanasjan, Geometrische Transformations in: Enzyklopiidie der Elementar
mathematik, Bd. IV (Geometrie), Berlin (DDR), Deutscher Verlag der Wissen
schaften, 1980, S. 43-151  (cf. the book mentioned in Note 73). The following 
(brilliant) books are quite different: F. Klein, Vorlesungen iiber hOhere Geome
trie, Heidelberg, Springer, 1968 and W. Blaschke, Projektive Geometrie, Basel, 
Birkhauser, 1954. 

73 The study of the invariant properties of figures under parallel projection 
is a necessary element of Monge's descriptive geometry. Such an approach to 
affine geometry, and a similar approach to projective geometry, based on 
central projection, are consistently applied in I.M. Yaglom, Geometric Trans
formations III, N.Y., Random House, 1973, the beginning of which can serve 
as an introduction to affine geometry. See also Chapter 13  ofH.S.M. Coxeter's 
Introduction to Geometry mentioned in Note 72 and books by I.M. Yaglom 
and V.G. Ashkinuze (see Note 268). 

74 Apparently Gergonne and Poncelet discovered the duality principle 
independently and proved it in different ways. Gergonne believed that the 
duality principle holds because of the complete symmetry between the basic 
properties of points and lines (which he stressed by writing statements dual 
to each other in two columns, graphically demonstrating the parallelism). 
Today we can refer to the "self-duality" of the axioms of projective geometry, 
which automatically implies the duality principle. But the logical structure of 
geometry was not so clearly understood in Gergonne's time, and a complete 
list of axioms had not yet been drawn up. As for Poncelet, he proved the 
duality principle by showing the existence of a "dual" or "polar" transforma
tion, briefly, a polarity, sending each point of the plane (proper or at infinity) 
into a line, and any set of collinear points into a sheaf of (concurrent, i.e., inter
secting in one point, or parallel) lines. A polarity maps the configuration 
associated with each theorem to the configuration associated with its dual. If 
we proceed from the model of the projective plane as the sheaf of lines and 
planes passing through a fixed point 0 of space, then the correspondence 
l .._.. n, where I ..L n (the line I and the plane n pass through 0), is a polarity. 
The properties of polarities of the (projective) plane are analyzed in detail, for 
example, in the article by Yaglom and Atanasjan and the book by Yaglom 
mentioned in Notes 72 and 73. For another proof of the duality principle, due 
to Mobius, see Note 8 1  below. 

75 Characteristically, in the context of the declining interest in geometry 
mentioned previously (see also Note 64), projective geometry largely retained 
its position because of its close alliance with algebra; as a result it is possible 
to regard modern projective geometry as a branch of algebra rather than 
geometry. On this see the classical works of R. Baer, Linear Algebra and 
Projective Geometry, N.Y. Academic Press, 1952 and E. Artin, Geometric 
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Algebra, N.Y. Interscience, 1957, as well as the textbooks of R. Hartshorne, 
Foundations of Projective Geometry, N.Y., Benjamin, 1967; R. Artzy, Linear 
Geometry, Reading (Mass.), Addison-Wesley, 1965; E.W. Stevenson, Projective 
Planes, San Francisco, Freeman, 1972; K.W. Gruenberg and A.J. Weir, Linear 
Geometry, Princeton (N.J.), van Nostrand, 1967; G. Pickert, Projektive Ebenen, 
Berlin, Springer, 1955 (Hartshorne's textbook is the easiest of these). 

76 It is undoubtably to Chasles's credit that he was the first fully to appre
ciate the works of Descartes and Pascal, which had been forgotten by that 
time. It is an indication of the abnormal relations between the founders of 
projective geometry that Poncelet considered Chasles's book as hostile to him: 
he regarded the appraisal of works by 17th-century scholars as a means of 
playing down his own achievements. 

M. Chasles, the head of the geometry department of the famous Ecole 
Polytechnique, was the first French mathematician whom Lie and Klein 
visited in Paris. The elderly Chasles (then 77) was quite friendly to the two 
young foreigners and appreciative of their work: as an lnstitut member, he 
presented their joint paper on W-curves (to which we will return below), 
as well as Lie's important article "On Geometric Transformations," to the 
Comptes Rendus of the French Academy. 

77 See M. Chasles, Traite de la geometrie superieure, Paris, 1852. 

78 In his remarkable lectures on the development of mathematics in the 
19th century (see Note 68), Klein compares Chasles with Steiner, the head of 
the synthetic school in German geometry. These two are indeed similar in 
some respects: both were exceptionally hard working, prolific and rather 
ill-tempered; both became professors relatively late, but immediately became 
heads of mathematical schools, which they supervised rather stringently, and 
so on. 

79 Lacking any interest in people and any desire to support young talent, 
Gauss-who offended both Bolyai and Abel by saying about their respective 
works that praise for them would be immodest, in that he had come to the 
same thoughts himself a long time before-lacked the ability to perceive the 
potential of young scholars. He sought to direct Mobius to astronomy and 
to computational mathematics; just as unreasonably, he attempted to direct 
another outstanding geometer-von Staudt-to algebra and to the theory of 
numbers. 

80 Mobius's paper on one-sided surfaces was called On the Volume of 
Polyhedra. Discussing the volume problem, Mobius concluded that some 
polyhedra, e.g., the one now known as the Mobius heptahedron (obtained 
from a regular octahedron EABCDF with opposite vertices E and F by 
removing the two "upper" faces EAB and ECD and two "lower" faces FAD 
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and FBC, but then adding the three diagonal faces EAFC, EBFD and ABCD) 
cannot be assigned any volume at all, and carefully analyzed the reasons for 
this phenomenon. We note that the Mobius strip was independently dis
covered in Gottingen by Johann Benedict Listing ( 1808-1882) in the same 
year ( 1858). This clearly points to the objective nature of the development of 
mathematics, in which discoveries are made "when the time has come" and 
very often independently by several scholars at the same time. 

8 1 The new approach to projective geometry shed new light on the duality 
principle. Mobius interpreted that principle in the following way. In the 
equation a0x0 + a1x1 + a2x2 = 0 of the line a it is natural to consider the 
numbers a0, a1 , a2 as (fixed!) coefficients of the equation and the numbers x0, 
x1 , x2 as (variable) coordinates of the point X =  (x0 : x1 : x2) on the line a. 
Since the line a is completely determined by the coefficients a0, a1 o a2 of 
its equation (more precisely, the ratio of these coefficients, a0 : a1 : a2), the 
numbers a0, a1 , a2 can be viewed as coordinates of the line a = (a0 : a1 : a2) 
(Mobius called them tangential coordinates). But, conversely, we can regard 
the numbers x0, x1 , x2 in our equation as fixed and a0, a1 , a2 as (variable) 
tangential coordinates of lines. '!hen the set of all lines a = (a0 : a1 : a2) whose 
coordinates satisfy the linear equation a0x0 + a1 x1 + a2x2 = 0 with the co
efficients x0, x1 , x2 is the set of lines in the projective plane passing through 
the fixed point (x0 : x1 : x2). Thus the same equality is now regarded as the 
equation of a sheaf of lines with center at (x0 : x1 : x2), i.e., as an equatio� of 
a point of the projective plane in tangential coordinates. Finally, if the numbers 
x0, x1 , x2 and a0, a1 , a2 are viewed as fixed, then the same relation between 
these numbers is a condition for the incidence of the point X and the line a: 
XEa�a0x0 + a1x1 + a2x2 = 0. It is this symmetry of the analytic (coor
dinate) interpretation of the concepts "point of the projective plane" and "line 
of the projective plane" which proves the equivalence of the properties of 
points and of lines. 

82 On circle geometry (Mobius geometry) see, for example, Chapter 5 of the 
book by Coxeter and Greitzer in Note 72; Chapter 5 of Ewald's book; Chapter 
6 of Coxeter's Introduction to Geometry; Chapter 6 of Pedoe's book; and part 
A of the article by I.M. Jaglom, Geometrie der Kreise in the Enzyklopiidie der 
Elementarmathematik, Bd. IV (S. 459-488). 

83 Thus, for instance, in connection with projective transformations Steiner 
(and virtually hundreds of authors after him) speak of Gebilde erster, zweiter 
und dritter Stufe where it would be natural to speak about one-dimensional, 
two-dimensional, and three-dimensional manifolds. 

84 Even Klein, who did more than anyone else to popularize and propagate 
Staudt's ideas, admitted that these books were difficult for him to understand. 
Only his friendship with Otto Stolz ( 1842-1905), a mathematician close to 
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Staudt in spirit, who explained Staudt's ideas to Klein, enabled him to appre
ciate these outstanding works (which Klein himself, however, never read!). 

85 The discovery of cathode rays was completed (under PlUcker's guidance) 
by his pupil Johann Wilhelm Hittorf (1 824-1914). 1t is also to be noted that 
Plucker was the founder of spectral analysis (in physics). 

86 A systematic account of that theory is contained in Steiner's long book 
(which unfortunately was published only posthumously) Die Theorie der 
Kegelschnitte gestiitzt auf projektive Eigenschaften, Leipzig, Teubner, 1 867; 
3rd edition, 1 898). 

87 Here is Steiner's definition: consider two sheaves of lines (with different 
centers Q and Q') such that these sheaves can be obtained from one another 
by a chain of central projections; then the set of points at which corresponding 
lines of the sheaves intersect constitutes a (possibly degenerate) conic section. 

88 A short but essentially complete and understandable account of von 
Staudt's ideas is given by Klein in Chapter V of his Vorlesungen iiber nicht
euklidische Geometrie (Heidelberg, Springer, 1968) published posthumously. 
A more detailed description of these ideas, reflecting more fully their inner 
perfection, is given in Chapter VIII of Young's little book Projective Geometry, 
mentioned in Note 72. 

89 Let line a be the intersection of two planes 

A1x + A2y + A3z + A0 = 0, 

B1 x + B2y + B3z + B0 = 0; 

in this case, the second-order minors of the matrix t1: �� �; �g), i.e., the numbers 

IA1 A2 1 IA1 A3 1 IA1 Ao j 
P1 2 = 

Bl Bz 
, P1 3 = Bl B3 ' Plo = Bl Bo ' 

IA2 A3 1 Pz3 = 
Bz B3 ' 

are called the Plucker coordinates of a. It is not difficult to see that the numbers 
p12 , . . .  , p30 are determined by the line a up to a common factor, so that the 
point A(p12 .: p 1 3 : p1 0 : p23 : p20 : p30) in five-dimensional projective space P5 
corresponds to a; the Plucker coordinates of any line satisfy the Plucker 
relation: 

P1 2P3o - P1 3Pzo + P1oP23 = 0, 

which determines the so-called PlUcker quadric 1: in P5; the points of 
this (four-dimensional!) surface correspond bijectively to the lines in three
dimensional projective space. 
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90 Among Greek geometers, Claudius Ptolemy (c. 100-c. 170 A.D.) paid 
particular attention to spherical geometry; his principal work The Large 
Mathematical Construction in Thirteen Books, better known under the Arabic 
title Almagest (from the Greek f.leyun:tf, "the greatest," as the Arabs judged 
Ptolemy's work), begins with a detailed account of the plane and spherical 
geometry needed for subsequent studies, including the elements (largely worked 
out by Ptolemy himself) of plane and spherical trigonometry. 

9 1 It was this fact, involving the history of mathematics and not at all 
mathematics itself, which explains the exceptional popularity of hyperbolic 
geometry. Innumerable books and articles have been devoted to it (see Note 
1 16; there are even several Russian books on so exotic a subject as the theory 
of geometric ruler and compass constructions in the Lobachevskian plane!). 
Other equally important and, in many cases, simpler geometric non-Euclidean 
systems (some of which will be dealt with below) have been accorded much 
less attention in the scientific and popular literature and in textbooks. 

92 G. Nobeling's recent book on non-Euclidean geometry (see Note 1 16) 
includes F.K. Schweikart among the discoverers of hyperbolic geometry; this 
is an unusual point of view, but it cannot be rejected as completely groundless. 

93 See, for example, E.T. Bell's book mentioned in Note 1 (the chapters on 
Gauss, Lobachevsky, and Bolyai) and other books on the history of mathe
matics. Of the latter we mention only some of the most substantial, such as, 
Morris Kline, Mathematical Thought from Ancient to Modern Times, N.Y., 
Oxford University Press, 1972 (Chapter 36); the classical work ofF. Engel and 
P. Stiickel, Die Theorie der Parallellinien von Euklid bis auf Gauss, 2 Vols., 
Leipzig, Teubner, 1 895; books on Lobachevsky's non-Euclidean geometry, 
some of which contain a detailed history of the issue (see, for example, M.J. 
Greenberg's book mentioned in Note 1 16 and subtitled Development and 
History); Russian books by V.F. Kagan (an English translation of one of 
them is currently available: V.F. Kagan, N. Lobachevski and his Contribution 
to Science, Moscow, FLPH, 1957) and B.A. Rosenfeld's History of Non
Euclidean Geometry, now being translated into English. 

94 These three postulates should be supplemented by the requirement that 
the intersection points of two given lines (given, in each case by, say, two 
points), of a given line and a given circle, and of two given circles are assumed 
to be given. For an axiomatic approach to the theory of geometric constructions 
see, for example, L. Bieberbach Theorie der geometrischen Konstruktionen, 
Basel, Birkhiiuser, 1952.) 

95 It is possible that Euclid's unexpected Postulate IV refers to the plane's 
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"degree of mobility," in the sense that it claims that the plane can be moved 
so as to superpose any right angle (with a given order of sides) on any other 
right angle. Seeking to avoid direct reference to motion (because of the 
metaphysical principles derived from Aristotle and, earlier, from Zeno ofElea), 
Euclid may have laid down that basic principle in the form of a postulate on 
the congruence of all right angles. 

96 The best known of the simpler forms of Euclid's postulate V reads: 
through a given point not lying on a given line there can be drawn only one 
line parallel to the given line. Apparently this form of the parallel axiom first 
appeared in an old school version of the Elements (which was used in English 
secondary schools as a standard geometry textbook) issued in 1795 by the 
English teacher John Playfair; hence it is sometimes called the Playfair axiom. 
It is the latter which appears (instead of Euclid's much more complicated fifth 
postulate) in the modern version of the axioms proposed in 1 899 by the great 
David Hilbert ( 1862-1943; see his Foundations of Geometry, La Salle, Ill., 
Open Court, 1971). In British schools, at least until the 1920s, geometry was 
mostly taught according to Euclid; many schoolchildren must have thought 
that Euclid was an English schoolmaster who, unfortunately for them, had 
written a mathematics textbook. It is possible that Euclid deliberately chose 
such a clumsy and intuitively unclear form for his fifth postulate in order to 
underscore its special place in the system of facts on which geometry is 
founded. 

97 Most of these attempts led to the replacement of Euclid's fifth postulate 
by another proposition which would turn out to be equivalent, provided all 
the other axioms explicitly stated or tacitly assumed by Euclid were accepted. 
Many of these propositions equivalent to the fifth postulate were thought to 
be more obvious by some mathematicians, i.e., their validity seemed intuitively 
clearer; one such is the assumption that through every point in the interior 
of an angle it is possible to draw a line intersecting both sides of the angle. 
The outstanding 18th-century French mathematician Alexis Claude Clairaut 
( 1713-1765) published a school textbook (Elements de geometrie. Paris, 1741) 
that replaced the fifth postulate by the assumption that rectangles exist; this 
he justified by referring to "the shape of houses, rooms, walls and so on." 
However, from the standpoint oflogic, such assumptions are, of course, in just 
as much need of proof as Euclid's postulate. (When geometry is approached 
as a mathematical science founded on the scheme: undefined notions --. 
subsequent definitions; axioms --. theorems, the very idea of "more obvious" 
and "less obvious" propositions no longer makes sense.) 

98 Lambert's most famous achievements were probably his proofs that the 
base e of the system of natural logarithms and the ratio n of the circumference 
of the circle to the length of its diameter are irrational. 
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99 Saccheri's quadrilateral had been considered earlier by a number of 
leading Arab (or, to be more precise, Arabic-speaking) mathematicians. These 
included Omar Khayyam (c. 1048-c. 1 13 1), Persian (or Tajik) mathematician, 
born in Nishapur, Khorasan, who worked in Samarkand, Bukhara, lsfakhan, 
and Merva, astronomer, philosopher, and famous poet, author of the cele
brated Rubaiyat widely known in Edward Fitzgerald's translation; and Nasir
Eddin (1201-1274, born in the city of Tusa in Khorasan), who worked in 
Quhistan, the capital of the "country of assassins" (founded by the "old man of 
the mountains" Khasan-ibn-Sabakh and his terrorist sect of drug addicts and 
assassins). Following the conquest of that dreadful state by the Mongols in 
1256 he became court astrologer and adviser to the Mongol Khan Khalug, 
organizing an excellent observatory and science school in the capital Marage 
of Khulag's state (Southern Azerbaijan). Lambert's quadrilateral had been 
considered earlier by another Arabic-speaking mathematician, the Egyptian 
al-Hasan ibn al-Haitham (965-1 039), better known in Europe as Alhazen. All 
these mathematicians considered the same three hypotheses (of the acute 
angle, the right angle, and the obtuse angle) and showed that the fifth postulate 
is equivalent to the hypothesis of the right angle; but they failed to progress 
as far as Saccheri and Lambert in analyzing the two other hypotheses. 

100 Saccheri's basic work was Euclides ab omni naevo vindicatus: Sive conatus 
geometricus quo stabiliuntur prima ipsa universae geometriae principia, Milan, 
1733; Lambert's treatise was Theorie der Parallellinien, Leipzig, 1786. 

10 1 It  is  not difficult to see that in Euclidean, hyperbolic and spherical (or 
elliptic; see page 63) plane geometries the "angular defect" b = (n - 2)n -
LA1 - LA2 - • • · - L An of the polygon A1A2 · · · An has the invariance 
property (congruent polygons have equal angular defects) and the additivity 
property (if a polygon M is split into two nonintersecting polygons M1 , M2, 
then the angular defect of M is equal to the sum of the angular defects of M 1 
and M2). This already implies that the angular defect b(M) of the polygon M 
must be proportional to the area S(M) of the polygon: b(M) = kS(M); here 
it is assumed that area satisfies the conditions of invariance, additivity and 
nonnegativity (as well as a normalizing condition, fixing the unit of area). The 
factor k is positive in hyperbolic geometry, negative in elliptic geometry and 
zero in Euclidean geometry. 

102 Here too, a comparison of modern and ancient mathematics shows that 
the ancient Greek thinkers possessed tremendous insight. Discussing the place 
of basic assumptions in deductive systems, Aristotle considers two possibili
ties: either the sum of the angles of a triangle equals n, and then the diagonal 
of a square is incommensurable with its side; or one could assume that the 
sum of the angles of a triangle is not equal to n, and then the diagonal of the 
square may turn out to be commensurable with its side. (Indeed, in spherical 
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geometry the length of the diagonal of a "square" -a quadrangle with con
gruent sides and congruent angles-can be twice that of the side.) However, 
says Aristotle, the corollaries of the assumption that the sum of the angles in 
a triangle is not equal to 1r are so ugly that they are not worth considering. 
To this, the famous Jewish philosopher Moses Maimonides (1 135-1204), who 
was born in Spain and lived and worked in Spain and Egypt, objected: "We 
do not claim that God is impotent because he is unable to . . .  create a square 
whose side is equal to its diagonal," and considered Aristotle's references to 
the "ugliness" of one or another logical system illegitimate on the ground that 
God is the only judge of such matters. Perhaps in some other worlds God has 
actually created a different geometry, in which the sum of the angles of a 
triangle differs from 1r (compare the "astral" geometry ofSchweikart discussed 
in the main text). Maimonides's argument was later repeated by the out
standing English clergyman and statesman Thomas Becket (1 1 18-1 170) who 
was later canonized as a Catholic saint. (It is quite likely that Becket, who 
studied in Moslem Spain, borrowed these ideas from Maimonides.) 

103 Schweikart began his mathematical research in 1 808 by publishing a 
"proof" (of course, incorrect) of the fifth postuiate. It is possible that the 
change in his viewpoint was partly due to the influence of Timofei Osipovsky 
(1765-1832), rector of Kharkov University (where Schweikart taught), whose 
"rector's address" of 1 807 on space-time was directed against Kant's idea that 
the notions of space and time are given a priori, implying (according to Kant) 
that only one geometric system is possible. 

104 See, for example, the booklet V.G. Shervatov, Hyperbolic Functions, 
Boston, Heath, 1963, written in very simple language. 

105 See F. Klein, Nicht-Euklidische Geometrie, I. Vorlesungen, gehalten 
wiihrend des Wintersemesters 1889-1890, Gottingen, 1 893. 

106 P. Stackel and F. Engel, Die Theorie der Parallellinien von Euklid 
bis Gauss. Eine Urkundensammlung zur Vorgeschichte der nicht-euklidischen 
Geometrie, Leipzig, Teubner, 1895; F. Engel and P. Stackel, Urkunden zur 
Geschichte der nicht-euklidischen Geometrie, Bd. 1, 2, Leipzig, Teubner, 1 898, 
1913. The latter work consists of two independent parts: F. Engel, Nikolay 
Ivanovitsch Lobatschefsky, Zwei geometrische Abhandlungen aus dem russischen 
ubersetzt mit Anmerkungen und mit einer Biographie des Verfassers, Leipzig, 
1898 (in writing Lobachevsky's biography and commenting on his works. 
Engel was helped by a mathematician from Kazan, Alexander Vasilyev, 
1 853-1929); and P. Stackel, Wolfgang und Johann Bolyai. Geometrische Unter
suchungen. I. Leben und Schriften der heiden Bolyai. II. Stucke aus den Schriften 
der heiden Bolyai, Leipzig und Berlin, 1913  (when writing this book Stackel 
was partly assisted by the Hungarian mathematician J. Kurschak). In order 
to write Die Theorie der Parallelinien von Euklid bis Gauss, Engel learned 
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Russian and Stackel learned Hungarian. Publication of Lobachevsky's and 
Bolyai's works (with commentaries by Stackel and Engel) showed their com
plete independence of Gauss. If we bear in mind that Farkas Bolyai was unable 
to appreciate his son's great work, and Bartels had a sharply negative attitude 
toward Lobachevsky's research, then we see that the claim that Gauss's ideas 
were communicated to Lobachevsky and J. Bolyai by Bartels and F. Bolyai 
is without substance. 

Stackel also studied Gauss's geometric legacy in great detail; see his Gauss 
als Geometer, Gesellschaft der Wissenschaften, Gottingen und B.G. Teubner, 
Leipzig, 1923, which was published as a supplement to the second part of the 
lOth volume of Gauss's 12-volume Werke (which appeared in 1863-1933 
under Klein's editorship) and was also issued as a separate book. In this work 
Stackel carefully analyzes Gauss's achievements in non-Euclidean (hyper
bolic) geometry and, very favorably inclined to Gauss, divides his activities 
into four stages: thoughts in his youth (1792-1795); early steps in the founda
tions of geometry (1795-1799); vacillations and doubts (1799-1805); creation 
of non-Euclidean geometry (1805-1817). 

107 See F. Klein, Vorlesungen iiber nicht-euklidische Geometrie, Berlin, 
Springer, 1968 (1st edition 1928). 

108 Various authors give different dates for Gauss's discovery of non
Euclidean geometry, but it is hardly possible to indicate a definite date before 
which Gauss doubted the existence of a geometry differing from Euclid's 
and after which he no longer doubted it. Gradually, over many years, Gauss 
arrived at the conclusion that there exist two equally valid systems of ge
ometry. Sometimes it is assumed that Gauss still had his doubts as to the 
existence of non-Euclidean geometry as late as 1816. Authors often refer to 
the remarkable letter he wrote in that year to Gerling, in which he said that 
"as can be easily shown, if Euclidean geometry is not the true geometry, then 
no similar figures exist at all; in an equilateral triangle the angle changes with 
the length of the side, and I find nothing absurd in this. In this case the angle 
is a function of the side, and the side a function of the angle, however, in 
the latter function a certain constant length appears. It seems paradoxical that 
there exists a line segment, a length, which seems to be given a priori; but I 
find nothing contradictory in this. It would even be desirable that Euclidean 
geometry be untrue, because we would then have at our disposal a general 
a priori measure. For example, for the unit of length we could choose the side 
of the equilateral triangle whose angle equals 59°59'59.99999." We could 
argue that since Gauss says that it would be desirable that Euclidean geometry 
be untrue, then he apparently thinks that it is true. However, we feel that this 
argument is not very convincing: Gauss thinks of the truth or untruth of 
geometry not in the purely logical sense but from the viewpoint of its relevance 
to the properties of physical space. Since he has no convincing experimental 
data, Gauss hesitates between two possibilities, equally valid from the logical 
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standpoint, but contradicting each other from the point of view of physics: 
(1) Euclidean geometry is true (i.e., it actually describes the physical world); 
(2) non-Euclidean geometry is true (see the next note). 

109 Of course, it would be more accurate to say that a positive result of 
Gauss's experiment (as well as Lobachevsky's later experiment), i.e., the dis
covery of a triangle with angle sum differing from 1 80°, would mean that 
Lobachevsky's non-Euclidean (hyperbolic) geometry gives a better model of 
the properties of the physical world than Euclidean geometry when points are 
interpreted as tiny parts of the Universe and straight lines as the trajectories 
oflight rays. On the connection between mathematics and the natural sciences, 
see, for example, P.J. Davis and R. Hersh, The Mathematical Experience, 
Boston, Birkhauser, 1981 or I.M. Yaglom, Mathematical Structures and 
Mathematical Models, N.Y., Gordon and Breach, 1986. 

1 10 Non-Euclidean geometry was at the heart of all of Lobachevsky's 
scientific research-he gave it most of his strength and abilities. However the 
results obtained by Lobachevsky in, say, pure algebra, also had indubitable 
scientific value. Also, having learned from the first publications of Bernhard 
Bolzano ( 1781-1848) the very general definition of a function as a mapping 
of a set X on a set Y such that to every x E X  there corresponds no more than 
one y E Y, Lobachevsky immediately (before Dirichlet, with whom the defini
tion is usually associated) began to use this definition in his lectures. 

1 1 1  The high level of instruction at Kazan University was largely due to 
the efforts of the first superintendent of the Kazan public education district, 
the astronomer S.Y. Rumovsky, Euler's pupil and staff member. 

1 1 2 Magnitsky's name is associated with that of Rumovsky and an un
fortunate period in the history of Kazan University. Positions largely lost 
under Magnitsky were regained under Lobachevsky, who for many years 
was the rector of the university and, for some time, also stood in for the district 
superintendent of public education. Lobachevsky's Geometry was one of the 
few textbooks written in answer to Magnitsky's suggestion in a letter sent in 
autumn 1822 to the university rector G.B. Nikolsky: "It would be fitting if in 
the future . . .  each professor would send at least one good item to the Publishing 
Committee every year." 

1 1 3 That book was published in Kazan only in 1909, when Lobachevsky's 
name was known widely enough. It was reprinted in his Russian collected 
works. 

1 14 In the Encyclopedia entry mentioned in the main text d'Alembert 
sharply criticized the "chimeric" rigor of Euclid's school as harmful for text
books. Lobachevsky, for whom this point of view was congenial, never writes 
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down the axioms on which his constructions are based; a truly complete 
list of axioms of Euclidean and hyperbolic geometry was first proposed by 
D. Hilbert in his Foundations of Geometry, as late as 1899. 

1 1 5 Fuss's harsh verdict on Lobachevsky's Geometry (the name of the 
author was not known to Fuss) was partly due to a basic mistake he made in 
assessing the purpose of the manuscript, which unfortunately had no author's 
introduction. Fuss regarded the Geometry as a textbook for beginners, while 
Lobachevsky had obviously intended it as a refresher course in school mathe
matics. 

1 16 At present, elements of hyperbolic geometry of Lobachevsky are some
times included in school geometry textbooks (see, for example, H.R. Jacobs, 
Geometry, San Francisco, Freeman, 1974, pp. 635-664). The general literature 
on hyperbolic geometry is vast. In addition to such old but still well-known 
books as R. Bonola, Non-Euclidean Geometry, N.Y., Dover, 1955 (this edition 
also contains an English translation ofLobachevsky's and Bolyai's memoirs); 
D.M.Y. Sommerville, The Elements of Non-Euclidean Geometry, N.Y., Dover 
1958; H.S. Carslaw, The Elements of Non-Euclidean Plane Geometry and 
Trigonometry, London, Longmans, 1916; H. Liebmann, Nichteuklidische 
Geometrie, Berlin, 1923; R. Baldus, F. Lobell, Nichteuklidische Geometrie, 
Sammlung Goschen, Berlin, 1964; A.P. Norden, Elementare Einfuhrung in die 
Lobatschewskische Geometrie, Berlin (DDR), Deutscher Verlag der Wissen
schaften, 1958; H. Meschkowski, Non-Euclidean Geometry, N.Y., Academic 
Press, 1964, we note some more advanced books: H. Busemann and P.J. Kelly, 
Projective Geometry and Projective Metrics, N.Y., Academic Press, 1953, and, 
in particular, H.S.M. Coxeter, Non-Euclidean Geometry, Toronto, University 
ofToronto Press, 1965 (and Chapter 16 in Coxeter's Introduction to Geometry 
mentioned in Note 72). One may also consult such articles as H. Karzel and 
E. Ellers, "The Classical Euclidean and the Classical Hyperbolic Geometry," 
in Fundamentals of Mathematics, Vol. II (Geometry), The MIT Press, 1974, 
pp. 174-197; B.A. Rosenfeld and I.M. Jaglom, Nichteuklidische Geometrie, 
Enzyklopadie der Elementarmathematik, Bd. V (Geometrie), Berlin (DDR), 
Deutscher Verlag der Wissenschaften, 1971, S. 385-469; a few newer books: 
Nobeling, Einfuhrung in die nichteuklidischen Geometrien der Ebene, Berlin
N.Y., Walter de Gruyter, 1976; M.J. Greenberg, Euclidean and Non-Euclidean 
Geometries, San Francisco, Freeman, 1974; P. Kelly and G. Matthews, The 
Non-Euclidean Hyperbolic Plane, N.Y., Springer, 1981; G.E. Martin, The 
Foundations of Geometry and the Non-Euclidean Plane, N.Y., Springer, 1982; 
B. Klotzek and E. Quaisser, Nichteuklidische Geometrie, Berlin (DDR), Deut
scher Verlag der Wissenschaften, 1978; and a more general book, W. Prenowitz 
and M. Jordan, Basic Concepts of Geometry, N.Y., Blaisdell, 1965. 

1 1 7 Bolyai's absolute geometry is apparently the first axiomatically treated 
example of an incomplete set of axioms in the history of mathematics, i.e., a 
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set which admits several nonisomorphic interpretations. In his book Elements 
d'histoire des mathematiques (Paris, Hermann, 1974), the famous "Nicolas 
Bourbaki" points out that the only fundamental difference between ancient 
and modern mathematics lies in the extensive use in modern mathematics of 
incomplete axiom systems (for example, nearly all the algebraic structures 
analyzed by mathematicians-groups, rings, fields, lattices, and others), while 
the ancient mathematicians (in effect) recognized only complete axiom systems 
(such as the axioms of plane Euclidean geometry or those of real numbers). 

1 1 8 Note that formula (1) remains valid in spherical geometry. 

1 19 Actually we are dealing here with the "relative consistency" of hyper
bolic geometry: Beltrami's model, based on Euclidean concepts, proves that 
hyperbolic geometry is consistent (free of contradictions) provided Euclidean 
geometry is consistent. [However, what is known as the arithmetical model 
of Euclidean geometry-points = pairs (x, y) of real numbers; lines = sets 
of points (i.e., pairs (x, y)) satisfying a linear equation ax + bx + c = 0-
establishes that the axioms of Euclid's geometry are consistent provided 
the axioms underlying the number system are consistent (say, the ·natural 
numbers, because all the other types of numbers can be developed from the 
natural numbers).] We note that all three discoverers of hyperbolic geometry 
had proofs of the fact that the consistency of Euclidean (plane) geometry follows 
from that of hyperbolic (space) geometry. This proof also follows from the fact 
(known to Lobachevsky, Bolyai, and Gauss) that Euclidean plane geometry is 
realized on the horosphere in hyperbolic space, i.e., on a surface which can be 
described as the limit of a sphere passing through a point A and tangent at 
this point to a plane IX when its radius tends to infinity. (In Euclidean space 
this limit is, of course, the plane IX itself, but in hyperbolic space we obtain a 
surface f3 which differs from IX.) 

1 20 "The Prince (or King) of mathematicians" was the inscription on the 
medal issued by the G6ttingen scientific society when Gauss died, but that 
was what he was called during his lifetime as well. (There was an occasion 
when the famous French mathematician Pierre Simon Laplace (1749-1827) 
named Johann Friedrich Pfaff ( 1765-1825) as Germany's top mathematician. 
When his interlocutor expressed surprise that he had not chosen Gauss, 
Laplace replied: "Gauss is the first mathematician in the world.") 

12 1 The books and articles devoted to Lobachevsky usually state that his 
father was a land surveyor. However, it seems that he held that job only 
for a short time and that it was the high point of his career. (Apparently 
Lobachevsky's father drank a great deal-whence the family's extreme 
poverty). 

122 Only the civilian ranks of privy councillor and acting privy councillor 
bestowed on ministerial officials were higher than that of acting state coun-
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cillor (in the table of ranks the highest rank was actually that of chancellor, 
but this was very rarely used in practice). 

123 The revolutionary-minded Chernyshevsky, who trusted the reviews in 
journals and the opinions of the Academy of Sciences, regarded the fact that 
a scientist ridiculed in the journals was a high-ranking figure in science and 
education as proof that Russian society had to be radically changed. Of 
course, the nonmathematician Chernyshevsky had no way of knowing that 
Lobachevsky was a great scientist and the future pride of Russian science! 

1 24 Gauss had outstanding linguistic abilities and the learning of a foreign 
language often served as a pastime for him. 

125 Here we are being deliberately inexact. Actually Farkas Bolyai's 
Tentamen came out in 1 832, not in 1831 .  However, a few copies of the Appendix 
to the Tentamen appeared slightly earlier, in 1831 .  The latter year is always 
mentioned in references to the second publication (after Lobachevsky's 
On the Elements of Geometry) devoted to the non-Euclidean geometry of 
Lobachevsky and Bolyai. Janos Bolyai's Appendix was sent to Gauss in 1831,  
but never reached him; Gauss only received the long book by the older Bolyai, 
with Janos's Appendix, when it was sent through a common acquaintance 
in 1 832. 

It is difficult to understand Gauss's attitude to J. Bolyai in connection with 
the one problem the elder man set before the younger one: to find the volume 
of a non-Euclidean tetrahedron given its six dihedral angles. Gauss him
self had failed to solve this problem (subsequently solved by Lobachevsky). 
That he proposed it to J. Bolyai shows how much he respected the young man. 
On the other hand, Gauss seems to have given no thought to how discouraged 
J. Bolyai would be if he failed to solve the problem. 

Incidentally, Gauss's interest in the problem stated above is yet another 
indication that his intuition guided him unfailingly to significant problems. 
Indeed, the problem is one of current interest; see, for example, H.S.M. 
Coxeter, "The functions of SchHifli and Lobatschewsky," Quart. J. of Math., 
6, 1935, pp. 1 3-29, and J. Milnor, "Hyperbolic Geometry: the first 1 50 years," 
Bull. Amer. Math. Soc., 6, (1), 1982, pp. 9-24. 

126 This was apparently related to the fact that Gauss, who had by then 
learned Russian, had become familiar with the voluminous and often revealing 
Lobachevsky papers, undoubtedly superior in their depth of understanding 
of the subject to Bolyai's brief publication. It is possible that this was also 
due to the fact that Lobachevsky was closer to Gauss in his methodological 
principles and in his psychological stance than was Janos Bolyai, whose style 
of writing and results were far ahead of their time. Gauss probably appreciated 
the insistence with which Lobachevsky included a discussion of"the geometry 
of physical space" in all his publications. Lobachevsky suggested experiments 
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to verify whether "imaginary" (hyperbolic) geometry, rather than Euclidean 
geometry, is the geometry of our space. He first thought that it was the former 
but in his last years leaned towards the latter. As we have pointed out, such 
an approach would have been completely alien to Bolyai-a fact which, in 
our opinion, speaks in his favor rather than against him. 

1 2 7 A full treatment of that subject (beginning, of course, with the theorem 
in Farkas Bolyai's Tentamen on reassembling polygons of equal area) can be 
found in V. Boltyanskii, Hilbert's Third Problem, N.Y., Wiley, 1978. 

128 The name of Jimos Bolyai is now part of the name of the Hungarian 
Mathematical Society. Hungary, which in the days of Farkas and Janos Bolyai 
was, in the scientific sense, very provincial, in the 20th century gave the world 
a whole constellation of first class mathematicians and physicists. 

1 29 The reference to the first third of the nineteenth century (Lobachevsky's 
On the Elements of Geometry was published in 1 829-1830 and Bolyai's Ap
pendix in 1 831 )  is not really justified here, since initially Lobachevsky's and 
Bolyai's remarkable works were hardly noticed by anyone. The turning point 
came only after the posthumous publication (in the 1 860s) of Gauss corre
spondence. What attracted immediate attention were letters which made it 
clear that Gauss had a high opinion of Lobachevsky's work (but at the same 
time insisted that he, Gauss, had all the relevant ideas in 1792-the year when 
he just began to seriously think about the theory of parallel lines and about 
the nature of space! It was only later that Gauss became convinced of the 
existence of a second geometry differing from Euclid's. These letters drew 
attention to Lobachevsky's works, and (in the late 1 860s) their first trans
lations into foreign languages (and a translation into Russian of Geometrische 
Untersuchungen) appeared, together with the first papers explaining and 
commenting on Lobachevsky's works. Lobachevsky's name was first men
tioned in the scientific literature by the English algebraist and geometer 
Arthur Cayley in his Note on Lobachevsky's Imaginary Geometry ( 1865). That 
note compared the trigonometry of a triangle in Lobachevsky's geometry and 
in spherical geometry. Although it is obvious from the note that Cayley had 
failed to understand the essence of Lobachevsky's discovery (compare this 
with what is said about Cayley's attitude towards another work on non
Euclidean geometry, with which he was much more directly involved), that 
note undoubtedly contributed to the growth of interest in the new geometry. 

1 30 Gauss was not a good teacher and rarely appreciated the merits of his 
pupils (as we have already mentioned in connection with Mobius and von 
Staudt). Riemann took Gauss's course on the method of least squares, but 
apparently they had no personal contacts. However, Gauss's works influenced 
Riemann greatly (see main text). So it can be assumed that the very fact of 
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Riemann's attending Gauss's lectures, regardless of their quality and content, 
stimulated Riemann's work. 

1 3 1 In dealing with Riemann's career in mathematics, one cannot pass up 
the two years ( 1847-1848) of his stay in Berlin, where he went after his first 
year in Gottingen to get to know new people and their views. Temporary stays 
at different universities were very popular among German students in those 
years. The trip to Berlin proved very fruitful: Riemann made friends with a 
talented young mathematician (who unfortunately died young), Ferdinand 
Gotthold Max Eisenstein (1823-1852), whom Gauss held in high esteem. 
(Gauss is alleged to have said that only three mathematicians were really 
epoch-making-Archimedes, Newton and Eisenstein.) Riemann found his 
talks with Eisenstein very inspiring. But what impressed Riemann most in 
Berlin was a lecture by Pierre Gustave Lejeune Dirichlet ( 1805-1859) (whom 
we will mention again). The two outstanding mathematicians were apparently 
of similar psychological type, and immediately established scientific and 
personal contacts. Riemann gladly acknowledged Dirichlet's influence; its 
relation to Weierstrass's sharp criticism of Riemann's work will be discussed 
below (see Note 147). 

1 32 Of French extraction, Lejeune Dirichlet came from an emigre family. 
He was a link between German and French mathematics. After a secondary 
education in Germany he spent several years in Paris, where he earned a living 
as a tutor in a wealthy family. He received a kind of informal education from 
the analysts of the Ecole Polytechnique. Above all, he was influenced by the 
great Jean Baptiste Joseph Fourier (1768-1830). Dirichlet came to Prussia on 
the recommendation of the famous naturalist and public figure Alexander von 
Humboldt ( 1769-1859), who was very influential in government circles. His 
brother, the well-known geographer and traveller Wilhelm von Humboldt 
(1767-1835), founded Berlin University in 1 8 10, when the city was occupied 
by Napoleon's troops. (In that idyllic age it was possible to found a university 
in an occupied city.) Alexander von Humboldt lived for a long time in Paris 
and was in close contact with French scientists, who held Dirichlet in high 
esteem on the strength of his very first works. Dirichlet was offered the post 
of assistant professor first in Breslau (now Wroclaw in Poland) and then in 
Berlin, where he subsequently became a professor. Dirichlet's houses, in Berlin 
and later in Gottingen, were gathering places for the local scientific and artistic 
intelligentsia, largely because of Dirichlet's wife Rebecca, who came from a 
wealthy, distinguished German-Jewish family. Her grandfather was the fa
mous philosopher, author, and public figure Moses Mendelssohn (1729-
1826), her brother was Felix Mendelssohn-Bartholdy (1809-1847), the popu
lar composer and conductor, while her cousin was the economist Ernest von 
Mendelssohn, who was later to acquire the reputation of being one of Bis
marck's most influential advisers. In Berlin Rebecca Dirichlet-Mendelssohn's 
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salon was visited by Carl Jacobi (of whom more below) who, like the hostess, 
came from a wealthy and famous German-Jewish family and was interested 
in art, history, and culture. However, Dirichlet himself was usually very 
restrained and modest at the receptions in his house. "The continuous small 
ripples of the intellectual world surrounding him apparently did not conform 
to the profound oceanic depths of his spirit" as Klein wrote in the book on 
the history of mathematics mentioned in Note 68. 

1 33 In 1837, Gottingen, one of the most prestigious of German universities 
suffered a blow which can only be compared with the destruction of that 
university one hundred years later by the Nazis (more about this below). 
In that year the new king of Hannover, Ernst-Augustus II, abolished the 
democratic constitution of 1833 and introduced a new one, doing away with 
almost all the civil rights granted by the previous constitution. All government 
officials, including university professors, had to pledge allegiance to the new 
constitution, and while Gauss, who took no interest in public affairs, readily 
consented, seven outstanding scientists (known in the history of German 
social thought as the Gottingen Seven) refused outright and were forced to 
leave the university, which immediately lost its reputation as Germany's best 
institution of higher learning. The seven-who included the physicist Wilhelm 
Weber and the famous German philologists and folklorists, the brothers 
Jacob and Wilhelm Grimm-were immediately offered positions at other 
German universities. In 1 848, frightened by the revolutionary wave which 
swept through all of Europe, the King of Hannover agreed to restore the 
former constitution. Then many of the exiled scientists, including Weber, 
returned to Gottingen. 

1 34 It would probably be more accurate to call the post that of a Privatdozent, 
since the holder was not paid by the university. He had the right to lecture 
for a fee agreed upon with the students. 

1 35 We have already pointed out Gauss's inadmissible attitude towards the 
scientific achievements of Taurinus, Janos Bolyai, and Lobachevsky. Gauss's 
treatment of Abel's work was just as reprehensible-timely support might 
have lengthened Abel's tragic life. When he received Abel's outstanding work 
on the theory of elliptic functions from Crelle in 1 828, Gauss's sole response 
was a letter in which he claimed to have known these ideas since 1798 (i.e., 
for thirty years). When he was sent Abel's paper with the revolutionatory 
discovery of the unsolvability in radicals of the general nth-degree equation 
for n � 5, Gauss failed to respond at all. This delayed the paper's publication 
for a long time. The contrasting behavior of Jacobi bears recounting. When 
he received Abel's memoir on the theory of elliptic functions Jacobi, who had 
studied the subject deeply, wrote to Crelle: "Abel's work is above my praise, 
as it is above my works," and immediately began to use the terms Abelian 
functions and Abelian integrals in his subsequent publications. As Jacobi was 
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then reputed to be Germany's second-best mathematician (after Gauss), this 
was very flattering for the poor, unknown Norwegian student. 

1 36 See B. Riemann, tlber die Hypothesen, welche der Geometrie zu Grunde 
liegen, Berlin, Springer, 1919; second edition 1923. Weyl's comments were 
included in most foreign-language versions of Riemann's lecture. 

1 37 The applicant for a position at a German university was required to 
submit a competition paper (HabiliHitsschrift), which could include some 
computations, and to deliver a competition lecture (Habilitatsvortrag) with 
few (if any) computations. Riemann's Habilitiitsschrift was the remarkable 
memoir Uber die Darstellbarkeit einer Funktion durch eine trigonometrische 
Reihe. His Habilitiitsvortrag was the famous tlber die Hypothesen, which was 
very general in form and contained practically no computations. What is 
striking about this lecture is the depth of its concepts, its prophetic connections 
with physics (deciphered by Einstein 60 years later), as well as the purely verbal 
specific results, which were obviously based on an impressive analytical 
apparatus. Today we know from the paper tlber eine Frage der Wiirmeleitung, 
submitted by Riemann in 1 86 1  for the competition sponsored by the Paris 
Academy of Sciences (but unappreciated at the time; the paper was neither 
published nor awarded a prize) that the founder of Riemannian geometry had 
complete command of the analytical apparatus and had proofs for all the facts 
stated in the Habilitiitsvortrag. 

1 38 The first publication (Annalen der Physik, Vierte Folge, Bn. 49, S. 769-
822) was reprinted many times (in particular, it went through several separate 
editions) and was translated into many languages. 

1 39 Einstein gladly recalled his many discussions with Weyl of ideas from 
the general theory of relativity, discussions which went back to their joint 
work in the Ziirich Technische Hochschule. But when he spoke about his 
familiarization with Riemann's geometric ideas it was not Weyl he always 
gratefully remembered but a far lesser mathematician, his friend from student 
days Marcel Grossman ( 1878-1936), who also worked in the Ziirich H ochschule 
at the time (it was to Grossman that Einstein owed his job in that school), 
and who coauthored with Einstein one of the papers on the general theory 
of relativity preceding the long memoir Die Grundlagen der allgemeinen 
Relativitiitstheorie. 

140 Both a journal publication of this fundamental work and a separate 
edition (Gottingen, Kon. Gesellschaft der Wissenschaft) appeared in 1828. 
It was later translated from Latin into practically all the modern European 
languages. In particular, the German translation was published twice in the 
famous series Oswald's Klassiker der exakten Wissenschaften (C.F. Gauss, 
Allgemeine Fliichentheorie, Leipzig, Teubner, 1889 and 1890). The work was 
included in Gauss's Werke (see Note 106), Bd. IV, Gottingen, 1 873, S. 217-258. 
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141 See also E.A. Abbott, "Flatland," in J.R. Newman (ed.), The World of 
Mathematics, Vol. 4, N.Y., Simon and Schuster, 1956, pp. 2383-2396; 
D. Burger, Bolland, 's-Gravenhage, 1957. 

142 The curvature k of a smooth curve <p can be defined as the velocity of 
rotation of its tangent: indeed, it is clear that if the tangent to a curve does 
not change its direction, then the curve must be a straight (entirely uncurved) 
line; but the faster the tangent changes its direction, the more the curve 
"curves". The curvature can be defined rigorously as follows: consider a small 
arc b of length s of a curve <p. Through a fixed point P draw lines parallel to 
all the tangents at all the points of the arc b; the ends of the unit segments 
(unit vectors) of these lines with common beginning P describe an arc b1 of 
a (unit) circle of a length a. The ratio km = ajs is the "mean curvature" of 
the curve <p over the arc b; the limit k of this ratio as s --+ 0 (and b shrinks to 
a point of <p) is the curvature of <p at that point. In a similar way one defines 
the curvature K of a smooth surface Cl>. Here one also takes a small part L\, of 
area S, of a surface Cl>; all the tangent planes to ci> at the points of L\ are 
characterized by the perpendiculars to these planes, the so-called normals to 
the surface; they are all drawn from one point P and the ends of the unit 
segments (unit vectors) of these normals with common origin P describe a part 
L\1 of a unit sphere of area I:. The ratio Km = I:/S is the mean curvature of ci> 
over the part L\ of the surface, while the limit K of this ratio as S --+  0 (and L\ 
shrinks to a point) is the curvature of ci> at that point. It follows from these 
definitions that the curvature of a circle of radius r is k = 1/r, while the 
curvature of a sphere of radius r is K = 1jr2; the greater the radius of the circle 
or sphere, the smaller the curvature. (The sign of the curvature of a surface is 
determined by comparing the "orientations" of the corresponding parts L\, L\1 
of the surface ci> and the unit sphere; we do not treat this question here.) This 
definition, however, does not suggest that the curvature K of the surface ci> is 
a fact of its intrinsic geometry i.e., can be defined by using only those notions 
which have an intrinsic meaning on Cl>. In his Disquisitiones generales Gauss 
called this deep fact the Theorema egregium, and this remains its name in most 
modern textbooks. 

143 At this point it is appropriate to recall Lambert's prophetic statement 
about "some imaginary sphere" on which hyperbolic geometry holds (see 
page 49). According to Note 142, the (positive) curvature of a sphere of 
radius r is K = 1/r2; therefore, a (fictional) "imaginary sphere" of radius r = ui 
should have curvature K = - 1ju2• It turns out that the intrinsic geometry 
of this "sphere of constant negative curvature" is hyperbolic geometry (cf. 
pages 67 -68). 

144 This construction brings us to the interesting question of the possible 
global forms of various (say, two-dimensional) geometric systems (Euclidean, 
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hyperbolic, elliptic) first stated (in connection with Euclidean geometry) by 
the outstanding English geometer William Kingdon Clifford (1845-1879), 
professor at London University (who died of tuberculosis on the island of 
Madeira at the age of 34) and, after Clifford, by F. Klein. Today this question 
is known as the Clifford-Klein problem and the possible global forms of 
geometries are called Clifford-Klein forms. The issue here is that whereas, say, 
the sphere and the elliptic plane described above have the same structure 
locally (in the neighbourhood of any of their points, "in the small"), they may 
be quite different "in the large," i.e., over regions of greater size. The general 
Clifford-Klein problem was investigated by Klein, by the German Wilhelm 
Karl Joseph Killing ( 1847-1923), one of the most brilliant followers ofSophus 
Lie, and'by the outstanding Swiss topologist Heinz Hopf (1884-1971). It was 
discovered that there are only two spatial forms of two-dimensional elliptic 
geometry (the two mentioned above: the sphere and the elliptic plane), but 
there are as many as five forms of two-dimensional Euclidean geometry 
(the ordinary Euclidean plane, the infinite Mobius band, the infinite cylinder, 
the torus i.e., the surface of a doughnut, and the so-called Klein bottle). It is 
indeed clear that a piece of paper may be rolled into a cylinder which, in 
the neighbourhood of any of its points, does not differ from the plane, but 
certainly does not resemble it overall. Finally, there are infinitely many forms 
of two-dimensional hyperbolic geometry (in this connection, see Chapter 9 in 
Klein's book on non-Euclidean geometry referred to in Note 107). 

We conclude with the observation that the hemisphere with identified 
antipodal points on its boundary equator (see Fig. 1 1) can also be used as a 
model of the projective plane. Indeed, we saw above (see page 37 and Note 
74) that we can consider the sheaf of straight lines passing through the point 
0 in space as a realization of the projective plane. But if we choose for the 
point 0 the center of the hemisphere shown in Fig. 1 1, then each line of the 
sheaf, except the horizontal ones, intersect the hemisphere in precisely one 
point, while the horizontal lines intersect it in two diametrically opposed 
boundary points, viewed here as single points of the elliptic plane. Thus we 
have established a one-to-one correspondence (or bijection, as mathematicians 
say) between the points of the elliptic and projective planes, which allows us 
to consider the elliptic plane (without its metric, i.e., without the possibility of 
measuring distances and angles) as being the projective plane and, conversely, 
to treat the elliptic plane as the projective plane supplied with a metric, i.e., 
with formulas allowing one to measure the distance between any two points 
of this plane and the angles between any two of its lines (the Klein approach 
to plane elliptic geometry; it is discussed on pages 65-67). 

145 Riemann was elected a member of the Gottingen Scientific Society and 
a corresponding member of the Berlin (Prussian) Academy of Sciences. In 
1 866, the year in which he was to die, he received notices of his election as 
a member of the Berlin Academy (early in the year), the Paris (French) 
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Academy of Sciences (in March), and finally (on June 14, a month before his 
death) the London Royal Society which had once had Newton as its president. 
Riemann died in full command of his faculties on July 20, 1 866. 

146 Riemann was a subject of the Hannover kingdom, i.e., a foreigner in 
Prussia (Hannover and Prussia united in the year Riemann died). 

147 Weierstrass's attitude to Riemann was not unequivocal; it was marked 
by tremendous respect, because Riemann's results really astonished Weier
strass. For example, Weierstrass withdrew a profound paper on the theory of 
abelian functions which he had submitted to the Berlin Academy only because 
Riemann's article on the same subject appeared in Crelle's journal; Riemann's 
results coincided only partly with the results Weierstrass had obtained using 
a different approach. But at the same time Weierstrass completely rejected the 
"physical demonstration" style basic in Riemann's work. In this connection, 
see Weierstrass's letter to his favorite pupil, the Berlin professor Carl Hermann 
Amandus Schwarz ( 1843-1921), quoted in H. Weyl's article mentioned in 
Note 56, in which he compares his own approach to the theory of functions 
(based exclusively on algebra-in his view the only correct approach) and 
the "physical mathematics" of Riemann (to use the complimentary expression 
of Klein's pupil A. Sommerfeld). Weierstrass regarded Riemann's approach 
as insufficiently rigorous, and therefore as unacceptable. 

Weierstrass was especially vehement in his criticism of the "Dirichlet prin
ciple" on which Riemann based many of his constructions. This principle 
involves the use of the solution of a certain optimization (or variational) 
problem in the theory of functions of a complex variable. Weierstrass did 
not doubt that the optimum appearing in the Dirichlet principle exists. 
His criticism concerned the fact that this statement was proved neither by 
Riemann nor by Dirichlet. Therefore the results obtained by using the prin
ciple could not be considered proved. Weierstrass suggested to G.A. Schwartz 
that he should work out a proof of the Dirichlet principle for certain particular 
cases which interested him, and this Schwartz was able to do. A complete 
proof of the validity of the Dirichlet principle was given by D. Hilbert in 
1899. Since Weierstrass did not accept Riemann's approach to the theory of 
functions of a complex variable, i.e., to that branch of science where the two 
mathematicians competed, it is all the more to Weierstrass's credit that he 
helped publicize Riemann's work in the scientific community; in particular, 
he twice took the initiative of getting Riemann elected to the Berlin Academy 
of Sciences, where he was one of the most influential members. In this con
nection we should also note the constant support which Weierstrass gave to 
Georg Cantor ( 1845-1918), the creator of set theory, despite the fact that 
Cantor's scientific, methodological, and even philosophical and religious atti
tudes-the latter involving both mysticism and a certain fanaticism-were alien 
to Weierstrass. The latter was a Catholic, very formal in the practice of his reli
gion, while the former, who was of Jewish descent, was a passionate Lutheran. 
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148 The article was published in the Gottinger Nachrichten, Bd. 14, 1868, 
S. 193-221;  it was reprinted in the second volume of Helmholtz's Works 
(Wissenschaftliche Abhandlungen), Leipzig, 1887, Bd. II, S. 618-639. In this 
connection we note that Helmholtz was one of the first scientists to speak out 
publicly in favor of the as yet little-known Lobachevskian geometry. We refer 
to his lecture "On the origin and meaning of geometric axioms", which he 
delivered at the University of Heidelberg in 1870 and which appears in 
the second volume of his Lectures and Speeches (H.v. Helmholtz, "Ober den 
Ursprung und Bedeutung der geometrichen Axiome," in the book Vortriige 
und Reden, Bd. II, Braunschweig, 1 884). Here we are not only interested in the 
fact that the physicist and physiologist Helmholtz actually defended the 
hyperbolic geometry of Lobachevsky-Bolyai and Gauss, but also in his 
arguments Helmholtz begins with an expressive characterization of the views 
on geometry held in antiquity: "Among the fields of human knowledge there 
is none which, like geometry, has appeared before us in a completely perfect, 
entirely conclusive form and in such complete scientific armor, like Athena 
Pallada from the head of Zeus . . .  The long and tedious compilation of new 
experimental facts, as practiced in all the natural sciences, is alien to geometry. 
The only method of its scientific development is the method of deduction: one 
logical conclusion follows from the other." But the main point of his rhetoric 
is to disprove these views on geometry, which are due to Plato, Aristotle, and 
Kant. If both systems (the one due to Euclid and the one due to Lobachevsky) 
are logically consistent, then the truth of one or the other must be established 
not by deduction but by physical experiment. Thus Helmholtz (as we should 
expect!) occupies a position akin to that of Gauss and Lobachevsky, who 
viewed geometry as one of the natural sciences-the study of the specific 
properties of real space. The logical ("mathematical", as we would say today) 
approach to geometry so natural for the brilliant Janos Bolyai was alien to 
Helmholtz. 

149 It is curious to note that Riemann's very last research paper, on which 
he worked until his very death, and which was published only posthumously, 
was inspired by Helmholtz's work in the physiology of sound. Riemann was 
also interested (again under Helmholtz's influence) in the physiology of vision. 

1 50 The second important reaction to Riemann's lecture-like Helmholtz's 
article, a reaction to Riemann's ideas on the natural sciences-was the speech 
on the spatial theory of matter delivered to the Cambridge Philosophical 
Society at the beginning of 1 870 by W.K. Clifford, whom we mentioned in 
Note 144. (This speech is published in W.K. Clifford, Lectures and Essays, 
Vol. 1, 2, London, Macmillan, 1901.) Here Clifford actually developed a some
what more general point of view on the geometry of space than Riemann's, 
assuming, as did the latter, that the new "Clifford geometry" (which from the 
mathematical viewpoint was not clearly described in the lecture) allows one 
to construct a theory of physical space by including the actual structure of 
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space among the properties which are not purely geometric but physical as 
well. Clifford's speech was highly regarded by Einstein; but it did not influence 
him very much, since his theory of relativity (the geometric theory of gravita
tion) is entirely based on the theory of Riemannian spaces. However, some of 
the later ideas on space developed by the American physicist John Archibald 
Wheeler and, especially, by the English physicist Stephen Hawking can be 
viewed as a certain return to the ideas of Clifford. 

1 5 1 It is curious that Klein's books on non-Euclidean geometry, mentioned 
in Notes 105 and 107 are especially concerned with hyperbolic, Euclidean, 
and elliptic spaces of constant curvature, as the only spaces likely to model our 
real physical space-since the latter is homogeneous and isotropic. Although 
this is in keeping with the physical picture of the world in 1 893 (the year 
the book mentioned in Note 105 appeared) it is strange that this point of view, 
which entirely contradicts Einstein's special theory of relativity ( 1905) as 
well as his general theory of relativity ( 1916) was still actively supported by 
Klein's pupils in a book published in 1928. Actually some of the theories 
of contemporary cosmology return to the state of affairs where the three 
geometries of constant curvature, elliptic, Euclidean, and hyperbolic again 
come to the forefront. 

1 52 See Lie's paper "Remarks on Helmholtz's Paper 'On the Facts that lie at 
the Foundations of Geometry"' (Bemerkungen zu v. Helmholtz' Arbeit Ober die 
Tatsachen, die der Geometrie zu Grunde liegen, Leipziger Berichte, Bd. 38, 1 886, 
S. 337-342; reprinted in Lie's collected works). 

1 53 The more limited character of Klein's constructions is revealed in 
particular by the fact that for every fixed dimension of space he introduces 
a finite number of geometric systems, not an infinite number as did Riemann. 

1 54 Phil. Trans. Roy. Soc., London, 149, 1 859, pp. 61-70; reprinted in Cayley's 
Collected Works (The Collected Mathematical Papers of Arthur Cayley, Vol. 
2, 1889, Cambridge, Univ. Press, 1 869, pp. 561-592), where Cayley added 
important remarks indicating the article's connection with Klein's interpreta
tion of non-Euclidean geometry, and expressing his disagreement with Klein. 

1 5 5 At the time only a few mathematicians were familiar with non-Euclidean 
geometry. The first "non-Euclidean boom" occurred after the publication of 
Gauss's correspondence in the late 1860s, and the first public speech in its 
favor in Germany was given only in 1 870 (see Notes 129 and 148). 

1 56 Mathematische Annalen, Bd. 6, 1 873, S. 1 12- 145; this article also had 
further additions and clarifications printed in the same journal and all brought 
together in the first volume of Klein's collected works (F. Klein, Gesammelte 
mathematische Abhandlungen, Bd. 1, Berlin, Springer, 1973-the most recent 
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edition-where the text of the main article "On the so-called non-Euclidean 
Geometry" is also published). (Incidentally, for the paper's critics-including 
Cayley-further explanations proving the mathematical validity of all of 
Klein's constructions were not convincing: he who does not wish to see will 
not see.) 

1 57 An exposition of Klein's ideas on non-Euclidean systems is contained 
in his book quoted in Note 107. For a more detailed (and more modern) 
exposition of the same topic see, for example, I.M. Yaglom, B.A. Rosenfeld, 
E.V. Yasinskaya, "Projective Metrics," Russian Mathematical Surveys, Vol. 
19, No. 5, 1964, pp. 49-107 and B.A. Rosenfeld, Non-Euclidean Spaces, Mos
cow, Nauka, 1969 (in Russian). A more elementary exposition of the plane 
Cayley-Klein geometries (and some general information on space geometries, 
for example, a list of them) is contained in Supplements A-C ofl.M. Yaglom's 
book referred to in Note 1 59. 

1 58 Hermann Minkowski was born in a small Jewish community in Bye
lorussia (the place is now part of Lithuania). As a child he showed brilliant 
and varied aptitudes. In tsarist Russia it was difficult for Jewish children 
to get a thorough education. This forced the Minkowskis to emigrate to 
Germany, where Hermann finished secondary school and the University in 
Konigsberg (now Kaliningrad in the USSR). He began his teaching career 
at the same university. At that time he got to know a fellow student named 
David Hilbert (whom we have repeatedly mentioned before and who will 
appear again in these pages). This acquaintance quickly developed into a 
strong friendship, and the intimate personal and scientific contacts between 
Minkowski and Hilbert continued until Minkowski's death (see, for example, 
the book Hilbert by C. Reid, quoted in Note 305). In 1 887 Minkowski moved 
to Bonn to further his scientific and teaching career; there he became first 
an extraordinary then an ordinary professor. However, when Hilbert moved 
from Konigsberg to Gottingen in 1 895, Minkowski returned to Konigsberg 
to take his place. This time Minkowski's stay in Konigsberg was short: in 1896 
he accepted the offer of a professorship at the famous Zurich Technische 
Hochschule, and in 1902 he moved to Gottingen, where he once again worked 
with his friend Hilbert. He was not to leave Gottingen until the end of his 
days. 

In Zurich one of Minkowski's students was Albert Einstein. Minkowski 
considered Einstein a rather ordinary student and did not suspect that many 
of his own best (and certainly best-known) future achievements would be 
related to Einstein's ideas. The famous Minkowski lecture "Space and Time" 
(Raum und Zeit), containing the geometric interpretation of special relativity 
theory, was read in 1907 to the Gottingen Scientific Society and first published 
in Jahresbericht der Deutschen Math. Vereinigung, Bd. 1 8, 1909, S. 75, and in 
Physikalische Zeitschrift, Bd. 10, 1909, S. 105. Later this lecture was repeatedly 
edited and translated into many languages (usually with the appendix written 
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by Klein's pupil A. Sommerfeld, whom we mentioned earlier). It was in 
Minkowski's lecture that spaces with metrics of the type d2 = (x1 - x)2 -
(Yt - y)2 (or d2 = (x1 - x)2 + (y1 - y)2 - (z1 - z)2 in 3-dimensional space) 
appeared for the first time. In Minkowski's lecture this metric was introduced 
in four-dimensional space with coordinates x, y, z, t, where t is time, and, was 
of the form 

d2 = (x1 - x)2 + (y1 - y)2 + (z1 - zf - c2(t1 - t)2• 

Here c is the velocity of light in a vacuum. The four-dimensional space with 
this metric is now called the pseudo-Euclidean Minkowski space (the two
dimensional version is called the Minkowskian plane). On the further develop
ment of this idea (used by Minkowski also in his subsequent paper on the 
theory of relativity) see also Klein's report on the "The Geometric Basis 
of the Lorentz Group" (''Uber die geometrischen Grundlagen der Lorentz 
Gruppe," J ahresberichte der deutschen Math. Vereinigung, Bd. 19, 1910, S. 281 ). 
It is also included in Klein's collected works. Incidentally, prior to Minkowski 
a similar idea on the connection between Einstein's (physical) relativity theory 
and the geometries of (four-dimensional) pseudo-Euclidean space (differing 
from Euclidean space by the minus sign before one of the squares of the 
differences of the coordinates of two points in the formula for the distance 
between them) was expressed by one of the creators of the special theory 
of relativity, the outstanding French mathematician and physicist Henri 
Poincare (whose name will turn up many times in these pages) in his funda
mental paper "On the Dynamics of the Electron" ("Sur la dynamique de 
!'electron," Rendiconti del Circolo Math. di Palermo, 21, 1906, pp. 129-176), 
which was repeatedly reedited and translated. It may be that it was precisely 
in this connection that Poincare, in the second part ("Space") of his famous 
book on the methodology of natural sciences Science and Hypothesis 
(H. Poincare, La Science et /'Hypothese, Paris, Flammarion, 1902, which was 
also reedited and translated many times), points out the existence of four 
main geometric systems: the geometries of Euclid, Lobachevsky (hyperbolic), 
Riemann (elliptic), and a nameless "fourth geometry", which, despite the brevity 
of its characterization, is easily seen to be pseudo-Euclidean geometry. Never
theless, we feel that this geometry is deservedly called "Minkowski geome
try", since it was Minkowski's report and his subsequent publications in 
Jahresbericht and Phys. Zeitschrift that brought about general interest in 
the new geometry and in its connection with the physical constructions of 
Einstein. As to the remarkable paper "On the Dynamics of the Electron," these 
ideas were only developed in the form of brief theses, and so were not noticed 
by anyone, while in the book Science and Hypothesis there is only one brief 
paragraph devoted to a single fact of pseudo-Euclidean geometry, namely the 
existence of lines that are perpendicular to themselves. Of course a reader 
unacquainted with the relevant materials could never decipher this paragraph. 

The main scientific achievements of Minkowski are related to the theory 
of convex polyhedra (or, more generally, arbitrary convex point sets) and to 
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number theory, where he introduced a new, geometric, interpretation of 
number-theoretic problems. It is not by chance that one of Minkowski's 
main books is called Geometry of Numbers (Geometrie der Zahlen, Leipzig, 
Teubner, 1 896). The main role in Minkowski's number-theoretic papers is 
played by the connection between the set (ring) of integers and the integer 
lattice (in the plane and in space) of the points with integer Cartesian co
ordinates, and by a novel metrization of the plane, also due to Minkowski 
and used in three-dimensional and in multidimensional spaces (Minkowski 
spaces with convex length indicatrix; see for example Chapters 24 and 48 of 
H. Busemann, P.J. Kelly, Projective Geometry and Projective Metrics, N.Y., 
Academic Press, 1953, or-for an elementary exposition-Chapter 7 of the 
article quoted in Note 1 16: B.A. Rosenfeld and I.M. Jaglom, Nichteuklidische 
Geometrie). Unlike the pseudo-Euclidean geometry of Minkowski, this geo
metric system (which later played a vital role in the progress of functional 
analysis) is often called the Banach-Minkowski geometry (after the Polish 
mathematician Stefan Banach ( 1892-1945), who widely applied the Minkow
ski construction to infinite-dimensional spaces). 

1 59 See I.M. Yaglom. A Simple Non-Euclidean Geometry and Its Physical 
Basis, N.Y., Springer, 1979. 

160 See, for example, some of the books quoted in Note 1 1 6  (here Baldus
Lobell has virtually the status of a classic and so should probably top the list). 
A rather elementary exposition of hyperbolic geometry along these lines is 
contained in the Supplement of the book (quoted in Note 73) I.M. Yaglom, 
Geometric Transformations III. Among more advanced books we mention 
H.S.M. Coxeter, Non-Euclidean Geometry, also listed in Note 1 1 6, and the 
more fundamental L. Redei, Begriindung der euklidischen und nichteuklidischen 
Geometrien nach F. Klein, Budapest. Akademiai Kiado, 1965. 

16 1 Recall that it was only in the late 1 860s that mathematical opinion 
finally accepted the existence of two equally valid geometries-the Euclidean 
and the hyperbolic. As for elliptic geometry, which had appeared in Riemann's 
1 854 lecture (the third geometry), the fact that it is just as valid as Euclidean 
and hyperbolic geometry became generally accepted after Klein's memoir of 
1 871 .  Nowadays, the term "non-Euclidean geometries" usually refers only to 
hyperbolic and elliptic geometry and not to all the Cayley-Klein geometries. 
Thus almost all of the Klein book referred to in Note 107 is devoted to just 
these two geometries (and, of course, to Euclidean geometry); this in spite 
of its stated aim to explain the essence of more general constructions. Only 
these two non-Euclidean systems appear in almost all the books and articles 
mentioned in Note 1 16. Except for the book mentioned in Note 159, devoted 
largely to plane semi-Euclidean geometry, I know of no book that develops 
any of the Cayley-Klein geometries other than the Euclidean, hyperbolic, and 
elliptic ones. 
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162 See, for example, the very clear account in B.N. Delonay, Elementary 
Proof of the Consistency of Lobachevskian Geometry, Moscow, Gostekhizdat, 
1956 (in Russian), which is accessible to beginners in mathematics. 

163 See the references given in Note 1 57. 

164 Because of his careless attitude to the classification problem and the 
determination of the number of geometric systems that he had considered, 
Klein in his 1 871 memoir and in the book mentioned in Note 107 speaks 
of seven plane "non-Euclidean" geometries, including classical Euclidean 
geometry. Actually here Klein is counting not the geometries but their so
called absolutes, some of which are associated with more than one geometry. 
The number of geometries in space given in the book is also incorrect. 

165 It is well known that the European Renaissance, a period of cultural 
revival noted for its intense interest in the culture of antiquity, including 
ancient Greek mathematics, and for its attempts to continue the creative 
efforts of Greek and Roman scholars and artists on a new basis, took place 
primarily in Italy. Accordingly, it is to Italy that we look in order to find 
the leading mathematical researchers of the new era, personified by such 
outstanding figures as Nicolo Tartaglia and Girolamo Cardano (see page 4). 
The prestige of Italian mathematics in the 17th century was upheld by the 
excellent school headed by Galileo Galilei ( 1564-1642), whose members 
included such outstanding scientists as Evangelista Torricelli ( 1608-1647), 
and Bonaventura Cavalieri ( 1598?-1647). However, in the 1 8th century and 
in the first half of the 1 9th, Italian mathematics went through a period of 
relative degradation (the Franco-Italian J.-L. Lagrange should, of course, be 
considered as a representative of the French, rather than the Italian, school). 
This is one of the reasons why the outstanding results of Paolo Ruffini, 
published in Italian, were not noticed and appreciated at the time. However, 
one of the consequences of the national and cultural upheaval characteristic 
of Italy of the mid 19th century, which concluded in the political unification 
of the country, was the revival of the great traditions of Italian science. In 
mathematics, this revival was marked by the emergence of a distinguished 
school of Italian geometers (this is typical of mathematics of 19th century) 
which reached its peak at the end of the 19th and the beginning of the 20th 
century. Here we especially note the achievements of Antonio Maria Bordoni 
(1789-1860), a professor at Pavia University, who headed the group that 
included representatives of differential geometry such as Angeli Gaspare 
Mainardi ( 1800-1879), Delfino Codazzi ( 1824-1873), Francesco Brioschi 
(1824-1897), and E. Beltrami, as well as the founder of the Italian school of 
algebraic geometry Luigi Cremona (1830-1903). The most important figure 
in this pleiad of scientists, which played a key role in the creation of the Italian 
school of geometry was undoubtedly E. Beltrami. Beltrami held professorial 
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posts in Bologna, Pisa, Rome, Pavia, and again in Rome, where he became 
a member, and afterwards the president, of the National Academy of Sciences. 

This distinguished Italian school of geometry undoubtedly occupied a 
leading position in differential geometry, and, in particular, in tensor analysis, 
which first appeared in connection with geometric (and, to a lesser extent, 
mechanical) applications (Gregorio Ricci-Curbastro, 1853-1925, Tullio 
Levi-Civita, 1 873-1941,  Luigi Bianchi, 1 856-1928), in algebraic geometry 
(L. Cremona, Corrado Segre, 1 863-1924), in the foundations of geometry 
[G. Peano and his pupils, among whom we should name Mario Pieri (see 
Note 1 85) and F. Enriques (see Note 53)], and in topology (Enrico Betti, 
1 823- 1892). Unfortunately, after World War I, fascism dealt Italian culture 
and, in particular, Italian mathematics, a devastating blow. 

166 See pages 62-63 and Note 142. 

167 E. Beltrami, Saggio di interpretazione della geometria non-euclidea, pub
lished in the Neapolitan journal of mathematics ( Giornale di M atemat., 6, 
1968, pp. 284-312) and also (in the same year) as a separate book (Napoli, 
Torino e Firenze, 1968), is included in Volume I of Beltrami's Collected 
Mathematical Papers (Opere matematiche, Milano, V. I, 1902, pp. 374-405), 
and was later repeatedly reedited and translated. The continuation of this 
work is Beltrami's article on the foundations of the theory of spaces of constant 
curvature ("Teoria fondamentale degli spazzi di curvatura costante," Annali 
di Matemat., Milano, 2 (2), 1 868, pp. 232-255), also included in Volume I of 
Beltrami's collected papers. 

We note that surfaces of rotation of constant negative curvature, including 
the pseudosphere (the name is due to Beltrami), were described in 1839 (i.e., 
before Beltrami) by a professor at the German University in Dorpat, Russia 
(now the city of Tartu in Estonia), Ernst Ferdinand Adolf Gottlieb Minding, 
1 806-1885. Minding also discovered in 1 840 that the trigonometric relations 
in a triangle formed by geodesic (shortest) curves on a surface of constant 
Gaussian curvature K can be obtained from the formulas of spherical 
trigonometry by replacement of the radius of the sphere by ft, which 
is purely imaginary in the case of negative curvature K. Minding failed to 
notice the connection between these results and the hyperbolic geometry of 
Lobachevsky-Bolyai (about which he apparently knew nothing at the time). 

1 68 The parametric equations of a pseudosphere (a surface of rotation!) can 
be written in the form 

r = Jx2 + y2 = 1/cosh t, z = t - tan t, 

where cosh t = !(e1 + e-1) is the hyperbolic cosine of the parameter t (or, 
equivalently, as x = cos cpjcosh t, y = sin cpjcosh t, z = t - tan t). One obtains 
this surface by rotating about the z-axis the so-called tractrix, defined as 
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the trajectory of a mass point M(x, z) which, at the initial moment of time, 
is located at the point (1 ,  0) of the (horizontal!) plane xOz and is joined to the 
origin by a flexible unstretchable string whose other end is pulled by someone 
along the z-axis. 

169 Hilbert's paper "On Surfaces of Constant Gaussian Curvature" ("Ober 
FHi.chen von konstanter Kriimmung") was published in 1901 in an American 
journal (New York, Trans. Amer. Soc., 2, 1901, pp. 86-99); in 1903 Hilbert 
included this paper in the second edition of his Foundations of Geometry 
(Grundlagen der Geometrie) and from then on it invariably appeared in all 
the new editions and translations of his Foundations of Geometry. 

1 70 The map of the hyperbolic plane onto the interior of the (say, unit) 
disk, which gives us the Beltrami-Klein model, assigns to each point M of 
the Lobachevskian plane two numbers x and y, where x2 + y2 < 1 -the 
coordinates of the corresponding point of the (Euclidean) disc of radius 1 
centered at the origin 0(0, 0) of the Euclidean plane. These numbers, which 
appeared in Beltrami's memoir Attempt at an Interpretation of Non-Euclidean 
Geometry are now called the Beltrami coordinates of the points of the hyper
bolic plane. These coordinates were already considered, in essence, by Loba
chevsky (see page 56). 

1 7 1 This model is considered in Poincare's article "On the Fundamental 
Hypotheses of Geometry" ("Sur les hypotheses fondamentales de Ia geo
metrie," Bulletin de Ia Societe Math. de France, 15, 1 887, pp. 203-216), where 
it is included in a series of interpretations covering all the main geometric 
systems-the Euclidean, hyperbolic and elliptic (see Note 173). 

172 A sphere of imaginary radius exists in complex Euclidean space with 
coordinates x, y, z and distance d =  dMM, between the points M(x, y, z) and 
M1(x1 , y1 , zd; it is given by the formula 

dz = (x1 - x)z + (y1 - y)z + (z1 - z)z 

provided that the coordinates x, y, z of the points can be arbitrary complex 
numbers. In particular, the "two-dimensional sphere of imaginary radius i" 
in complex Euclidean space is given by those points M(x,y, i') where x, y and 
' are real numbers and x2 + y2 - '2 = - 1 .  It is not difficult to see that this 
"sphere" essentially coincides with the hyperboloid shown in Fig. 1 5  in real 
(actually pseudo-Euclidean) space with coordinates x, y, '· 

173 Poincare considered a system of geometries which he called quadratic · 
because the "domain of action" of the geometry is a quadric, a surface in three
dimensional Euclidean (or, more precisely, affine) space with coordinates x, 
y, z given by the quadratic equation 

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz + 2gx + 2hy + 2kz + 1 = 0. 
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Special cases of such quadrics are: the sphere x2 + y2 + z2 = 1 on which 
elliptic geometry is realized; the hyperboloid x2 + y2 - z2 + 1 = 0 on which 
hyperbolic geometry holds; the paraboloid x2 + y2 - z = 0 on which we have 
Euclidean geometry if we take as its "straight lines" its sections by "vertical" 
planes (i.e., planes parallel to the z axis). 

We note also that the connection between Lobachevskian geometry and 
pseudo-Euclidean geometry (in a space of dimension one greater; see Chapter 
5) and between pseudo-Euclidean geometry and relativity theory (compare 
Note 1 58) determines a simple non-Euclidean (hyperbolic) interpretation 
of facts of the special relativity theory, in which points of three-dimensional 
Lobachevskian space correspond to the velocities of uniform motions in 
four-dimensional (the fourth dimension being time) Minkowskian space. This 
relationship between Lobachevskian geometry and relativity theory (very 
briefly developed in elementary terms in, say, supplement A of the book cited 
in Note 1 59) was first noted by Klein's pupil Arnold Sommerfeld, in his paper 
"On the Sum of Velocities in Relativity Theory" ("Dber die Zusammensetzung 
der Geschwindigkeiten in der Relativtheorie," Physikalische Zeitschrift, Bd. 
10, No 22, 1909, S. 826-829). It was the subject of much research by the 
Yugoslav (Croatian) physicist Vladimir Varicak (1865-1942), who devoted to 
it the book Die Stellung der Relativtheorie in dreidimensionalen Lobotschef
skychen Riiumen, Zagreb, 1924. 

Chapter 5 

1 74 Note that on the real line the only closed convex figure (in fact the only 
closed figure that is connected (i.e., consists of only one piece) is the closed 
interval, which for this reason (since there is nothing to choose from!) is 
simultaneously the one-dimensional analogue of the triangle, the disc and the 
parallelogram. 

17 5 Note, for example, the geometric versions of the names of the powers 
of numbers greater than three ("squared square," "squared cube," etc.) used 
by ancient and Arab mathematicians, during the Renaissance in Italy, and by 
the German "Cossists" (i.e., algebraists-the German noun Coss stands for 
the unknown in an equation). These names clearly appealed to some sort of 
multidimensional intuition (see the review in B.A. Rosenfeld, A History of 
Non-Euclidean Geometry, Moscow, Nauka, 1976, p. 148 ff., where the argu
ments of the Cossist Michael Stifel (1486-1569) are presented in detail; they 
explain the admissibility of "multidimensionality" in arithmetic and its in
admissibility in geometry-one cannot "go beyond the limits of the cube as 
if there were more than three dimensions, since this would be unnatural"). 
Nicolas Bourbaki, in the book referred to in Note 1 17, sees the origin of the 
idea of n-dimensionality in Pierre de Fermat's (1601-1665) analytic geometry. 
There Fermat states problems leading to points, curves, and surfaces and ends 
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with the vague conclusion: "this gives rise to spacial geometric loci as well as 
[to loci] that follow." 

A relevant and more substantial item is a remark by Immanuel Kant 
(1724-1804) in his early paper "Thoughts about the True Assessment of Living 
Forces" ("Gedanken von der wahren Schatzung der lebendigen Krafte und 
Beurtheilung der Beweise derer sich Herr von Leibniz und andere Mechaniker 
in dieser Streitsache bedient haben nebst einigen vorhergehenden Betracht
ungen welche die Kraft der Korper iiberhaupt betreffen") (included in most 
of his collected works in many languages). Here Kant attempts to explain the 
fact that the world is three-dimensional by saying that (according to God's 
will) "substances in our universe interact with each other so that the acting 
force is inversely proportional to the square of the distance." This is indeed 
related to the three-dimensionality of real space, as may be established by 
using the mathematical theory of potential created much later. (Actually Kant 
might have been aware of the heuristic arguments given by Newton's contem
porary and rival Robert Hooke ( 1635-1703), who stated the universal law of 
gravitation earlier than Newton and apparently could never understand why, 
or accept that, Newton was viewed as the true author of this law. Hooke's 
starting point is that the area of a sphere of radius r is proportional to r2 and 
therefore, if we assume (as Hooke and Newton did) that the "gravitational 
force" of a mass m located at a point M does not decrease with distance and 
is proportional to m, then at each point of the sphere of radius r with center 
M this force will be a (1/r2)-th part of the "force of the mass m" at a unit 
distance from M. This crude reasoning leads us to expect that in n-dimensional 
(physical!) space gravitational, electric, and other forces due to mass or to 
charge must decrease with the distance r as 1/r"-

1 .) "If the number of dimen
sions were different," continues Kant, "the forces of attraction would have 
different properties and dimensions. The science of all such possible space 
forms would undoubtedly be the most sublime geometry that finite reason 
could pursue . . .  If the existence of spaces of other dimensions were possible, 
then God would most likely have placed them somewhere." 

A less profound observation is that, just as plane figures symmetric with 
respect to a line cannot be superimposed by a motion within the plane, but 
can be brought into coincidence after being turned over in three-dimensional 
space, so too figures in space symmetric with respect to a plane (like right
hand and left-hand gloves) can be superimposed by moving them in four
dimensional space. This is explained by A.F. Mobius in his "Barycentric 
calculus" ( 1827), with the reservation that "since four-dimensional space 
cannot be imagined, a real superposition is not possible here". 

Finally, an important step in the development of multidimensional consid
erations was J.L. Lagrange's Mecanique Analytique (1787), where the concept 
of generalized coordinates of a mechanical system (independent variables e, 
1/J, <p, . • •  whose choice determines the position of the system) was introduced 
and used throughout. To be sure, Lagrange himself warned that since they 
are purely algebraic these constructions do not require any geometric consid-
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erations and his book did not contain a single diagram. Nevertheless, many 
readers must have drawn pictures of certain situations considered in the 
book -realistically in the case of two or three degrees of freedom (i.e., in the 
case of two or three generalized coordinates)-and must have arrived at the 
idea of "multidimensionality" when the number of degrees of freedom was 
greater than three. Moreover, while few of Lagrange's contemporaries are 
likely to have noticed this, his book contains in essence the notion of the 
"phase space" of a mechanical system, which is 2n-dimensional in the case of 
n degrees of freedom; the coordinates of a point in phase space, characterizing 
the state of the system, are 2n numbers e. t/J, qJ, • • •  ' �. �. <P, . . .  ; here e = e(t), 
t/1 = tjl(t), . . .  and � = de/dt, � = dt/J/dt, . . .  are the rates of change of the 
parameters of the system and t is time. Phase space, in a somewhat different 
guise, played an especially important role in W.R. Hamilton's works on 
mechanics. The curve e = e(t), t/1 = t/J(t), . . .  ; � = �(t), � = �(t), . . .  in 2n
dimensional space, characterizing the evolution of the system in time, is now 
called the phase portrait of the system. 

176 The name of this outstanding scientist, philosopher and author was 
given to him by a police inspector, to whom someone brought him as a baby 
abandoned on the steps of the Jean le Rond chapel in Paris. The inspector 
named the baby Jean le Rond. Out of pity for the boy, he did not hand him 
over to the Children's Home, to which abandoned babies were usually dis
patched and where conditions were quite harsh, but presented him to a 
peasant woman who agreed to bring him up. However, the child's father soon 
appeared on the scene. He was a General Detouch, who had been abroad and 
had not known that such a fate had befallen his illegitimate son. He found the 
boy and had him transferred to the family of a poor glass blower. The future 
scientist lived in this family for about 40 years. Subsequently Jean le Rond 
made the family's surname, Alembert, his own. D'Alembert did not know his 
mother at all. His father occasionally visited him and, during his lifetime, paid 
for the child's education. The foster parents, whom the boy loved ardently, 
were too poor to do so. After his father's death, Jean le Rond received a small 
pension (his father died when he was 10). 

The period between the 1 6th and the 18th centuries abounded in universal
ists, but even against the background of his time d'Alembert's breadth of 
knowledge, interests, and achievements was striking. One of the 18th century's 
three greatest mathematicians and mechanicians (the other two being Euler 
and Lagrange), d'Alembert was at the same time a leading authority in 
philosophy, history, literature, and music. An acclaimed writer, he was saluted 
by Voltaire in a letter as "the best writer of our age." It is not surprising that 
d'Alembert was a member of both French academies. In 1754 he was elected 
to the Academie Frant;aise (also known as the Academy of the Immortals, 
because the number of members always remains the same: only when a 
member dies is a successor elected), whose members are men of letters and 
philosophers. In 1765 he became full member of the Royal Paris Academy of 
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Sciences; this gave him a small allowance to live on. It is notable that d' Alem
bert became a member of the Berlin (Prussian) Academy of Sciences in 1747 
and was elected to the St. Petersburg (Russian) Academy earlier than to the 
Paris Academy (in 1764). From 1772 on, he was the permanent secretary of 
the Paris Academy and, in effect, its head. D' Alembert was the permanent 
secretary of the Academie Fran<;aise (which did not have a president) from the 
time he was elected, i.e., from 1754. Characteristically-and this is not such 
a rare case for a brilliant talent-d'Alembert was not elected to either the 
Paris Academy of Science or to the Academie Fran<;aise on the first ballot. 

(It may be appropriate to explain the historical reasons for the existence of 
two academies in France, the Academie Fran<;aise and the Paris Academy of 
Sciences. (The latter was subsequently reorganized by Lazare Carnot into 
L'lnstitut; see Note 65 on page 153.) The Academie Francaise was founded in 
1635 by Cardinal Richelieu, who virtually ruled France at the time and 
regarded himself as a writer and a patron of writers. Naturally, he was included 
in the initial membership and was the master of the academy during his 
lifetime. The rivalry we know so well from Dumas's Three Musketeers (where, 
however, it is presented in a grotesque and exaggerated form) between Richelieu 
and Louis XIII resulted in the almost simultaneous founding of the Academia 
Parisiensis, patronized by the King, whose members were scientists, chiefly 
physicists and mathematicians. However, the Paris Academy was fully orga
nized and received serious financial support only during the reign of Louis 
XIV -in 1666, when the farsighted finance minister Colbert became its pa
tron. At that time the outstanding scientist Christian Huygens (1629-1695) 
was invited from Holland to be its president.) 

D'Alembert was one of the first professional scientists in European history. 
He never lectured and did not occupy any official posts except in the acad
emies. (In contrast we may recall that Newton was a professor at Cambridge 
University, later Chancellor of the Exchequer and, for a number of years, a 
member of parliament, while Leibniz was the historiographer of the dukes of 
Hannover.) Accordingly, d'Alembert's material position was always rather 
unsatisfactory. This, however, caused him little concern-we pointed out 
above that he spent most of his life in the family of a poor glass blower. 
Frederick "the Great" of Prussia invited him to Berlin, intending to make him 
president of the Berlin Academy (a post once held by Leibniz) and offering 
him a large salary-but in vain. Even larger sums were promised by Catherine 
II of Russia, who hoped to assign to d'Alembert the upbringing of the heir, 
Pavel Petrovich (the future Emperor Pavel I). But d' Alembert explained to 
the mighty monarchs that he preferred his modest position, since it spared 
him trouble-he had nothing to lose, yet could still help those who were 
poorer than he. Moreover, d' Alembert wrote to Frederick: "I owe nothing to 
the French government from which I can expect many bad things and few 
good ones, but I have duties to my country; to leave would be highly ungrateful 
on my part." This attitude to life is also confirmed by the following story about 
Laplace. The young Laplace came to d' Alembert with letters of recommenda-
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tion from nobles, but d'Alembert refused to receive him. On the next day 
Laplace sent d'Alembert his first mathematical papers. D'Alembert immedi
ately received him and inquired, perplexed: "Having such recommendations, 
he seeks favors from the nobles?'' As a result, Laplace soon obtained the post 
of professor of mathematics in the Military Academy. 

D' Alembert stands at the source of such branches of mathematics as 
the theory of functions of a complex variable (underlying which are the 
so-called Cauchy-Riemann equations, actually first stated by d'Alembert) 
and the theory of partial differential equations, which begins with the equa
tion o2ujot2 = a2(o2ujox2) of a vibrating string, first stated and solved by 
d' Alembert; here u = u(x, t) is the deviation of the string, assumed fixed at its 
ends, at time t at the point determined by the abscissa x, while o2ujot2 and 
o2ujox2 are the (second) partial derivatives of u. Finally, in mechanics his 
best-known achievement is the "d' Alembert principle" (the foundation of the 
Traite de la dynamique, Paris, 1743, republished and translated on many 
occasions), which reduces problems of dynamics to problems of statics. 

D'Alembert's work on the famous Encyclopedia, of which he was initially 
coeditor with Diderot, are particularly impressive. (However, tired of official 
persecution and hostility, d'Alembert had his name subsequently removed 
from the title page, although he remained Diderot's close friend to the end, as 
well as an active and prolific contributor.) D'Alembert wrote almost all the 
entries on mathematics, the natural sciences and technology, as well as numer
ous entries on philosophy, history, literature, aesthetics, and ethics. Moreover, 
the great enterprise opened with a long introduction on the origin and 
development of the sciences, entirely written by d' Alembert and containing a 
coherent account of his philosophical views (and one of the first attempts 
to classify the sciences, within which the author also included the arts). 
D' Alembert's individual entries in the Encyclopedia contained many profound 
thoughts, often far ahead of their time. Above (page 54 and Note 1 14) we have 
already dealt with the significance of the entry "Geometry"; here we are 
concerned with the rather unexpected entry "Dimensions." In the entries 
"Limit" and "Differential" d'Alembert (before A. Cauchy, to whom the achieve
ment is usually attributed) presented the first outline of a theory of limits, and 
in "Definition," long before Hilbert (20th century!), he set out his view of 
geometry as a science studying abstractly given notions characterized by their 
properties but entirely devoid of graphic form. Geometry, wrote d' Alembert, 
would retain its rigor, although it would sound funny, if we called a triangle 
what we usually call a circle and vice versa. 

1 77  Philos. Magazine, London, 1 843 and Cambridge Math. Journal, 4, 1884; 
reprinted in Cayley's Selected Mathematical Papers, Vols 1-13; Cambridge 
University Press, 1 889-1898; see Vol. 1 ,  pp.55-62. 

The discrepancy between the title and the contents of the work (n
dimensional geometry as against (n - I)-dimensional geometry) is due to the 
fact that Cayley considers sets of elements determined by n numbers x1 , x2, 
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. . .  , xn, which he views as projective coordinates of points in projective space 
(recall that a point of the projective plane is determined by three homogeneous 
coordinates, a point of projective space by four coordinates and, corre
spondingly, a point in n-dimensional projective space by n + 1 coordinates; 
compare page 40 and Note 8 1). 

1 78 In addition to the books and articles mentioned in Note 157, it would 
be appropriate here to mention again the book by G. Buseman and P. Kelly 
mentioned in Note 1 16-its title contains the words "projective metrics." 

1 79 Similarly, Carl Jacobi, whose name will appear repeatedly below, did 
not use geometric terminology when computing (in 1 834) the volume and 
area of a sphere of radius r in n-dimensional Euclidean space. According to 
Jacobi, the area in question equals 2n"12r"-1/(n/2 - 1)!, when n is even and 
2n<n-1)f2 [((n - l)/2)!] r"-1/(n - 1)! when n is odd; one obtains the volume of 
the corresponding ball from these formulas by multiplying by rjn. 

1 80 One of the most brilliant figures in European (and American) mathe
matics in the second half of the 19th century, James Sylvester was in many 
respects Cayley's direct opposite. In particular Cayley was very cautious in 
using new terms, while Sylvester called himself"Adam the name giver"; it was 
from him that the entire terminology of the theory of invariants, including the 
word "invariant," was derived. Having graduated from Cambridge University 
in 1 837 (his late graduation was due to a serious illness from which he suffered 
in his student years), Sylvester worked from 1 838 as a professor of natural 
philosophy (i.e., physics) at University College in London. 

Unable to get along with colleagues, he left England for America, where he 
taught mathematics from 1841 to 1 845 at the provincial Virginia University. 
In 1 845 he returned to England, where he worked for ten years, first as an 
insurance agent and later as a lawyer, without abandoning mathematics. 
From 1855 to 1 871  Sylvester was a professor of mathematics at the highly 
regarded Military Academy in Woolwich. From 1871 to 1 876 Sylvester led 
the life of a private person, not working anywhere officially and living mostly 
in Paris. In 1876 he was invited to teach at the prestigious Johns Hopkins 
University in Baltimore; he stayed there for eight years, carrying out very 
extensive research and teaching activities. For this reason the Americans 
consider him to be one of the founders of their school of mathematics. In 
particular, he founded the first specialized mathematics journal in the Western 
hemisphere, the American Journal of Mathematics, which still enjoys a reputa
tion for excellence. In 1 884 the seventy-year-old Sylvester returned to his 
homeland and accepted a professorship at Oxford, which he did not leave 
until the end of his days. 

Sylvester's numerous changes of work were due partly to his caustic charac
ter and to his biting sense of humour, which often expressed itself in short 
sharp verses which offended his colleagues. Moreover, traditionally inclined 
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English professors were often irritated by the extreme character of Sylvester's 
pedagogical views (which had a considerable influence on Felix Klein). Syl
vester's destructive criticism centered on the teaching of mathematics in 
British schools "according to Euclid" (more precisely, along the lines of the 
so-called school version of Euclid's Elements-compare Note 96); in contrast, 
the traditionally inclined Cayley supported the old English mathematics 
curriculum entirely. Finally, Sylvester's Jewish origins (his family, which in 
previous generations had no surname, acquired the anglicized family name 
Sylvester only in James's generation) may have irritated some of Sylvester's 
reactionary colleagues. 

1 8 1  Cayley (whose life, like Newton's, passed between Cambridge and Lon
don) was a representative of elitist English intellectual circles; the Jew Sylvester 
was cosmopolitan. George Salmon represented a third type of British scientist, 
very different from the other two. During most of his life the Irishman Salmon 
was at Trinity College in Dublin-a Protestant institution that traditionally 
brought together the study of mathematics, philology (mainly classical), and 
theology. A long time before, George Berkeley had graduated from this 
college; it is there that he acquired the knowledge needed to successfully apply 
higher mathematics (the calculus) in theological discussions. A few years 
before Salmon, W.R. Hamilton had graduated from Trinity College. Hamil
ton, whom we will discuss in more detail below, combined interest in mathe
matics and in philology. The Irish-Protestant atmosphere at Trinity College 
was always quite strictly traditional and very conservative. Even Cambridge, 
itself quite traditional, was viewed at Trinity as following continental (French, 
German) fashions and neglecting theology and philosophical contemplation. 
It is understandable that Salmon, who was brought up in this atmosphere, 
and who remained at Trinity College as a teacher after graduation and never 
left that institution until his death, was always inclined to religious thought; 
in fact, he left his mathematics professorship after 25 years to become professor 
of theology. He was extremely conservative (especially on pedagogical ques
tions) and thus, in this respect, the opposite of Sylvester. 

Nevertheless Salmon, like Sylvester, was an outstanding teacher. His text
book of analytic geometry and higher algebra, translated into practically all 
European languages, played a very important role in disseminating the ideas 
of English mathematics. In particular, Klein once explained that he had 
learned of Cayley's ideas, which were to influence him so much, in a German 
translation of Salmon's textbook. 

1 82 We cannot deny the reader the pleasure of contemplating the titles of 
both versions of this outstanding work. They are typical of Grassmann's 
involved scientific style-one of the reasons why he was underestimated by 
his contemporaries. The title page of the 1 844 edition reads: "The Science of 
Linear Extension, A New Branch of Mathematics Developed and Explained 
in Its Applications to Other Branches of Mathematics as well as to Statics, 
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Mechanics, the Science of Magnetism and Crystallonomy (sic !) by Hermann 
Grassmann, mathematics teacher at the Frederick-Wilhelm School in Stettin" 
("Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik dargestellt 
und durch Anwendungen auf die iibrigen Zweige der Mathematik, wie auch 
auf Statik, Mechanik, die Lehre von Magnetismus und die Krystallonomie 
erliiutert"). The alternative title was: "The Science of Extensive Magnitude or 
the Study of Extensions, A New Mathematical Discipline Developed and 
Clarified by Means of Applications by Hermann Grassmann" ("Die Wissen
schaft der extensivenen Grosse oder die Ausdehnungslehre, eine neue mathe
matische Disziplin dargestellt und durch Anwendungen erliiutert"). Further 
it was indicated that the present work was a first part, containing the science 
of linear extension only. Here one must bear in mind that the terms "extension" 
(Ausdehnung), and "extensive magnitude" (extensive Grosse) in the sense in 
which Grassmann used them, were Grassmann's inventions and entirely 
unknown to his readers. 

The 1862 version reads: "The Science of Extension, Entirely Revised and 
Rigorously Developed" ("Die Ausdehnungslehre, vollstiindig und in strenger 
Form bearbeitet"). The shorter title shows that its author took into considera
tion the commercial and scientific failure of the first version of the book. Here 
we have reproduced the title page-but it should not be trusted entirely. The 
book was not published by Enslin Publishers in Berlin as indicated on the 
title page, but in Stettin, by a publishing house owned by Hermann Grass
mann's younger brother and associate Siegmund Ludolf Robert Grassmann 
(1815-1901). The book was sent to the Berlin publishers on a commission 
basis, but without success: there was no more demand for the second version 
than for the first. Further, the book appeared in Stettin in 1 860 and was partly 
distributed by mail by the author, although the title page indicates 1 861  as 
the year of publication-a minor commercial trick. 

183 A very detailed biography of Grassmann, by Lie's pupil Friedrich Engel, 
was included by the latter in a three-volume collection of Grassmann's mathe
matical and physical works, constituting the second book (second half
volume) of Volume III (see H. Grassmann, Gessammelte mathematische 
und physikalische Werke, Bd. III, Thl. 2: Grassmanns Leben, geschildert von 
F. Engel, nebst einem Verzeichnis der von Grassmann veroffentlichen Schriften 
und einer Ubersicht des handschriftlichen N achlasses, Leipzig, B. G. Teubner, 
191 1,  XV + 400 S). This is only one of the many books about Grassmann 
available today. 

184 Grassmann, who taught school for many years, planned to write a 
three-volume Mathematics Textbook for Secondary Schools (Lehrbuch der 
Mathematik fur hOhere Lehranstalten). The three volumes were to contain, 
respectively, arithmetic, pl.'!;ne geometry, and solid geometry, while trigonome
try was to be divided between the second and third volumes. This intention 
was only realized in part: in 1 860 the first volume (Arithmetic) appeared and 
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in 1 864 a second volume (Trigonometry) followed. (The title page of the 1860 
book reads, more briefly, Lehrbuch der Arithmetik and the title page of the 
1864 book is similar. Besides, both books name the Enslin publishing house 
(Berlin), where the book was sent on a commission basis, and not Robert 
Grassmann's Stettin publishing house, which actually printed them; the first 
book gives the year of publication as 1861 rather than 1 860, when it actually 
came out.) These books were not successful and remained unappreciated in 
their time; but today the volume on arithmetic, which strikes us in places as 
close to the trends of our computer age, is justly regarded as one of the classical 
works of the mathematical literature. This book, which can hardly be viewed 
as a simple school text (we will return to this below), was one of the starting 
points of so-called "recursive arithmetic", based on recursive (or inductive) 
definitions of the natural numbers; in modern notation a + 1 = a' and 
a + b' = (a +  b)', where '"" denotes the passage from the given natural num
ber to its successor, a · 1 = a and a · b '  = ab + a. Of course, today we view the 
symbol ""' as the operator which sends n into n + 1 .  The recursive definitions 
a + b' = (a + b)' and ab' = ab + a can easily be implemented as computer 
instructions or as algorithmic descriptions of arithmetic operations in the 
spirit of modern computer-oriented constructivism. Grassmann himself wrote 
a +  e instead of a', where e is the so-called "unit" (die Einheit) of his system. 
Besides, he considered not only the natural numbers but all the integers, so 
that the definition of addition had to contain two more rules: a + 0 = a, 
a +  b" = (a +  b)", where 0 = 1 + ( - e) or e + (- e); here " " "  is the symbol 
indicating that we pass from a to the previous number a + (- e) (of course the 
notation 'a would be more suggestive in this context). It was from Grass
mann's constructions that R. Dedekind eventually developed the generally 
accepted axiomatic definition of the natural numbers (see R. Dedekind, Was 
sind und was sollen die Zahlen?; Braunschweig, Vieweg, 1888, often republished 
and translated). This book also inspired Peano (we will have more say about 
this mathematician in Note 1 85; on his definition of natural number, given in 
1 889-1891, which in essence coincides with Dedekind's, see for example 
G. Peano, Arithmetices principia, nova methodo exposita, Torino, 1 889). Today, 
recursive arithmetic is a significant chapter of modern logic and of the study 
of the foundations of mathematics (see, for example R.L. Goodstein, Recursive 
Number Theory, Amsterdam 1957); it is also widely used in teaching (see, 
for example, S. Federman, The Number Systems, Reading (Mass.), Addison
Wesley, 1963, or the computer science oriented book by A.S. Blokh, Numerical 
Systems, Minsk, Vishaishaya Shkola, 1982 (in Russian). 

Note that Grassmann did not consider his book as having to do with 
research, but only as a textbook for the upper classes of secondary school. It 
is known that he used the book as a text in his classes in the gymnasium and, 
despite the opinion of his son (Hermann Grassmann Jr, also a mathematician) 
who took part in publishing his father's collected works and a�cording to 
whom this teaching experience was successful, the very fact that the older 
Grassmann used his book when working with schoolchildren bears out Klein's 
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poor opinion of Grassmann as a teacher-the Lehrbuch der Arithmetik would 
have been completely out of place in the classroom. 

185 The generally accepted axioms of an (n-dimensional) linear (vector) 
space used today are based on Grassmann's axioms and were stated by the 
Italian Guiseppe Peano ( 1 858-1892) in his book Geometric Calculus, ac
cording to Grassmann's Science of Extensive Magnitudes. Peano's book is 
prefaced by an exposition of the operations of deductive logic (Calcolo geome
trico secondo l'Ausdehnungslehre di H. Grassmann, preceduto dalle operazioni 
della logica deduttiva, Torino, 1 888). Peano was the head of the Italian school 
in the foundations of mathematics and professor at the Turin Military Acad
emy, where Lagrange had once taught. He played an important role in the 
flourishing of logical and axiomatic studies typical of the turn of the century, 
and had a significant influence on the creation of computer-oriented mathe
matics and in the birth of the concepts which gave rise to the French school 
of Nicolas Bourbaki. Peano himself was concerned with questions of the 
foundations of arithmetic (see Note 184), geometry (Euclidean and affine), and 
analysis. Part of the achievements of his school are brought together in his 
five-volume Formulaire de Mathematiques, Torino, 1 895-1905. Peano's pupil 
Mario Pieri ( 1860-1913) was the author of the first really rigorous axiom 
system of Euclidean geometry, developed in his book On Elementary Geometry 
as a Hypothetical Deductive System (Della geometria elementare come sistema 
ipotetico-deduttivo, Torino, 1 899). This book appeared a few months before 
D. Hilbert's famous Grundlagen der Geometrie. Trying to be as rigorous as 
possible, Peano, like Janos Bolyai, invented a special "logical language" 
containing a minimum of words and a maximum of logical and mathematical 
symbols. He used this language to write most of his articles-which made 
them practically unreadable, as were all the articles in the journal Rivista di 
M atematica, which specialized in the foundations and appeared in Turin 
under Peano's editorship. 

1 86 Grassmann distinguished between "factual" sciences, which have to 
do with the real world, and "formal" sciences, whose object is created by 
human thought. In this connection it is natural to recall Plato's distinction, 
developed in the Republic, between the "visible world" and the "world of 
Ideas" (within which he includes mathematics). According to Grassmann, 
there are only two formal sciences: philosophy, which studies "the general" 
(as it is created and perceived by thought) and mathematics, which studies 
"the particular" as created by thought (die Wissenschaft des besonderen Seins, 
als eines durch des Denken gewordenen). This particular is called "thought
form" (Denkform) by Grassmann. It is with these "forms of thought" that 
mathematics is concerned. Today it is easy to decipher in these somewhat 
inflated expressions a very profound understanding of the axiomatic foun
dations of mathematics in terms of Bourbaki's mathematical structures. 
However, 19th-century mathematicians felt that, to use a Bourbaki expression, 



Chapter 5 193 

they were "pas dans leurs assiettes," when they came across terms with general 
statements far removed from ordinary mathematical formulas and equations. 
The time when the mathematical climate was determined by mathematicians 
prone to philosophical generalizations, such as Georg Cantor (1845-1918), 
G. Peano, D. Hilbert and H. Poincare, Luitzen Egbertus Jan Brouwer 
(188 1-1966), Hermann Weyl, Bertrand Russell ( 1872-1970), and Alfred North 
Whitehead (1861-1947) was yet to come. 

1 87 Compare Grassmann's statement given in Note 1 86 with G. Boole's 
view of mathematics as the science studying operations considered per se 
rather than the different objects to which they can be applied (see Chapter 1 
ofBoole's An Investigation of the Laws of Thought, London, McMillan, 1854, 
repeatedly republished, in particular, in its author's Collected Logical Works, 
Chicago-London, P. Jourdain, 1916, see Vol. I, p. 3). Compare also what we 
say about Hankel in Note 1 89. Note that Boole, like Grassmann, was an 
amateur mathematician, who had received no formal mathematical education 
and was far removed from "official" mathematical circles. Thus neither of these 
scholars expressed what might be called the general mathematical atmosphere 
of their time. 

1 88 The vector sum of the linear subspaces U and V is the set of all sums of 
vectors of these spaces 

U + V � {a + b j aE  U, b E  V}, 

where "�" means equal by definition. 

1 89 The general mathematical views and specific scientific interests of 
H. Hankel, formed in part under Grassmann's influence and, in part, inde
pendently, were very close to the latter's. Compare, for example, Hankel's 
definition of the essence of mathematics: "a purely intellectual, pure theory 
of form whose subject matter is not the combination of magnitudes or their 
representations, numbers, but abstract thought objects ( Gedankendinge) which 
may correspond to actual objects or relations, although such a correspon
dence is not necessary" (Theorie der complexen Zahlensysteme, Leipzig, Voss, 
1 867). Compare this with Grassmann's attitude to mathematics (see Note 186). 
We shall soon give a more detailed exposition of the contents of Hankel's 
book, which is also very close to Grassmann's Ausdehnungslehre. 

190 Siegmund Ludolf Robert Grassmann (1815-1901) was six years youn
ger than his brother Hermann, but the two brothers were always very close. 
Robert Grassmann also taught in the Stettin schools (mathematics, physics, 
philosophy, geology, chemistry, botany, zoology, German, French, Greek, 
and Latin). However, he gave up teaching in the early 1 850s, concentrating 
his efforts on the publishing of a Stettin newspaper and on his editorial and 
printing activities. It was in his publishing house that almost all of Hermann's 
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works appeared, as well as the many books, on the most varied topics, that 
he wrote himself-political pamphlets on the burning issues of the day (the 
Franco-Prussian war, Bismarck) anti-Catholic leaflets, textbooks, popular 
science, advanced monographs in mathematics, physics, chemistry, biology, 
geology, geography, theology, law, government, ethics, aesthetics, history, 
philology . . .  The high point of Robert Grassmann's scientific work was to be 
a ten-volume treatise The Edifice of Knowledge (Das Gebiiude des Wissens) 
which was to cover-at least in the author's view-all the existing sciences. 
Grassmann's printing shop and publishing house brought forth an unbeliev
ably varied assortment of literature, including ancient Hebrew and Aramaic 
texts (in particular, the Hebrew Talmud which was to be sold abroad) with 
their complex alphabet and unusual typesetting rules. 

In the preface to his arithmetic textbook, Hermann Grassmann indicated 
that the book arose from his discussions of the topic with his brother Robert
who indeed wrote a book popularizing and explaining the Ausdehnungslehre. 
Undoubtedly, Robert Grassmann was not a scholar of the same stature as his 
elder brother, and his unbelievable breadth of interests resulted in noticeable 
superficiality. But, as a popularizer of science and culture, he certainly deserves 
remembrance and honor, while his philosophical works retain a certain 
interest even in our day. Thus, for example, in 1981 a thesis in philosophy was 
defended in Leningrad by G.I. Malykhina on the subject of Robert Grass
mann's logical studies. 

19 1 H. Grassmann and R. Grassmann, Leitfiiden der deutschen Sprache, 
Stettin, Druck und Verlag von R. Grassmann, 1 876; H. Grassmann, Deutsche 
Pflanzennamen, Stettin, Druck and Verlag von R. Grassmann, 1870. In the 
foreword to the latter book, its author expresses his gratitude to his brother 
Robert. 

192 To understand the modern attitude to Grassmann's scientific heritage, 
see Laurence Young, Mathematicians and Their Times (History of Mathe
matics and Mathematics of History) Amsterdam, North Holland, 1981 .  Its 
author is one of the members of a popular mathematical family; he writes 
interestingly and with gusto; but some of his views, due to his unconcealed 
bias, are controversial and his books unfortunately are not free of factual 
errors. Young tends to accuse Klein of insufficiently appreciating Grassmann's 
achievements, and claims that the first to really understand his work were the 
leading 20th-century French mathematicians Henri Poincare and Elie Cartan 
(1868-1951) and the famous Swiss mathematician Georges de Rham (1903-
1969). 

193 The Euler formula (which should really be called the Decartes-Euler 
formula, since Euler did not have a rigorous proof of it, while its statement 
was known to Rene Decartes (1 596-1650) a century earlier) asserts that the 
number of vertices N0 of any convex or, more generally, any simply connected 
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polyhedron is related to the number N1 of its edges and to the number N2 of 
its faces by the equation N0 - N1 + N2 = 2. The two-dimensional analogue 
of this formula is the relation N0 - N1 = 0 involving the number N0 of 
vertices and the number N1 of sides of an arbitrary polygon. (On the question 
of a rigorous proof of the Decartes-Euler formula, see the discussion of 
various rigorous and nonrigorous ways of proving it in the remarkable book 
by the well known Hungarian-British logician Imre Lakatos (1903-1974): 
Proofs and Refutations, Cambridge University Press, 1976.) 

The SchUifli formula 

1 - No + N1 - N2 + · · · + ( - lt Nn-t + ( - lt+1 = 0 

where Nk (for k = 0, 1, 2, 3, . . .  , n - 1) is the number of k-dimensional faces of 
an n-dimensional polytope; in particular, N0 is the number of its vertices. Thus, 
for example, in four-dimensional space 

N0 - N1 + N2 - N3 = 0, i.e., N0 + N2 = N1 + N3• 

194 In n-dimensional Euclidean space, when n � 5, there exist only three 
types of regular convex polytopes all of whose faces are identical, regular 
(n - !)-dimensional polygons, and all of whose polygonal angles are identical 
regular polygonal angles, i.e., angles congruent to the angle at the vertex of a 
regular pyramid. These regular polytopes are similar to the ordinary (three
dimensional) regular tetrahedron (the regular simplex), the cube (the regular 
parallelotope) and the regular octahedron, the polytope dual to the regular 
parallelotope. When n = 3, there are, as is well known, five types of regular 
polyhedra ("Platonic solids"); besides the three mentioned above, they include 
the regular dodecahedron (twelve faces) and icosahedron (twenty faces). In 
four-dimensional space there are six types of regular polytopes; the regular 
simplex, the analogue ofthe tetrahedron (with five faces), the cube (a parallelo
tope with eight faces), the four-dimensional cross (the analogue of the octa
hedron, with sixteen faces), as well as regular polytopes with 24, 120, and 600 
faces. Finally, in one-dimensional space (on the real line) there exists only one 
regular polytope, the closed interval (check that the Euler-Schlafli formula 
also holds for it), while in two-dimensional space (in the plane) there are 
infinitely many of them (a regular polygon with n sides exists for any n). These 
facts are summarized in the following table: 

Dimension of space 

n = 1 
n = 2  
n = 3  
n = 4.  
n ;, 5  

Number of types of 
regular polytopes 

OCJ 
5 
6 
3 
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See, for example, the elementary article by B.A. Rosenfeld and I.M. Yaglom, 
"Mehrdimensionale Raume," Enzyklopiidie der Elementarmathematik (EEM), 
Bd. V (Geometrie), Berlin (DDR), Deutscher Verlag der Wissenschaften, 1971, 
pp. 337-383, or the literature listed in Notes 195 and 197). 

195 A detailed description of this question's history (as well as of the ques
tion itself) with substantial biographical data on Schlafli and the story of the 
publication of his works, is contained in H.S.M. Coxeter's book Regular 
Polytopes, N.Y., Dover, 1973. 

196 A short summary of this memoir appeared in Jordan's Academy of 
Sciences papers (in C.R.) in 1 872, and the complete text in 1 875. The memoir 
and the summary are included in vol. 3 of C. Jordan, (Euvres, v. 3, Paris, 
Gauthier-Villars, 1964. 

197 See the literature on multidimensional geometry, e.g., P.R. Schoute, 
Mehrdimensionale Geometrie, Bd. 1, 2, Leipzig, B.G. Teubner, 1902-1905; 
D.M.Y. Sommerville, An Introduction to the Geometry of N Dimensions, N.Y., 
Dover; 1958; B.A. Rosenfeld, Multidimensional Spaces, Moscow, Nauka, 1966 
(In Russian). 

198 See, above all, the book by E. Cartan, Le(:ons sur les invariants integraux 
(a course of lectures delivered by Cartan at the Paris Faculte des Sciences), 
Paris, Hermann, 1922, which contains a detailed exposition of Grassmann's 
"exterior algebra" and Poincare's "exterior analysis" (the study of the differen
tiation and integration of Grassmann's exterior products of differentials) and 
their application to mechanics. Actually, all of Cartan's research work is 
saturated with the ideas of "exterior algebra and analysis". 

199 In order to relate an "extensive magnitude of the second order" (or 
bivector, as we would say today) LX;e; = LXii[e;ei] to a parallelogram in 
some (two-dimensional) plane of n-dimensional space, say, the parallelogram 
spanned by the vectors a = L x;e; and b = LYiei, we must assume that the 
coordinates xii of the bivector satisfy certain quadratic "Grassmann condi
tions" (otherwise known as "simplicity conditions" for the bivector) which 
single out a so-called Grassmann manifold in the (n(n - 1)/2)-dimensional 
"space ofbivectors." Of course, the area of a bivector in the ordinary geometric 
sense can be considered only in the case when the bivector is contained in this 
manifold. Here there is no need to dwell on these (actually quite simple) 
questions. 

200 See any text on vector calculus, e.g., the elementary article by W.G. 
Boltjanski, I.M. Jaglom, "Vektoren und ihre Anwendungen in der Geometrie," 
EEM (see Note 194), Bd IV (Geometries), 1980, pp. 295-390. 
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201 In the literature there are many symbols for denoting the inner and 
outer products of vectors; apparently all attempts to unify them have been 
abandoned. This is why we indicate two systems of notation here: " · " and 
" x  " as well as parentheses and brackets. These notations, however, are not 
the only ones used. In this connection, Felix Klein, in Chap. IV (Complex 
Numbers) of Part I (Arithmetic) of his book Elementarmathematik vom hOheren 
Standpunkt aus, Bd. 1, Heidelberg, Springer, 1968, relates how a special com
mission for the unification of vector notation was created during the 1903 
Natural Science Congress in Kassel. The commission members, however, had 
different opinions on the subject. And since they were all tolerant of each 
other's views, the only result of their work was the appearance, along with the 
previous systems of notions, of three new ones! Klein adds that the unified 
system of units in physics (concerning which, incidentally, not all is smooth 
today!) was created as the result of powerful pressures due to industry. Since 
the vector calculus has no such stimuli, there is no hope for a unified notation. 

202 The first geometric interpretation of complex numbers as points of the 
plane (or more precisely as line segments joining the origin to the given point, 
an interpretation which is even closer to the vector calculus), with a complete 
description of the geometric meaning of operations on complex numbers, was 
given by the Norway-born Danish cartographer and geodesist Caspar Wessel 
( 1745-1818). 1t is contained in his only mathematical work, which is remark
able for its clarity and substantial contents. Wessel presented this in 1797 to 
the Danish Academy of Sciences, and published it in Danish in 1799. However, 
his work (which incidentally included the first attempt to find an appropriate 
space analogue of complex numbers!) was not noticed by anyone. It was only 
100 years later, through the efforts ofS. Lie (ever the Norwegian patriot!), that 
Wessel's work was published in French (in Copenhagen, 1897) and came to 
be known. In 1806 the geometric interpretation of complex numbers was 
discovered again by the Swiss-born French mathematician Jean Robert 
Argand (1768-1822) in his anonymously published, and also unnoticed, 
pamphlet Essai sur une maniere de representer les quantites imaginaires dans 
les constructions geometriques, Paris, 1 806. (For a more detailed account see 
A. Dahan-Dalmedico, J. Peiffer, Routes et dedales, Paris, Etudes Vivantes, 1982, 
Ch. 7.) However, in 1 8 13-1814 Joseph Diaz Gergonne, the editor of the most 
popular French mathematical journal Annales des mathematiques pures and 
appliquees (we mentioned Gergonne in connection with his works on projec
tive geometry) published Argand's pamphlet in his journal, where it was finally 
noticed. And yet the geometric interpretation of complex numbers was intro
duced into general use only by Gauss. 

203 Two modifications of complex numbers were proposed by William 
Kingdon Clifford-namely, dual numbers x + ey, where e2 = 0 (mentioned 
above), and double numbers x + ey, where e2 = 1 .  Both types of numbers may 
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be given geometric meanings. Dual and double numbers (under different 
names and notations) were introduced by Clifford in connection with their 
geometric applications in his paper "Preliminary Sketch of Biquaternions," 
Proc. Lond. Math Soc., 1873, pp. 381-395, reproduced in the Mathematical 
papers of W. K. Clifford, pp. 18 1-200. For the geometric interpretation ofthese 
numbers (in particular, double numbers, which can be represented as straight 
lines of the ordinary Euclidean plane), see I.M. Yaglom, Complex Numbers in 
Geometry, N.Y., Academic Press, 1968; also see Supplement C in the Yaglom 
book referred to in Note 1 59. 

Dual numbers, originating in Plucker's work and, in part, in Hamilton's 
early work on geometric optics, and appearing in line-element geometry (as 
well as in non-Euclidean line-element geometry), were used by Plucker's succes
sor in the chair of mathematics at Bonn university (and later professor at 
Greifswald university) Eduard Study (1862-1922) and by the Khazan geome
ter Alexander Petrovich Kotelnikov (1865-1944). In this connection see the 
conclusion of Part I of W. Blaschke, Vorlesungen iiber Differentialgeometrie 
und die geometrische Grundlagen Einstein's Relativitiitstheorie, Bd. I: Elemen
tare Differentialgeometrie, Berlin, Springer, 1930. 

204 Here, in certain cases, it is necessary to enlarge the original definition 
of a Clifford algebra, as Clifford did when passing from ordinary complex 
numbers (with unit i, where i2 = - 1) to double numbers (with unit e, where 
e2 = + 1). Thus in "generalized Clifford numbers" (also called alternions and 
discovered by the famous English physicist Paul Adrien Maurice Dirac (1902-
1985) in the course of his work on quantum mechanics) the squares of the 
principal units e; may equal - 1  or + 1. It is clear that for n = 1 the Clifford 
numbers with one unit e satisfying e2 = - 1 coincide with the complex num
bers; if e2 = 1, we get Clifford's double numbers. For n = 1 the Grassmann 
numbers, where (as always in his case) the square of the only unit is zero, yield 
Clifford's dual numbers. For the Clifford algebra in the case n = 2, see page 89. 

All the systems of numbers considered above can be introduced in a uniform 
manner. Thus consider a Euclidean n-space with basis e1 , e2, • • •  , e,. and inner 
product 

(x, y) = F(x, y) = (x1 e1 + · · ·  + x,.e,., y1e1 + · · ·  + y,.e,.) = L aiixiyi 

with symmetric bilinear form F. Define the product xy of vector x and y by 
putting 

xy + yx = (x, y) ( = F(x, y)) 

and using the distributive and associative laws. If the quadratic form F(x, x) = 
F is written in the canonical form F = ± Xf ± Xi ± · · · ± Xf, k :::;;; n, then 
we obtain an alternion algebra (singular if k :::;;; n) which corresponds to the 
conditions Ef = ± 1 for i :::;;; k and EJ = 0 for j > k (here E1 , E2, • • •  , E,. is a 
canonical basis of the space for the form F and, at the same time, a system of 
generators for our "algebra of numbers"). The nonsingular case, the negative-
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definite case and the null case of the form F correspond, respectively, to the 
Dirac numbers, the Clifford numbers and the Grassmann numbers. Note that 
F = (x1 E1 + x2E2 + · · · + xnEn)2, so that any quadratic form is the square of 
a linear form whose coefficients E1 , E2, • . .  , En are "noncommutative numbers" 
of a new kind. Dirac arrived at his numbers from similar considerations: he 
viewed the Laplace operator .::\ = (o2jox2) + (o2joy2) + (o2joz2) as the square 
of a linear operator, 

.::\ = (L!_ + M �  + N�)2 
ax oy az 

and, although any mathematician could easily show that the representation 
(*) is impossible, Dirac was led to accept it on the basis of physical considera
tions. 

205 Here is a very clear formulation of what "symbolic algebra" is about by 
another one of the leaders of the Cambridge formalist group, George Peacock 
(1791-1858): symbolic algebra is "the science of symbols and their combina
tions, constructed according to their own rules, which may be applied to 
arithmetic and other sciences by means of an interpretation" (see pp. 194-195 
in Peacock's Report on the recent progress and present state of certain branches 
of analysis, Rept. of the British Assoc. for the Adv. of Sci. for 1 833, London, 
1 834). 

206 Systems of numbers u = x0 + x1 e + x2 e2 + · · · + xn_1 e"-1, where x0, 
x1 , . . . , xn_1 are real numbers and the formal sums u and v = y0 + y1e + 
y2e2 + · · · + Yn-1 e"-1 are added and multiplied in the ordinary way, using the 
relation eii = ei+ i, are now called cyclic numbers if e" = + 1 ,  anticyclic num
bers if en = - 1,  and plural numbers if e" = 0. Thus in modern terminology 
C. Graves's triplets are 3rd-order cyclic numbers. The terms "cyclic" and "anti
cyclic" are due to the fact that the algebra of (say) cyclic numbers is the same 
as the algebra of so-called "cyclic matrices," whose rows are obtained from 
each other by cyclic permutations, i.e., have the form (x0 , Xt . x2, . . .  , Xn-d, 
(x1 , x2 , . . .  , Xn-t . X0), (x2 , x3, . . .  , Xn_1 , x1 , x0), . • •  , (Xn-1 , x0, x1 , . . .  , Xn_2). It is 
easy to show that the algebras of cyclic and anti cyclic numbers can be written 
as the direct sums of a certain number of copies of the field of complex numbers 
and of at most two copies of the field of real numbers. The most interesting 
geometric applications are those of plural numbers, which generalize the dual 
numbers of Clifford-Study-Kotelnikov, but we will not discuss this here. 

207 C. Graves orthogonally projects the point of ordinary Euclidean space 
(x, y, z) corresponding to the triplet u = x + ye + ze2 on the line 1: x = y = z 
and on the plane n l_ l with equation x + y + z = 0. Then the multiplication 
of two triplets reduces to the multiplication of their projections on l as real 
numbers on the 1-axis and of their projections as complex numbers in the 
plane n. (Thus, "geometrically," the algebra of triplets is represented as the 
"direct sum" of the real line l and the complex plane n; see Note 206.) 
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208 Compare, for example, a modern textbook on mechanics that clearly 
presents the mathematical aspect of "Hamiltonian formalism", V.I. Arnold's 
Mathematical Methods in Classical Mechanics (N.Y., Springer, 1978). 

209 Hamilton himself liked to recall that he spent nearly ten years vainly 
trying to construct such a system of numbers with three units-he called them 
triplets, copying the terminology of de Morgan and Graves. In one of his later 
letters to his son, he recalls how each morning, coming down to breakfast, his 
son would ask him: "Well, father, have you learned to multiply and divide 
triplets?", and he would sadly reply: "No, I still only know how to add and 
subtract them." 

2 10 In the letter quoted in the previous note, Hamilton recalls how the idea 
of giving up triplets and going on directly to quaternions (numbers with four 
units) came to him, together with the understanding that commutativity of 
multiplication must be sacrificed and together with the main formulas of 
"quaternion algebra." He was walking with his wife along the Royal Canal to 
a session of the Royal Irish Academy, where he was to preside; his wife was 
telling him something, but he did not hear the words. The solution of the 
problem which had occupied him for such a long time came to him in a flash; 
crossing the bridge over the canal, Hamilton wrote out the main formulas on 
the soft stone of the bridge's railing, using the tip of his penknife. The Moscow 
shipbuilder and mathematician, fleet admiral and member of the Academy of 
Science, leading authority on celestial mechanics, and Russian translator of 
Newton's Principia, Alexei Nikolaevich Krylov ( 1863-1945), retelling the 
incident, usually claimed that the Dublin municipal authorities periodically 
freshen up Hamilton's formulas on the bridge railing, so that they can still be 
seen there today, and that Hamilton was not going to a Royal Academy 
session but coming home from a party, where he had not neglected the 
(alcoholic) beverages. This version adds fresh color to the historical anecdote 
-and after all, Hamilton's story was told many years post factum, and its 
reliability may be doubted. It should be mentioned that Krylov (like Hamil
ton, a drinking man) was prone to exaggerate (as a sailor should) his partial
ity to alcohol (see his expressive memoirs-My Recollections, Leningrad, 
"Sudostroyenie", 1979; in Russian). Of course Krylov never saw the Hamilton 
formula on the bridge railing-his story is apocryphal. 

21 1  Hamilton viewed the vector v = ai + bj + ck as a translation operator 
sending the point A(x,y, z) into the point B(x + a, y + b, z + c). He uses the 
terms vehend for A and vectum for B. Hamilton considers the triplet of terms 
vehend-vectum-vector as similar to diminuend-difference-subtrahend and 
dividend-divisor-quotient. However, only the term "vector" survived in 
mathematics. 

2 1 2 For a time the vector calculus, so useful to physicists and engineers 
today, existed only in the form of a "quaternion calculus." In particular, it was 
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in quaternion form that James Clerk Maxwell ( 183 1 -1879} wrote his famous 
Treatise on Electricity and Magnetism. Thus the fundamental Maxwell equa
tions of electromagnetic field theory, familiar to us in vector form, were first 
written by their author not in vector but in quaternion terms. This was 
possible because Hamilton, in his study of quaternions, laid the foundations 
not only of vector algebra, but of vector analysis as well: he considered the 
"symbolic vector" (or "purely vector quaternion"} 

a a a v = i 
ax 

+ j
oy 

+ k 
az ' 

which he called "nabla" after the Biblical instrument "nebela," a kind of 
triangularly shaped harp; here i, j, k are "quaternion units", and ojox, ojoy, 
ojoz, are partial-derivative operators. Further, Hamilton considered the for
mal products sV, S(Vv}, V(Vv}, where s = s(x, y, z} is a scalar ("purely scalar 
quaternion"), actually a scalar field changing from point to point, while 
v = a(x, y, z)i + b(x, y, z)j + c(x, y, z)k is a vector ("purely vector quaternion"), 
i.e., a vector field. Hamiton denoted his "symbolic quaternion" by the sign <1 ,  
obtained by rotating the Greek .::l; this operator acquired its modern form V 
in the book An Elementary Treatise on Quaternions (Cambridge, 1873} by the 
British physicist Peter Guthrie Tait (183 1 -1901), better known for his physics 
textbook, written jointly with William Thompson, Lord Kelvin (1824-1907). 
It is in this Treatise that the word "nabla", apparently coined by Hamilton, 
was first used for the symbol V. P.G. Tait played an important part in further 
discussions of quaternions, where he supported Hamilton's conceptions abso
lutely. Tait was Hamilton's close friend; at the latter's request, he delayed his 
own book's publication in order that it appear after Hamilton's book Elements 
of Quaternions, Dublin, 1 866 (actually, when the two books came out, Hamil
ton was no longer living). On the other hand, Tait was a friend of Maxwell, 
with whom he studied in Edinburgh and then at Cambridge. Apparently it 
was from Tait that Maxwell learned of Hamilton's creation. (Of course, both 
Maxwell and Tait took an examination in quaternion theory at Cambridge
at the time a degree was unthinkable without it; Tait's knowledge of the subject 
went far beyond the examination requirements, and Maxwell was able to 
demonstrate his own perfect mastery.) 

The vector calculus did not acquire its quaternion-free modern form in the 
works of mathematicians, but in Elements of Vector Analysis, New Haven, 
1881-1884, by the outstanding American physicist Josiah Willard Gibbs 
( 1839-1903), who worked all his life at Yale University, which he helped make 
world-famous, and in Electromagnetic Theory, London 1903, by the English 
engineer and electrician Oliver Heaviside (1850-1925), creator ofthe so-called 
"symbolic calculus," member of the Royal Society, who, for almost all his 
career, led the life of a private person. Both these authors deleted the minus 
sign in Hamilton's formula for the scalar product of vectors. 

2 1 3 In particular, Hankel first stated the so-called permanence principle, 
which must be taken into account when we extend algebraic (e.g., numerical) 



202 Notes 

systems: operations on elements of the new system must be defined so that 
their application to the original elements (now part of the new system) gives 
the same result as before. (When we pass to the new system, we must extend 
our knowledge, not learn anew!) Thus the operations on complex numbers 
applied to (real) numbers x + Oi( =x) give the same result as operations 
applied to x's viewed as real numbers; quaternion operations on numbers of 
the form s + xi + Oj + Ok do not differ from their analogues on complex 
numbers s + xi, etc. 

214 The importance of the (now somewhat neglected) topic of (hyper) com
plex numbers at the turn of the century is attested in the very large article on 
complex numbers ( Complexe Zahlen) in Klein's Encyclopedia of Mathematical 
Sciences; cf. Chapter 8. This article was written by Eduard Study (see Note 
203). A French version was contributed to the enlarged French edition of this 
Encyclopedia by the great French mathematician Elie Cartan, mentioned in 
Note 192; see E. Study, E. Cartan, Nombres complexes, Encycloped. Sciences 
Math., Edition Fran�aise, Paris, Gauthier-Villars, 1 908, article I, 5. 

It is clear that Grassmann's number system (see page 82) and Clifford 
numbers (see page 84) of the nth order with principal units e1 , e2, • • •  , en are 
actually hypercomplex numbers with 2n complex units; these units may all be 
written in the form e;, e;2 • • • •  • e;. = e;,;2 • • • i. • where 0 � k � n (for k = 0 our unit 
e does not contain any of the factors e1 , . . .  , en and can simply be identified 
with the number 1) and i1 < i2 < · · · < ik. The two systems of numbers differ 
only in the "multiplication tables" for the units e;, . . .  i, · 

2 1 5 Thus the two "quotients" t1 ( =uv-1 ) and t2( = v-1 u) of the vectors u and 
v # 0 considered by Hamilton (i.e., of two "purely vector quaternions") are 
equal to ( iu l/lv l )  · (cos cp ± w sin cp), where j u j  and j v j  are the lengths of the 
vectors u and v, while w is the unit vector perpendicular both to u and to v (or 
the zero vector 0, if u and v are in the same line) and cp is the angle between 
u and v. Therefore the "Hamilton quotient" of two vectors is not a vector, but 
a "general" quaternion; for collinear vectors (i.e., vectors contained in the same 
line) this quotient is unique and is a scalar (the real number t such that u = tv). 
In any system of hypercomplex numbers, for any u, the expressions uu-1 and 
u-1u (the quotients ofu by itself) are equal to each other and to a fixed element 
e, which plays the role of the identity element in our system, i.e., for any v we 
have ev = ve = v. 

2 16 We have already mentioned the efforts expended by Hamilton (and 
by the "Hamiltonians" and "quaternionists" who followed him) to develop 
the general theory of analytic functions of a quaternion variable. Its authors 
expected that it would have applications as wide and fruitful as those of the 
theory of analytic functions of a complex variable (created by A. Cauchy, 
B. Riemann, and K. Weierstrass) to classical analysis and differential equations. 
Alas!-these expectations were to be disappointed. S.M. Lie's closest pupil 
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and collaborator Georg Scheffers extended the research of the "quaternion
ists" to the theory of functions of an arbitrary associative hypercomplex 
variable, similar to the Cauchy-Riemann-Weierstrass theory of functions of 
a complex variable. However, he achieved success only in the case of commuta
tive multiplication; in this case he found "analyticity conditions" generalizing 
the classical Cauchy-Riemann conditions for functions of an (ordinary) com
plex variable. The Cauchy-Riemann conditions, which appear in every book 
on complex analysis or on the theory of analytic functions, are the following: 
a function w = u(x, y) + iv(x, y) of a complex variable z = x + iy is analytic if 
and only if 

ou ov 
ax oy' 

ou 
oy 

ov 
ax · 

In the case of a double variable z = x + ey, where e2 = + 1, and a dual variable 
z = x + ey, where e2 = 0, the "Scheffers conditions" are 

ou ov ou ov 
- = -, - = -
OX oy oy ax 

and 
ou 
ox 

ov ov 
oy ' ax

= o. 
But Scheffer's beautiful constructions (Verallgemeinerung der Grundlagen der 
gewohnlichen komplexen Funktionen, Sitzungsberichte Sachs Ges. Wiss, Math.
phys. Klasse, Bd. 45, 1 893, pp. 828-842) have never been used in other 
branches of mathematics and its applications, and now appear to be a typical 
"mathematical plaything." 

2 1 7 Lie's pupil at Leipzig University, the geometer Friedrich Heinrich Schur 
(who should not be confused with the great algebraist Issal Schur, 1875-1941), 
always followed in the footsteps of his teacher Lie and, in part, in those of the 
latter's friend Felix Klein. Schur's work on hypercomplex numbers was very 
highly rated at the time, but it is now less well known than his characterization 
of Riemannian spaces of constant curvature, which can be viewed as bearing 
on the Helmholtz-Lie problem. (On the grandiose development of this topic, 
mentioned in passing in Note 144, see T.A. Wolf, Spaces of Constant Curva
ture, 1972; the 1982 Russian translation of this book contains a Supplement by 
Yu.D. Burago covering some of the latest developments in the field.) More 
popular still is Schur's axiomatic presentation of Euclidean geometry in his 
book Grundlagen der Geometrie, Leipzig-Berlin, Springer, 1909. This is a 
reassessment of Hilbert's book of the same name in the spirit of Klein's 
"Erlangen program" (see Chapter 7): Schur's book is based on axioms of 
Euclidean plane and solid geometry involving the corresponding isometry 
groups. 

2 1 8 T.E. Molin was born in Riga (Latvia). He graduated from Dorpat 
(now Tartu-Estonia) University and taught at Dorpat and later in Tomsk 
(Siberia). Thus most of his life was spent in Russia, where he was called Fiodor 
Eduardovich; recall that Riga and Dorpat, when Molin lived there, were part 
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of the Russian Empire. Nevertheless Molin is undoubtedly a representative 
of the German mathematical school, not because he was German (which is 
not important in his case), but because he was educated in Leipzig, wrote his 
first paper there and had Sophus Lie for a teacher, and in Dorpat, which was 
a purely German university in spirit. (Note that Friedrich Schur, as we 
mentioned in Note 217, also studied under Lie at Leipzig; for a time he was 
also a professor at Dorpat University.) 

219 Of course, it would be more logical to write the hypercomplex numbers 
(5.7) in the form u = x0e0 + x1 e1 + · · · + x,.en> where the "complex identity 
element" e0 satisfies e0e; = e;e0 = e; for all i = 1, 2, . . .  , n. This allows us to 
identify e0 with the number 1 .  

220 This result was obtained by G. Frobenius in his fundamental paper 
"0ber lineare Substitutionen and bilineare Formen," Crelle Journ., 84, 1 878, 
pp. 1-63; C.S. Peirce's publication was "Upon the logic of mathematics," Proc. 
Amer. Acad. of Arts and Sci., 7, 1 865-1868, pp. 402-412; see also C.S. Peirce, 
"On the algebras in which division is unambiguous," Amer. Journ. of Math., 
4, 1 881,  pp. 225-229. An elementary exposition of this result (and other results 
mentioned in this book) can be found in a book that is accessible to a wide 
class of readers: Hypercomplex Numbers by I.L. Kantor and A.S. Solodovnikov 
(Moscow, Nauka, 1973, in Russian, but an English translation is in prepara
tion), as well as in I.V. Arnold's book Theoretical Arithmetic, Moscow, Uch
pedgiz, 1939 (but his Russian book is hardly accessible to the English-reading 
public). (The Moscow mathematician and teacher Igor Vladimirovich Arnold 
(1900-1948), should not be confused with his son, Vladimir Igorievich Arnold 
(b. 1937), mentioned in Note 208.) 

221 Another method for introducing octaves is based on the elegant opera
tion of"doubling" systems ofhypercomplex numbers. This operation, applied 
to real numbers, yields the complex numbers; applied to complex numbers, it 
yields the quaternions; and applied to quaternions it yield the octaves. The 
exposition in the book by Kantor and Solodovnikov mentioned in the previ
ous note is based on this method. In this connection see also the historical 
article by J. Gueridon and J. Dieudonne, "L'Algebre depuis 1 840," in the book 
Abrege d'histoire des mathematiques (1 700-1900), sous Ia direction de J. Dieu
donne, v. I, Paris, Hermann, 1978, pp. 9 1-127, especially pp. 106- 1 1 1. 

222 The existence of a well-defined division operation in a system of hyper
complex numbers is related to the absence of so-called divisors of zero, i.e., 
numbers u =1= 0 such that there exist numbers v =I= 0 satisfying uv = 0. For 
example, in the systems of double numbers and dual numbers, numbers of the 
respective forms x(1 ± e) and xe are divisors of zero. Incidentally, for certain 
"extensions" of the set of existing systems of hypercomplex numbers (double 
and dual numbers, four types of quaternions, six types of octaves), it is possible 
to define a division operation which yields an "ideal" number in the case when 



Chapter 6 205 

the divisor is a divisor of zero; for the sets of double and dual numbers this 
procedure is described in detail in I.M. Yaglom's book Complex Numbers in 
Geometry, mentioned in Note 203. 

223 It is precisely in this form that the Frobenius theorem (in "generalized 
form") is proved in the Kantor-Solodovnikov book mentioned in Note 220. 

224 Another generalization, akin to alternativity, of the notion of asso
ciativity of hypercomplex systems is its Jordan property (see page 100.), first 
introduced by the outstanding German theoretical physicist Ernst Pascual 
Wilhelm Jordan (b. 1902); this property has come to the forefront in the work 
of many physicists and mathematicians in the last decade. 

225 It is typical that, in contrast, Lawrence Young, in his recent book 
mentioned in Note 192, rates Cayley's discovery of the octaves highly enough, 
but stresses that it is Cayley's only achievement which has retained its impor
tance in our day. (Young, who is often very harsh and subjective in his 
estimates, writes that Cayley was the author of 900 mathematical papers 
which, except for the ones on octaves, have entirely lost their interest. He 
indicates that that the 13  volumes of Cayley's Collected Mathematical Papers 
(Cambridge University Press, 1 889-1898, Vols. 1-1 3) cannot be compared to 
the mere 60 pages of mathematical notes that the unfortunate Evariste Galois 
was able to write in his short life. Without going further into this rather 
uncalled-for comparison (the two persons were too far apart in time, in their 
lives, in temperament and in scientific style), I would nevertheless like to 
venture an opinion as to why Young underestimates Cayley's contributions 
to mathematics so very much. Many of the ideas that Cayley introduced into 
mathematics (multidimensional spaces, matrices, Cayley tables for group 
multiplication, etc.) are now so familiar that they seem obvious to us and are 
viewed as "mathematical folklore," unrelated to the person who first intro
duced them.) 

226 Hurwitz's original and very beautiful proof is contained in his article 
"Dber die Komposition der quadratischen Formen mit beliebig vielen Vari
ablen," Gottinger Nachrichten, 1 898, pp. 300-316. See also the book by Kantor 
and Solodovnikov mentioned in Note 220. 

227 On the "generalized" Hurwitz theorem for associative number systems 
(not for octaves!) see A.A. Albert, "Quadratic forms permitting composition," 
Ann. of Math., 43, 1942, pp. 161-177. The case of "generalized octaves" has 
been studied by the Moscow geometer David Borisovich Persits (b. 1941). 

Chapter 6 
228 Compare with what is said in the foreword to P. Alexandroff's book 

Introduction to the Theory of Groups (see Note 32). 
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229 See the fundamental article by C. Jordan, "Memoire sur les groupes de 
mouvements," Ann. math. pures et appl., ser. 2, 2, 1868-1868, pp. 167-215, 
322-345, also reproduced in Jordan's muvres. 

230 If, in the formulas (6.2), we restrict ourselves to values Ll > 0, then we 
obtain transformations which may be called direct affine transformations: they 
preserve the orientation of the basis formed by two noncollinear vectors e1 , 
e2 • (The orientation of such a basis is positive if the smallest rotation that 
sends the direction of e1 to that of e2 is counterclockwise and negative in the 
opposite case.) If in the formulas (6.2) we require that L\ = ± 1, then we obtain 
the class of so-called equiaffine transformations, which are area-preserving. If 
in (6.2) we require Ll = + 1 then we obtain the direct equiaffine transforma
tions. Finally, transformations (6.2) for which L\ < 0 are called opposite affine 
transformations. 

23 1 The classification of crystals according to their symmetry properties has 
its origins in ancient times. It was noticed that crystals can have axes of 
symmetry of orders .2, 3, 4, and 6, but cannot have axis of symmetry of order 
5-although such axes often appear in living things (e.g., in sea-stars and in 
many flowers)-or of orders � 7. The mathematical theory of crystals, how
ever, is entirely a product of the 19th century. In particular, a list of all possible 
crystallographic groups appeared in the (independent) research works of the 
Russian crystallographer Efgraf Stepanovich Fedorov ( 1853-1919) in 1 891 ,  
of the German mathematician Arthur Moritz Schonflies (1853-1928), also in 
1891 but later than Fedorov, and of the English crystallographer William 
Barlow ( 1845-1934) in 1 894. The number of crystallographic groups (in space) 
turned out to be 230. (None of the three researchers mentioned above obtained 
this exact result-all their papers contained (easily filled) gaps, so that each 
obtained less than 230 groups, and the complete list was obtained by com
paring the three results.) 

The number of plane crystallographic groups is 1 7. All of them have been 
(in effect!) known to and used by ancient designers, almost from Cro-Magnon 
times; in particular, Arab architects in medieval Spain certainly knew all of 
them. 

In the 20th century the list of"Shubnikov" or "black-and-white" symmetry 
groups was established. In these groups, elements of the same shape but of 
different colors (black and white, say), or possessing electric charges of dif
ferent sign, are distinguished. The number of such groups is 122 in the plane, 
and 1651 in space. (Alexei Vassilievich Shubnikov, 1 887-1970, was a Russian 
crystallographer.) 

At present, the problems of finding all possible groups of plane color 
symmetries when the elements can have more than two colors, and all sym
metry groups in four-dimensional and in multidimensional spaces (Fedorov 
and Shubnikov groups, not to mention the "colored" groups) remain, to the 
best of my knowledge, open. (For a beautiful illustration of a plane color 
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ornament, see the picture "Reptiles" in The World of M.C. Escher, N.Y., 
Abrams, 1971, Color plate II.) 

The literature on geometric crystallography and crystallographic groups 
(including their role in art and in nature) is too vast to be listed here. I 
shall mention only Chapter 4 ("Two-dimensional crystallography") in H. S.M. 
Coxeter's book Introduction to Geometry (see Note 72); Chapter II of the 
well-known book by D. Hilbert and S. Cohn-Vossen, Geometry and the 
Imagination, N.Y., Chelsea, 1952; Chapters 10, 1 1, 1 7  of E. Martin's Trans
formation Geometry, N.Y. Springer, 1982; the album book C. McGillavary, 
Symmetry Aspect of M.C. Escher's Periodic Drawings, Utrecht, 1976; and 
classical books by D' Arcy W. Thompson, On Growth and Form, London, 
Cambridge University Press, 1952 and (especially) H. Weyl, Symmetry, 
Princeton University Press, 1952. Among books a bit further away from our 
topic, but rich in content, see B. Griinbaum and G.C. Shepard, Tilings 
and Patterns, N.Y. Freeman, 1987 and Patterns of Symmetry (ed. M. Senechal 
and G. Fleck), Amherst (Mass.), University of Massachusetts Press, 1977; 
A.V. Shubnikov, V.A. Koptsik, Symmetry in Science and Art, N.Y., Plenum 
Press, 1974. Finally, miscellaneous books on the subject include G.I. Bradley, 
A.P. Gracknell, The Mathematical Theory of Symmetry in Solids, Oxford, 
Clarendon Press, 1971; M.J. Burger, Elementary Crystallography, N.Y., 1956; 
J.J. Burkhart, Die Bewegungsgruppen der Kristallographie, Basel, Birkhauser, 
1966; M.A. Jaswon, An Introduction to Mathematical Crystallography, 
London, 1965. 

232 In the present exposition, intended for the beginner, we do not dwell on 
the difference between Lie groups and continuous groups (the former are 
determined by equations involving smooth (i.e., differentiable) functions). Nor 
do we consider the history of Hilbert's 5th problem, which is concerned with 
the connection between these two notions. See, for example, "The Mathe
matical Developments Arising from Hilbert's Problems" (Proc. of Symposia 
in Pure Math., Vol. XXVIII), Providence (R.I.), American Math Soc., 1976, 
pp. 12-14 (the statement of Hilbert's problem) and pp. 142-146 (brief com
ments by C.T. Yang about this problem). The initial situation, as it was at the 
end of the 1930s, is described in a nonelementary, but beautifully written, book 
by L.S. Pontrjagin, Topological Groups, Princeton University Press, 1939. The 
exposition in the German edition of Hilbert's problems (with comments by 
Russian mathematicians), Die Hilbertschen Probleme, Leipzig, Akademische 
Verlagsgesellschaft Geest und Portig, 1979, pp. 43-47 (Hilbert's text), pp. 
126-144 (comments by E.G. Skljarenko; one should keep in mind that, 
unfortunately, the proofs of A.N. Kolmogorov's results [3], mentioned in 
these comments, were never published by the latter. 

Perhaps the simplest exposition of the proof of the solution of Hilbert's 5th 
problem (not meant for the beginner, however), is contained in Part II of 
I. Kaplansky's small book Lie Algebras and Locally Compact Groups, Chicago, 
the University of Chicago Press, 1972. 
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233 I hope that the reader realizes the tentative character of this rather 
arbitrary division of German algebraists into a Leipzig and a Berlin group. 
As an undoubted pupil and follower of Lie, Study studied in Leipzig as well 
as in Jena, Strasbourg, Munich, and taught in Leipzig for three years; he then 
taught at a number of universities, including Johns Hopkins in Baltimore. 
Study's longest stays were at the universities of Bonn and Greifswald. On the 
other hand, Frobenius, who came from Berlin, was also under the strong 
influence of Lie, with whom he had constant friendly contacts. Such clarifica
tions might also be made about other persons mentioned here, but this is 
hardly necessary. 

234 Or the "exterior product" due to Grassmann, which, as we know, is 
almost the same. 

235 Mathematicians call the expression ()i, which equals zero for i "#  j and 
1 for i = j, the Kronecker symbol, after the Berlin mathematician Leopold 
Kronecker (1823-1891) who introduced this notation and studied its proper
ties. Kronecker was the direct opposite of Weierstrass as well as his rival. 

236 Cayley defined the multiplication of matrices in the way it is done today 
in all linear algebra textbooks: if the matrix A = (aii) corresponds to the linear 
transformation from the variables X; to the new variables xi (i.e., 

n 
xi = ailx1 + a;2X2 + · · · + a;nXn = L aiixi, j=l 

where i, j = 1, 2, . . . , n, while the matrix B = (bii) in the same sense deter
mines the transformation from the variables xi to the variables xi' (i.e., xi' = 
LJ= 1 biixj), then the passage from the variables X; to the variables xi' can be 
carried out directly by means of one matrix C = (cii) (i.e., xi' = LJ=l ciixi), 
where C = B · A. The Peirces were the first to notice that these definitions 
(known for n = 2 and 3 long before Cayley) were those of a certain (associative) 
system of (hyper) complex numbers (a matrix algebra in the sense which they 
assigned to the word "algebra"). 

237 It is clear that all the elements (5. 1)  of the Grassmann algebra whose 
coefficient x0 is zero, in particular all the "principal units" e1 , e2 , • • •  , en which 
generate this algebra are examples of nilpotent elements (for any e;, where 
i = 1, 2, . . .  , n, we even have ef = 0). Examples of idempotent elements are 
provided by Clifford's double numbers e1 = ( 1  + e)/2 and e2 = (1 - e)/2, 
where e2 = + 1 (see Chapter 5; check that ei = e1 and e� = e2; note that, on 
the other hand, Clifford's "dual unit" e is a nilpotent element of the corre
sponding algebra). Other examples of idempotent elements are the Clifford 
numbers (1 ± e1 23)/2 and ( 1  ± e1 234)/2, but not ( 1  ± e1 2)/2 or (1  ± e12345)/2 
(check this!); here e;,;2 • • .  ;k denotes the "Clifford product" e;,;2 • • •  ik of the princi
pal units e;, , e;2, • • .  , e;k· 
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238 In the Russian scientific literature (and perhaps not only there) the 
expression "almost associative algebras" is often used to include alternative 
algebras (see relations (5. 10) and (5. 10a)), Jordan and Lie algebras. 

239 If u * v = uv + vu, where we now denote the main (associative!) product 
of elements from our algebra without putting a dot between them, then 
(u2)* = u * u = 2u2 ; therefore the left-hand side of (6.8) equals 

[2u2v +-2vu2] * u = 2(u2v + vu2)u + u(2u2v + 2vu2) 

= 2(u3v + u2vu + uvu2 + vu3). 

The right-hand side of (6.8) is equal to the same expression: 

2u2 • (vu + uv) = 2u2(vu + uv) + (vu + uv)(2u2) 

= 2(u3v + u2vu + uvu2 + vu3) 

(since the sum of elements in our algebra is always commutative!). 
If we put u o v = uv - vu, then 

(u o v) o w  = (uv - vu) o w  = (uv - vu)w - w(uv - vu) 

= uvw - vuw - wuv + wvu, 

which obviously implies (6.9): 

(u o v) o w + (v o w) o u  + (w o u) o v  = 0 

(check this!). 

24° Carl Gustav Jacob Jacobi (see the chapter on him in E.T. Bell's book 
Men of Mathematics), one of the leading mathematicians of the 19th century, 
made important contributions to almost all branches of mathematics and 
mathematical mechanics. (His elder brother, Moritz Hermann (called Boris 
Semionovich in Russia) Jacobi (1801-1872), creator of galvanoplastics and 
author of numerous papers on the practical use of electricity, is now ranked 
among the greats of Russian physical science; he was a member of the 
St. Petersburg Academy of Sciences, spent most of his life in Russia and even 
acquired Russian citizenship. During the life of Carl Jacobi, his elder brother's 
renown far surpassed his own, but today that relation is reversed.) The 
brothers came from a rich Jewish banking family; Carl lost his fortune as the 
result of unsuccessful financial operations and, at the end of his life, had to 
earn a living from mathematics. He was widely educated; In particular, he was 
a connoisseur of classical philology, and this had an important influence on his 
attitude to mathematics, where he was prone to see the aesthetic side (compare 
with what we said about F. Klein and F. Enriques in Chapter 2). His vast 
scientific background also influenced his creative work. Jacobi touched upon 
almost all the branches of "pure" mathematics, but also did work in applied 
mathematics and astronomy, as well as fundamental research in mechanics 
where, incidentally, the identity now bearing Jacobi's name first arose in 
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connection with properties of differential operators. For most of his life Jacobi 
worked in Konigsberg (now Kaliningrad). It was to his scientific, pedagogical 
and organizational abilities (as well as to the work of the famous astronomer 
and mathematician Friedrich Wilhelm Bessel, 1 784-1846) that the physico
mathematical department at Konigsberg University owed its high reputa
tion, maintained for many years, until F. Klein succeeded in "seducing" the 
leading Konigsberg mathematicians to come to Gottingen (see Chapter 8). 
Jacobi's colossal workload at Konigsberg finally exhausted him and, mostly 
for this reason, he moved to Berlin, where he no longer tried to retain the 
same level of productivity. Typically, he did not even try to make scientific 
contacts with Riemann, who listened to his lectures in Berlin, leaving this 
initiative to his friend Dirichlet. Jacobi died of smallpox in Berlin at the age 
of 4 7 ("died in Blattern," as one can read in the Russian translation of Klein's 
Vorlesungen iiber die Entwicklung der Mathematik . . .  ; the German word 
Blattern, however, means smallpox, and nouns in that language are always 
capitalized, whether they be names of cities or of diseases). 

241 The literature on the theory of Lie groups and algebras (the two topics 
are usually studied simultaneously; their relationship is discussed below) is 
too vast to be reviewed here. We cannot even make a comprehensive list of 
the most important works in the field (Lie's contributions will be discussed 
separately). The "main" textbook in Lie algebras (but not Lie groups!) is 
generally held to be N. Jacobson, Lie Algebras, N.Y.-London, Interscience 
Publishers, 1962; a shorter introduction to the topic is contained in Part 1 of 
Irving Kaplansky's short book mentioned in Note 232. Among the large 
treatises we note the 4-volume exposition in Nicolas Bourbaki's Elements de 
M athematique, Groupes et algebres de Lie, Ch. I, II-III, IV-VI, VII-VIII, 
Paris, Hermann, 1971, 1972, 1968, 1975 and C. Chevalley, Theorie des groupes 
de Lie, Vol. 1-111, Paris, Hermann 1946, 1951,  1955. These books appeared in 
the legendary series "Publications de l'Institut Mathematique de l'Universite 
de Nancago," named after the (imaginary!) city of Nancago, where the imagi
nary mathematician N. Bourbaki was professor. Nancago = Nancy + Chi
cago: it was in these two cities that two of the founders of the Bourbaki group 
first worked-Jean Alexandre Dieudonne (b. 1906) and Andre Weil (b. 1906); 
Claude Chevalley (b. 1909) was also one of the founders of the group. Two 
shorter expositions, are J.-P. Serre, Lie Algebras and Lie groups, N.Y., 
Benjamin, 1965 and Chapter XIX of J. Dieudonne, Elements d'analyse, Vol. 
IV, Paris, Gauthier-Villars, 1971, pp. 1 19-213. Among the classic books and 
articles by Elie Cartan note the very clearly written article La geometrie des 
groupes de transformations, Journ. Math. pures et appl., 6, 1927, pp. 1- 1 19, 
which also appears in his Collected works (CEuvres completes en 6 volumes, 
Paris, Gauthier-Villars, 1952-1955) and his textbook-monograph, La theorie 
des groupes finis et continus et la geometrie differentielle traitees par Ia methode 
du repere mobile, Paris, Gauthier-Villars, 1937. 

The simplest expositions of Lie groups and algebras are those intended not 
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for mathematicians but for "users of mathematics", almost all of whom 
consider the topic important. As an example, we refer the reader to the book 
of the well-known Israeli physicist H.J. Lipkin with the catchy title Lie Groups 
for Pedestrians, (Amsterdam, North-Holland, 1966). 

It is also typical that recently, in Moscow, when a philology student in
terested in mathematics asked one of the most authoritative Moscow mathe
maticians where he should begin studying in order to use mathematics in 
linguistics, the answer was immediate: "Study the theory of Lie groups." 

242 See any exposition (as elementary as you wish!) of the elements of vector 
calculus, e.g., the article mentioned in Note 200: W.G. Boltjanski, I.M. Jaglom, 
Vektoren und ihre Anwendungen in der Geometrie. I should also like to cite the 
carefully written textbook of Ya.S. Dubnov, The Foundations of the Vector 
Calculus, Vol. I, Moscow-Leningrad, Gostechizdat, 1950, but this book is 
hardly accessible to the English-reading public. The Jacobi identity immedi
ately follows from the easily proved relation [a[b, c]] = (b, a)c - (c, a)b. 

243 The nondegeneracy requirement for the scalar product is the following: 
for any vector a "# 0, there exists a vector b such that (a, b) "# 0; it is easy to 
see that (0, b) = 0 for all b. Concerning the positive definiteness requirement, 
see below. 

244 In the literature, a vector space supplied with a scalar product (a, b) 
satisfying, besides the properties listed above, the requirement of positivity or 
positive definiteness, is called a Euclidean space. Actually, the term Euclidean 
space" has come to denote a vector space with a scalar product satisfying only 
the three properties listed in the main text. 

In the literature, spaces with positive scalar product are sometimes called 
proper Euclidean; with nondegenerate but not necessarily positive product, 
pseudo-Euclidean; with possibly degenerate scalar product, semi-Euclidean (cf. 
Chapter 4). 

245 For this reason an important place in the theory of Lie algebras (and 
groups) is occupied by the problem of classifying particular types of such 
algebras (groups) satisfying certain supplementary conditions, e.g., the clas
sification problem for simple (or semi-simple) Lie groups, which will be dis
cussed below. 

The fact that the classification problem for Euclidean spaces is much simpler 
than that for Lie algebras is easy to explain: n-dimensional Euclidean space 
is a vector space with coordinates x1 , x2, . . .  , xn and a metric determined 
by the scalar product of vectors a(x1 , x2, • • •  , xn) and b(y1 ,y2, . . .  , yn) in 
accord with the formula (valid for arbitrary-not necessarily Cartesian
coordinates) 

n 
(a, b) = 01 1X1Y1 + 01 2X1 Y2 + · · · + OnnXnYn = L gijxiyj, 

i,j= l 
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where it is natural to assume g;1 = g1; for all i, j = 1, 2, . . .  , n and i =f. j; addi
tional nondegeneracy or positive definiteness requirements may be imposed 
on the quadratic form (gii) appearing in this formula. On the other hand, a 
Lie algebra is determined by the "Lie product" 

n 
[a, b] = d txlylel + dtxlyle2 + · · ·  + c:nxnynen = L ctx;yiek i,j,k=l 

of vectors a(x1 , x2, . . .  , xn) and b(y1 , Y2, . . .  , yn), where e1 , e2 , . . .  , en are the basis 
unit vectors, i.e., it is determined by the structural constants ct satisfying the 
conditions - ct = c1� for all i, j, k = 1, 2, . . .  , n (the antisymmetry or anti
commutativity requirement for [a, b] ) and the rather complicated condition 

i, j, k, s = 1, 2, . . .  , n, 

which is equivalent to the Jacobi identity. Thus in one case we must classify 
second-order tensors g;1 (characterized by two indices i and j; concerning the 
notion of tensor see, for example, I. Gelfand, Lectures on Linear Algebra, N.Y., 
Interscience Publishers, 1961, or any elementary text on the tensor calculus), 
while in the other case we must classify third-order tensors ct (antisym
metric with respect to i andj and satisfying relation (*)), depending on three 
indices i,j and k, which makes the problem incomparably more difficult. (For 
comparison, we note that while the classification problem for Grassmann's 
bivectors ("extensive magnitudes of the second order") in spaces of arbitrary 
dimensions (which reduces to classifying antisymmetric second-order tensors 
eu satisfying e1; = - eu) presents no difficulty, the classification problem for 
trivectors (i.e., Grassmann's "extensive magnitudes of the third order," or 
third-order tensors eiik• antisymmetric with respect to any two lower indices 
(i.e., such that eiik = - e1;k = - eiki = . . .  ) is still a long way from solution, 
although recently there have been some advances, associated, in particular, 
with the name of Ernest Borisovich Vinberg (b. 1937). It is clear that, in 
n-dimensional space, for n < 3, there exist no nonzero trivectors, while in 
3-dimensional and 4-dimensional space there is only one type of trivector; the 
classification of trivectors in 5-dimensional space is simple enough. Trivectors 
in 6- and 7-dimensional space were classified by the outstanding Dutch 
specialist in linear algebra and tensor calculus Jan Arnoldus Schouten 
(1883- 1973). When Grigory Borisovich Gurevich (1 898-1980) was defending 
his doctoral thesis (Moscow, 1935) on the classification of trivectors in 8-
dimensional space, Schouten wrote in his review of this work that finally there 
was hope that the trivector classification problem might be solved in the 
reviewer's lifetime. However, G.B. Gurevich, who spent most of his life trying 
to solve the problem, was unable to resolve the classification problem of 
trivectors in 9-dimensional space; the solution was eventually given by Yin
berg. As for the general problem of listing all possible types of trivectors, we 
still have no approaches to its solution today; even the tO-dimensional case 
remains unsolved. This being so, the prospects for solving the much more 
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difficult general classification problem of Lie algebras (i.e., "Lie tensors" c�) 
are, to put it mildly, not very good. As for the classification theorems obtained 
by Sophus Lie himself, e.g., the list of possible types of geometric transformation 
groups of the line and of the plane (depending, of course, on a finite number 
of parameters), they are a huge and beautiful monument to the difficulty of 
the general problem, rather than an approach to its solution!) 

246 The choice of the angular velocity vector I determines not only the 
one-parameter subgroup l) of the group m but also the "canonical parameter" 
(time) corresponding to this subgroup. This parameter "enumerates" the 
transformations P E o  (rotations about a fixed axis) by means of real numbers 
subject to the condition 

{J(t1 }, {J(t2) E o -= {J(t1 ) · {J(t2 ) = {J(t1 + t2). 

A similar construction plays an essential role in the general assignment of a 
Lie algebra to a Lie group. 

247 Of course, just as the multiplication of complex numbers z(r, fP) · 
z(a, oc) = z(r', fP') (written in polar coordinates) generates the group of rota
tions and similitudes of the plane (the transformation with parameters (a, oc) 
sends the point M(r, fP) into the point M'(r', q/), where r' = ar, fP' = fP + oc; 
see Fig. 19(b), so too any algebra (system of hypercomplex numbers) with 
multiplication 

determines a continuous (Lie) group which acts on the "group space" whose 
points are given by the coordinates x1 , x2 , • • •  , xn. The choice of parameters 
a1 , a2, • • •  , an determines a transformation of our group. This transformation 
sends the point M(x1 , x2, • • •  , xn) into the point M'(x� ,  x2, . . .  , x�). In the above
mentioned case of ordinary complex numbers, the role of the group space is 
played by the complex plane itself. This rather obvious observation was made 
by H. Poincare in a brief article published in 1 884; N. Bourbaki (see his text 
on the history of mathematics mentioned at the beginning of Chapter 3) notes 
the strong impression that this article made on Lie and his followers (among 
whom Bourbaki includes, in this connection, Study, Scheffers, F. Schur, Molin, 
and E. Cartan) who were particularly interested in the connection between 
Lie groups and algebras and in the classification of both. In particular, the 
transformations determined by the elements of the "group space" were to play 
a large part in E. Cartan's considerations (see, for example, his long article 
mentioned in Note 241). 

248 Lie did not doubt the possibility of extending any "local group" (a small 
neighborhood of its identity element e) to a "complete" continuous group, but, 
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apparently (showing that this chronologically near period is psychologically 
distant from us!), never tried to prove this fact. This result was obtained by 
one of the founders of modern Lie group theory, Elie Cartan, repeatedly 
mentioned above. 

249 Let p and i be subspaces of a Lie algebra !e. Denote the subspace of 2 
generated by all elements of the form [k, 1], where k E p, 1 E i by [p, i]. In that 
case p is a subalgebra of 2 if [p, p] c p, and p is an ideal of 2 if [p, 2] c p. 
The Jacobi identity implies that for any three subspaces a, b and c of the Lie 
algebra 2 we always have [ [a, b], c] c [ [b, c], a] + [ [c, a], b], where the " + "  
sign stands for the vector sum of subspaces; therefore if i and j are ideals of 
the Lie algebra 2 then so is [i, j]. Since the Lie algebra 2 = 1<0> itself is trivially 
an ideal of 2, we obtain a decreasing (more precisely, nonincreasing) sequence 
of ideals: 

2 = 1(0) ::::l 1(1 ) ::::l 1(2) ::::l • • •  ::::l 1(k) ::::l • • •  ' 
where 1( 1 ) = [l(O), 1(0)], [<2> = [l( l )' 1(

1 )], 1(3) = [1(2), 1(2)], • • • • 
The Lie algebra 2 is called sovab1e if there exists a (natural) number k such 

that 1<k> = o, where o = {0} is the trivial ideal consisting of only one element
the 0 element of the algebra (vector space) 2. Another definition of a solvable 
algebra (equivalent to the first one, as can easily be checked) is the following: 
2 is solvable if and only if there exists a sequence of subalgebras 

such that the dimension of each to; is less than that of the previous one 
precisely by 1 (here dim to; = n - i, where "dim" stands for "dimension" 
and n is the dimension of the vector space 2; here, as above, o = {0}) 
and each subalgebra in the sequence is an ideal of the previous subalgebra 
( [to;, to;-1 ] c to; for all i = 1, 2, . . .  , n). 

The Lie algebra 2 is called semisimp1e if it contains no solvable ideal 
different from the trivial one o = {0}. The correspondence between Lie alge
bras and Lie groups allows us to limit ourselves to the definition of solvable 
and semisimple Lie algebras, since Lie groups are called solvable and semi
simple if such are their corresponding Lie algebras. 

250 The Cartan theorem mentioned in Note 248 established a correspon
dence between Lie algebras and simply connected ("not containing any holes") 
Lie groups. In the present elementary exposition, we have neither the pos
sibility nor the necessity of dwelling on the possible types of Lie groups that 
are not simply connected. Nor shall we consider such groups as the group 
(6.2) of affine (or linear) transformations of the plane, which consists of two 
disconnected parts, corresponding to the values A > 0 ("direct" affine trans
formations; they are the ones that constitute the simply-connected group 
appearing in the Cartan construction) and A < 0 ("opposite" affine transfor
mations, which do not constitute a group, since the product of two opposite 
transformations is a direct affine transformation). 
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25 1 The classification problem for semisimple Lie groups and algebras is 
of no independent interest, since it can be shown that every semisimple Lie 
algebra is the "direct" (or "vector" -see Note 188) sum of simple Lie algebras. 

252 Wilhelm Karl Joseph Killing studied at the universities of Munster and 
Berlin. He then taught at gymnasia in Brilon and Braunsberg, and later at 
Munster university. Thus he had no connection with the universities and cities 
where Sophus Lie worked, so that in this sense he was not a pupil of Lie's. 
However, the deep scientific (and later personal) relationship between Killing 
and Lie, as well as Killing's dependence in his entire research work on the 
ideas and problems formulated by Lie, allows us to say that Killing was indeed 
Lie's pupil-perhaps by his loyalty and the scope of his talent, the leading 
one. Nevertheless, this did not stop Lie, who was never very easy to get along 
with, from expressing unjust remarks about Killing. 

253 W. Killing, "Die Zusammensetzung der stetigen endlichen Transfor
mationsgruppen I-IV," Math. Annalen, 31, 1 888, pp. 259-290; 33, 1889, pp. 
1 1 -48; 34, 1 889, pp. 57-122; 36, 1 890, pp. 161-189. 

254 E. Cartan, Sur la structure des groupes de transformations finis et con
tinus (These), Paris, Nony, 1894; 2nd edition: Paris, Vuibert, 1933. This also 
appears in Cartan's Collected Works, cited in Note 241 .  

25 5  What we say about the greater meaningfulness of the van der Waerden
Dynkin construction as against Cartan's thesis should not be taken literally. 
Of course, both van der Waerden's clear and elegant geometric constructions 
(see Note 256), mainly originating in H. Weyl's fundamental research (see 
the latter's "Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen 
durch lineare Transformationen I-III und Nachtrag," Math. Zeitschift, 23, 
1925, pp. 271-309; 24, 1926, pp. 328-376; pp. 377-395; pp. 789-791, which 
also appears in H. Weyl's Collected Works (Gesammelte Abhandlungen, Bd. 
1-4, Heidelberg, Springer, 1968)) and the "Dynkin diagrams" (see Note 257), 
inspired in tum by van der W aerden's ideas, are typical of the modern 
mathematical style, with its unexpected points of contact of topics which at 
first glance seem far apart. All the same, Cartan's These remains one of the 
"mathematical classics." 

256 B.L. van der Waerden, "Die Klassifizierung der einfachen Lie'schen 
Gruppen," Math. Zeitschrift, 37, 1933, S. 446-462. 

257 Also see the nonelementary but clearly and beautifully written article 
by E. B. Dynkin, "The structure of semisimple Lie algebras," Uspehi mat. nauk, 
2, vyp. 4(20), 1947, pp. 59-127 (in Russian) or the briefer exposition of the 
result concerning us here: E.B. Dynkin, "Classification of simple Lie groups," 
Mat. sbornik, 18(60), 1946, pp. 347-452 (in Russian). Note that Dynkin's 
classifying construction reduces to finding a system of plane graphs corre-
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sponding to simple Lie groups; their number (more precisely, the number of 
series of plane graphs, because to each "series" of Lie groups there corresponds 
a "series" of graphs) turns out to be very small. As an illustration of deep 
general properties of the science of mathematics, reflecting a certain simplicity 
and harmony of our world (here our point of view differs little from that of 
the Pythagoreans of the 6-5th centuries B.C. and, more generally, from that 
of the mathematicians of antiquity), we note that Dynkin diagrams, which 
first appeared in a rather narrow mathematical problem, have since turned 
up in various topics far removed from the original one. Thus the diagrams 
classifying simple Lie groups also happen to classify the singularities of 
smooth maps, caustics, wave fronts, etc. (See V.I. Arnold's book, meant for a 
wide reading public, Catastrophe Theory, N.Y., Springer Verlag, 1984, or the 
detailed monograph V.I. Arnold, A.N. Varchenko, S.M. Husein-Zade, Singu
larities of Smooth Maps, Part I, Classification of Critical Points, Caustics and 
Wave Fronts, Part II., Algebraic-topological Aspect, Moscow, Nauka, 1982, 
1983 (in Russian; an English translation is in preparation). In this connection, 
the following quotation from Arnold's first-named book above is appropriate: 
"There is something mysterious in the theory of singularities, as in all mathe
matics: it is the extraordinary coincidences and relationships appearing in 
topics and theories which seem far removed from each other at first glance." 
Moreover, some Moscow mathematicians and natural scientists have recently 
discovered connections between Dynkin diagrams and classification problems 
arising in the study of social and natural phenomena. If their expectations 
were to come true, this would confirm the profound character of the Dynkin 
diagrams, which uncover-as mathematics should-certain deeply hidden 
laws of the Universe ("world harmony", as the Pythagoreans thought and 
said). 

258 Vectors in 2-dimensional, 3-dimensional and n-dimensional affine 
(vector) and Euclidean spaces are often also called points. This identification 
is connected with the possibility of assigning to each point A of the plane the 
vector a = OA, say; here 0 is the "origin of vectors" (which corresponds to 
the zero vector 0, appearing in the axioms of vector space). For example, 
J. Dieudonne does this in the book cited in Note 64, which he views as a 
preliminary sketch of a school textbook. On the other hand, the special role 
played in vector algebra by the zero vector predetermines the presence of a 
distinguished point 0 in this construction of geometry. For this reason the 
plane or space, viewed as a set of vectors identified with points, is sometimes 
called the centroaffine plane (or space) or the centro-Euclidean plane (or space); 
the centro-Euclidean plane is sometimes described as the "punctured" plane, 
i.e., the plane from which a distinguished point has been removed. If we do 
not distinguish any point of the plane, then we are led to a description of 
geometry like that in Herman Weyl's famous textbook on relativity theory, 
Raum, Zeit, Materie, Berlin, Springer, 1923. Thus the basic elements of the 
system under consideration include both the set "f/ = {a, b, c, . . .  , 0} of vectors 



Chapter 6 217 

and the set !T = {A, B, C, . . .  } of points; the connection between vectors and 
points is effected by assigning to each pair of points A, BE  !T a unique vector 
a E 1/ denoted by AB ; this operation must satisfy two axioms: 

A1 : VA E !T, a E "f/  3! BE !TjAB = a; 

A2: VA, B, C E !TIAB + BC + CA = 0. 

259 Consult the fundamental (but not easily accessible) article by H. Freu
denthal, "Oktaven, Ausnahmegruppen und Oktavengeometrie," Mimeo
graphed, Utrecht, 1951, or, for example, J. Tits, "Le plan projectif des octaves 
et les groupes de Lie exceptionels" Bull. Acad. Roy. Belg. Sci., 39, 1953, 
pp. 300-329. 

260 The current great interest in the extremely difficult and, it would seem, 
rather narrow topic of finite simple groups is a curious outgrowth of the 
explosive increase of attention, typical of contemporary "pure mathematics," 
being paid to finite (or discrete) mathematics as opposed to the mathematics 
of the continuous. On this shift of interest away from continuous mathematics 
(which includes the calculus and Sophus Lie's theory of continuous groups) 
see Notes 42 and 45, as well as I.M. Yaglom's "Elementary Geometry, Then 
and Now," in the book Geometric Vein (The Coxeter Festschift), edited by 
C. Davis, B. Griinbaum, F.A. Sherk, N.Y., Springer, 1981, pp. 258-269. The 
theory of finite simple groups is worth looking at in more detail. Already 
Galois established that the alternating group Ano i.e., the group of so-called 
even permutations ofn elements, is simple for any n "# 4 (see Chapter 1 above). 
On the other hand, since "geometries" (vector spaces) can be constructed not 
only over the field of real numbers, the field of complex numbers, the noncom
mutative field of quaternions and the algebra of octaves, but also over finite 
(Galois) fields (see page 20), it is possible to carry over the "classical" simple 
Lie groups and their geometric interpretation to "finite geometries," con
taining only a finite number of points. Thus we come to new meaningful 
examples of finite simple groups, known as simple groups of Lie type, more 
often called (and this is only fair) Chevalley groups, after the French mathe
matician Claude Chevalley, whom we had the occasion to mention previously, 
and who was the first to investigate such groups in depth. Finally, besides 
these two large classes of finite simple groups (Galois's alternating groups; 
Chevalley's groups of Lie type) there also exists a finite set of simple groups 
not included in any classification. These groups are now called sporadic simple 
groups. There are 26 of them; their list begins with the group M 1 1  of order 
(number of elements) 7920 and concludes with the so-called Baby Monster (of 
order 241 · 3 1 3 · 56 • 72 · 1 1 · 1 3  · 17 · 19 · 23 · 3 1 · 47 � 1034) and The Monster (or 
Big Monster) of order 246 • 320 · 59 • 76 · 1 1 2 · 132 • 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 ·  
7 1  ( � 1054). Try to imagine a Cayley table for these groups! It seems that at 
present the proof of the existence of all these groups may be viewed as 
completed. It was elaborated during a long period by many researchers in 
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several countries with the essential aid of computers; see the already partially 
obsolete but very expressive review by M. Ashbacher, The Finite Simple 
Groups and their Classification, New Haven, Conn., Yale University Press, 
1980, which can be supplemented by its author's later interview in the Los 
Angeles Times of October 24, 1 980. See also D. Gorenstein's (advanced) book 
Finite Simple Groups, N.Y. Plenum Press, 1982, or his more accessible article 
"The Enormous Theorem," Scientific American, 6, pp. 104-1 15. 

Actually, the words "proof" and "complete" in this context have a some
what nonstandard (and perhaps not very clear) meaning. The stupendous 
amount of work carried out convinces us that the list of 26 sporadic simple 
groups is correct, but in what sense are we, the heirs of Pythagoras, Plato, 
Aristotle, Gauss, Weierstrass, Russell, and Hilbert, to understand this work 
to be a "proof"? The first (and yet far from the most complicated!) of the 
questions that arise here concerns the use of computers. Can we say without 
any misgivings, for example, that the famous four-colour problems has truly 
been solved if the arguments advanced for its solution required thousands of 
hours of computer time and parts of the proofs carried out by computer have 
never been checked by anyone? (See, in this connection, the article by K. Appel 
and W. Haken, "The Solution of the Four-Color Problem," Scientific Ameri
can, October 1977, pp. 108-121, or K. Appel, W. Haken, "The Four-Color 
Problem" in the book Mathematics Today (Twelve Informal Essays), L.A. 
Steen, editor, N.Y., Springer Verlag, 1979, pp. 1 53-188.) Concerning the diffi
culties which arise here, the well-known American specialist in combi
natorial problems Daniel Cohen stated as early as 1978 that he could simplify 
the Appel-Haken proof. This, incidentally, was not obtained by Kenneth 
Appel and Wolfgang Haken alone, but by a large group, including many 
mathematicians, programmers, and computer scientists-among the latter 
John Koch deserves to be singled out-and the powerful IBM360 computer 
at Illinois University. The simplified proof projected by Daniel Cohen was 
meant to be "verifiable by hand", i.e., the computer parts of the proof were to 
be short enough to be checked by human mathematicians; Cohen appropri
ately called the book under preparation Human Solution of the Four-Color 
Problem. However, this book, to my knowledge, has not appeared in print, so 
that there is no definite answer to the question of whether the four-colour 
problem is "solved" or "unsolved." 

But in the case of sporadic simple groups the situation is much more 
complicated than in the case of the four-color problem. The arguments leading 
to the conclusion that the list of all such groups is complete have never been 
written down. This is not because there seem to be doubts about the unique
ness of one or two of the 26 groups (or because there were such doubts 
recently), but because it is impossible to write down, read, proofread and verify 
the thousands upon thousands of pages the text would require. Specialists like 
Aschbacher feel that we are just beginning the difficult work of elaborating 
certain links of the entire chain of arguments. This elaboration, in which many 
researchers from different countries will take part, will probably stretch out 
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for several years, after which succeeding generations will have at their disposal 
"a number of fat, carefully prepared volumes," containing an alleged solution 
of the problem. 

Now if finding the sporadic finite simple groups requires such titanic efforts, 
is it really worthwhile? Is the result worth the effort? Here we return to the 
general considerations about modern mathematics touched upon in Note 257, 
which alone justify the very existence of mathematical science. In this connec
tion see the book of P.J. Davis and R. Hersh, The Mathematical Experience, 
mentioned in Note 109, as well as the following articles by outstanding 
physicists, Nobel prize winners: E.P. Wigner, "The Unreasonable Effective
ness of Mathematics in the Natural Sciences," Comm. in Pure Appl. Mat h., 13, 
1960, pp. 1- 14; C.N. Yang, Einstein and the Physics of the Second Half of the 
Twentieth Century (the text of Yang's report at the II Marcel Grossman 
seminar devoted to Einstein's 100th anniversary is included in Yang's Selected 
Papers, 1945-1980, San Francisco, Freeman, 1983), or the less declarative and 
more concrete text by C.N. Yang, "Fibre Bundles and the Physics of the 
Magnetic Monopole," in The Chern Symposium 1 979, N.Y., Springer, 1980, 
pp. 247-253). Finite simple groups of the Lie type or Chevalley groups may 
also seem to be an elegant plaything, not worthy of serious attention or of 
great efforts-but the discovery of these groups was not the conclusion but 
the starting point of large series of interconnected investigations in algebra, 
analysis, number theory, geometry, algebraic geometry, etc. (See, for example, 
the review by R. Steinberg, Lectures on Chevalley Groups, New Haven, Conn., 
Yale University Press, 1967.) Here we should perhaps also mention the wild 
idea about the relationship between the order of the first of the simple groups 
of type E8 (the group E8, the last and most complicated of the singular 
Lie-Killing-Cartan simple groups, has been the focus of attention of mathe
maticians and physicists for a number of reasons) and the number of protons 
in the Universe. This idea is discussed at the end of Section 9.8 of H.S.M. 
Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, 
Heidelberg, Springer, 1972. Similarly, the theory of sporadic groups may turn 
out to be related to important branches of science having general mathe
matical significance. The very difficulty of this theory attests, to some extent, 
to its depth. A fervent-but perhaps as yet insufficiently founded-article by 
J.H. Conway, one of the leading dramatis personae, discusses the possible 
consequences for mathematics of the deciphering of the Big Monster's struc
ture (The Math. Intelligencer, 1980, 2, #4). 

26 1 See, for example, C. Jordan, Cours d'Analyse de /'Ecole Polytechnique, 
Vol. I-III, Paris, Guathier-Villars, 1909-1915; E. Picard, Traite d'Analyse de 
Ia F aculte des Sciences de Paris, Vol. I-III, Paris, Gauthier-Villars, 1 891-1896 
(Lie's theory is presented in the last volumes of these famous calculus courses). 

262 A typical example of the different approaches to the solution of differen
tial equations in the first and second halves of the 20th century, reflecting 
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the changes of attitude towards the "mathematics of infinity" and "discrete 
mathematics," which we discussed above (e.g., in Note 260), is the change in 
the relation between differential equations, viewed since Newton's day as the 
principal mathematical language describing the laws of nature, and difference 
equations, which are their "discrete analogue." Before World War II, difference 
equations were thought to be rather primitive models of differential equations, 
instruments of the engineer and the natural scientist. Thus, for example, the 
theory oflinear difference equations with constant coefficients, very similar to 
the theory of differential equations with constant coefficients, was usually 
studied in universities after differential equations and viewed as a "toy" -an 
arithmetical model of linear differential equations; it attracted students pre
cisely because of its resemblance to a "real" mathematical theory. Whenever 
a difference equation arose in applications, mathematicians would usually 
approximate it by a similar differential equation and estimate the solutions 
of the former by means of the solutions of the latter. In our time the converse 
occurs more often: in order to prepare a differential equation for computer 
solution (solution on a machine which is discrete (numerical) in principle) one 
replaces the differential equation by the difference equation which approxi
mates it. This approach is reflected in all modern textbooks on differential 
equations. The "Newtonian" idea that all nature's laws are described by 
differential equations has been criticized in an entirely different way-though 
from a similar standpoint, typical of our computer age-in a brilliant book 
by B. B. Mandelbrot, The Fractal Geometry of Nature, San Francisco, Free
man, 1982. In somewhat simplified and exaggerated form, Mandelbrot's point 
of view may be described as follows. All the functions which describe the 
phenomena of the natural and social sciences are continuous but nowhere 
differentiable (i.e., functions which "change direction" at each point); Newton's 
and Leibniz's differentiable functions are nothing more than an idealized 
approximation to the real state of affairs. 

263 Two relevant books are P.J. Olver, Applications of Lie Groups to Dif
ferential Equations, N.Y., Springer Verlag, 1986, and L.V. Ovsiannikov, Group 
Analysis of Differential Equations, Moscow, Nauka, 1978 (in Russian). 

264 Edmond Laguerre, an outstanding French mathematician, was ex
tremely versatile. He worked in the theory of functions of a complex variable, 
in classical mathematical analysis, and in geometry. A graduate of (and later, 
for many years, a teacher at) the Paris Ecole Polytechnique, which we have 
often mentioned here, Laguerre was a typical product of this institution. In 
particular, the school has very difficult examinations (Galois failed the exami
nations for entrance !) and special instructors to prepare students for them; 
Laguerre served in this role for several years. Undoubtedly these rigorous 
examinations influenced Laguerre greatly, diversified his scientific interests, 
and developed his taste for the difficult problems which he produced all his 
life and regularly published in French mathematical journals. 
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Laguerre devoted a series of articles to his circle geometry, in which the role 
of isometries in the plane is played by "line-element circle transformations." 
In these articles, in particular, he describes the family of all "Laguerre cycles", 
i.e., curves with "Laguerre self-transformations" (cf. what we say below about 
Klein's and Lie's W-curves). All of these articles appear in Volume 2 of 
Laguerre's works (CEuvres, Vol. 1-2, Paris, Gauthier-Villars, 1 898-1905). 
Laguerre's own approach to his transformations differs from the one devel
oped here and in Note 265. As to a general assessment of Laguerre as a 
mathematician, see H. Poincare's introductory article in Vol. 1 of Laguerre's 
works. 

265 The Mobius inversion (or pointwise inversion) described in Chapter 3 
(note that it was first discovered by Apollonius from Perga (c. 262-190 B.C.) 
and then rediscovered after Mobius, by William Thompson, Lord Kelvin 
(1824-1907) in connection with certain problems in electrostatics and is 
often attributed to him) is often described as follows. (This construction is 
due to J. Steiner.) The power of a point A with respect to a circle S with center 
Q and of radius r, denoted by po(A, S), is defined as the square of the (real or 
purely imaginary) length of the segment t(A, S) of the tangent to S from A, 
i.e., po(A, S) = t2 = d2 - r2, where d = AQ. We can also write po(A, S) = 

AB1 • AB2, where B1 and B2 are the intersections of an arbitrary line a passing 
through A with the circle S. The family of circles .91 = {SJpo(Q, S) = k} is 
called a bundle of circles with radical center Q and power k. Now let S e .91 
and S 3 A. All such circles S, contain, besides the point A, another point A' (in 
the limiting case A' may coincide with A; then all the circles are tangent to 
each other at A). The transformation A 1-+ A' is called the Mobius inversion 
with center Q and power k. Similarly, we can define po(a, S) = (r - d)/(r + d), 
where S = S(Q, r) is a circle, a is an oriented straight line and d is the positive 
or nonpositive distance from Q to a (or po(a, S) = tan2( L (a, S)/2), where 
L(a, S) is the real or imaginary angle between a and S; or po(a, S) = 
tan( L (a, b1 )/2) · tan( L (a, b2)/2), where b1 and b2 are the two tangents drawn 
from an (arbitrary!) point A e a  to S and po(S1 , S2) = d2 - (r1 - r2)2, where 
S1 = S1 (Q1 , rd and S2 = S2(Q2 , r2) are two arbitrary oriented circles and 
d = Q1 Q2 ; or po(S1 , S2) = (t(S1 , S2))2, where t(S1 , S2) is the (real or imaginary) 
tangential distance between sl and s2 i.e., the length of the segment of the 
common tangent between them). Now let !!l = {S Jpo(q, S) = k} be the net of 
circles with axis q and power k and rc = { SJpo(S, I:) = k} the bunch of circles 
with central circle I: and power k. The family of all circles S, where S e !!l and 
Sra (here a is a fixed oriented line and -r means "tangent to"), is tangent to 
another line a' (in the limiting case a' may coincide with a). The family of all 
circles a, a e rc and a-rS, where S is a fixed oriented circle, is tangent to a second 
circle S' (which may coincide with S in the limiting case). The transformation 
a 1-+ a' on the set of all oriented straight lines is the Laguerre inversion; such 
inversions generate the Laguerre transformations of the plane-line-element 
transformations of the plane. It would be appropriate to call the transforma
tion S 1-+ S' a Lie inversion, for such inversions generate the family of Lie 
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tangential circle transformations. For the details see I.M. Yaglom, "On the 
Circle Transformations of Mobius, Laguerre and Lie," in The Geometric Vein 
(see Note 260), pp. 345-353. All these notions and constructions can be carried 
over to 3-dimensional and n-dimensional geometry. 

An elementary introduction to the three types of circle geometries is con
tained in I.M. Yaglom, "Geometrie der Kreise," in Enzyklopiidie der Elemen
tarmathematik Bd. IV (Geometrie), (see Note 72), pp. 457-526. A detailed 
theory of all these geometries is contained in W. Blaschke, Vorlesungen iiber 
Differentialgeometrie, Vol. III, Differentialgeometrie der Kreise und Kugeln, 
Berlin, Springer, 1929. [On Wilhelm Blaschke ( 1885-1962), one of the leading 
geometers of the 20th century see, for example, my afterword to the Russian 
translation of Blaschke's book Kreis und Kugel, published by Nauka in 
Moscow in 1967, pp. 201-227 (in Russian).] In less detail, "circle transforma
tions" and "circle geometries" are treated in the "Higher Geometry" textbooks 
for German universities by Klein and Bieberbach, which were very popular 
in the first third of this century. 

In view of the general trend of modern mathematics pointed out in Notes 
42, 45, 260 and 262, exponents of circle geometry, like exponents of projective 
geometry (see Note 75), try to preserve its scientific significance in the context 
of a general decrease of interest in geometry by shifting to finite circle geom
etries (circle geometries over finite (Galois) fields which lead to "planes" 
containing only a finite number of points; these planes can also be charac
terized in "purely geometric" terms, by means of appropriate axioms), and by 
stressing the relation between circle geometry and algebra. In this connection, 
see the elementary book I.M. Yaglom, Complex Numbers in Geometry (see 
Note 203), where circle geometries appear; better still, consult the more recent 
monograph by W. Benz, Vorlesungen iiber Geometrie der Algebren, Heidelberg, 
Springer, 1973. (Walter Benz now directs the famous Hamburg University 
Mathematics Institute founded by W. Blaschke, where he heads the modern 
school of circle geometry; this deals, in particular, with finite circle geometries.) 

266 See, for example, V.I. Arnold's book mentioned in Note 208. 

267 The term "W-curves", in Klein's and Lie's work, derives from the 
German word der Wurf, whose mathematical meaning is hard to explain to 
the modern reader. The literal translation is "the number of points for a throw 
of dice." Von Staudt uses the term in the sense of the cross ratio off our collinear 
points A, B, C, and D understood in the purely projective sense (without using 
distance, which is a notion of metric or Euclidean geometry) or in the sense 
of the simple ratio of three collinear points (a notion appearing in affine 
geometry). It was precisely his desire to stress the independence of this notion 
from nonprojective concepts that led von Staudt to coin the new term der 
Wurf An elegant exposition of von Staudt's "Wurf calculus" in a language 
close to the modern is given in T.W. Young's short, beautifully written book 
Projective Geometry, 1983 (The Carus mathematical monographs series). The 
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key role in von Staudt's "Wurf calculus" is played by the extensive group of 
projective self-transformations of the straight line; it was this fact that led 
Klein and Lie to call all curves possessing projective self-transformations 
"Wurf curves" or, briefly, "W-curves." 

268 For a simple solution to the problem of finding all the curves with 
"self-similitudes" see, for example, I.M. Yaglom and V.G. Ashkinuze, Ideas 
and Methods of Affine and Projective Geometry, Part I, Affine Geometry, 
Moscow, Uchpedgiz, 1962 (in Russian), problem 234a and its solution. 

The topic of W-curves is studied, for example, in W. Blaschke, Vorle
sungen uber Differentialgeometrie, Bd. II-Affine Differentialgeometrie, Berlin, 
Springer, 1923. Also, compare problem 234b and its solution in the Yaglom
Ashkinuze book mentioned above, where all the curves with a group of affine 
self-transformations are listed. The general W-curves can be described as 
"projective modifications" of the affine W-curves discussed in the Yaglom
Ashkinuze book. 

Chapter 7 

269 Another general approach to geometry, which does not include pro
jective or circle geometry, but does include in the list of geometries not 
only Euclidean, hyperbolic, and elliptic geometries but also certain "curved" 
spaces, is sketched in Riemann's 1 854 lecture. But as we pointed out earlier, 
this metric approach (i.e., based on the notion of distance) was noticed and 
appreciated only much later. 

270 Actually, the idea that a geometric figure is an arbitrary set of points is 
too general for geometry: under this definition the study of all figures becomes 
the subject of set theory and topology, but certainly not of geometry. In order 
to make the word "figure" meaningful from the geometric point of view, it is 
necessary to restrict the family of admissible point sets (compare, for example, 
I.M. Yaglom and V.G. Boltyanski, Convex Figures, N.Y., Holt, Rinehart and 
Winston, 1961, Appendix II, "On the concepts of convex and nonconvex 
figures"). 

27 1 Thus, for example, the meter was once defined as a forty-millionth part 
of the Paris meridian. But this definition is no longer the accepted one. The 
meter was later defined as the distance between two parallel marks on a 
platinum etalon at ooc, kept at the Breteuil pavillion at Sevres (France); now 
it is defined in terms of wavelengths corresponding -to a certain point of the 
spectrum. The choice of this point is based on ideas and observations of 
physical chemistry (more precisely, spectral analysis), and not of geometry. 
(Perhaps a more evocative illustration of the fact that the definition of units 
oflength is not the business of"pure mathematics" is the definition of the yard, 
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still the officially accepted measure oflength in the English system of measures 
a few years ago: the yard was originally defined as the distance from the tip 
of King Henry I's nose to the end of middle finger of his extended right arm.) 

272 Note that unlike units of length, angular units are defined in purely 
geometric terms. Thus a right angle is half of a straight angle; a degree is one 
three-hundred-sixtieth part of a full angle; the radian is the central angle 
corresponding to a circular arc whose length equals the circle's radius. Com
pare how lengths and angles appear in the statement of the well-known 
theorem that if the angles C and B of triangle ABC are respectively equal to 
90° and 30°, then AB : AC = 2 :  1 .  

273 In the geometry where figures (in particular, triangles) are determined 
"up to similitude" (i.e., similar figures are viewed as identical or "equal"), the 
triangle (in this sense) is determined by only two independent elements or 
conditions instead of three. Thus one "typical construction problem" of or
dinary school geometry is, say, the problem of constructing a triangle ABC 
given its sides AB, BC, and its angle B, and another (well known!) problem is 
that of constructing .6-ABC given its median BM, bisector BN, and altitude 
BP. In the "geometry of similar figures" we can mention construction prob
lems such as that of finding ("constructing") a triangle ABC given the ratio 
AB : BC of two of its sides and the angle B (recall that the notion of length 
has no meaning in this geometry, while the notion ofthe ratio oflengths does!), 
and the (well known) problem of constructing .6-ABC given that the four 
angles into which the angle B is divided by the median BM, the bisector BN, 
and the altitude BP are equal. Note that the assumption in this problem 
can be stated in the form of two relations, e.g., L ABC = L M BN and 
LNBP = L PBC. 

274 The difference between these two geometries is nicely illustrated by the 
following fact. In the "geometry of isometry" the only "homogeneous" curves 
(curves all of whose points are equivalent-a consequence of the existence of 
a transitive group of self-transformations) are the straight lines and the circles, 
whereas in the "geometry of similitude" there are other such curves-the 
logarithmic spirals (see Chapter 6, in particular Fig. 26). 

275 The passage from the set IDl to the "set of classes" is described as passing 
to the quotient set of IDl with respect to the equivalence relation " "'  ". The 
quotient set is denoted by IDl/"' .  Nowadays these notions appear in most 
school mathematics courses. 

276 The group � of direct isometries can be described analytically (i.e., by 
using coordinates) by the equations (6. 1)  which relate the (rectangular Car
tesian) coordinates x, y of the given point M(x, y) and the coordinates x', y' 
of its image M'(x', y'). The group m: of affine transformations of the plane is 
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described analytically by equations (6.2) (where now x, y and x', y' are 
arbitrary linear or affine coordinates, since rectangular Cartesian coordinates 
are meaningless in affine geometry). Similarly, the group � of projective 
transformations can be described as the group of transformations 

M(x0 : x1 : x2) �----+ M'(x0 : x� : x2) 
= M'(aooXo +aolXl +ao2X2 : aloxo +auxl +a1 2x2 : a2oXo +a21X1 +a22x2) 

where x0 : x1 : x2 and x0 : x� : x2 are projective coordinates of the given point 
and its image (see Chapter 3) and /::,. = l au l #- 0; here /::,. is the third-order 
determinant with entries aii• i,j = 0, 1, 2. The group � can also be defined as 
the set of all one-to-one maps of the ordinary or affine plane II0 sending each 
line a into a line a'; the group � as the set of maps of the projective plane II 
with the same property (see, for example, the book by I.M. Yaglom, Geometric 
Transformations III, mentioned in Note 73). 

277 We can also suppose that � => �. where � is the group of projective 
transformations of the plane; then we must assume that the "domains of 
action" of the projective and affine transformations are the same, i.e., we must 
extend the affine (or Euclidean) plane to the projective plane by adding to the 
former the "line at infinity", consisting of "points at infinity." In this sense 
each theorem and notion of projective geometry acquires a meaning in affine 
(Euclidean) geometry. Thus the very important projective notion of cross ratio 
(A, B; C, D) of four points on a line can be described in affine or Euclidean 
geometry as the "ratio of simple ratios": (AC I BC)I(AD I BC). Then the prob
lem, so brilliantly solved by von Staudt, consists in showing that a cross ratio 
can be described in the "language of projective geometry," without using the 
"simple ratios" AC/BC and ADIBD, which are meaningless in this geometry. 

Also note that our statement, according to which <V1 => <V2 implies that 
each theorem in the geometry rl holds in the geometry r2, does not include 
the cases when the group <V1 appears explicitly in the statement of the theorem. 
For example, the theorem in the "geometry of similitude" asserting that the 
logarithmic spiral is a "homogeneous" curve, i.e., has self-transformations 
sending any given point on it into any other given point on it, is false in 
Euclidean geometry. In the same way Lie's and Klein's W-curves include all 
the "affine homogeneous curves" but are not limited to them, etc. 

278 Plucker is the creator, so to speak, of "analytic rectilinear geometry." 
The main objects of "differential rectilinear geometry" (which can be devel
oped in projective as well as in Euclidean space) include one-parameter 
families of lines or ruled surfaces (e.g., the so-called demiquadrics, i.e., sets of 
all straight lines intersecting three fixed straight lines in space; the term 
"demiquadric" is explained by the fact that in this way we obtain one of the 
two families of straight lines filling up a "quadric surface", determined by a 
quadratic equation in space coordinates x, y, z) or developable surfaces, formed 
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by all the tangents to a (smooth) curve in space. Other examples are two
parameter families of straight lines, the so-called congruences of lines, e.g., 
normal congruences generated by all the normals to a fixed surface (which 
proved so interesting to the early masters of geometric optics, e.g., to W.R. 
Hamilton), or three-parameter sets of lines, the so-called complexes of lines. 
Here all the families of lines must be determined by "smooth" (differentiable) 
functions of one or several parameters p1 2 = p12(t) or p1 2(u, v), etc., where 
p12 , • • •  are the Plucker coordinates of the line (see Note 89). 

279 When we speak of isometries of the plane, we always have in mind the 
group of direct isometries (6. 1), thus excluding from the class of isometries 
fixing a point � all the reflections in lines passing through �- In Euclidean 
space, it is more convenient to assume straight lines to be supplied with an 
orientation, so that the self-transformation group of such a line reduces to 
translations along the line (reflections in points of the line are excluded). 

280 As an example of an investigation where this general outline works, we 
note S.S. Chern's article "On Integral Geometry in Klein Spaces," Annals of 
Math., 43, 1942, pp. 1 78-189, also included in S.S. Chern, Selected Papers, 
N.Y., Springer, 1978. Beginning with the mid-thirties, Wilhelm Blaschke 
(whom we have mentioned previously, e.g., in Note 265) began to develop a 
new branch of geometry, which he called integral geometry, apparently hoping 
that this new direction of geometric research would soon aquire an importance 
comparable to that of classical differential geometry. [Incidentally, these 
expectations did not come true, so that the well-known Moscow mathe
matician Izrael Moisseievich Gel'fand (b. 19 13) even proposed to steal the 
promising title "integral geometry" from Blaschke's work (since it had not 
lived up to expectations), and now the term is used more often in Gel'fand's 
sense. (Cf. W. Blaschke, Vorlesungen iiber Integralgeometrie, Berlin (DDR), 
Deutscher Verlag der Wissenschaften, 1955; Luis A. Santal6 Integral Geometry 
and Geometric Probability, Reading (Mass.), Addison-Wesley (Encyclopedia 
of Mathematics and Its Applications (ed. Gian-Carlo Rota, Vol. 1) and, on 
the other hand, I.M. Gel'fand, M.l. Graev, N.Ya. Vilenkin, Generalized Func
tions v. 5, Integral Geometry and Representation Theory, N.Y., Academic Press, 
1966).] Blaschke's main idea was to compare the measures of elements of 
different nature coexisting within one geometrical system, for example, the 
measures of point sets and sets of lines in plane Euclidean geometry (such as 
the measure of a "pointwise" curve and that of the set of all lines intersect
ing it) in order to obtain meaningful geometric conclusions. But in 1942, 
Blaschke's most outstanding pupil, Shiing-Shen Chern (b. 191 1), who came 
from China, studied under Blaschke in Hamburg, taught in China, and later 
became an American citizen, "closed" the entire direction of Blaschke's 
research by considering the most general situation, making the study of its 
particular cases unnecessary (see the article cited above). That is, Chern 
considered an arbitrary homogeneous Klein space and two distinct generating 
elements in it, i.e., the group <I> and two distinct subgroups g and l), and 
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established the connection between the "cosets of (fj with respect to g" and 
the "cosets of (fj with respect to I)". He thus carried out in the general case 
what Blaschke and his pupils, headed by the Argentinian L.A. Santalo, had 
been doing for specific homogeneous Klein geometries and specific objects in 
these geometries (compare: L.A. Santalo, Integral Geometry and Geometric 
Probability (Encyclopedia of Mathematics and Its Applications, Vol. 2), 
Reading, Mass., Addison-Wesley, 1976). 

28 1 It is easy to check (the reader will profit by actually doing it!) that if (fj 
is the group (6. 1) of direct isometries, while g is the subgroup of all rotations 
about the origin: 

x' = cos ex ·  x + sin ex ·  y, y' = - sin ex ·  x + cos ex · y 

then the cosets in the three-dimensional group space (a, b, ex) (more precisely, 
in the layer between the identified planes ex =  0 and ex =  2n of this space) 
can be represented by "vertical sticks" (we assume the ex-axis vertical) a = 
a0( = const), b = b0( = const). The group (fj interchanges these sticks just as it 
does the points of the plane ex = 0, i.e., this group coincides with the ordinary 
isometry group of the plane. Ifl) is the group x' = x + a, y' = y of translations 
along the x-axis, then the cosets are represented by the lines of our layer 
parallel to the (a, b)-plane: ex =  oc0 ( = const), b = tan oc0 · a + l. The group <f> 
interchanges these lines just as the group of plane isometries of the (a, b)-plane 
interchanges the lines which are the projections on the plane ex = 0 of the lines 
representing the cosets described above, so that we actually obtain line
element Euclidean geometry. 

282 Both the geometry of three-dimensional space with the isometry group 
(3) (sometimes called three-dimensional semi-Euclidean geometry) and the 
"geometry of the Lorentz group" (known as Minkowski pseudo-Euclidean 
geometry, cf. Chapter 4) are "projective metrics" (or non-Euclidean Cayley
Klein geometries; cf. Chapter 4). A more detailed exposition of the connections 
which here arise between non-Euclidean geometry and mechanics, see the 
book (written for a wide public): I.M. Yaglom, A Simple Non-Euclidean 
Geometry and its Physical Basis, mentioned in Note 159. 

Chapter 8 
283 See the letter written by Klein's widow to Young's mother in Young's 

Mathematicians and Their Times. 

284 In particular, Lie's lengthy study of "infinite" continuous groups, i.e., 
continuous groups consisting of transformations that cannot be made to 
depend on a finite set of parameters, interested Elie Cartan. In Cartan's view, 
Lie's long memoir fell so short of the standards of rigor prevailing in Cartan's 
time, that he regarded it as a stimulus for the imagination rather than a 
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predecessor's research work to be continued. [Infinite continuous groups 
include, for example, the group (considered locally, i.e., in the neighborhood 
of one point) of conformal transformations (transformations that preserve 
angles) of the Euclidean plane x, y determined by the formulas x = u(x, y), 
y = v(x, y), where u and v are arbitrary functions of two variables satisfying 
the Cauchy-Riemann equations oujox = ovjoy, oujoy = - ovjox. On such 
groups see S. Lie, "Untersuchungen tiber unendliche kontinuierliche Grup
pen," Berichte Sachs. Geselschaft, 21, 1895, S. 43-150; included in Gessammelte 
Abhandlungen, 6, S. 396-493.] 

. 
285 An example (better known to Russian than to English-speaking readers) 

of a book featuring the "solitary mathematician," -and depicting Sophus Lie 
as the mathematician par excellence, is the novel Pussycat Letayev. This is the 
first book of the unfinished tetralogy Moscow by one of the most interesting 
Russian writers of the beginning of the 20th century, Andrei Bely (his pen
name; his real name is Boris Nicolaevich Bugayev, 1880-1934), poet, novelist, 
author of memoirs and works on the theory of literature. The image of 
Nicolai (Pussycat) Letayev's father, the world famous professor Letayev (in 
the novel he corresponds with Hermite and is highly regarded by Poincare, 
though insufficiently appreciated by Weierstrass), passes through the entire 
novel; he is aloof from all earthly concerns and engulfed in science, especially 
in Lie's works. In particular, the author repeats the hero's childhood recollec
tion of his father slinking through the hall of the flat to the bathroom with a 
candle in his hand (the action takes place in the 19th century) and a volume 
of Lie under his arm. A rather original personality, Andrei Bely received a 
mathematical education from Moscow University, where his father Nikolai 
Bugayev ( 1837-1903) taught. Hardly remembered today, Nikolai Bugayev 
was regarded at the time as a leading Russian expert in number theory. He 
was undoubtedly the model for professor Letayev in the novel. Apparently 
Bely's mathematical education helped him write his fundamental works on 
mathematical methods in poetics, works recognized only many years after the 
author's death and then continued by the famous Moscow mathematician 
Andre Kolmogorov (born in 1903). Curiously enough, some of the calcula
tions of Bely the mathematician were used by Bely the poet in his verse. 

286 The lecture was first published as Vergleichende Betrachtungen iiber 
neuere geometrische Vorschungen, Programm zu Eintritt in die philosophische 
Facu!Hit und den Senat der UniversiHit zu Erlangen, Erlangen, Deichert, 1872. 
The Erlangen program has now been translated into practically all the Euro
pean languages. It has been published many times in German; for example, it 
was included in Volume 1 of F. Klein, Gesammelte mathematische Abhand
lungen, Bd. I, 1921, S. 460-497. In this connection see the concluding part of 
the present chapter; Klein's Collected Mathematical Works were reissued in 
1973 (Springer, Heidelberg). In his collected works Klein added to his articles 
brief-but most valuable-historical and scientific comments. In particular, 
a propos the "Erlangen program," he mentions that Lie came to Gottingen 
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at his invitation on September 1 ,  1872, and together they edited Lie's forth
coming articles (which were close to the Erlangen program's main ideas) as 
well as the text of Klein's Erlangen lecture. Klein recalls that Lie was im
mediately very enthusiastic about the main idea of the lecture, and that this 
encouraged him greatly. On Lie's advice Klein replaced his initial formulation 
of"different geometric methods, generated by various transformation groups" 
(this formulation remained in the second part (zweiter Aufsatz) of the article 
"Dber die sogenannte nicht-euklidische Geometrie", published later than the 
"Erlangen program" but written earlier) by the words "different geometries, 
generated by various transformation groups." Thus this phrase, first stated in 
October 1872 in Klein's Erlangen lecture and published soon afterwards, the 
phrase which we identify with "Klein's Erlangen program", was in form 
(though not in substance) due to Lie rather than to Klein. 

287 Both lectures-Riemann's and Klein's-outlined the possibility of a 
broad generalization of Euclidean geometry, including hyperbolic and elliptic 
geometry as particular cases. However, Euclidean, hyperbolic and elliptic 
geometries are the only schemes which are both Riemann spaces and Klein 
spaces. [In the subsequent development of Riemann's and Klein's geometry 
these constructions were widened so that the situation generalizing these two 
cases would include both Riemann space and Klein space. Here is how 
this was done. Riemann space R can be imagined as (generally speaking) a 
"curved" manifold, each point of which has a neighborhood "that looks like 
Euclidean space." In other words, to each point M of a Riemann space R we 
can assign a Euclidean space "tangent to R at the point M." In modern 
terminology this assignment is called the tangent bundle of a differentiable 
(smooth) manifold, whose base is the manifold R itself and whose fiber is the 
Euclidean space tangent to R at the given point. Neighboring tangent spaces 
are related (in a certain sense) because if M1, M2 E R are close to each other, 
then they belong to the same ·�almost-Euclidean" domain in R. Similarly, if 
we assign to each point M of a curved (but differentiable) manifold T a flat 
Klein space (of the same dimension) of an a priori chosen type, e.g., an affine 
space (or a projective, or a conformal space), then we obtain a so-called affine 
(or projective, or conformal) connection space. In terms of tangent bundles 
we can say that we have a bundle whose "fibers" are affine, or projective, or 
conformal spaces (the latter space being the space whose "isometry group" is 
Mobius's group of circle transformations). 

These general concepts are due largely to Hermann Weyl and to Elie Cartan 
both pupils of Hilbert and Klein. These studies began as attempts to generalize 
Einstein's general relativity theory by using the notion of a Riemann space; 
the first such attempts were due to Weyl and the outstanding English physicist 
Arthur Stanley Eddington (1882-1944). The modern form of the notion of a 
space with a connection is due to the outstanding French geometer Charles 
Ehresmann (see, for example Les connexions infinitesimales dans un espace 
fibre differentiable, Col. de topologie, Bruxelles, 1950, pp. 29-55). The rela-
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tionship between a "general space with a connection" and a homogeneous 
(uncurved) Klein space and a Riemann space may be conveyed by the follow
ing (purely symbolic!) "equality of ratios" 

Klein space : Euclidean space 

= general space with a connection : Riemann space. 

288 See, for example: F. Klein, Vorlesungen iiber hOhere Geometrie, Heidel
berg, Springer, 1968; L. Bieberbach, Einleitung in die hOhere Geometrie, Leip
zig, Teubner, 1933. 

289 See the section on algebra in F. Klein, Elementarmathematik vom hOheren 
Standpunkt aus, Bd. I, Heidelberg, Springer, 1968. Klein also deals in some 
detail with this subject in the book mentioned repeatedly above: Vorlesungen 
iiber die Entwicklung der Mathematik im 19  Jahrhundert (in the concluding 
chapter of the first part). Klein's book mentioned in the main text has been 
translated into English as F. Klein, Lectures on the Icosahedron and the 
Solution of Equations of the Fifth Degree, N.Y., Dover, 1956. 

29° From the current viewpoint, Klein's oversight seems inexplicable. Given 
his deep understanding of non-Euclidean geometries, we find it balling that 
he overlooked the simple connection between his own (projective) model and 
Poincare's (conformal or Mobius-type) model of plane non-Euclidean geom
etry. In fact, there are many ways of expressing this connection. 

For example, if we project Poincare's circle model of radius 2 located in a 
plane n from the north pole of a sphere � of radius 1 tangent to n at the center 
0 of the model onto the lower hemisphere of�. and then project the resulting 
image back perpendicularly down on n, then we obtain Klein's model. On the 
other hand, if we apply to the Lobachevskian plane, given by its Klein model 
(a circle K with center 0), a contraction with ratio 1/2 (i.e., a homothety with 
center 0 and coefficient 1/2, assigning to each point A inside the circle K the 
point A' of the interval OA such that doA' = d0Af2, where d denotes the 
"hyperbolic distance" between points), then we obtain the Poincare model. In 
this connection see Section of Chap. X of Klein's book quoted in Note 107 or 
the Appendix to Chap. II of I.M. Yaglom's book Geometric Transformations, 
Gostekhizdat, 1956 (in Russian). Nevertheless, in the context of the 1870s, it 
was hardly obvious that there could be any connection between such distant 
topics as the theory of automorphic functions of a complex variable on the 
one hand and non-Euclidean geometry on the other. 

29 1 At the turn of the century Henri Poincare, one of the greatest French 
mathematicians, contributed, often decisively, to the founding of a number of 
new branches of mathematics (for example, topology) and to the development 
of existing branches. Poincare's scientific interests were distinguished by great 
breadth, including, besides mathematics, physics (where he should be regarded 
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as one of the founders-on a par with Albert Einstein-of the special theory 
of relativity), mechanics, and astronomy. Poincare's outstanding literary 
talent enabled him to influence through his articles and textbooks even those 
fields of science where he had no particular achievements to his credit, for 
example the theory of probability. This same talent secured his membership 
both in the French Academy of Sciences (L'Institut), as well as (a very rare 
case indeed for a scientist) in the famous (literary) Academie Francaise. See the 
English translations of the works on science and philosophy which motivated 
Poincare's election to the academy: Science and Hypothesis, Science and Meth
od, and The Value of Science, also published in a single volume called The 
Foundations of Science, Science Press, 1964. Poincare, a pacifist, also coined 
the famous phrase, popular throughout the world before World War I, about 
his cousin and friend Raymond (later president of France) "Poincare la 
guerre": Henri did not share his cousin's political views. 

The literature on Poincare is very extensive. Part of it is listed in the 
concluding section of the first volume of Klein's Vorlesungen iiber die Entwick
lung der Mathematik im 19 J ahrhundert, which is dedicated to Poincare Klein 
intended . to devote a special chapter in the book to Poincare, and one to 
Sophus Lie, but simply did not have time. The book was never finished, and 
the second volume was published posthumously. Here we limit ourselves to 
citing the article by Jean Gaston Darboux ("Eloge historique d'Henri Poin
care") in the supplement to the second volume of H. Poincare, Oeuvres, v. 
1 - 1 1, Paris, Gauthier-Villars, 1916-1956; the chapter devoted to Poincare 
(The Last Universalist) in the oft-referred to book by E.T. Bell, Men of 
Mathematics and the books: Toulouse, Henri Poincare, Paris, 1910; T. Dantzig, 
Henri Poincare, N.Y.-London; and A. Bellivier, Henri Poincare ou la vocation 
souveraine, Paris, 1956. 

292 Poincare's model of Riemann's elliptic geometry is constructed in much 
the same way (see, for example, the literature in Notes 288 and 293). 

293 This model is interpreted in ample (perhaps even more than ample) 
detail in, for example, the D. Pedoe, A Course of Geometry for Colleges and 
Universities (Ch. VI), G. Ewald, Geometry: An Introduction (Chapters 6 and 
7) (see Note 72), as well as in I.M. Yaglom, Complex Numbers in Geometry (see 
Note 203), Sections 1 1  and 17; I.M. Yaglom, Geometric Transformations II, 
Supplement to Chapter II (in Russian; see Note 290). 

294 See, for example, the brief Section 3 of Chapter XI in Klein's book 
mentioned in Note 107. 

295 See Bulletin de L'Institut General de Psychologie, Paris, 1908, N 3 (8 
annee); also reprinted in the book mentioned in Note 291 :  Poincare's Science 
and Method. 
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296 See, for example: H. Schwerdtfeger, Geometry of Complex Numbers, 
N.Y., Dover, 1979, or I.M. Yaglom, Complex Numbers in Geometry, and A 
Simple Non-Euclidean Geometry and Its Physical Basis, mentioned above. The 
connection between linear fractional transformations of a complex variable 
and Mobius transformations is dealt with in many other books on geometry 
and on the theory of functions of a complex variable. 

297 Klein once complained that while in his youth a knowledge of the whole 
range of questions dealing with automorphic functions, Abelian integrals, and 
basic algebraic geometry was regarded as absolutely necessary for every 
mathematician, he lived to see a period when young researchers showed no 
interest in this entire set of ideas. But in our time the subject is experiencing 
a revival (compare this with what we said about Lie's theory of differen
tial equations)-international conferences are being held on the theory of 
Kleinian groups and many relevant monographs are being published (see, for 
example, I. Kra, Automorphic Forms and Kleinian Groups, Reading, Mass., 
Benjamin, 1972. 

[In modern literature the term "Kleinian groups" is encountered much 
more frequently than the term "Fuchsian groups" (referring to Immanuel 
Lazarus Fuchs, 1 833-1902, German mathematician and Weierstrass's pupil) 
introduced by Poincare. This, however, does not mean that we now see 
Poincare as having been "defeated" in the rivalry with Klein: Poincare's works 
on these questions are also widely used by modern mathematicians.] 

298 See C. Reid, Courant in Gottingen and New York, N.Y., Springer, 1976 
pp. 230-232, on the origin of the famous book R. Courant and H. Robbins, 
What Is Mathematics?, London, Oxford University Press, 1948; 1 st edition 
1942. The book was largely written by Herbert Robbins, now a leading 
authority in mathematical statistics and probability theory, but then only 
beginning his work in mathematics as a topologist, while the famous Richard 
Courant was the driving force and leader of the whole enterprise. Courant 
wanted to leave only one name on the title page, but changed his position 
immediately when Robbins said "We don't live in Germany." 

299 We note that only the second of the two Klein-Fricke books has two 
coequal authors on the title page; only Klein was named as the author of the 
first book, although the title page states that it was ausgearbeitet und ver
vollstiindigt von R. Fricke. 

300 Thus Vorlesungen iiber hOhere Geometrie was compiled by Wilhelm 
Blaschke, who made much use of Klein's mimeographed lecture notes. (Offi
cially Blaschke was only considered to be the author of Chapters 77-81, 
which were written without reference to Klein's lectures.) Vorlesungen iiber die 
Entwicklung der Mathematik were prepared for print by Courant, Otto 
Neugebauer (b. 1 899) and others. Blaschke, Courant, and Neugebauer are all 
leading scholars. 
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30 1  In Chapter 2 we have already had occasion to compare Klein with the 
Moscow physicist L.D. Landau. Klein's traits pointed out here also relate him 
to Landau (and the Moscow mathematician I.M. Gel'fand). Both Landau and 
Gel'fand absorb very quickly information communicated to them orally, and 
always prefer this method of learning about new developments in science to 
reading books and papers. Both also "talk about" works with their coauthors 
but never write them themselves-which, however, does not diminish in the 
least their status as authors. The opposite psychological type among Moscow 
mathematicians, perhaps similar to Sophus Lie, is represented by A.N. Kol
mogorov, who absorbs oral information relatively poorly (always trans
forming it considerably in his mind) and is the sole author even of works 
appearing as joint publications-the work can be discussed with coauthors 
but as a rule Kolmogorov writes it alone. 

302 The situation was not saved by a later attempt to translate Klein's 
encyclopedia into French; this attempt was abandoned early, with only a small 
part of the work done. It was intended that every entry be the work of an 
appropriate French mathematician, who would not so much translate the 
entry as bring it up to date. Thus Cartan was translator and, in this sense, 
"coauthor" of Study's entry <?n (hyper) complex numbers. 

303 Perhaps it was the danger that the mathematical sciences would lose 
their unity and splinter into isolated islands of knowledge that in some way 
(still unclear to us) contributed to the appearance in the 20th century of a 
number of universal talents (such as Gauss and Riemann had been in the 19th 
century). These were David Hilbert, Henri Poincare, Hermann Weyl, John (in 
Hungary Janos, in Germany Johann) von Neumann (1903-1957), and Andrei 
Kolmogorov (b. 1903). The same circumstances were conducive to the 
appearance of the great mathematician Nicolas Bourbaki whose "figure" 
marked the transition from individual to group creative effort. Significantly, 
the well-known Bourbaki article "L'Architecture de mathematique" (in the 
collected articles Les grands courants de la pensee mathematique, F. Le 
Lionnais, Cahiers du Sud, 1948, p. 35-47, or their English translation in the 
American Math. Monthly, 57, 1950, pp. 221-232 or in F. Le Lionnais, Great 
Currents of Mathematical Thought, N.Y., Dover, 1971, pp. 23-36), which may 
be called the manifesto of the Bourbaki group, begins with a section entitled 
"La Mathematique ou les Mathematiques?" with the authors favoring 
mathematics in the singular rather than in the plural. 

304 Compare the words of one of the founders of the Bourbaki group, Jean 
Dieudonne, in his paper "The Work of Nicolas Bourbaki" Amer. Math. 
Monthly, 77, 1970, pp. 134-145, which points out, in particular, the differences 
between Bourbaki's Elements of Mathematics and the Encyclopedia of Mathe
matical Sciences, and the difficulties which caused the failure of Klein's enter
prise. The differences included, among other things, the fact that the Bourbaki 
group was much more tightly knit than the group of the Encyclopedia's 
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contributors. Klein's all-inclusiveness, singled out by Dieudonne as one of the 
encyclopedia's shortcomings, can be illustrated by the fact that at first Klein 
even ordered an entry on elementary geometry (a review of the geometry of 
triangle, the geometry of the circle, and other doubtful "sciences"). However 
Klein ultimately rejected this entry (see the paper mentioned in Note 260, 
"Elementary Geometry, Then and Now"). 

305 A superb description of his life and research is contained in the article 
by H. Weyl, "David Hilbert and His Mathematical Work," Bulletin of the 
American Mathematical Society, 50, 1944, p. 612-654, reproduced in H. Weyl, 
Gesammelte Abhandlungen, Bd. 4, Berlin-Heidelberg-New York, J. Springer, 
1968, S. 130-172; also, see C. Reid's books Hilbert, Berlin-Heidelberg-New 
York, J. Springer, 1970, and Courant in Gottingen and New York referred to 
in Note 298. The experience of Gottingen University was undoubtedly taken 
into account in the founding of other scientific centers in particular, the 
mathematical and physical centers) so abundant in our age. Examples include 
the famous Institute for Advanced Study in Princeton, where Albert Einstein, 
Hermann Weyl, John von Neumann, and many other leaders of 20th-century 
science worked; the French Institut des Hautes Etudes Scientifique at Bures
sur-Yvette near Paris; numerous scientific towns in the Soviet Union, like the 
one near Novosibirsk, incorporating Novosibirsk University and serving all 
of the USSR east of the Urals; and so on. Finally, New York University's 
Courant Institute of Mathematical Sciences, founded by Courant on the basis 
of his experience as director of the Gottingen Mathematical Institute, was a 
direct offspring of the latter. 

306 D. Hilbert (see the literature listed in Note 305) made major (often 
decisive) contributions to nearly all branches of modern mathematics
geometry, algebra, mathematical analysis. He is justly regarded as the founder 
of functional analysis. He contributed to logic and to theoretical physics; for 
his contribution to the theory of relativity see J. Mehra, Einstein, Hilbert and 
Theory of Gravitation, Holland and USA, Reidel, 1974-but this book prob
ably exaggerates Hilbert's achievements. Hilbert's amazing universality was 
best expressed in his famous report Mathematical Problems, delivered at the 
International Mathematics Congress in Paris in 1900, in which he stated 23 
mathematical problems that the 1 9th century bequeathed to the 20th. The 
report (see the anotated English edition pointed out in Note 232) was a 
program of sorts for the subsequent development of mathematics. 

Born in Konigsberg, Hilbert graduated from a gymnasium there and was 
first a student and then a professor at Konigsberg university. The well-known 
algebraist and outstanding teacher Heinrich Weber ( 1842-1913) was his tutor. 
Felix Klein gladly acknowledged Weber's immense pedagogical talent and 
leading role in the rise of modern mathematics. It was highly characteristic of 
Weber that he approached mathematics as a unified science all of whose 
branches were closely linked. He adopted that idea from Riemann, whom 
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he revered. Weber published a number of Riemann's works after the latter's 
death, including a lecture course on the theory of partial differential equations 
which was popular for a long time as a "Riemann-Weber" book. However, 
the book was apparently a long way from Riemann's original course. It was 
in Konigsberg that Hilbert's close friendship with two other pupils of Weber 
began. They were the great geometer and number theorist Minkowski and 
the outstanding analyst Adolf Hurwitz (1859-1919). That friendship also 
contributed to the enlargement of Hilbert's mathematical interests. 

307 See the book referred to in Note 298, Courant in Gottingen and New 
York. 

308 The "pure theoretician" Born agreed to head the physics institute in 
Gottingen under the condition that his old friend from student years James 
Franck ( 1882-1964) would direct experimental work there. The symbiosis of 
Born the theoretician and Frank the experimenter proved highly successful. 
Franck subsequently won the Nobel Prize in physics. (For Gottingen as 
a physics center, see, for example, the fascinating book by Robert Jungk, 
Brighter Then a Thousand Suns, N.Y., Harcourt Brace Jovanovich, 1958.) 

309 On the latter see, for example, P. Goodchild, J. Robert Oppenheimer, 
Boston, Houghton Miffiin, 1981, and Brighter Than a Thousand Suns (Note 
308). 

3 10 In particular, Klein regularly delivered lectures and lecture courses for 
teachers of German secondary schools. These resulted in his book Elementar
mathematik vom hOheren Standpunkt aus, Bd. I-III (Heidelberg, Springer, 
1968), and a few smaller publications, mostly mimeographed in Gottingen. 

3 1 1  Wilhelm Frederick Ostwald was undoubtedly a first-rate scientist; in 
1909 he received the Nobel Prize in chemistry. At the same time Ostwald was 
an original philosopher-for example, the well-known division of all scientists 
into classicists and romanticists, as well as revealing thoughts on the nature 
of research, are due to him. Ostwald must also be credited with popularizing 
the classical legacy in science; he founded, and was the first editor of, the 
well-known series Ostwald's Klassiker der exakten Wissenschaften, the impor
tance of which in popularizing classical works of science is difficult to over
estimate. His personality was complex. In his time he was a bitter enemy of the 
atomic theory of matter. He proclaimed a philosophy known as "energetism," 
which declared energy the basic element of the real world. His extremely sharp 
and largely unreasonably criticism of the eminent Austrian physicist Ludwig 
Boltzmann (1844-1906), a greater scientist of greater stature than himself (this 
is obvious today, but was not clear at all to his contemporaries), was perhaps 
responsible for Boltzmann's tragic suicide. Ostwald's chauvinism, traces of 
which can be seen in his book Grosse M iinner, is also hardly to his credit. 
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31 2 It is !lecessary to point out, however, that the leading 20th-century 
French mathematician Jacques Solomon Hadamard ( 1865-1963), who was 
no doubt personally acquainted with Klein, accused the latter (in his well
known book on the psychology of mathematics) of nationalism and chau
vinism. (See the enlarged and revised French edition: J. Hadamard, Essai sur 
la psychologie de l'invention dans le domaine mathematique, Paris, Librairie 
Scientifique Albert Blanchard, 1960.) Hadamard refers to one of Klein's 
publications of 1 893, in which the latter says that "it seems that a strong 
intuition of space was intrinsic to Teutonic science, while the purely logical, 
critical spirit is better developed among the French and Jewish races". Hada
mard adds that since Klein undoubtedly valued intuition above logic, it 
follows that he believed in the superiority ofthe Teutonic race over the French 
and the Jews. Hadamard's bitterness in his judgment of the German Klein 
doubtless !"eflected the terrible time when the book was being written-it was 
based on a course of lectures delivered by Hadamard in New York in 1943, 
following his exile from France. Of course, Klein considered himself a German, 
perhaps even a Prussian (Laurence Young, who knew him, wrote that Klein 
combined the best traits of Prussians). It was pleasant for Klein to point out 
the merits and achievements of German science, just as it was pleasant for him 
to believe that hyperbolic geometry was discovered by Gauss alone and passed 
from him to Lobachevsky and Bolyai (cf. Chapter 4). However, just as Klein 
later completely rejected the idea of Gauss's influence on Bolyai and Loba
chevsky (in the printed version of Vorlesungen uber nicht-euklidische Geo
metrie), thereby acknowledging that this idea was incorrect, so too there is not 
a single word in his Vorlesungen uber die Entwicklung der Mathematik that can 
be construed as supporting the (surely incorrect) statement of 1 893-on the 
contrary, the book's import lies in the concept of joint work by scientists of 
all races and nationalities, contributing perhaps in different ways, but with 
equal merit, to the construction of the mathematical edifice. Klein highly 
valued the collaboration of members of different ethnic groups in this work 
(French, German, English, Irish, and Jewish). To be sure, it is not difficult 
to point out certain national schools (Russian, Italian) or trends in science 
(probability theory) which are not given sufficient attention in that book, but 
Klein can hardly be blamed; he wrote about those branches of mathematics 
which he knew best or with which he was directly involved. As to the 
St. Petersburg school in the theory of numbers and probability theory or, say, 
Italian research in tensor analysis or differential geometry, these were beyond 
his ken. The idea that Klein was a chauvinist and preferred "mathematicians
physicists" to "mathematicians-logicians" is also contradicted by C. Reid's 
account (in the book about Hilbert mentioned above) of the following episode. 
After Minkowski's death, Klein insisted that the post thus vacated at Got
tingen should be offered not to Oskar Perron (1880-1975)-a German, a 
mathematician of the intuitive-geometric frame of mind, who was supported 
by most of the staff of the mathematics institute-but to Edmund Landau 
(1877-1938), a Jew and a mathematician of the purely logical type. (Landau 
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was perhaps even overly logical; for example he would always refuse to discuss 
the "general idea" of a proof with colleagues, insisting that the proof be written 
out in full.) 

In connection with the different types of thinking allegedly intrinsic to 
different ethnic groups, I would like to recall a story told to me by my friend 
Lev Kaluzhnin (b. 1914), now a professor at Kiev University (the Ukraine), 
who studied under lssai Schur in Berlin and, after Schur's exile from Germany, 
under Emil Artin ( 1898-1962) in Hamburg. Kaluzhnin attended the notorious 
survey lecture (Arische und Jiidische Mathematik) presented at Berlin Univer
sity by the well-known mathematician Ludwig Bieberbach (1886-1980), an 
excellent teacher but a fervent Nazi. As a Jew, Schur refused to attend. After 
the presentation, Kaluzhnin visited Schur, who asked him to relate the con
tents of the survey. After listening to Kaluzhnin, Schur said thoughtfully: 
"I quite agree with Bieberbach when he asserts that there exist mathe
maticians of completely different, in some ways opposite, psychological 
quality: for instance, Weierstrass could never understand Riemann, while 
Leopold Kronecker (1823-1891) could not comprehend the founder of set 
theory Georg Cantor ( 1845-1918). But it is hard for me to understand what 
racial differences have to do with it: both Weierstrass and Riemann were 
Germans, while Kronecker and Cantor were Jews." It is to Weierstrass's credit 
that he always supported Riemann, with whom he had little in common, 
although he believed that it would be disastrous for mathematics if Riemann's 
style became widespread. On the other hand, Kronecker attacked Cantor 
viciously-and in consequ.ence Cantor lived out his days in a psychiatric 
clinic. Weierstrass had supported Cantor despite the fact that he too found 
Cantor's views quite alien. It would, however, be quite wrong to seek the 
sources of these differences in racial or religious differences; Kronecker was 
of the Mosaic faith, Cantor was a Lutheran and Weierstrass a Catholic. 
The mathematical disagreements were purely individual differences between 
individual scientists. 
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