THE MISMATCH OF MAN

STEPHEN JAY GOULD

The definitive refutation to the argument of The Bell Curve
REVISED AND EXPANDED, WITH A NEW INTRODUCTION
BY STEPHEN JAY GOULD IN
NORTON PAPERBACK

EVER SINCE DARWIN
Reflections in Natural History

THE PANDA’S THUMB
More Reflections in Natural History

THE MISMEASURE OF MAN
Revised and Expanded

HEN’S TEETH AND HORSE’S TOES
Further Reflections in Natural History

THE FLAMINGO’S SMILE
Reflections in Natural History

AN URCHIN IN THE STORM
Essays about Books and Ideas

ILLUMINATIONS

A Bestiary (with R. W. Purcell)

WONDERFUL LIFE
The Burgess Shale and the Nature of History

BULLY FOR BRONTOSAURUS
Reflections in Natural History

FINDERS, KEEPERS
Treasures and Oddities of Natural History
 Collectors from Peter the Great to Louis Agassiz
 (with R. W. Purcell)*
THE MISMEASURE OF MAN
REVISED AND EXPANDED

THE

Mismeasure of Man

BY STEPHEN JAY GOULD

If the misery of our poor be caused not by the laws of nature, but by our institutions, great is our sin. — Charles Darwin, Voyage of the Beagle

W·W·NORTON & COMPANY · NEW YORK · LONDON
To the memory of Grammy and Papa Joe, who came, struggled, and prospered, Mr. Goddard notwithstanding.
Contents

Acknowledgments 15

Introduction to the Revised and Expanded Edition: Thoughts at Age Fifteen 19

The frame of The Mismeasure of Man, 19
Why revise The Mismeasure of Man after fifteen years?, 26
Reasons, history and revision of The Mismeasure of Man, 36

1. Introduction

2. American Polygeny and Craniometry before Darwin: Blacks and Indians as Separate, Inferior Species

A shared context of culture, 63
Preevolutionary styles of scientific racism: monogenism and polygenism, 71
Louis Agassiz—America’s theorist of polygeny, 74
Samuel George Morton—empiricist of polygeny, 82

The case of Indian inferiority: Crania Americana
The case of the Egyptian catacombs: Crania Aegyptiaca
The case of the shifting black mean
The final tabulation of 1849

The allure of numbers, 105

Introduction
Francis Galton—apostle of quantification
A curtain-raiser with a moral: numbers do not guarantee truth

Masters of craniometry: Paul Broca and his school, 114
The great circle route
Selecting characters
Averting anomalies
BIG-BRAINED GERMANS
SMALL-BRAINED MEN OF EMINENCE
LARGE-BRAINED CRIMINALS
FLAWS IN A PATTERN OF INCREASE THROUGH TIME

Front and back
THE CRANIAL INDEX
THE CASE OF THE FORAMEN MAGNUM

Women's brains

Postscript, 140

4. Measuring Bodies: Two Case Studies on the Apishness of Undesirables

The ape in all of us: recapitulation, 142
The ape in some of us: criminal anthropology, 151
Atavism and criminality
Animals and savages as born criminals
The stigmata: anatomical, physiological, and social
Lombroso's retreat
The influence of criminal anthropology
Coda

Epilogue, 173
CONTENTS

5. The Hereditarian Theory of IQ: An American Invention

Alfred Binet and the original purposes of the Binet scale, 176
Binet flirts with craniometry
Binet's scale and the birth of IQ
The dismantling of Binet's intentions in America

H. H. Goddard and the menace of the feeble-minded, 184
Intelligence as a Mendelian gene

Goddard identifies the Moron
A unilinear scale of intelligence
Breaking the scale into Mendelian compartments
The proper care and feeding (but not breeding) of Morons
Preventing the immigration and propagation of morons
Goddard recants

Lewis M. Terman and the mass marketing of innate IQ, 204
Mass testing and the Stanford-Binet
Terman's technocracy of innateness
Fossil IQ's of past geniuses
Terman on group differences
Terman recants

R. M. Yerkes and the Army Mental Tests: IQ comes of age, 222
Psychology's great leap forward
Results of the army tests
A critique of the Army Mental Tests

The content of the tests
Inadequate conditions
Dubious and perverse proceedings: A personal testimony
Finagling the summary statistics: The problem of zero values
Finagling the summary statistics: Getting around obvious correlations with environment

Political impact of the army data
Can democracy survive an average mental age of thirteen?
The Real Error of Cyril Burt: *Factor Analysis and the Reification of Intelligence* 264

The case of Sir Cyril Burt, 264
Correlation, cause, and factor analysis, 269
 Correlation and cause
 Correlation in more than two dimensions
 Factor analysis and its goals
 The error of reification
 Rotation and the nonnecessity of principal components

Charles Spearman and general intelligence, 286
 The two-factor theory
 The method of tetrad differences
 Spearman's g and the great instauration of psychology
 Spearman's g and the theoretical justification of IQ
 Spearman's reification of g
 Spearman on the inheritance of g

Cyril Burt and the hereditarian synthesis, 303
 The source of Burt's uncompromising *hereditarianism*

BURT'S INITIAL "PROOF" OF INNATENESS
LATER ARGUMENTS
BURT'S BLINDNESS
BURT'S POLITICAL USE OF INNATENESS

Burt's extension of Spearman's theory
Burt on the reification of factors
Burt and the political uses of g

L. L. Thurstone and the vectors of mind, 326
 Thurstone's critique and reconstruction
 The egalitarian interpretation of PMA's
 Spearman and Burt react
CONTENTS

Oblique axes and second-order g
Thurstone on the uses of factor analysis
Epilogue: Arthur Jensen and the resurrection of Spearman's g, 347
A final thought, 350

7. A Positive Conclusion 357

Debunking as positive science, 351
Learning by debunking, 352
Biology and human nature, 354

Epilogue 365

Critique of The Bell Curve 367

The Bell Curve 367
Disingenuousness of content
Disingenuousness of argument
Disingenuousness of program
Ghosts of Bell Curves past, 379

Three Centuries' Perspectives on Race and Racism 391

Age-old fallacies of thinking and stinking 391
Racial geometry, 401
The moral state of Tahiti—and of Darwin,

Bibliography 425

Index 433
GENES MAY BE SELFISH in a limited metaphorical sense, but there can be no gene for selfishness when I have so many friends and colleagues willing to offer their aid. I thank Ashley Montagu, not only for his specific suggestions, but also for leading the fight against scientific racism for so many years without becoming cynical about human possibilities. Several colleagues who have written, or are writing, their own books on biological determinism willingly shared their information and even let me use their own findings, sometimes before they could publish them themselves: G. Allen, A. Chase, S. Chorover, L. Kamin, R. Lewontin. Others heard of my efforts and, without solicitation, sent material and suggestions that enriched the book greatly: M. Leitenberg, S. Selden. L. Meszoly prepared the original illustrations in Chapter 6. Perhaps Kropotkin was right after all; I shall remain with the hopeful.

A note on references: In place of conventional footnotes, I have used the system of references universally found in scientific literature—name of author and year of publication, cited in parentheses after the relevant passage of text. (Items are then listed by author and by year for any one author in the bibliography.) I know that many readers may be disconcerted at first; the text will seem cluttered to many. Yet, I am confident that everyone will begin to "read through" the citations after a few pages of experience, and will then discover that they do not interrupt the flow of prose. To me, the advantages of this system far outweigh any aesthetic deficit—no more flipping back and forth from text to end-notes (no publisher will set them all at the bottom of the page any more), only to find that a tantalizing little number yields no juicy tidbit of subsid-
iary information, but only a dry bibliographic citation;* immediate access to the two essential bits of information for any historical inquiry—who and when. I believe that this system of referencing is one of the few potential contributions that scientists, normally not a very literate lot, might supply to other fields of written scholarship.

A note on title: I hope that an apparently sexist title will be taken in the intended spirit—not only as a play on Protagoras' famous aphorism, but also as a commentary on the procedures of biological determinists discussed in the book. They did, indeed, study "man" (that is, white European males), regarding this group as a standard and everybody else as something to be measured unfavorably against it. That they mismeasured "man" underscores the double fallacy.

*The relatively small number of truly informational footnotes can then be placed at the bottom of the page, where they belong.
THE MISMEASURE OF MAN
Introduction to the Revised and Expanded Edition

Thoughts at Age Fifteen

The frame of The Mismeasure of Man

The original title for The Mismeasure of Man would have honored my hero Charles Darwin for the wonderfully incisive statement that he made about biological determinism to climax his denunciation of slavery in the Voyage of the Beagle. I wanted to call this book Great Is Our Sin—from Darwin's line, cited as an epigraph on my title page: "If the misery of our poor be caused not by the laws of nature, but by our institutions, great is our sin."

I did not follow my initial inclination—and I am sure that I made the right decision—because I knew damned well that my work would then be misshelved to oblivion in the religion section of many bookstores (as my volume of evolutionary essays, The Flamingo's Smile, ended up in the ornithology division of a great Boston institution that shall remain nameless). Things can always be worse. I once, in an equally prestigious Boston emporium, found a copy of that 1960s undergraduate manifesto The Student as Nigger on a shelf marked "Race Relations." My friend Harry Kemelman, author of the marvelous mystery series featuring theological sleuth David Small, told me that his first entry in the series—Friday the Rabbi—once appeared in a list of children's titles as "Freddy the Rabbit. . . ." But tables do turn occasionally. My buddy Alan Dershowitz told me that a woman successfully acquired his Chutzpah by telling the
bookstore clerk: "I want a copy of that book whose title I can't pronounce by the author whose name I can't remember."

I eventually decided on *The Mismeasure of Man* because the essence of my book, in a paradoxical way that conferred staying power over these fifteen years since initial publication, lies in its limitation of scope. *The Mismeasure of Man* is not fundamentally about the general moral turpitude of fallacious biological arguments in social settings (as my original and broader title from Darwin would have implied). It is not even about the full range of phony arguments for the genetic basis of human inequalities. *The Mismeasure of Man* treats one particular form of quantified claim about the ranking of human groups: the argument that intelligence can be meaningfully abstracted as a single number capable of ranking all people on a linear scale of intrinsic and unalterable mental worth. Fortunately—and I made my decision on purpose—this limited subject embodies the deepest (and most common) philosophical error, with the most fundamental and far-ranging social impact, for the entire troubling subject of nature and nurture, or the genetic contribution to human social organization.

If I have learned one thing as a monthly essayist for more than twenty years, I have come to understand the power of treating generalities by particulars. It is no use writing a book on "the meaning of life" (though we all long to know the answers to such great questions, while rightly suspecting that true solutions do not exist!). But an essay on "the meaning of 0.400 hitting in baseball" can reach a genuine conclusion with surprisingly extensive relevance to such broad topics as the nature of trends, the meaning of excellence, and even (believe it or not) the constitution of natural reality. You have to sneak up on generalities, not assault them head-on. One of my favorite lines, from G. K. Chesterton, proclaims: "Art is limitation; the essence of every picture is the frame."

(My chosen title did get me into some trouble, but I make no apologies and relished all the discussion. *The Mismeasure of Man* is an intended double entendre, not a vestige of unthinking sexism. My title parodies Protagoras's famous aphorism about all people, and also notes the reality of a truly sexist past that regarded males as standards for humanity and therefore tended to mismeasure men, while ignoring women. I stated this rationale up front, in the original *preface*—so I could always use unthinking criticism as a test to
see who liked to mouth off *without* reading the book first—like Mr. Dole criticizing the violence in movies he has never seen, and would not even deign to watch. [I don't, of course, mind criticism of the title based on disagreement with my stated *rationale.*] In any case, my title allowed my colleague Carol Tavris to parody my parody as a name for her marvelous book *The Mismeasure of Woman*—and I am at least mightily glad for *that.*

The Mismeasure of Man resides in a threefold frame, a set of limitations that allowed me to contain one of the largest of all intellectual subjects within a coherent and reasonable comprehensive narrative and analysis.

1. I restricted my treatment of biological determinism to the most historically prominent (and *revealingly* fallacious) form of quantified argument about mentality: the theory of a measurable, genetically fixed, and unitary intelligence. As I wrote in the Introduction to link the pseudoscientific claim with its social utility:

This book, then, is about the abstraction of intelligence as a single entity, its location within the brain, its quantification as one number for each individual, and the use of these numbers to rank people in a single series of worthiness, invariably to find that oppressed and disadvantaged *groups*—races, classes, or *sexes*—are innately inferior and deserve their status. In short, this book is about the Mismeasure of Man.

This part of the frame also explains what I left out. I have, for example, often been asked why I omitted so influential a movement as phrenology in my account of quantified theories for mental functioning. But phrenology is philosophically contrary to the subject of

* *A* linguist friend did correctly anticipate the one curious problem that my title would entail. For some reason (and I have done this myself, so I am not casting blame but expressing puzzlement), people tend to mispronounce the first word as *“mishmeasure”—leading* to unwanted levity and embarrassment in introductions before talks, or in radio interviews. Apparently, or so my friend explained, we anticipate the *zh* sound to come in *“measure”—and* we unconsciously try to match the first part of the word to the later sound, therefore saying *“mish”* instead of "mis." I find this error fascinating. After all, we make the mistake in anticipation of a sound as yet unsaid, thus indicating (or so I suppose) how our brain monitors language before the fact of expression. Isn't the form of the error also remarkable? Are we driven to prefer these alliterative, pleasantly repeated combinations of sounds? Does this consonance occur merely for ease of articulation, or is something deeper about cerebral patterning thus revealed? What do such phenomena have to say about the origin and form of poetry? What about the nature and organization of our mental functioning?*
The Mismeasure of Man. Phrenologists celebrated the theory of richly multiple and independent intelligences. Their view led to Thurstone and Guilford earlier in our century, and to Howard Gardner and others today—in other words, to the theory of multiple intelligences: the major challenge to Jensen in the last generation, to Herrnstein and Murray today, and to the entire tradition of rankable, unitary intelligence marking the mismeasure of man. By reading each bump on the skull as a measure of "domesticity," or "amativeness," or "sublimity," or "causality," the phrenologists divided mental functioning into a rich congeries of largely independent attributes. With such a view, no single number could possibly express general human worth, and the entire concept of IQ as a unitary biological property becomes nonsense. I do confess to a warm spot in my heart for the phrenologists (do hearts have bumps of greater heat?), for they were philosophically on the right track—while they were absolutely just as wrong as the mismeasurers of this book in their particular theory of cranial bumps. (History often heaps irony upon irony. Cranial bumps may be nonsense, but underlying cortical localization of highly specific mental processing is a reality of ever-increasing fascination in modern neurological research.)

In any case, phrenology, as a false version of the probably correct theory of multiple intelligences, would form a major chapter in a book on cranial mismeasurement in general, but falls outside the subject of this volume on the history of fallacies in the theory of unitary, innate, linearly rankable intelligence. If I exclude phrenology on the grounds of "right subject, different theory," I also omit an ocean of material for the related, if opposite, reason of "wrong subject, same theory"—in other words, all claims for unilinear innate rankings based on biological arguments other than the quantification of intelligence. I therefore, for example, include no explicit chapter on the eugenics movement (though I treat the subject in its intersection with IQ) because most arguments relied on the putative possession of particular genes for innately determined traits, not on measurements of the insides or outsides of heads.

2. I focused upon the "great" arguments and errors of historical originators, not on transient and ephemeral modern usages. Five years from now, who will remember (who would even care to recall)
the rapiers of rhetoric, or the tendentious arguments of our current
and largely derivative gladiators; but we can (and must) never forget
the brilliance of Darwin and the truly great and informative errors
made by his last generation of creationist opponents, Agassiz and
Sedgwick? The foundation stones are forever; most current skir-
mishes follow the journalist's old maxim: yesterday's paper wraps
today's garbage.

The Mismeasure of Man, as a second essential feature of its frame,
restricted attention to the origins, and to the enduring founders, of
the theory of unitary, linearly rankable, innate intelligence. This
decision permitted a neat division of the book into two halves, repre-
senting the chronologically sequential centerpieces for this theory
during the past two hundred years of its prominence. The nine-
teenth century focused on physical measurement of skulls, either
the outside (by ruler and calipers, and by constructing various indi-
ces and ratios for the shapes and sizes of heads) or the inside (by
mustard seed or lead shot, to fill the cranium and measure the vol-
ume of the braincase). The twentieth century moved to the puta-
tively more direct method of measuring the content of brains by
intelligence testing. In short, from measuring the physical proper-
ties of skulls to measuring the interior stuff in brains.

I believe in this restriction to great foundational documents
from the depth of my scholar's soul, but I also realize that this deci-
sion conferred an enormous practical benefit upon this revised ver-
sion. The old arguments have staying power, "legs" in modern
parlance. We will never quite attain the Christian's quiet confidence
of verbum Dei manet in aeternum, but we will care about Broca,
Binet, and Burt so long as scholarship and a fascination with history en-
dure. But I suspect that the world will little note, nor long remem-

Since I wrote about the great and original arguments, and virtu-
ally ignored the modern avatars of 1981, this revision required few
changes, and the main text of the current version differs very little
from the original book; the novelty in this revision lies in this intro-
duction and in the appended section of essays at the back. The hot
topics of 1981 are now legless history; I doubt that Herrnstein and
Murray will penetrate the millennium, though the basic form of the
argument never goes away and continues to recur every few years—
hence the necessity for this book and its focus upon the enduring sources of continual recurrence.

As I wrote in the Introduction to the first edition:

I have said little about the current resurgence of biological determinism because its individual claims are usually so ephemeral that their refutation belongs in a magazine article or newspaper story. Who even remembers the hot topics of ten years ago [from 1981]: Shockley's proposal; for reimbursing voluntarily sterilized individuals according to their number of IQ points below 100, the great XYY debate, or the attempt to explain urban riots by diseased neurology of rioters. I thought that it would be more valuable and interesting to examine the original sources of the arguments that still surround us. These, at least, display great and enlightening errors.

3. The third major aspect of framing arises from my own professional competences. I am a working scientist by trade, not a historian. I have immense fascination for history; I read and study the subject intensely, and I have written much, including three books and scores of essays, on predominantly historical subjects. I feel that I have a decent and proper grasp of the logic and empirics of arguments about biological determinism. What I lack, for want of professional training, is the tradesman's "feel"—the sine qua non of first-class scholarship—for broader political contexts (antecedents and backgrounds), the stage on which biological arguments impact society. In the profession's jargon, I am fully up to snuff (I would even be arrogant and say "better than most") on the "internalist" themes of intricacies in arguments and meanings, and in fallacies of supporting data, but woefully underprepared on the "externalist" side of broader historical context, the "fitting" of scientific claims into social settings.

Consequently, and following the old tactic of extracting virtue from necessity, I explored a different path in treating the history of biological determinism, one that would use my special skills and competences, but not suffer unduly from my inadequacies. I would not have written the book at all—I would not have even contemplated such a project in the first place—if I had not been able to devise a previously uncharted way to treat this important and by no means neglected subject. (I have a personal horror of derivative
writing, and have never **dabbled**—with one small exception as a personal favor to a dear, older, and revered **colleague**—in the genre of textbooks; life is too short.)

My special skill lies in a combination, not a uniqueness. I was able to bring together two salient and richly interacting components—each vouchsafed by itself to the competence of many individuals, but rarely combined in one person's interest. No one before me had systematically united these two competences at book length and in general overview of the subject.

Working scientists are generally good at analyzing data. We are trained to spot fallacies of argument and, especially, to be hypercritical of supporting data. We scrutinize charts and look at every dot on a graph. Science moves forward as much by critiquing the conclusions of others as by making novel discoveries. I was trained as a statistically minded paleontologist, with special expertise in handling large matrices of data on variation in populations and historical change within lineages. (The mismeasure of man resides in the same **themes**—**differences** among individuals as the analog to variation in populations, and measured disparities among groups as the analog to temporal differences in lineages through time.) I therefore felt particularly competent to analyze the data, and spot the fallacies, in arguments about measured differences among human groups.

But any working scientist could so proceed. We now come to the great parochialism of my primary profession. Most scientists don't care a fig about history; my colleagues may not quite follow Henry Ford's dictum that history is bunk, but they do regard the past as a mere repository of **error**—at best a source of moral instruction in pitfalls along paths to progress. Such an attitude does not create sympathy for, or interest in, historical figures of our scientific past, particularly the folks who made major mistakes. Thus, most scientists could, in principle, analyze the original data sets of biological determinism, but would never be inclined even to contemplate such an effort.

Professional historians, on the other hand, could rerun the statistics and criticize the graphs of their subjects. The procedure is really not all that arcane or difficult. But again we encounter a trade's parochialism: historians study social contexts. A historian
would want to know how Morton's conclusion about the inferiority of cranial capacity in American Indians impacted the debates about westward expansion—but would not generally think about sitting down with Morton's tables of skull measurements and trying to figure out whether Morton had reported his data correctly.

I therefore found my special niche, for I could analyze the data with some statistical expertise and attention to detail—and I do love to study the historical origin of great themes that still surround us. I could, in short, combine the scientist's skill with the historian's concern. *The Mismeasure of Man* therefore focuses upon the analysis of great data sets in the history of biological determinism. This book is a chronicle of deep and instructive fallacies (not silly and superficial errors) in the origin and defense of the theory of unitary, linearly ranked, innate, and minimally alterable intelligence.

The Mismeasure of Man is therefore unabashedly "internalist" in treating measured intelligence. I reanalyze the data of history's great claims—in a way, I hope, more akin to forensic adventure (a subject of general fascination) than of catalogues as dry as dust. We will explore Morton's switch from mustard seed to lead shot in the measurement of cranial capacity; Broca's meticulous statistics in the odd light of his unconscious social prejudices; Goddard's altered photographs of the imbecile line of Kallikaks in the New Jersey pine barrens; Yerkes's supposed test of innate intelligence (but actual index of familiarity with American culture) given to all army recruits in World War I (and also, by yours truly, to classes of Harvard undergraduates); Cyril Burt's great, crucial, and genuine error (not his insignificant and later overt fraud) in the mathematical justification of intelligence as a single factor.

Two famous and contradictory quotations capture the interest and potential importance of this endeavor, this third aspect of my frame for the mismeasure of man. God dwells in the details; so does the devil.

Why revise *The Mismeasure of Man* after fifteen years?

I regard the critique of biological determinism as both timeless and timely. The need for analysis is timeless because the errors of biological determinism are so deep and insidious, and because the argument appeals to the worst manifestations of our common na-
ture. The depth records the link of biological determinism to some of the oldest issues and errors of our philosophical traditions—including reductionism, or the desire to explain partly random, large-scale, and irreducibly complex phenomena by deterministic behavior of smallest constituent parts (physical objects by atoms in motion, mental functioning by inherited amount of a central stuff); reification, or the propensity to convert an abstract concept (like intelligence) into a hard entity (like an amount of quantifiable brain stuff); dichotomization, or our desire to parse complex and continuous reality into divisions by two (smart and stupid, black and white); and hierarchy, or our inclination to order items by ranking them in a linear series of increasing worth (grades of innate intelligence in this case, then often broken into a twofold division by our urges to dichotomize, as in normal vs. feeble-minded, to use the favored terminology of early days in IQ testing).

When we join our tendencies to commit these general errors with the sociopolitical reality of a xenophobia that so often (and so sadly) regulates our attitude to "others" judged inferior, we grasp the potency of biological determinism as a social weapon—for "others" will be thereby demeaned, and their lower socioeconomic status validated as a scientific consequence of their innate ineptitude rather than society's unfair choices. May I therefore repeat Darwin's great line: "If the misery of our poor be caused not by the laws of nature, but by our institutions, great is our sin."

But critiques of biological determinism are also timely at certain moments (including the present) because—and you may now choose your favorite image, from heads of the Lernaean Hydra if your tastes be classical, to bad pennies or returning cats if you prefer familiar proverbs, to crabgrass on suburban lawns if you favor vernacular modernity—the same bad arguments recur every few years with a predictable and depressing regularity. No sooner do we debunk one version than the next chapter of the same bad text emerges to ephemeral prominence.

No mystery attends the reason for these recurrences. They are not manifestations of some underlying cyclicity, obeying a natural law that might be captured in a mathematical formula as convenient as IQ; nor do these episodes represent any hot item of new data or some previously unconsidered novel twist in argument, for the theory of unitary, rankable, innate, and effectively unchangeable
intelligence never alters very much in each sequential formulation. Each surge to popularity works with the same fallacious logic and flawed information.

The reasons for recurrence are sociopolitical, and not far to seek: resurgences of biological determinism correlate with episodes of political retrenchment, particularly with campaigns for reduced government spending on social programs, or at times of fear among ruling elites, when disadvantaged groups sow serious social unrest or even threaten to usurp power. What argument against social change could be more chillingly effective than the claim that established orders, with some groups on top and others at the bottom, exist as an accurate reflection of the innate and unchangeable intellectual capacities of people so ranked?

Why struggle and spend to raise the unboostable IQ of races or social classes at the bottom of the economic ladder; better simply to accept nature’s unfortunate dictates and save a passel of federal funds; (we can then more easily sustain tax breaks for the wealthy!)? Why bother yourself about underrepresentation of disadvantaged groups in your honored and remunerative bailiwick if such absence records the diminished ability or general immorality, biologically imposed, of most members in the rejected group, and not the legacy or current reality of social prejudice? (The groups so stigmatized may be races, classes, sexes, behavioral propensities, religions, or national origins. Biological determinism is a general theory, and particular bearers of current disparagement act as surrogates for all others subject to similar prejudice at different times and places. In this sense, calls for solidarity among demeaned groups should not be dismissed as mere political rhetoric, but rather applauded as proper reactions to common reasons for mistreatment.)

Please note that I am discussing the cyclical surge to popularity of innatist arguments for unitary, rankable intelligence, not the episodic formulation of such claims. The general argument is always present, always available, always published, always exploitable. Episodes of intense public attention therefore record swings in the pendulum of political preferences toward the right position for exploiting this hoary old fallacy with a seriousness based on naive hope or cynical recognition of evident utility. Resurgences of biological determinism correlate with periods of political retrenchment and destruction of social generosity.
Twentieth-century America has experienced three major episodes, each so correlated. The first constitutes one of the saddest ironies of American history, and sets the longest chapter in *The Mismeasure of Man*. We like to think of America as a land with generally egalitarian traditions, a nation "conceived in liberty and dedicated to the proposition that all men are created equal." We recognize, *au contraire*, that many European nations, with their long histories of monarchy, feudal order, and social stratification, have been less committed to ideals of social justice or equality of opportunity. Since the IQ test originated in France, we might naturally assume that the false hereditarian interpretation, so commonly and so harmfully imposed upon the tests, arose in Europe. Ironically, this reasonable assumption is entirely false. As documented in Chapter 6, Alfred Binet, the French inventor, not only avoided a hereditarian interpretation of his test, but explicitly (and fervently) warned against such a reading as a perversion of his desire to use the tests for identifying children who needed special help. (Binet argued that an innatist interpretation would only stigmatize children as unteachable, thus producing a result opposite to his intent—a fear entirely and tragically justified by later history.)*

The hereditarian interpretation of IQ arose in America, largely through proselytization of the three psychologists—H. H. Goddard, L. M. Terman, and R. M. Yerkes—who translated and popularized the tests in this country. If we ask how such a perversion could occur in our land of liberty and justice for all, we must remember that the years just following World War I, the time of peak activity for these scientists, featured a narrow, parochial, jingoistic, isolationist "nativist" (WASP, not Indian), rally-round-the-flag, tinhorn patriotism unmatched by any other period during our century, even in the heyday of McCarthyism during the early 1950s. This was the age of restriction upon immigration, the spread of Jewish quotas, the execution of Sacco and Vanzetti, the height of lynchings in the Southern states. Interestingly, most of the men who built biodeterminism in the 1920s recanted their own conclusions during the liberal swing of the 1930s, when Ph.D.'s walked depression breadlines and poverty could no longer be explained by innate stupidity.

The two most recent episodes also correlate with political swings. The first inspired me to write *The Mismeasure of Man* as a positive reaction with an alternative vision (not, I trust, as a negativistic
Arthur Jensen launched the first of these recent episodes in 1969 with a notoriously fallacious article on the supposed innateness of group differences in IQ (with emphasis on disparity between whites and blacks in America). His chilling opening line belied all his later claims that he had only published as a disinterested scholar, and not as a man with a social agenda. He began with an explicit attack upon the federal Head Start program: "Compensatory education has been tried and it apparently has failed." My colleague Richard Herrnstein fired a second major salvo in 1971, with an article in the Atlantic Monthly that became the outline and epitome of The Bell Curve, published with Charles Murray in 1994, and the immediate prod for this revised version of The Mismeasure of Man.

As I stated above, articles on this subject by people of notoriety appear every month in prominent places. In analyzing why Jensen's piece became such a cause célèbre, rather than one more ignored manifesto within a well-known genre, we must turn to social context. Since Jensen's article contained no novel argument, we must seek the newly fertile soil that allowed such an old and ever-present seed to germinate. As I also stated above, I am no social pundit, and my view on this issue may be naive. But I well remember these politically active times of my youth. I recall the growth of opposition to the Vietnam War, the assassination of Martin Luther King in 1968 (and the fear inspired by attendant urban riots), the stepping down of Lyndon Johnson, inside and outside strife at the Chicago Democratic Party Convention of 1968, and the resulting election of Richard Nixon as president—with the onset of a conservative reaction that always engenders renewed attention for the false and old, but now again useful, arguments of biological determinism. I wrote The Mismeasure of Man at the apogee of this reaction, starting in the mid-1970s. The first edition appeared in 1981, and the book has been vigorously in print ever since.

I had no plans for a revised version. I am not a modest person, though I do try to keep my arrogance to myself (not always successfully, I suppose). But I felt no need for an update because I had made what I still regard as a wise decision when I first wrote the book (and surely not because I view this flawed, but proud, child of mine as unimprovable!). The Mismeasure of Man required no update
over the first fifteen years because I had focused on the foundation documents of biological determinism, and not on "current" usages so quickly superannuated. I had stressed the deep philosophical errors that do not change rather than the immediate (and superficial) manifestations that become obsolete year by year.

The third major episode then kicked off in 1994, with publication of *The Bell Curve* by Richard Herrnstein and Charles Murray. Again, their long book contained nothing new, though the authors spun out the old arguments over eight hundred pages filled with copious charts and graphs that bamboozle people into confusing both novelty and profundity with their fear of incomprehension. (In fact, *The Bell Curve* is eminently understandable. The argument is old, uncomplicated, and familiar; the mathematics, though labored through several hundred pages by iterating example after example, represents one study, appropriately simple in concept, and easy enough to comprehend. Moreover, for all my severe criticism of the authors’ content, I will happily grant that they write well and clearly.) When I met Charles Murray in debate at Harvard’s Institute of Politics, I could only think to begin with a favorite line from Shakespeare’s *Love’s Labour Lost*: “He draweth out the thread of his verbosity finer than the staple of his argument.”

The remarkable impact of *The Bell Curve* must therefore, and once again as always, be recording a swing of the political pendulum to a sad position that requires a rationale for affirming social inequalities as dictates of biology. (If I may make a somewhat lurid, but I think a propos, biological analogy, the theory of unitary, rankable, innate, unalterable intelligence acts like a fungal spore, a dinoflagellate cyst, or a tardigrade tun—always present in abundance, but in an inactive, dormant, or resting stage, waiting to sprout, engorge, or awake when fluctuating external conditions terminate slumber.)

Some reasons for *The Bell Curve’s* impact must be idiosyncratic—a catchy title, a fine job of editing by a legendary figure on the New York scene, a brilliant publicity campaign (I will confess to jealousy, and a desire to find the people responsible so that I can hire them away for my own books). But these particular factors must count for little in comparison with the overarching generality: newly fertile political soil. Should anyone be surprised that publication of *The Bell Curve* coincided exactly with the election of Newt Gingrich’s Congress, and with a new age of social meanness unprecedented in
my lifetime? Slash every program of social services for people in genuine need; terminate support for the arts (but don't cut a dime, heaven forfend, from the military); balance the budget and provide tax relief for the wealthy. Perhaps I am caricaturing, but can we doubt the consonance of this new meanspiritedness with an argument that social spending can't work because, contra Darwin, the misery of the poor does result from the laws of nature and from the innate ineptitude of the disadvantaged?

I would add another reason for the particular appeal of genetic explanations in the 1990s. We are living in a revolutionary age of scientific advance for molecular biology. From the Watson-Crick model of 1953 to the invention of PCR and the routine sequencing of DNA—for purposes as varied as O.J. Simpson's blood signature to deciphering the phylogeny of birds—we now have unprecedented access to information about the genetic constitution of individuals. We naturally favor, and tend to overextend, exciting novelties in vain hope that they may supply general solutions or panaceas—when such contributions really constitute more modest (albeit vital) pieces of a much more complex puzzle. We have so treated all great insights about human nature in the past, including nongenetic theories rooted in family and social dynamics, most notably (of course) Freud's notion of psychosexual stages, with neurosis arising from suppressed or misdirected development in ontogeny. If insightful nongenetic theories could be so egregiously exaggerated in the past, should we be surprised that we are now repeating this error by overextending the genuine excitement we feel about genetic explanation?

I applaud the discovery of genes that predispose carriers to certain illnesses, or that cause disease directly in normal environments (Tay-Sachs, sickle-cell anemia, Huntington's chorea)—for the greatest hope of cure lies in identification of a material substrate and a mode of action. As the father of an autistic son, I also celebrate the humane and liberating value of identifying inborn biological bases for conditions once deemed purely psychogenic, and therefore subtly blamed on parents (especially by professionals who swore up and down they harbored no such intent, but merely meant to specify sources in the interest of future prevention; autism, at different times and by various psychologists, became a result either of too much, or of too little, maternal love).

The brain, as an organ of the body, is as subject to disease and
genetic defect as any other. I welcome the discovery of genetic causes or influences for such scourges as schizophrenia, bipolar manic depression, and obsessive-compulsive disorder. No pain can match that of a parent who "loses" a vibrant and promising child to the ravages of such illnesses, with their frequently delayed onset near the end of life's second decade. Let us celebrate the release of parents from consuming guilt and, more important of course, the possibility of amelioration, or even cure, supplied by identification of causes.

But all these genuine discoveries involve definite and specific pathologies, diseases, or conditions that thwart what we may still legitimately call "normal" *development*—that is, the bell curve. (Bell curves are technically called normal distributions; they arise when variation is distributed randomly around the *mean*—equally in both directions, with greater probability of values near the mean.) Specific pathologies do not fall on the bell curve, but usually form clumps or clusters far from the curve's mean value and apart from the normal distribution. The causes of these exceptions therefore do not correspond with reasons for variation around the mean of the bell curve itself.

Just because people with Down's syndrome tend to have quite short stature as the result of an extra twenty-first chromosome, we would not infer that short-statured people in the normal distribution of the bell curve owe their height to possession of an extra chromosome. Similarly, the discovery of a gene "for" Huntington's chorea does not imply the existence of a gene for high intelligence, or low aggressivity, or high propensity for xenophobia, or special attraction to faces, bodies, or legs of a sexual *partner*—or for any other general feature that might be distributed as a bell curve in the full population. "Category mistakes" are among the most common errors of human thought: we commit a classic category mistake if we equate the causes of normal variation with the reasons for pathologies (just as we make a category error in arguing that because IQ has moderate heritability within groups, the causes for average differences between groups must be *genetic*—see my review of *The Bell Curve* in essay 1 at the back). Thus, we should be excited about advances in identifying the genetic causes of certain diseases, but we should not move from this style of explanation to the resolution of behavioral variation in our general population.

Of all the baleful false dichotomies that stymie our understand-
of the world's complexity, nature vs. nurture must rank among the top two or three (a phony division only enhanced by the euphony of these names). I don’t think that any smoke screen infuriates me more than the biodeterminist's frequent claim "But we are the sophisticated ones; our opponents are pure environmentalists, supporters of nurture alone; we recognize that behaviors arise by an interaction of nature and nurture." May I then emphasize again, as the text of The Mismeasure of Man does throughout, that all parties to the debate, indeed all people of good will and decent information, support the utterly uncontroversial statement that human form and behavior arise from complex mixtures of genetic and environmental influences.

Errors of reductionism and biodeterminism take over in such silly statements as "Intelligence is 60 percent genetic and 40 percent environmental." A 60 percent (or whatever) "heritability" for intelligence means no such thing. We shall not get this issue straight until we realize that the "interactionism" we all accept does not permit such statements as "Trait x is 29 percent environmental and 71 percent genetic." When causative factors (more than two, by the way) interact so complexly, and throughout growth, to produce an intricate adult being, we cannot, in principle, parse that being's behavior into quantitative percentages of remote root causes. The adult being is an emergent entity who must be understood at his own level and in his own totality. The truly salient issues are malleability and flexibility, not fallacious parsing by percentages. A trait may be 90 percent heritable, yet entirely malleable. A twenty-dollar pair of eyeglasses from the local pharmacy may fully correct a defect of vision that is 100 percent heritable. A "60 percent" biodeterminist is not a subtle interactionist, but a determinist on the "little bit pregnant" model.

Thus, for example, Mr. Murray, in high dudgeon about my review of The Bell Curve (reprinted here as the first essay in the concluding section), writes in the Wall Street Journal (December 2, 1994), excoriating my supposed unfairness to him:

Gould goes on to say that "Herrnstein and Murray violate fairness by converting a complex case that can yield only agnosticism into a biased brief for permanent and heritable differences." Now compare Mr. Gould's words with what Richard Herrnstein and I wrote in the crucial paragraph summarizing our views on genes and race: "If the reader is now convinced that
either the genetic or environmental explanations have won out to the exclusion of the other, we have not done a sufficiently good job of presenting one side or the other. It seems highly likely to us that both genes and the environment have something to do with racial differences. What might the mix be?"

Don't you get it yet, Mr. Murray? I did not state that you attribute all difference to genetics—no person with an iota of knowledge would say such a foolish thing. My quoted line does not so charge you; my sentence states accurately that you advocate "permanent and heritable differences"—not that you attribute all disparity to genetics. Your own defense shows that you don't grasp the major point. Your statement still portrays the issue as a battle of two sides, with exclusive victory potentially available to one. No one believes such a thing; everyone accepts interaction. You then portray yourself as a brave apostle of modernity and scholarly caution for proclaiming it "highly likely... that both genes and the environment have something to do with racial differences." You have only stated a truism entirely outside the real issue. When you make the proper distinction between heritability and flexibility of behavioral expression, then we might have a real debate beyond the rhetoric of phrasing.

I shall not pursue my critique of *The Bell Curve* here, for I present this effort in the first two essays of the concluding section. I only wish to state that I decided to produce this revised version of *The Mismeasure of Man* as a response to this latest cyclic episode of biodeterminism. It might seem odd that a book written fifteen years ago could serve as a rebuttal to a manifesto issued in 1994—more than odd, in fact, since our basic notions of causality may be thereby inverted! And yet, as I reread *The Mismeasure of Man*, and made so few changes beyond correcting typographical errors and excising the few references entirely topical to 1981, I realized that my fifteen year old book is written as a rebuttal to *The Bell Curve*. (Lest this statement seem absurdly anachronistic, I hasten to point out that Herrnstein's 1971 *Atlantic Monthly* article, a point by point epitome of *The Bell Curve*, did form an important part of the context for *The Mismeasure of Man*.) But my claim is not absurdly anachronistic for another more important reason. *The Bell Curve* presents nothing new. This eight hundred page manifesto is little more than a long brief for the hard-line version of Spearman's *g—the* theory of intel-
intelligence as a unitary, rankable, genetically based, and minimally alterable thing in the head. *The Mismeasure of Man* is a logical, empirical, and historical argument against this very theory of intelligence. Of course I could not know the specifics of what the future would bring. But just as Darwinism can provide as good an argument against future episodes of creationism as against the antievolutionists of Darwin's own day, I trust that a cogent refutation of a bankrupt theory will hold, with all its merit intact, if someone tries to float a dead issue with no new support at some future moment. Time, by itself, holds no alchemy to improve a case. If good arguments cannot transcend time, then we might as well throw out our libraries.

Reasons, history and revision of *The Mismeasure of Man*

* I. Reasons

My original reasons for writing *The Mismeasure of Man* mixed the personal with the professional. I confess, first of all, to strong feelings on this particular issue. I grew up in a family with a tradition of participation in campaigns for social justice, and I was active, as a student, in the civil rights movement at a time of great excitement and success in the early 1960s.

Scholars are often wary of citing such commitments, for, in the stereotype, an ice-cold impartiality acts as the *sine qua non* of proper and dispassionate objectivity. I regard this argument as one of the most fallacious, even harmful, claims commonly made in my profession. Impartiality (even if desirable) is unattainable by human beings with inevitable backgrounds, needs, beliefs, and desires. It is dangerous for a scholar even to imagine that he might attain complete neutrality, for then one stops being vigilant about personal preferences and their *influences*—and then one truly falls victim to the dictates of prejudice.

Objectivity must be operationally defined as fair treatment of data, not absence of preference. Moreover, one needs to understand and acknowledge inevitable preferences in order to know their *influence*—so that fair treatment of data and arguments can be attained! No conceit could be worse than a belief in one's own intrinsic objectivity, no prescription more suited to the exposure of fools. (Phony psychics like Uri Geller have had particular success
in bamboozling scientists with ordinary stage magic, because only scientists are arrogant enough to think that they always observe with rigorous and objective scrutiny, and therefore could never be so fooled—while ordinary mortals know perfectly well that good performers can always find a way to trick people.) The best form of objectivity lies in explicitly identifying preferences so that their influence can be recognized and countermanded. (We deny our preferences all the time in acknowledging nature's factuality. I really do hate the fact of personal death, but will not base my biological views on such distaste. Less facetiously, I really do prefer the kinder Lamarckian mode of evolution to what Darwin called the miserable, low, bungling, and inefficient ways of his own natural selection—but nature doesn't give a damn about my preferences, and works in Darwin's mode, and I therefore chose to devote my professional life to this study.)

We must identify preferences in order to constrain their influence on our work, but we do not go astray when we use such preferences to decide what subjects we wish to pursue. Life is short, and potential studies infinite. We have a much better chance of accomplishing something significant when we follow our passionate interests and work in areas of deepest personal meaning. Of course such a strategy increases dangers of prejudice, but the gain in dedication can overbalance any such worry, especially if we remain equally committed to the overarching general goal of fairness, and fiercely committed to constant vigilance and scrutiny of our personal biases.

(I have no desire to give Mr. Murray ammunition for future encounters, but I have never been able to understand why he insists on promulgating the disingenuous argument that he has no personal stake or preference in the subject of The Bell Curve, but only took up his study from disinterested personal curiosity—the claim that disabled him in our debate at Harvard, for he so lost credibility thereby. After all, his overt record on one political side is far stronger than my own on the other. He has been employed by right-wing think tanks for years, and they don't hire flaming liberals. He wrote the book, Common Ground, that became Reagan's bible as much as Michael Harrington's Other America might have influenced Kennedy Democrats. If I were he, I would say something like: "Look, I'm a political conservative, and I'm proud of it. I know that the argument of The Bell Curve meshes well with my politics. I recog-
nized this from the beginning. In fact, this recognition led me to be especially vigilant and careful when I analyzed the data of my book. But I remain capable of being fair with data and logical in argument, and I believe that the available information supports my view. Besides, I am not a conservative for capricious reasons. I believe that the world does work in the manner of the bell curve, and that my political views represent the best way to constitute governments in the light of these realities." Now this argument I could respect, while regarding both its premises and supporting data as false and misinterpreted.) I wrote *The Mismeasure of Man* because I have a different political vision, and because I also believe (or I would not maintain the ideal) that people are evolutionarily constituted in a way that makes this vision attainable—not inevitable, Lord only knows, but attainable with struggle.

I therefore studied this subject with passion. I had participated in the lunch counter sit-in phase of the civil rights movement. I had attended Antioch College in southwestern Ohio, near Cincinnati and the Kentucky state line—therefore "border" country, and still largely segregated in the 1950s. There I had taken part in many actions to integrate bowling alleys and skating rinks (previously with "white" and "Negro" nights), movie theaters (previously blacks in the balcony and whites downstairs), restaurants, and, in particular, a Yellow Springs barber shop run by a stubborn man (whom I came to respect in an odd way) named Gegner (meaning "adversary" in German and therefore contributing to the symbolic value) who swore that he couldn't cut a black man's hair because he didn't know how. (I first met Phil Donahue when he covered this story as a cub reporter for the *Dayton Daily News.*) I spent a good part of an undergraduate year in England, effectively running an extensive and successful campaign with another American (though we couldn't be public spokespeople, given our "wrong" accents) to integrate the largest dance hall in Britain, the Mecca Locarno ballroom in Bradford. I had joys and sadnesses, successes and defeats. I felt crushed when, in a wave of understandable though lamentable narrowness, the black leaders of the Student Non-Violent Coordinating Committee decided to remove whites from the organization.

All my grandparents were immigrants to America, and in the group of Eastern European Jews whom Goddard and company would have so severely restricted. I dedicated *The Mismeasure of Man*
to my maternal Hungarian grandparents (the only ones I knew well), both brilliant people with no access to much formal education. My grandmother could speak four languages fluently, but could only write her adopted English phonetically. My father became a leftist, along with so many other idealists, during upheavals of the depression, the Spanish Civil War, and the growth of nazism and fascism. He remained politically active until poor health precluded further stress, and politically committed thereafter. I shall always be gratified to the point of tears that, although he never saw The Mismeasure of Man in final form, he lived just long enough to read the galley proofs and know (shades, I recognize, of Al Jolson singing Kol Nidre as his dying father listened) that his scholar son had not forgotten his roots.

Some readers may regard this confessional as a sure sign of too much feeling to write a proper work in nonfiction. But I am willing to bet that passion must be the central ingredient needed to lift such books above the ordinary, and that most works of nonfiction regarded by our culture as classical or enduring are centered in their author’s deep beliefs. I therefore suspect that most of my colleagues in this enterprise could tell similar stories of autobiographic passion. I would also add that, for all my convictions about social justice, I feel even more passionate about a closer belief central to my personal life and activities: my membership in the "ancient and universal company of scholars" (to cite the wonderfully archaic line used by Harvard’s president in conferring Ph.D.’s at our annual commencement). This tradition represents, along with human kindness, the greatest, most noble, and most enduring feature on the bright side of a mixed panoply defining what we call "human nature." Since I am better at scholarship than at kindness, I need to cast my fealty with humanity’s goodness in this sphere. May I end up next to Judas Iscariot, Brutus, and Cassius in the devil’s mouth at the center of hell if I ever fail to present my most honest assessment and best judgment of evidence for empirical truth.

My professional reason for writing The Mismeasure of Man was also, in large part, personal. The saddest parochialism in academic life—the depressing contrary to the ideals I mentioned in the last paragraph—lies in the petty sniping that small-minded members of one profession unleash when someone credentialed in another world dares to say anything about activities in the sniper’s parish.
Thus has it always been, and thus do we dilute both the small pleasures and fierce joys of scholarship. Some scientists griped at Goethe because a "poet" should not write about empirical nature (Goethe did interesting and enduring work in mineralogy and botany; happily, each sniper tends to be parried by better scientists with generosity of spirit, and Goethe numbered many biologists, especially Etienne Geoffroy Saint-Hilaire, among his supporters). Others groused when Einstein or Pauling exposed their humanity and wrote about peace.

The most common, narrow-minded complaint about *The Mismeasure of Man* goes: Gould is a paleontologist, not a psychologist; he can't know the subject and his book must be bullshit. I want to offer two specific rebuttals of this nonsense, but would first remind my colleagues that we all might consider giving more than lip service to the ideal of judging a work by its content, not the author's name or rank.

For my first specific rebuttal, however, I do want to pull rank. True, I am not a psychologist and I know little about the technicalities of item selection in mental testing or the social use of results in contemporary America. Hence, I carefully said nothing about these subjects (and would not have written the book if I had judged mastery of such material as essential for my intentions). My book, by the way, has been commonly portrayed, even (to my chagrin) often praised, as a general attack upon mental testing. *The Mismeasure of Man* is no such thing, and I have an agnostic attitude (born largely of ignorance) toward mental testing in general. If my critics doubt this, and read these lines as a smoke screen, just consider my expressed opinion about Binet's original IQ test—strongly and entirely positive (for Binet rejected the hereditarian interpretation, and only wanted to use the test as a device to identify children in need of special help; and for this humane goal, I have nothing but praise). *The Mismeasure of Man* is a critique of a specific theory of intelligence often supported by particular interpretation of a certain style of mental testing: the theory of unitary, genetically based, unchangeable intelligence.

The subject that I did choose for *The Mismeasure of Man* represents a central area of my professional expertise—in fact, I would go further and say (now turning to my arrogant mode) that I have understood this area better than most professional psychologists
who have written on the history of mental testing, because they do not have expertise in this vital subject, and I do. I am an evolutionary biologist by training. Variation is the focal subject of evolutionary biology. In Darwinian theory, evolution occurs (to put the point technically for a moment) by the conversion of variation within populations into differences between populations. That is (and now more simply), individuals differ, and some of this variation has a genetic basis. Natural selection works by differentially preserving the variation that confers better adaptation in changing local environments. As a caricature, for example, hairier elephants will do better as ice sheets advance over Siberia, and woolly mammoths will eventually evolve as selection, acting statistically and not absolutely, preserves more hirsute elephants generation after generation. In other words, variation within a population (some elephants hairier than others at any moment) becomes converted into differences through time (woolly mammoths as descendants of elephants with ordinary amounts of hair).

Now consider the subjects of this mix: genetically based variation within populations, and development of differences between populations—and what do you have? Voilà: the subject of the *The Mismeasure of Man*. My book is about the measurement of supposedly genetically based variation in intelligence among members of a population (the aim of IQ testers assessing all the kids in a classroom, or of nineteenth-century craniometricians measuring the heads of all the workers in a factory, or weighing the brains of their dead academic colleagues). My book is also about the putative reasons for measured differences between groups (racial in white vs. black, or class-based in rich vs. poor, for example). If I know the technical basis of any subject, I understand this material best (and many psychologists don’t because they have not had training in a profession like evolutionary biology that regards the measurement of genetically based variation as central to its being).

For my second specific rebuttal, I entered paleontology in the mid 1960s, at an interesting time in the profession’s history, when traditions of subjective and idiosyncratic description were beginning to yield to calls for more quantitative, generalized, and theoretically based approaches to fossil organisms. (I am, by the way, no longer so beguiled by the lure of quantification, but I was so trained and was once a true believer.) We young Turks of this movement
all developed expertise in two areas, then most unfamiliar (if not anathema) to practicing paleontologists: statistics and computers.

I was therefore trained in the statistical analysis of genetically based variation within and between populations—again, the key subject of *The Mismeasure of Man* (for *Homo sapiens* is a variable biological species, no different in this regard from all the other organisms I had studied). I think, in other words, that I approached the mismeasure of man with requisite and unconventional expertise from an appropriate profession that has not often enough promoted its special say about a subject so close to its center.

In writing numerous essays on the lives of scientists, I have found that books on general topics or full systems usually originate in tiny puzzles or little troubling issues, not usually from an abstract or overarching desire to know the nature of totality. Thus, the seventeenth-century scriptural geologist Thomas Burnet built up to a general theory of the earth because he wanted to know the source of water for Noah’s flood. The eighteenth-century geologist James Hutton developed an equally comprehensive system from an initial nagging paradox: if God made soil for human agriculture, but soil derives from erosion of rocks; and if the erosion of rocks will ultimately destroy the land and put the entire earth under water, then how could God choose a means of our eventual destruction as a method for making the soil that sustains us? (Hutton answered by inferring the existence of internal forces that raise mountains from the deep, thus developing a cyclical theory of erosion and repair—an ancient world with no vestige of a beginning, or prospect of an end.)

The Mismeasure of Man also began with a tiny insight that stunned me with a frisson of recognition. Our young Turk generation of paleontologists linked statistics and computers by learning the technique of multivariate analysis—that is, the simultaneous statistical consideration of relationships among many measured properties of organisms (length of bones, perhaps, for fossil species, performance on numerous mental tests for humans in the mismeasure of man). These techniques are not all conceptually difficult; many had been partly developed or envisioned earlier in the century. But practical utility requires immensely long computations that only became possible with the development of computers.

I was trained primarily in the granddaddy of multivariate tech-
niques (still vigorously in vogue and eminently useful): factor analysis. I had learned this procedure as an abstract mathematical theory and had applied factor analysis to the study of growth and evolution in various fossil organisms (for example, my Ph.D. thesis, published in 1969, on Bermudian land snails; and one of my first papers, published in 1967, on growth and form in pelycosaurian reptiles—those peculiar creatures with sails on their backs, always included in sets of plastic dinosaurs, but really ancestors of mammals and not dinosaurs at all).

Factor analysis allows one to find common axes influencing sets of independently measured variables. For example, as an animal grows, most bones get longer—so general increase in size acts as a common factor behind the positive correlations measured for the length of bones in a series of organisms varying from small to large within a species. This example is trivial. In a more complex case, subject to numerous interpretations, we generally measure positive correlations among mental tests given to the same person—that is, in general and with many exceptions, people who do well on one kind of test tend to do well on others. Factor analysis might detect a general axis that can, in a mathematical sense, capture a common element in this joint variation among tests.

I had spent a year learning the intricacies of factor analysis. I was then historically naïve, and never dreamed that such a valuable abstraction, which I had applied only to fossils with minimal political import, might have arisen in a social context to tout a particular theory of mental functioning with definite political meaning. Then one day I was reading, quite aimlessly and only for leisure, an article about the history of mental testing, and I realized that Spearman’s g—the central claim of the unitary theory of intelligence, and the only justification that such a notion has ever had (The Bell Curve is fundamentally a long defense of g, explicitly so stated)—was nothing more than the first principal component of a factor analysis of mental tests. Moreover, I learned that Spearman had invented the technique of factor analysis specifically to study the underlying basis of positive correlation among tests. I also knew that principal components of factor analyses are mathematical abstractions, not empirical realities—and that every matrix subject to factor analysis can be represented just as well by other components with different meanings, depending on the style of factor analysis applied in a particular
Since the chosen style is largely a matter of researcher’s preference, one cannot claim that principal components have empirical reality (unless the argument can be backed up with hard data of another sort; the mathematical evidence alone will never suffice, because we can always generate alternative axes with entirely different meanings).

There can only be a few such moments—the eurekas, the scales dropping from the eyes—in a scholar’s life. My precious abstraction, the technique powering my own research at the time, had not been developed to analyze fossils, or to pursue the idealized pleasure of mathematics. Spearman had invented factor analysis to push a certain interpretation of mental tests—one that has plagued our century with its biodeterminist implications. (I am confident about the order of causality because Spearman had been defending the theory of unitary intelligence for years with other nonmultivariate techniques before he invented factor analysis. Thus we know that he developed factor analysis to support the theory—and that the theory did not arise subsequently from thoughts inspired by the first results of factor analysis.) A frisson of mixed fascination and a bit of anger passed up and down my spine, as much of my previous idealization of science collapsed (ultimately to be replaced by a far more humane and sensible view). Factor analysis had been invented for a social use contrary to my beliefs and values.

I felt personally offended, and this book, though not written until some ten years later, ultimately arose from this insight and feeling of violation. I felt compelled to write The Mismeasure of Man. My favorite research tool had arisen for an alien social use. Furthermore, and in another irony, the harmful hereditarian version of IQ had not developed in Europe, where Binet had invented the test for benevolent purposes, but in my own country of America, honored for egalitarian traditions. I am a patriot at heart. I had to write the book to make correction and ask for understanding.

2. History and revision

I published The Mismeasure of Man in 1981; the book has certainly had an active and fascinating history ever since. I was proud when Mismeasure won the National Book Critics Circle award in nonfiction, for this prize is the professional’s accolade, given by those who do the reviewing. The reviews themselves followed an interesting
pattern—uniformly warm in the serious popular press, predictably various in technical journals of psychology and the social sciences. Most of the leading mental testers in the hereditarian tradition wrote major reviews, and one might well guess their thrust. Arthur Jensen, for example, did not like the book. But most other professional psychologists wrote with praise, often copious and unstinting.

The nadir certainly arrived (with a bit of humor in the absurdity) in the Fall 1983 issue of an archconservative journal, The Public Interest, when my dyspeptic colleague Bernard D. Davis published a ridiculous personal attack on me and the book under the title "Neo-Lysenkoism, IQ, and the Press." His thesis may be easily summarized: Gould's book got terrific reviews in the popular press, but all academic writers panned it unmercifully. Therefore the book is politically motivated crap, and Gould himself isn't much better in anything he does, including punctuated equilibrium and all his evolutionary ideas.

Lovely stuff. I firmly believe in not answering unfair negative reviews, for nothing can so disorient an attacker as silence. But this was a bit too much, so I canvassed among friends. Both Noam Chomsky and Salvador Luria, great scholars and humanists, said essentially the same thing: never reply unless your attacker has floated a demonstrably false argument, which, if unanswered, might develop a "life of its own." I felt that Davis’s diatribe fell into this category and therefore responded in the Spring 1984 issue of the same journal (my only publication in journals of that ilk).

As I explained and documented, Mr. Davis had only read a few reviews, probably in publications that he liked, or that had been sent to him by colleagues sharing his political persuasions. I, thanks to my publisher's prodigious clipping service, had all the reviews. I picked out all twenty-four written by academic experts in psychology and found fourteen positive, three mixed, and seven negative (nearly all of these by hereditarian mental testers—what else would one expect?). I was particularly pleased that Cyril Burt’s old periodical The British Journal of Mathematical and Statistical Psychology, had written one of the most positive accounts: "Gould has performed a valuable service in exposing the logical basis of one of the most important debates in the social sciences, and this book should be required reading for students and practitioners alike."

The book has sold strongly ever since publication and has now
surpassed 250,000 copies, plus translations into ten languages. I have been particularly gratified by the warm and challenging correspondence that has continually come my way (and at least amused by some of the hate mail, including a few threats from neo-Nazis and anti-Semites). I am particularly glad, in retrospect, that I chose to write in a way that surely precluded maximal eclat at publication (as a breezier style with more references to immediate issues would have accomplished), but that gave the book staying power (a focus on founding arguments, analyzed by consulting original sources in their original languages).

The Mismeasure of Man is not easy reading, but I intended the book for all serious people with interest in the subject. I followed the two cardinal rules that I use in writing my essays. First, do not waffle on about generalities (as I fear I have done a bit in this introduction—sins of my middle age, no doubt!). Focus on those small, but fascinating, details that can pique people's interest and illustrate generalities far better than overt and tendentious discussion. This strategy provides a better book for readers, but also makes the composition so much more fun for me. I got to read all the original sources; I had all the pleasure of poking into Broca's data and finding the holes and unconscious prejudices, of reconstructing Yerkes's test to army recruits, of hefting a skull filled with lead shot. How much more rewarding than easy reliance on secondary sources, and copying a few conventional thoughts from other commentators.

Second, simplify writing by eliminating jargon, of course, but do not adulterate concepts; no compromises, no dumbing down. Popularization is part of a great humanistic tradition in serious scholarship, not an exercise in dumbing down for pleasure or profit. I therefore did not shy from difficult, even mathematical material. Since I've been holding back for fifteen years, permit me a few paragraphs for pure bragging and saying what has pleased me most about the book.

The history of mental testing in the twentieth century has two major strands: scaling and ranking by mental age as represented by IQ testing, and analysis of correlations among mental tests as manifested in factor analysis. Effectively every popular work on mental testing explains the IQ thread in detail and virtually ignores factor analysis. This strategy is followed for an obvious and understandable reason: the IQ story is easy to explain and comprehend;
factor analysis, and multivariate thinking in general, are enormously difficult for most people and hard to express without considerable mathematics.

But such conventional works cannot adequately present the history of the hereditarian theory of unitary intelligence—for this notion relies so crucially on both parts. We must understand why people ever thought that a unilinear ranking could order people by mental worth—the IQ thread, usually well treated. But we cannot grasp or interpret the theory of unitary intelligence until we know the basis for the prior claim that intelligence can be interpreted as a single entity (that might then be measured by a single number like IQ). This rationale derives from factor analysis and its supposed validation of Spearman's \(g\) —the unitary thing in the head. But factor analysis has usually been ignored, thus precluding all possibility of real understanding.

I resolved that I would treat factor analysis head-on—and I have never struggled so hard to render material in a manner accessible to general readers. I kept failing because I could not translate the mathematics into understandable prose. Then I finally realized, in one of those "aha" insights, that I could use Thurstone's alternative geometrical representation of tests and axes as vectors (arrows) radiating from a common point, rather than the usual algebraic formulations. This approach solved my problem because most people grasp pictures better than numbers. The resulting Chapter 7 is by no means easy. It will never rank high in public acclaim, but I have never been so proud of anything else I ever wrote for popular audiences. I think I found the key for presenting factor analysis, and one of the most important scientific issues of the twentieth century cannot be understood without treating this subject. Nothing has ever gratified me more than numerous unsolicited comments from professional statisticians over the years, thanking me for this chapter and affirming that I had indeed succeeded in conveying factor analysis, and that I had done so accurately and understandably. I am not nearly ready, but I will eventually chant my Nunc dimittis in peace.

One final and peripheral point about factor analysis and Cyril Burt: My chapter on factor analysis bears the title "The Real Error of Cyril Burt: Factor Analysis and the Reification of Intelligence." Burt had been charged with overt fraud in making up data for his
studies, done at the end of a long career, on identical twins separated early in life and reared in different social circumstances. Inevitably, I suppose, some recent commentators have tried to rehabilitate Burt and to cast doubt upon the charges. I regard these attempts as weak and doomed to failure, for the evidence of Burt's fraud seems conclusive and overwhelming to me. But I wish to emphasize that I regard the subject as unfortunate, diversionary, and unimportant—and the title of my chapter tried to express this view, though perhaps in a pun too opaque. Whatever Burt did or did not do as a pitiful old man (and I ended up feeling quite sympathetic toward him, not gloating over his exposure, but understanding the sources of his action in personal pain and possible mental illness), this late work had no enduring significance in the history of mental testing. Burt's earlier, deep, and honest error embodies the fascinating and portentous influence of his career. For Burt was the most important of post-Spearmanian factor analysts (he inherited Spearman's academic post)—and the key error of factor analysis lies in reification, or the conversion of abstractions into putative real entities. Factor analysis in the hereditarian mode, not later studies of twins, represented Burt's "real" error—for reification comes from the Latin for res, or real thing.

Inevitably, as for all active subjects, much has changed, sometimes to my benefit and sometimes to my deficit, since the book first appeared in 1981. But I have chosen to leave the main text essentially "as is" because the basic form of the argument for unitary, rankable, heritable, and largely unchangeable intelligence has never varied much, and the critiques are similarly stable and devastating. As noted before, I have deleted a few references topical to 1981, changed a few minor errors of typography and fact, and inserted a few footnotes to create a bit of dialogue between me in 1981 and me now. Otherwise, you read my original book in this revised edition.

The major novelty of this revision lies in the two slices of bread that surround the meat of my original text—this prefatory statement in front and the concluding section of essays at the end. I have included five essays in two groups for this closing slice. The first group of two reproduces my two very different reviews of The Bell Curve. The first appeared in The New Yorker for November 28, 1994. I was particularly pleased because Mr. Murray became so apoplectic about this article, and because so many people felt that I had pro-
vided a comprehensive and fair (if sharp) commentary by critiquing both the illogic of *The Bell Curve*'s quadripartite general argument, and the inadequacies of the book's empirical claims (largely exposed by showing how the authors buried conclusively contrary data in an appendix while celebrating their potential support in the main text). I felt grateful that this review was the first major comment to appear based on a complete reading and critique of the book's actual text (others had written cogent commentaries on *The Bell Curve*'s politics, but had disclaimed on the text, pleading inability to comprehend the mathematics!). The second represents my attempts to provide a more philosophical context for *The Bell Curve*'s fallacy by considering its consonance with other arguments from the history of biodeterminism. This essay, published in *Natural History* in February 1995, repeats some material from *The Mismeasure of Man* in the section on Binet and the origin of the IQ test—but I left the redundancy alone since I thought that this different context for citing Binet might strike readers as interesting. The first section on Gobineau, the granddaddy of modern scientific racism, represents material that I probably should have originally placed, but did not, in *The Mismeasure of Man*.

The second group includes three historical essays on key figures from the seventeenth, eighteenth, and nineteenth centuries respectively. We first meet Sir Thomas Browne and his seventeenth-century refutation of the canard "that Jews stink." But I valued Browne's argument primarily for following the cogent form that has opposed biodeterminism ever since—so his old refutation has enduring worth. This essay ends with a summary of the startling revision that modern genetic and evolutionary data about human origins must impose upon our notion of races and their meaning.

The second essay analyzes the founding document of modern racial classification, the fivefold system devised in the late eighteenth century by the genially liberal German anthropologist Blumenbach. I use this essay to show how theory and unconscious presupposition always influence our analysis and organization of presumably objective data. Blumenbach meant well, but ended up affirming racial hierarchy by way of geometry and aesthetics, not by any overt viciousness. If you ever wondered why white folks are named Caucasians in honor of a small region in Russia, you will find the answer in this essay and in Blumenbach's definitions. The last article sum-
THE MISMEASURE OF MAN

marizes Darwin's sometimes conventional, sometimes courageous views on racial differences and ends with a plea for understanding historical figures in the context of their own times, and not in anachronistic reference to ours.

I did not want to end with stale bread, and therefore sought to build this closing section from essays not previously anthologized. Of the five, only one has appeared before in my own collections—the last piece on Darwin from Eight Little Piggies. But I could not bear to expunge my personal hero, while concluding with this essay grants me symmetry by allowing the book to close with the same wonderful line from Darwin that both begins this essay on the opening slice of bread and serves as the epigraphic quote for the meat of this book, the text of The Mismeasure of Man. One other essay—The New Yorker review of The Bell Curve—has been reprinted in collections quickly published in response to Murray and Herrnstein's book. The other essays have never been anthologized before, and I purposely left them out of my next collection to appear, Dinosaur in a Haystack.

This subject of biodeterminism has a long, complex, and contentious history. We can easily get lost in the minutiae of abstract academic arguments. But we must never forget the human meaning of lives diminished by these false arguments—and we must, primarily for this reason, never flag in our resolve to expose the fallacies of science misused for alien social purposes. So let me close with the operative paragraph of The Mismeasure of Man: "We pass through this world but once. Few tragedies can be more extensive than the stunting of life, few injustices deeper than the denial of an opportunity to strive or even to hope, by a limit imposed from without, but falsely identified as lying within."
ONE

Introduction

CITIZENS OF THE REPUBLIC, Socrates advised, should be educated and assigned by merit to three classes: rulers, auxiliaries, and craftsmen. A stable society demands that these ranks be honored and that citizens accept the status conferred upon them. But how can this acquiescence be secured? Socrates, unable to devise a logical argument, fabricates a myth. With some embarrassment, he tells Glaucon:

I will speak, although I really know not how to look you in the face, or in what words to utter the audacious fiction. . . . They [the citizens] are to be told that their youth was a dream, and the education and training which they received from us, an appearance only; in reality during all that time they were being formed and fed in the womb of the earth. . . .

Glaucon, overwhelmed, exclaims: "You had good reason to be ashamed of the lie which you were going to tell." "True," replied Socrates, "but there is more coming; I have only told you half."

Citizens, we shall say to them in our tale, you are brothers, yet God has framed you differently. Some of you have the power of command, and in the composition of these he has mingled gold, wherefore also they have the greatest honor; others he has made of silver, to be auxiliaries; others again who are to be husbandmen and craftsmen he has composed of brass and iron; and the species will generally be preserved in the children. . . . An oracle says that when a man of brass or iron guards the State, it will be destroyed. Such is the tale; is there any possibility of making our citizens believe in it?

Glaucon replies: "Not in the present generation; there is no way of accomplishing this; but their sons may be made to believe in the tale, and their son's sons, and posterity after them."
Glaucon had uttered a prophesy. The same tale, in different versions, has been promulgated and believed ever since. The justification for ranking groups by inborn worth has varied with the tides of Western history. Plato relied upon dialectic, the Church upon dogma. For the past two centuries, scientific claims have become the primary agent for validating Plato's myth.

This book is about the scientific version of Plato's tale. The general argument may be called biological determinism. It holds that shared behavioral norms, and the social and economic differences between human groups—primarily races, classes, and sexes—arise from inherited, inborn distinctions and that society, in this sense, is an accurate reflection of biology. This book discusses, in historical perspective, a principal theme within biological determinism: the claim that worth can be assigned to individuals and groups by measuring intelligence as a single quantity. Two major sources of data have supported this theme: craniometry (or measurement of the skull) and certain styles of psychological testing.

Metals have ceded to genes (though we retain an etymological vestige of Plato's tale in speaking of people's worthiness as their "mettle"). But the basic argument has not changed: that social and economic roles accurately reflect the innate construction of people. One aspect of the intellectual strategy has altered, however. Socrates knew that he was telling a lie.

Determinists have often invoked the traditional prestige of science as objective knowledge, free from social and political taint. They portray themselves as purveyors of harsh truth and their opponents as sentimentalists, ideologues, and wishful thinkers. Louis Agassiz (1850, p. 111), defending his assignment of blacks to a separate species, wrote: "Naturalists have a right to consider the questions growing out of men's physical relations as merely scientific questions, and to investigate them without reference to either politics or religion." Carl C. Brigham (1923), arguing for the exclusion of southern and eastern European immigrants who had scored poorly on supposed tests of innate intelligence stated: "The steps that should be taken to preserve or increase our present intellectual capacity must of course be dictated by science and not by political expediency." And Cyril Burt, invoking faked data compiled by the nonexistent Ms. Conway, complained that doubts about the genetic foundation of IQ "appear to be based rather on
the social ideals or the subjective preferences of the critics than on any first-hand examination of the evidence supporting the opposite view" (in Conway, 1959, p. 15).

Since biological determinism possesses such evident utility for groups in power, one might be excused for suspecting that it also arises in a political context, despite the denials quoted above. After all, if the status quo is an extension of nature, then any major change, if possible at all, must inflict an enormous cost—psychological for individuals, or economic for society—in forcing people into unnatural arrangements. In his epochal book, An American Dilemma (1944), Swedish sociologist Gunnar Myrdal discussed the thrust of biological and medical arguments about human nature: "They have been associated in America, as in the rest of the world, with conservative and even reactionary ideologies. Under their long hegemony, there has been a tendency to assume biological causation without question, and to accept social explanations only under the duress of a siege of irresistible evidence. In political questions, this tendency favored a do-nothing policy." Or, as Condorcet said more succinctly a long time ago: they "make nature herself an accomplice in the crime of political inequality."

This book seeks to demonstrate both the scientific weaknesses and political contexts of determinist arguments. Even so, I do not intend to contrast evil determinists who stray from the path of scientific objectivity with enlightened antideterminists who approach data with an open mind and therefore see truth. Rather, I criticize the myth that science itself is an objective enterprise, done properly only when scientists can shuck the constraints of their culture and view the world as it really is.

Among scientists, few conscious ideologues have entered these debates on either side. Scientists needn't become explicit apologists for their class or culture in order to reflect these pervasive aspects of life. My message is not that biological determinists were bad scientists or even that they were always wrong. Rather, I believe that science must be understood as a social phenomenon, a gutsy, human enterprise, not the work of robots programed to collect pure information. I also present this view as an upbeat for science, not as a gloomy epitaph for a noble hope sacrificed on the altar of human limitations.

Science, since people must do it, is a socially embedded activity.
It progresses by hunch, vision, and intuition. Much of its change through time does not record a closer approach to absolute truth, but the alteration of cultural contexts that influence it so strongly. Facts are not pure and unsullied bits of information; culture also influences what we see and how we see it. Theories, moreover, are not inexorable inductions from facts. The most creative theories are often imaginative visions imposed upon facts; the source of imagination is also strongly cultural.

This argument, although still anathema to many practicing scientists, would, I think, be accepted by nearly every historian of science. In advancing it, however, I do not ally myself with an overextension now popular in some historical circles: the purely relativistic claim that scientific change only reflects the modification of social contexts, that truth is a meaningless notion outside cultural assumptions, and that science can therefore provide no enduring answers. As a practicing scientist, I share the credo of my colleagues: I believe that a factual reality exists and that science, though often in an obtuse and erratic manner, can learn about it. Galileo was not shown the instruments of torture in an abstract debate about lunar motion. He had threatened the Church's conventional argument for social and doctrinal stability: the static world order with planets circling about a central earth, priests subordinate to the Pope and serfs to their lord. But the Church soon made its peace with Galileo's cosmology. They had no choice; the earth really does revolve about the sun.

Yet the history of many scientific subjects is virtually free from such constraints of fact for two major reasons. First, some topics are invested with enormous social importance but blessed with very little reliable information. When the ratio of data to social impact is so low, a history of scientific attitudes may be little more than an oblique record of social change. The history of scientific views on race, for example, serves as a mirror of social movements (Provine, 1973). This mirror reflects in good times and bad, in periods of belief in equality and in eras of rampant racism. The death knell of the old eugenics in America was sounded more by Hitler's particular use of once-favored arguments for sterilization and racial purification than by advances in genetic knowledge.

Second, many questions are formulated by scientists in such a restricted way that any legitimate answer can only validate a social
preference. Much of the debate on racial differences in mental worth, for example, proceeded upon the assumption that intelligence is a thing in the head. Until this notion was swept aside, no amount of data could dislodge a strong Western tradition for ordering related items into a progressive chain of being.

Science cannot escape its curious dialectic. Embedded in surrounding culture, it can, nonetheless, be a powerful agent for questioning and even overturning the assumptions that nurture it. Science can provide information to reduce the ratio of data to social importance. Scientists can struggle to identify the cultural assumptions of their trade and to ask how answers might be formulated under different assertions. Scientists can propose creative theories that force startled colleagues to confront unquestioned procedures. But science's potential as an instrument for identifying the cultural constraints upon it cannot be fully realized until scientists give up the twin myths of objectivity and inexorable march toward truth. One must, indeed, locate the beam in one's own eye before interpreting correctly the pervasive motes in everybody else's. The beams can then become facilitators, rather than impediments.

Gunnar Myrdal (1944) captured both sides of this dialectic when he wrote:

A handful of social and biological scientists over the last 50 years have gradually forced informed people to give up some of the more blatant of our biological errors. But there must be still other countless errors of the same sort that no living man can yet detect, because of the fog within which our type of Western culture envelops us. Cultural influences have set up the assumptions about the mind, the body, and the universe with which we begin; pose the questions we ask; influence the facts we seek; determine the interpretation we give these facts; and direct our reaction to these interpretations and conclusions.

Biological determinism is too large a subject for one man and one book—for it touches virtually every aspect of the interaction between biology and society since the dawn of modern science. I have therefore confined myself to one central and manageable argument in the edifice of biological determinism—an argument in two historical chapters, based on two deep fallacies, and carried forth in one common style.
The argument begins with one of the fallacies—reification, or our tendency to convert abstract concepts into entities (from the Latin res, or thing). We recognize the importance of mentality in our lives and wish to characterize it, in part so that we can make the divisions and distinctions among people that our cultural and political systems dictate. We therefore give the word "intelligence" to this wondrously complex and multifaceted set of human capabilities. This shorthand symbol is then reified and intelligence achieves its dubious status as a unitary thing.

Once intelligence becomes an entity, standard procedures of science virtually dictate that a location and physical substrate be sought for it. Since the brain is the seat of mentality, intelligence must reside there.

We now encounter the second fallacy—ranking, or our propensity for ordering complex variation as a gradual ascending scale. Metaphors of progress and gradualism have been among the most pervasive in Western thought—see Lovejoy's classic essay (1936) on the great chain of being or Bury's famous treatment (1920) of the idea of progress. Their social utility should be evident in the following advice from Booker T. Washington (1904, p. 245) to black America:

For my race, one of its dangers is that it may grow impatient and feel that it can get upon its feet by artificial and superficial efforts rather than by the slower but surer process which means one step at a time through all the constructive grades of industrial, mental, moral and social development which all races have had to follow that have become independent and strong.

But ranking requires a criterion for assigning all individuals to their proper status in the single series. And what better criterion than an objective number? Thus, the common style embodying both fallacies of thought has been quantification, or the measurement of intelligence as a single number for each person.* This book, then, is about the abstraction of intelligence as a single entity, its location within the brain, its quantification as one number for

*Peter Medawar (1977, p. 13) has presented other interesting examples of "the illusion embodied in the ambition to attach a single number valuation to complex quantities"—for example, the attempts made by demographers to seek causes for trends in population in a single measure of "reproductive prowess," or the desire of soil scientists to abstract the "quality" of a soil as a single number.
each individual, and the use of these numbers to rank people in a single series of worthiness, invariably to find that oppressed and disadvantaged groups—races, classes, or sexes—are innately inferior and deserve their status. In short, this book is about the Mis-measure of Man.*

Different arguments for ranking have characterized the last two centuries. Craniometry was the leading numerical science of biological determinism during the nineteenth century. I discuss (Chapter 2) the most extensive data compiled before Darwin to rank races by the sizes of their brains—the skull collection of Philadelphia physician Samuel George Morton. Chapter 3 treats the flowering of craniometry as a rigorous and respectable science in the school of Paul Broca in late nineteenth-century Europe. Chapter 4 then underscores the impact of quantified approaches to human anatomy in nineteenth-century biological determinism. It presents two case studies: the theory of recapitulation as evolution's primary criterion for unilinear ranking of human groups, and the attempt to explain criminal behavior as a biological atavism reflected in the apish morphology of murderers and other miscreants.

What craniometry was for the nineteenth century, intelligence testing has become for the twentieth, when it assumes that intelligence (or at least a dominant part of it) is a single, innate, heritable, and measurable thing. I discuss the two components of this invalid approach to mental testing in Chapter 5 (the hereditarian version of the IQ scale as an American product) and Chapter 6 (the argument for reifying intelligence as a single entity by the mathematical technique of factor analysis). Factor analysis is a difficult mathematical subject almost invariably omitted from documents written for nonprofessionals. Yet I believe that it can be made accessible and explained in a pictorial and nonnumerical way. The material of Chapter 6 is still not "easy reading," but I could not leave it out—for the history of intelligence testing cannot be understood without grasping the factor analytic argument and understanding its deep

* Following strictures of the argument outlined above, I do not treat all theories of craniometrics (I omit phrenology, for example, because it did not reify intelligence as a single entity but sought multiple organs with the brain). Likewise, I exclude many important and often quantified styles of determinism that did not seek to measure intelligence as a property of the brain—for example, most of eugenics.
conceptual fallacy. The great IQ debate makes no sense without this conventionally missing subject.

I have tried to treat these subjects in an unconventional way by using a method that falls outside the traditional purview of either a scientist or historian operating alone. Historians rarely treat the quantitative details in sets of primary data. They write, as I cannot adequately, about social context, biography, or general intellectual history. Scientists are used to analyzing the data of their peers, but few are sufficiently interested in history to apply the method to their predecessors. Thus, many scholars have written about Broca's impact, but no one has recalculated his sums.

I have focused upon the reanalysis of classical data sets in craniometry and intelligence testing for two reasons beyond my incompetence to proceed in any other fruitful way and my desire to do something a bit different. I believe, first of all, that Satan also dwells with God in the details. If the cultural influences upon science can be detected in the humdrum minutiae of a supposedly objective, almost automatic quantification, then the status of biological determinism as a social prejudice reflected by scientists in their own particular medium seems secure.

The second reason for analyzing quantitative data arises from the special status that numbers enjoy. The mystique of science proclaims that numbers are the ultimate test of objectivity. Surely we can weigh a brain or score an intelligence test without recording our social preferences. If ranks are displayed in hard numbers obtained by rigorous and standardized procedures, then they must reflect reality, even if they confirm what we wanted to believe from the start. Antideterminists have understood the particular prestige of numbers and the special difficulty that their refutation entails. Léonce Manouvrier (1903, p. 406), the nondeterminist black sheep of Broca's fold, and a fine statistician himself, wrote of Broca's data on the small brains of women:

Women displayed their talents and their diplomas. They also invoked philosophical authorities. But they were opposed by numbers unknown to Condorcet or to John Stuart Mill. These numbers fell upon poor women like a sledge hammer, and they were accompanied by commentaries and sarcasms more ferocious than the most misogynist imprecations of certain church fathers. The theologians had asked if women had a soul. Several centuries later, some scientists were ready to refuse them a human intelligence.
If—as I believe I have shown—quantitative data are as subject to cultural constraint as any other aspect of science, then they have no special claim upon final truth.

In reanalyzing these classical data sets, I have continually located a priori prejudice, leading scientists to invalid conclusions from adequate data, or distorting the gathering of data itself. In a few cases—Cyril Burt's documented fabrication of data on IQ of identical twins, and my discovery that Goddard altered photographs to suggest mental retardation in the Kallikaks—we can specify conscious fraud as the cause of inserted social prejudice. But fraud is not historically interesting except as gossip because the perpetrators know what they are doing and the unconscious biases that record subtle and inescapable constraints of culture are not illustrated. In most cases discussed in this book, we can be fairly certain that biases—though often expressed as egregiously as in cases of conscious fraud—were unknowingly influential and that scientists believed they were pursuing unsullied truth.

Since many of the cases presented here are so patent, even risible, by today's standards, I wish to emphasize that I have not taken cheap shots at marginal figures (with the possible exceptions of Mr. Bean in Chapter 3, whom I use as a curtain-raiser to illustrate a general point, and Mr. Cartwright in Chapter 2, whose statements are too precious to exclude). Cheap shots come in thick catalogues—from a eugenicist named W. D. McKim, Ph.D. (1900), who thought that all nocturnal housebreakers should be dispatched with carbonic acid gas, to a certain English professor who toured the United States during the late nineteenth century, offering the unsolicited advice that we might solve our racial problems if every Irishman killed a Negro and got hanged for it.* Cheap shots are also gossip, not history; they are ephemeral and uninfluential, however amusing. I have focused upon the leading and most influential scientists of their times and have analyzed their major works.

I have enjoyed playing detective in most of the case studies that make up this book: finding passages expurgated without comment

* Also too precious to exclude is my favorite modern invocation of biological determinism as an excuse for dubious behavior. Bill Lee, baseball's self-styled philosopher, justifying the beanball (New York Times, 24 July 1976): "I read a book in college called 'Territorial Imperative.' A fellow always has to protect his master's home much stronger than anything down the street; My territory is down and away from the hitters. If they're going out there and getting the ball, I'll have to come in close."
in published letters, recalculating sums to locate errors that support expectations, discovering how adequate data can be filtered through prejudices to predetermined results, even giving the Army Mental Test for illiterates to my own students with interesting results. But I trust that whatever zeal any investigator must invest in details has not obscured the general message: that determinist arguments for ranking people according to a single scale of intelligence, no matter now numerically sophisticated, have recorded little more than social prejudice—and that we learn something hopeful about the nature of science in pursuing such an analysis.

If this subject were merely a scholar's abstract concern, I could approach it in more measured tone. But few biological subjects have had a more direct influence upon millions of lives. Biological determinism is, in its essence, a theory of limits. It takes the current status of groups as a measure of where they should and must be (even while it allows some rare individuals to rise as a consequence of their fortunate biology).

I have said little about the current resurgence of biological determinism because its individual claims are usually so ephemeral that their refutation belongs in a magazine article or newspaper story. Who even remembers the hot topics of ten years ago: Shockley's proposals for reimbursing voluntarily sterilized individuals according to their number of IQ points below 100, the great XYY debate, or the attempt to explain urban riots by diseased neurology of rioters. I thought that it would be more valuable and interesting to examine the original sources of the arguments that still surround us. These, at least, display great and enlightening errors. But I was inspired to write this book because biological determinism is rising in popularity again, as it always does in times of political retrenchment. The cocktail party circuit has been buzzing with its usual profundity about innate aggression, sex roles, and the naked ape. Millions of people are now suspecting that their social prejudices are scientific facts after all. Yet these latent prejudices themselves, not fresh data, are the primary source of renewed attention.

We pass through this world but once. Few tragedies can be more extensive than the stunting of life, few injustices deeper than the denial of an opportunity to strive or even to hope, by a limit
imposed from without, but falsely identified as lying within. Cicero tells the story of Zopyrus, who claimed that Socrates had inborn vices evident in his physiognomy. His disciples rejected the claim, but Socrates defended Zopyrus and stated that he did indeed possess the vices, but had cancelled their effects through the exercise of reason. We inhabit a world of human differences and predilections, but the extrapolation of these facts to theories of rigid limits is ideology.

George Eliot well appreciated the special tragedy that biological labeling imposed upon members of disadvantaged groups. She expressed it for people like herself—women of extraordinary talent. I would apply it more widely—not only to those whose dreams are flouted but also to those who never realize that they may dream. But I cannot match her prose (from the prelude to Middle-march):

Some have felt that these blundering lives are due to the inconvenient indefiniteness with which the Supreme Power has fashioned the natures of women: if there were one level of feminine incompetence as strict as the ability to count three and no more, the social lot of women might be treated with scientific certitude. The limits of variation are really much wider than anyone would imagine from the sameness of women's coiffure and the favorite love stories in prose and verse. Here and there a cygnet is reared uneasily among the ducklings in the brown pond, and never finds the living stream in fellowship with its own oary-footed kind. Here and there is born a Saint Theresa, foundress of nothing, whose loving heartbeats and sobs after an unattained goodness tremble off and are dispersed among hindrances instead of centering in some long-recognizable deed.
American Polygeny and Craniometry before Darwin

Blacks and Indians as Separate, Inferior Species

Order is Heaven's first law; and, this confessed, Some are, and must be, greater than the rest.

—Alexander Pope, Essay on Man (1733)

Appeals to reason or to the nature of the universe have been used throughout history to enshrine existing hierarchies as proper and inevitable. The hierarchies rarely endure for more than a few generations, but the arguments, refurbished for the next round of social institutions, cycle endlessly.

The catalogue of justifications based on nature traverses a range of possibilities: elaborate analogies between rulers and a hierarchy of subordinate classes with the central earth of Ptolemaic astronomy and a ranked order of heavenly bodies circling around it; or appeals to the universal order of a "great chain of being," ranging in a single series from amoebae to God, and including near its apex a graded series of human races and classes. To quote Alexander Pope again:

Without this just gradation, could they be Subjected, these to those, or all to thee?

From Nature's chain whatever link you strike, Tenth, or ten thousandth, breaks the chain alike.
The humblest, as well as the greatest, play their part in preserving the continuity of universal order; all occupy their appointed roles.

This book treats an argument that, to many people's surprise, seems to be a latecomer: biological determinism, the notion that people at the bottom are constructed of intrinsically inferior material (poor brains, bad genes, or whatever). Plato, as we have seen, cautiously floated this proposal in the *Republic*, but finally branded it as a lie.

Racial prejudice may be as old as recorded human history, but its biological justification imposed the additional burden of intrinsic inferiority upon despised groups, and precluded redemption by conversion or assimilation. The "scientific" argument has formed a primary line of attack for more than a century. In discussing the first biological theory supported by extensive quantitative data—early nineteenth-century craniometry—I must begin by posing a question of causality: did the introduction of inductive science add legitimate data to change or strengthen a nascent argument for racial ranking? Or did a priori commitment to ranking fashion the "scientific" questions asked and even the data gathered to support a foreordained conclusion?

A shared context of culture

In assessing the impact of science upon eighteenth- and nineteenth-century views of race, we must first recognize the cultural milieu of a society whose leaders and intellectuals did not doubt the propriety of racial ranking—with Indians below whites, and blacks below everybody else (Fig. 2.1). Under this universal umbrella, arguments did not contrast equality with inequality. One group—we might call them "hard-liners"—held that blacks were inferior and that their biological status justified enslavement and colonization. Another group—the "soft-liners," if you will—agreed that blacks were inferior, but held that a people's right to freedom did not depend upon their level of intelligence. "Whatever be their degree of talents," wrote Thomas Jefferson, "it is no measure of their rights."

Soft-liners held various attitudes about the nature of black disadvantage. Some argued that proper education and standard of life could "raise" blacks to a white level; others advocated perma-
black ineptitude. They also disagreed about the biological or cultural roots of black inferiority. Yet, throughout the egalitarian tradition of the European Enlightenment and the American revolution, I cannot identify any popular position remotely like the "cultural relativism" that prevails (at least by lip-service) in liberal circles today. The nearest approach is a common argument that black inferiority is purely cultural and that it can be completely eradicated by education to a Caucasian standard.

All American culture heroes embraced racial attitudes that would embarrass public-school mythmakers. Benjamin Franklin, while viewing the inferiority of blacks as purely cultural and completely remediable, nonetheless expressed his hope that America would become a domain of whites, undiluted by less pleasing colors.

I could wish their numbers were increased. And while we are, as I may call it, scouring our planet, by clearing America of woods, and so making this side of our globe reflect a brighter light to the eyes of inhabitants in Mars or Venus, why should we . . . darken its people? Why increase the Sons of Africa, by planting them in America, where we have so fair an opportunity, by excluding all blacks and tawneys, of increasing the lovely white and red?* (Observations Concerning the Increase of Mankind, 1751).

Others among our heroes argued for biological inferiority. Thomas Jefferson wrote, albeit tentatively: "I advance it, therefore, as a suspicion only, that the blacks, whether originally a distinct race, or made distinct by time and circumstance, are inferior to the whites in the endowment both of body and mind" (in Gossett, 1965, p. 44). Lincoln's pleasure at the performance of black soldiers in the Union army greatly increased his respect for freedmen and former slaves. But freedom does not imply biological equality, and Lincoln never

* I have been struck by the frequency of such aesthetic claims as a basis of racial preference. Although J. F. Blumenbach, the founder of anthropology, had stated that toads must view other toads as paragons of beauty, many astute intellectuals never doubted the equation of whiteness with perfection. Franklin at least had the decency to include the original inhabitants in his future America; but, a century later, Oliver Wendell Holmes rejoiced in the elimination of Indians on aesthetic grounds: "... and so the red-crayon sketch is rubbed out, and the canvas is ready for a picture of manhood a little more like God's own image" (in Gossett, 1965, p. 243).
The unilinear scale of human races and lower relatives according to Nott and Gliddon, 1868. The chimpanzee skull is falsely inflated, and the Negro jaw extended, to give the impression that blacks might even rank lower than the apes.
abandoned a basic attitude, so strongly expressed in the Douglas debates (1858):

There is a physical difference between the white and black races which I believe will forever forbid the two races living together on terms of social and political equality. And inasmuch as they cannot so live, while they do remain together there must be the position of superior and inferior, and I as much as any other man am in favor of having the superior position assigned to the white race.

Lest we choose to regard this statement as mere campaign rhetoric, I cite this private jotting, scribbled on a fragment of paper in 1859:

Negro equality! Fudge! How long, in the Government of a God great enough to make and rule the universe, shall there continue knaves to vend, and fools to quip, so low a piece of demagogism as this (in Sinkler, 1972, P. 47).

I do not cite these statements in order to release skeletons from ancient closets. Rather, I quote the men who have justly earned our highest respect in order to show that white leaders of Western nations did not question the propriety of racial ranking during the eighteenth and nineteenth centuries. In this context, the pervasive assent given by scientists to conventional rankings arose from shared social belief, not from objective data gathered to test an open question. Yet, in a curious case of reversed causality, these pronouncements were read as independent support for the political context.

All leading scientists followed social conventions (Figs. 2.2 and 2.3). In the first formal definition of human races in modern taxonomic terms, Linnaeus mixed character with anatomy (Systema naturae, 1758). Homo sapiens afer (the African black), he proclaimed, is "ruled by caprice"; Homo sapiens europaeus is "ruled by customs." Of African women, he wrote: mammae lactantes prolixae—breasts lactate profusely. The men, he added, are indolent and anoint themselves with grease.

The three greatest naturalists of the nineteenth century did not hold blacks in high esteem. Georges Cuvier, widely hailed in France as the Aristotle of his age, and a founder of geology, paleontology, and modern comparative anatomy, referred to native Africans as
An unsubtle attempt to suggest strong affinity between blacks and gorillas. From Nott and Gliddon, *Types of Mankind*, 1854. Nott and Gliddon comment on this figure: "The palpable analogies and dissimilitudes between an inferior type of mankind and a superior type of monkey require no comment."
Two more comparisons of blacks and apes from Nott and Gliddon, 1854. This book was not a fringe document, but the leading American text on human racial differences.
"the most degraded of human races, whose form approaches that of the beast and whose intelligence is nowhere great enough to arrive at regular government" (Cuvier, 1812, p. 105). Charles Lyell, the conventional founder of modern geology, wrote:

The brain of the Bushman . . . leads towards the brain of the Simiadae [monkeys]. This implies a connexion between want of intelligence and structural assimilation. Each race of Man has its place, like the inferior animals (in Wilson, 1970, p. 347).

Charles Darwin, the kindly liberal and passionate abolitionist,* wrote about a future time when the gap between human and ape will increase by the anticipated extinction of such intermediates as chimpanzees and Hottentots.

The break will then be rendered wider, for it will intervene between man in a more civilized state, as we may hope, than the Caucasian, and some ape as low as a babon, instead of as at preent between the negro or Australian and the gorilla (Descent of Man, 1871, p. 201).

Even more instructive are the beliefs of those few scientists often cited in retrospect as cultural relativists and defenders of equality. J. F. Blumenbach attributed racial differences to the influences of climate. He protested rankings based on presumed mental ability and assembled a collection of books written by blacks. Nonetheless, he did not doubt that white people set a standard, from which all other races must be viewed as departures (see essay 4 at end of book for more information about Blumenbach):

The Caucasian must, on every physiological principle, be considered as the primary or intermediate of these five principal Races. The two extremes into which it has deviated, are on the one hand the Mongolian, on the other the Ethiopian [African blacks] (1825, p. 37).

* Darwin wrote, for example, in the Voyage of the Beagle: "Near Rio de Janeiro I lived opposite to an old lady, who kept screws to crush the fingers of her female slaves. I have stayed in a house where a young household mulatto, daily and hourly, was reviled, beaten, and persecuted enough to break the spirit of the lowest animal. I have seen a little boy, six or seven years old, struck thrice with a horse-whip (before I could interfere) on his naked head, for having handed me a glass of water not quite clean. . . . And these deeds are done and palliated by men, who profess to love their neighbors as themselves, who believe in God, and pray that his Will be done on earth! It makes one's blood boil, yet heart tremble, to think that we Englishmen and our American descendants, with their boastful cry of liberty, have been and are so guilty."
Alexander von Humboldt, world traveler, statesman, and greatest popularizer of nineteenth-century science, would be the hero of all modern egalitarians who seek antecedents in history. He, more than any other scientist of his time, argued forcefully and at length against ranking on mental or aesthetic grounds. He also drew political implications from his convictions, and campaigned against all forms of slavery and subjugation as impediments to the natural striving of all people to attain mental excellence. He wrote in the most famous passage of his five-volume *Cosmos*:

> Whilst we maintain the unity of the human species, we at the same time repel the depressing assumption of superior and inferior races of men. There are nations more susceptible of cultivation than others—but none in themselves nobler than others. All are in like degree designed for freedom (1849, p. 368).

Yet even Humboldt invoked innate mental difference to resolve some dilemmas of human history. Why, he asks in the second volume of *Cosmos*, did the Arabs explode in culture and science soon after the rise of Islam, while Scythian tribes of southeastern Europe stuck to their ancient ways; for both peoples were nomadic and shared a common climate and environment? Humboldt did find some cultural differences—greater contact of Arabs with surrounding urbanized cultures, for example. But, in the end, he labeled Arabs as a "more highly gifted race" with greater "natural adaptability for mental cultivation" (1849, p. 578).

Alfred Russel Wallace, codiscoverer of natural selection with Darwin, is justly hailed as an antiracist. Indeed, he did affirm near equality in the innate mental capacity of all peoples. Yet, curiously, this very belief led him to abandon natural selection and return to divine creation as an explanation for the human mind—much to Darwin's disgust. Natural selection, Wallace argued, can only build structures immediately useful to animals possessing them. The brain of savages is, potentially, as good as ours. But they do not use it fully, as the rudeness and inferiority of their culture indicates. Since modern savages are much like human ancestors, our brain must have developed its higher capacities long before we put them to any use.
Preevolutionary styles of scientific racism: monogenism and polygenism

Preevolutionary justifications for racial ranking proceeded in two modes. The "softer" argument—again using inappropriate definitions from modern perspectives—upheld the scriptural unity of all peoples in the single creation of Adam and Eve. This view was called monogenism—origin from a single source. Human races are a product of degeneration from Eden's perfection. Races have declined to different degrees, whites least and blacks most. Climate proved most popular as a primary cause for racial distinction. Degenerationists differed on the remediability of modern deficits. Some held that the differences, though developed gradually under the influence of climate, were now fixed and could never be reversed. Others argued that the fact of gradual development implied reversibility in appropriate environments. Samuel Stanhope Smith, president of the College of New Jersey (later Princeton), hoped that American blacks, in a climate more suited to Caucasian temperaments, would soon turn white. But other degenerationists felt that improvement in benevolent climes could not proceed rapidly enough to have any impact upon human history.

The "harder" argument abandoned scripture as allegorical and held that human races were separate biological species, the descendants of different Adams. As another form of life, blacks need not participate in the "equality of man." Proponents of this argument were called "polygenists."

Degenerationism was probably the more popular argument, if only because scripture was not to be discarded lightly. Moreover, the interfertility of all human races seemed to guarantee their union as a single species under Buffon's criterion that members of a species be able to breed with each other, but not with representatives of any other group. Buffon himself, the greatest naturalist of eighteenth-century France, was a strong abolitionist and exponent of improvement for inferior races in appropriate environments. But he never doubted the inherent validity of a white standard:

The most temperate climate lies between the 40th and 50th degree of latitude, and it produces the most handsome and beautiful men. It is from this climate that the ideas of the genuine color of mankind, and of the various degrees of beauty ought to be derived.
Some degenerationists cited their commitments in the name of human brotherhood. Etienne Serres, a famous French medical anatomist, wrote in 1860 that the perfectability of lower races distinguished humans as the only species subject to improvement by its own efforts. He lambasted polygeny as a "savage theory" that "seems to lend scientific support to the enslavement of races less advanced in civilization than the Caucasian":

Their conclusion is that the Negro is no more a white man than a donkey is a horse or a zebra—a theory put into practice in the United States of America, to the shame of civilization (1860, pp. 407-408).

Nonetheless, Serres worked to document the signs of inferiority among lower races. As an anatomist, he sought evidence within his specialty and confessed to some difficulty in establishing both criteria and data. He settled on the theory of recapitulation—the idea that higher creatures repeat the adult stages of lower animals during their own growth (Chapter 4). Adult blacks, he argued, should be like white children, adult Mongolians like white adolescents. He searched diligently but devised nothing much better than the distance between navel and penis—"that ineffaceable sign of embryonic life in man." This distance is small relative to body height in babies of all races. The navel migrates upward during growth, but attains greater heights in whites than in yellows, and never gets very far at all in blacks. Blacks remain perpetually like white children and announce their inferiority thereby.

Polygeny, though less popular, had its illustrious supporters as well. David Hume did not spend his life absorbed in pure thought. He held a number of political posts, including the stewardship of the English colonial office in 1766. Hume advocated both the separate creation and innate inferiority of nonwhite races:

I am apt to suspect the negroes and in general all the other species of men (for there are four or five different kinds) to be naturally inferior to the whites. There never was a civilized nation of any other complexion than white, nor even any individual eminent either in action or speculation. * No ingenious manufacturers amongst them, no arts, no sciences. . . . Such a

*This "inductive" argument from human cultures is far from dead as a defense of racism. In his Study of History (1934 edition), Arnold Toynbee wrote: "When we classify mankind by color, the only one of the primary races, given by this classification, which has not made a creative contribution to any of our twenty-one civilizations is the Black Race" (in Newby, 1969, p. 217).
uniform and constant difference could not happen in so many countries and ages, if nature had not made an original distinction betwixt these breeds of men. Not to mention our colonies, there are negro slaves dispersed all over Europe, of which none ever discovered any symptoms of ingenuity, tho' low people without education will start up amongst us, and distinguish themselves in every profession. In Jamaica indeed they talk of one negro as a man of parts and learning; but 'tis likely he is admired for very slender accomplishments like a parrot who speaks a few words plainly (in Popkin, 1974, p. 143; see Popkin's excellent article for a long analysis of Hume as a polygenist).

Charles White, an English surgeon, wrote the strongest defense of polygeny in 1799—*Account of the Regular Gradation in Man*. White abandoned Buffon's criterion of interfertility in defining species, pointing to successful hybrids between such conventionally separate groups as foxes, wolves, and jackals.* He railed against the idea that climate might produce racial differences, arguing that such ideas might lead, by extension, to the "degrading notion" of evolution between species. He disclaimed any political motivation and announced an untainted purpose: "to investigate a proposition in natural history." He explicitly rejected any extension of polygeny to "countenance the pernicious practice of enslaving mankind." White's criteria of ranking tended toward the aesthetic, and his argument included the following gem, often quoted. Where else but among Caucasians, he argued, can we find

. . . that nobly arched head, containing such a quantity of brain. . . .

Where that variety of features, and fulness of expression; those long, flow-

* Modern evolutionary theory does invoke a barrier to interfertility as the primary criterion for status as a species. In the standard definition: "Species are actually or potentially interbreeding populations sharing a common gene pool, and reproductively isolated from all other groups." Reproductive isolation, however, does not mean that individual hybrids never arise, but only that the two species maintain their integrity in natural contact. Hybrids may be sterile (mules). Fertile hybrids may even arise quite frequently, but if natural selection acts preferentially against them (as a result of inferiority in structural design, rejection as mates by full members of either species, etc.) they will not increase in frequency and the two species will not amalgamate. Often fertile hybrids can be produced in the laboratory by imposing situations not encountered in nature (forced breeding between species that normally mature at different times of the year, for example). Such examples do not refute a status as separate species because the two groups do not amalgamate in the wild (maturation at different times of the year may be an efficient means of reproductive isolation).
ing, graceful ring-lets; that majestic beard, those rosy cheeks and coral lips? Where that . . . noble gait? In what other quarter of the globe shall we find the blush that overspreads the soft features of the beautiful women of Europe, that emblem of modesty, of delicate feelings. . . . where, except on the bosom of the European woman, two such plump and snowy white hemispheres, tipt with vermillion (in Stanton, 1960, p. 17).

Louis Agassiz—America’s theorist of polygeny

Ralph Waldo Emerson argued that intellectual emancipation should follow political independence. American scholars should abandon their subservience to European styles and theories. We have, Emerson wrote, "listened too long to the courtly muses of Europe." "We will walk on our own feet; we will work with our own hands; we will speak our own minds" (in Stanton, 1960, p. 84).

In the early to mid-nineteenth century, the budding profession of American science organized itself to follow Emerson’s advice. A collection of eclectic amateurs, bowing before the prestige of European theorists, became a group of professionals with indigenous ideas and an internal dynamic that did not require constant fueling from Europe. The doctrine of polygeny acted as an important agent in this transformation; for it was one of the first theories of largely American origin that won the attention and respect of European scientists—so much so that Europeans referred to polygeny as the "American school" of anthropology. Polygeny had European antecedents, as we have seen, but Americans developed the data cited in its support and based a large body of research on its tenets. I shall concentrate on the two most famous advocates of polygeny—Agassiz the theorist and Morton the data analyst; and I shall try to uncover both the hidden motives and the finagling of data so central to their support.* For starters, it is obviously not accidental that a nation still practicing slavery and expelling its aboriginal inhabitants from their homelands should have provided a base for theories that blacks and Indians are separate species, inferior to whites.

Louis Agassiz (1807–1873), the great Swiss naturalist, won his reputation in Europe, primarily as Cuvier’s disciple and a student of

*An excellent history of the entire "American school" can be found in W. Stanton's *The Leopard's Spots.*
fossil fishes. His immigration to America in the 1840s immediately elevated the status of American natural history. For the first time, a major European theorist had found enough of value in the United States to come and stay. Agassiz became a professor at Harvard, where he founded and directed the Museum of Comparative Zoology until his death in 1873 (I occupy an office in the original wing of his building). Agassiz was a charmer; he was lionized in social and intellectual circles from Boston to Charlestown. He spoke for science with boundless enthusiasm and raised money with equal zeal to support his buildings, collections, and publications. No man did more to establish and enhance the prestige of American biology during the nineteenth century.

Agassiz also became the leading spokesman for polygeny in America. He did not bring this theory with him from Europe. He converted to the doctrine of human races as separate species after his first experiences with American blacks.

Agassiz did not embrace polygeny as a conscious political doctrine. He never doubted the propriety of racial ranking, but he did count himself among the opponents of slavery. His adherence to polygeny flowed easily from procedures of biological research that he had developed in other and earlier contexts. He was, first of all, a devout creationist who lived long enough to become the only major scientific opponent of evolution. But nearly all scientists were creationists before 1859, and most did not become polygenists (racial differentiation within a single species posed no threat to the doctrine of special creation—just consider breeds of dogs and cattle). Agassiz's predisposition to polygeny arose primarily from two aspects of his personal theories and methods:

1. In studying the geographic distribution of animals and plants, Agassiz developed a theory about "centers of creation." He believed that species were crated in their proper places and did not generally migrate far from these centers. Other biogeographers invoked creation in a single spot with extensive migration thereafter. Thus, when Agassiz studied what we would now regard as a single widespread species, divided into fairly distinct geographical races, he tended to name several separate species, each created at its center of origin. *Homo sapiens* is a primary example of a cosmopolitan, variable species.
2. Agassiz was an extreme splitter in his taxonomic practice. Taxonomists tend to fall into two camps—"lumpers," who concentrate on similarities and amalgamate groups with small differences into single species, and "splitters," who focus on minute distinctions and establish species on the smallest peculiarities of design. Agassiz was a splitter among splitters. He once named three genera of fossil fishes from isolated teeth that a later paleontologist found in the variable dentition of a single individual. He named invalid species of freshwater fishes by the hundreds, basing them upon peculiar individuals within single, variable species. An extreme splitter who viewed organisms as created over their entire range might well be tempted to regard human races as separate creations. Nonetheless, before coming to America, Agassiz advocated the doctrine of human unity—even though he viewed our variation as exceptional. He wrote in 1845:

Here is revealed anew the superiority of the human genre and its greater independence in nature. Whereas the animals are distinct species in the different zoological provinces to which they appertain, man, despite the diversity of his races, constitutes one and the same species over all the surface of the globe (in Stanton, 1960, p. 101).

Agassiz may have been predisposed to polygeny by biological belief, but I doubt that this pious man would have abandoned the Biblical orthodoxy of a single Adam if he had not been confronted both by the sight of American blacks and the urgings of his polygenist colleagues. Agassiz never generated any data for polygeny. His conversion followed an immediate visceral judgment and some persistent persuasion by friends. His later support rested on nothing deeper in the realm of biological knowledge.

Agassiz had never seen a black person in Europe. When he first met blacks as servants at his Philadelphia hotel in 1846, he experienced a pronounced visceral revulsion. This jarring experience, coupled with his sexual fears about miscegenation, apparently established his conviction that blacks are a separate species. In a remarkably candid passage, he wrote to his mother from America:

It was in Philadelphia that I first found myself in prolonged contact with negroes; all the domestics in my hotel were men of color. I can scarcely express to you the painful impression that I received, especially since the
feeling that they inspired in me is contrary to all our ideas about the confraternity of the human type \textit{[genre]} and the unique origin of our species. But truth before all. Nevertheless, I experienced pity at the sight of this degraded and degenerate race, and their lot inspired compassion in me in thinking that they are really men. Nonetheless, it is impossible for me to reprocess the feeling that they are not of the same blood as us. In seeing their black faces with their thick lips and grimacing teeth, the wool on their head, their bent knees, their elongated hands, their large curved nails, and especially the livid color of the palm of their hands, I could not take my eyes off their face in order to tell them to stay far away. And when they advanced that hideous hand towards my plate in order to serve me, I wished I were able to depart in order to eat a piece of bread elsewhere, rather than dine with such service. What unhappiness for the white race—to have tied their existence so closely with that of negroes in certain countries! God preserve us from such a contact! (Agassiz to his mother, December 1846.) (The \textit{standard Life and Letters}, compiled by Agassiz's wife, omits these lines in presenting an expurgated version of this famous letter. Other historians have paraphrased them or passed them by. I recovered this passage from the original manuscript in Harvard's Houghton Library and have translated it, verbatim, for the first time so far as I know.)

Agassiz published his major statement on human races in the \textit{Christian Examiner} for 1850. He begins by dismissing as demagogues both the divines who would outlaw him as an infidel (for preaching the doctrine of multiple Adams) and the abolitionists who would brand him as a defender of slavery:

It has been charged upon the views here advanced that they tend to the support of slavery. . . . Is that a fair objection to a philosophical investigation? Here we have to do only with the question of the origin of men; let the politicians, let those who feel themselves called upon to regulate human society, see what they can do with the results. . . . We disclaim, however, all connection with any question involving political matters. It is simply with reference to the possibility of appreciating the differences existing between different men, and of eventually determining whether they have originated all over the world, and under what circumstances, that we have here tried to trace some facts respecting the human races (1850, p. 113).

Agassiz then presents his argument: The theory of polygeny does not constitute an attack upon the scriptural doctrine of human unity. Men are bound by a common structure and sympathy, even
though races were created as separate species. The Bible does not speak about parts of the world unknown to the ancients; the tale of Adam refers only to the origin of Caucasians. Negroes and Caucasians are as distinct in the mummified remains of Egypt as they are today. If human races were the product of climatic influence, then the passage of three thousand years would have engendered substantial changes (Agassiz had no inkling of human antiquity; he believed that three thousand years included a major chunk of our entire history). Modern races occupy definite, nonoverlapping, geographic areas—even though some ranges have been blurred or obliterated by migration. As physically distinct, temporally invariant groups with discrete geographical ranges, human races met all Agassiz's biological criteria for separate species.

These races must have originated... in the same numerical proportions, and over the same area, in which they now occur... They cannot have originated in single individuals, but must have been created in that numeric harmony which is characteristic of each species; men must have originated in nations, as the bees have originated in swarms (pp. 128–129).

Then, approaching the end of his article, Agassiz abruptly shifts his ground and announces a moral imperative—even though he had explicitly justified his inquiry by casting it as an objective investigation of natural history.

There are upon earth different races of men, inhabiting different parts of its surface, which have different physical characters; and this fact... presses upon us the obligation to settle the relative rank among these races, the relative value of the characters peculiar to each, in a scientific point of view. As philosophers it is our duty to look it in the face (p. 142).

As direct evidence for differential, innate value Agassiz ventures no further than the standard set of Caucasian cultural stereotypes:

The indomitable, courageous, proud Indian—in how very different a light he stands by the side of the submissive, obsequious, imitative negro, or by the side of the tricky, cunning, and cowardly Mongolian! Are not these facts indications that the different races do not rank upon one level in nature (p. 144).

Blacks, Agassiz declares, must occupy the bottom rung of any objective ladder:
It seems to us to be mock-philanthropy and mock-philosophy to assume that all races have the same abilities, enjoy the same powers, and show the same natural dispositions, and that in consequence of this equality they are entitled to the same position in human society. History speaks here for itself. . . . This compact continent of Africa exhibits a population which has been in constant intercourse with the white race, which has enjoyed the benefit of the example of the Egyptian civilization, of the Phoenician civilization, of the Roman civilization, of the Arab civilization . . . and nevertheless there has never been a regulated society of black men developed on that continent. Does not this indicate in this race a peculiar apathy, a peculiar indifference to the advantages afforded by civilized society? (pp. 143-144).

If Agassiz had not made his political message clear, he ends by advocating specific social policy. Education, he argues, must be tailored to innate ability; train blacks in hand work, whites in mind work:

What would be the best education to be imparted to the different races in consequence of their primitive difference, . . . We entertain not the slightest doubt that human affairs with reference to the colored races would be far more judiciously conducted if, in our intercourse with them, we were guided by a full consciousness of the real difference existing between us and them, and a desire to foster those dispositions that are eminently marked in them, rather than by treating them on terms of equality (p. 145).

Since those "eminently marked" dispositions are submissiveness, obsequiousness, and imitation, we can well imagine what Agassiz had in mind. I have treated this paper in detail because it is so typical of its genre—advocacy of social policy couched as a dispassionate inquiry into scientific fact. The strategy is by no means moribund today.

In a later correspondence, pursued in the midst of the Civil War, Agassiz expressed his political views more forcefully and at greater length. (These letters are also expurgated without indication in the standard version published by Agassiz's wife. Again, I have restored passages from the original letters in Harvard's Houghton Library.) S. G. Howe, a member of Lincoln's Inquiry Commission, asked Agassiz's opinion about the role of blacks in a reunited nation. (Howe, known best for his work in prison reform and education of the blind, was the husband of Julia Ward Howe,
author of the "Battle Hymn of the Republic"). In four long and impassioned letters, Agassiz pleaded his case. The persistence of a large and permanent black population in America must be acknowledged as a grim reality. Indians, driven by their commendable pride, may perish in battle, but "the negro exhibits by nature a pliability, a readiness to accommodate himself to circumstances, a proneness to imitate those among whom he lives" (9 August 1863).

Although legal equality must be granted to all, blacks should be denied social equality, lest the white race be compromised and diluted: "Social equality I deem at all time impracticable. It is a natural impossibility flowing from the very character of the negro race" (10 August 1863); for blacks are "indolent, playful, sensuous, imitative, subservient, good natured, versatile, unsteady in their purpose, devoted, affectionate, in everything unlike other races, they may but be compared to children, grown in the stature of adults while retaining a childlike mind. . . . Therefore I hold that they are incapable of living on a footing of social equality with the whites, in one and the same community, without being an element of social disorder" (10 August 1863). Blacks must be regulated and limited, lest an injudicious award of social privilege sow later discord:

No man has a right to what he is unfit to use. . . . Let us beware of granting too much to the negro race in the beginning, lest it become necessary to recall violently some of the privileges which they may use to our detriment and their own injury (10 August 1863).

For Agassiz, nothing inspired more fear than the prospect of amalgamation by intermarriage. White strength depends upon separation: "The production of halfbreeds is as much a sin against nature, as incest in a civilized community is a sin against purity of character. . . . Far from presenting to me a natural solution of our difficulties, the idea of amalgamation is most repugnant to my feelings, I hold it to be a perversion of every natural sentiment. . . . No efforts should be spared to check that which is abhorrent to our better nature, and to the progress of a higher civilization and a purer morality" (9 August 1863).

Agassiz now realizes that he has argued himself into a corner. If interbreeding among races (separate species to Agassiz) is unnatural and repugnant, why are "halfbreeds" so common in America?
Agassiz attributes this lamentable fact to the sexual receptiveness of housemaids and the naivete of young Southern gentlemen. The servants, it seems, are halfbreeds already (we are not told how their parents overcame a natural repugnance for one another); young men respond aesthetically to the white half, while a degree of black heritage loosens the natural inhibitions of a higher race. Once acclimated, the poor young men are hooked, and they acquire a taste for pure blacks:

As soon as the sexual desires are awakening in the young men of the South, they find it easy to gratify themselves by the readiness with which they are met by colored [halfbreed] house servants. . . . This blunts his better instincts in that direction and leads him gradually to seek more spicy partners, as I have heard the full blacks called by fast young men (9 August 1863).

Finally, Agassiz combines vivid image and metaphor to warn against the ultimate danger of a mixed and enfeebled people:

Conceive for a moment the difference it would make in future ages, for the prospect of republican institutions and our civilization generally, if instead of the manly population descended from cognate nations the United States should hereafter be inhabited by the effeminate progeny of mixed races, half Indian, half Negro, sprinkled with white blood. . . . I shudder from the consequences. We have already to struggle, in our progress, against the influence of universal equality, in consequence of the difficulty of preserving the acquisitions of individual eminence, the wealth of refinement and culture growing out of select associations. What would be our condition if to these difficulties were added the far more tenacious influences of physical disability. . . . How shall we eradicate the stigma of a lower race when its blood has once been allowed to flow freely into that of our children (10 August 1863).*

Agassiz concludes that legal freedom awarded to slaves in manumission must spur the enforcement of rigid social separation among races. Fortunately, nature shall be the accomplice of moral

*E. D. Cope, America's leading paleontologist and evolutionary biologist, reiterated the same theme even more forcefully in 1890 (p. 2054): "The highest race of man cannot afford to lose or even to compromise the advantages it has acquired by hundreds of centuries of toil and hardship, by mingling its blood with the lowest. . . . We cannot cloud or extinguish the fine nervous susceptibility, and the mental force, which cultivation develops in the constitution of the Indo-European, by the fleshly instincts, and dark mind of the African. Not only is the mind stagnated, and the life of mere living introduced in its stead, but the possibility of resurrection is rendered doubtful or impossible."
virtue; for people, free to choose, gravitate naturally toward the climates of their original homeland. The black species, created for hot and humid conditions, will prevail in the Southern lowlands, though whites will maintain dominion over the seashore and elevated ground. The new South will contain some Negro states. We should bow before this necessity and admit them into the Union; we have, after all, already recognized both "Haity and Liberia."*

But the bracing North is not a congenial home for carefree and lackadaisical people, created for warmer regions. Pure blacks will migrate South, leaving a stubborn residue to dwindle and die out in the North: "I hope it may gradually die out in the north where it has only an artificial foothold" (11 August 1863). As for the mulattoes, "their sickly physique and their impaired fecundity" should assure their demise once the shackles of slavery no longer provide an opportunity for unnatural interbreeding.

Agassiz's world collapsed during the last decade of his life. His students rebelled; his supporters defected. He remained a hero to the public, but scientists began to regard him as a rigid and aging dogmatist, standing firm in his antiquated beliefs before the Darwinian tide. But his social preferences for racial segregation prevailed—all the more because his fanciful hope for voluntary geographic separation did not.

Samuel George Morton—empiricist of polygeny

Agassiz did not spend all his time in Philadelphia reviling black waiters. In the same letter to his mother, he wrote in glowing terms of his visit to the anatomical collection of Philadelphia's distinguished scientist and physician Samuel George Morton: "Imagine a series of 600 skulls, most of Indians from all tribes who inhabit or once inhabited all of America. Nothing like it exists anywhere else. This collection, by itself, is worth a trip to America" (Agassiz to his mother, December 1846, translated from the original letter in Houghton Library, Harvard University).

*Not all detractors of blacks were so generous. E. D. Cope, who feared that miscegenation would block the path to heaven (see preceding footnote), advocated the return of all blacks to Africa (1890, p. 2053): "Have we not burdens enough to carry in the European peasantry which we are called on every year to receive and assimilate? Is our own race on a plane sufficiently high, to render it safe for us to carry eight millions of dead material in the very center of our vital organism?"
Agassiz speculated freely and at length, but he amassed no data to support his polygenic theory. Morton, a Philadelphia patrician with two medical degrees—one from fashionable Edinburgh—provided the "facts" that won worldwide respect for the "American school" of polygeny. Morton began his collection of human skulls in the 1820s; he had more than one thousand when he died in 1851. Friends (and enemies) referred to his great charnel house as "the American Golgotha."

Morton won his reputation as the great data-gatherer and objectivist of American science, the man who would raise an immature enterprise from the mires of fanciful speculation. Oliver Wendell Holmes praised Morton for "the severe and cautious character" of his works, which "from their very nature are permanent data for all future students of ethnology" (in Stanton, 1960, p. 96). The same Humboldt who had asserted the inherent equality of all races wrote:

The craniological treasures which you have been so fortunate as to unite in your collection, have in you found a worthy interpreter. Your work is equally remarkable for the profundity of its anatomical views, the numerical detail of the relations of organic conformation, and the absence of those poetical reveries which are the myths of modern physiology (in Meigs, 1851, p. 48).

When Morton died in 1851, the New York Tribune wrote that "probably no scientific man in America enjoyed a higher reputation among scholars throughout the world, than Dr. Morton" (in Stanton, 1960, p. 144).

Yet Morton gathered skulls neither for the dilettante's motive of abstract interest nor the taxonomist's zeal for complete representation. He had a hypothesis to test: that a ranking of races could be established objectively by physical characteristics of the brain, particularly by its size. Morton took a special interest in native Americans. As George Combe, his fervent friend and supporter, wrote:

One of the most singular features in the history of this continent, is, that the aboriginal races, with few exceptions, have perished or constantly receded, before the Anglo-Saxon race, and have in no instance either mingled with them as equals, or adopted their manners and civilization. These phenomena must have a cause; and can any inquiry be at once more inter-
esting and philosophical than that which endeavors to ascertain whether that cause be connected with a difference in the brain between the native American race, and their conquering invaders (Combe and Coates, in review of Morton's *Crania Americana*, 1840, p. 352).

Moreover, Combe argued that Morton's collection would acquire true scientific value only if mental and moral worth could be read from brains: "If this doctrine be unfounded, these skulls are mere facts in Natural History, presenting no particular information as to the mental qualities of the people" (from Combe's appendix to *Morton's Crania Americana*, 1839, p. 275).

Although he vacillated early in his career, Morton soon became a leader among the American polygenists. He wrote several articles to defend the status of human races as separate, created species. He took on the strongest claim of *opponents*—the interfertility of all human *races*—by arguing from both sides. He relied on travelers' reports to claim that some human *races*—Australian aborigines and Caucasians in particular—very rarely produce fertile offspring (Morton, 1851). He attributed this failure to "a disparity of primordial organization." But, he continued, Buffon's criterion of interfertility must be abandoned in any case, for hybridization is common in nature, even between species belonging to different genera (Morton, 1847, 1850). Species must be redefined as "a primordial organic form" (1850, p. 82). "Bravo, my dear Sir," wrote Agassiz in a letter, "you have at last furnished science with a true philosophical definition of species" (in Stanton, 1960, p. 141). But how to recognize a primordial form? Morton replied: "If certain existing organic types can be traced back into the 'night of time,' as dissimilar as we see them now, is it not more reasonable to regard them as aboriginal, than to suppose them the mere and accidental derivations of an isolated patriarchal stem of which we know nothing?" (1850, p. 82). Thus, Morton regarded several breeds of dogs as separate species because their skeletons resided in the Egyptian catacombs, as recognizable and distinct from other breeds as they are now. The tombs also contained blacks and Caucasians. Morton dated the beaching of Noah's Ark on Ararat at 4,179 years before his time, and the Egyptian tombs at just 1,000 years after that—clearly not enough time for the sons of Noah to differentiate into races. (How, he asks, can we believe that races changed so rapidly for 1,000 years, and not at all for 3,000 years since then?) Human
races must have been separate from the start (Morton, 1839, p. 88).

But separate, as the Supreme Court once said, need not mean unequal. Morton therefore set out to establish relative rank on "objective" grounds. He surveyed the drawings of ancient Egypt and found that blacks are invariably depicted as menials—a sure sign that they have always played their appropriate biological role: "Negroes were numerous in Egypt, but their social position in ancient times was the same that it is now, that of servants and slaves" (Morton, 1844, p. 158). (A curious argument, to be sure, for these blacks had been captured in warfare; sub-Saharan societies depicted blacks as rulers.)

But Morton's fame as a scientist rested upon his collection of skulls and their role in racial ranking. Since the cranial cavity of a human skull provides a faithful measure of the brain it once contained, Morton set out to rank races by the average sizes of their brains. He filled the cranial cavity with sifted white mustard seed, poured the seed back into a graduated cylinder and read the skull's volume in cubic inches. Later on, he became dissatisfied with mustard seed because he could not obtain consistent results. The seeds did not pack well, for they were too light and still varied too much in size, despite sieving. Remeasurements of single skulls might differ by more than 5 percent, or 4 cubic inches in skulls with an average capacity near 80 cubic inches. Consequently, he switched to one-eighth-inch-diameter lead shot "of the size called BB" and achieved consistent results that never varied by more than a single cubic inch for the same skull.

Morton published three major works on the sizes of human skulls—his lavish, beautifully illustrated volume on American Indians, the *Crania Americana* of 1839; his studies on skulls from the Egyptian tombs, the *Crania Aegyptiaca* of 1844; and the epitome of his entire collection in 1849. Each contained a table, summarizing his results on average skull volumes arranged by race. I have reproduced all three tables here (Tables 2.1 to 2.3). They represent the major contribution of American polygeny to debates about racial ranking. They outlived the theory of separate creations and were reprinted repeatedly during the nineteenth century as irrefutable, "hard" data on the mental worth of human races (see p.116). Needless to say, they matched every good Yankee's prejudice—whites on top, Indians in the middle, and blacks on the bot-
Table 2.1 Morton’s summary table of cranial capacity by race

<table>
<thead>
<tr>
<th>RACE</th>
<th>N</th>
<th>MEAN</th>
<th>LARGEST</th>
<th>SMALLEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>52</td>
<td>87</td>
<td>109</td>
<td>75</td>
</tr>
<tr>
<td>Mongolian</td>
<td>10</td>
<td>83</td>
<td>93</td>
<td>69</td>
</tr>
<tr>
<td>Malay</td>
<td>18</td>
<td>81</td>
<td>89</td>
<td>64</td>
</tr>
<tr>
<td>American</td>
<td>144</td>
<td>82</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Ethiopian</td>
<td>29</td>
<td>78</td>
<td>94</td>
<td>65</td>
</tr>
</tbody>
</table>

Table 2.2 Cranial capacities for skulls from Egyptian tombs

<table>
<thead>
<tr>
<th>PEOPLE</th>
<th>MEAN CAPACITY (IN3)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelasgic</td>
<td>88</td>
<td>21</td>
</tr>
<tr>
<td>Semitic</td>
<td>82</td>
<td>5</td>
</tr>
<tr>
<td>Egyptian</td>
<td>80</td>
<td>39</td>
</tr>
<tr>
<td>Negroid</td>
<td>79</td>
<td>6</td>
</tr>
<tr>
<td>Negro</td>
<td>73</td>
<td>1</td>
</tr>
</tbody>
</table>

tom; and, among whites, Teutons and Anglo-Saxons on top, Jews in the middle, and Hindus on the bottom. Moreover, the pattern had been stable throughout recorded history, for whites had the same advantage over blacks in ancient Egypt. Status and access to power in Morton’s America faithfully reflected biological merit. How could sentimentalists and egalitarians stand against the dictates of nature? Morton had provided clean, objective data based on the largest collection of skulls in the world.

During the summer of 1977 I spent several weeks reanalyzing Morton’s data. (Morton, the self-styled objectivist, published all his raw information. We can infer with little doubt how he moved from raw measurements to summary tables.) In short, and to put it bluntly, Morton’s summaries are a patchwork of fudging and finagling in the clear interest of controlling a priori convictions. Yet—and this is the most intriguing aspect of the case—I find no evidence of conscious fraud; indeed, had Morton been a conscious fudger, he would not have published his data so openly.

Conscious fraud is probably rare in science. It is also not very interesting, for it tells us little about the nature of scientific activity.
Liars, if discovered, are excommunicated; scientists declare that their profession has properly policed itself, and they return to work, mythology unimpaired, and objectively vindicated. The prevalence of unconscious finagling, on the other hand, suggests a
general conclusion about the social context of science. For if scientists can be honestly self-deluded to Morton's extent, then prior prejudice may be found anywhere, even in the basics of measuring bones and toting sums.

The case of Indian inferiority: Crania Americana*

Morton began his first and largest work, the Crania Americana of 1839, with a discourse on the essential character of human races. His statements immediately expose his prejudices. Of the "Greenland esquimaux," he wrote: "They are crafty, sensual, ungrateful, obstinate and unfeeling, and much of their affection for their children may be traced to purely selfish motives. They devour the most disgusting aliments uncooked and uncleaned, and seem to have no ideas beyond providing for the present moment. . . . Their mental faculties, from infancy to old age, present a continued childhood. . . . In gluttony, selfishness and ingratitude, they are perhaps unequalled by any other nation of people" (1839, p. 54). Morton thought little better of other Mongolians, for he wrote of the Chinese (p. 50): "So versatile are their feelings and actions, that they have been compared to the monkey race, whose attention is perpetually changing from one object to another." The Hottentots, he claimed (p. 90), are "the nearest approximation to the lower animals. . . . Their complexion is a yellowish brown, compared by travellers to the peculiar hue of Europeans in the last stages of jaundice. . . . The women are represented as even more repulsive in appearance than the men." Yet, when Morton had to describe one Caucasian tribe as a "mere horde of rapacious banditti" (p. 9), he quickly added that "their moral perceptions, under the influence of an equitable government, would no doubt assume a much more favorable aspect."

Morton's summary chart (Table 2.1) presents the "hard" argument of the Crania Americana. He had measured the capacity of 144 Indian skulls and calculated a mean of 82 cubic inches, a full 5 cubic inches below the Caucasian norm (Figs. 2.4 and 2.5). In addition, Morton appended a table of phrenological measurements indicating a deficiency of "higher" mental powers among Indians. "The benevolent mind," Morton concluded (p. 82), "may regret

*This account omits many statistical details of my analysis. The complete tale appears in Gould, 1978. Some passages in pp. 88-101 are taken from this article.
the inaptitude of the Indian for civilization," but sentimentality must yield to fact. "The structure of his mind appears to be different from that of the white man, nor can the two harmonize in the social relations except on the most limited scale." Indians "are not only averse to the restraints of education, but for the most part are incapable of a continued process of reasoning on abstract subjects" (p. 81).

Since *Crania Americana* is primarily a treatise on the inferior quality of Indian intellect, I note first of all that Morton's cited average of 82 cubic inches for Indian skulls is incorrect. He separated Indians into two groups, "Toltecans" from Mexico and South America, and "Barbarous Tribes" from North America. Eighty-two is the average for Barbarous skulls; the total sample of 144 yields a mean of 80.2 cubic inches, or a gap of almost 7 cubic inches between Indian and Caucasian averages. (I do not know how Morton made this elementary error. It did permit him, in any case, to retain the conventional chain of being with whites on top, Indians in the middle, and blacks on the bottom.)

But the "correct" value of 80.2 is far too low, for it is the result of an improper procedure. Morton's 144 skulls belong to many different groups of Indians; these groups differ significantly among themselves in cranial capacity. Each group should be weighted equally, lest the final average be biased by unequal size of subsamples. Suppose, for example, that we tried to estimate average human height from a sample of two jockeys, the author of this book (strictly middling stature), and all the players in the National Basketball Association. The hundreds of Jabbars would swamp the remaining three and give an average in excess of six and a half feet. If, however, we averaged the averages of the three groups (jockeys, me, and the basketball players), then our figure would lie closer to the true value. Morton's sample is strongly biased by a major overrepresentation of an extreme group—the small-brained Inca Peruvians. (They have a mean cranial capacity of 74.36 cubic inches and provide 25 percent of the entire sample). Large-brained Iroquois, on the other hand, contribute only 3 skulls to the total sample (2 percent). If, by the accidents of collecting, Morton's sample had included 25 percent Iroquois and just a few Incas, his average would have risen substantially. Consequently, I corrected this bias as best I could by averaging the mean values for all tribes
2.4 The skull of an Araucanian Indian. The lithographs of this and the next figure were done by John Collins, a great scientific artist unfortunately unrecognized today. They appeared in Morton’s *Crania Americana* of 1839.

2.5 The skull of a Huron Indian. Lithograph by John Morton’s *Crania Americana*, 1839.
represented by 4 or more skulls. The Indian average now rises to 83.79 cubic inches.

This revised value is still more than 3 cubic inches from the Caucasian average. Yet, when we examine Morton's procedure for computing the Caucasian mean, we uncover an astounding inconsistency. Since statistical reasoning is largely a product of the last one hundred years, I might have excused Morton's error for the Indian mean by arguing that he did not recognize the biases produced by unequal sizes among subsamples. But now we discover that he understood this bias perfectly well—for Morton calculated his high Caucasian mean by consciously eliminating small-brained Hindus from his sample. He writes (p. 261): "It is proper, however, to mention that but 3 Hindoos are admitted in the whole number, because the skulls of these people are probably smaller than those of any other existing nation. For example, 17 Hindoo heads give a mean of but 75 cubic inches; and the three received into the table are taken at that average." Thus, Morton included a large subsample of small-brained people (Inca Peruvians) to pull down the Indian average, but excluded just as many small Caucasian skulls to raise the mean of his own group. Since he tells us what he did so baldly, we must assume that Morton did not deem his procedure improper. But by what rationale did he keep Incas and exclude Hindus, unless it were the a priori assumption of a truly higher Caucasian mean? For one might then throw out the Hindu sample as truly anomalous, but retain the Inca sample (with the same mean as the Hindus, by the way) as the lower end of normality for its disadvantaged larger group.

I restored the Hindu skulls to Morton's sample, using the same procedure of equal weighting for all groups. Morton's Caucasian sample, by his reckoning, contains skulls from four subgroups, so Hindus should contribute one-fourth of all skulls to the sample. If we restore all seventeen of Morton's Hindu skulls, they form 26 percent of the total sample of sixty-six. The Caucasian mean now drops to 84.45 cubic inches, for no difference worth mentioning between Indians and Caucasians. (Eskimos, despite Morton's low opinion of them, yield a mean of 86.8, hidden by amalgamation with other subgroups in the Mongol grand mean of 83). So much for Indian inferiority.
The case of the Egyptian catacombs: Crania Aegyptiaca

Morton's friend and fellow polygenist George Gliddon was United States consul for the city of Cairo. He dispatched to Philadelphia more than one hundred skulls from tombs of ancient Egypt, and Morton responded with his second major treatise, the Crania Aegyptiaca of 1844. Morton had shown, or so he thought, that whites surpassed Indians in mental endowment. Now he would crown his story by demonstrating that the discrepancy between whites and blacks was even greater, and that this difference had been stable for more than three thousand years.

Morton felt that he could identify both races and subgroups among races from features of the skull (most anthropologists today would deny that such assignments can be made unambiguously). He divided his Caucasian skulls into Pelasgics (Hellenes, or ancient Greek forebears), Jews, and Egyptians—in that order, again confirming Anglo-Saxon preferences (Table 2.2). Non-Caucasian skulls he identified either as "negroid" (hybrids of Negro and Caucasian with more black than white) or as pure Negro.

Morton's subjective division of Caucasian skulls is clearly unwarranted, for he simply assigned the most bulbous crania to his favored Pelasgic group and the most flattened to Egyptians; he mentions no other criteria of subdivision. If we ignore his threefold separation and amalgamate all sixty-five Caucasian skulls into a single sample, we obtain an average capacity of 82.15 cubic inches. (If we give Morton the benefit of all doubt and rank his dubious subsamples equally—as we did in computing Indian and Caucasian means for the Crania Americana—we obtain an average of 83.3 cubic inches.)

Either of these values still exceeds the negroid and Negro averages substantially. Morton assumed that he had measured an innate difference in intelligence. He never considered any other proposal for the disparity in average cranial capacity—though another simple and obvious explanation lay before him.

Sizes of brains are related to the sizes of bodies that carry them: big people tend to have larger brains than small people. This fact does not imply that big people are smarter—any more than elephants should be judged more intelligent than humans because their brains are larger. Appropriate corrections must be made for
2.6 Skulls from the Egyptian catacombs. From Morton's *Crania Aegyptiaca* of 1844.
differences in body size. Men tend to be larger than women; consequently, their brains are bigger. When corrections for body size are applied, men and women have brains of approximately equal size. Morton not only failed to correct for differences in sex or body size; he did not even recognize the relationship, though his data proclaimed it loud and clear. (I can only conjecture that Morton never separated his skulls by sex or stature—though his tables record these data—because he wanted so much to read differences in brain size directly as differences in intelligence.)

Many of the Egyptian skulls came with mummified remains of their possessors (Fig. 2.6), and Morton could record their sex unambiguously. If we use Morton's own designations and compute separate averages for males and females (as Morton never did), we obtain the following remarkable result. Mean capacity for twenty-four male Caucasian skulls is 86.5 cubic inches; twenty-two female skulls average 77.2 (the remaining nineteen skulls could not be identified by sex). Of the six negroid skulls, Morton identified two as female (at 71 and 77 cubic inches) and could not allocate the other four (at 77, 77, 87, and 88).* If we make the reasonable conjecture that the two smaller skulls (77 and 77) are female, and the two larger male (87 and 88), we obtain a male negroid average of 87.5, slightly above the Caucasian male mean of 86.5, and a female negroid average of 75.5, slightly below the Caucasian value of 77.2. The apparent difference of 4 cubic inches between Morton's Caucasian and negroid samples may only record the fact that about half his Caucasian sample is male, while only one-third the negroid sample may be male. (The apparent difference is magnified by Morton's incorrect rounding of the negroid average down to 79 rather than up to 80. As we shall see again, all of Morton's minor numerical errors favor his prejudices.) Differences in average brain size between Caucasians and negroids in the Egyptian tombs only record differences in stature due to sex, not variation in "intelligence." You will not be surprised to learn that the single pure Negro skull (73 cubic inches) is a female.

*In his final catalogue of 1849, Morton guessed at sex (and age within five years!) for all crania. In this later work, he specifies 77, 87, and 88 as male, and the remaining 77 as female. This allocation was pure guesswork; my alternate version is equally plausible. In the *Crania Aegyptiaca* itself, Morton was more cautious and only identified sex for specimens with mummified remains.
Table 2.4 Cranial capacity of Indian groups ordered by Morton's assessment of body stature

<table>
<thead>
<tr>
<th>STATURE AND GROUP</th>
<th>CRANIAL CAPACITY (IN³)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminole-Muskogee</td>
<td>88.3</td>
<td>8</td>
</tr>
<tr>
<td>Chippeway and related groups</td>
<td>88.8</td>
<td>4</td>
</tr>
<tr>
<td>Dacota and Osage</td>
<td>84.4</td>
<td>7</td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexicans</td>
<td>80.2</td>
<td>13</td>
</tr>
<tr>
<td>Menominee</td>
<td>80.5</td>
<td>8</td>
</tr>
<tr>
<td>Mounds</td>
<td>81.7</td>
<td>9</td>
</tr>
<tr>
<td>SMALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia River Flatheads</td>
<td>78.8</td>
<td>10</td>
</tr>
<tr>
<td>Peruvians</td>
<td>74.4</td>
<td>33</td>
</tr>
</tbody>
</table>

The correlation of brain and body also resolves a question left hanging in our previous discussion of the *Crania Americana*: What is the basis for differences in average brain size among Indian peoples? (These differences bothered Morton considerably, for he could not understand how small-brained Incas had built such an elaborate civilization, though he consoled himself with the fact of their rapid conquest by the conquistadores). Again, the answer lay before him, but Morton never saw it. Morton presents subjective data on bodily statures in his descriptions of the various tribes, and I present these assessments along with average brain sizes in Table 2.4. The correlation of brain and body size is affirmed without exception. The low Hindu mean among Caucasians also records a difference in stature, not another case of dumb Indians.

The case of the shifting black mean

In the *Crania Americana*, Morton cited 78 cubic inches as the average cranial capacity for blacks. Five years later, in the *Crania Aegyptiaca*, he appended the following footnote to his table of measurements: "I have in my possession 79 crania of Negroes born in Africa... Of the whole number, 58 are adult... and give 85 cubic inches for the average size of the brain" (1844, p. 113).

Since Morton had changed his method of measurement from
mustard seed to lead shot between 1839 and 1844, I suspected this alteration as a cause for the rising black mean. Fortunately, Morton remeasured most of his skulls personally, and his various catalogues present tabulations of the same skulls by both seed and shot (see Gould, 1978, for details).

I assumed that measures by seed would be lower. Seeds are light and variable in size, even after sieving. Hence, they do not pack well. By vigorous shaking or pressing of the thumb at the foramen magnum (the hole at the base of a skull), seeds can be made to settle, providing room for more. Measures by seed were very variable; Morton reported differences of several cubic inches for recalibrations of the same skull. He eventually became discouraged, fired his assistants, and redid all his measurements personally, with lead shot. Recalibrations never varied by more than a cubic inch, and we may accept Morton's judgment that measures by shot were objective, accurate, and repeatable—while earlier measures by seed were highly subjective and erratic.

I then calculated the discrepancies between seed and shot by race. Shot, as I suspected, always yielded higher values than seed. For 111 Indian skulls, measured by both criteria, shot exceeds seed by an average of 2.2 cubic inches. Data are not as reliable for blacks and Caucasians because Morton did not specify individual skulls for these races in the Crania Americana (measured by seed). For Caucasians, 19 identifiable skulls yield an average discrepancy of only 1.8 cubic inches for shot over seed. Yet 18 African skulls, remeasured from the sample reported in Crania Americana, produce a mean by shot of 83.44 cubic inches, a rise of 5.4 cubic inches from the 1839 average by seed. In other words, the more "inferior" a race by Morton's a priori judgment, the greater the discrepancy between a subjective measurement, easily and unconsciously fudged, and an objective measure unaffected by prior prejudice. The discrepancy for blacks, Indians, and Caucasians is 5.4, 2.2, and 1.8 cubic inches, respectively.

Plausible scenarios are easy to construct. Morton, measuring by seed, picks up a threateningly large black skull, fills it lightly and gives it a few desultory shakes. Next, he takes a distressingly small Caucasian skull, shakes hard, and pushes mightily at the foramen magnum with his thumb. It is easily done, without conscious motivation; expectation is a powerful guide to action.
Table 2.5 Corrected values for Morton's final tabulation

<table>
<thead>
<tr>
<th>PEOPLE</th>
<th>CRANIAL CAPACITY (IN³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mongolians</td>
<td>87</td>
</tr>
<tr>
<td>Modern Caucasians</td>
<td>87</td>
</tr>
<tr>
<td>Native Americans</td>
<td>86</td>
</tr>
<tr>
<td>Malays</td>
<td>85</td>
</tr>
<tr>
<td>Ancient Caucasians</td>
<td>84</td>
</tr>
<tr>
<td>Africans</td>
<td>83</td>
</tr>
</tbody>
</table>

The final tabulation of 1849

Morton's burgeoning collection included 623 skulls when he presented his final tabulation in 1849—an overwhelming affirmation of the ranking that every Anglo-Saxon expected.

The Caucasian subsamples suffer from errors and distortions. The German mean, reported at 90 in the summary, is 88.4 from individual skulls listed in the catalogue; the correct Anglo-American average is 89 (89.14), not 90. The high English mean of 96 is correct, but the small sample is entirely male.* If we follow our procedure of computing averages among subsamples, the six modern Caucasian "families" yield a mean of 87 cubic inches.† The ancient Caucasian average for two subsamples is 84 cubic inches (Table 2.5).

Six Chinese skulls provide Morton with a Mongolian mean of 82, but this low value records two cases of selective amnesia: First,

*To demonstrate again how large differences based on stature can be, I report these additional data, recovered from Morton's tabulations, but never calculated or recognized by him: 1) For Inca Peruvians, fifty-three male skulls average 77.5; sixty-one female skulls, 72.1. 2) For Germans, nine male skulls average 92.2; eight females, 84.3.

†My original report (Gould, 1978) incorrectly listed the modern Caucasian mean as 85.3. The reason for this error is embarrassing, but instructive, for it illustrates, at my expense, the cardinal principle of this book: the social embeddedness of science and the frequent grafting of expectation upon supposed objectivity. Line 7 in Table 2.3 lists the range of Semitic skulls as 84 to 98 cubic inches for Morton's sample of 3. However, my original paper cited a mean of 80—an obvious impossibility if the smallest skull measures 84. I was working from a Xerox of Morton's original chart, and his correct value of 89 is smudged to look like an 80 on my copy. Nonetheless, the range of 84 to 98 is clearly indicated right alongside, and I never saw the inconsistency—presumably because a low value of 80 fit my hopes for a depressed Caucasian mean. The 80 therefore "felt" right and I never checked it. I am grateful to Dr. Irving Klotz of Northwestern University for pointing out this error to me.
Morton excluded the latest Chinese specimen (skull number 1336 at 98 cubic inches), though it must have been in his collection when he published his summary because he includes many Peruvian skulls with higher numbers. Secondly, although Morton deplored the absence of Eskimos from his collection (1849, p. iv), he did not mention the three Eskimo skulls that he had measured for *Crania Americana*. (These belonged to his friend George Combe and do not appear in Morton's final catalogue.)

Morton never remeasured these skulls with shot, but if we apply the Indian correction of 2.2 cubic inches to their seed average of 86.8 we obtain a mean of 89. These two samples (Chinese with number 1336 added, and Eskimo conservatively corrected) yield a Mongolian average of 87 cubic inches.

By 1849 Morton's Indian mean had plummeted to 79. But this figure is invalid for the same reason as before, though now intensified—inequality of numbers among subsamples. Small-headed (and small-statured) Peruvians provided 23 percent of the 1839 sample, but their frequency had risen to nearly half (155 of 338 skulls) by 1849. If we use our previous criterion and compute the average of all subsamples weighted equally, the Indian average is 86 cubic inches.

For the Negro average, we should drop Morton's australoids because he wanted to assess the status of African blacks and we no longer accept a close relationship between the two groups—dark skin evolved more than once among human groups. I also drop the Hottentot sample of 3. All skulls are female, and Hottentots are very small in stature. Native and American-born blacks, amalgamated to a single sample, yield an average value between 82 and 83, but closer to 83.

In short, my correction of Morton's conventional ranking reveals no significant differences among races for Morton's own data (Table 2.5). All groups rank between 83 and 87 cubic inches, and Caucasians share the pinnacle. If western Europeans choose to seek their superiority in high averages for their subsamples (Germanics and Anglo-Saxons in the Caucasian tabulations), I point out that several Indian subsamples are equally high (though Morton amalgamated all North American Indians and never reported averages by subgroup), and that all Teutonic and Anglo-Saxon averages are either miscalculated or biased in Morton's table.
Conclusions

Morton's finagling may be ordered into four general categories:

1. Favorable inconsistencies and shifting criteria: Morton often chose to include or delete large subsamples in order to match group averages with prior expectations. He included Inca Peruvians to decrease the Indian average, but deleted Hindus to raise the Caucasian mean. He also chose to present or not to calculate the averages of subsamples in striking accord with desired results. He made calculations for Caucasians to demonstrate the superiority of Teutons and Anglo-Saxons, but never presented data for Indian subsamples with equally high averages.

2. Subjectivity directed toward prior prejudice: Morton's measures with seed were sufficiently imprecise to permit a wide range of influence by subjective bias; later measures with shot, on the other hand, were repeatable, and presumably objective. In skulls measured by both methods, values for shot always exceed values for the light, poorly packing seed. But degrees of discrepancy match a priori assumptions: an average of 5.4, 2.2, and 1.8 cubic inches for blacks, Indians, and whites, respectively. In other words, blacks fared poorest and whites best when the results could be biased toward an expected result.

3. Procedural omissions that seem obvious to us: Morton was convinced that variation in skull size recorded differential, innate mental ability. He never considered alternate hypotheses, though his own data almost cried out for a different interpretation. Morton never computed means by sex or stature, even when he recorded these data in his tabulations—as for Egyptian mummies. Had he computed the effect of stature, he would presumably have recognized that it explained all important differences in brain size among his groups. Negroids yielded a lower average than Caucasians among his Egyptian skulls because the negroid sample probably contained a higher percentage of smaller-statured females, not because blacks are innately stupider. The Incas that he included in the Indian sample and the Hindus that he excluded from the Caucasian sample both possessed small brains as a consequence of small body size. Morton used an all-female sample of three Hottentots to support the stupidity of blacks, and an all-male sample of Englishmen to assert the superiority of whites.
4. Miscalculations and convenient omissions: All miscalculations and omissions that I have detected are in Morton's favor. He rounded the negroid Egyptian average down to 79, rather than up to 80. He cited averages of 90 for Germans and Anglo-Saxons, but the correct values are 88 and 89. He excluded a large Chinese skull and an Eskimo subsample from his final tabulation for mongoloids, thus depressing their average below the Caucasian value.

Yet through all this juggling, I detect no sign of fraud or conscious manipulation. Morton made no attempt to cover his tracks and I must presume that he was unaware he had left them. He explained all his procedures and published all his raw data. All I can discern is an a priori conviction about racial ranking so powerful that it directed his tabulations along preestablished lines. Yet Morton was widely hailed as the objectivist of his age, the man who would rescue American science from the mire of unsupported speculation.

The American school and slavery

The leading American polygenists differed in their attitude toward slavery. Most were Northerners, and most favored some version of Squier's quip: "[I have a] precious poor opinion of niggers . . . a still poorer one of slavery" (in Stanton, 1960, p. 193).

But the identification of blacks as a separate and unequal species had obvious appeal as an argument for slavery. Josiah Nott, a leading polygenist, encountered particularly receptive audiences in the South for his "lectures on niggerology" (as he called them). Morton's *Crania Aegyptiaca* received a warm welcome in the South (in Stanton, 1960, pp. 52-53). One supporter of slavery wrote that the South need no longer be "so much frightened" by "voices of Europe or of Northern America" in defending its "peculiar institutions." When Morton died, the South's leading medical journal proclaimed (R. W. Gibbs, *Charleston Medical Journal*, 1851, quoted in Stanton, 1960, p. 144): "We of the South should consider him as our benefactor, for aiding most materially in giving to the negro his true position as an inferior race."

Nonetheless, the polygenist argument did not occupy a primary place in the ideology of slavery in mid-nineteenth-century America—and for a good reason. For most Southerners, this excellent argument entailed too high a price. The polygenists had railed
against ideologues as barriers to their pure search for truth, but their targets were parsons more often than abolitionists. Their theory, in asserting a plurality of human creations, contradicted the doctrine of a single Adam and contravened the literal truth of scripture. Although the leading polygenists held a diversity of religious attitudes, none were atheists. Morton and Agassiz were conventionally devout, but they did believe that both science and religion would be aided if untrained parsons kept their noses out of scientific issues and stopped proferring the Bible as a document to settle debates in natural history. Josiah Nott stated his goal in a forceful way (Agassiz and Morton would not have put it so baldly):

"... to cut loose the natural history of mankind from the Bible, and to place each upon its own foundation, where it may remain without collision or molestation" (in Stanton, 1960, p. 119).

The polygenists forced defenders of slavery into a quandary: Should they accept a strong argument from science at the cost of limiting religion's sphere? In resolving this dilemma, the Bible usually won. After all, scriptural arguments for supporting slavery were not wanting. Degeneration of blacks under the curse of Ham was an old and eminently functional standby. Moreover, polygeny was not the only quasi-scientific defense available.

John Bachman, for example, was a South Carolina parson and prominent naturalist. As a committed monogenist, he spent a good part of his scientific career attempting to refute polygeny. He also used monogenist principles to defend slavery:

In intellectual power the African is an inferior variety of our species. His whole history affords evidence that he is incapable of self-government. Our child that we lead by the hand, and who looks to us for protection and support is still of our own blood notwithstanding his weakness and ignorance (in Stanton, 1960, p. 63).

Among nonpolygenist, "scientific" defenses of slavery, no arguments ever matched in absurdity the doctrines of S. A. Cartwright, a prominent Southern physician. (I do not cite these as typical and I doubt that many intelligent Southerners paid them much attention; I merely wish to illustrate an extreme within the range of "scientific" argument.) Cartwright traced the problems of black people to inadequate decarbonization of blood in the lungs (insufficient removal of carbon dioxide): "It is the defective ... atmosphere of the blood, conjoined with a deficiency of cerebral
matter in the cranium . . . that is the true cause of that debasement of mind, which has rendered the people of Africa unable to take care of themselves" (from Chorover, 1979; all quotes from Cartwright are taken from papers he presented to the 1851 meeting of the Louisiana Medical Association.)

Cartwright even had a name for it—dysesthesia, a disease of inadequate breathing. He described its symptoms in slaves: "When driven to labor . . . he performs the task assigned to him in a headlong and careless manner, treading down with his feet or cutting with his hoe the plants he is put to cultivate—breaking the tools he works with, and spoiling everything he touches." Ignorant Northerners attributed this behavior to "the debasing influence of slavery," but Cartwright recognized it as the expression of a true disease. He identified insensitivity to pain as another symptom: "When the unfortunate individual is subjected to punishment, he neither feels pain of any consequence . . . [nor] any unusual resentment more than stupid sulkiness. In some cases . . . there appears to be an almost total loss of feeling." Cartwright proposed the following cure:

The liver, skin and kidneys should be stimulated to activity . . . to assist in decarbonizing the blood. The best means to stimulate the skin is, first, to have the patient well washed with warm water and soap; then to anoint it all over with oil, and to slap the oil in with a broad leather strap; then to put the patient to some hard kind of work in the open air and sunshine that will compel him to expand his lungs, as chopping wood, splitting rails, or sawing with the crosscut or whip saw.

Cartwright did not end his catalogue of diseases with dysesthesia. He wondered why slaves often tried to flee, and identified the cause as a mental disease called drapetomania, or the insane desire to run away. "Like children, they are constrained by unalterable physiological laws, to love those in authority over them. Hence, from a law of his nature, the negro can no more help loving a kind master, than the child can help loving her that gives it suck." For slaves afflicted with drapetomania, Cartwright proposed a behavioral cure: owners should avoid both extreme permissiveness and cruelty: "They have only to be kept in that state, and treated like children, to prevent and cure them from running away."

The defenders of slavery did not need polygeny. Religion still
stood above science as a primary source for the rationalization of social order. But the American debate on polygeny may represent the last time that arguments in the scientific mode did not form a first line of defense for the status quo and the unalterable quality of human differences. The Civil War lay just around the corner, but so did 1859 and Darwin's *Origin of Species*. Subsequent arguments for slavery, colonialism, racial differences, class structures, and sex roles would go forth primarily under the banner of science.
THREE

Measuring Heads

Paul Broca and the Heyday of Craniology

No rational man, cognisant of the facts, believes that the average negro is the equal, still less the superior, of the average white man. And, if this be true, it is simply incredible that, when all his disabilities are removed, and our prognathous relative has a fair field and no favor, as well as no oppressor, he will be able to compete successfully with his bigger-brained and smaller-jawed rival, in a contest which is to be carried on by thoughts and not by bites. —T. H. HUXLEY

The allure of numbers

Introduction

Evolutionary theory swept away the creationist rug that had supported the intense debate between monogenists and polygenists, but it satisfied both sides by presenting an even better rationale for their shared racism. The monogenists continued to construct linear hierarchies of races according to mental and moral worth; the polygenists now admitted a common ancestry in the prehistoric mists, but affirmed that races had been separate long enough to evolve major inherited differences in talent and intelligence. As historian of anthropology George Stocking writes (1973, p. lxx): "The resulting intellectual tensions were resolved after 1859 by a comprehensive evolutionism which was at once monogenist and racist, which affirmed human unity even as it relegated the dark-skinned savage to a status very near the ape."

The second half of the nineteenth century was not only the era of evolution in anthropology. Another trend, equally irresistible,
swept through the human sciences—the allure of numbers, the faith that rigorous measurement could guarantee irrefutable precision, and might mark the transition between subjective speculation and a true science as worthy as Newtonian physics. Evolution and quantification formed an unholy alliance; in a sense, their union forged the first powerful theory of "scientific" racism—if we define "science" as many do who misunderstand it most profoundly: as any claim apparently backed by copious numbers. Anthropologists had presented numbers before Darwin, but the crudity of Morton’s analysis (Chapter 2) belies any claim to rigor. By the end of Darwin’s century, standardized procedures and a developing body of statistical knowledge had generated a deluge of more truthworthy numerical data.

This chapter is the story of numbers once regarded as surpassing all others in importance—the data of craniometry, or measurement of the skull and its contents. The leaders of craniometry were not conscious political ideologues. They regarded themselves as servants of their numbers, apostles of objectivity. And they confirmed all the common prejudices of comfortable white males—that blacks, women, and poor people occupy their subordinate roles by the harsh dictates of nature.

Science is rooted in creative interpretation. Numbers suggest, constrain, and refute; they do not, by themselves, specify the content of scientific theories. Theories are built upon the interpretation of numbers, and interpreters are often trapped by their own rhetoric. They believe in their own objectivity, and fail to discern the prejudice that leads them to one interpretation among many consistent with their numbers. Paul Broca is now distant enough. We can stand back and show that he used numbers not to generate new theories but to illustrate a priori conclusions. Shall we believe that science is different today simply because we share the cultural context of most practicing scientists and mistake its influence for objective truth? Broca was an exemplary scientist; no one has ever surpassed him in meticulous care and accuracy of measurement. By what right, other than our own biases, can we identify his prejudice and hold that science now operates independently of culture and class?
Francis Galton—apostle of quantification

No man expressed his era's fascination with numbers so well as Darwin's celebrated cousin, Francis Galton (1822–1911). Independently wealthy, Galton had the rare freedom to devote his considerable energy and intelligence to his favorite subject of measurement. Galton, a pioneer of modern statistics, believed that, with sufficient labor and ingenuity, anything might be measured, and that measurement is the primary criterion of a scientific study. He even proposed and began to carry out a statistical inquiry into the efficacy of prayer! Galton coined the term "eugenics" in 1883 and advocated the regulation of marriage and family size according to hereditary endowment of parents.

Galton backed his faith in measurement with all the ingenuity of his idiosyncratic methods. He sought, for example, to construct a "beauty map" of the British Isles in the following manner (1909, pp. 315–316):

Whenever I have occasion to classify the persons I meet into three classes, "good, medium, bad." I use a needle mounted as a pricker, wherewith to prick holes, unseen, in a piece of paper, torn rudely into a cross with a long leg. I use its upper end for "good," the cross arm for "medium," the lower end for "bad." The prick holes keep distinct, and are easily read off at leisure. The object, place, and date are written on the paper. I used this plan for my beauty data, classifying the girls I passed in streets or elsewhere as attractive, indifferent, or repellent. Of course this was a purely individual estimate, but it was consistent, judging from the conformity of different attempts in the same population. I found London to rank highest for beauty; Aberdeen lowest.

With good humor, he suggested the following method for quantifying boredom (1909, p. 278):

Many mental processes admit of being roughly measured. For instance, the degree to which people are bored, by counting the number of their fidgets. I not infrequently tried this method at the meetings of the Royal Geographical Society, for even there dull memoirs are occasionally read. •••. The use of a watch attracts attention, so I reckon time by the number of my breathings, of which there are 15 in a minute. They are not counted mentally, but are punctuated by pressing with 15 fingers successively. The counting is reserved for the fidgets. These observations should be confined to persons of middle age. Children are rarely still, while elderly philosophers will sometimes remain rigid for minutes altogether.
Quantification was Galton's god, and a strong belief in the inheritance of nearly everything he could measure stood at the right hand. Galton believed that even the most socially embedded behaviors had strong innate components: "As many members of our House of Lords marry the daughters of millionaires," he wrote (1909, pp. 314-315), "it is quite conceivable that our Senate may in time become characterized by a more than common share of shrewd business capacity, possibly also by a lower standard of commercial probity than at present." Constantly seeking new and ingenious ways to measure the relative worth of peoples, he proposed to rate blacks and whites by studying the history of encounters between black chiefs and white travelers (1884, pp. 338-339):

The latter, no doubt, bring with them the knowledge current in civilized lands, but that is an advantage of less importance than we are apt to suppose. A native chief has as good an education in the art of ruling men, as can be desired; he is continually exercised in personal government, and usually maintains his place by the ascendancy of his character shown every day over his subjects and rivals. A traveller in wild countries also fills, to a certain degree, the position of a commander, and has to confront native chiefs at every inhabited place. The result is familiar enough—the white traveller almost invariably holds his own in their presence. It is seldom that we hear of a white traveller meeting with a black chief whom he feels to be the better man.

Galton's major work on the inheritance of intelligence (Hereditary Genius, 1869) included anthropometry among its criteria, but his interest in measuring skulls and bodies peaked later when he established a laboratory at the International Exposition of 1884. There, for threepence, people moved through his assembly line of tests and measures, and received his assessment at the end. After the Exposition, he maintained the lab for six years at a London museum. The laboratory became famous and attracted many notables, including Gladstone:

Mr. Gladstone was amusingly insistent about the size of his head, saying that hatters often told him that he had an Aberdeenshire head—"a fact which you may be sure I do not forget to tell my Scotch constituents." It was a beautifully shaped head, though rather low, but after all it was not so very large in circumference (1909, pp. 249-250).

Lest this be mistaken for the harmless musings of some dotty Victorian eccentric, I point out that Sir Francis was taken quite
MEASURING HEADS

seriously as a leading intellect of his time. The American hereditarian Lewis Terman, the man most responsible for instituting IQ tests in America, retrospectively calculated Galton’s IQ at above 200, but accorded only 135 to Darwin and a mere 100–110 to Copernicus (see pp. 213–218 on this ludicrous incident in the history of mental testing). Darwin, who approached hereditarian arguments with strong suspicion, wrote after reading Hereditary Genius: "You have made a convert of an opponent in one sense, for I have always maintained that, excepting fools, men did not differ much in intellect, only in zeal and hard work" (in Galton, 1909, p. 290). Galton responded: "The rejoinder that might be made to his remark about hard work, is that character, including the aptitude for work, is heritable like every other faculty."

A curtain-raiser with a moral: numbers do not guarantee truth

In 1906, a Virginia physician, Robert Bennett Bean, published a long, technical article comparing the brains of American blacks and whites. With a kind of neurological green thumb, he found meaningful differences wherever he looked—meaningful, that is, in his favored sense of expressing black inferiority in hard numbers.

Bean took special pride in his data on the corpus callosum, a structure within the brain that contains fibers connecting the right and left hemispheres. Following a cardinal tenet of craniometry, that higher mental functions reside in the front of the brain and sensorimotor capacities toward the rear, Bean reasoned that he might rank races by the relative sizes of parts within the corpus callosum. So he measured the length of the genu, the front part of the corpus callosum, and compared it with the length of the splenium, the back part. He plotted genu vs. splenium (Fig. 3.1) and obtained, for a respectably large sample, virtually complete separation between black and white brains. Whites have a relatively large genu, hence more brain up front in the seat of intelligence. All the more remarkable, Bean exclaimed (1906, p. 390) because the genu contains fibers both for olfaction and for intelligence! Bean continued: We all know that blacks have a keener sense of smell than whites; hence we might have expected larger genu in blacks if intelligence did not differ substantially between races. Yet black genu are smaller despite their olfactory predominance; hence, blacks must really suffer from a paucity of intelligence.
3.1 Bean's plot of the genu on the y-axis vs. the splenium on the x-axis. White circles are, unsurprisingly, for white brains; black squares for black brains. Whites seem to have a larger genu, hence more up front, and presumably more intelligence.
Moreover, Bean did not neglect to push the corresponding conclusion for sexes. Within each race, women have relatively smaller genus than men.

Bean then continued his discourse on the relatively greater size of frontal vs. parietal and occipital (side and back) parts of the brain in whites. In the relative size of their frontal areas, he proclaimed, blacks are intermediate between "man [sic] and the ourang-outang" (1906, p. 380).

Throughout this long monograph, one common measure is conspicuous by its absence: Bean says nothing about the size of the brain itself, the favored criterion of classical craniometry. The reason for this neglect lies buried in an addendum: black and white brains did not differ in overall size. Bean temporized: "So many factors enter into brain weight that it is questionable whether discussion of the subject is profitable here." Still, he found a way out. His brains came from unclaimed bodies given to medical schools. We all know that blacks have less respect for their dead than whites. Only the lowest classes of whites—prostitutes and the depraved—would be found among abandoned bodies, "while among Negroes it is known that even the better classes neglect their dead." Thus, even an absence of measured difference might indicate white superiority, for the data "do perhaps show that the low class Caucasian has a larger brain than a better class Negro" (1906, p. 409).

Bean's general conclusion, expressed in a summary paragraph before the troublesome addendum, proclaimed a common prejudice as the conclusion of science:

The Negro is primarily affectionate, immensely emotional, then sensual and under stimulation passionate. There is love of ostentation, and capacity for melodious articulation; there is undeveloped artistic power and taste—Negroes make good artisans, handicraftsmen—and there is instability of character incident to lack of self-control, especially in connection with the sexual relation; and there is lack of orientation, or recognition of position and condition of self and environment, evidenced by a peculiar bumptiousness, so called, that is particularly noticeable. One would naturally expect some such character for the Negro, because the whole posterior part of the brain is large, and the whole anterior portion is small.

Bean did not confine his opinions to technical journals. He published two articles in popular magazines during 1906, and attracted
sufficient attention to become the subject of an editorial in *American Medicine* for April 1907 (cited in Chase, 1977, p. 179). Bean had provided, the editorial proclaimed, "the anatomical basis for the complete failure of the negro schools to impart the higher studies—the brain cannot comprehend them any more than a horse can understand the rule of three. ... Leaders in all political parties now acknowledge the error of human equality. ... It may be practicable to rectify the error and remove a menace to our prosperity—a large electorate without brains."

But Franklin P. Mall, Bean's mentor at Johns Hopkins, became suspicious: Bean's data were too good. He repeated Bean's work, but with an important difference in procedure—he made sure that he did not know which brains were from blacks and which from whites until after he had measured them (Mall, 1909). For a sample of 106 brains, using Bean's method of measurement, he found no difference between whites and blacks in the relative sizes of genu and splenium (Fig. 3.2). This sample included 18 brains from Bean's original sample, 10 from whites, 8 from blacks. Bean's measure of the genu was larger than Mall's for 7 whites, but for only a single black. Bean's measure of the splenium was larger than Mall's for 7 of the 8 blacks.

I use this small tale of zealotry as a curtain-raiser because it illustrates so well the major contentions of this chapter and book:

1. Scientific racists and sexists often confine their label of inferiority to a single disadvantaged group; but race, sex, and class go together, and each acts as a surrogate for the others. Individual studies may be limited in scope, but the general philosophy of biological determinism pervades—hierarchies of advantage and disadvantage follow the dictates of nature; stratification reflects biology. Bean studied races, but he extended his most important conclusion to women, and also invoked differences of social class to argue that equality of size between black and white brains really reflects the inferiority of blacks.

2. Prior prejudice, not copious numerical documentation, dictates conclusions. We can scarcely doubt that Bean's statement about black bumptiousness reflected a prior belief that he set out to objectify, not an induction from data about fronts and backs of brains. And the special pleading that yielded black inferiority from equality of brain size is ludicrous outside a shared context of a priori belief in the inferiority of blacks.
Mall's plot of genu vs. splenium. Mall measured the brains without knowing whether they came from whites or blacks. He found no difference between the races. The line represents Bean's separation between whites and blacks.
3. Numbers and graphs do not gain authority from increasing precision of measurement, sample size, or complexity in manipulation. Basic experimental designs may be flawed and not subject to correction by extended repetition. Prior commitment to one among many potential conclusions often guarantees a serious flaw in design.

4. Craniometry was not just a plaything of academicians, a subject confined to technical journals. Conclusions flooded the popular press. Once entrenched, they often embarked on a life of their own, endlessly copied from secondary source to secondary source, refractory to disproof because no one examined the fragility of primary documentation. In this case, Mall nipped a dogma in the bud, but not before a leading journal had recommended that blacks be barred from voting as a consequence of their innate stupidity.

But I also note an important difference between Bean and the great European craniometricians. Bean committed either conscious fraud or extraordinary self-delusion. He was a poor scientist following an absurd experimental design. The great craniometricians, on the other hand, were fine scientists by the criteria of their time. Their numbers, unlike Bean's, were generally sound. Their prejudices played a more subtle role in specifying interpretations and in suggesting what numbers might be gathered in the first place. Their work was more refractory to exposure, but equally invalid for the same reason: prejudices led through data in a circle back to the same prejudices—an unbeatable system that gained authority because it seemed to arise from meticulous measurement.

Bean's story has been told several times (Myrdal, 1944; Haller, 1971; Chase, 1977), if not with all its details. But Bean was a marginal figure on a temporary and provincial stage. I have found no modern analysis of the main drama, the data of Paul Broca and his school.

Masters of craniometry: Paul Broca and his school

The great circle route

In 1861 a fierce debate extended over several meetings of a young association still experiencing its birth pangs. Paul Broca
MEASURING HEADS

(1824-1880), professor of clinical surgery in the faculty of medicine, had founded the Anthropological Society of Paris in 1859. At a meeting of the society two years later, Louis Pierre Gratiolet read a paper that challenged Broca's most precious belief: Gratiolet dared to argue that the size of a brain bore no relationship to its degree of intelligence.

Broca rose in his own defense, arguing that "the study of the brains of human races would lose most of its interest and utility" if variation in size counted for nothing (1861, p. 141). Why had anthropologists spent so much time measuring skulls, unless their results could delineate human groups and assess their relative worth?

Among the questions heretofore discussed within the Anthropological Society, none is equal in interest and importance to the question before us now. . . . The great importance of craniology has struck anthropologists with such force that many among us have neglected the other parts of our science in order to devote ourselves almost exclusively to the study of skulls. . . . In such data, we hoped to find some information relevant to the intellectual value of the various human races (1861, p. 139).

Broca then unleashed his data and poor Gratiolet was routed. His final contribution to the debate must rank among the most oblique, yet abject concession speeches ever offered by a scientist. He did not abjure his errors; he argued instead that no one had appreciated the subtlety of his position. (Gratiolet, by the way, was a royalist, not an egalitarian. He merely sought other measures to affirm the inferiority of blacks and women—earlier closure of the skull sutures, for example.)

Broca concluded triumphantly:

In general, the brain is larger in mature adults than in the elderly, in men than in women, in eminent men than in men of mediocre talent, in superior races than in inferior races (1861, p. 304). . . . Other things equal, there is a remarkable relationship between the development of intelligence and the volume of the brain (p. 188).

Five years later, in an encyclopedia article on anthropology, Broca expressed himself more forcefully:

A prognathous [forward-jutting] face, more or less black color of the skin, woolly hair and intellectual and social inferiority are often associated,
while more or less white skin, straight hair and an orthognathous [straight] face are the ordinary equipment of the highest groups in the human series (1866, p. 280). ... A group with black skin, woolly hair and a prognathous face has never been able to raise itself spontaneously to civilization (pp. 295-296).

These are harsh words, and Broca himself regretted that nature had fashioned such a system (1866, p. 296). But what could he do? Facts are facts. "There is no faith, however respectable, no interest, however legitimate, which must not accommodate itself to the progress of human knowledge and bend before truth" (in Count, 1950, p. 72). Paul Topinard, Broca's leading disciple and successor, took as his motto (1882, p. 748): "J'ai horreur des systèmes et surtout des systèmes a priori" (I abhor systems, especially a priori systems).

Broca singled out the few egalitarian scientists of his century for particularly harsh treatment because they had debased their calling by allowing an ethical hope or political dream to cloud their judgment and distort objective truth. "The intervention of political and social considerations has not been less injurious to anthropology than the religious element" (1855, in Count, 1950, p. 73). The great German anatomist Friedrich Tiedemann, for example, had argued that blacks and whites did not differ in cranial capacity. Broca nailed Tiedemann for the same error I uncovered in Morton's work (see pp.82–101). When Morton used a subjective and imprecise method of reckoning, he calculated systematically lower capacities for blacks than when he measured the same skulls with a precise technique. Tiedemann, using an even more imprecise method, calculated a black average 45 cc above the mean value recorded by other scientists. Yet his measures for white skulls were no larger than those reported by colleagues. (For all his delight in exposing Tiedemann, Broca apparently never checked Morton's figures, though Morton was his hero and model. Broca once published a one-hundred-page paper analyzing Morton's techniques in the most minute detail—Broca, 1873b.)

Why had Tiedemann gone astray? "Unhappily," Broca wrote (1873b, p. 12), "he was dominated by a preconceived idea. He set out to prove that the cranial capacity of all human races is the same." But "it is an axiom of all observational sciences that facts must precede theories" (1868, p. 4). Broca believed, sincerely I
assume, that facts were his only constraint and that his success in affirming traditional rankings arose from the precision of his measures and his care in establishing repeatable procedures.

Indeed, one cannot read Broca without gaining enormous respect for his care in generating data. I believe his numbers and doubt that any better have ever been obtained. Broca made an exhaustive study of all previous methods used to determine cranial capacity. He decided that lead shot, as advocated by "le célèbre Morton" (1861, p. 183), gave the best results, but he spent months refining the technique, taking into account such factors as the form and height of the cylinder used to receive the shot after it is poured from the skull, the speed of pouring shot into the skull, and the mode of shaking and tapping the skull to pack the shot and to determine whether or not more will fit in (Broca, 1873b). Broca finally developed an objective method for measuring cranial capacity. In most of his work, however, he preferred to weigh the brain directly after autopsies performed by his own hands.

I spent a month reading all of Broca's major work, concentrating on his statistical procedures. I found a definite pattern in his methods. He traversed the gap between fact and conclusion by what may be the usual route—predominantly in reverse. Conclusions came first and Broca's conclusions were the shared assumptions of most successful white males during his time—themselves on top by the good fortune of nature, and women, blacks, and poor people below. His facts were reliable (unlike Morton's), but they were gathered selectively and then manipulated unconsciously in the service of prior conclusions. By this route, the conclusions achieved not only the blessing of science, but the prestige of numbers. Broca and his school used facts as illustrations, not as constraining documents. They began with conclusions, peered through their facts, and came back in a circle to the same conclusions. Their example repays a closer study, for unlike Morton (who manipulated data, however unconsciously), they reflected their prejudices by another, and probably more common, route: advocacy masquerading as objectivity.

Selecting characters

When the "Hottentot Venus" died in Paris, Georges Cuvier, the greatest scientist and, as Broca would later discover to his delight,
the largest brain of France, remembered this African woman as he had seen her in the flesh.

She had a way of pouting her lips exactly like what we have observed in the orang-utan. Her movements had something abrupt and fantastical about them, reminding one of those of the ape. Her lips were monstrously large [those of apes are thin and small as Cuvier apparently forgot]. Her ear was like that of many apes, being small, the tragus weak, and the external border almost obliterated behind. These are animal characters. I have never seen a human head more like an ape than that of this woman (in Topinard, 1878, pp. 493-494).

The human body can be measured in a thousand ways. Any investigator, convinced beforehand of a group’s inferiority, can select a small set of measures to illustrate its greater affinity with apes. (This procedure, of course, would work equally well for white males, though no one made the attempt. White people, for example, have thin \textit{lips}—a property shared with \textit{chimpanzees}—while most black Africans have thicker, consequently more “human,” lips.)

Broca's cardinal bias lay in his assumption that human races could be ranked in a linear scale of mental worth. In enumerating the aims of ethnology, Broca included: "to determine the relative position of races in the human series" (in Topinard, 1878, p. 660). It did not occur to him that human variation might be ramified and random, rather than linear and hierarchical. And since he knew the order beforehand, anthropometry became a search for characters that would display the correct ranking, not a numerical exercise in raw empiricism.

Thus Broca began his search for "meaningful" \textit{characters}—those that would display the established ranks. In 1862, for example, he tried the ratio of radius (lower arm bone) to humerus (upper arm bone), reasoning that a higher ratio marks a longer \textit{forearm}—a character of apes. All began \textit{well}: blacks yielded a ratio of .794, whites .739. But then Broca ran into trouble. An Eskimo skeleton yielded .703, an Australian aborigine .709, while the Hottentot Venus, Cuvier's near ape (her skeleton had been preserved in Paris), measured a mere .703. Broca now had two choices. He could either admit that, on this criterion, whites ranked lower than several dark-skinned groups, or he could abandon the criterion. Since he knew (1862a, p. 10) that Hottentots, Eskimos, and Austra-
lian aborigines ranked below most African blacks, he chose the second course: "After this, it seems difficult to me to continue to say that elongation of the forearm is a character of degradation or inferiority, because, on this account, the European occupies a place between Negroes on the one hand, and Hottentots, Australians, and eskimos on the other" (1862, p. 11).

Later, he almost abandoned his cardinal criterion of brain size because inferior yellow people scored so well:

A table on which races were arranged by order of their cranial capacities would not represent the degrees of their superiority or inferiority, because size represents only one element of the problem [of ranking races]. On such a table, Eskimos, Lapps, Malays, Tartars and several other peoples of the Mongolian type would surpass the most civilized people of Europe. A lowly race may therefore have a big brain (1873a, p. 38).

But Broca felt that he could salvage much of value from his crude measure of overall brain size. It may fail at the upper end because some inferior groups have big brains, but it works at the lower end because small brains belong exclusively to people of low intelligence. Broca continued:

But this does not destroy the value of small brain size as a mark of inferiority. The table shows that West African blacks have a cranial capacity about 100 cc less than that of European races. To this figure, we may add the following: Caffirs, Nubians, Tasmanians, Hottentots, Australians. These examples are sufficient to prove that if the volume of the brain does not play a decisive role in the intellectual ranking of races, it nevertheless has a very real importance (1873a, p. 38).

An unbeatable argument. Deny it at one end where conclusions are uncongenial; affirm it by the same criterion at the other. Broca did not fudge numbers; he merely selected among them or interpreted his way around them to favored conclusions.

In choosing among measures, Broca did not just drift passively in the sway of a preconceived idea. He advocated selection among characters as a stated goal with explicit criteria. Topinard, his chief disciple, distinguished between "empirical" characters "having no apparent design," and "rational" characters "related to some physiological opinion" (1878, p. 221). How then to determine which characters are "rational"? Topinard answered: "Other characteristics are looked upon, whether rightly or wrongly, as dominant.
They have an affinity in negroes to those which they exhibit in apes, and establish the transition between these and Europeans" (1878, p. 221). Broca had also considered this issue in the midst of his debate with Gratiolet, and had reached the same conclusion (1861, p. 176):

We surmount the problem easily by choosing, for our comparison of brains, races whose intellectual inequalities are completely clear. Thus, the superiority of Europeans compared with African Negroes, American Indians, Hottentots, Australians and the Negroes of Oceania, is sufficiently certain to serve as a point of departure for the comparison of brains.

Particularly outrageous examples abound in the selection of individuals to represent groups in illustrations. Thirty years ago, when I was a child, the Hall of Man in the American Museum of Natural History still displayed the characters of human races by linear arrays running from apes to whites. Standard anatomical illustrations, until this generation, depicted a chimp, a Negro, and a white, part by part in that order—even though variation among whites and blacks is always large enough to generate a different order with other individuals: chimp, white, black. In 1903, for example, the American anatomist E. A. Spitzka published a long treatise on brain size and form in "men of eminence." He printed the following figure (Fig. 3.3) with a comment: "The jump from a Cuvier or a Thackeray to a Zulu or a Bushman is not greater than from the latter to the gorilla or the orang" (1903, p. 604). But he also published a similar figure (Fig. 3.4) illustrating variation in brain size among eminent whites apparently never realizing that he had destroyed his own argument. As F. P. Mall, the man who exposed Bean, wrote of these figures (1909, p. 24): "Comparing [them], it appears that Gambetta's brain resembles the gorilla's more than it does that of Gauss."

Averting anomalies

Inevitably, since Broca amassed so much disparate and honest data, he generated numerous anomalies and apparent exceptions to his guiding generality—that size of brain records intelligence and that comfortable white males have larger brains than women, poor people, and lower races. In noting how he worked around each apparent exception, we obtain our clearest insight into Broca's
methods of argument and inference. We also understand why data could never overthrow his assumptions.

BIG-BRAINED GERMANS

Gratiolet, in his last desperate attempt, pulled out all the stops. He dared to claim that, on average, German brains are 100 grams heavier than French brains. Clearly, Gratiolet argued, brain size has nothing to do with intelligence! Broca responded disdainfully: "Monsieur Gratiolet has almost appealed to our patriotic sentiments. But it will be easy for me to show him that he can grant some value to the size of the brain without ceasing, for that, to be a good Frenchman" (1861, pp. 441-442).

Broca then worked his way systematically through the data. First of all, Gratiolet's figure of 100 grams came from unsupported claims of the German scientist E. Huschke. When Broca collated all the actual data he could find, the difference in size between German and French brains fell from 100 to 48 grams. Broca then applied a series of corrections for nonintellectual factors that also affect brain size. He argued, quite correctly, that brain size increases with body size, decreases with age, and decreases during long periods of poor health (thus explaining why executed criminals often have larger brains than honest folk who die of degenerative diseases in hospitals). Broca noted a mean French age of fifty-six and a half years in his sample, while the Germans averaged only fifty-one. He estimated that this difference would account for 16 grams of the disparity between French and Germans, cutting the German advantage to 32 grams. He then removed from the German sample all individuals who had died by violence or execution. The mean brain weight of twenty Germans, dead from natural causes, now stood at 1,320 grams, already below the French average of 1,333 grams. And Broca had not even yet corrected for the larger average body size of Germans. Vive la France.

Broca's colleague de Jouvencel, speaking on his behalf against the unfortunate Gratiolet, argued that greater German brawn accounted for all the apparent difference in brain and then some. Of the average German, he wrote (1861, p. 466):

He ingests a quantity of solid food and drink far greater than that which satisfies us. This, joined with his consumption of beer, which is prevalent in areas where wine is made, makes the German much more
3.3 Spitzka's chain of being according to brain size.
Spitzka's depiction of variation in brain size among white men of eminence.
fleshy [charnu] than the Frenchman—so much so that their relation of brain size to total mass, far from being superior to ours, appears to me, on the contrary, to be inferior.

I do not challenge Broca's use of corrections but I do note his skill in wielding them when his own position was threatened. Bear this in mind when I discuss how deftly he avoided them when they might have challenged a congenial conclusion—the small brains of women.

SMALL-BRAINED MEN OF EMINENCE

The American anatomist E. A. Spitzka urged men of eminence to donate their brains to science after their death. "To me the thought of an autopsy is certainly less repugnant than I imagine the process of cadaveric decomposition in the grave to be" (1907, p. 235). The dissection of dead colleagues became something of a cottage industry among nineteenth-century craniometricians. Brains exerted their customary fascination, and lists were proudly touted, accompanied by the usual invidious comparisons. (The leading American anthropologists J. W. Powell and W. J. McGee even made a wager over who carried the larger brain. As Ko-Ko told Nanki-Poo about the fireworks that would follow his execution, "You won't see them, but they'll be there all the same.")

Some men of genius did very well indeed. Against a European average of 1,300 to 1,400 grams, the great Cuvier stood out with his topheavy 1,830 grams. Cuvier headed the charts until Turgenev finally broke the 2,000 gram barrier in 1883. (Other potential occupants of this stratosphere, Cromwell and Swift, lay in limbo for insufficiency of record.)

The other end was a bit more confusing and embarrassing. Walt Whitman managed to hear America singing with only 1,282 grams. As a crowning indignity, Franz Josef Gall, one of the two founders of phrenology—the original "science" of judging various mental capacities by the size of localized brain areas—weighed in at a meager 1,198 grams. (His colleague J. K. Spurzheim yielded a quite respectable 1,559 grams.) And, though Broca didn't know it, his own brain weighed only 1,424 grams, a bit above average to be sure, but nothing to crow about. Anatole France extended the range of famous authors to more than 1,000 grams when, in 1924, he opted for the other end of Turgenev's fame and clocked in at a mere 1,017 grams.
The small brains were troublesome, but Broca, undaunted, managed to account for all of them. Their possessors either died very old, were very short and slightly built, or had suffered poor preservation. Broca's reaction to a study by his German colleague Rudolf Wagner was typical. Wagner had obtained a real prize in 1855, the brain of the great mathematician Karl Friedrich Gauss. It weighed a modestly overaverage 1,492 grams, but was more richly convoluted than any brain previously dissected (Fig. 3.5). Encouraged, Wagner went on to weigh the brains of all dead and willing professors at Göttingen, in an attempt to plot the distribution of brain size among men of eminence. By the time Broca was battling with Gratiolet in 1861, Wagner had four more measurements. None posed any challenge to Cuvier, and two were distinctly puzzling—Hermann, the professor of philosophy at 1,368 grams, and Hausmann, the professor of mineralogy, at 1,226 grams. Broca corrected Hermann's brain for his age and raised it

3 • 5 The brain of the great mathematician K. F. Gauss (right) proved to be something of an embarrassment since, at 1,492 grams, it was only slightly larger than average. But other criteria came to the rescue. Here, E. A. Spitzka demonstrates that Gauss's brain is much more richly convoluted than that of a Papuan (left).
by 16 grams to 1.19 percent above average—"not much for a professor of linguistics," Broca admitted, "but still something" (1861, p. 167). No correction could raise Hausmann to the mean of ordinary folks, but considering his venerable seventy-seven years, Broca speculated that his brain may have undergone more than the usual amount of senile degeneration: "The degree of decadence that old age can impose upon a brain is very variable and cannot be calculated."

But Broca was still bothered. He could get around the low values, but he couldn't raise them to unusual weights. Consequently, to clinch an unbeatable conclusion, he suggested with a touch of irony that Wagner's post-Gaussian subjects may not have been so eminent after all:

It is not very probable that 5 men of genius should have died within five years at the University of Gottingen. . . . A professorial robe is not necessarily a certificate of genius; there may be, even at Gottingen, some chairs occupied by not very remarkable men (1861, pp. 165-166).

At this point, Broca desisted: "The subject is delicate," he wrote (1861, p. 169), "and I must not insist upon it any longer."

LARGE-BRAINED CRIMINALS

The large size of many criminal brains was a constant source of bother to craniometricians and criminal anthropologists. Broca tended to dismiss it with his claim that sudden death by execution precluded the diminution that long bouts of disease produced in many honest men. In addition, death by hanging tended to engorge the brain and lead to spuriously high weights.

In the year of Broca's death, T. Bischoff published his study on the brains of 119 assassins, murderers, and thieves. Their average exceeded the mean of honest men by 11 grams, while 14 of them topped 1,500 grams, and 5 exceeded 1,600 grams. By contrast, only three men of genius could boast more than 1,600 grams, while the assassin Le Pelley, at 1,809 grams, must have given pause to the shade of Cuvier. The largest female brain ever weighed (1,565 grams) belonged to a woman who had killed her husband.

Broca's successor Paul Topinard puzzled over the data and finally decided that too much of a good thing is bad for some people. Truly inspired criminality may require as much upstairs as
professorial virtuosity; who shall decide between Moriarty and Holmes? Topinard concluded: "It seems established that a certain proportion of criminals are pushed to depart from present social rules by an exuberance of cerebral activity and, consequently, by the fact of a large or heavy brain" (1888, p. 15).

FLAWS IN A PATTERN OF INCREASE THROUGH TIME

Of all Broca's studies, with the exception of his work on differences between men and women, none won more respect or attention than his supposed demonstration of steady increase in brain size as European civilization advanced from medieval to modern times (Broca, 1862b).

This study merits close analysis because it probably represents the best case of hope dictating conclusion that I have ever encountered. Broca viewed himself as a liberal in the sense that he did not condemn groups to permanent inferiority based on their current status. Women's brains had degenerated through time thanks to a socially enforced underusage; they might increase again under different social conditions. Primitive races had not been sufficiently challenged, while European brains grew steadily with the march of civilization.

Broca obtained large samples from each of three Parisian cemeteries, from the twelfth, the eighteenth, and the nineteenth centuries. Their average cranial capacities were, respectively, 1,426, 1,409, and 1,462 cc—not exactly the stuff for a firm conclusion of steady increase through time. (I have not been able to find Broca's raw data for statistical testing, but with a 3.5 percent mean difference between smallest and largest sample, it is likely that no statistically significant differences exist at all among the three samples.)

But how did these limited data—only three sites with no information on ranges of variation at a given time and no clear pattern through time—lead Broca to his hopeful conclusion? Broca himself admitted an initial disappointment: he had expected to find intermediate values in the eighteenth-century site (1862b, p. 106). Social class, he argued, must hold the answer, for successful groups within a culture owe at least part of their status to superior wits. The twelfth-century sample came from a churchyard and must represent gentry. A common grave provided the eighteenth-century skulls. But the nineteenth-century sample was a mixture,
ninety skulls from individual graves with a mean of 1484 cc, and thirty-five from a common grave with an average of 1403 cc. Broca claimed that if differences in social class do not explain why calculated values fail to meet expectations, then the data are unintelligible. Intelligible, to Broca, meant steadily increasing through time—the proposition that the data were meant to prove, not rest upon. Again, Broca travels in a circle:

Without this [difference in social class], we would have to believe that the cranial capacity of Parisians has really diminished during centuries following the 12th. Now during this period . . . intellectual and social progress has been considerable, and even if we are not yet certain that the development of civilization makes the brain grow as a consequence, no one, without doubt, would want to consider this cause as capable of making the brain decrease in size (1862b, p. 106).

But Broca's division of the nineteenth-century sample by social class also brought trouble as well as relief—for he now had two samples from common graves and the earlier one had a larger mean capacity, 1,409 for the eighteenth century vs. 1,403 for the nineteenth. But Broca was not to be defeated; he argued that the eighteenth-century common grave included a better class of people. In these prerevolutionary times, a man had to be really rich or noble to rest in a churchyard. The dregs of the poor measured 1,403 in the nineteenth century; the dregs leavened by good stock yielded about the same value one hundred years before.

Each solution brought Broca new trouble. Now that he was committed to a partition by social class within cemeteries, he had to admit that an additional seventeen skulls from the morgue's grave at the nineteenth-century site yielded a higher value than skulls of middle- and upper-class people from individual graves—1,517 vs. 1,484 cc. How could unclaimed bodies, abandoned to the state, surpass the cream of society? Broca reasoned in a chain of surpassingly weak inference: morgues stood on river borders; they probably housed a large number of drowned people; many drowned are suicides; many suicides are insane; many insane people, like criminals, have surprisingly large brains. With a bit of imagination, nothing can be truly anomalous.
Front and back

Tell me about this new young surgeon, Mr. Lydgate. I am told he is wonderfully clever; he certainly looks it—a fine brow indeed.

—GEORGE ELIOT, Middlemarch (1872)

Size of the whole, however useful and decisive in general terms, did not begin to exhaust the content of craniometry. Ever since the heyday of phrenology, specific parts of the brain and skull had been assigned definite status, thus providing a set of subsidiary criteria for the ranking of groups. (Broca, in his other career as a medical man, made his most important discovery in this area. In 1861 he developed the concept of cortical localization of function when he discovered that an aphasic patient had a lesion in the left inferior frontal gyrus, now called Broca’s convolution.)

Most of these subsidiary criteria can be reduced to a single formula: front is better. Broca and his colleagues believed that higher mental functions were localized in anterior regions of the cortex, and that posterior areas busied themselves with the more mundane, though crucial, roles of involuntary movement, sensation, and emotion. Superior people should have more in front, less behind. We have already seen how Bean followed this assumption in generating his spurious data on front and back parts of the corpus callosum in whites and blacks.

Broca often used the distinction of front and back, particularly to extract himself from uncomfortable situations imposed by his data. He accepted Gratiolet’s classification of human groups into “races frontales” (whites with anterior and frontal lobes most highly developed), “races parietales” (Mongolians with parietal or mid lobes most prominent), and “races occipitales” (blacks with most in the back). He often unleashed the double whammy against inferior groups—small size and posterior prominence: “Negroes, and especially Hottentots, have a simpler brain than ours, and the relative poverty of their convolutions can be found primarily on their frontal lobes” (1873a, p. 32). As more direct evidence, he argued that ahitians artificially deformed the frontal areas of certain male children in order to make the back portions bulge. These men became courageous warriors, but could never match white heroes...
occipital courage. We must not confound it with true courage, frontal courage, which we may call Caucasian courage" (1861, pp. 202-203).

Broca also went beyond size to assess the quality of frontal vs. occipital regions in various races. Here, and not only to placate his adversary, he accepted Gratiolet's favorite argument that the sutures between skull bones close earlier in inferior races, thus trapping the brain within a rigid vault and limiting the effectiveness of further education. Not only do white sutures close later; they close in a different order—guess how? In blacks and other inferior people, the front sutures close first, the back sutures later; in whites, the front sutures close last. Extensive modern studies of cranial closure show no difference of timing or pattern among races (Todd and Lyon, 1924 and 1925).

Broca used this argument to extricate himself from a serious problem. He had described a sample of skulls from the earliest populations of Homo sapiens (Cro-Magnon type) and found that they exceeded modern Frenchmen in cranial capacity. Fortunately, however, their anterior sutures closed first and these progenitors must have been inferior after all: "These are signs of inferiority. We find them in all races in which the material life draws all cerebral activity to it. As intellectual life develops among a people, the anterior sutures become more complicated and stay open for a longer time" (1873a, p. 19).

The argument of front and back,* so flexible and far-ranging, served as a powerful tool for rationalizing prejudice in the face of apparently contradictory fact. Consider the following two examples.

THE CRANIAL INDEX

Beyond brain size itself, the two most hoary and misused measures of craniometry were surely the facial angle (jutting forward of face and jaws—the less the better), and the cranial index. The cranial index never had much going for it beyond ease of measurement. It was calculated as the ratio of maximum width to maximum

*Broca did not confine his arguments on the relative worth of brain parts to the distinction between front and back. Virtually any measured difference between peoples could be given a value in terms of prior conviction about relative worth. Broca once claimed, for example (1861, p. 187), that blacks probably had larger cranial nerves than whites, hence a larger nonintellectual portion of the brain.
length of the skull. Relatively long skulls (ratio of .75 or less) were called dolichocephalic; relatively short skulls (over .8), brachycephalic. Anders Retzius, the Swedish scientist who popularized the cranial index, constructed a theory of civilization upon it. He believed that Stone Age peoples of Europe were brachycephalic, and that progressive Bronze Age elements (Indo-European, or Aryan dolichocephalics) later invaded and replaced the original and more primitive inhabitants. Some original brachycephalic stocks survive among such benighted people as Basques, Finns, and Lapps.

Broca disproved this popular tale conclusively by discovering dolichocephalics both among Stone Age skulls and within modern remnants of "primitive" stocks. Indeed, Broca had good reason to be suspicious of attempts by Nordic and Teutonic scientists to enshrine dolichocephaly as a mark of higher capability. Most Frenchmen, including Broca himself (Manouvrier, 1899), were brachycephalic. In a passage that recalls his dismissal of Tiedemann's claims for equality between black and white brains, Broca labeled Retzius's doctrine as self-serving gratification rather than empirical truth. Did he ever consider the possibility that he might fall prey to similar motivations?

Since the work of Mr. Retzius, scientists have generally held, without sufficient study, that dolichocephaly is a mark of superiority. Perhaps so; but we must also not forget that the characters of dolichocephaly and brachycephaly were studied first in Sweden, then in England, the United States and Germany—and that in all these countries, particularly in Sweden, the dolichocephalic type clearly predominates. It is a natural tendency of men, even among those most free of prejudice, to attach an idea of superiority to the dominant characteristics of their race (1861, p. 513).

Obviously, Broca declined to equate brachycephaly with inherent stupidity. Still, the prestige of dolichocephaly was so great that Broca felt more than a little uncomfortable when clearly inferior people turned up longheaded—uncomfortable enough to invent one of his most striking, unbeatable arguments. The cranial index had run into a stunning difficulty: not only were African blacks and Australian aborigines dolichocephalic, but they turned out to be the world's most longheaded peoples. Adding insult to this injury, the fossil Cro-Magnon skulls were not only larger than those of modern Frenchmen; they were more dolichocephalic as well.
Dolichocephaly, Broca reasoned, could be attained in several ways. The longheadedness that served as a mark of Teutonic genius obviously arose by frontal elongation. Dolichocephalics among people known to be inferior must have evolved by lengthening the back—occipital dolichocephaly in Broca's terms. With one sweep, Broca encompassed both the superior cranial capacity and the dolichocephaly of his Cro-Magnon fossils: "It is by the greater development of their posterior cranium that their general cranial capacity is rendered greater than ours" (1873a, p. 41). As for blacks, they had acquired both a posterior elongation and a diminution in frontal width, thus giving them both a smaller brain in general and a longheadedness (not to be confused with the Teutonic style) exceeded by no human group. As to the brachycephaly of Frenchmen, it is no failure of frontal elongation (as the Teutonic supremacists claimed), but an addition of width to a skull already admirable.

THE CASE OF THE FORAMEN MAGNUM

The foramen magnum is the hole in the base of our skull. The spinal cord passes through it and the vertebral column articulates to the bone around its edge (the occipital condyle). In the embryology of all mammals, the foramen magnum begins under the skull, but migrates back to a position behind the skull at birth. In humans, the foramen magnum migrates only slightly and remains under the skull in adults. The foramen magnum of adult great apes occupies an intermediate position, not so far forward as in humans, not so far back as in other mammals. The functional significance of these orientations is clear. An upright animal like Homo sapiens must have its skull mounted on top of its vertebral column in order to look forward when standing erect; fourfooted animals mount their vertebral column behind their skull and look forward in their usual posture.

These differences provided an irresistible source for invidious comparison. Inferior peoples should have a more posterior foramen magnum, as in apes and lower mammals. In 1862 Broca entered an existing squabble on this issue. Relative egalitarians like James Cowles Pritchard had been arguing that the foramen magnum lies exactly in the center of the skull in both whites and blacks. Racists like J. Virey had discovered graded variation, the higher
the race, the more forward the foramen magnum. Neither side, Broca noted, had much in the way of data. With characteristic objectivity, he set out to resolve this vexatious, if minor, issue.

Broca amassed a sample of sixty whites and thirty-five blacks and measured the length of their skulls both before and behind the anterior border of the foramen magnum. Both races had the same amount of skull behind—100.385 mm for whites, 100.857 mm for blacks (note precision to third decimal place). But whites had much less in front (90.736 vs. 100.304 mm) and their foramen magnum therefore lay in a more anterior position (see Table 3.1). Broca concluded: "In orang-utans, the posterior projection [the part of the skull behind the foramen magnum] is shorter. It is therefore incontestable . . . that the conformation of the Negro, in this respect as in many others, tends to approach that of the monkey" (1862c, p. 16).

But Broca then began to worry. The standard argument about the foramen magnum referred only to its relative position on the cranium itself, not to the face projecting in front of the cranium. Yet Broca had included the face in his anterior measure. Now everyone knows, he wrote, that blacks have longer faces than whites. This is an apelike sign of inferiority in its own right, but it should not be confused with the relative position of the foramen magnum within the cranium. Thus Broca set out to subtract the facial influence from his measures. He found that blacks did, indeed, have longer faces—white faces accounted for only 12.385 mm of their anterior measure, black faces for 27.676 mm (see Table 3.1). Subtracting facial length, Broca obtained the following figures for anterior cranium: 78.351 for whites, 72.628 for blacks.

In other words, based on the cranium alone, the foramen magnum

<table>
<thead>
<tr>
<th>Table 3.1</th>
<th>Broca's measurements on the relative position of the foramen magnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WHITES</td>
</tr>
<tr>
<td>ANTERIOR</td>
<td>90.736</td>
</tr>
<tr>
<td>Facial</td>
<td>12.385</td>
</tr>
<tr>
<td>Cranial</td>
<td>78.351</td>
</tr>
<tr>
<td>POSTERIOR</td>
<td>100.385</td>
</tr>
</tbody>
</table>
of blacks lay farther forward (the ratio of front to back, calculated from Broca's data, is .781 for whites, and .720 for blacks). Clearly, by criteria explicitly accepted before the study, blacks are superior to whites. Or so it must be, unless the criteria suddenly shift, as they did forthwith.

The venerable argument of front and back appeared to rescue Broca and the threatened people he represented. The more forward position of the foramen magnum in blacks does not record their superiority after all; it only reflects their lack of anterior brain power. Relative to whites, blacks have lost a great deal of brain in front. But they have added some brain behind, thus reducing the front/back ratio of the foramen magnum and providing a spurious appearance of black advantage. But they have not added to these inferior back regions as much as they lost in the anterior realm. Thus blacks have smaller and more poorly proportioned brains than whites:

The anterior cranial projection of whites . . . surpasses that of Negroes by 4.9 percent . . . Thus, while the foramen magnum of Negroes is further back with respect to their incisors [Broca's most forward point in his anterior measure that included the face], it is, on the contrary, further forward with respect to the anterior edge of their brain. To change the cranium of a white into that of a Negro, we would have not only to move the jaws forward, but also to reduce the front of the cranium—that is, to make the anterior brain atrophy and to give, as insufficient compensation, part of the material we extracted to the posterior cranium. In other words, in Negroes, the facial and occipital regions are developed to the detriment of the frontal region (1862c, p. 18).

This was a small incident in Broca's career, but I can imagine no better illustration of his method—shifting criteria to work through good data toward desired conclusions. Heads I'm superior; tails, you're inferior.

And old arguments never seem to die. Walter Freeman, dean of American lobotomists (he performed or supervised thirty-five hundred lesions of frontal portions of the brain before his retirement in 1970), admitted late in his career (cited in Chorover, 1979):

What the investigator misses most in the more highly intelligent individuals is their ability to introspect, to speculate, to philosophize, especially in regard to oneself. . . . On the whole, psychosurgery reduces creativity, sometimes to the vanishing point.
Freeman then added that "women respond better than men, Negroes better than whites." In other words, people who didn't have as much up front in the first place don't miss it as badly.

Women's brains

Of all his comparisons between groups, Broca collected most information on the brains of women vs. men—presumably because it was more accessible, not because he held any special animus toward women. "Inferior" groups are interchangeable in the general theory of biological determinism. They are continually juxtaposed, and one is made to serve as a surrogate for all—for the general proposition holds that society follows nature, and that social rank reflects innate worth. Thus, E. Huschke, a German anthropologist, wrote in 1854: "The Negro brain possesses a spinal cord of the type found in children and women and, beyond this, approaches the type of brain found in higher apes" (in Mall, 1909, pp. 1-2). The celebrated German anatomist Carl Vogt wrote in 1864:

> By its rounded apex and less developed posterior lobe the Negro brain resembles that of our children, and by the protuberance of the parietal lobe, that of our females. . . . The grown-up Negro partakes, as regards his intellectual faculties, of the nature of the child, the female, and the senile white. . . . Some tribes have founded states, possessing a peculiar organization; but, as to the rest, we may boldly assert that the whole race has, neither in the past nor in the present, performed anything tending to the progress of humanity or worthy of preservation (1864, pp. 183-192).

G. Hervé, a colleague of Broca, wrote in 1881: "Men of the black races have a brain scarcely heavier than that of white women" (1881, p. 692). I do not regard as empty rhetoric a claim that the battles of one group are for all of us.

Broca centered his argument about the biological status of modern women upon two sets of data: the larger brains of men in modern societies and a supposed widening through time of the disparity in size between male and female brains. He based his most extensive study upon autopsies he performed in four Parisian hospitals. For 292 male brains, he calculated a mean weight of 1,325 grams; 140 female brains averaged 1,144 grams for a difference of 181 grams, or 14 percent of the male weight. Broca understood, of course, that part of this difference must be attributed to the larger
size of males. He had used such a correction to rescue Frenchmen from a claim of German superiority (p. 121). In that case, he knew how to make the correction in exquisite detail. But now he made no attempt to measure the effect of size alone, and actually stated that he didn't need to do so. Size, after all, cannot account for the entire difference because we know that women are not as intelligent as men.

We might ask if the small size of the female brain depends exclusively upon the small size of her body. Tiedemann has proposed this explanation. But we must not forget that women are, on the average, a little less intelligent than men, a difference which we should not exaggerate but which is, nonetheless, real. We are therefore permitted to suppose that the relatively small size of the female brain depends in part upon her physical inferiority and in part upon her intellectual inferiority (1861, p. 153).

To record the supposed widening of the gap through time, Broca measured the cranial capacities of prehistoric skulls from L'Homme Mort cave. Here he found a difference of only 99.5 cc between males and females, while modern populations range from 129.5 to 220.7 cc. Topinard, Broca's chief disciple, explained the increasing discrepancy through time as a result of differing evolutionary pressures upon dominant men and passive women:

The man who fights for two or more in the struggle for existence, who has all the responsibility and the cares of tomorrow, who is constantly active in combating the environment and human rivals, needs more brain than the woman whom he must protect and nourish, than the sedentary woman, lacking any interior occupations, whose role is to raise children, love, and be passive (1888, p. 22).

In 1879 Gustave Le Bon, chief misogynist of Broca's school, used these data to publish what must be the most vicious attack upon women in modern scientific literature (it will take some doing to beat Aristotle). Le Bon was no marginal hate-monger. He was a founder of social psychology and wrote a study of crowd behavior still cited and respected today (La psychologie des foules, 1895). His writings also had a strong influence upon Mussolini. Le Bon concluded:

In the most intelligent races, as among the Parisians, there are a large number of women whose brains are closer in size to those of gorillas than to the most developed male brains. This inferiority is so obvious that no one can contest it for a moment; only its degree is worth discussion. All
psychologists who have studied the intelligence of women, as well as poets and novelists, recognize today that they represent the most inferior forms of human evolution and that they are closer to children and savages than to an adult, civilized man. They excel in fickleness, inconstancy, absence of thought and logic, and incapacity to reason. Without doubt there exist some distinguished women, very superior to the average man, but they are as exceptional as the birth of any monstrosity, as, for example, of a gorilla with two heads; consequently, we may neglect them entirely (1879, pp. 60-61).

Nor did Le Bon shrink from the social implications of his views. He was horrified by the proposal of some American reformers to grant women higher education on the same basis as men:

A desire to give them the same education, and, as a consequence, to propose the same goals for them, is a dangerous chimera. . . . The day when, misunderstanding the inferior occupations which nature has given her, women leave the home and take part in our battles; on this day a social revolution will begin, and everything that maintains the sacred ties of the family will disappear (1879, p. 62).

Sound familiar?*

I have reexamined Broca's data, the basis for all this derivative pronouncement, and I find the numbers sound but Broca's interpretation, to say the least, ill founded. The claim for increasing difference through time is easily dismissed. Broca based this contention on the sample from L'Homme Mort alone. It consists of seven male, and six female, skulls. Never has so much been coaxed from so little!

In 1888 Topinard published Broca's more extensive data on Parisian hospitals. Since Broca recorded height and age as well as brain size, we may use modern statistical procedures to remove their effect. Brain weight decreases with age, and Broca's women were, on average, considerably older than his men at death. Brain weight increases with height, and his average man was almost half a foot taller than his average woman. I used multiple regression, a technique that permits simultaneous assessment of the influence of

*Ten years later, America's leading evolutionary biologist, E. D. Cope, dreaded the result if "a spirit of revolt become general among women." "Should the nation have an attack of this kind," he wrote (1890, p. 2071), "like a disease, it would leave its traces in many after-generations." He detected the beginnings of such anarchy in pressures exerted by women "to prevent men from drinking wine and smoking tobacco in moderation," and in the carriage of misguided men who supported male suffrage: "Some of these men are effeminate and long-haired."
height and age upon brain size. In an analysis of the data for women, I found that, at average male height and age, a woman's brain would weigh 1,212 grams.* Correction for height and age reduces the 181 gram difference by more than a third to 113 grams.

It is difficult to assess this remaining difference because Broca's data contain no information about other factors known to influence brain size in a major way. Cause of death has an important effect, as degenerative disease often entails a substantial diminution of brain size. Eugene Schreider (1966), also working with Broca's data, found that men killed in accidents had brains weighing, on average, 60 grams more than men dying of infectious diseases. The best modern data that I can find (from American hospitals) records a full 100 gram difference between death by degenerative heart disease and by accident or violence. Since so many of Broca's subjects were elderly women, we may assume that lengthy degenerative disease was more common among them than among the men.

More importantly, modern students of brain size have still not agreed on a proper measure to eliminate the powerful effect of body size (Jerison, 1973; Gould, 1975). Height is partly adequate, but men and women of the same height do not share the same body build. Weight is even worse than height, because most of its variation reflects nutrition rather than intrinsic size—and fat vs. skinny exerts little influence upon the brain. Léonce Manouvrier took up this subject in the 1880s and argued that muscular mass and force should be used. He tried to measure this elusive property in various ways and found a marked difference in favor of men, even in men and women of the same height. When he corrected for what he called "sexual mass," women came out slightly ahead in brain size.

Thus, the corrected 113 gram difference is surely too large; the true figure is probably close to zero and may as well favor women as men. One hundred thirteen grams, by the way, is exactly the average difference between a five-foot four-inch and a six-foot-four-inch male in Broca's data—and we would not want to ascribe

* I calculate, where y is brain size in grams, x, age in years, and \(x^2 \), body height in cm:
\[
y = 764.5 - 2.55x + 3.47x^2
\]

† For his largest sample of males, and using the favored power function for bivariate
greater intelligence to tall men. In short, Broca's data do not permit any confident claim that men have bigger brains than women.

Maria Montessori did not confine her activities to educational reform for young children. She lectured on anthropology for several years at the University of Rome and wrote an influential book entitled *Pedagogical Anthropology* (English edition, 1913). She was, to say the least, no egalitarian. She supported most of Broca's work and the theory of innate criminality proposed by her compatriot Cesare Lombroso (next chapter). She measured the circumference of children's heads in her schools and inferred that the best prospects had bigger brains. But she had no use for Broca's conclusions about women. She discussed Manouvrier's work at length and made much of his tentative claim that women have slightly larger brains when proper corrections are made. Women, she concluded, are intellectually superior to men, but men have prevailed heretofore by dint of physical force. Since technology has abolished force as an instrument of power, the era of women may soon be upon us: "In such an epoch there will really be superior human beings, there will really be men strong in morality and in sentiment. Perhaps in this way the reign of woman is approaching, when the enigma of her anthropological superiority will be deciphered. Woman was always the custodian of human sentiment, morality and honor" (1913, p. 259).

Montessori's argument represents one possible antidote to "scientific" claims for the constitutional inferiority of certain groups. One may affirm the validity of biological distinctions, but argue that the data have been misinterpreted by prejudiced men with a stake in the outcome, and that disadvantaged groups are truly superior. In recent years, Elaine Morgan has followed this strategy in her *Descent of Woman*, a speculative reconstruction of human prehistory from the woman's point of view—and as farcical as more famous tall tales by and for men.

I dedicate this book to a different position. Montessori and Morgan follow Broca's method to reach a more congenial conclusion. I would rather label the whole enterprise of setting a biological value upon groups for what it is: irrelevant, intellectually unsound, and highly injurious.

Allometry of brain weight

Calculate, where \(y \) is brain weight in grams and \(x \) is height in cm: \[y = 121.6x^{0.47} \]
Postscript

Craniometric arguments lost much of their luster in our century, as determinists switched their allegiance to intelligence testing—a more "direct" path to the same invalid goal of ranking groups by mental worth—and as scientists exposed the prejudiced nonsense that dominated most literature on form and size of the head. The American anthropologist Franz Boas, for example, made short work of the fabled cranial index by showing that it varied widely both among adults of a single group and within the life of an individual (Boas, 1899). Moreover, he found significant differences in cranial index between immigrant parents and their American-born children. The immutable obtuseness of the brachycephalic southern European might veer toward the dolichocephalic Nordic norm in a single generation of altered environment (Boas, 1911).

In 1970 the South African anthropologist P. V. Tobias wrote a courageous article exposing the myth that group differences in brain size bear any relationship to intelligence—indeed, he argued, group differences in brain size, independent of body size and other biasing factors, have never been demonstrated at all.

This conclusion may strike readers as strange, especially since it comes from a famous scientist well acquainted with the reams of published data on brain size. After all, what can be simpler than weighing a brain?—Take it out, and put it on the scale. One set of difficulties refers to problems of measurement itself: at what level is the brain severed from the spinal cord; are the meninges removed or not (meninges are the brain's covering membranes, and the dura mater, or thick outer covering, weighs 50 to 60 grams); how much time elapsed after death; was the brain preserved in any fluid before weighing and, if so, for how long; at what temperature was the brain preserved after death. Most literature does not specify these factors adequately, and studies made by different scientists usually cannot be compared. Even when we can be sure that the same object has been measured in the same way under the same conditions, a second set of biases intervenes—influences upon brain size with no direct tie to the desired properties of intelligence or racial affiliation: sex, body size, age, nutrition, nonnutritional environment, occupation, and cause of death. Thus, despite thousands of published pages, and tens of thousands of subjects, Tobias concludes that we do not
know—as if it mattered at all—whether blacks, on the average, have larger or smaller brains than whites. Yet the larger size of white brains was an unquestioned "fact" among white scientists until quite recently.

Many investigators have devoted an extraordinary amount of attention to the subject of group differences in human brain size. They have gotten nowhere, not because there are no answers, but because the answers are so difficult to get and because the a priori convictions are so clear and controlling. In the heat of Broca's debate with Gratiolet, one of Broca's defenders, admittedly as a nasty debating point, made a remark that admirably epitomizes the motivations implicit in the entire craniometric tradition: "I have noticed for a long time," stated de Jouvenel (1861, p. 465), "that, in general, those who deny the intellectual importance of the brain's volume have small heads." Self-interest, for whatever reason, has been the wellspring of opinion on this heady issue from the start.
Measuring Bodies

Two Case Studies on the Apishness of Undesirables

THE CONCEPT OF EVOLUTION transformed human thought during the nineteenth century. Nearly every question in the life sciences was reformulated in its light. No idea was ever more widely used, or misused ("social Darwinism" as an evolutionary rationale for the inevitability of poverty, for example). Both creationists (Agassiz and Morton) and evolutionists (Broca and Galton) could exploit the data of brain size to make their invalid and invidious distinctions among groups. But other quantitative arguments arose as more direct spinoffs from evolutionary theory. In this chapter I discuss two as representatives of a prevalent type; they present both a strong contrast and an interesting similarity. The first is the most general evolutionary defense of all for ranking groups—the argument from recapitulation, often epitomized by the obfuscating tongue-twister "ontogeny recapitulates phylogeny." The second is a specific evolutionary hypothesis for the biological nature of human criminal behavior—Lombroso’s criminal anthropology. Both theories relied upon the same quantitative and supposedly evolutionary method—the search for signs of apish morphology in groups deemed undesirable.

The ape in all of us: recapitulation

Once the fact of evolution had been established, nineteenth-century naturalists devoted themselves to tracing the actual pathways that evolution had followed. They sought, in other words, to
reconstruct the tree of life. Fossils might have provided the evidence, for only they could record the actual ancestors of modern forms. But the fossil record is extremely imperfect, and the major trunks and branches of life's tree all grew before the evolution of hard parts permitted the preservation of a fossil record at all. Some indirect criterion had to be found. Ernst Haeckel, the great German zoologist, refurbished an old theory of creationist biology and suggested that the tree of life might be read directly from the embryological development of higher forms. He proclaimed that "ontogeny recapitulates phylogeny" or, to explicate this mellifluous tongue-twister, that an individual, in its own growth, passes through a series of stages representing adult ancestral forms in their correct order—an individual, in short, climbs its own family tree.

Recapitulation ranks among the most influential ideas of late nineteenth-century science. It dominated the work of several professions, including embryology, comparative morphology, and paleontology. All these disciplines were obsessed with the idea of reconstructing evolutionary lineages, and all regarded recapitulation as the key to this quest. The gill slits of an early human embryo represented an ancestral adult fish; at a later stage, the temporary tail revealed a reptilian or mammalian ancestor.

Recapitulation spilled forth from biology to influence several other disciplines in crucial ways. Both Sigmund Freud and C. G. Jung were convinced recapitulationists, and Haeckel's idea played no small role in the development of psychoanalytic theory. (In Totem and Taboo, for example, Freud tries to reconstruct human history from a central clue provided by the Oedipus complex of young boys. Freud reasoned that this urge to parricide must reflect an actual event among ancestral adults. Hence, the sons of an ancestral clan must once have killed their father in order to gain access to women.) Many primary-school curriculums of the late nineteenth century were reconstructed in the light of recapitulation. Several school boards prescribed the Song of Hiawatha in early grades, reasoning that children, passing through the savage stage of their ancestral past, would identify with it.*

* Readers interested in the justification provided for recapitulation by Haeckel and his colleagues, and in the reasons for its later downfall, may consult my dull, but highly detailed treatise, Ontogeny and Phylogeny, Harvard University Press, 1977.
Recapitulation also provided an irresistible criterion for any scientist who wanted to rank human groups as higher and lower. The adults of inferior groups must be like children of superior groups, for the child represents a primitive adult ancestor. If adult blacks and women are like white male children, then they are living representatives of an ancestral stage in the evolution of white males. An anatomical theory for ranking races—based on entire bodies, not only on heads—had been found.

Recapitulation served as a general theory of biological determinism. All "inferior" groups—races, sexes, and classes—were compared with the children of white males. E. D. Cope, the celebrated American paleontologist who elucidated the mechanism of recapitulation (see Gould, 1977, pp. 85–91), identified four groups of lower human forms on this criterion: nonwhite races, all women, southern as opposed to northern European whites, and lower classes within superior races (1887, pp. 291–293—Cope particularly despised "the lower classes of the Irish"). Cope preached the doctrine of Nordic supremacy and agitated to curtail the immigration of Jews and southern Europeans to America. To explain the inferiority of southern Europeans in recapitulatory terms, he argued that warmer climates impose an earlier maturation. Since maturation signals the slowdown and cessation of bodily development, southern Europeans are caught in a more childlike, hence primitive, state as adults. Superior northerners move on to higher stages before a later maturation cuts off their development:

There can be little doubt that in the Indo-European race maturity in some respects appears earlier in tropical than in northern regions; and though subject to many exceptions, this is sufficiently general to be looked upon as a rule. Accordingly, we find in that race—at least in the warmer regions of Europe and America—a larger proportion of certain qualities which are more universal in women, as greater activity of the emotional nature when compared with the judgment. . . . Perhaps the more northern type left all that behind in its youth (1887, pp. 162–163).

Recapitulation provided a primary focus for anthropometric, particularly craniometric, arguments about the ranking of races. The brain, once again, played a dominant role. Louis Agassiz, in a creationist context, had already compared the brain of adult blacks with that of a white fetus seven months old. We have already cited
Vogt's remarkable statement equating the brains of adult blacks and white women with those of white male children and explaining, on this basis, the failure of black people to build any civilization worthy of his notice.

Cope also focused upon the skull, particularly upon "those important elements of beauty, a well-developed nose and beard" (1887, pp. 288-290), but he also derided the deficient calf musculature of blacks:

Two of the most prominent characters of the negro are those of immature stages of the Indo-European race in its characteristic types. The deficient calf is the character of infants at a very early stage; but, what is more important, the flattened bridge of the nose and shortened nasal cartilages are universally immature conditions of the same parts in the Indo-European. . . . In some races—e.g., the Slavic—this undeveloped character persists later than in some others. The Greek nose, with its elevated bridge, coincides not only with aesthetic beauty, but with developmental perfection.

In 1890 American anthropologist D. G. Brinton summarized the argument with a paean of praise for measurement:

The adult who retains the more numerous fetal, infantile or simian traits, is unquestionably inferior to him whose development has progressed beyond them. . . . Measured by these criteria, the European or white race stands at the head of the list, the African or negro at its foot. . . . All parts of the body have been minutely scanned, measured and weighed, in order to erect a science of the comparative anatomy of the races (1890, p. 48).

If anatomy built the hard argument of recapitulation, psychic development offered a rich field for corroboration. Didn't everyone know that savages and women are emotionally like children? Despised groups had been compared with children before, but the theory of recapitulation gave this old chestnut the respectability of main-line scientific theory. "They're like children" was no longer just a metaphor of bigotry; it now embodied a theoretical claim that inferior people were literally mired in an ancestral stage of superior groups.

G. Stanley Hall, then America's leading psychologist, stated the general argument in 1904: "Most savages in most respects are children, or, because of sexual maturity, more properly, adolescents of
adult size" (1904, vol. 2, p. 649). A. F. Chamberlain, his chief disciple, opted for the paternalistic mode: "Without primitive peoples, the world at large would be much what in small it is without the blessing of children."

The recapitulationists extended their argument to an astonishing array of human capacities. Cope compared prehistoric art with the sketches of children and living "primitives" (1887, p. 153): "We find that the efforts of the earliest races of which we have any knowledge were quite similar to those which the untaught hand of infancy traces on its slate or the savage depicts on the rocky faces of cliffs." James Sully, a leading English psychologist, compared the aesthetic senses of children and savages, but gave the edge to children (1895, p. 386):

In much of this first crude utterance of the aesthetic sense of the child we have points of contact with the first manifestations of taste in the race. Delight in bright, glistening things, in gay things, in strong contrasts of color, as well as in certain forms of movement, as that of feathers—the favorite personal adornment—this is known to be characteristic of the savage and gives to his taste in the eyes of civilized man the look of childishness. On the other hand, it is doubtful whether the savage attains to the sentiment of the child for the beauty of flowers.

Herbert Spencer, the apostle of social Darwinism, offered a pithy summary (1895, pp. 89-90): "The intellectual traits of the uncivilized . . . are traits recurring in the children of the civilized."

Since recapitulation became a focus for the general theory of biological determinism, many male scientists extended the argument to women. E. D. Cope claimed that the "metaphysical characteristics" of women were

. . . very similar in essential nature to those which men exhibit at an early stage of development. . . . The gentler sex is characterized by a greater impressibility; . . . warmth of emotion, submission to its influence rather than that of logic; timidity and irregularity of action in the outer world. All these qualities belong to the male sex, as a general rule, at some period of life, though different individuals lose them at very various periods. . . . Probably most men can recollect some early period of their lives when the emotional nature predominated—a time when emotion at the sight of suffering was more easily stirred than in maturer years. . . . Perhaps all men can recall a period of youth when they were hero-worshippers—when they felt the need of a stronger arm, and loved to look up to the powerful
friend who could sympathize with and aid them. This is the "woman stage" of character (1887, p. 159).

In what must be the most absurd statement in the annals of biological determinism, G. Stanley Hall—again, I remind you, not a crackpot, but America's premier psychologist—invoked the higher suicide rates of women as a sign of their primitive evolutionary status (1904, vol. 2, p. 194):

This is one expression of a profound psychic difference between the sexes. Woman's body and soul is phyletically older and more primitive, while man is more modern, variable, and less conservative. Women are always inclined to preserve old customs and ways of thinking. Women prefer passive methods; to give themselves up to the power of elemental forces, as gravity, when they throw themselves from heights or take poison, in which methods of suicide they surpass man. Havelock Ellis thinks drowning is becoming more frequent, and that therein women are becoming more womanly.

As a justification for imperialism, recapitulation offered too much promise to remain sequestered in academic pronouncements. I have already cited Carl Vogt's low opinion of African blacks, based on his comparison of their brains with those of white children. B. Kidd extended the argument to justify colonial expansion into tropical Africa (1898, p. 51). We are, he wrote, "dealing with peoples who represent the same stage in the history of the development of the race that the child does in the history of the development of the individual. The tropics will not, therefore, be developed by the natives themselves."

In the course of a debate about our right to annex the Philippines, Rev. Josiah Strong, a leading American imperialist, piously declared that "our policy should be determined not by national ambition, nor by commercial considerations, but by our duty to the world in general and to the Filipinos in particular" (1900, p. 287). His opponents, citing Henry Clay's contention that the Lord would not create a people incapable of self-government, argued against the need for our benevolent tutelage. But Clay had spoken in the bad old days before evolutionary theory and recapitulation:

Clay's conception was formed . . . before modern science had shown that races develop in the course of centuries as individuals do in years, and an undeveloped race, which is incapable of self-government, is no
more of a reflection on the Almighty than is an undeveloped child who is incapable of self-government. The opinions of men who in this enlightened day believe that the Filipinos are capable of self-government because everybody is, are not worth considering.

Even Rudyard Kipling, the poet laureate of imperialism, used the recapitulationist argument in the first stanza of his most famous apology for white supremacy:

Take up the White Man's Burden
Send forth the best ye breed
Go, bind your sons to exile
to serve the captive's need:
To wait, in heavy harness,
On fluttered folk and wild—
Your new-caught sullen peoples,
Half devil and half child.

Teddy Roosevelt, whose judgment was not always so keen, wrote to Henry Cabot Lodge that the verse "was very poor poetry but made good sense from the expansion point of view" (in Weston, 1972, p. 35).

And so the story might stand, a testimony to nineteenth-century folly and prejudice, if an interesting twist had not been added during our own century. By 1920 the theory of recapitulation had collapsed (Gould, 1977, pp. 167-206). Not long after, the Dutch anatomist Louis Bolk proposed a theory of exactly opposite meaning. Recapitulation required that adult traits of ancestors develop more rapidly in descendants to become juvenile features—hence, traits of modern children are primitive characters of ancestral adults. But suppose that the reverse process occurs as it often does in evolution. Suppose that juvenile traits of ancestors develop so slowly in descendants that they become adult features. This phenomenon of retarded development is common in nature; it is called neoteny (literally, "holding on to youth"). Bolk argued that humans are essentially neotenous. He listed an impressive set of features shared by adult humans and fetal or juvenile apes, but lost in adult apes: vaulted cranium and large brain in relation to body size; small face; hair confined largely to head, armpits, and pubic regions; unrotated big toe. I have already discussed one of the most important signs of human neoteny in another context (pp. 132—
135): retention of the foramen magnum in its fetal position, under the skull.

Now consider the implications of neoteny for the ranking of human groups. Under recapitulation, adults of inferior races are like children of superior races. But neoteny reverses the argument. In the context of neoteny, it is "good"—that is, advanced or superior—to retain the traits of childhood, to develop more slowly. Thus, superior groups retain their childlike characters as adults, while inferior groups pass through the higher phase of childhood and then degenerate toward apishness. Now consider the conventional prejudice of white scientists: whites are superior, blacks inferior. Under recapitulation, black adults should be like white children. But under neoteny, white adults should be like black children.

For seventy years, under the sway of recapitulation, scientists had collected reams of objective data all loudly proclaiming the same message: adult blacks, women, and lower-class whites are like white upper-class male children. With neoteny now in vogue, these hard data could mean only one thing: upper-class adult males are inferior because they lose, while other groups retain, the superior traits of childhood. There is no escape from this conclusion.

At least one scientist, Havelock Ellis, did bow to the clear implication and admit the superiority of women, though he wriggled out of a similar confession for blacks. He even compared rural with urban men, found that men of the city were developing womanly anatomy, and proclaimed the superiority of urban life (1894, p. 519): "The large-headed, delicate-faced, small-boned man of urban civilization is much nearer to the typical woman than is the savage. Not only by his large brain, but by his large pelvis, the modern man is following a path first marked out by woman." But Ellis was iconoclastic and controversial (he wrote one of the first systematic studies of sexuality), and his application of neoteny to sexual differences never made much impact. Meanwhile, with respect to racial differences, supporters of human neoteny adopted another, more common, tactic: they simply abandoned their seventy years of hard data and sought new and opposite information to confirm the inferiority of blacks.

Louis Bolk, chief defender of human neoteny, declared that the most strongly neotenized races are superior. In retaining more juvenile features, they have kept further away from "the pithecoid
ancestor of man" (1929, p. 26). "From this point of view, the division of mankind into higher and lower races is fully justified [1929, p. 26]. It is obvious that I am, on the basis of my theory, a convinced believer in the inequality of races" (1926, p. 38). Bolk reached into his anatomical grab-bag and extracted some traits indicating a greater departure for black adults from the advantageous proportions of childhood. Led by these new facts to an old and comfortable conclusion, Bolk proclaimed (1929, p. 25): "The white race appears to be the most progressive, as being the most retarded." Bolk, who viewed himself as a "liberal" man, declined to relegate blacks to permanent ineptitude. He hoped that evolution would be benevolent to them in the future:

It is possible for all other races to reach the zenith of development now occupied by the white race. The only thing required is continued progressive action in these races of the biological principle of anthropogenesis [i.e., neoteny]. In his fetal development the negro passes through a stage that has already become the final stage for the white man. Well then, when retardation continues in the negro too, what is still a transitional stage may for this race also become a final one (1926, pp. 473-474).

Bolk's argument verged on the dishonest for two reasons. First, he conveniently forgot all the features—like the Grecian nose and full beard so admired by Cope—that recapitulationists had stoutly emphasized because they placed whites far from the conditions of childhood. Secondly, he sidestepped a pressing and embarrassing issue: Orientals, not whites, are clearly the most neotenous of human races (Bolk listed the neotenous features of both races selectively and then proclaimed the differences too close to call; see Ashley Montagu, 1962, for a fairer assessment). Women, moreover, are more neotenous than men. I trust that I will not be seen as vulgar white apologist if I decline to press the superiority of Oriental women and declare instead that the whole enterprise of ranking groups by degree of neoteny is fundamentally unjustified. Just as Anatole France and Walt Whitman could write as well as Turgenev with brains about half the weight of his, I would be more than mildly surprised if the small differences in degree of neoteny among races bear any relationship to mental ability or moral worth.

Nonetheless, old arguments never die. In 1971 the British psychologist and genetic determinist H. J. Eysenck again brought forth a neotenic argument for black inferiority. Eysenck took three facts and used neoteny to forge a story from them: 1) black babies
and young children exhibit more rapid sensorimotor development than whites—that is, they are less neotenic because they depart more quickly from the fetal state; 2) average white IQ surpasses average black IQ by age three; 3) there is a slight negative correlation between sensorimotor development in the first year of life and later IQ—that is, children who develop more rapidly tend to end up with lower IQ's. Eysenck concludes (1971, p. 79): "These findings are important because of a very general view in biology [the theory of neoteny] according to which the more prolonged the infancy the greater in general are the cognitive or intellectual abilities of the species. This law appears to work even within a given species."

Eysenck fails to realize that he has based his argument on what is almost surely a noncausal correlation. (Noncausal correlations are the bane of statistical inference—see Chapter 6. They are perfectly "true" in a mathematical sense, but they demonstrate no causal connection. For example, we may calculate a spectacular correlation—very near the maximum value of 1.0—between the rise in world population during the past five years and the increasing separation of Europe and North America by continental drift.) Suppose that lower black IQ is purely a result of generally poorer environment. Rapid sensorimotor development is one way of identifying a person as black—but a less accurate way than skin color. The correlation of poor environment with lower IQ may be causal, but the correlation of rapid sensorimotor development with lower IQ is probably noncausal because rapid sensorimotor development, in this context, merely identifies a person as black. Eysenck's argument ignores the fact that black children, in a racist society, generally live in poorer environments, which may lead to lower IQ scores. Yet Eysenck invoked neoteny to give theoretical meaning, and thereby causal status, to a noncausal correlation reflecting his hereditarian bias.

The ape in some of us: criminal anthropology

Atavism and criminality

In Resurrection, Tolstoy's last great novel (1899), the assistant Prosecutor, an unfeeling modernist, rises to condemn a prostitute falsely accused of murder:
The assistant prosecutor spoke at great length. . . All the latest catchphrases then in vogue in his set, everything that then was and still is accepted as the last word in scientific wisdom was included in his speech—heredity and congenital criminality, Lombroso and Tarde, evolution and the struggle for existence. . . "Running away with himself, isn't he?" said the presiding judge with a smile, bending towards the austere member of the court. "A fearful dunderhead!" said the austere member.

In Bram Stoker's Dracula (1897), Professor Van Helsing urges Mina Harker to describe the evil Count: "Tell us . . . dry men of science what you see with those so bright eyes." She responds: "The Count is a criminal and of criminal type. Nordau and Lombroso would so classify him, and qua criminal he is of imperfectly formed mind."

Maria Montessori expressed an embattled optimism when she wrote in 1913 (p. 8): "The phenomenon of criminality spreads without check or succor, and up to yesterday it aroused in us nothing but repulsion and loathing. But now that science has laid its finger upon this moral fester, it demands the cooperation of all mankind to combat it."

The common subject of these disparate assessments is Cesare Lombroso's theory of l'uomo delinquente—criminal man—probably the most influential doctrine ever to emerge from the anthropometric tradition. Lombroso, an Italian physician, described the insight that led to his theory of innate criminality and to the profession he established—criminal anthropology. He had, in 1870, been trying to discover anatomical differences between criminals and insane men "without succeeding very well." Then, "the morning of a gloomy day in December," he examined the skull of the famous

* In his Annotated Dracula, Leonard Wolf (1975, p. 300) notes that Jonathan Harker's initial description of Count Dracula is based directly upon Cesare Lombroso's account of the born criminal. Wolf presents the following contrasts:

HARKER WITNESSES: "His [the Count's] face was . . . aquiline, with high bridge of the thin nose and peculiarly arched nostrils. . . ."

LOMBROSO: "[The criminal's] nose on the contrary . . . is often aquiline like the beak of a bird of prey."

HARKER: "His eyebrows were very massive, almost meeting over the nose. . . ."

LOMBROSO: "The eyebrows are bushy and tend to meet across the nose."

HARKER: "His ears were pale and at the tops extremely pointed. . . ."

LOMBROSO: "with a protuberance on the upper part of the posterior margin . . . a relic of the pointed ear. . . ."
brigand Vihella, and had that flash of joyous insight that marks both brilliant discovery and crackpot invention. For he saw in that skull a series of atavistic features recalling an apish past rather than a human present:

This was not merely an idea, but a flash of inspiration. At the sight of that skull, I seemed to see all of a sudden, lighted up as a vast plain under a flaming sky, the problem of the nature of the criminal—an atavistic being who reproduces in his person the ferocious instincts of primitive humanity and the inferior animals. Thus were explained anatomically the enormous jaws, high cheek bones, prominent superciliary arches, solitary lines in the palms, extreme size of the orbits, handle-shaped ears found in criminals, savages and apes, insensibility to pain, extremely acute sight, tattooing, excessive idleness, love of orgies, and the irresponsible craving of evil for its own sake, the desire not only to extinguish life in the victim, but to mutilate the corpse, tear its flesh and drink its blood (in Taylor et al., 1973, p. 41).

Lombroso's theory was not just a vague proclamation that crime is hereditary—such claims were common enough in his time—but a specific evolutionary theory based upon anthropometric data. Criminals are evolutionary throwbacks in our midst. Germs of an ancestral past lie dormant in our heredity. In some unfortunate individuals, the past comes to life again. These people are innately driven to act as a normal ape or savage would, but such behavior is deemed criminal in our civilized society. Fortunately, we may identify born criminals because they bear anatomical signs of their apishness. Their atavism is both physical and mental, but the physical signs, or stigmata as Lombroso called them, are decisive. Criminal behavior can also arise in normal men, but we know the "born criminal" by his anatomy. Anatomy, indeed, is destiny, and born criminals cannot escape their inherited taint: "We are governed by silent laws which never cease to operate and which rule society with more authority than the laws inscribed on our statute books. Crime appears to be a natural phenomenon" (Lombroso, 1887, p. 667).

Animals and savages as born criminals

The identification of apish atavism in criminals did not clinch Lombroso's argument, for physical apishness can explain a man's barbaric behavior only if the natural inclinations of savages and
lower animals are criminal. If some men look like apes, but apes be kind, then the argument fails. Thus, Lombroso devoted the first part of his major work (*Criminal Man*, first published in 1876) to what must be the most ludicrous excursion into anthropomorphism ever published—an analysis of the criminal behavior of animals. He cites, for example, an ant driven by rage to kill and dismember an aphid; an adulterous stork who, with her lover, murdered her husband; a criminal association of beavers who ganged up to murder a solitary compatriot; a male ant, without access to female reproductives, who violated a (female) worker with atrophied sexual organs, causing her great pain and death; he even refers to the insect eating of certain plants as an "equivalent of crime" (Lombroso, 1887, pp. 1-18).

Lombroso then proceeded to the next logical step: comparison of criminals with "inferior" groups. "I would compare," wrote a French supporter, "the criminal to a savage appearing, by atavism, in modern society; we may think that he was born a criminal because he was born a savage" (Bordier, 1879, p. 284). Lombroso ventured into ethnology to identify criminality as normal behavior among inferior people. He wrote a small treatise (Lombroso, 1896) on the Dinka of the Upper Nile. In it, he spoke of their heavy tattooing and high threshold for pain—at puberty they break their incisors with a hammer. They display apish stigmata as normal parts of their anatomy: "their nose...is not only flattened, but trilobed, resembling that of monkeys." His colleague G. Tarde wrote that some criminals "would have been the ornament and the moral aristocracy of a tribe of Red Indians" (in Ellis, 1910, p. 254). Havelock Ellis made much of a claim that criminals and inferior people often do not blush. "Inability to blush has always been considered the accompaniment of crime and shamelessness. Blushing is also very rare among idiots and savages. The Spaniards used to say of the South American Indians: 'How can one trust men who do not know how to blush'" (1910, p. 138). And how far did the Incas get by trusting Pizarro?

Lombroso constructed virtually all his arguments in a manner that precluded their defeat, thus making them scientifically vacuous. He cited copious numerical data to lend an air of objectivity to his work, but it remained so vulnerable that even most of Broca’s school turned against the theory of atavism. Whenever Lombroso encountered a contrary fact, he performed some mental gymnastics.
tics to incorporate it within his system. This posture is clearly expressed in his statements on the depravity of inferior peoples, for again and again he encountered stories of courage and accomplishment among those he wished to denigrate. Yet he twisted all these stories into his system. If, for example, he had to admit a favorable trait, he joined it with others he could despise. Citing the somewhat dated authority of Tacitus for his conclusion, he wrote: "Even when honor, chastity, and pity are found among savages, impulsiveness and laziness are never wanting. Savages have a horror of continuous work, so that for them the passage to active and methodical labor lies by the road of selection or of slavery only" (1911, p. 367). Or consider his one begrudging word of praise for the inferior and criminal race of gypsies:

They are vain, like all delinquents, but they have no fear or shame. Everything they earn they spend for drink and ornaments. They may be seen barefooted, but with bright-colored or lace-bedecked clothing; without stockings, but with yellow shoes. They have the improvidence of the savage and that of the criminal as well. ... They devour half-putrified carrion. They are given to orgies, love a noise, and make a great outcry in the markets. They murder in cold blood in order to rob, and were formerly suspected of cannibalism. ... It is to be noted that this race, so low morally and so incapable of cultural and intellectual development, a race that can never carry on any industry, and which in poetry has not got beyond the poorest lyrics, has created in Hungary a marvelous musical art—a new proof of the genius that, mixed with atavism, is to be found in the criminal (1911, p. 40).

If he had no damning traits to mix with his praise, he simply discounted the motivation for apparently worthy behavior among primitives." A white saint dying bravely under torture is a hero among heroes; a "savage" expiring with equal dignity simply doesn't feel the pain:

Their [criminals'] physical insensibility well recalls that of savage peoples who can bear in rites of puberty, tortures that a white man could never endure. All travellers know the indifference of Negroes and American savages to pain: the former cut their hands and laugh in order to avoid work; the latter, tied to the torture post, gaily sing the praises of their tribe while they are slowly burnt (1887, p. 319).

We recognize in this comparison of atavistic criminals with an}

savages, and people of lower races the basic argument of
recapitulation discussed in the previous section. To complete the chain, Lombroso needed only to proclaim the child as inherently criminal—for the child is an ancestral adult, a living primitive. Lombroso did not shrink from this necessary implication, and he branded as criminal the traditional innocent of literature: "One of the most important discoveries of my school is that in the child up to a certain age are manifested the saddest tendencies of the criminal man. The germs of delinquency and of criminality are found normally even in the first periods of human life" (1895, p. 53). Our impression of the child's innocence is a class bias; we comfortable folks suppress the natural inclinations of our children: "One who lives among the upper classes has no idea of the passion babies have for alcoholic liquor, but among the lower classes it is only too common a thing to see even suckling babes drink wine and liquors with wonderful delight (1895, p. 56)."

The stigmata: anatomical, physiological, and social

Lombroso's anatomical stigmata (Fig. 4.1) were, for the most part, neither pathologies nor discontinuous variations, but extreme values on a normal curve that approach average measures for the same trait in great apes. (In modern terms, this is a fundamental source of Lombroso's error. Arm length varies among humans,

* In Dracula, Professor Van Helsing, in his inimitable broken English, extolled the argument from recapitulation by branding the Count as a persistent child (and therefore both a primitive and a criminal as well):

Ah! there I have hope that our man-brains that have been of man so long and that have not lost the grace of God, will come higher than his child-brain that lie in his tomb for centuries, that grow not yet to our stature, and that do only work selfish and therefore small. . . . He is clever and cunning and resourceful; but he be not of man-stature as to brain. He be of child-brain in much. Now this criminal of ours is predestinate to crime also; he too have child-brain, and it is of the child to do what he have done. The little bird, the little fish, the little animal learn not by principle but empirically; and when he learn to do, then there is to him the ground to start from to do more.

4 • 1 A panoply of criminal faces. The frontispiece to the atlas of Lombroso's Criminal Man. Group E are German murderers; Group I are burglars (Lombroso tells us that the man without a nose managed to escape justice for many years by wearing the false nose depicted in the figure on the left, wearing a derby); "H" are purse snatchers; "A" are shoplifters; "B," "C," "D," and "F" are swindlers; while the distinguished gentlemen of the bottom row declared themselves bankrupt fraudulently.
and some people must have longer arms than others. The average chimp has a longer arm than the average human, but this doesn't mean that a relatively long-armed human is genetically similar to apes. Normal variation within a population is a different biological phenomenon from differences in average values between populations. This error occurs again and again. It is the basis of Arthur Jensen's fallacy in asserting that average differences in IQ between American whites and blacks are largely inherited—see pp. 186–187. A true atavism is a discontinuous, genetically based, ancestral trait—the occasional horse born with functional side toes, for example.) Among his apish stigmata, Lombroso listed (1887, pp. 660–661): greater skull thickness, simplicity of cranial sutures, large jaws, preeminence of the face over the cranium, relatively long arms, precocious wrinkles, low and narrow forehead, large ears, absence of baldness, darker skin, greater visual acuity, diminished sensitivity to pain, and absence of vascular reaction (blushing). At the 1886 International Congress on Criminal Anthropology, he even argued (see Fig. 4.2) that the feet of prostitutes are often prehensile as in apes (big toe widely separated from others).

For other stigmata, Lombroso descended from the apes to seek

4.2 The feet of prostitutes. This figure was presented by L. Jullien to the 4th International Congress on Criminal Anthropology in 1896. Commenting upon it, Lombroso said: "These observations show admirably that the morphology of the prostitute is more abnormal even than that of the criminal, especially for atavistic anomalies, because the prehensile foot is atavistic."
4.3 The cranial capacities of normal men (in black) compared with criminals (hatched). The y-axis is in percentages rather than actual numbers.
similarity with more distant, and even more "primitive," creatures: he compared prominent canine teeth and a flattened palate with the anatomy of lemurs and rodents, an oddly shaped occipital condyle (area for articulation of skull and vertebral column) with the normal condyles of cattle and pigs (1896, p. 188), and an abnormal heart with the usual conformation in sirenians (a group of rare marine mammals). He even postulated a meaningful similarity between the facial asymmetry of some criminals and flatfishes with both eyes on the upper surface of their bodies (1911, p. 373).

Lombroso bolstered his study of specific defects with a general anthropometric survey of the criminal head and body—a sample of 383 crania from dead criminals, plus general proportions measured for 3,839 among the living. As an indication of Lombroso's style, consider the numerical basis of his most important claim—that criminals generally have smaller brains than normal people, even though a few criminals have very large brains (see p. 126).* Lombroso (1911, p. 365) and his disciples (Ferri, 1897, p. 8, for example) repeated this claim continually. Yet Lombroso's data show no such thing. Fig. 4.3 presents the frequency distributions for cranial capacity measured by Lombroso in 121 male criminals and 328 upright men. You don't need fancy statistics to see that the two distributions differ very little—despite Lombroso's conclusion that, in criminals, "the small capacities dominate and the very great are rare" (1887, p. 144). I have reconstructed the original data from Lombroso's tables of percentages within classes and calculate average values of 1,450 cc for criminal heads and 1,484 cc for law-abiding heads. The standard deviations of the two distributions (a general measure of spread about the average) do not differ significantly. This means that the larger range of variation in the law-abiding sample—an important point for Lombroso since it extended the maximum capacity for decent folk to 100 cc above...
the maximum for criminals—may simply be an artifact of larger sample size for law-abiding men (the larger the sample, the greater the chance of including extreme values).

Lombroso’s stigmata also included a set of social traits. He emphasized particularly: 1) The argot of criminals, a language of their own with high levels of onomatopoeia, much like the speech of children and savages: "Atavism contributes to it more than anything else. They speak differently because they feel differently; they speak as savages because they are true savages in the midst of our brilliant European civilization" (1887, p. 476); 2) Tattooing, reflecting both the insensitivity of criminals to pain and their atavistic love of adornment (Fig. 4.4). Lombroso made a quantitative study of content in criminal tattoos and found them, in general, lawless ("vengeance") or excusing ("born under an unlucky star," "out of luck"), though he encountered one that read: "Long live France and french fried potatoes."

Lombroso never attributed all criminal acts to people with atavistic stigmata. He concluded that about 40 percent of criminals followed hereditary compulsion; others acted from passion, rage, or desperation. At first glance, this distinction of occasional from born criminals has the appearance of a compromise or retreat, but Lombroso used it in an opposite way—as a claim that rendered his system immune to disproof. No longer could men be characterized by their acts. Murder might be a deed of the lowest ape in a human body or of the most upright cuckold overcome by justified rage. All criminal acts are covered: a man with stigmata performs them by innate nature, a man without stigmata by force of circumstances. By classifying exceptions within his system, Lombroso excluded all potential falsification.

Lombroso’s retreat

Lombroso’s theory of atavism caused a great stir and aroused one of the most heated scientific debates of the nineteenth century. Lombroso, though he peppered his work with volumes of numbers, had not made the usual obeisances to cold objectivity. Even those great a priorists, the disciples of Paul Broca, chided Lombroso for his lawyerly, rather than scientific, approach. Paul Topinard said of him (1887, p. 676): "He did not say: here is a fact which suggests an induction to me, let’s see if I am mistaken, let’s
Lombroso regarded tattooing as a sign of innate criminality. The arm of this reprobate, depicted in Lombroso's Criminal Man, is inscribed: "A man of misfortune." On his penis we read, _entra tutto_—it all goes in. In his caption, Lombroso tells us that tattoos of shaking hands are found very frequently in pederasts.
proceed rigorously, let us collect and add other facts... The conclusion is fashioned in advance; he seeks proof, he defends his thesis like an advocate who ends up by persuading himself... [Lombroso] is too convinced."

Lombroso slowly retreated under the barrage. But he retreated like a military master. Not for a moment did he compromise or abandon his leading idea that crime is biological. He merely enlarged the range of innate causes. His original theory had the virtue of simplicity and striking originality—criminals are apes in our midst, marked by the anatomical stigmata of atavism. Later versions became more diffuse, but also more inclusive. Atavism remained as a primary biological cause of criminal behavior, but Lombroso added several categories of congenital illness and degeneration: "We see in the criminal," he wrote (1887, p. 651), "a savage man and, at the same time, a sick man." In later years, Lombroso awarded special prominence to epilepsy as a mark of criminality; he finally stated that almost every "born criminal" suffers from epilepsy to some degree. The added burden imposed by Lombroso's theory upon thousands of epileptics cannot be calculated; they became a major target of eugenical schemes in part because Lombroso had explicated their illness as a mark of moral degeneracy.

As an intriguing sidelight, unknown to most people today, the supposed link between degeneracy and racial ranking left us at least one legacy—the designation of "Mongolian idiocy" or, more blandly, "mongolism" for the chromosomal disorder now generally called "Down's syndrome." Dr. John Langdon Haydon Down, an English patrician, identified the syndrome in a paper entitled "Observations on an ethnic classification of idiots" (Down, 1866).

Down argued that many congenital "idiots" (a quasi-technical term in his day, not just an epithet) exhibited anatomical features, absent in their parents but present as defining features of lower races. He found idiots of the "Ethiopian variety"—"white negroes, although of European descent" (1866, p. 260)—others of the Malay type, and "analogues of the people who with shortened foreheads, prominent cheeks, deep-set eyes, and slightly apish nose, originally inhabited the American continent" (p. 260). Others approached "the great Mongolian family." "A very large number of congenital idiots are typical Mongols" (p. 260). He then proceeded to describe.
accurately, the features of Down's syndrome in a boy under his charge—a few accidental similarities with Orientals ("obliquely placed" eyes and slightly yellowish skin), and a much larger num­ber of dissimilar features (brown and sparse hair, thick lips, wrinkled forehead, etc.). Nonetheless, he concluded (1866, p. 261): "The boy's aspect is such that it is difficult to realize that he is the child of Europeans, but so frequently are these characters presented, that there can be no doubt that these ethnic features are the result of degeneration." Down even used his ethnic insight to explain the behavior of afflicted children: "they excell at imita­tion"—the trait most frequently cited as typically Mongolian in con­ventional racist classifications of Down's time.

Down depicted himself as a racial liberal. Had he not proven human unity by showing that the characters of lower races could appear in degenerates of the higher (1866, p. 262)? In fact, he had merely done for pathology what Lombroso was soon to accomplish for criminality—to affirm the conventional racist ranks by marking undesirable whites as biological representatives of lower groups. Lombroso spoke of atavisms that "liken the European criminal to the Australian and Mongolian type" (1887, p. 254). Yet Down's designation persisted to our day and is only now fading from use. Sir Peter Medawar told me that in the late 1970s, he and some Asian colleagues persuaded the London Times to drop "mongolism" in favor of "Down's syndrome." The good doctor will still be honored.

The influence of criminal anthropology

Dallemagne, a prominent French opponent of Lombroso, paid homage to his influence in 1896:

His thoughts revolutionized our opinions, provoked a salutary feeling everywhere, and a happy emulation in research of all kinds. For 20 years, his thoughts fed discussions; the Italian master was the order of the day in all debates; his thoughts appeared as events. There was an extraordinary animation everywhere.

Dallemagne was recording facts, not just playing diplomat. Criminal anthropology was not just an academician's debate, how­ever. It was the subject of discussion in legal and penal circles for years. It provoked numerous "reforms" and was, until World
War I, the subject of an international conference held every four years for judges, jurists, and government officials as well as for scientists.

Beyond its specific impact, Lombrosian criminal anthropology had its primary influence in bolstering the basic argument of biological determinism about the roles of actors and their surroundings: actors follow their inborn nature. To understand crime, study the criminal, not his rearing, not his education, not the current predicament that might have inspired his theft or pillage. "Criminal anthropology studies the delinquent in his natural place—that is to say, in the field of biology and pathology" (Lombroso's disciple Sergi, quoted in Zimmern, 1898, p. 744). As a conservative political argument, it can't be beat: evil, or stupid, or poor, or disenfranchised, or degenerate, people are what they are as a result of their birth. Social institutions reflect nature. Blame (and study) the victim, not his environment.

The Italian army, for example, had been bothered by several cases of misdeismo, or, as we would say, fragging. The soldier Misdea (Fig. 4.5), who gave the phenomenon its Italian name, had murdered his commanding officer. Lombroso examined him and proclaimed him "a nervous epileptic . . . , very affected by a vicious heredity" (in Ferri, 1911). Lombroso recommended that epileptics be screened from the army and this, according to Ferri, eliminated misdeismo. (I wonder if the Italian army got through WW II without a single incident of fragging by nonepileptics.) In any case, no one seemed disposed to consider the rights and conditions of recruits.

The most dubious potential consequence of Lombroso's theory was neither realized in law nor proposed by Lombroso's supporters: prescreening and isolation of people bearing stigmata before they had committed any offense—though Ferri (1897, p. 251) did label as "substantially just" Plato's defense of a family's banishment after members of three successive generations had been executed for criminal offenses. Lombroso did, however, advocate prescreening of children so that teachers might prepare themselves and know what to expect from pupils with stigmata.

Anthropological examination, by pointing out the criminal type, the precocious development of the body, the lack of symmetry, the smallness of the head, and the exaggerated size of the face explains the scholastic and disciplinary shortcomings of children thus marked and permits them
1. P. C., brigand de la Basilicate, détenu à Pesaro.

2. Voleur piémontais.

3. Incendiaire et cynède de Pesaro, surnommé la femme.

4. Midea.

Four "born criminals," including the infamous Midea, who murdered his commanding officer.
to be separated in time from their better-endowed companions and
directed towards careers more suited to their temperament (1911, pp.
438–439).

We do know that Lombroso's stigmata became important crite-
ria for judgment in many criminal trials. Again we cannot know
how many men were condemned unjustly because they were exten-
sively tattooed, failed to blush, or had unusually large jaws and
arms. E. Ferri, Lombroso's chief lieutenant, wrote (1897, pp. 166-
167):

A study of the anthropological factors of crime provides the guardians
and administrators of the law with new and more certain methods in the
detection of the guilty. Tattooing, anthropometry, physiognomy, physical
and mental conditions, records of sensibility, reflex activity, vaso-motor
reactions, the range of sight, the data of criminal statistics . . . will fre-
quently suffice to give police agents and examining magistrates a scientific
guidance in their inquiries, which now depend entirely on their individual
acuteness and mental sagacity. And when we remember the enormous
number of crimes and offenses which are not punished, for lack or inade-
quacy of evidence, and the frequency of trials which are based solely on
circumstantial hints, it is easy to see the practical utility of the primary
connection between criminal sociology and penal procedure.

Lombroso detailed some of his experiences as an expert wit-
ness. Called upon to help decide which of two stepsons had killed
a woman, Lombroso declared (1911, p. 436) that one "was, in fact,
the most perfect type of the born criminal: enormous jaws, frontal
sinuses, and zygomata, thin upper lip, huge incisors, unusually
large head (1620 cc) [a mark of genius in other contexts, but not
here], tactile obtuseness with sensorial manicinism. He was con-
victed."

In another case, based on evidence that even he could not
depict as better than highly vague and circumstantial, Lombroso
argued for the conviction of a certain Fazio, accused of robbing
and murdering a rich farmer. One girl testified that she had seen
Fazio sleeping near the murdered man; the next morning he hid
as the gendarmes approached. No other evidence of his guilt was
offered:

Upon examination I found that this man had outstanding ears, great max-
illaries and cheek bones, lemurine appendix, division of the frontal bone,
premature wrinkles, sinister look, nose twisted to the right—in short, a
physiognomy approaching the criminal type; pupils very slightly mobile
...a large picture of a woman tattooed upon his breast, with the words, "Remembrance of Celina Laura" (his wife), and on his arm the picture of a girl. He had an epileptic aunt and an insane cousin, and investigation showed that he was a gambler and an idler. In every way, then, biology furnished in this case indications which, joined with the other evidence, would have been enough to convict him in a country less tender toward criminals. Notwithstanding this he was acquitted (1911, p. 437).

You win some, you lose some. (Ironically, it was the conservative rather than the liberal nature of jurisprudence that limited Lombroso's influence. Most judges and lawyers simply couldn't bear the idea of quantitative science intruding into their ancient domain. They didn't know that Lombrosian criminal anthropology was a pseudo-science, but rejected it as an unwarranted transgression of a study fully legitimate in its own domain. Lombroso's French critics, with their emphasis on the social causes of crime, also helped to halt the Lombrosian tide—for they, Manouvrier and Topinard in particular, could parry numbers with him.)

In discussing capital punishment, Lombroso and his disciples emphasized their conviction that born criminals transgress by nature. "Atavism shows us the inefficacy of punishment for born criminals and why it is that they inevitably have periodic relapses into crime" (Lombroso, 1911, p. 369). "Theoretical ethics passes over these diseased brains, as oil does over marble, without penetrating it" (Lombroso, 1895, p. 58).

Ferri stated in 1897 that, in opposition to many other schools of thought, criminal anthropologists of Lombrosian persuasion were unanimous in declaring the death penalty legitimate (1897, pp. 238-240). Lombroso wrote (1911, p. 447): "There exists, it is true, a group of criminals, born for evil, against whom all social cures break as against a rock—a fact which compels us to eliminate them completely, even by death." His friend the philosopher Hippolyte Taine wrote even more dramatically:

You have shown us fierce and lubricious orang-utans with human faces. It is evident that as such they cannot act otherwise. If they ravish, steal, and kill, it is by virtue of their own nature and their past, but there is all the more reason for destroying them when it has been proved that they will always remain orang-utans (quoted favorably in Lombroso, 1911, P. 428).

Ferri himself invoked Darwinian theory as a cosmic justification of capital punishment (1897, pp. 239-240):
It seems to me that the death penalty is prescribed by nature, and operates at every moment in the life of the universe. The universal law of evolution shows us also that vital progress of every kind is due to continual selection, by the death of the least fit in the struggle for life. Now this selection, in humanity as with the lower animals, may be natural or artificial. It would therefore be in agreement with natural laws that human society should make an artificial selection, by the elimination of anti-social and incongruous individuals.

Nonetheless, Lombroso and his colleagues generally favored means other than death for ridding society of its born criminals. Early isolation in bucolic surroundings might mitigate the innate tendency and lead to a useful life under close and continual supervision. In other cases of incorrigible criminality, transportation and exile to penal colonies provided a more humanitarian solution than capital punishment—but banishment must be permanent and irrevocable. Ferri, noting the small size of Italy's colonial empire, advocated "internal deportation," perhaps to lands not tilled because of endemic malaria: "If the dispersion of this malaria demands a human hecatomb, it would evidently be better to sacrifice criminals than honest husbandmen" (1897, p. 249). In the end, he recommended deportation to the African colony of Eritrea.

The Lombrosian criminal anthropologists were not petty sadists, proto-fascists, or even conservative political ideologues. They tended toward liberal, even socialist, politics and saw themselves as scientifically enlightened modernists. They hoped to use modern science as a cleansing broom to sweep away from jurisprudence the outdated philosophical baggage of free will and unmitigated moral responsibility. They called themselves the "positive" school of criminology, not because they were so certain (though they were), but in reference to the philosophical meaning of empirical and objective rather than speculative.

The "classical" school, Lombroso's chief opponents, had combatted the capriciousness of previous penal practice by arguing that punishment must be apportioned strictly to the nature of the crime and that all individuals must be fully responsible for their actions (no mitigating circumstances). Lombroso invoked biology to argue that punishments must fit the criminal, not, as Gilbert's Mikado would have it, the crime. A normal man might murder in a moment of jealous rage. What purpose would execution or a life in prison serve? He needs no reform, for his nature is good; society
needs no protection from him, for he will not transgress again. A born criminal might be in the dock for some petty crime. What good will a short sentence serve: since he cannot be rehabilitated, a short sentence only reduces the time to his next, perhaps more serious, offense.

The positive school campaigned hardest and most successfully for a set of reforms, until recently regarded as enlightened or "liberal," and all involving the principle of indeterminate sentencing. For the most part they won, and few people realize that our modern apparatus of parole, early release, and indeterminate sentencing stems in part from Lombroso's campaign for differential treatment of born and occasional criminals. The main goal of criminal anthropology, wrote Ferri in 1911, is to "make the personality of the criminal the primary object and principle of the rules of penal justice, in place of the objective gravity of the crime" (p. 52).

Penal sanctions must be adapted . . . to the personality of the criminal. . . . The logical consequence of this conclusion is the indeterminate sentence which has been, and is, combatted as a juridical heresy by classical and metaphysical criminologists. . . . Prefixed penalties are absurd as a means of social defense. It is as if a doctor at the hospital wanted to attach to each disease the length of a stay in his establishment (Ferri, 1911, p. 251).

The original Lombrosians advocated harsh treatment for "born criminals." This misapplication of anthropometry and evolutionary theory is all the more tragic because Lombroso's biological model was so utterly invalid and because it shifted so much attention from the social basis of crime to fallacious ideas about the innate propensity of criminals. But the positivists, invoking Lombroso's enlarged model and finally even extending the genesis of crime to upbringing as well as biology, had enormous impact in their campaign for indeterminate sentencing and the concept of mitigating circumstances. Since their beliefs are, for the most part, our practices, we have tended to view them as humane and progressive. Lombroso's daughter, carrying on the good work, singled out the United States for praise. We had escaped the hegemony of classical criminology and shown our usual receptiveness for innovation. Many states had adopted the positivist program in establishing good reformatories, probation systems, indeterminate sentencing, and liberal pardon laws (Lombroso-Ferrero, 1911).

Yet even as the positivists praised America and themselves,
their work contains the seeds of doubt that have led many modern reformers to question the humane nature of Lombroso's indeterminate sentences and to advocate a return to the fixed penalties of classical criminology. Maurice Parmelee, America's leading positivist, decried as too harsh a New York State law of 1915 that prescribed an indeterminate sentence of up to three years for such infractions as disorderly conduct, disorderly housekeeping, intoxication, and vagrancy (Parmelee, 1918). Lombroso's daughter praised the complete dossier of moods and deeds kept by volunteer women who guided the fortunes of juvenile offenders in several states. They will "permit judges, if the child commits an offense, to distinguish between a born criminal and a habitual criminal. However, the child will not know of the existence of this dossier, and this will permit him the most complete freedom to develop" (Lombroso-Ferrero, 1911, p. 124). She also admitted the burdensome element of harassment and humiliation included in several systems of probation, particularly in Massachusetts, where indefinite parole might continue for life: "In the Central Probation Bureau of Boston, I have read many letters from proteges who asked to be returned to their prisons, rather than continue the humiliation of their protector always on their backs (or "in their bundles," as she said literally in French—Lombroso-Ferrero, 1911, p. 135).

For the Lombrosians, indeterminate sentencing embodied both good biology and maximal protection for the state: "Punishment ought not to be the visitation of a crime by a retribution, but rather a defense of society adapted to the danger personified by the criminal" (Ferri, 1897, p. 208). Dangerous people receive longer sentences, and their subsequent lives are monitored more strictly. And so the system of indeterminate penalties—Lombroso's legacy—exerts a general and powerful element of control over every aspect of a prisoner's life: his dossier expands and controls his fate; he is watched in prison and his acts are judged with the carrot of early release before him. It is also used in Lombroso's original sense to sequester the dangerous. For Lombroso, this meant the born criminal with his apish stigmata. Today, it often means the defiant, the poor, and the black. George Jackson, author of Soledad Brother, died under Lombroso's legacy, trying to escape after eleven years (eight and a half in solitary) of an indeterminate one-year-to-life sentence for stealing seventy dollars from a gas station.
Coda

Tolstoy's frustration with the Lombrosians lay in their invocation of science to avoid the deeper question that called for social transformation as one potential resolution. Science, he realized, often acted as the firm ally of existing institutions. His protagonist Prince Nekhlyudov, trying to fathom a system that falsely condemned a woman he once wronged, studies the learned works of criminal anthropology and finds no answer:

He also came across a tramp and a woman, both of whom repelled him by their half-witted insensibility and seeming cruelty, but even in them he failed to see the criminal type as described in the Italian school of criminology: he saw in them only people who were repulsive to him personally, like others were whom he met outside prison walls—in swallowtail coats, wearing epaulets or bedecked with lace. . . .

At first he had hoped to find the answer in books, and bought everything he could find on the subject. He bought the works of Lombroso and Garofalo [an Italian baron and disciple of Lombroso], Ferri, Liszt, Maudsley and Tarde, and read them carefully. But as he read, he became more and more disappointed. . . . Science answered thousands of very subtle and ingenius questions touching criminal law, but certainly not the one he was trying to solve. He was asking a very simple thing: Why and by what right does one class of people lock up, torture, exile, flog, and kill other people, when they themselves are no better than those whom they torture, flog and kill? And for answers he got arguments as to whether human beings were possessed of free will or not. Could criminal propensities be detected by measuring the skull, and so on? What part does heredity play in crime? Is there such a thing as congenital depravity? (Resurrection, 1899, 1966 edition translated by R. Edmonds, pp. 402-403.)

Epilogue

We live in a more subtle century, but the basic arguments never seem to change. The crudities of the cranial index have given way to the complexity of intelligence testing. The signs of innate criminality are no longer sought in stigmata of gross anatomy, but in twentieth-century criteria: genes and fine structure of the brain. In the mid-1960s, papers began to appear linking a chromosomal anomaly in males known as XYY with violent and criminal behavior. (Normal males receive a single X chromosome from their fathers and a Y from their fathers; normal females receive a sin-
gle X from each of their parents. Occasionally, a child will receive two Y's from his father. XYY males look like normal males, but tend to be a little above average in height, have poor skin and may tend, on average—though this is disputed—to be somewhat deficient in performance on intelligence tests.) Based on limited observation and anecdotal accounts of a few XYY individuals, and on a high frequency of XYY's in mental-penal institutions for the criminally insane, a tale about criminal chromosomes originated. The story exploded into public consciousness when attorneys for Richard Speck, murderer of eight student nurses in Chicago, sought to mitigate his punishment with a claim that he was XYY. (In fact, he is a normal XY male.) Newsweek published an article entitled "Congenital criminals," and the press churned out innumerable reports about this latest reincarnation of Lombroso and his stigmata. Meanwhile, scholarly study picked up, and hundreds of papers have now been written on the behavioral consequences of being XYY. A well-intentioned but, in my opinion, naive group of Boston doctors began an extensive screening program upon newborn boys. They hoped that by monitoring the development of a large sample of XYY boys, they might establish whether any link existed with aggressive behavior. But what of the self-fulfilling prophesy? for parents were told, and no amount of scholarly tentativeness can overcome both press reports and inferences made by worried parents from the aggressive behavior manifested from time to time by all children. And what of the anguish suffered by parents, especially if the connection be a false one—as it almost surely is.

In theory, the link between XYY and aggressive criminality never had much going for it beyond the singularly simplistic notion that since males are more aggressive than females and possess a Y that females lack, Y must be the seat of aggression and a double dose spells double-trouble. One group of researchers proclaimed in 1973 (Jarvik et al., pp. 679–680): "The Y chromosome is the male-determining chromosome; therefore, it should come as no surprise that an extra Y chromosome can produce an individual with heightened masculinity, evinced by characteristics such as unusual tallness, increased fertility ... and powerful aggressive tendencies."

The tale of XYY as a criminal stigma has now been widely exposed as a myth (Borgaonkar and Shah, 1974; Pyeritz et al.,
Both these studies expose the elementary flaws of method in most literature claiming a link between XYY and criminality. XYY males do seem to be represented disproportionately in mental-penal institutions, but there is no good evidence for high frequencies in ordinary jails. A maximum of 1 percent of XYY males in America may spend part of their lives in mental-penal institutions (Pyeritz et al., 1977, p. 92). Adding to this the number that may be incarcerated in ordinary jails at the same frequency as normal XY males, Chorover (1979) estimates that 96 percent of XYY males will lead ordinary lives and never come to the attention of penal authorities. Quite a criminal chromosome! Moreover, we have no evidence that the relatively high proportion of XYY's in mental-penal institutions has anything to do with high levels of innate aggressivity.

Other scientists have looked to malfunction in specific areas of the brain as a cause of criminal behavior. After extensive ghetto riots during the summer of 1967, three doctors wrote a letter to the prestigious Journal of the American Medical Association (cited in Chorover, 1979):

It is important to realize that only a small number of the millions of slum dwellers have taken part in the riots, and that only a subfraction of these rioters have indulged in arson, sniping and assault. Yet, if slum conditions alone determined and initiated riots, why are the vast majority of slum dwellers able to resist the temptations of unrestrained violence? Is there something peculiar about the violent slum dweller that differentiates him from his peaceful neighbors?

We all tend to generalize from our own areas of expertise. These doctors are psychosurgeons. But why should the violent behavior of some desperate and discouraged people point to a specific disorder of their brain while the corruption and violence of some congressmen and presidents provokes no similar theory? Human populations are highly variable for all behaviors; the simple fact that some do and some don't provides no evidence for a specific pathology mapped upon the brain of doers. Shall we concentrate upon an unfounded speculation for the violence of some—someone that follows the determinist philosophy of blaming the victim—or shall we try to eliminate the oppression that builds ghettos and saps the spirit of their unemployed in the first place?
The Hereditarian Theory of IQ

An American Invention

Alfred Binet and the original purposes of the Binet scale

When Alfred Binet (1857-1911), director of the psychology laboratory at the Sorbonne, first decided to study the measurement of intelligence, he turned naturally to the favored method of a waning century and to the work of his great countryman Paul Broca. He set out, in short, to measure skulls, never doubting at first the basic conclusion of Broca's school:

The relationship between the intelligence of subjects and the volume of their head . . . is very real and has been confirmed by all methodical investigators, without exception. . . . As these works include observations on several hundred subjects, we conclude that the preceding proposition [of correlation between head size and intelligence] must be considered as incontestable (Binet, 1898, pp. 294-295).

During the next three years, Binet published nine papers on craniometry in L'Annépsychologique, the journal he had founded in 1895. By the end of this effort, he was no longer so sure. Five studies on the heads of school children had destroyed his original faith.

Binet went to various schools, making Broca's recommended measurements on the heads of pupils designated by teachers as their smartest and stupidest. In several studies, he increased his sample from 62 to 230 subjects. "I began," he wrote, "with the idea
impressed upon me by the studies of so many other scientists, that intellectual superiority is tied to superiority of cerebral volume" (1900, p. 427).

Binet found his differences, but they were much too small to matter and might only record the greater average height of better pupils (1.401 vs. 1.378 meters). Most measures did favor the better students, but the average difference between good and poor amounted to a mere millimeter—"extrêmement petite" as Binet wrote. Binet did not observe larger differences in the anterior region of the skull, where the seat of higher intelligence supposedly lay, and where Broca had always found greatest disparity between superior and less fortunate people. To make matters worse, some measures usually judged crucial in the assessment of mental worth favored the poorer pupils—for anteroposterior diameter of the skull, poorer students exceeded their smarter colleagues by 3.0 mm. Even if most results tended to run in the "right" direction, the method was surely useless for assessing individuals. The differences were too small, and Binet also found that poor students varied more than their smarter counterparts. Thus, although the smallest value usually belonged to a poor pupil, the highest often did as well.

Binet also fueled his own doubts with an extraordinary study of his own suggestibility, an experiment in the primary theme of this book—the tenacity of unconscious bias and the surprising malleability of "objective," quantitative data in the interest of a preconceived idea. "I feared," Binet wrote (1900, p. 323), "that in making measurements on heads with the intention of finding a difference in volume between an intelligent and a less intelligent head, I would be led to increase, unconsciously and in good faith, the cephalic volume of intelligent heads and to decrease that of unintelligent heads." He recognized the greater danger lurking when biases are submerged and a scientist believes in his own objectivity (1900, p. 324): "Suggestibility . . . works less on an act of which we have full consciousness, than on a half-conscious act—and this is precisely its danger."

How much better off we would be if all scientists submitted themselves to self-scrutiny in so forthright a fashion: "I want to state very explicitly," Binet wrote (1900, p. 324), "what I have observed about myself. The details that follow are those that the
majority of authors do not publish; one does not want to let them be known." Both Binet and his student Simon had measured the same heads of "idiots and imbeciles" at a hospital where Simon was in intern. Binet noted that, for one crucial measurement, Simon's values were consistently less than his. Binet therefore returned to measure the subjects a second time. The first time, Binet admits, "I took my measures mechanically, without any other preconception than to remain faithful to my methods." But the second time "I had a different preconception. . . . I was bothered by the difference" between Simon and myself. "I wanted to reduce it to its true value. . . . This is self-suggestion. Now, capital fact, the measures taken during the second experiment, under the expectation of a diminution, are indeed smaller than the measures taken [on the same heads] during the first experiment." In fact, all but one head had "shrunk" between the two experiments and the average diminution was 3 mm—a good deal more than the average difference between skulls of bright and poor students in his previous work.

Binet spoke graphically of his discouragement:

I was persuaded that I had attacked an intractable problem. The measures had required travelling, and tiring procedures of all sorts; and they ended with the discouraging conclusion that there was often not a millimeter of difference between the cephalic measures of intelligent and less intelligent students. The idea of measuring intelligence by measuring heads seemed ridiculous. . . . I was on the point of abandoning this work, and I didn't want to publish a single line of it (1900, p. 403).

At the end, Binet snatched a weak and dubious victory from the jaws of defeat. He looked at his entire sample again, separated out the five top and bottom pupils from each group, and eliminated all those in the middle. The differences between extremes were greater and more consistent—3 to 4 mm on average. But even this difference did not exceed the average potential bias due to suggestibility. Craniometry, the jewel of nineteenth-century objectivity, was not destined for continued celebration.

Binet's scale and the birth of IQ

When Binet returned to the measurement of intelligence in 1904, he remembered his previous frustration and switched to other techniques. He abandoned what he called the "medical"
approaches of craniometry and the search for Lombroso's anatomical stigmata, and decided instead on "psychological" methods. The literature on mental testing, at the time, was relatively small and decidedly inconclusive. Galton, without notable success, had experimented with a series of measurements, mostly records of physiology and reaction time, rather than tests of reasoning. Binet decided to construct a set of tasks that might assess various aspects of reasoning more directly.

In 1904 Binet was commissioned by the minister of public education to perform a study for a specific, practical purpose: to develop techniques for identifying those children whose lack of success in normal classrooms suggested the need for some form of special education. Binet chose a purely pragmatic course. He decided to bring together a large series of short tasks, related to everyday problems of life (counting coins, or assessing which face is "prettier," for example), but supposedly involving such basic processes of reasoning as "direction (ordering), comprehension, invention and censure (correction)" (Binet, 1909). Learned skills like reading would not be treated explicitly. The tests were administered individually by trained examiners who led subjects through the series of tasks, graded in their order of difficulty. Unlike previous tests designed to measure specific and independent "faculties" of mind, Binet's scale was a hodgepodge of diverse activities. He hoped that by mixing together enough tests of different abilities he would be able to abstract a child's general potential with a single score. Binet emphasized the empirical nature of his work with a famous dictum (1911, p. 329): "One might almost say, 'It matters very little what the tests are so long as they are numerous.'"

Binet published three versions of the scale before his death in 1911. The original 1905 edition simply arranged the tasks in an ascending order of difficulty. The 1908 version established the criterion used in measuring the so-called IQ ever since. Binet decided to assign an age level to each task, defined as the youngest age at which a child of normal intelligence should be able to complete the task successfully. A child began the Binet test with tasks for the youngest age and proceeded in sequence until he could no longer complete the tasks. The age associated with the last tasks he could perform became his "mental age," and his general intellectual level
was calculated by subtracting this mental age from his true chronological age. Children whose mental ages were sufficiently behind their chronological ages could then be identified for special educational programs, thus fulfilling Binet's charge from the ministry. In 1912 the German psychologist W. Stern argued that mental age should be divided by chronological age, not subtracted from it,* and the intelligence quotient, or IQ, was born.

IQ testing has had momentous consequences in our century. In this light, we should investigate Binet's motives, if only to appreciate how the tragedies of misuse might have been avoided if its founder had lived and his concerns been heeded.

In contrast with Binet's general intellectual approach, the most curious aspect of his scale is its practical, empirical focus. Many scientists work this way by deep conviction or explicit inclination. They believe that theoretical speculation is vain and that true science progresses by induction from simple experiments pursued to gather basic facts, not to test elaborate theories. But Binet was primarily a theoretician. He asked big questions and participated with enthusiasm in the major philosophical debates of his profession. He had a long-standing interest in theories of intelligence. He published his first book on the "Psychology of Reasoning" in 1886, and followed in 1903 with his famous "Experimental Study of Intelligence," in which he abjured previous commitments and developed a new structure for analyzing human thinking. Yet Binet explicitly declined to award any theoretical interpretation to his scale of intelligence, the most extensive and important work he had done in his favorite subject. Why should a great theoretician have acted in such a curious and apparently contradictory way?

Binet did seek "to separate natural intelligence and instruction" (1905, p. 42) in his scale: "It is the intelligence alone that we seek to measure, by disregarding in so far as possible, the degree of instruction which the child possesses. . . . We give him nothing to read, nothing to write, and submit him to no test in which he might

*Division is more appropriate because it is the relative, not the absolute, magnitude of disparity between mental and chronological age that matters. A two-year disparity between mental age two and chronological age four may denote a far severer degree of deficiency than a two-year disparity between mental age fourteen and chronological age sixteen. Binet's method of subtraction would give the same result in both cases, while Stern's IQ measures 50 for the first case and 88 for the second. (Stern multiplied the actual quotient by 100 to eliminate the decimal point.)
succeed by means of rote learning" (1905, p. 42). "It is a specially interesting feature of these tests that they permit us, when necessary, to free a beautiful native intelligence from the trammels of the school" (1908, p. 259).

Yet, beyond this obvious desire to remove the superficial effects of clearly acquired knowledge, Binet declined to define and speculate upon the meaning of the score he assigned to each child. Intelligence, Binet proclaimed, is too complex to capture with a single number. This number, later called IQ, is only a rough, empirical guide constructed for a limited, practical purpose:

The scale, properly speaking, does not permit the measure of the intelligence, because intellectual qualities are not superposable, and therefore cannot be measured as linear surfaces are measured (1905, p. 40).

Moreover, the number is only an average of many performances, not an entity unto itself. Intelligence, Binet reminds us, is not a single, scalable thing like height. "We feel it necessary to insist on this fact," Binet (1911) cautions, "because later, for the sake of simplicity of statement, we will speak of a child of 8 years having the intelligence of a child of 7 or 9 years; these expressions, if accepted arbitrarily, may give place to illusions." Binet was too good a theoretician to fall into the logical error that John Stuart Mill had identified—"to believe that whatever received a name must be an entity or being, having an independent existence of its own."

Binet also had a social motive for his reticence. He greatly feared that his practical device, if reified as an entity, could be perverted and used as an indelible label, rather than as a guide for identifying children who needed help. He worried that schoolmasters with "exaggerated zeal" might use IQ as a convenient excuse: "They seem to reason in the following way: 'Here is an excellent opportunity for getting rid of all the children who trouble us,' and without the true critical spirit, they designate all who are unruly, or disinterested in the school" (1905, p. 169). But he feared even more what has since been called the "self-fulfilling prophesy." A rigid label may set a teacher's attitude and eventually divert a child's behavior into a predicted path:

It is really too easy to discover signs of backwardness in an individual en one is forewarned. This would be to operate as the graphologists did
who, when Dreyfus was believed to be guilty, discovered in his handwriting signs of a traitor or a spy" (1905, p. 170).

Not only did Binet decline to label IQ as inborn intelligence; he also refused to regard it as a general device for ranking all pupils according to mental worth. He devised his scale only for the limited purpose of his commission by the ministry of education: as a practical guide for identifying children whose poor performance indicated a need for special education—those who we would today call learning disabled or mildly retarded. Binet wrote (1908, p. 263): "We are of the opinion that the most valuable use of our scale will not be its application to the normal pupils, but rather to those of inferior grades of intelligence." As to the causes of poor performance, Binet refused to speculate. His tests, in any case, could not decide (1905, p. 37):

Our purpose is to be able to measure the intellectual capacity of a child who is brought to us in order to know whether he is normal or retarded. We should therefore study his condition at the time and that only. We have nothing to do either with his past history or with his future; consequently, we shall neglect his etiology, and we shall make no attempt to distinguish between acquired and congenital idiocy. . . . As to that which concerns his future, we shall exercise the same abstinence; we do not attempt to establish or prepare a prognosis, and we leave unanswered the question of whether this retardation is curable, or even improvable. We shall limit ourselves to ascertaining the truth in regard to his present mental state.

But of one thing Binet was sure: whatever the cause of poor performance in school, the aim of his scale was to identify in order to help and improve, not to label in order to limit. Some children might be innately incapable of normal achievement, but all could improve with special help.

The difference between strict hereditarians and their opponents is not, as some caricatures suggest, the belief that a child's performance is all inborn or all a function of environment and learning. I doubt that the most committed antihereditarians have ever denied the existence of innate variation among children. The differences are more a matter of social policy and educational practice. Hereditarians view their measures of intelligence as markers of permanent, inborn limits. Children, so labeled, should be sorted,
trained according to their inheritance and channeled into professions appropriate for their biology. Mental testing becomes a theory of limits. Antihereditarians, like Binet, test in order to identify and help. Without denying the evident fact that not all children, whatever their training, will enter the company of Newton and Einstein, they emphasize the power of creative education to increase the achievements of all children, often in extensive and unanticipated ways. Mental testing becomes a theory for enhancing potential through proper education.

Binet spoke eloquently of well-meaning teachers, caught in the unwarranted pessimism of their invalid hereditarian assumptions (1909, pp. 16-17):

As I know from experience, . . . they seem to admit implicitly that in a class where we find the best, we must also find the worst, and that this is a natural and inevitable phenomenon, with which a teacher must not become preoccupied, and that it is like the existence of rich and poor within a society. What a profound error.

How can we help a child if we label him as unable to achieve by biological proclamation?

If we do nothing, if we don't intervene actively and usefully, he will continue to lose time . . . and will finally become discouraged. The situation is very serious for him, and since his is not an exceptional case (since children with defective comprehension are legion), we might say that it is a serious question for all of us and for all of society. The child who loses the taste for work in class strongly risks being unable to acquire it after he leaves school (1909, p. 100).

Binet railed against the motto "stupidity is for a long time" ("quand on est bete, c'est pour longtemps") and upbraided teachers who "are not interested in students who lack intelligence. They have neither sympathy nor respect for them, and their intemperate language leads them to say such things in their presence as 'This is a child who will never amount to anything . . . he is poorly endowed . . . he is not intelligent at all.' How often have I heard these imprudent words" (1909, p. 100). Binet then cites an episode in his own baccalaureate when one examiner told him that he would never have a "true" philosophical spirit: "Never! What a momentous word. Some recent thinkers seem to have given their moral support to these deplorable verdicts by affirming that an individual's intel-
Intelligence is a fixed quantity, a quantity that cannot be increased. We must protest and react against this brutal pessimism; we must try to demonstrate that it is founded upon nothing" (1909, p. 101).

The children identified by Binet's test were to be helped, not indelibly labeled. Binet had definite pedagogical suggestions, and many were implemented. He believed, first of all, that special education must be tailored to the individual needs of disadvantaged children: it must be based on "their character and their aptitudes, and on the necessity for adapting ourselves to their needs and their capacities" (1909, p. 15). Binet recommended small classrooms of fifteen to twenty students, compared with sixty to eighty then common in public schools catering to poor children. In particular, he advocated special methods of education, including a program that he called "mental orthopedics":

What they should learn first is not the subjects ordinarily taught, however important they may be; they should be given lessons of will, of attention, of discipline; before exercises in grammar, they need to be exercised in mental orthopedics; in a word they must learn how to learn (1908, p. 257).

Binet's interesting program of mental orthopedics included a set of physical exercises designed to improve, by transfer to mental functioning, the will, attention, and discipline that Binet viewed as prerequisites for studying academic subjects. In one, called "l'exercice des statues," and designed to increase attention span, children moved vigorously until told to adopt and retain an immobile position. (I played this game as a kid in the streets of New York; we also called it "statues.") Each day the period of immobility would be increased. In another, designed to improve speed, children filled a piece of paper with as many dots as they could produce in the allotted time.

Binet spoke with pleasure about the success of his special classrooms (1909, p. 104) and argued that pupils so benefited had not only increased their knowledge, but their intelligence as well. Intelligence, in any meaningful sense of the word, can be augmented by good education; it is not a fixed and inborn quantity:

It is in this practical sense, the only one accessible to us, that we say that the intelligence of these children has been increased. We have increased what constitutes the intelligence of a pupil: the capacity to learn and to assimilate instruction.
The dismantling of Binet's intentions in America

In summary, Binet insisted upon three cardinal principles for using his tests. All his caveats were later disregarded, and his intentions overturned, by the American hereditarians who translated his scale into written form as a routine device for testing all children.

1. The scores are a practical device; they do not buttress any theory of intellect. They do not define anything innate or permanent. We may not designate what they measure as "intelligence" or any other reified entity.

2. The scale is a rough, empirical guide for identifying mildly retarded and learning-disabled children who need special help. It is not a device for ranking normal children.

3. Whatever the cause of difficulty in children identified for help, emphasis shall be placed upon improvement through special training. Low scores shall not be used to mark children as innately incapable.

If Binet's principles had been followed, and his tests consistently used as he intended, we would have been spared a major misuse of science in our century. Ironically, many American school boards have come full cycle, and now use IQ tests only as Binet originally recommended: as instruments for assessing children with specific learning problems. Speaking personally, I feel that tests of the IQ type were helpful in the proper diagnosis of my own learning-disabled son. His average score, the IQ itself, meant nothing, for it was only an amalgam of some very high and very low scores; but the pattern of low values indicated his areas of deficit.

The misuse of mental tests is not inherent in the idea of testing itself. It arises primarily from two fallacies, eagerly (so it seems) embraced by those who wish to use tests for the maintenance of social ranks and distinctions: reification and hereditarianism. The next chapter shall treat reification—the assumption that test scores represent a single, scalable thing in the head called general intelligence.

The hereditarian fallacy is not the simple claim that IQ is to some degree "heritable." I have no doubt that it is, though the degree has clearly been exaggerated by the most avid hereditarians. It is hard to find any broad aspect of human performance or anatomy that has no heritable component at all. The hereditarian fallacy resides in two false implications drawn from this basic fact:
1. The equation of "heritable" with "inevitable." To a biologist, heritability refers to the passage of traits or tendencies along family lines as a result of genetic transmission. It says little about the range of environmental modification to which these traits are subject. In our vernacular, "inherited" often means "inevitable." But not to a biologist. Genes do not make specific bits and pieces of a body; they code for a range of forms under an array of environmental conditions. Moreover, even when a trait has been built and set, environmental intervention may still modify inherited defects. Millions of Americans see normally through lenses that correct innate deficiencies of vision. The claim that IQ is so-many percent "heritable" does not conflict with the belief that enriched education can increase what we call, also in the vernacular, "intelligence." A partially inherited low IQ might be subject to extensive improvement through proper education. And it might not. The mere fact of its heritability permits no conclusion.

2. The confusion of within- and between-group heredity. The major political impact of hereditarian theories does not arise from the inferred heritability of tests, but from a logically invalid extension. Studies of the heritability of IQ, performed by such traditional methods as comparing scores of relatives, or contrasting scores of adopted children with both their biological and legal parents, are all of the "within-group" type—that is, they permit an estimate of heritability within a single, coherent population (white Americans, for example). The common fallacy consists in assuming that if heredity explains a certain percentage of variation among individuals within a group, it must also explain a similar percentage of the difference in average IQ between groups—whites and blacks, for example. But variation among individuals within a group and differences in mean values between groups are entirely separate phenomena. One item provides no license for speculation about the other.

A hypothetical and noncontroversial example will suffice. Human height has a higher heritability than any value ever proposed for IQ. Take two separate groups of males. The first, with an average height of 5 feet 10 inches, live in a prosperous American town. The second, with an average height of 5 feet 6 inches, are starving in a third-world village. Heritability is 95 percent or so in each place—meaning only that relatively tall fathers tend to have
sons and relatively short fathers short sons. This high within-
group heritability argues neither for nor against the possibility that
better nutrition in the next generation might raise the average
height of third-world villagers above that of prosperous Ameri-
cans. Likewise, IQ could be highly heritable within groups, and the
average difference between whites and blacks in America might
still only record the environmental disadvantages of blacks.

I have often been frustrated with the following response to this
admonition: "Oh well, I see what you mean, and you're right in
theory. There may be no necessary connection in logic, but isn't it
more likely all the same that mean differences between groups
would have the same causes as variation within groups." The
answer is still "no." Within- and between-group heredity are not
tied by rising degrees of probability as heritability increases within
groups and differences enlarge between them. The two phenom-
ena are simply separate. Few arguments are more dangerous than
the ones that "feel" right but can't be justified.

Alfred Binet avoided these fallacies and stuck by his three prin-
ciples. American psychologists perverted Binet's intention and
invented the hereditarian theory of IQ. They reified Binet's scores,
and took them as measures of an entity called intelligence. They
assumed that intelligence was largely inherited, and developed a
series of specious arguments confusing cultural differences with
innate properties. They believed that inherited IQ scores marked
people and groups for an inevitable station in life. And they
assumed that average differences between groups were largely the
products of heredity, despite manifest and profound variation in
quality of life.

This chapter analyzes the major works of the three pioneers of
hereditarianism in America: H. H. Goddard, who brought Binet's
idea to America and reified its scores as innate intelligence; L. M.
erman, who developed the Stanford-Binet scale, and dreamed of
a rational society that would allocate professions by IQ scores; and
R. M. Yerkes, who persuaded the army to test 1.75 million men in
World War I, thus establishing the supposedly objective data that
vindicated hereditarian claims and led to the Immigration Restric-
tion Act of 1924, with its low ceiling for lands suffering the blight
of poor genes.

The hereditarian theory of IQ is a home-grown American
product. If this claim seems paradoxical for a land with egalitarian traditions, remember also the jingoistic nationalism of World War I, the fear of established old Americans facing a tide of cheap (and sometimes politically radical) labor immigrating from southern and eastern Europe, and above all our persistent, indigenous racism.

H. H. Goddard and the menace of the feeble-minded

Intelligence as a Mendelian gene

GODDARD IDENTIFIES THE MORON

It remains now for someone to determine the nature of feeble-mindedness and complete the theory of the intelligence quotient.

—H. H. GODDARD, 1917, in a review of Terman, 1916

Taxonomy is always a contentious issue because the world does not come to us in neat little packages. The classification of mental deficiency aroused a healthy debate early in our century. Two categories of a tripartite arrangement won general acceptance: idiots could not develop full speech and had mental ages below three; imbeciles could not master written language and ranged from three to seven in mental age. (Both terms are now so entrenched in the vernacular of invectives that few people recognize their technical status in an older psychology.) Idiots and imbeciles could be categorized and separated to the satisfaction of most professionals, for their affliction was sufficiently severe to warrant a diagnosis of true pathology. They are not like us.

But consider the nebulous and more threatening realm of "high-grade defectives"—the people who could be trained to function in society, the ones who established a bridge between pathology and normality and thereby threatened the taxonomic edifice. These people, with mental ages of eight to twelve, were called débile (or weak) by the French. Americans and Englishmen usually called them "feeble-minded," a term mired in hopeless ambiguity because other psychologists used feeble-minded as a generic term for all mental defectives, not just those of high grade.

Taxonomists often confuse the invention of a name with the solution of a problem. H. H. Goddard, the energetic and crusading director of research at the Vineland Training School for Feeble-Minded Girls and Boys in New Jersey, made this crucial error. He devised a name for "high-grade" defectives, a word that became
entrenched in our language through a series of jokes that rivaled the knock-knock or elephant jokes of other generations. The metaphorical whiskers on these jokes are now so long that most people would probably grant an ancient pedigree to the name. But Goddard invented the word in our century. He christened these people "morons," from a Greek word meaning foolish.

Goddard was the first popularizer of the Binet scale in America. He translated Binet's articles into English, applied his tests, and agitated for their general use. He agreed with Binet that the tests worked best in identifying people just below the normal range—Goddard's newly christened morons. But the resemblance between Binet and Goddard ends there. Binet refused to define his scores as "intelligence," and wished to identify in order to help. Goddard regarded the scores as measures of a single, innate entity. He wished to identify in order to recognize limits, segregate, and curtail breeding to prevent further deterioration of an endangered American stock, threatened by immigration from without and by prolific reproduction of its feeble-minded within.

A UNILINEAR SCALE OF INTELLIGENCE

The attempt to establish a unilinear classification of mental deficiency, a rising scale from idiots to imbeciles to morons, embodies two common fallacies pervading most theories of biological determinism discussed in this book: the reification of intelligence as a single, measurable entity; and the assumption, extending back to Morton's skulls (pp. 82–101) and forward to Jensen's universal scaling of general intelligence (pp. 347–350), that evolution is a tale of unilinear progress, and that a single scale ascending from primitive to advanced represents the best way of ordering variation. The concept of progress is a deep prejudice with an ancient pedigree (Bury, 1920) and a subtle power, even over those who would deny it explicitly (Nisbet, 1980).

Can the plethora of causes and phenomena grouped under the rubric of mental deficiency possibly be ordered usefully on a single scale, with its implication that each person owes his rank to the relative amount of a single substance—and that mental deficiency means having less than most? Consider some phenomena mixed up in the common numbers once assigned to defectives of high grade: general low-level mental retardation, specific learning disa-
bilities caused by local neurological damage, environmental disadvantages, cultural differences, hostility to testers. Consider some of the potential causes: inherited patterns of function, genetic pathologies arising accidentally and not passed in family lines, congenital brain damage caused by maternal illness during pregnancy, birth traumas, poor nutrition of fetuses and babies, a variety of environmental disadvantages in early and later life. Yet, to Goddard, all people with mental ages between eight and twelve were morons, all to be treated in roughly the same way: institutionalized or carefully regulated, made happy by catering to their limits, and, above all, prevented from breeding.

Goddard may have been the most unsubtle hereditarian of all. He used his unilinear scale of mental deficiency to identify intelligence as a single entity, and he assumed that everything important about it was inborn and inherited in family lines. He wrote in 1920 (quoted in Tuddenham, 1962, p. 491):

Stated in its boldest form, our thesis is that the chief determiner of human conduct is a unitary mental process which we call intelligence: that this process is conditioned by a nervous mechanism which is inborn: that the degree of efficiency to be attained by that nervous mechanism and the consequent grade of intellectual or mental level for each individual is determined by the kind of chromosomes that come together with the union of the germ cells: that it is but little affected by any later influences except such serious accidents as may destroy part of the mechanism.

Goddard extended the range of social phenomena caused by differences in innate intelligence until it encompassed almost everything that concerns us about human behavior. Beginning with morons, and working up the scale, he attributed most undesirable behavior to inherited mental deficiency of the offenders. Their problems are caused not only by stupidity per se, but by the link between deficient intelligence and immorality.* High intelligence not only permits us to do our sums; it also engenders the good judgment that underlies all moral behavior.

The intelligence controls the emotions and the emotions are controlled in proportion to the degree of intelligence. . . . It follows that if there is

*The link of morality to intelligence was a favorite eugenic theme. Thorndike (1940, pp. 264-265), refuting a popular impression that all monarchs are reprobates, cited a correlation coefficient of 0.56 for the estimated intelligence vs. the estimated morality of 269 male members of European royal families!
little intelligence the emotions will be uncontrolled and whether they be strong or weak will result in actions that are unregulated, uncontrolled and, as experience proves, usually undesirable. Therefore, when we measure the intelligence of an individual and learn that he has so much less than normal as to come within the group that we call feeble-minded, we have ascertained by far the most important fact about him (1919, p. 272).

Many criminals, most alcoholics and prostitutes, and even the "ne'er do wells" who simply don't fit in, are morons: "We know what feeble-mindedness is, and we have come to suspect all persons who are incapable of adapting themselves to their environment and living up to the conventions of society or acting sensibly, of being feeble-minded" (1914, p. 571).

At the next level of the merely dull, we find the toiling masses, doing what comes naturally. "The people who are doing the drudgery," Goddard writes (1919, p. 246), "are, as a rule, in their proper places."

We must next learn that there are great groups of men, laborers, who are but little above the child, who must be told what to do and shown how to do it; and who, if we would avoid disaster, must not be put into positions where they will have to act upon their own initiative or their own judgment. . . . There are only a few leaders, most must be followers (1919, pp. 243-244).

At the upper end, intelligent men rule in comfort and by right. Speaking before a group of Princeton undergraduates in 1919, Goddard proclaimed:

Now the fact is, that workmen may have a 10 year intelligence while you have a 20. To demand for him such a home as you enjoy is as absurd as it would be to insist that every laborer should receive a graduate fellowship. How can there be such a thing as social equality with this wide range of mental capacity?

"Democracy," Goddard argued (1919, p. 237), "means that the people rule by selecting the wisest, most intelligent and most human to tell them what to do to be happy. Thus Democracy is a method for arriving at a truly benevolent aristocracy."

BREAKING THE SCALE INTO MENDELIAN COMPARTMENTS

But if intelligence forms a single and unbroken scale, how can we solve the social problems that beset us? For at one level, low intelligence generates sociopaths, while at the next grade, indus-
trial society needs docile and dull workers to run its machinery and accept low recompence. How can we convert the unbroken scale into two categories at this crucial point, and still maintain the idea that intelligence is a single, inherited entity? We can now understand why Goddard lavished so much attention upon the moron. The moron threatens racial health because he ranks highest among the undesirable and might, if not identified, be allowed to flourish and propagate. We all recognize the idiot and imbecile and know what must be done; the scale must be broken just above the level of the moron.

The idiot is not our greatest problem. He is indeed loathsome. Nevertheless, he lives his life and is done. He does not continue the race with a line of children like himself. It is the moron type that makes for us our great problem (1912, pp. 101-102).

Goddard worked in the first flourish of excitement that greeted the rediscovery of Mendel's work and the basic deciphering of heredity. We now know that virtually every major feature of our body is built by the interaction of many genes with each other and with an external environment. But in these early days, many biologists naively assumed that all human traits would behave like the color, size, or wrinkling of Mendel's peas: they believed, in short, that even the most complex parts of a body might be built by single genes, and that variation in anatomy or behavior would record the different dominant and recessive forms of these genes. Eugenicists seized upon this foolish notion with avidity, for it allowed them to assert that all undesirable traits might be traced to single genes and eliminated with proper strictures upon breeding. The early literature of eugenics is filled with speculations, and pedigrees laboriously compiled and fudged, about the gene for Wanderlust traced through the family lines of naval captains, or the gene for temperament that makes some of us placid and others domineering. We must not be misled by how silly such ideas seem today; they represented orthodox genetics for a brief time, and had a major social impact in America.

Goddard joined the transient bandwagon with a hypothesis that must represent an ultimate in the attempted reification of intelligence. He tried to trace the pedigrees of mental defectives in his Vineland School and concluded that "feeble-mindedness" obeyed Mendelian rules of inheritance. Mental deficiency must therefore
be a definite thing, and it must be governed by a single gene, undoubtedly recessive to normal intelligence (1914, p. 539). "Normal intelligence," Goddard concluded, "seems to be a unit character and transmitted in true Mendelian fashion" (1914, p. ix).

Goddard claimed that he had been compelled to make this unlikely conclusion by the press of evidence, not by any prior hope or prejudice.

Any theories or hypotheses that have been presented have been merely those that were suggested by the data themselves, and have been worked out in an effort to understand what the data seem to comprise. Some of the conclusions are as surprising to the writer and as difficult for him to accept as they are likely to be to many readers (1914, p. viii).

Can we seriously view Goddard as a forced and reluctant convert to a hypothesis that fit his general scheme so well and solved his most pressing problem so neatly? A single gene for normal intelligence removed the potential contradiction between a unilinear scale that marked intelligence as a single, measurable entity, and a desire to separate and identify the mentally deficient as a category apart. Goddard had broken his scale into two sections at just the right place: morons carried a double dose of the bad recessive; dull laborers had at least one copy of the normal gene and could be set before their machines. Moreover, the scourge of feeble-mindedness might now be eliminated by schemes of breeding easily planned. One gene can be traced, located, and bred out. If one hundred genes regulate intelligence, eugenic breeding must fail or proceed with hopeless sloth.

THE PROPER CARE AND FEEDING (BUT NOT BREEDING) OF MORONS

If mental deficiency is the effect of a single gene, the path to its eventual elimination lies evidently before us: do not allow such people to bear children:

If both parents are feeble-minded all the children will be feeble-minded. It is obvious that such matings should not be allowed. It is perfectly clear that no feeble-minded person should ever be allowed to marry or to become a parent. It is obvious that if this rule is to be carried out the intelligent part of society must enforce it (1914, p. 561).

If morons could control their own sexual urges and desist for the good of mankind, we might permit them to live freely among us. But they cannot, because immorality and stupidity are inexor-
ably linked. The wise man can control his sexuality in a rational manner: "Consider for a moment the sex emotion, supposed to be the most uncontrollable of all human instincts; yet it is notorious that the intelligent man controls even this" (1919, p. 273). The moron cannot behave in so exemplary and abstemious a fashion:

They are not only lacking in control but they are lacking often in the perception of moral qualities; if they are not allowed to marry they are nevertheless not hindered from becoming parents. So that if we are absolutely to prevent a feeble-minded person from becoming a parent, something must be done other than merely prohibiting the marrying. To this end there are two proposals: the first is colonization, the second is sterilization (1914, p. 566).

Goddard did not oppose sterilization, but he regarded it as impractical because traditional sensibilities of a society not yet wholly rational would prevent such widespread mayhem. Colonization in exemplary institutions like his own at Vineland, New Jersey, must be our preferred solution. Only here could the reproduction of morons be curtailed. If the public balked at the great expense of building so many new centers for confinement, the cost could easily be recouped by its own savings:

If such colonies were provided in sufficient number to take care of all the distinctly feeble-minded cases in the community, they would very largely take the place of our present almshouses and prisons, and they would greatly decrease the numbers in our insane hospitals. Such colonies would save an annual loss in property and life, due to the action of these irresponsible people, sufficient to nearly, or quite, offset the expense of the new plant (1912, pp. 105-106).

Inside these institutions, morons could operate in contentment at their biologically appointed level, denied only the basic biology of their own sexuality. Goddard ended his book on the causes of mental deficiency with this plea for the care of institutionalized morons: "Treat them as children according to their mental age, constantly encourage and praise, never discourage or scold; and keep them happy" (1919, p. 327).

Preventing the immigration and propagation of morons

Once Goddard had identified the cause of feeble-mindedness in a single gene, the cure seemed simple enough: don't allow native
morons to breed and keep foreign ones out. As a contribution to the second step, Goddard and his associates visited Ellis Island in 1912 "to observe conditions and offer any suggestions as to what might be done to secure a more thorough examination of immigrants for the purpose of detecting mental defectives" (Goddard, 1917, p. 253).

As Goddard described the scene, a fog hung over New York harbor that day and no immigrants could land. But one hundred were about ready to leave, when Goddard intervened: "We picked out one young man whom we suspected was defective, and, through the interpreter, proceeded to give him the test. The boy tested 8 by the Binet scale. The interpreter said, 'I could not have done that when I came to this country,' and seemed to think the test unfair. We convinced him that the boy was defective" (Goddard, 1913, p. 105).

Encouraged by this, one of the first applications of the Binet scale in America, Goddard raised some funds for a more thorough study and, in the spring of 1913, sent two women to Ellis Island for two and a half months. They were instructed to pick out the feeble-minded by sight, a task that Goddard preferred to assign to women, to whom he granted innately superior intuition:

After a person has had considerable experience in this work, he almost gets a sense of what a feeble-minded person is so that he can tell one afar off. The people who are best at this work, and who I believe should do this work, are women. Women seem to have closer observation than men. It was quite impossible for others to see how these two young women could pick out the feeble-minded without the aid of the Binet test at all (1913, p. 106).

Goddard's women tested thirty-five Jews, twenty-two Hungarians, fifty Italians, and forty-five Russians. These groups could not be regarded as random samples because government officials had already "culled out those they recognized as defective." To balance this bias, Goddard and his associates "passed by the obviously normal. That left us the great mass of 'average immigrants.' " (1917, p. 244). (I am continually amazed by the unconscious statements of prejudice that slip into supposedly objective accounts. Note here that average immigrants are below normal, or at least not obviously normal—the proposition that Goddard was supposedly testing, not asserting a priori.)
Binet tests on the four groups led to an astounding result: 83 percent of the Jews, 80 percent of the Hungarians, 79 percent of the Italians, and 87 percent of the Russians were feeble-minded—that is, below age twelve on the Binet scale. Goddard himself was flabbergasted: could anyone be made to believe that four-fifths of any nation were morons? "The results obtained by the foregoing evaluation of the data are so surprising and difficult of acceptance that they can hardly stand by themselves as valid" (1917, p. 247).

Perhaps the tests had not been adequately explained by interpreters? But the Jews had been tested by a Yiddish-speaking psychologist, and they ranked no higher than the other groups. Eventually, Goddard monkied about with the tests, tossed several out, and got his figures down to 40 to 50 percent, but still he was disturbed.

Goddard's figures were even more absurd than he imagined for two reasons, one obvious, the other less so. As a nonevident reason, Goddard's original translation of the Binet scale scored people harshly and made morons out of subjects usually regarded as normal. When Terman devised the Stanford-Binet scale in 1916, he found that Goddard's version ranked people well below his own. Terman reports (1916, p. 62) that of 104 adults tested by him as between twelve and fourteen years mental age (low, but normal intelligence), 50 percent were morons on the Goddard scale.

For the evident reason, consider a group of frightened men and women who speak no English and who have just endured an oceanic voyage in steerage. Most are poor and have never gone to school; many have never held a pencil or pen in their hand. They march off the boat; one of Goddard's intuitive women takes them aside shortly thereafter, sits them down, hands them a pencil, and asks them to reproduce on paper a figure shown to them a moment ago, but now withdrawn from their sight. Could their failure be a result of testing conditions, of weakness, fear, or confusion, rather than of innate stupidity? Goddard considered the possibility, but rejected it:

The next question is 'drawing a design from memory,' which is passed by only 50 percent. To the uninitiated this will not seem surprising since it looks hard, and even those who are familiar with the fact that normal children of 10 pass it without difficulty may admit that persons who have never had a pen or pencil in their hands, as was true of many of the immigrants, may find it impossible to draw the design (1917, p. 250).
Permitting a charitable view of this failure, what but stupidity could explain an inability to state more than sixty words, any words, in one's own language during three minutes?

What shall we say of the fact that only 45 percent can give 60 words in three minutes, when normal children of 11 years sometimes give 200 words in that time! It is hard to find an explanation except lack of intelligence or lack of vocabulary, and such a lack of vocabulary in an adult would probably mean lack of intelligence. How could a person live even 15 years in any environment without learning hundreds of names of which he could certainly think of 60 in three minutes? (1917, p. 251)

Or ignorance of the date, or even the month or year?

Must we again conclude that the European peasant of the type that immigrates to America pays no attention to the passage of time? That the drudgery of life is so severe that he cares not whether it is January or July, whether it is 1912 or 1906? Is it possible that the person may be of considerable intelligence and yet, because of the peculiarity of his environment, not have acquired this ordinary bit of knowledge, even though the calendar is not in general use on the continent, or is somewhat complicated as in Russia? If so what an environment it must have been! (1917, p. 250)

Since environment, either European or immediate, could not explain such abject failure, Goddard stated: "We cannot escape the general conclusion that these immigrants were of surprisingly low intelligence" (1917, p. 251). The high proportion of morons still bothered Goddard, but he finally attributed it to the changing character of immigration: "It should be noted that the immigration of recent years is of a decidedly different character from the early immigration. . . . We are now getting the poorest of each race" (1917, p. 266). "The intelligence of the average 'third class' immigrant is low, perhaps of moron grade" (1917, p. 243). Perhaps, Goddard hoped out loud, things were better on the upper decks, but he did not test these wealthier customers.

What then should be done? Should all these morons be shipped back, or prevented from starting out in the first place? Foreshadowing the restrictions that would be legislated within a decade, Goddard argued that his conclusions "furnish important considerations for future actions both scientific and social as well as legislative" (1917, p. 261). But by this time Goddard had softened his earlier harsh position on the colonization of morons. Perhaps there
were not enough merely dull workers to fill the vast number of frankly undesirable jobs. The moron might have to be recruited: "They do a great deal of work that no one else will do. . . . There is an immense amount of drudgery to be done, an immense amount of work for which we do not wish to pay enough to secure more intelligent workers. . . . May it be that possibly the moron has his place" (1917, p. 269).

Nonetheless, Goddard rejoiced in the general tightening of standards for admission. He reports that deportations for mental deficiency increased 350 percent in 1913 and 570 percent in 1914 over the average of the five preceding years:

This was due to the untiring efforts of the physicians who were inspired by the belief that mental tests could be used for the detection of feeble-minded aliens. . . . If the American public wishes feeble-minded aliens excluded, it must demand that Congress provide the necessary facilities at the ports of entry (1917, p. 271).

Meanwhile, at home, the feeble-minded must be identified and kept from breeding. In several studies, Goddard exposed the menace of moronity by publishing pedigrees of hundreds of worthless souls, charges upon the state and community, who would never have been born had their feeble-minded forebears been debarred from reproduction. Goddard discovered a stock of paupers and ne'er-do-wells in the pine barrens of New Jersey and traced their ancestry back to the illicit union of an upstanding man with a supposedly feeble-minded tavern wench. The same man later married a worthy Quakeress and started another line composed wholly of upstanding citizens. Since the progenitor had fathered both a good and a bad line, Goddard combined the Greek words for beauty (kallos) and bad (kakos), and awarded him the pseudonym Martin Kallikak. Goddard's Kallikak family functioned as a primal myth of the eugenics movement for several decades.

Goddard's study is little more than guesswork rooted in conclusions set from the start. His method, as always, rested upon the training of intuitive women to recognize the feeble-minded by sight. Goddard did not administer Binet tests in pine-barren shacks. Goddard's faith in visual identification was virtually unbounded. In 1919 he analyzed Edwin Markham's poem "The Man With The Hoe":

"The Man With The Hoe":
Markham's poem had been inspired by Millet's famous painting of the same name. The poem, Goddard complained (1919, p. 239), "seems to imply that the man Millet painted came to his condition as the result of social conditions which held him down and made him like the clods that he turned over." Nonsense, exclaimed Goddard; most poor peasants suffer only from their own feeble-mindedness, and Millet's painting proves it. Couldn't Markham see that the peasant is mentally deficient? "Millet's Man With The Hoe is a man of arrested mental development—the painting is a perfect picture of an imbecile" (1919, pp. 239-240). To Markham's searing question: "Whose breath blew out the light within this brain?" Goddard replied that mental fire had never been kindled.

Since Goddard could determine degrees of mental deficiency by examining a painting, he certainly anticipated no trouble with flesh and blood. He dispatched the redoubtable Ms. Kite, soon to see further service on Ellis Island, to the pine barrens and quickly produced the sad pedigree of the kakos line. Goddard describes one of Ms. Kite's identifications (1912, pp. 77-78):

Used as she was to the sights of misery and degradation, she was hardly prepared for the spectacle within. The father, a strong, healthy, broad-shouldered man, was sitting helplessly in a corner. . . . Three children, scantily clad and with shoes that would barely hold together, stood about with drooping jaws and the unmistakable look of the feeble-minded. . . . The whole family was a living demonstration of the futility of trying to make desirable citizens from defective stock through making and enforcing compulsory education laws. . . . The father himself, though strong and vigorous, showed by his face that he had only a child's mentality. The mother in her filth and rags was also a child. In this house of abject poverty, only one sure prospect was ahead, that it would produce more feeble-minded children with which to clog the wheels of human progress.

If these spot identifications seem a bit hasty or dubious, consider Goddard's method for inferring the mental state of the departed, or otherwise unavailable (1912, p. 15):
5.1 An honest picture of Deborah, the Kallikak descendant living in Goddard's institution.
After some experience, the field worker becomes expert in inferring the condition of those persons who are not seen, from the similarity of the language used in describing them to that used in describing persons she has seen.

It may be a small item in the midst of such absurdity, but I discovered a bit of more conscious skulduggery. My colleague Steven Selden and I were examining his copy of Goddard's volume of the *Kallikaks*. The frontispiece shows a member of the kakos line, saved from depravity by confinement in Goddard's institution at Vineland. Deborah, as Goddard calls her, is a beautiful woman (Fig. 5.1). She sits calmly in a white dress, reading a book, a cat lying comfortably on her lap. Three other plates show members of the kakos line, living in poverty in their rural shacks. All have a depraved look about them (Fig. 5.2). Their mouths are sinister in appearance; their eyes are darkened slits. But Goddard's books are nearly seventy years old, and the ink has faded. It is now clear that all the photos of noninstitutionalized kakos were altered by inserting heavy dark lines to give eyes and mouths their diabolical appearance. The three plates of Deborah are unretouched.

Selden took his book to Mr. James H. Wallace, Jr., director of Photographic Services at the Smithsonian Institution. Mr. Wallace reports (letter to Selden, 17 March 1980):

There can be no doubt that the photographs of the Kallikak family members have been retouched. Further, it appears that this retouching was limited to the facial features of the individuals involved—specifically eyes, eyebrows, mouths, nose and hair.

By contemporary standards, this retouching is extremely crude and obvious. It should be remembered, however, that at the time of the original publication of the book, our society was far less visually sophisticated. The widespread use of photographs was limited, and casual viewers of the time would not have nearly the comparative ability possessed by even pre-teenage children today. . . .

The harshness clearly gives the appearance of dark, staring features, sometimes evilness, and sometimes mental retardation. It would be difficult to understand why any of this retouching was done were it not to give the viewer a false impression of the characteristics of those depicted. I believe the fact that no other areas of the photographs, or the individuals have been retouched is significant in this regard also. . . .

I find these photographs to be an extremely interesting variety of photographic manipulation.
Goddard recants

By 1928 Goddard had changed his mind and become a latter-day supporter of the man whose work he had originally perverted, Alfred Binet. Goddard admitted, first of all, that he had set the upper limit of moronity far too high:

It was for a time rather carelessly assumed that everybody who tested 12 years or less was feeble-minded. . . . We now know, of course, that only a small percentage of the people who test 12 are actually feeble-minded—that is, are incapable of managing their affairs with ordinary prudence or of competing in the struggle for existence (1928, p. 220).

But genuine morons still abound at their redefined level. What shall be done with them? Goddard did not abandon his belief in their inherited mentality, but he now took Binet's line and argued that most, if not all, could be trained to lead useful lives in society:

The problem of the moron is a problem of education and training. . . . This may surprise you, but frankly when I see what has been made out of the moron by a system of education, which as a rule is only half right, I have no difficulty in concluding that when we get an education that is entirely right there will be no morons who cannot manage themselves and their affairs and compete in the struggle for existence. If we could hope to add to this a social order that would literally give every man a chance, I should be perfectly sure of the result (1928, pp. 223-224).

But if we let morons live in society, will they not marry and bear children; is this not the greatest danger of all, the source of Goddard's previous and passionate warnings?

Some will object that this plan neglects the eugenic aspect of the problem. In the community, these morons will marry and have children. And why not? . . . It may still be objected that moron parents are likely to have imbecile or idiot children. There is not much evidence that this is the case. The danger is probably negligible. At least it is not likely to occur any

5.2 Altered photographs of members of the Kallikak family living in poverty in the New Jersey pine barrens. Note how mouths and eyebrows are accentuated to produce an appearance of evil or stupidity. The effect is much clearer on the original photographs produced in Goddard's book.
oftener than it does in the general population.* I assume that most of you, like myself, will find it difficult to admit that the foregoing may be the true view. We have worked too long under the old concept (1928, pp. 223-224).

Goddard concluded (1928, p. 225) in reversing the two bulwarks of his former system:

1. Feeble-mindedness (the moron) is not incurable [Goddard's italics].
2. The feeble-minded do not generally need to be segregated in institutions.

"As for myself," Goddard confessed (p. 224), "I think I have gone over to the enemy."

Lewis M. Terman and the mass marketing of innate IQ

Without offering any data on all that occurs between conception and the age of kindergarten, they announce on the basis of what they have got out of a few thousand questionnaires that they are measuring the hereditary mental endowment of human beings. Obviously, this is not a conclusion obtained by research. It is a conclusion planted by the will to believe. It is, I think, for the most part unconsciously planted. . . . If the impression takes root that these tests really measure intelligence, that they constitute a sort of last judgment on the child's capacity, that they reveal "scientifically" his predestined ability, then it would be a thousand times better if all the intelligence testers and all their questionnaires were sunk without warning in the Sargasso Sea.

—WALTER LIPPMANN, in the course of a debate with Lewis Terman

Mass testing and the Stanford-Binet

Lewis M. Terman, the twelfth child in an Indiana farm family of fourteen, traced his interest in the study of intelligence to an itinerant book peddler and phrenologist who visited his home when he was nine or ten and predicted good things after feeling the bumps on his skull. Terman pursued this early interest, never doubting that a measurable mental worth lay inside people's heads. In his doctoral dissertation of 1906, Terman examined seven "bright" and seven "stupid" boys and defended each of his tests as a measure of intelligence by appealing to the standard catalogue of

*Do not read into this statement more than Goddard intended. He had not abandoned his belief in the heritability of moronity itself. Moron parents will have moron children, but they can be made useful through education. Moron parents, however, do not preferentially beget defectives of lower grade—idiots and imbeciles.
racial and national stereotypes. Of tests for invention, he wrote: "We have only to compare the negro with the Eskimo or Indian, and the Australian native with the Anglo-Saxon, to be struck by an apparent kinship between general intellectual and inventive ability" (1906, p. 14). Of mathematical ability, he proclaimed (1906, p. 29): "Ethnology shows that racial progress has been closely paralleled by development of the ability to deal with mathematical concepts and relations."

Terman concluded his study by committing both of the fallacies identified on p. 185 as foundations of the hereditarian view. He reified average test scores as a "thing" called general intelligence by advocating the first of two possible positions (1906, p. 9): "Is intellectual ability a bank account, on which we can draw for any desired purpose, or is it rather a bundle of separate drafts, each drawn for a specific purpose and inconvertible?" And, while admitting that he could provide no real support for it, he defended the innatist view (1906, p. 68): "While offering little positive data on the subject, the study has strengthened my impression of the relatively greater importance of endowment over training as a determinant of an individual's intellectual rank among his fellows."

Goddard introduced Binet's scale to America, but Terman was the primary architect of its popularity. Binet's last version of 1911 included fifty-four tasks, graded from prenursery to mid-teen-age years. Terman's first revision of 1916 extended the scale to "superior adults" and increased the number of tasks to ninety. Terman, by then a professor at Stanford University, gave his revision a name that has become part of our century's vocabulary—the Stanford-Binet, the standard for virtually all "IQ" tests that followed.*

I offer no detailed analysis of content (see Block and Dworkin, 1976 or Chase, 1977), but present two examples to show how Terman's tests stressed conformity with expectation and downgraded original response. When expectations are society's norms, then do

*Terman (1919) provided a lengthy list of the attributes of general intelligence captured by the Stanford-Binet tests: memory, language comprehension, size of vocabulary, orientation in space and time, eye-hand coordination, knowledge of familiar things, judgment, likeness and differences, arithmetical reasoning, resourcefulness and ingenuity in difficult practical situations, ability to detect absurdities, speed and richness of association of ideas, power to combine the dissected parts of a form board or a group of ideas into a unitary whole, capacity to generalize from particulars, and ability to deduce a rule from connected facts.
the tests measure some abstract property of reasoning, or familiarity with conventional behavior? Terman added the following item to Binet's list:

An Indian who had come to town for the first time in his life saw a white man riding along the street. As the white man rode by, the Indian said—'The white man is lazy; he walks sitting down.' What was the white man riding on that caused the Indian to say, 'He walks sitting down.'

Terman accepted "bicycle" as the only correct response—not cars or other vehicles because legs don't go up and down in them; not horses (the most common "incorrect" answer) because any self-respecting Indian would have known what he was looking at. (I myself answered "horse," because I saw the Indian as a clever ironist, criticizing an effete city relative.) Such original responses as "a cripple in a wheelchair," and "a person riding on someone's back" were also marked wrong.

Terman also included this item from Binet's original: "My neighbor has been having queer visitors. First a doctor came to his house, then a lawyer, then a minister. What do you think happened there?" Terman permitted little latitude beyond "a death," though he did allow "a marriage" from a boy he described as "an enlightened young eugenist" who replied that the doctor came to see if the partners were fit, the lawyer to arrange, and the minister to tie the knot. He did not accept the combination "divorce and remarriage," though he reports that a colleague in Reno, Nevada, had found the response "very, very common." He also did not permit plausible but uncomplicated solutions (a dinner, or an entertainment), or such original responses as: "someone is dying and is getting married and making his will before he dies."

But Terman's major influence did not reside in his sharpening or extension of the Binet scale. Binet's tasks had to be administered by a trained tester working with one child at a time. They could not be used as instruments for general ranking. But Terman wished to test everybody, for he hoped to establish a gradation of innate ability that could sort all children into their proper stations in life:

What pupils shall be tested? The answer is, all. If only selected children are tested, many of the cases most in need of adjustment will be over-
looked. The purpose of the tests is to tell us what we do not already know, and it would be a mistake to test only those pupils who are recognized as obviously below or above average. Some of the biggest surprises are encountered in testing those who have been looked upon as close to average in ability. Universal testing is fully warranted (1923, p. 22).

The Stanford-Binet, like its parent, remained a test for individuals, but it became the paradigm for virtually all the written versions that followed. By careful juggling and elimination,* Terman standardized the scale so that "average" children would score 100 at each age (mental age equal to chronological age). Terman also evened out the variation among children by establishing a standard deviation of 15 or 16 points at each chronological age. With its mean of 100 and standard deviation of 15, the Stanford-Binet became (and in many respects remains to this day) the primary criterion for judging a plethora of mass-marketed written tests that followed. The invalid argument runs: we know that the Stanford-Binet measures intelligence; therefore, any written test that correlates strongly with Stanford-Binet also measures intelligence. Much of the elaborate statistical work performed by testers during the past fifty years provides no independent confirmation for the proposition that tests measure intelligence, but merely establishes correlation with a preconceived and unquestioned standard.

Testing soon became a multimillion-dollar industry; marketing companies dared not take a chance with tests not proven by their correlation with Terman's standard. The Army Alpha (see pp. 222-252) initiated mass testing, but a flood of competitors greeted school administrators within a few years after the war's end. A quick glance at the advertisements appended to Terman's later book (1923) illustrates, dramatically and unintentionally, how all Terman's cautious words about careful and lengthy assessment (1919, p. 299, for example) could evaporate before strictures of cost and time when his desire to test all children became a reality (Fig. 5.3). Thirty minutes and five tests might mark a child for life, if schools adopted the following examination, advertised in Terman 1923, and constructed by a committee that included Thorn-dike, Yerkes, and Terman himself.

*This, in itself, is not finagling, but a valid statistical procedure for establishing uniformity of average score and variance across age levels.
An advertisement for mass mental testing using an examination written by, among others, Terman and Yerkes.
National Intelligence Tests for Grades 3–8

The direct result of the application of the army testing methods to school needs. . . . The tests have been selected from a large group of tests after a try-out and a careful analysis by a statistical staff. The two scales prepared consist of five tests each (with practical exercises) and either may be administered in thirty minutes. They are simple in application, reliable, and immediately useful in classifying children in Grades 3 to 8 with respect to intellectual ability. Scoring is unusually simple.

Binet, had he lived, might have been distressed enough by such a superficial assessment, but he would have reacted even more strongly against Terman's intent. Terman agreed with Binet that the tests worked best for identifying "high-grade defectives," but his reasons for so doing stand in chilling contrast with Binet's desire to segregate and help (1916, pp. 6–7):

It is safe to predict that in the near future intelligence tests will bring tens of thousands of these high-grade defectives under the surveillance and protection of society. This will ultimately result in curtailing the reproduction of feeble-mindedness and in the elimination of an enormous amount of crime, pauperism, and industrial inefficiency. It is hardly necessary to emphasize that the high-grade cases, of the type now so frequently overlooked, are precisely the ones whose guardianship it is most important for the State to assume.

Terman relentlessly emphasized limits and their inevitability. He needed less than an hour to crush the hopes and belittle the efforts of struggling, "well-educated" parents afflicted with a child of IQ 75.

Strange to say, the mother is encouraged and hopeful because she sees that her boy is learning to read. She does not seem to realize that at his age he ought to be within three years of entering high school. The forty-minute test has told more about the mental ability of this boy than the intelligent mother had been able to learn in eleven years of daily and hourly observation. For X is feeble-minded; he will never complete the grammar school; he will never be an efficient worker or a responsible citizen (1916).

Walter Lippmann, then a young journalist, saw through Terman's numbers to the heart of his preconceived attempt, and wrote in measured anger:

The danger of the intelligence tests is that in a wholesale system of education, the less sophisticated or the more prejudiced will stop when
they have classified and forget that their duty is to educate. They will grade the retarded child instead of fighting the causes of his backwardness. For the whole drift of the propaganda based on intelligence testing is to treat people with low intelligence quotients as congenitally and hopelessly inferior.

Terman's technocracy of innateness

If it were true, the emotional and worldly satisfactions in store for the intelligence tester would be very great. If he were really measuring intelligence, and if intelligence were a fixed hereditary quantity, it would be for him to say not only where to place each child in school, but also which children should go to high school, which to college, which into the professions, which into the manual trades and common labor. If the tester would make good his claim, he would soon occupy a position of power which no intellectual has held since the collapse of theocracy. The vista is enchanting, and even a little of the vista is intoxicating enough. If only it could be proved, or at least believed, that intelligence is fixed by heredity, and that the tester can measure it, what a future to dream about! The unconscious temptation is too strong for the ordinary critical defenses of the scientific methods. With the help of a subtle statistical illusion, intricate logical fallacies and a few smuggled obiter dicta, self-deception as the preliminary to public deception is almost automatic. — WALTER LIPPMANN, in a debate with Terman

Plato had dreamed of a rational world ruled by philosopher-kings. Terman revived this dangerous vision but led his corps of mental testers in an act of usurpation. If all people could be tested, and then sorted into roles appropriate for their intelligence, then a just, and, above all, efficient society might be constructed for the first time in history.

Dealing off the bottom, Terman argued that we must first restrain or eliminate those whose intelligence is too low for an effective or moral life. The primary cause of social pathology is innate feeble-mindedness. Terman (1916, p. 7) criticized Lombroso for thinking that the externalities of anatomy might record criminal behavior. Innateness, to be sure, is the source, but its direct sign is low IQ, not long arms or a jutting jaw:

The theories of Lombroso have been wholly discredited by the results of intelligence tests. Such tests have demonstrated, beyond any possibility of doubt, that the most important trait of at least 25 percent of our criminals is mental weakness. The physical abnormalities which have been found so common among prisoners are not the stigmata of criminality, but the physical accompaniments of feeble-mindedness. They have no diagnostic significance except in so far as they are indications of mental deficiency (1916, p. 7).
Feeble-minded people are doubly burdened by their unfortunate inheritance, for lack of intelligence, debilitating enough in itself, leads to immorality. If we would eliminate social pathology, we must identify its cause in the biology of sociopaths themselves—and then eliminate them by confinement in institutions and, above all, by preventing their marriage and the production of offspring.

Not all criminals are feeble-minded, but all feeble-minded persons are at least potential criminals. That every feeble-minded woman is a potential prostitute would hardly be disputed by anyone. Moral judgment, like business judgment, social judgment, or any other kind of higher thought process, is a function of intelligence. Morality cannot flower and fruit if intelligence remains infantile (1916, p. 11).

The feeble-minded, in the sense of social incompetents, are by definition a burden rather than an asset, not only economically but still more because of their tendencies to become delinquent or criminal. . . . The only effective way to deal with the hopelessly feeble-minded is by permanent custodial care. The obligations of the public school rest rather with the large and more hopeful group of children who are merely inferior (1919, pp. 132-133).

In a plea for universal testing, Terman wrote (1916, p. 12): "Considering the tremendous cost of vice and crime, which in all probability amounts to not less than $500,000,000 per year in the United States alone, it is evident that psychological testing has found here one of its richest applications."

After marking the sociopath for removal from society, intelligence tests might then channel biologically acceptable people into professions suited for their mental level. Terman hoped that his testers would "determine the minimum 'intelligence quotient' necessary for success in each leading occupation" (1916, p. 17). Any conscientious professor tries to find jobs for his students, but few are audacious enough to tout their disciples as apostles of a new social order:

Industrial concerns doubtless suffer enormous losses from the employment of persons whose mental ability is not equal to the tasks they are expected to perform. . . . Any business employing as many as 500 or 1000 workers, as, for example, a large department store, could save in this way several times the salary of a well-trained psychologist.

Terman virtually closed professions of prestige and monetary reward to people with IQ below 100 (1919, p. 282), and argued
that "substantial success" probably required an IQ above 115 or 120. But he was more interested in establishing ranks at the low end of the scale, among those he had deemed "merely inferior." Modern industrial society needs its technological equivalent of the Biblical metaphor for more bucolic times—the hewers of wood and drawers of water. And there are so many of them:

The evolution of modern industrial organization together with the mechanization of processes by machinery is making possible the larger and larger utilization of inferior mentality. One man with ability to think and plan guides the labor of ten or twenty laborers, who do what they are told to do and have little need for resourcefulness or initiative (1919, p. 276).

IQ of 75 or below should be the realm of unskilled labor, 75 to 85 "preeminently the range for semi-skilled labor." More specific judgments could also be made. "Anything above 85 IQ in the case of a barber probably represents so much dead waste" (1919, p. 288). IQ 75 is an "unsafe risk in a motorman or conductor, and it conduces to discontent" (Terman, 1919). Proper vocational training and placement is essential for those "of the 70 to 85 class." Without it, they tend to leave school "and drift easily into the ranks of the anti-social or join the army of Bolshevik discontents" (1919, p. 285).

Terman investigated IQ among professions and concluded with satisfaction that an imperfect allocation by intelligence had already occurred naturally. The embarrassing exceptions he explained away. He studied 47 express company employees, for example, men engaged in rote, repetitive work "offering exceedingly limited opportunity for the exercise of ingenuity or even personal judgment" (1919, p. 275). Yet their median IQ stood at 95, and fully 25 percent measured above 104, thus winning a place among the ranks of the intelligent. Terman was puzzled, but attributed such low achievement primarily to a lack of "certain emotional, moral, or other desirable qualities," though he admitted that "economic pressures" might have forced some "out of school before they were able to prepare for more exacting service" (1919, p. 275). In another study, Terman amassed a sample of 256 "hoboes and unemployed," largely from a "hobo hotel" in Palo Alto. He expected to find their average IQ at the bottom of his list; yet, while the hobo mean of 89 did not suggest enormous endowment, they still ranked above motormen, salesgirls, firemen, and
policemen. Terman suppressed this embarrassment by ordering his table in a curious way. The hobo mean was distressingly high, but hobos also varied more than any other group, and included a substantial number of rather low scores. So Terman arranged his list by the scores of the lowest 25 percent in each group, and sunk his hobos into the cellar.

Had Terman merely advocated a meritocracy based on achievement, one might still decry his elitism, but applaud a scheme that awarded opportunity to hard work and strong motivation. But Terman believed that class boundaries had been set by innate intelligence. His coordinated rank of professions, prestige, and salaries reflected the biological worth of existing social classes. If barbers did not remain Italian, they would continue to arise from the poor and to stay appropriately among them:

The common opinion that the child from a cultured home does better in tests solely by reason of his superior home advantages is an entirely gratuitous assumption. Practically all of the investigations which have been made of the influence of nature and nurture on mental performance agree in attributing far more to original endowment than to environment. Common observation would itself suggest that the social class to which the family belongs depends less on chance than on the parents’ native qualities of intellect and character. . . . The children of successful and cultured parents test higher than children from wretched and ignorant homes for the simple reason that their heredity is better (1916, p. 115).

Fossil IQ’s of past geniuses

Society may need masses of the "merely inferior" to run its machines, Terman believed, but its ultimate health depends upon the leadership of rare geniuses with elevated IQ’s. Terman and his associates published a five-volume series on Genetic Studies of Genius in an attempt to define and follow people at the upper end of the Stanford-Binet scale.

In one volume, Terman decided to measure, retrospectively, the IQ of history’s prime movers—its statesmen, soldiers, and intellectuals. If they ranked at the top, then IQ is surely the single measure of ultimate worth. But how can a fossil IQ be recovered without conjuring up young Copernicus and asking him what the white man was riding? Undaunted, Terman and his colleagues tried to reconstruct the IQ of past notables, and published a thick book (Cox, 1926) that must rank as a primary curiosity within a
literature already studded with absurdity—though Jensen (1979, pp. 113 and 355) and others still take it seriously.*

Terman (1917) had already published a preliminary study of Francis Galton and awarded a staggering IQ of 200 to this pioneer of mental testing. He therefore encouraged his associates to proceed with a larger investigation. J. M. Cattell had published a ranking of the 1,000 prime movers of history by measuring the lengths of their entries in biographical dictionaries. Catherine M. Cox, Terman's associate, whittled the list to 282, assembled detailed biographical information about their early life, and proceeded to estimate two IQ values for each—one, called A1 IQ, for birth to seventeen years; the other, A2 IQ, for ages seventeen to twenty-six.

Cox ran into problems right at the start. She asked five people, including Terman, to read her dossiers and to estimate the two IQ scores for each person. Three of the five agreed substantially in their mean values, with A1 IQ clustering around 135 and A2 IQ near 145. But two of the raters differed markedly, one awarding an average IQ well above, the other well below, the common figure. Cox simply eliminated their scores, thereby throwing out 40 percent of her data. Their low and high scores would have balanced each other at the mean in any case, she argued (1926, p. 72). Yet if five people working in the same research group could not agree, what hope for uniformity or consistency—not to mention objectivity—could be offered?

Apart from these debilitating practical difficulties, the basic logic of the study was hopelessly flawed from the first. The differences in IQ that Cox recorded among her subjects do not measure their varying accomplishments, not to mention their native intelligence. Instead, the differences are a methodological artifact of the varying quality of information that Cox was able to compile about the childhood and early youth of her subjects. Cox began by assigning a base IQ of 100 to each individual; the raters then added to (or, rarely, subtracted from) this value according to the data provided.

*Jensen writes: "The average estimated IQ of three hundred historical persons . . . on whom sufficient childhood evidence was available for a reliable estimate was IQ 155 . . . Thus the majority of these eminent men would most likely have been recognized as intellectually gifted in childhood had they been given IQ tests" (Jensen, 1979, p. 113).
Cox's dossiers are motley lists of childhood and youthful accomplishments, with an emphasis on examples of precocity. Since her method involved adding to the base figure of 100 for each notable item in the dossier, estimated IQ records little more than the volume of available information. In general, low IQ's reflect an absence of information, and high IQ's an extensive list. (Cox even admits that she is not measuring true IQ, but only what can be deduced from limited data, though this disclaimer was invariably lost in translation to popular accounts.) To believe, even for a moment, that such a procedure can recover the proper ordering of IQ among "men of genius," one must assume that the childhood of all subjects was watched and recorded with roughly equal attention. One must claim (as Cox does) that an absence of documented childhood precocity indicates a humdrum life not worth writing about, not an extraordinary giftedness that no one bothered to record.

Two basic results of Cox's study immediately arouse our strong suspicion that her IQ scores reflect the historical accidents of surviving records, rather than the true accomplishments of her geniuses. First, IQ is not supposed to alter in a definite direction during a person's life. Yet average A1 IQ is 135 in her study, and average A2 IQ is a substantially higher 145. When we scrutinize her dossiers (printed in full in Cox, 1926), the reason is readily apparent, and a clear artifact of her method. She has more information on her subjects as young adults than as children (A2 IQ records achievements during ages seventeen through twenty-six; A1 IQ marks the earlier years). Second, Cox published disturbingly low A1 IQ figures for some formidable characters, including Cervantes and Copernicus, both at 105. Her dossiers show the reason: little or nothing is known about their childhood, providing no data for addition to the base figure of 100. Cox established seven levels of reliability for her figures. The seventh, believe it or not, is "guess, based on no data."

As a further and obvious test, consider geniuses born into humble circumstances, where tutors and scribes did not abound to encourage and then to record daring feats of precocity. John Stuart Mill may have learned Greek in his cradle, but did Faraday or Bunyan ever get the chance? Poor children are at a double disadvantage; not only did no one bother to record their early years,
but they are also demoted as a direct result of their poverty. For Cox, using the favorite ploy of eugenicists, inferred innate parental intelligence from their occupations and social standing! She ranked parents on a scale of professions from 1 to 5, awarding their children an IQ of 100 for parental rank 3, and a bonus (or deficit) of 10 IQ points for each step above or below. A child who did nothing worth noting for the first seventeen years of his life could still score an IQ of 120 by virtue of his parent's wealth or professional standing.

Consider the case of poor Massena, Napoleon's great general, who bottomed out at 100 A1 IQ and about whom, as a child, we know nothing except that he served as a cabin boy for two long voyages on his uncle's ship. Cox writes (p. 88):

Nephews of battleship commanders probably rate somewhat above 100 IQ; but cabin boys who remain cabin boys for two long voyages and of whom there is nothing more to report until the age of 17 than their service as cabin boys, may average below 100 IQ.

Other admirable subjects with impoverished parents and meager records should have suffered the ignominy of scores below 100. But Cox managed to fudge and temporize, pushing them all above the triple-digit divide, if only slightly. Consider the unfortunate Saint-Cyr, saved only by remote kin, and granted an A1 IQ of 105: "The father was a tanner after having been a butcher, which would give his son an occupational IQ status of 90 to 100; but two distant relatives achieved signal martial honors, thus indicating a higher strain in the family" (pp. 90-91). John Bunyan faced more familial obstacles than his famous Pilgrim, but Cox managed to extract a score of 105 for him:

Bunyan's father was a brazier or tinker, but a tinker of recognized position in the village; and the mother was not of the squalid poor, but of people who were "decent and worthy in their ways." This would be sufficient evidence for a rating between 90 and 100. But the record goes further, and we read that notwithstanding their "meanness and inconsiderableness," Bunyan's parents put their boy to school to learn "both to read and write," which probably indicates that he showed something more than the promise of a future tinker (p. 90).

Michael Faraday squeaked by at 105, overcoming the demerit of parental standing with snippets about his reliability as an errand
boy and his questioning nature. His elevated A_2 IQ of 150 only records increasing information about his more notable young manhood. In one case, however, Cox couldn't bear to record the unpleasant result that her methods dictated. Shakespeare, of humble origin and unknown childhood, would have scored below 100. So Cox simply left him out, even though she included several others with equally inadequate childhood records.

Among other curiosities of scoring that reflect Cox and Terman's social prejudices, several precocious youngsters (Clive, Liebig, and Swift, in particular) were downgraded for their rebelliousness in school, particularly for their unwillingness to study classics. An animus against the performing arts is evident in the rating of composers, who (as a group) rank just above soldiers at the bottom of the final list. Consider the following understatement about Mozart (p. 129): "A child who learns to play the piano at 3, who receives and benefits by musical instruction at that age, and who studies and executes the most difficult counterpoint at age 14, is probably above the average level of his social group."

In the end, I suspect that Cox recognized the shaky basis of her work, but persisted bravely nonetheless. Correlations between rank in eminence (length of Cattell's entry) and awarded IQ were disappointing to say the least—a mere 0.25 for eminence vs. A_2 IQ, with no figure recorded at all for eminence vs. A_1 IQ (it is a lower 0.20 by my calculation). Instead, Cox makes much of the fact that her ten most eminent subjects average 4—yes only 4—A_1 IQ points above her ten least eminent.

Cox calculated her strongest correlation (0.77) between A_2 IQ and "index of reliability," a measure of available information about her subjects. I can imagine no better demonstration that Cox's IQ's are artifacts of differential amounts of data, not measures of innate ability or even, for that matter, of simple talent. Cox recognized this and, in a final effort, tried to "correct" her scores for missing information by adjusting poorly documented subjects upward toward the group means of 135 for A_1 IQ and 145 for A_2 IQ. These adjustments boosted average IQ's substantially, but led to other embarrassments. For uncorrected scores, the most eminent fifty averaged 142 for A_1 IQ, while the least eminent fifty scored comfortably lower at 133. With corrections, the first fifty scored 160, the last fifty, 165. Ultimately, only Goethe and Voltaire scored
near the top both in IQ and eminence. One might paraphrase Voltaire's famous quip about God and conclude that even though adequate information on the IQ of history's eminent men does not exist, it was probably inevitable that the American hereditarians would try to invent it.

Terman on group differences

Terman's empirical work measured what statisticians call the "within-group variance" of IQ—that is, the differences in scores within single populations (all children in a school, for example). At best, he was able to show that children testing well or poorly at a young age generally maintain their ordering with respect to other children as the population grows up. Terman ascribed most of these differences to variation in biological endowment, without much evidence beyond an assertion that all right-minded people recognize the domination of nurture by nature. This brand of hereditarianism might offend our present sensibilities with its elitism and its accompanying proposals for institutional care and forced abstinence from breeding, but it does not, by itself, entail the more contentious claim for innate differences between groups.

Terman made this invalid extrapolation, as virtually all hereditarians did and still do. He then compounded his error by confusing the genesis of true pathologies with causes for variation in normal behavior. We know, for example, that the mental retardation associated with Down's syndrome has its origin in a specific genetic defect (an extra chromosome). But we cannot therefore attribute the low IQ of many apparently normal children to an innate biology. We might as well claim that all overweight people can't help it because some very obese individuals can trace their condition to hormonal imbalances. Terman's data on the stability of ordering in IQ within groups of growing children relied largely upon the persistently low IQ of biologically afflicted individuals, despite Terman's attempt to bring all scores under the umbrella of a normal curve (1916, pp. 65-67), and thus to suggest that all variation has a common root in the possession of more or less of a single substance. In short, it is invalid to extrapolate from variation within a group to differences between groups. It is doubly invalid to use the innate biology of pathological individuals as a basis for ascribing normal variation within a group to inborn causes.

At least the IQ hereditarians did not follow their craniological
forebears in harsh judgments about women. Girls did not score below boys in IQ, and Terman proclaimed their limited access to professions both unjust and wasteful of intellectual talent (1916, p. 72; 1919, p. 288). He noted, assuming that IQ should earn its monetary reward, that women scoring between 100 and 120 generally earned, as teachers or "high-grade stenographers," what men with an IQ of 85 received as motormen, firemen, or policemen (1919, p. 278).

But Terman took the hereditarian line on race and class and proclaimed its validation as a primary aim of his work. In ending his chapter on the uses of IQ (1916, pp. 19-20), Terman posed three questions:

Is the place of the so-called lower classes in the social and industrial scale the result of their inferior native endowment, or is their apparent inferiority merely a result of their inferior home and school training? Is genius more common among children of the educated classes than among the children of the ignorant and poor? Are the inferior races really inferior, or are they merely unfortunate in their lack of opportunity to learn?

Despite a poor correlation of 0.4 between social status and IQ, Terman (1917) advanced five major reasons for claiming that "environment is much less important than is original endowment in determining the nature of the traits in question" (p. 91). The first three, based on additional correlations, add no evidence for innate causes. Terman calculated: 1) a correlation of 0.55 between social status and teachers' assessments of intelligence; 2) 0.47 between social status and school work; and 3) a lower, but unstated,* correlation between "age-grade progress" and social status. Since all five properties—IQ, social status, teacher's assessment, school work, and age-grade progress—may be redundant measures of the same complex and unknown causes, the correlation between any additional pair adds little to the basic result of 0.4 between IQ and social status. If the 0.4 correlation offers no evidence for innate causes, then the additional correlations do not either.

The fourth argument, recognized as weak by Terman himself

*It is annoyingly characteristic of Terman's work that he cites correlations when they are high and favorable, but does not give the actual figures when they are low but still favorable to his hypothesis. This ploy abounds in Cox's study of posthumous genius and in Terman's analysis of IQ among professions, both discussed previ-
confuses probable pathology with normal variation and is therefore irrelevant, as discussed above: feeble-minded children are occasionally born to rich or to intellectually successful parents.

The fifth argument reveals the strength of Terman's hereditary convictions and his remarkable insensitivity to the influence of environment. Terman measured the IQ of twenty children in a California orphanage. Only three were "fully normal," while seventeen ranged from 75 to 95. The low scores cannot be attributed to life without parents, Terman argues, because (p. 99):

The orphanage in question is a reasonably good one and affords an environment which is about as stimulating to normal mental development as average home life among the middle classes. The children live in the orphanage and attend an excellent public school in a California village.

Low scores must reflect the biology of children committed to such institutions:

Some of the tests which have been made in such institutions indicate that mental subnormality of both high and moderate grades is extremely frequent among children who are placed in these homes. Most, though admittedly not all of these, are children of inferior social classes (p. 99).

Terman offers no direct evidence about the lives of his twenty children beyond the fact of their institutional placement. He is not even certain that they all came from "inferior social classes." Surely, the most parsimonious assumption would relate low IQ scores to the one incontestable and common fact about the children—their life in the orphanage itself.

Terman moved easily from individuals, to social classes, to races. Distressed by the frequency of IQ scores between 70 and 80, he lamented (1916, pp. 91-92):

Among laboring men and servant girls there are thousands like them. . . . The tests have told the truth. These boys are ineducable beyond the merest rudiments of training. No amount of school instruction will ever make them intelligent voters or capable citizens. . . . They represent the level of intelligence which is very, very common among Spanish-Indian and Mexican families of the Southwest and also among negroes. Their dullness seems to be racial, or at least inherent in the family stocks from which they came. The fact that one meets this type with such extraordinary frequency among Indians, Mexicans, and negroes suggests quite forcibly
that the whole question of racial differences in mental traits will have to be taken up anew and by experimental methods. The writer predicts that when this is done there will be discovered enormously significant racial differences in general intelligence, differences which cannot be wiped out by any scheme of mental culture. Children of this group should be segregated in special classes and be given instruction which is concrete and practical. They cannot master abstractions, but they can often be made efficient workers, able to look out for themselves. There is no possibility at present of convincing society that they should not be allowed to reproduce, although from a eugenic point of view they constitute a grave problem because of their unusually prolific breeding.

Terman sensed that his arguments for innateness were weak. Yet what did it matter? Do we need to prove what common sense proclaims so clearly?

After all, does not common observation teach us that, in the main, native qualities of intellect and character, rather than chance, determine the social class to which a family belongs? From what is already known about heredity, should we not naturally expect to find the children of well-to-do, cultured, and successful parents better endowed than the children who have been reared in slums and poverty? An affirmative answer to the above question is suggested by nearly all the available scientific evidence (1917, p. 99).

Whose common sense?

Terman recants

Terman's book on the Stanford-Binet revision of 1937 was so different from the original volume of 1916 that common authorship seems at first improbable. But then times had changed and intellectual fashions of jingoism and eugenics had been swamped in the morass of a Great Depression. In 1916 Terman had fixed adult mental age at sixteen because he couldn't get a random sample of older schoolboys for testing. In 1937 he could extend his scale to age eighteen; for "the task was facilitated by the extremely unfavorable employment situation at the time the tests were made, which operated to reduce considerably the school elimination normally occurring after fourteen" (1937, p. 30).

Terman did not explicitly abjure his previous conclusions, but a veil of silence descended upon them. Not a word beyond a few statements of caution do we hear about heredity. All potential rea-
sons for differences between groups are framed in environmental terms. Terman presents his old curves for average differences in IQ between social classes, but he warns us that mean differences are too small to provide any predictive information for individuals. We also do not know how to partition the average differences between genetic and environmental influences:

It is hardly necessary to stress the fact that these figures refer to mean values only, and that in view of the variability of the IQ within each group the respective distributions greatly overlap one another. Nor should it be necessary to point out that such data do not, in themselves, offer any conclusive evidence of the relative contributions of genetic and environmental factors in determining the mean differences observed.

A few pages later, Terman discusses the differences between rural and urban children, noting the lower country scores and the curious finding that rural IQ drops with age after entrance to school, while IQ for urban children of semiskilled and unskilled workers rises. He expresses no firm opinion, but note that the only hypotheses he wishes to test are now environmental:

It would require extensive research, carefully planned for the purpose, to determine whether the lowered IQ of rural children can be ascribed to the relatively poorer educational facilities in rural communities, and whether the gain for children from the lower economic strata can be attributed to an assumed enrichment of intellectual environment that school attendance bestows.

Autres temps, autres moeurs.

R. M. Yerkes and the Army Mental Tests: IQ comes of age

Psychology's great leap forward

Robert M. Yerkes, about to turn forty, was a frustrated man in 1915. He had been on the faculty of Harvard University since 1902. He was a superb organizer, and an eloquent promotor of his profession. Yet psychology still wallowed in its reputation as a "soft" science, if a science at all. Some colleges did not acknowledge its existence; others ranked it among the humanities and placed psychologists in departments of philosophy. Yerkes wished, above all, to establish his profession by proving that it could be as
rigorous a science as physics. Yerkes and most of his contemporaries equated rigor and science with numbers and quantification. The most promising source of copious and objective numbers, Yerkes believed, lay in the embryonic field of mental testing. Psychology would come of age, and gain acceptance as a true science worthy of financial and institutional support, if it could bring the question of human potential under the umbrella of science:

Most of us are wholly convinced that the future of mankind depends in no small measure upon the development of the various biological and social sciences. . . . We must . . . strive increasingly for the improvement of our methods of mental measurement, for there is no longer ground for doubt concerning the practical as well as the theoretical importance of studies of human behavior. We must learn to measure skillfully every form and aspect of behavior which has psychological and sociological significance (Yerkes, 1917a, p. 111).

But mental testing suffered from inadequate support and its own internal contradictions. It was, first of all, practiced extensively by poorly trained amateurs whose manifestly absurd results were giving the enterprise a bad name. In 1915, at the annual meeting of the American Psychological Association in Chicago, a critic reported that the mayor of Chicago himself had tested as a moron on one version of the Binet scales. Yerkes joined with critics in discussions at the meeting and proclaimed: "We are building up a science, but we have not yet devised a mechanism which anyone can operate" (quoted in Chase, 1977, p. 242).

Second, available scales gave markedly different results even when properly applied. As discussed on p. 166, half the individuals who tested in the low, but normal range on the Stanford-Binet, were morons on Goddard's version of the Binet scale. Finally, support had been too inadequate, and coordination too sporadic, to build up a pool of data sufficiently copious and uniform to compel belief (Yerkes, 1917b).

Wars always generate their retinue of camp followers with ulterior motives. Many are simply scoundrels and profiteers, but a few are spurred by higher ideals. As mobilization for World War I approached, Yerkes got one of those "big ideas" that propel the history of science: could psychologists possibly persuade the army to test all its recruits? If so, the philosopher's stone of psychology might be constructed: the copious, useful, and uniform body of
numbers that would fuel a transition from dubious art to respected science. Yerkes proselytized within his profession and within government circles, and he won his point. As Colonel Yerkes, he presided over the administration of mental tests to 1.75 million recruits during World War I. Afterward, he proclaimed that mental testing "helped to win the war." "At the same time," he added, "it has incidentally established itself among the other sciences and demonstrated its right to serious consideration in human engineering" (quoted in Kevles, 1968, p. 581).

Yerkes brought together all the major hereditarians of American psychometrics to write the army mental tests. From May to July 1917 he worked with Terman, Goddard, and other colleagues at Goddard's Training School in Vineland, New Jersey.

Their scheme included three types of tests. Literate recruits would be given a written examination, called the Army Alpha. Illiterates and men who had failed Alpha would be given a pictorial test, called the Army Beta. Failures in Beta would be recalled for an individual examination, usually some version of the Binet scales. Army psychologists would then grade each man from A to E (with plusses and minuses) and offer suggestions for proper military placement. Yerkes suggested that recruits with a score of C—should be marked as "low average intelligence—ordinary private." Men of grade D are "rarely suited for tasks requiring special skill, forethought, resourcefulness or sustained alertness." D and E men could not be expected "to read and understand written directions."

I do not think that the army ever made much use of the tests. One can well imagine how professional officers felt about smart-assed young psychologists who arrived without invitation, often assumed an officer's rank without undergoing basic training, commandeered a building to give the tests (if they could), saw each recruit for an hour in a large group, and then proceeded to usurp an officer's traditional role in judging the worthiness of men for various military tasks. Yerkes's corps encountered hostility in some camps; in others, they suffered a penalty in many ways more painful: they were treated politely, given appropriate facilities, and then ignored.* Some army officials became suspicious of Yerkes's

*Yerkes continued to complain throughout his career that military psychology had not achieved its due respect, despite its accomplishments in World War I. During World War II the aging Yerkes was still grousing and arguing that the Nazis were
intent and launched three independent investigations of the testing program. One concluded that it should be controlled so that "no theorist may . . . ride it as a hobby for the purpose of obtaining data for research work and the future benefit of the human race" (quoted in Kevles, 1968, p. 577).

Still, the tests did have a strong impact in some areas, particularly in screening men for officer training. At the start of the war, the army and national guard maintained nine thousand officers. By the end, two hundred thousand officers presided, and two-thirds of them had started their careers in training camps where the tests were applied. In some camps, no man scoring below C could be considered for officer training.

But the major impact of Yerkes's tests did not fall upon the army. Yerkes may not have brought the army its victory, but he certainly won his battle. He now had uniform data on 1.75 million men, and he had devised, in the Alpha and Beta exams, the first mass-produced written tests of intelligence. Inquiries flooded in from schools and businesses. In his massive monograph (Yerkes, 1921) on Psychological Examining in the United States Army, Yerkes buried a statement of great social significance in an aside on page 96. He spoke of "the steady stream of requests from commercial concerns, educational institutions, and individuals for the use of army methods of psychological examining or for the adaptation of such methods to special needs." Binet's purpose could now be circumvented because a technology had been developed for testing all pupils. Tests could now rank and stream everybody; the era of mass testing had begun.

Results of the army tests

The primary impact of the tests arose not from the army's lackadaisical use of scores for individuals, but from general propaganda that accompanied Yerkes's report of the summary statistics (Yerkes, 1921, pp. 553-875). E. G. Boring, later a famous psychol-
ogist himself but then Yerkes's lieutenant (and the army's captain), selected one hundred sixty thousand cases from the files and produced data that reverberated through the 1920s with a hard hereditarian ring. The task was a formidable one. The sample, which Boring culled himself with the aid of only one assistant, was very large; moreover, the scales of three different tests (Alpha, Beta, and individual) had to be converted to a common standard so that racial and national averages could be constructed from samples of men who had taken the tests in different proportions (few blacks took Alpha, for example).

From Boring's ocean of numbers, three "facts" rose to the top and continued to influence social policy in America long after their source in the tests had been forgotten.

1. The average mental age of white American adults stood just above the edge of moronity at a shocking and meager thirteen. Terman had previously set the standard at sixteen. The new figure became a rallying point for eugenicists who predicted doom and lamented our declining intelligence, caused by the unconstrained breeding of the poor and feeble-minded, the spread of Negro blood through miscegenation, and the swamping of an intelligent native stock by the immigrating dregs of southern and eastern Europe. Yerkes* wrote:

It is customary to say that the mental age of the average adult is about 16 years. This figure is based, however, upon examinations of only 62 persons; 32 of them high-school pupils from 16–20 years of age, and 30 of them "business men of moderate success and of very limited educational advantages." The group is too small to give very reliable results and is furthermore probably not typical. . . . It appears that the intelligence of the principal sample of the white draft, when transmuted from Alpha and Beta exams into terms of mental age, is about 13 years (13.08) (1921, p. 785).

Yet, even as he wrote, Yerkes began to sense the logical absurdity of such a statement. An average is what it is; it cannot lie three years below what it should be. So Yerkes thought again and added:

We can hardly say, however, with assurance that these recruits are three years mental age below the average. Indeed, it might be argued on

*I doubt that Yerkes wrote all parts of the massive 1921 monograph himself. But he is listed as the only author of this official report, and I shall continue to attribute its statements to him, both as shorthand and for want of other information.
extrinsic grounds that the draft itself is more representative of the average intelligence of the country than is a group of high-school students and business men (1921, p. 785).

If 13.08 is the white average, and everyone from mental age 8 through 12 is a moron, then we are a nation of nearly half-morons. Yerkes concluded (1921, p. 791): "It would be totally impossible to exclude all morons as that term is at present defined, for there are under 13 years 37 percent of whites and 89 percent of negroes."

2. European immigrants can be graded by their country of origin. The average man of many nations is a moron. The darker peoples of southern Europe and the Slavs of eastern Europe are less intelligent than the fair peoples of western and northern Europe. Nordic supremacy is not a jingoistic prejudice. The average Russian has a mental age of 11.34; the Italian, 11.01; the Pole, 10.74. The Polish joke attained the same legitimacy as the moron joke—indeed, they described the same animal.

3. The Negro lies at the bottom of the scale with an average mental age of 10.41. Some camps tried to carry the analysis a bit further, and in obvious racist directions. At Camp Lee, blacks were divided into three groups based upon intensity of color; the lighter groups scored higher (p. 531). Yerkes reported that the opinions of officers matched his numbers (p. 742);

All officers without exception agree that the negro lacks initiative, displays little or no leadership, and cannot accept responsibility. Some point out that these defects are greater in the southern negro. All officers seem further to agree that the negro is a cheerful, willing soldier, naturally subservient. These qualities make for immediate obedience, although not necessarily for good discipline, since petty thieves and venereal disease are commoner than with white troops.

Along the way, Yerkes and company tested several other social prejudices. Some fared poorly, particularly the popular eugenic notion that most offenders are feeble-minded. Among conscientious objectors for political reasons, 59 percent received a grade of A. Even outright disloyals scored above the average (p. 803). But other results buoyed their prejudices. As camp followers themselves, Yerkes's corps decided to test a more traditional category of colleagues: the local prostitutes. They found that 53 percent (44 percent of whites and 68 percent of blacks) ranked at age ten or
below on the Goddard version of the Binet scales. (They acknowl-
dge that the Goddard scales ranked people well below their scores
on other versions of the Binet tests.) Yerkes concluded (p. 808):

The results of Army examining of prostitutes corroborate the conclud-
sion, attained by civilian examinations of prostitutes in various parts of the
country, that from 30 to 60 percent of prostitutes are deficient and are for
the most part high-grade morons; and that 15 to 25 percent of all pro-
stitutes are so low-grade mentally that it is wise (as well as possible under the
existing laws in most states) permanently to segregate them in institutions
for the feeble-minded.

One must be thankful for small bits of humor to lighten the read-
ing of an eight-hundred-page statistical monograph. The thought
of army personnel rounding up the local prostitutes and sitting
them down to take the Binet tests amused me no end, and must
have bemused the ladies even more.

As pure numbers, these data carried no inherent social mes-
sage. They might have been used to promote equality of opportu-
nity and to underscore the disadvantages imposed upon so many
Americans. Yerkes might have argued that an average mental age
of thirteen reflected the fact that relatively few recruits had the
opportunity to finish or even to attend high school. He might have
attributed the low average of some national groups to the fact that
most recruits from these countries were recent immigrants who did
not speak English and were unfamiliar with American culture. He
might have recognized the link between low Negro scores and the
history of slavery and racism.

But scarcely a word do we read through eight hundred pages
of any role for environmental influence. The tests had been written
by a committee that included all the leading American hereditar-
ians discussed in this chapter. They had been constructed to mea-
sure innate intelligence, and they did so by definition. The
circularity of argument could not be broken. All the major findings
received hereditarian interpretations, often by near miracles of
special pleading to argue past a patent environmental influence. A
circular issued from the School of Military Psychology at Camp
Greenleaf proclaimed (do pardon its questionable grammar):
"These tests do not measure occupational fitness nor educational
attainment; they measure intellectual ability. This latter has been
shown to be important in estimating military value" (p. 424). And the boss himself argued (Yerkes, quoted in Chase, 1977, p. 249):

Examinations Alpha and Beta are so constructed and administered as to minimize the handicap of men who because of foreign birth or lack of education are little skilled in the use of English. These group examinations were originally intended, and are now definitely known, to measure native intellectual ability. They are to some extent influenced by educational acquirement, but in the main the soldier's inborn intelligence and not the accidents of environment determines his mental rating or grade in the army.

A critique of the Army Mental Tests

THE CONTENT OF THE TESTS

The Alpha test included eight parts, the Beta seven; each took less than an hour and could be given to large groups. Most of the Alpha parts presented items that have become familiar to generations of test-takers ever since: analogies, filling in the next number in a sequence, unscrambling sentences, and so forth. This similarity is no accident; the Army Alpha was the granddaddy, literally as well as figuratively, of all written mental tests. One of Yerkes's disciples, C. C. Brigham, later became secretary of the College Entrance Examination Board and developed the Scholastic Aptitude Test on army models. If people get a peculiar feeling of déjà-vu in perusing Yerkes's monograph, I suggest that they think back to their own College Boards, with all its attendant anxiety.

These familiar parts are not especially subject to charges of cultural bias, at least no more so than their modern descendants. In a general way, of course, they test literacy, and literacy records education more than inherited intelligence. Moreover, a schoolmaster's claim that he tests children of the same age and school experience, and therefore may be recording some internal biology, didn't apply to the army recruits—for they varied greatly in access to education and recorded different amounts of schooling in their scores. A few of the items are amusing in the light of Yerkes's assertion that the tests "measure native intellectual ability." Consider the Alpha analogy: "Washington is to Adams as first is to"

But one part of each test is simply ludicrous in the light of Yerkes's analysis. How could Yerkes and company attribute the low
scores of recent immigrants to innate stupidity when their multiple-choice test consisted entirely of questions like:

- **Crisco** is a: patent medicine, disinfectant, toothpaste, food product
- The number of a Kaffir's legs is: 2, 4, 6, 8
- Christy Mathewson is famous as a: writer, artist, baseball player, comedian

I got the last one, but my intelligent brother, who, to my distress, grew up in New York utterly oblivious to the heroics of three great baseball teams then resident, did not.

Yerkes might have responded that recent immigrants generally took Beta rather than Alpha, but Beta contains a pictorial version of the same theme. In this complete-a-picture test, early items might be defended as sufficiently universal: adding a mouth to a face or an ear to a rabbit. But later items required a rivet in a pocket knife, a filament in a light bulb, a horn on a phonograph, a net on a tennis court, and a ball in a bowler's hand (marked wrong, Yerkes explained, if an examinee drew the ball in the alley, for you can tell from the bowler's posture that he has not yet released the ball). Franz Boas, an early critic, told the tale of a Sicilian recruit who added a crucifix where it always appeared in his native land to a house without a chimney. He was marked wrong.

The tests were strictly timed, for the next fifty were waiting by the door. Recruits were not expected to finish each part; this was explained to the Alpha men, but not to Beta people. Yerkes wondered why so many recruits scored flat zero on so many of the parts (the most telling proof of the tests' worthlessness—see pp. 244-247). How many of us, if nervous, uncomfortable, and crowded (and even if not), would have understood enough to write anything at all in the ten seconds allotted for completing the following commands, each given but once in Alpha, Part 1?

Attention! Look at 4. When I say "go" make a figure 1 in the space which is in the circle but not in the triangle or square, and also make a figure 2 in the space which is in the triangle and circle, but not in the square. Go.

Attention! Look at 6. When I say "go" put in the second circle the right answer to the question: "How many months has a year?" In the third circle do nothing, but in the fourth circle put any number that is a wrong answer to the question that you have just answered correctly. Go.
INADEQUATE CONDITIONS

Yerkes's protocol was rigorous and trying enough. His examiners had to process men rapidly and grade the exams immediately, so that failures could be recalled for a different test. When faced with the added burden of thinly veiled hostility from the brass at several camps, Yerkes's testers were rarely able to carry out more than a caricature of their own stated procedure. They continually compromised, backtracked, and altered in the face of necessity. Procedures varied so much from camp to camp that results could scarcely be collated and compared. The whole effort, through no fault of Yerkes's beyond impracticality and overambition, became something of a shambles, if not a disgrace. The details are all in Yerkes's monograph, but hardly anyone ever read it. The summary statistics became an important social weapon for racists and eugenicists; their rotten core lay exposed in the monograph, but who looks within when the surface shines with such a congenial message.

The army mandated that special buildings be supplied or even constructed for Yerkes's examinations, but a different reality prevailed (1921, p. 61). The examiners had to take what they could get, often rooms in cramped barracks with no furnishings at all, and inadequate acoustics, illumination, and lines of sight. The chief tester at one camp complained (p. 106): "Part of this inaccuracy I believe to be due to the fact that the room in which the examination is held is filled too full of men. As a result, the men who are sitting in the rear of the room are unable to hear clearly and thoroughly enough to understand the instructions."

Tensions rose between Yerkes's testers and regular officers. The chief tester of Camp Custer complained (p. 111): "The ignorance of the subject on the part of the average officer is equalled only by his indifference to it." Yerkes urged restraint and accommodation (p. 155):

The examiner should strive especially to take the military point of view. Unwarranted claims concerning the accuracy of the results should be avoided. In general, straightforward commonsense statements will be found more convincing than technical descriptions, statistical exhibits, or academic arguments.
As friction and doubt mounted, the secretary of war polled commanding officers of all camps to ask their opinion of Yerkes's tests. He received one hundred replies, nearly all negative. They were, Yerkes admitted (p. 43), "with a few exceptions, unfavorable to psychological work, and have led to the conclusion on the part of various officers of the General Staff that this work has little, if any, value to the army and should be discontinued." Yerkes fought back and won a standoff (but not all the promotions, commissions, and hirings he had been promised); his work proceeded under a cloud of suspicion.

Minor frustrations never abated. Camp Jackson ran out of forms and had to improvise on blank paper (p. 78). But a major and persistent difficulty dogged the entire enterprise and finally, as I shall demonstrate, deprived the summary statistics of any meaning. Recruits had to be allocated to their appropriate test. Men illiterate in English, either by lack of schooling or foreign birth, should have taken examination Beta, either by direct assignment, or indirectly upon failing Alpha. Yerkes's corps tried heroically to fulfill this procedure. In at least three camps, they marked identification tags or even painted letters directly on the bodies of men who failed—a ready identification guide for further assessment (p. 73, p. 76): "A list of D men was sent within six hours after the group examination to the clerk at the mustering office. As the men appeared, this clerk marked on the body of each D man a letter P" (indicating that the psychiatrist should examine them further).

But standards for the division between Alpha and Beta varied substantially from camp to camp. A survey across camps revealed that the minimum score on an early version of Alpha varied from 20 to 100 for assignment to further testing (p. 476). Yerkes admitted (p. 354):

This lack of a uniform process of segregation is certainly unfortunate. On account of the variable facilities for examining and the variable quality of the groups examined however, it appeared entirely impossible to establish a standard uniform for all camps.

C. C. Brigham, Yerkes's most zealous votary, even complained (1921):
The method of selecting men for Beta varied from camp to camp, and sometimes from week to week in the same camp. There was no established criterion of literacy, and no uniform method of selecting illiterates.

The problem cut far deeper than simple inconsistency among camps. The persistent logistical difficulties imposed a systematic bias that substantially lowered the mean scores of blacks and immigrants. For two major reasons, many men took only Alpha and scored either zero or next to nothing, not because they were innately dumb, but because they were illiterate and should have taken Beta by Yerkes's own protocol. First, recruits and draftees had, on average, spent fewer years in school than Yerkes had anticipated. Lines for Beta began to lengthen and the entire operation threatened to clog at this bottleneck. At many camps, unqualified men were sent in droves to Alpha by artificial lowering of standards. Schooling to the third grade sufficed for Alpha in one camp; in another, anyone who said he could read, at whatever level, took Alpha. The chief tester at Camp Dix reported (p. 72): "To avoid excessively large Beta groups, standards for admission to examination Alpha were set low."

Second, and more important, the press of time and the hostility of regular officers often precluded a Beta retest for men who had incorrectly taken Alpha. Yerkes admitted (p. 472): "It was never successfully shown, however, that the continued recalls . . . were so essential that repeated interference with company maneuvers should be permitted." As the pace became more frantic, the problem worsened. The chief tester at Camp Dix complained (pp. 72-73): "In June it was found impossible to recall a thousand men listed for individual examination. In July Alpha failures among negroes were not recalled." The stated protocol scarcely applied to blacks who, as usual, were treated with less concern and more contempt by everyone. Failure on Beta, for example, should have led to an individual examination. Half the black recruits scored D- on Beta, but only one-fifth of these were recalled and four-fifths received no further examination (p. 708). Yet we know that scores for blacks improved substantially when the protocol was followed. At one camp (p. 736), only 14.1 percent of men who had scored D- on Alpha failed to gain a higher grade on Beta.

The effects of this systematic bias are evident in one of Boring's
experiments with the summary statistics. He culled 4,893 cases of men who had taken both Alpha and Beta. Converting their scores to the common scale, he calculated an average mental age of 10.775 for Alpha, and a Beta mean of 12.158 (p. 655). He used only the Beta scores in his summaries; Yerkes procedure worked. But what of the myriads who should have taken Beta, but only received Alpha and scored abysmally as a result—primarily poorly educated blacks and immigrants with an imperfect command of English—the very groups whose low scores caused such a hereditarian stir later on?

DUBIOUS AND PERVERSE PROCEEDINGS: A PERSONAL TESTIMONY

Academicians often forget how poorly or incompletely the written record, their primary source, may represent experience. Some things have to be seen, touched, and tasted. What was it like to be an illiterate black or foreign recruit, anxious and befuddled at the novel experience of taking an examination, never told why, or what would be made of the results: expulsion, the front lines? In 1968 (quoted in Kevles), an examiner recalled his administration of Beta: "It was touching to see the intense effort... put into answering the questions, often by men who never before had held a pencil in their hands." Yerkes had overlooked, or consciously bypassed, something of importance. The Beta examination contained only pictures, numbers, and symbols. But it still required pencil work and, on three of its seven parts, a knowledge of numbers and how to write them.

Yerkes's monograph is so thorough that his procedure for giving the two examinations can be reconstructed down to the choreography of motion for all examiners and orderlies. He provides facsimiles in full size for the examinations themselves, and for all explanatory material used by examiners. The standardized words and gestures of examiners are reproduced in full. Since I wanted to know in as complete a way as possible what it felt like to give and take the test, I administered examination Beta (for illiterates) to a group of fifty-three Harvard undergraduates in my course on biology as a social weapon. I tried to follow Yerkes's protocol scrupulously in all its details. I feel that I reconstructed the original situation accurately, with one important exception: my students knew what they were doing, didn't have to provide their names on
The Hereditarian Theory of IQ

At stake. (One friend later suggested the form, and had needed names—and posted results—as just a small contribution to regulating the anxiety of the original.)

I knew before I validated the hereditarian conclusions that prejudice thoroughly in the results. Boring himself called these Yerkes had drawn from late in his career (in a 1962 interview, conclusions "preposterous" I had not understood how the Dra-

quent made such a thorough mockery of the conian conditions of I have been in a frame of mind to record

claim that recruits couldate abilities. In short, most of the men anything about their utterly confused or scared shitless.

must have ended up gathered into a room and seated before an

The recruits were b standing atop a platform, and several examiner and demonstrators were instructed to administer orderlies at floor leve' nner since "the subjects who take this the test "in a genial walk and refuse to work" (p. 163). Recruits examination or its purposes. The were told nothing abtere are some papers. You must not open examiner simply said: "until you are told to." The men then filled them or turn them over. With help for those too illiterate in their names, age, and perfunctory preliminaries, the examiner to do so. After plunged right in:

Attention. Watch this to do here (tapping blackboard with pointer) demonstrator again) is a cent members of the group) are to do on your what you (pointing to diff culpts to several papers mat lie before men in the papers (here examiner next to the blackboard, returns the paper, group, picks up one, how the blackboard in succession, then to the men questions. Wait till I say "Go ahead!" (p. 163). and their papers). Ask no

By comparison, All the Alpha examiner said:

Attention! The purpose of this examination is to see how well you can out what you are told to do. We are not look-remember, think, and ing for crazy people. The you make this examination will be put on do in the Army. The grand of this qualification card a to your company commander. Some you may find Some of the things you
hard. You are not expected to make a perfect grade, but do the very best you can. . . . Listen closely. Ask no questions.

The extreme limits imposed upon the Beta examiner's vocabulary did not only reflect Yerkes's poor opinion of what Beta recruits might understand by virtue of their stupidity. Many Beta examinees were recent immigrants who did not speak English, and instruction had to be as pictorial and gestural as possible. Yerkes advised (p. 163): "One camp has had great success with a 'window seller' as demonstrator. Actors should also be considered for the work." One particularly important bit of information was not transmitted: examinees were not told that it was virtually impossible to finish at least three of the tests, and that they were not expected to do so.

Atop the platform, the demonstrator stood in front of a blackboard roll covered by a curtain; the examiner stood at his side. Before each of the seven tests, the curtain was raised to expose a sample problem (all reproduced in Figure 5.4), and examiner and demonstrator engaged in a bit of pantomime to illustrate proper procedure. The examiner then issued an order to work, and the demonstrator closed the curtain and advanced the roll to the next sample. The first test, maze running, received the following demonstration:

Demonstrator traces path through first maze with crayon, slowly and hesitantly. Examiner then traces second maze and motions to demonstrator to go ahead. Demonstrator makes one mistake by going into the blind alley at upper left-hand corner of maze. Examiner apparently does not notice what demonstrator is doing until he crosses line at end of alley; then examiner shakes his head vigorously, says "No-no," takes demonstrator's hand and traces back to the place where he may start right again. Demonstrator traces rest of maze so as to indicate an attempt at haste, hesitating only at ambiguous points. Examiner says "Good." Then holding up blank, "Look here," and draws an imaginary line across the page from left to right for every maze on the page. Then, "All right. Go ahead. Do it (pointing to men and then to books). Hurry up."

This paragraph may be naively amusing (some of my students thought so). The next statement, by comparison, is a bit diabolical.

The idea of working fast must be impressed on the men during the maze test. Examiner and orderlies walk around the room, motioning to
men who are not working, and saying, "Do it, do it, hurry up, quick." At the end of 2 minutes examiner says, "Stop! Turn over the page to test 2."

The examiner demonstrated test 2, cube counting, with three-dimensional models (my son had some left over from his baby days). Note that recruits who could not write numbers would receive scores of zero even if they counted all the cubes correctly. Test 3, the X-O series, will be recognized by nearly everyone today as the pictorial version of "what is the next number in the sequence." Test 4, digit symbols, required the translation of nine digits into corresponding symbols. It looks easy enough, but the test itself included ninety items and could hardly be finished by anybody in the two minutes allotted. A man who couldn't write numbers was faced with two sets of unfamiliar symbols and suffered a severe additional disadvantage. Test 5, number checking, asked men to compare numerical sequences, up to eleven digits in length, in two parallel columns. If items on the same line were identical in the two columns, recruits were instructed (by gestures) to write an X next to the item. Fifty sequences occupied three minutes, and few recruits could finish. Again, an inability to write or recognize numbers would make the task virtually impossible.

Test 6, pictorial completion, is Beta's visual analogue of Alpha's multiple-choice examination for testing innate intelligence by asking recruits about commercial products, famous sporting or film stars, or the primary industries of various cities and states. Its instructions are worth repeating:

"This is test 6 here. Look. A lot of pictures." After everyone has found the place, "Now watch." Examiner points to hand and says to demonstrator, "Fix it." Demonstrator does nothing, but looks puzzled. Examiner points to the picture of the hand, and then to the place where the finger is missing and says to demonstrator, "Fix it; fix it." Demonstrator then draws in finger. Examiner says, "That's right." Examiner then points to fish and place for eye and says, "Fix it." After demonstrator has drawn missing eye, examiner points to each of the four remaining drawings and says, "Fix them all." Demonstrator works samples out slowly and with apparent effort. When the samples are finished examiner says, "All right. Go ahead. Hurry up!" During the course of this test the orderlies walk around the room and locate individuals who are doing nothing, point to their pages and say, "Fix it. Fix them," trying to set everyone working. At the end of 3 minutes examiner says, "Stop! But don't turn over the page."
The blackboard demonstrations for all seven parts of the Beta test. From Yerkes, 1921.
The examination itself is also worth reprinting (Fig. 5.5). Best of luck with pig tails, crab legs, bowling balls, tennis nets, and the Jack's missing diamond, not to mention the phonograph horn (a real stumper for my students). Yerkes provided the following instructions for grading:

Rules for Individual Items

Item 4.—Any spoon at any angle in right hand receives credit. Left hand, or unattached spoon, no credit.
Item 5.—Chimney must be in right place. No credit for smoke.
Item 6.—Another ear on same side as first receives no credit.
Item 8.—Plain square, cross, etc., in proper location for stamp, receives credit.
Item 10.—Missing part is the rivet. Line of "ear" may be omitted.
Item 13.—Missing part is leg.
Item 15.—Ball should be drawn in hand of man. If represented in hand of woman, or in motion, no credit.
Item 16.—Single line indicating net receives credit.
Item 18.—Any representation intended for horn, pointing in any direction, receives credit.
Item 19.—Hand and powder puff must be put on proper side.
Item 20.—Diamond is the missing part. Failure to complete hilt on sword is not an error.

The seventh and last test, geometrical construction, required that a square be broken into component pieces. Its ten parts were allotted two and a half minutes.

I believe that the conditions of testing, and the basic character of the examination, make it ludicrous to believe that Beta measured any internal state deserving the label intelligence. Despite the plea for geniality, the examination was conducted in an almost frantic rush. Most parts could not be finished in the time allotted, but recruits were not forewarned. My students compiled the following record of completions on the seven parts (see p. 242). For two of the tests, digit symbols and number checking (4 and 5), most students simply couldn't write fast enough to complete the ninety and fifty items, even though the protocol was clear to all. The third test with a majority of incompletes, cube counting (number 2), was too difficult for the number of items included and the time allotted.

In summary, many recruits could not see or hear the examiner;
Part six of examination Beta for testing innate intelligence.
some had never taken a test before or even held a pencil. Many did not understand the instructions and were completely befuddled. Those who did comprehend could complete only a small part of most tests in the allotted time. Meanwhile, if anxiety and confusion had not already reached levels sufficiently high to invalidate the results, the orderlies continually marched about, pointing to individual recruits and ordering them to hurry in voices loud enough, as specifically mandated, to convey the message generally. Add to this the blatant cultural biases of test 6, and the more subtle biases directed against those who could not write numbers or who had little experience in writing anything at all, and what do you have but a shambles.

The proof of inadequacy lies in the summary statistics, though Yerkes and Boring chose to interpret them differently. The monograph presents frequency distributions for scores on each part separately. Since Yerkes believed that innate intelligence was normally distributed (the "standard" pattern with a single mode at some middle score and symmetrically decreasing frequencies away from the mode in both directions), he expected that scores for each test would be normally distributed as well. But only two of the tests, maze running and picture completion (1 and 6), yielded a distribution even close to normal. (These are also the tests that my own students found easiest and completed in highest proportion.) All the other tests yielded a bimodal distribution, with one peak at a middle value and another squarely at the minimum value of zero (Fig. 5.6).

The common-sense interpretation of this bimodality holds that recruits had two different responses to the tests. Some understood what they were supposed to do, and performed in varied ways.
Others, for whatever reasons, could not fathom the instructions and scored zero. With high levels of imposed anxiety, poor conditions for seeing and hearing, and general inexperience with testing for most recruits, it would be fatuous to interpret the zero scores as evidence of innate stupidity below the intelligence of men who made some points—though Yerkes wormed out of the difficulty this way (see pp. 244—247). (My own students compiled lowest rates of completion for the tests that yield the largest secondary modes at zero in Yerkes's sample—tests 4 and 5. As the only exception to this pattern, most of my students completed test 3, which produced a strong zero mode in the army sample. But 3 is the visual analog of "what is the next number in this series," a test that all my

5 & 6 Frequency distributions for four of the Beta tests. Note the prominent mode at zero for tests 4, 5, and 7.
5.7a, 5.7b Zero was by far the most common value in several of the Alpha tests.
students have taken more times than they care to remember.) Statisticians are trained to be suspicious of distributions with multiple modes. Such distributions usually indicate inhomogeneity in the system, or, in plainer language, different causes for the different modes. All familiar proverbs about the inadvisability of mixing apples and oranges apply. The multiple modes should have guided Yerkes to a suspicion that his tests were not measuring a single entity called intelligence. Instead, his statisticians found a way to redistribute zero scores in a manner favorable to hereditary assumptions (see next section).

Oh yes, was anyone wondering how my students fared? They did very well of course. Anything else would have been shocking, since all the tests are greatly simplified precursors of examinations they have been taking all their lives. Of fifty-three students, thirty-one scored A and sixteen B. Still, more than 10 percent (six of fifty-three) scored at the intellectual borderline of C; by the standards of some camps, they would have been fit only for the duties of a buck private.

FINAGLING THE SUMMARY STATISTICS: THE PROBLEM OF ZERO VALUES

If the Beta test faltered on the artifact of a secondary mode for zero scores, the Alpha test became an unmitigated disaster for the same reason, vastly intensified. The zero modes were pronounced in Beta, but they never reached the height of the primary mode at a middle value. But six of eight Alpha tests yielded their highest mode at zero. (Only one had a normal distribution with a middle mode, while the other yielded a zero mode lower than the middle mode.) The zero mode often soared above all other values. In one test, nearly 40 percent of all scores were zero (Fig. 5.7a). In another, zero was the only common value, with a flat distribution of other scores (at about one-fifth the level of zero values) until an even decline began at high scores (Fig. 5.7b).

Again, the common-sense interpretation of numerous zeros suggests that many men didn't understand the instructions and that the tests were invalid on that account. Buried throughout Yerkes's monograph are numerous statements proving that testers worried greatly about the high frequency of zeros and, in the midst
of giving the tests, tended to interpret zeros in this common-sense fashion. They eliminated some tests from the Beta repertoire (p. 372) because they produced up to 30.7 percent zero scores (although some Alpha tests with a higher frequency of zeros were retained). They reduced the difficulty of initial items in several tests "in order to reduce the number of zero scores" (p. 341). They included among the criteria for acceptance of a test within the Beta repertoire (p. 373): "ease of demonstration, as shown by low percentage of zero scores." They acknowledged several times that a high frequency of zeros reflected poor explanation, not stupidity of the recruits: "The large number of zero scores, even with officers, indicates that the instructions were unsatisfactory" (p. 340). "The main burden of the early reports was to the effect that the most difficult task was 'getting the idea across.' A high percentage of zero scores in any given test was considered an indication of failure to 'get that test across' " (p. 379).

With all these acknowledgments, one might have anticipated Boring's decision either to exclude zeros from the summary statistics or to correct for them by assuming that most recruits would have scored some points if they had understood what they were supposed to do. Instead, Boring "corrected" zero scores in the opposite way, and actually demoted many of them into a negative range.

Boring began with the same hereditarian assumption that invalidated all the results: that the tests, by definition, measure innate intelligence. The clump of zeros must therefore be made up of men who were too stupid to do any items. Is it fair to give them all zero? After all, some must have been just barely too stupid, and their zero is a fair score. But other dullards must have been rescued from an even worse fate by the minimum of zero. They would have done even more poorly if the test had included enough easy items to make distinctions among the zero scores. Boring distinguished between a true "mathematical zero," an intrinsic minimum that cannot logically go lower, and a "psychological zero," an arbitrary beginning defined by a particular test. (As a general statement, Boring makes a sound point. In the particular context of the army tests, it is absurd):

A score of zero, therefore, does not mean no ability at all; it does not mean the point of discontinuance of the thing measured; it means the point of discontinuance of the instrument of measurement, the test. ... The indi-
individual who fails to earn a positive score and is marked zero is actually thereby given a bonus varying in value directly with his stupidity (p. 622).

Boring therefore "corrected" each zero score by calibrating it against other tests in the series on which the same man had scored some points. If he had scored well on other tests, he was not doubly penalized for his zeros; if he had done poorly, then his zeros were converted to negative scores.

By this method, a debilitating flaw in Yerkes's basic procedure was accentuated by tacking an additional bias onto it. The zeros only indicated that, for a suite of reasons unrelated to intelligence, vast numbers of men did not understand what they were supposed to do. And Yerkes should have recognized this, for his own reports proved that, with reduced confusion and harassment, men who had scored zero on the group tests almost all managed to make points on the same or similar tests given in an individual examination. He writes (p. 406): "At Greenleaf it was found that the proportion of zero scores in the maze test was reduced from 28 percent in Beta to 2 percent in the performance scale, and that similarly zero scores in the digit-symbol test were reduced from 49 to 6 percent."

Yet, when given an opportunity to correct this bias by ignoring or properly redistributing the zero scores, Yerkes's statisticians did just the opposite. They exacted a double penalty by demoting most zero scores to a negative range.

FINAGLING THE SUMMARY STATISTICS:
GETTING AROUND OBVIOUS CORRELATIONS WITH ENVIRONMENT

Yerkes's monograph is a treasure-trove of information for anyone seeking environmental correlates of performance on "tests of intelligence." Since Yerkes explicitly denied any substantial causal role to environment, and continued to insist that the tests measured innate intelligence, this claim may seem paradoxical. One might suspect that Yerkes, in his blindness, didn't read his own information. The situation, in fact, is even more curious. Yerkes read very carefully; he puzzled over every one of his environmental correlations, and managed to explain each of them away with arguments that sometimes border on the ridiculous.

Minor items are reported and dispersed in a page or two. Yerkes found strong correlations between average score and infestation with hookworm in all 4 categories:
These results might have led to the obvious admission that state of health, particularly in diseases related to poverty, has some effect upon the scores. Although Yerkes did not deny this possibility, he stressed another explanation (p. 811): "Low native ability may induce such conditions of living as to result in hookworm infection."

In studying the distribution of scores by occupation, Yerkes conjectured that since intelligence brings its own reward, test scores should rise with expertise. He divided each job into apprentices, journeymen, and experts and searched for increasing scores between the groups. But he found no pattern. Instead of abandoning his hypothesis, he decided that his procedure for allocating men to the three categories must have been flawed (pp. 831–832):

It seems reasonable to suppose that a selection process goes on in industry which results in a selection of the mentally more alert for promotion from the apprentice stage to the journeyman stage and likewise from the journeyman stage to the expert. Those inferior mentally would stick at the lower levels of skill or be weeded out of the particular trade. On this hypothesis one begins to question the accuracy of the personnel interviewing procedure.

Among major patterns, Yerkes continually found relationships between intelligence and amount of schooling. He calculated a correlation coefficient of 0.75 between test score and years of education. Of 348 men who scored below the mean in Alpha, only 1 had ever attended college (as a dental student), 4 had graduated from high school, and only 10 had ever attended high school at all. Yet Yerkes did not conclude that more schooling leads to increasing scores per se; instead, he argued that men with more innate intelligence spend more time in school. "The theory that native intelligence is one of the most important conditioning factors in continuance in school is certainly borne out by this accumulation of data" (p. 780).
THE HEREDITARIAN THEORY OF IQ

Yerkes noted the strongest correlation of scores with schooling in considering the differences between blacks and whites. He made a significant social observation, but gave it his usual innatist twist (p. 760):

The white draft of foreign birth is less schooled; more than half of this group have not gone beyond the fifth grade, while one-eighth, or 12.5 percent, report no schooling. Negro recruits though brought up in this country where elementary education is supposedly not only free but compulsory on all, report no schooling in astonishingly large proportion.

Failure of blacks to attend school, he argued, must reflect a disinclination based on low innate intelligence. Not a word about segregation (then officially sanctioned, if not mandated), poor conditions in black schools, or economic necessities for working among the impoverished. Yerkes acknowledged that schools might vary in quality, but he assumed that such an effect must be small and cited, as primary evidence for innate black stupidity, the lower scores of blacks when paired with whites who had spent an equal number of years in school (p. 773):

The grade standards, of course, are not identical all over the country, especially as between schools for white and for negro children, so that "fourth-grade schooling" doubtless varies in meaning from group to group, but this variability certainly cannot account for the clear intelligence differences between groups.

The data that might have led Yerkes to change his mind (had he approached the study with any flexibility) lay tabulated, but unused, within his monograph. Yerkes had noted regional differences in black education. Half the black recruits from Southern states had not attended school beyond the third grade, but half had reached the fifth grade in Northern states (p. 760). In the North, 25 percent completed primary school; in the South, a mere 7 percent. Yerkes also noted (p. 734) that "the percentage of Alphas is very much smaller and the percentage of Betas very much larger in the southern than in the northern group." Many years later, Ashley Montagu (1945) studied the tabulations by state that Yerkes had provided. He confirmed Yerkes's pattern: the average score on Alpha was 21.31 for blacks in thirteen Southern states, and 39.90 in nine Northern states. Montagu then noted that average black scores for the four highest Northern states (45.31) exceeded
the white mean for nine Southern states (43.94). He found the same pattern for Beta, where blacks of six Northern states averaged \textit{34.63}, and whites of fourteen Southern states, \textit{31.11}. Hereditarians had their pat answer, as usual: only the best Negroes had been smart enough to move North. To people of good will and common sense an explanation in terms of educational quality has always seemed more reasonable, especially since Montagu also found such high correlations between a state's expenditure for education and the average score of its recruits.

One other persistent correlation threatened Yerkes's hereditarian convictions, and his rescuing argument became a major social weapon in later political campaigns for restricting immigration. Test scores had been tabulated by country of origin, and Yerkes noted the pattern so dear to the hearts of Nordic supremacists. He divided recruits by country of origin into English, Scandinavian, and Teutonic on one side, and Latin and Slavic on the other, and stated (p. 699): "the differences are considerable (an extreme range of practically two years mental age)—favoring the Nordics, of course.

But Yerkes acknowledged a potential problem. Most Latins and Slavs had arrived recently and spoke English either poorly or not at all; the main wave of Teutonic immigration had passed long before. According to Yerkes's protocol, it shouldn't have mattered. Men who could not speak English suffered no penalty. They took Beta, a pictorial test that supposedly measured innate ability independent of literacy and language. Yet the data still showed an apparent penalty for unfamiliarity with English. Of white recruits who scored E in Alpha and therefore took Beta as well (pp. 382-383), speakers of English averaged 101.6 in Beta, while nonspeakers averaged only 77.8. On the individual performance scale, which eliminated the harassment and confusion of Beta, native and foreign-born recruits did not differ (p. 403). (But very few men were ever given these individual tests, and they did not affect national averages.) Yerkes had to admit (p. 395): "There are indications to the effect that individuals handicapped by language difficulty and illiteracy are penalized to an appreciable degree in Beta as compared with men not so handicapped."

Another correlation was even more potentially disturbing. Yerkes found that average test scores for foreign-born recruits rose consistently with years of residence in America.
Didn't this indicate that familiarity with American ways, and not innate intelligence, regulated the differences in scores? Yerkes admitted the possibility, but held out strong hope for a hereditary salvation (p. 704):

Apparently then the group that has been longer resident in this country does somewhat better* in intelligence examination. It is not possible to state whether the difference is caused by the better adaptation of the more thoroughly Americanized group to the situation of the examination or whether some other factor is operative. It might be, for instance, that the more intelligent immigrants succeed and therefore remain in this country, but this suggestion is weakened by the fact that so many successful immigrants do return to Europe. At best we can but leave for future decision the question as to whether the differences represent a real difference of intelligence or an artifact of the method of examination.

The Teutonic supremacists would soon supply that decision: recent immigration had drawn the dregs of Europe, lower-class Latins and Slavs. Immigrants of longer residence belonged predominantly to superior northern stocks. The correlation with years in America was an artifact of genetic status.

The army mental tests could have provided an impetus for social reform, since they documented that environmental disadvantages were robbing from millions of people an opportunity to develop their intellectual skills. Again and again, the data pointed to strong correlations between test scores and environment. Again and again, those who wrote and administered the tests invented tortuous, ad hoc explanations to preserve their hereditarian prejudices.

How powerful the hereditarian biases of Terman, Goddard, and Yerkes must have been to make them so blind to immediate

*Note how choice of language can serve as an indication of bias. This 2.5 year difference in mental ages (13.74-11.29) only represents "somewhat better" performance. The smaller (but presumably hereditary) difference of 2 years between Nordic-Teutonic and Latin-Slav groups had been described as "considerable."
circumstances! Terman seriously argued that good orphanages precluded any environmental cause of low IQ for children in them. Goddard tested confused and frightened immigrants who had just completed a grueling journey in steerage and thought he had captured innate intelligence. Yerkes badgered his recruits, obtained proof of confusion and harassment in their large mode of zero scores, and produced data on the inherent abilities of racial and national groups. One cannot attribute all these conclusions to some mysterious "temper of the times," for contemporary critics saw through the nonsense as well. Even by standards of their own era, the American hereditarians were dogmatists. But their dogma wafted up on favorable currents into realms of general acceptance, with tragic consequences.

Political impact of the army data

Can democracy survive an average mental age of thirteen?

Yerkes was troubled by his own figure of 13.08 as an average mental age for the white draft. It fitted his prejudices and the eugenical fears of prosperous old Americans, but it was too good to be true, or too low to be believed. Yerkes recognized that smarter folks had been excluded from the sample—officers who enlisted and "professional and business experts that were exempted from draft because essential to industrial activity in the war" (p. 785). But the obviously retarded and feeble-minded had also been culled before reaching Yerkes's examiners, thereby balancing exclusions at the other end. The resulting average of 13 might be a bit low, but it could not be far wrong (p. 785).

Yerkes faced two possibilities. He could recognize the figure as absurd, and search his methods for the flaws that engendered such nonsense. He would not have had far to look, had he been so inclined, since three major biases all conspired to bring the average down to his implausible figure. First, the tests measured education and familiarity with American culture, not innate intelligence—and many recruits, whatever their intelligence, were both woefully deficient in education and either too new to America or too impoverished to have much appreciation for the exemplary accomplishments of Mr. Mathewson (including an e.r.a. of 1.14 in 1909). Second, Yerkes's own stated protocol had not been followed. About two-thirds of the white sample took Alpha, and their high fre-
quency of zero scores indicated that many should have been retested in Beta. But time and the indifference of the regular brass conspired against it, and many recruits were not reexamined. Finally, Boring's treatment of zero values imposed an additional penalty on scores already (and artificially) too low.

Or Yerkes could accept the figure and remain a bit puzzled. He opted, of course, for the second strategy:

We know now approximately from clinical experience the capacity and mental ability of a man of 13 years mental age. We have never heretofore supposed that the mental ability of this man was the average of the country or anywhere near it. A moron has been defined as anyone with a mental age from 7 to 12 years. If this definition is interpreted as meaning anyone with a mental age less than 13 years, as has recently been done, then almost half of the white draft (47.3 percent) would have been morons. Thus it appears that feeble-mindedness, as at present defined, is of much greater frequency of occurrence than had been originally supposed.

Yerkes's colleagues were disturbed as well. Goddard, who had invented the moron, began to doubt his own creation: "We seem to be impaled on the horns of a dilemma: either half the population is feeble-minded; or 12 year mentality does not properly come within the limits of feeble-mindedness" (1919, p. 352). He also opted for Yerkes's solution and sounded the warning cry for American democracy:

If it is ultimately found that the intelligence of the average man is 13—instead of 16—it will only confirm what some are beginning to suspect; viz., that the average man can manage his affairs with only a moderate degree of prudence, can earn only a very modest living, and is vastly better off when following directions than when trying to plan for himself. In other words, it will show that there is a fundamental reason for many of the conditions that we find in human society and further that much of our effort to change conditions is unintelligent because we have not understood the nature of the average man (1919, p. 236).

Unfortunate 13 became a formula figure among those who sought to contain movements for social welfare. After all, if the average man is scarcely better than a moron, then poverty is fundamentally biological in origin, and neither education nor better opportunities for employment can alleviate it. In a famous address, entitled "Is America safe for democracy?", the chairman of Harvard's psychology department stated (W. McDougall, quoted in Chase, 1977, p. 226):
The results of the Army tests indicate that about 75 percent of the population has not sufficient innate capacity for intellectual development to enable it to complete the usual high school course. The very extensive testing of school-children carried on by Professor Terman and his colleagues leads to closely concordant results.

In an inaugural address as president of Colgate University, G. G. Cutten proclaimed in 1922 (quoted in Cravens, 1978, p. 224): "We cannot conceive of any worse form of chaos than a real democracy in a population of average intelligence of a little over 13 years."

Again, a catchy, numerical "fact" had risen to prominence as the discovery of objective science—while the fallacies and finagling that thoroughly invalidated it remained hidden in the details of an eight-hundred-page monograph that the propagandists never read.

THE ARMY TESTS AND AGITATION TO RESTRICT IMMIGRATION: BRIGHAM'S MONOGRAPH ON AMERICAN INTELLIGENCE

The grand average of thirteen had political impact, but its potential for social havoc was small compared with Yerkes's figures for racial and national differences; for hereditarians could now claim that the fact and extent of group differences in innate intelligence had finally, once and for all, been established. Yerkes's disciple C. C. Brigham, then an assistant professor of psychology at Princeton University, proclaimed (1923, p. xx):

We have here an investigation which, of course, surpasses in reliability all preceding investigations, assembled and correlated, a hundred fold. These army data constitute the first really significant contribution to the study of race differences in mental traits. They give us a scientific basis for our conclusions.

In 1923 Brigham published a book, short enough and stated with sufficient baldness (some would say clarity) to be read and used by all propagandists. A Study of American Intelligence (Brigham, 1923) became a primary vehicle for translating the army results on group differences into social action (see Kamin, 1974 and Chase, 1977). Yerkes himself wrote the foreword and praised Brigham for his objectivity:

The author presents not theories or opinion but facts. It behooves us to consider their reliability and their meaning, for no one of us as a citizen can afford to ignore the menace of race deterioration or the evident rela-
tions of immigration to national progress and welfare (in Brigham, 1923, p. vii).

Since Brigham derived his "facts" on group differences entirely from the army results, he had first to dismiss the claim that Yerkes's tests might not be pure measures of innate intelligence. He admitted that Alpha might mingle the impact of education with native ability, for it did require literacy. But Beta could only record unadulterated innate intelligence: "Examination Beta involves no English, and the tests cannot be considered as educational measures in any sense" (p. 100). In any case, he added for good measure, it scarcely matters whether the tests also record what Yerkes had called "the better adaptation of the more thoroughly Americanized group to the situation of the examination" (p. 93), since (p. 96):

If the tests used included some mysterious type of situation that was "typically American," we are indeed fortunate, for this is America, and the purpose of our inquiry is that of obtaining a measure of the character of our immigration.* Inability to respond to a "typically American" situation is obviously an undesirable trait.

Once he had proved that the tests measure innate intelligence, Brigham devoted most of his book to dispelling common impressions that might threaten this basic assumption. The army tests had, for example, assessed Jews (primarily recent immigrants) as quite low in intelligence. Does this discovery not conflict with the notable accomplishments of so many Jewish scholars, statesmen, and performing artists? Brigham conjectured that Jews might be more variable than other groups; a low mean would not preclude a few geniuses in the upper range. In any case, Brigham added, we probably focus unduly on the Jewish heritage of some great men because it surprises us: "The able Jew is popularly recognized not only because of his ability, but because he is able and a Jew" (p. 190). "Our figures, then, would rather tend to disprove the popular belief that the Jew is highly intelligent" (p. 190).

But what about the higher scores of Northern vs. Southern blacks? Since Yerkes had also shown that Northern blacks, on average, attended school for several more years than their Southern counterparts, didn't the scores reflect differences in education

*In all other parts of the book, he claims that his aim is to measure and interpret innate differences in intelligence.
more than inborn ability? Brigham did not deny a small effect for education (p. 191), but he presented two reasons for attributing the higher scores of Northern blacks primarily to better biology: first, "the greater admixture of white blood" among Northern blacks; second, "the operation of economic and social forces, such as higher wages, better living conditions, identical school privileges, and a less complete social ostracism, tending to draw the more intelligent negro to the north" (p. 192).

Brigham faced the greatest challenge to hereditarianism on the issue of immigration. Even Yerkes had expressed agnosticism—the only time he considered a significant alternative to inborn biology—on the causes of steadily increasing scores for immigrants who had lived longer in America (see p. 251). The effects were certainly large, the regularity striking. Without exception (see chart on p. 251), each five years of residency brought an increase in test scores, and the total difference between recent arrivals and the longest residents was a full two and a half years in mental age.

Brigham directed himself around the appalling possibility of environmentalism by arguing in a circle. He began by assuming what he intended to demonstrate. He denied the possibility of environmental influence a priori, by accepting as proven the highly controversial claim that Beta must measure unadulterated innate intelligence, whatever Alpha may be doing with its requirement of literacy. The biological basis of declining scores for recent immigrants can then be proven by demonstrating that decrease on the combined scale is not an artifact of differences in Alpha only:

The hypothesis of growth of intelligence with increasing length of residence may be identified with the hypothesis of an error in the method of measuring intelligence, for we must assume that we are measuring native or inborn intelligence, and any increase in our test score due to any other factor may be regarded as an error. . . . If all members of our five years of residence groups had been given Alpha, Beta, and individual examinations in equal proportions, then all would have been treated alike, and the relationship shown would stand without any possibility of error (p. 100).

If the differences between residence groups are not innate, Brigham argued, then they reflect a technical flaw in constructing the combined scale from varying proportions of Alphas and Betas; they cannot arise from a defect in the tests themselves, and therefore cannot, by definition, be environmental indicators of increasing familiarity with American customs and language.
Brigham studied the performances of Alphas and Betas, found that differences between residence groups persisted among the Betas, and proclaimed his counter-intuitive hypothesis of decreasing innate intelligence among more recent immigrants. "We actually find," he proclaimed (p. 102), "that the gain from each type of examination [both Alpha and Beta] is about the same. This indicates, then, that the five years of residence groups are groups with real differences in native intelligence, and not groups laboring under more or less of a linguistic and educational handicap."

Instead of considering that our curve indicates a growth of intelligence with increasing length of residence, we are forced to take the reverse of the picture and accept the hypothesis that the curve indicates a gradual deterioration in the class of immigrants examined in the army, who came to this country in each succeeding 5 year period since 1902 (pp. 110–111). . . . The average intelligence of succeeding waves of immigration has become progressively lower (p. 155).

But why should recent immigrants be more stupid? To resolve this conundrum, Brigham invoked the leading theorist of racism in his day, the American Madison Grant (author of *The Passing of the Great Race*), and that aging relic from the heyday of French craniometry, Count Georges Vacher de Lapouge. Brigham argued that the European peoples are mixtures, to varying degrees, of three original races: 1) Nordics, "a race of soldiers, sailors, adventurers, and explorers, but above all, of rulers, organizers, and aristocrats . . . feudalism, class distinctions, and race pride among Europeans are traceable for the most part to the North." They are "domineering, individualistic, self-reliant . . . and as a result they are usually Protestants" (Grant, quoted in Brigham, p. 182); 2) Alpines, who are "submissive to authority both political and religious, being usually Roman Catholics" (Grant, in Brigham, p. 183), and whom Vacher de Lapouge described as "the perfect slave, the ideal serf, the model subject" (p. 183); 3) Mediterraneans, of whom Grant approved, given their accomplishments in ancient Greece and Rome, but whom Brigham despised because their average scores were even slightly lower than the Alpines.

Brigham then tried to assess the amount of Nordic, Alpine, and Mediterranean blood in various European peoples, and to calculate the army scores on this scientific and racial basis, rather than from the political expedient of national origin. He devised the following
figures for average intelligence: Nordic, 13.28; Alpine, 11.67; Mediterranean, 11.43.

The progressive decline of intelligence for each five-year residency group then achieved its easy, innatist explanation. The character of immigration had changed markedly during the past twenty years. Before then, arrivals had been predominantly Nordic; since then, we have been inundated by a progressively increasing number of Alpines and Mediterraneans, as the focus of immigration shifted from Germany, Scandinavia, and the British Isles to the great unwashed of southern and eastern Europe—Italians, Greeks, Turks, Hungarians, Poles, Russians, and other Slavs (including Jews, whom Brigham defined racially as "Alpine Slavs"). Of the inferiority of these recent immigrants, there can be no doubt (p. 202):

The Fourth of July orator can convincingly raise the popular belief in the intellectual level of Poland by shouting the name of Kosciusko from a high platform, but he cannot alter the distribution of the intelligence of the Polish immigrant.

But Brigham realized that two difficulties still stood before his innatist claim. He had proved that the army tests measured inborn intelligence, but he still feared that ignorant opponents might try to attribute high Nordic scores to the presence of so many native speakers of English in the group.

He therefore divided the Nordic group into native speakers from Canada and the British isles, who averaged 13.84, and "non-English speakers," primarily from Germany, Holland, and Scandinavia, who averaged 12.97. Again, Brigham had virtually proved the environmentalist claim that army tests measured familiarity with American language and customs; but again, he devised an innatist fudge. The disparity between English and non-English Nordics was half as large as the difference between Nordics and Mediterraneans. Since differences among Nordics could only represent the environmental effects of language and culture (as Brigham admitted), why not attribute variation between European races to the same cause? After all, the so-called non-English Nordics were, on average, more familiar with American ways and should have scored higher than Alpines and Mediterraneans on this basis alone. Brigham called these men "non-English" and used
them as a test of his language hypothesis. But, in fact, he only knew their country of origin, not their degree of familiarity with English. On average, these so-called non-English Nordics had been in America far longer than the Alpines or Mediterraneans. Many spoke English well and had spent enough years in America to master the arcana of bowling, commercial products, and film stars. If they, with their intermediary knowledge of American culture, scored almost a year below the English Nordics, why not attribute the nearly two-year disadvantage of Alpines and Mediterraneans to their greater average unfamiliarity with American ways? It is surely more parsimonious to use the same explanation for a continuum of effects. Instead, Brigham admitted environmental causes for the disparity within Nordics, but then advanced innatism to explain the lower scores of his despised southern and eastern Europeans (pp. 171–172):

There are, of course, cogent historical and sociological reasons accounting for the inferiority of the non-English speaking Nordic group. On the other hand, if one wishes to deny, in the teeth of the facts, the superiority of the Nordic race on the ground that the language factor mysteriously aids this group when tested, he may cut out of the Nordic distribution the English speaking Nordics, and still find a marked superiority of the non-English speaking Nordics over the Alpine and Mediterranean groups, a fact which clearly indicates that the underlying cause of the nativity differences we have shown is race, and not language.

Having met this challenge, Brigham encountered another that he couldn’t quite encompass. He had attributed the declining scores of successive five-year groups to the decreasing percentage of Nordics in their midst. Yet he had to admit a troubling anachronism. The Nordic wave had diminished long before, and immigration for the two or three most recent five-year groups had included a roughly constant proportion of Alpines and Mediterraneans. Yet scores continued to drop while racial composition remained constant. Didn’t this, at least, implicate language and culture? After all, Brigham had avoided biology in explaining the substantial differences between Nordic groups; why not treat similar differences among Alpines and Mediterraneans in the same way? Again, prejudice annihilated common sense and Brigham invented an implausible explanation for which, he admitted, he had no direct evidence. Since scores of Alpines and Mediterraneans had
been declining, the nations harboring these miscreants must be sending a progressively poorer biological stock as the years wear on (p. 178):

The decline in intelligence is due to two factors, the change in the races migrating to this country, and to the additional factor of the sending of lower and lower representatives of each race.

The prospects for America, Brigham groused, were dismal. The European menace was bad enough, but America faced a special and more serious problem (p. xxi):

Running parallel with the movements of these European peoples, we have the most sinister development in the history of this continent, the importation of the negro.

Brigham concluded his tract with a political plea, advocating the hereditarian line on two hot political subjects of his time: the restriction of immigration and eugenical regulation of reproduction (pp. 209–210):

The decline of American intelligence will be more rapid than the decline of the intelligence of European national groups, owing to the presence here of the negro. These are the plain, if somewhat ugly, facts that our study shows. The deterioration of American intelligence is not inevitable, however, if public action can be aroused to prevent it. There is no reason why legal steps should not be taken which would insure a continuously progressive upward evolution.

The steps that should be taken to preserve or increase our present intellectual capacity must of course be dictated by science and not by political expediency. Immigration should not only be restrictive but highly selective. And the revision of the immigration and naturalization laws will only afford a slight relief from our present difficulty. The really important steps are those looking toward the prevention of the continued propagation of defective strains in the present population.

As Yerkes had said of Brigham: "The author presents not theories or opinions but facts."

THE TRIUMPH OF RESTRICTION ON IMMIGRATION

The army tests engendered a variety of social uses. Their most enduring effect surely lay in the field of mental testing itself. They were the first written IQ tests to gain respect, and they provided essential technology for implementing the hereditarian ideology
that advocated, contrary to Binet's wishes, the testing and ranking of all children.

Other propagandists used the army results to defend racial segregation and limited access of blacks to higher education. Cornelia James Cannon, writing in the *Atlantic Monthly* in 1922, noted that 89 percent of blacks had tested as morons and argued (quoted in Chase, 1977, p. 263):

> Emphasis must necessarily be laid on the development of the primary schools, on the training in activities, habits, occupations which do not demand the more evolved faculties. In the South particularly . . . the education of the whites and colored in separate schools may have justification other than that created by race prejudice. . . . A public school system, preparing for life young people of a race, 50 percent of whom never reach a mental age of 10, is a system yet to be perfected.

But the army data had their most immediate and profound impact upon the great immigration debate, then a major political issue in America. Restriction was in the air, and would have occurred without scientific backing. (Consider the wide spectrum of support that limitationists could muster—from traditional craft unions fearing multitudes of low-paid laborers, to jingoists and America firsters who regarded most immigrants as bomb-throwing anarchists and who helped make martyrs of Sacco and Vanzetti.) But the timing, and especially the peculiar character, of the 1924 Restriction Act clearly reflected the lobbying of scientists and eugenicists, and the army data formed their most powerful battering ram (see Chase, 1977; Kamin, 1974; and Ludmerer, 1972).

Henry Fairfield Osborn, trustee of Columbia University and president of the American Museum of Natural History, wrote in 1923, in a statement that I cannot read without a shudder when I recall the gruesome statistics of mortality for World War I:

> I believe those tests were worth what the war cost, even in human life, if they served to show clearly to our people the lack of intelligence in our country, and the degrees of intelligence in different races who are coming to us, in a way which no one can say is the result of prejudice. . . . We have learned once and for all that the negro is not like us. So in regard to many races and subraces in Europe we learned that some which we had believed possessed of an order of intelligence perhaps superior to ours [read Jews] were far inferior.
Congressional debates leading to passage of the Immigration Restriction Act of 1924 frequently invoked the army data. Eugenicists lobbied not only for limits to immigration, but for changing its character by imposing harsh quotas against nations of inferior stock—a feature of the 1924 act that might never have been implemented, or even considered, without the army data and eugenicist propaganda. In short, southern and eastern Europeans, the Alpine and Mediterranean nations with minimal scores on the army tests, should be kept out. The eugenicists battled and won one of the greatest victories of scientific racism in American history. The first restriction act of 1921 had set yearly quotas at 3 percent of immigrants from any nation then resident in America. The 1924 act, following a barrage of eugenicist propaganda, reset the quotas at 2 percent of people from each nation recorded in the 1890 census. The 1890 figures were used until 1930. Why 1890 and not 1920 since the act was passed in 1924? 1890 marked a watershed in the history of immigration. Southern and eastern Europeans arrived in relatively small numbers before then, but began to predominate thereafter. Cynical, but effective. "America must be kept American," proclaimed Calvin Coolidge as he signed the bill.

BRIGHAM RECANTS

Six years after his data had so materially affected the establishment of national quotas, Brigham had a profound change of heart. He recognized that a test score could not be reified as an entity inside a person's head:

Most psychologists working in the test field have been guilty of a naming fallacy which easily enables them to slide mysteriously from the score in the test to the hypothetical faculty suggested by the name given to the test. Thus, they speak of sensory discrimination, perception, memory, intelligence, and the like while the reference is to a certain objective test situation (Brigham, 1930, p. 159).

In addition, Brigham now realized that the army data were worthless as measures of innate intelligence for two reasons. For each error, he apologized with an abjectness rarely encountered in scientific literature. First, he admitted that Alpha and Beta could not be combined into a single scale as he and Yerkes had done in producing averages for races and nations. The tests measured dif-
ferent things, and each was internally inconsistent in any case. Each nation was represented by a sample of recruits who had taken Alpha and Beta in differing proportions. Nations could not be compared at all (Brigham, 1930, p. 164):

As this method of amalgamating Alphas and Betas to produce a combined scale was used by the writer in his earlier analysis of the Army tests as applied to samples of foreign born in the draft, that study with its entire hypothetical superstructure of racial differences collapses completely.

Secondly, Brigham acknowledged that the tests had measured familiarity with American language and culture, not innate intelligence:

For purposes of comparing individuals or groups, it is apparent that tests in the vernacular must be used only with individuals having equal opportunity to acquire the vernacular of the test. This requirement precludes the use of such tests in making comparative studies of individuals brought up in homes in which the vernacular of the test is not used, or in which two vernaculars are used. The last condition is frequently violated here in studies of children born in this country whose parents speak another tongue. It is important, as the effects of bilingualism are not entirely known. . . . Comparative studies of various national and racial groups may not be made with existing tests. . . . One of the most pretentious of these comparative racial studies—the writer's own—was without foundation (Brigham, 1930, p. 165).

Brigham paid his personal debt, but he could not undo what the tests had accomplished. The quotas stood, and slowed immigration from southern and eastern Europe to a trickle. Throughout the 1930s, Jewish refugees, anticipating the holocaust, sought to emigrate, but were not admitted. The legal quotas, and continuing eugenic propaganda, barred them even in years when inflated quotas for western and northern European nations were not filled. Chase (1977) has estimated that the quotas barred up to 6 million southern, central, and eastern Europeans between 1924 and the outbreak of World War II (assuming that immigration had continued at its pre-1924 rate). We know what happened to many who wished to leave but had nowhere to go. The paths to destruction are often indirect, but ideas can be agents as sure as guns and bombs.
The Real Error of Cyril Burt
Factor Analysis and the Reification of Intelligence

It has been the signal merit of the English school of psychology, from Sir Francis Galton onwards, that it has, by this very device of mathematical analysis, transformed the mental test from a discredited dodge of the charlatan into a recognized instrument of scientific precision.
—Cyril Burt, 1921, p. 130

The case of Sir Cyril Burt

If I had any desire to lead a life of indolent ease, I would wish to be an identical twin, separated at birth from my brother and raised in a different social class. We could hire ourselves out to a host of social scientists and practically name our fee. For we would be exceedingly rare representatives of the only really adequate natural experiment for separating genetic from environmental effects in humans—genetically identical individuals raised in disparate environments.

Studies of identical twins raised apart should therefore hold pride of place in literature on the inheritance of IQ. And so it would be but for one problem—the extreme rarity of the animal itself. Few investigators have been able to rustle up more than twenty pairs of twins. Yet, amidst this paltriness, one study seemed to stand out: that of Sir Cyril Burt (1883–1971), Sir Cyril, doyen of mental testers, had pursued two sequential careers that gained him a preeminent role in directing both theory and practice in his field of educational psychology. For twenty years he was the official psychologist of the London County Council, responsible for the
administration and interpretation of mental tests in London's schools. He then succeeded Charles Spearman as professor in the most influential chair of psychology in Britain: University College, London (1932–1950). During his long redrement, Sir Cyril published several papers that buttressed the hereditarian claim by citing very high correlation between IQ scores of identical twins raised apart. Burt's study stood out among all others because he had found fifty-three pairs, more than twice the total of any previous attempt. It is scarcely surprising that Arthur Jensen used Sir Cyril's figures as the most important datum in his notorious article (1969) on supposedly inherited and ineradicable differences in intelligence between whites and blacks in America.

The story of Burt's undoing is now more than a twice-told tale. Princeton psychologist Leon Kamin first noted that, while Burt had increased his sample of twins from fewer than twenty to more than fifty in a series of publications, the average correlation between pairs for IQ remained unchanged to the third decimal place—a statistical situation so unlikely that it matches our vernacular definition of impossible. Then, in 1976, Oliver Gillie, medical correspondent of the London Sunday Times, elevated the charge from inexcusable carelessness to conscious fakery. Gillie discovered, among many other things, that Burt's two "collaborators," a Margaret Howard and a J. Conway, the women who supposedly collected and processed his data, either never existed at all, or at least could not have been in contact with Burt while he wrote the papers bearing their names. These charges led to further reassessments of Burt's "evidence" for his rigid hereditarian position. Indeed, other crucial studies were equally fraudulent, particularly his IQ correlations between close relatives (suspiciously too good to be true and apparently constructed from ideal statistical distributions, rather than measured in nature—Dorfman, 1978), and his data for declining levels of intelligence in Britain.

Burt's supporters tended at first to view the charges as a thinly veiled leftist plot to undo the hereditarian position by rhetoric. H. J. Eysenck wrote to Burt's sister: "I think the whole affair is just a determined effort on the part of some very left-wing environmentalists determined to play a political game with scientific facts. I am sure the future will uphold the honor and integrity of Sir Cyril without any question." Arthur Jensen, who had called Burt a
"born nobleman" and "one of the world's great psychologists," had to conclude that the data on identical twins could not be trusted, though he attributed their inaccuracy to carelessness alone.

I think that the splendid "official" biography of Burt recently published by L. S. Hearnshaw (1979) has resolved the issue so far as the data permit (Hearnshaw was commissioned to write his book by Burt's sister before any charges had been leveled). Hearnshaw, who began as an unqualified admirer of Burt and who tends to share his intellectual attitudes, eventually concluded that all allegations are true, and worse. And yet, Hearnshaw has convinced me that the very enormity and bizarreness of Burt's fakery forces us to view it not as the "rational" program of a devious person trying to salvage his hereditarian dogma when he knew the game was up (my original suspicion, I confess), but as the actions of a sick and tortured man. (All this, of course, does not touch the deeper issue of why such patently manufactured data went unchallenged for so long, and what this will to believe implies about the basis of our hereditarian presuppositions.)

Hearnshaw believes that Burt began his fabrications in the early 1940s, and that his earlier work was honest, though marred by rigid a priori conviction and often inexcusably sloppy and superficial, even by the standards of his own time. Burt's world began to collapse during the war, partly by his own doing to be sure. His research data perished in the blitz of London; his marriage failed; he was excluded from his own department when he refused to retire gracefully at the mandatory age and attempted to retain control; he was removed as editor of the journal he had founded, again after declining to cede control at the specified time he himself had set; his hereditary dogma no longer matched the spirit of an age that had just witnessed the holocaust. In addition, Burt apparently suffered from Ménières disease, a disorder of the organs of balance, with frequent and negative consequences for personality as well.

Hearnshaw cites four instances of fraud in Burt's later career. Three I have already mentioned (fabrication of data on identical twins, kinship correlations in IQ, and declining levels of intelligence in Britain). The fourth is, in many ways, the most bizarre tale of all because Burt's claim was so absurd and his actions so patent and easy to uncover. It could not have been the act of a
rational man. Burt attempted to commit an act of intellectual par­ricide by declaring himself, rather than his predecessor and mentor Charles Spearman, as the father of a technique called "factor analysis" in psychology. Spearman had essentially invented the technique in a celebrated paper of 1904. Burt never challenged this priority—in fact he constantly affirmed it—while Spearman held the chair that Burt would later occupy at University College. Indeed, in his famous book on factor analysis (1940), Burt states that "Spearman’s preeminence is acknowledged by every factorist (1940, p. x).

Burt’s first attempt to rewrite history occurred while Spearman was still alive, and it elicited a sharp rejoinder from the occupant emeritus of Burt’s chair. Burt withdrew immediately and wrote a letter to Spearman that may be unmatched for deference and obsequiousness: "Surely you have a prior claim here. . . . I have been wondering where precisely I have gone astray. Would it be simplest for me to number my statements, then like my schoolmaster of old you can put a cross against the points where your pupil has blundered, and a tick where your view is correctly interpreted."

But when Spearman died, Burt launched a campaign that "became increasingly unrestrained, obsessive and extravagant (Hearnshaw, 1979) throughout the rest of his life. Hearnshaw notes (1979, pp. 286–287): "The whisperings against Spearman that were just audible in the late 1930’s swelled into a strident campaign of belittlement, which grew until Burt arrogated to himself the whole of Spearman’s fame. Indeed, Burt seemed to be becoming increasingly obsessed with questions of priority, and increasingly touchy and egotistical." Burt’s false story was simple enough: Karl Pearson had invented the technique of factor analysis (or something close enough to it) in 1901, three years before Spearman’s paper. But Pearson had not applied it to psychological problems. Burt recognized its implications and brought the technique into studies of mental testing, making several crucial modifications and improvements along the way. The line, therefore, runs from Pearson to Burt. Spearman’s 1904 paper was merely a diversion.

Burt told his story again and again. He even told it through one of his many aliases in a letter he wrote to his own journal and signed Jacques Lafitte, an unknown French psychologist. With the exception of Voltaire and Binet, M. Lafitte cited only English
"born nobleman" and "one of the world's great psychologists," had to conclude that the data on identical twins could not be trusted, though he attributed their inaccuracy to carelessness alone.

I think that the splendid "official" biography of Burt recently published by L. S. Hearnshaw (1979) has resolved the issue so far as the data permit (Hearnshaw was commissioned to write his book by Burt's sister before any charges had been leveled). Hearnshaw, who began as an unqualified admirer of Burt and who tends to share his intellectual attitudes, eventually concluded that all allegations are true, and worse. And yet, Hearnshaw has convinced me that the very enormity and bizarreness of Burt's fakery forces us to view it not as the "rational" program of a devious person trying to salvage his hereditarian dogma when he knew the game was up (my original suspicion, I confess), but as the actions of a sick and tortured man. (All this, of course, does not touch the deeper issue of why such patently manufactured data went unchallenged for so long, and what this will to believe implies about the basis of our hereditarian presuppositions.)

Hearnshaw believes that Burt began his fabrications in the early 1940s, and that his earlier work was honest, though marred by rigid a priori conviction and often inexcusably sloppy and superficial, even by the standards of his own time. Burt's world began to collapse during the war, partly by his own doing to be sure. His research data perished in the blitz of London; his marriage failed; he was excluded from his own department when he refused to retire gracefully at the mandatory age and attempted to retain control; he was removed as editor of the journal he had founded, again after declining to cede control at the specified time he himself had set; his hereditarian dogma no longer matched the spirit of an age that had just witnessed the holocaust. In addition, Burt apparently suffered from Ménières disease, a disorder of the organs of balance, with frequent and negative consequences for personality as well.

Hearnshaw cites four instances of fraud in Burt's later career. Three I have already mentioned (fabrication of data on identical twins, kinship correlations in IQ, and declining levels of intelligence in Britain). The fourth is, in many ways, the most bizarre tale of all because Burt's claim was so absurd and his actions so patent and easy to uncover. It could not have been the act of a
rational man. Burt attempted to commit an act of intellectual par­ricide by declaring himself, rather than his predecessor and mentor Charles Spearman, as the father of a technique called "factor analysis" in psychology. Spearman had essentially invented the technique in a celebrated paper of 1904. Burt never challenged this priority—in fact he constantly affirmed it—while Spearman held the chair that Burt would later occupy at University College. Indeed, in his famous book on factor analysis (1940), Burt states that "Spearman's preeminence is acknowledged by every factorist" (1940, p. x).

Burt's first attempt to rewrite history occurred while Spearman was still alive, and it elicited a sharp rejoinder from the occupant emeritus of Burt's chair. Burt withdrew immediately and wrote a letter to Spearman that may be unmatched for deference and obsequiousness: "Surely you have a prior claim here. ... I have been wondering where precisely I have gone astray. Would it be simplest for me to number my statements, then like my schoolmaster of old you can put a cross against the points where your pupil has blun­dered, and a tick where your view is correctly interpreted."

But when Spearman died, Burt launched a campaign that "became increasingly unrestrained, obsessive and extravagant" (Hearnshaw, 1979) throughout the rest of his life. Hearnshaw notes (1979, pp. 286–287): "The whisperings against Spearman that were just audible in the late 1930's swelled into a strident cam­paign of belittlement, which grew until Burt arrogated to himself the whole of Spearman's fame. Indeed, Burt seemed to be becom­ing increasingly obsessed with questions of priority, and increas­ingly touchy and egotistical." Burt's false story was simple enough: Karl Pearson had invented the technique of factor analysis (or something close enough to it) in 1901, three years before Spear­man's paper. But Pearson had not applied it to psychological prob­lems. Burt recognized its implications and brought the technique into studies of mental testing, making several crucial modifications and improvements along the way. The line, therefore, runs from Pearson to Burt. Spearman's 1904 paper was merely a diversion.

Burt told his story again and again. He even told it through one of his many aliases in a letter he wrote to his own journal and signed Jacques Lafitte, an unknown French psychologist. With the exception of Voltaire and Binet, M. Lafitte cited only English
sources and stated: "Surely the first formal and adequate statement was Karl Pearson's demonstration of the method of principal axes in 1901." Yet anyone could have exposed Burt's story as fiction after an hour's effort—for Burt never cited Pearson's paper in any of his work before 1947, while all his earlier studies of factor analysis grant credit to Spearman and clearly display the derivative character of Burt's methods.

Factor analysis must have been very important if Burt chose to center his quest for fame upon a rewrite of history that would make him its inventor. Yet, despite all the popular literature on IQ in the history of mental testing, virtually nothing has been written (outside professional circles) on the role, impact, and meaning of factor analysis. I suspect that the main reason for this neglect lies in the abstrusely mathematical nature of the technique. IQ, a linear scale first established as a rough, empirical measure, is easy to understand. Factor analysis, rooted in abstract statistical theory and based on the attempt to discover "underlying" structure in large matrices of data, is, to put it bluntly, a bitch. Yet this inattention to factor analysis is a serious omission for anyone who wishes to understand the history of mental testing in our century, and its continuing rationale today. For as Burt correctly noted (1914, p. 36), the history of mental testing contains two major and related strands: age-scale methods (Binet IQ testing), and correlational methods (factor analysis). Moreover, as Spearman continually stressed throughout his career, the theoretical justification for using a unilinear scale of IQ resides in factor analysis itself. Burt may have been perverse in his campaign, but he was right in his chosen tactic—a permanent and exalted niche in the pantheon of psychology lies reserved for the man who developed factor analysis.

I began my career in biology by using factor analysis to study the evolution of a group of fossil reptiles. I was taught the technique as though it had developed from first principles using pure logic. In fact, virtually all its procedures arose as justifications for particular theories of intelligence. Factor analysis, despite its status as pure deductive mathematics, was invented in a social context, and for definite reasons. And, though its mathematical basis is unassailable, its persistent use as a device for learning about the physical structure of intellect has been mired in deep conceptual errors from the start. The principal error, in fact, has involved a
major theme of this book: reification—in this case, the notion that such a nebulous, socially defined concept as intelligence might be identified as a "thing" with a locus in the brain and a definite degree of heritability—and that it might be measured as a single number, thus permitting a unilinear ranking of people according to the amount of it they possess. By identifying a mathematical factor axis with a concept of "general intelligence," Spearman and Burt provided a theoretical justification for the unilinear scale that Binet had proposed as a rough empirical guide.

The intense debate about Cyril Burt's work has focused exclusively on the fakery of his late career. This perspective has clouded Sir Cyril's greater influence as the most powerful mental tester committed to a factor-analytic model of intelligence as a real and unitary "thing." Burt's commitment was rooted in the error of reification. Later fakery was the afterthought of a defeated man; his earlier, "honest" error has reverberated throughout our century and has affected millions of lives.

Correlation, cause, and factor analysis

Correlation and cause

The spirit of Plato dies hard. We have been unable to escape the philosophical tradition that what we can see and measure in the world is merely the superficial and imperfect representation of an underlying reality. Much of the fascination of statistics lies embedded in our gut feeling—and never trust a gut feeling—that abstract measures summarizing large tables of data must express something more real and fundamental than the data themselves. (Much professional training in statistics involves a conscious effort to counteract this gut feeling.) The technique of correlation has been particularly subject to such misuse because it seems to provide a path for inferences about causality (and indeed it does, sometimes—but only sometimes).

Correlation assesses the tendency of one measure to vary in concert with another. As a child grows, for example, both its arms and legs get longer; this joint tendency to change in the same direction is called a positive correlation. Not all parts of the body display such positive correlations during growth. Teeth, for example, do not grow after they erupt. The relationship between first incisor
length and leg length from, say, age ten to adulthood would represent zero correlation—legs would get longer while teeth changed not at all. Other correlations can be negative—one measure increases while the other decreases. We begin to lose neurons at a distressingly early age, and they are not replaced. Thus, the relationship between leg length and number of neurons after mid-childhood represents negative correlation—leg length increases while number of neurons decreases. Notice that I have said nothing about causality. We do not know why these correlations exist or do not exist, only that they are present or not present.

The standard measure of correlation is called Pearson's product moment correlation coefficient or, for short, simply the correlation coefficient, symbolized as r. The correlation coefficient ranges from +1 for perfect positive correlation, to 0 for no correlation, to -1 for perfect negative correlation.*

In rough terms, r measures the shape of an ellipse of plotted points (see Fig. 6.1). Very skinny ellipses represent high correlations—the skinniest of all, a straight line, reflects an r of 1.0. Fat ellipses represent lower correlations, and the fattest of all, a circle, reflects zero correlation (increase in one measure permits no prediction about whether the other will increase, decrease, or remain the same).

The correlation coefficient, though easily calculated, has been plagued by errors of interpretation. These can be illustrated by example. Suppose that I plot arm length vs. leg length during the growth of a child. I will obtain a high correlation with two interesting implications. First, I have achieved simplification. I began with two dimensions (leg and arm length), which I have now, effectively, reduced to one. Since the correlation is so strong, we may say that the line itself (a single dimension) represents nearly all the information originally supplied as two dimensions. Secondly, I can, in this case, make a reasonable inference about the cause of this reduc-

* Pearson's r is not an appropriate measure for all kinds of correlation, for it assesses only what statisticians call the intensity of linear relationship between two measures—the tendency for all points to fall on a single straight line. Other relationships of strict dependence will not achieve a value of 1.0 for r. If, for example, each increase of 2 units in one variable were matched by an increase in 2 units in the other variable, r would be less than 1.0, even though the two variables might be perfectly "correlated" in the vernacular sense. Their plot would be a parabola, not a straight line, and Pearson's r measures the intensity of linear relationship.
Strength of correlation as a function of the shape of an ellipse of points. The more elongate the ellipse, the higher the correlation.
tion to one dimension. Arm and leg length are tightly correlated because they are both partial measures of an underlying biological phenomenon, namely growth itself.

Yet, lest anyone become too hopeful that correlation represents a magic method for the unambiguous identification of cause, consider the relationship between my age and the price of gasoline during the past ten years. The correlation is nearly perfect, but no one would suggest any assignment of cause. The fact of correlation implies nothing about cause. It is not even true that intense correlations are more likely to represent cause than weak ones, for the correlation of my age with the price of gasoline is nearly 1.0. I spoke of cause for arm and leg lengths not because their correlation was high, but because I know something about the biology of the situation. The inference of cause must come from somewhere else, not from the simple fact of correlation—though an unexpected correlation may lead us to search for causes so long as we remember that we may not find them. The vast majority of correlations in our world are, without doubt, noncausal. Anything that has been increasing steadily during the past few years will be strongly correlated with the distance between the earth and Halley's comet (which has also been increasing of late)—but even the most dedicated astrologer would not discern causality in most of these relationships. The invalid assumption that correlation implies cause is probably among the two or three most serious and common errors of human reasoning.

Few people would be fooled by such a reductio ad absurdum as the age-gas correlation. But consider an intermediate case. I am given a table of data showing how far twenty children can hit and throw a baseball. I graph these data and calculate a high r. Most people, I think, would share my intuition that this is not a meaningless correlation; yet in the absence of further information, the correlation itself teaches me nothing about underlying causes. For I can suggest at least three different and reasonable causal interpretations for the correlation (and the true reason is probably some combination of them):

1. The children are simply of different ages, and older children can hit and throw farther.
2. The differences represent variation in practice and training. Some children are Little League stars and can tell you the year that...
THE REAL ERROR OF CYRIL BURT

Rogers Hornsby hit .424 (1924—I was a bratty little kid like that); others know Billy Martin only as a figure in Lite beer commercials.

3. The differences represent disparities in native ability that cannot be erased even by intense training. (The situation would be even more complex if the sample included both boys and girls of conventional upbringing. The correlation might then be attributed primarily to a fourth cause—sexual differences; and we would have to worry, in addition, about the cause of the sexual difference: training, inborn constitution, or some combination of nature and nurture).

In summary, most correlations are noncausal; when correlations are causal, the fact and strength of the correlation rarely specifies the nature of the cause.

Correlation in more than two dimensions

These two-dimensional examples are easy to grasp (however difficult they are to interpret). But what of correlations among more than two measures? A body is composed of many parts, not just arms and legs, and we may want to know how several measures interact during growth. Suppose, for simplicity, that we add just one more measure, head length, to make a three-dimensional system. We may now depict the correlation structure among the three measures in two ways:

1. We may gather all correlation coefficients between pairs of measures into a single table, or matrix of correlation coefficients (Fig. 6.2). The line from upper left to lower right records the necessarily perfect correlation of each variable with itself. It is called the principal diagonal, and all correlations along it are 1.0. The matrix is symmetrical around the principal diagonal, since the correlation of measure 1 with measure 2 is the same as the correlation of 2 with 1. Thus, the three values either above or below the principal diagonal are the correlations we seek: arm with leg, arm with head, and leg with head.

2. We may plot the points for all individuals onto a three-dimensional graph (Fig. 6.3). Since the correlations are all positive, the points are oriented as an ellipsoid (or football). (In two dimensions, they formed an ellipse.) A line running along the major axis of the football expresses the strong positive correlations between all measures.
A correlation matrix for three measurements.

<table>
<thead>
<tr>
<th></th>
<th>arm</th>
<th>leg</th>
<th>head</th>
</tr>
</thead>
<tbody>
<tr>
<td>arm</td>
<td>1.0</td>
<td>0.91</td>
<td>0.72</td>
</tr>
<tr>
<td>leg</td>
<td>0.91</td>
<td>1.0</td>
<td>0.63</td>
</tr>
<tr>
<td>head</td>
<td>0.72</td>
<td>0.63</td>
<td>1.0</td>
</tr>
</tbody>
</table>

A three-dimensional graph showing the correlations for three measurements.
We can grasp the three-dimensional case, both mentally and pictorially. But what about 20 dimensions, or 100? If we measured 100 parts of a growing body, our correlation matrix would contain 10,000 items. To plot this information, we would have to work in a 100-dimensional space, with 100 mutually perpendicular axes representing the original measures. Although these 100 axes present no mathematical problem (they form, in technical terms, a hyperspace), we cannot plot them in our three-dimensional Euclidean world.

These 100 measures of a growing body probably do not represent 100 different biological phenomena. Just as most of the information in our three-dimensional example could be resolved into a single dimension (the long axis of the football), so might our 100 measures be simplified into fewer dimensions. We will lose some information in the process to be sure—as we did when we collapsed the long and skinny football, still a three-dimensional structure, into the single line representing its long axis. But we may be willing to accept this loss in exchange for simplification and for the possibility of interpreting the dimensions that we do retain in biological terms.

Factor analysis and its goals

With this example, we come to the heart of what/actor analysis attempts to do. Factor analysis is a mathematical technique for reducing a complex system of correlations into fewer dimensions. It works, literally, by factoring a matrix, usually a matrix of correlation coefficients. (Remember the high-school algebra exercise called "factoring," where you simplified horrendous expressions by removing common multipliers of all terms?) Geometrically, the process of factoring amounts to placing axes through a football of points. In the 100-dimensional case, we are not likely to recover enough information on a single line down the hyperfootball's long axis—a line called the first principal component. We will need additional axes. By convention, we represent the second dimension by a line perpendicular to the first principal component. This second axis, or second principal component, is defined as the line that resolves more of the remaining variation than any other line that could be drawn perpendicular to the first principal component. If, for example, the hyperfootball were squashed flat like a flounder, the
first principal component would run through the middle, from head to tail, and the second also through the middle, but from side to side. Subsequent lines would be perpendicular to all previous axes, and would resolve a steadily decreasing amount of remaining variation. We might find that five principal components resolve almost all the variation in our hyperfootball—that is, the hyperfootball drawn in 5 dimensions looks sufficiently like the original to satisfy us, just as a pizza or a flounder drawn in two dimensions may express all the information we need, even though both original objects contain three dimensions. If we elect to stop at 5 dimensions, we may achieve a considerable simplification at the acceptable price of minimal loss of information. We can grasp the 5 dimensions conceptually; we may even be able to interpret them biologically.

Since factoring is performed on a correlation matrix, I shall use a geometrical representation of the correlation coefficients themselves in order to explain better how the technique operates. The original measures may be represented as vectors of unit length,*

*(Footnote for aficionados—others may safely skip.) Here, I am technically discussing a procedure called "principal components analysis," not quite the same thing as factor analysis. In principal components analysis, we preserve all information in the original measures and fit new axes to them by the same criterion used in factor analysis in principal components orientation—that is, the first axis explains more data than any other axis could and subsequent axes lie at right angles to all other axes and encompass steadily decreasing amounts of information. In true factor analysis, we decide beforehand (by various procedures) not to include all information on our factor axes. But the two techniques—true factor analysis in principal components orientation and principal components analysis—play the same conceptual role and differ only in mode of calculation. In both, the first axis (Spearman's g for intelligence tests) is a "best fit" dimension that resolves more information in a set of vectors than any other axis could.

During the past decade or so, semantic confusion has spread in statistical circles through a tendency to restrict the term "factor analysis" only to the rotations of axes usually performed after the calculation of principal components, and to extend the term "principal components analysis" both to true principal components analysis (all information retained) and to factor analysis done in principal components orientation (reduced dimensionality and loss of information). This shift in definition is completely out of keeping with the history of the subject and terms. Spearman, Burt, and hosts of other psychometricians worked for decades in this area before Thurstone and others invented axial rotations. They performed all their calculations in the principal components orientation, and they called themselves "factor analysts." I continue, therefore, to use the term "factor analysis" in its original sense to include any orientation of axes—principal components or rotated, orthogonal or oblique.

I will also use a common, if somewhat sloppy, shorthand in discussing what
radiating from a common point. If two measures are highly correlated, their vectors lie close to each other. The cosine of the angle between any two vectors records the correlation coefficient between them. If two vectors overlap, their correlation is perfect, or 1.0; the cosine of 0° is 1.0. If two vectors lie at right angles, they are completely independent, with a correlation of zero; the cosine of 90° is zero. If two vectors point in opposite directions, their correlation is perfectly negative, or —1.0; the cosine of 180° is —1.0. A matrix of high positive correlation coefficients will be represented by a cluster of vectors, each separated from each other vector by a small acute angle (Fig. 6.4). When we factor such a cluster into fewer dimensions by computing principal components, we choose as our first component the axis of maximal resolving power, a kind of grand average among all vectors. We assess resolving power by projecting each vector onto the axis. This is done by drawing a line from the tip of the vector to the axis, perpendicular to the axis. The ratio of projected length on the axis to the actual length of the vector itself measures the percentage of a vector's information resolved by the axis. (This is difficult to express verbally, but I think that Figure 6.5 will dispel confusion.) If a vector lies near the axis, it is highly resolved and the axis encompasses most of its information. As a vector moves away from the axis toward a maximal separation of 90°, the axis resolves less and less of it.

We position the first principal component (or axis) so that it resolves more information among all the vectors than any other axis could. For our matrix of high positive correlation coefficients, represented by a set of tightly clustered vectors, the first principal component runs through the middle of the set (Fig. 6.4). The second principal component lies at right angles to the first and resolves a maximal amount of remaining information. But if the first component has already resolved most of the information in all the vectors, then the second and subsequent principal axes can only deal with the small amount of information that remains (Fig. 6.4).
Such systems of high positive correlation are found frequently in nature. In my own first study in factor analysis, for example, I considered fourteen measurements on the bones of twenty-two species of pelycosaurian reptiles (the fossil beasts with the sails on their backs, often confused with dinosaurs, but actually the ancestors of mammals). My first principal component resolved 97.1 per-

6.4 Geometric representation of correlations among eight tests when all correlation coefficients are high and positive. The first principal component, labeled 1, lies close to all the vectors, while the second principal component, labeled 2, lies at right angles to the first and does not explain much information in the vectors.
cent of the information in all fourteen vectors, leaving only 2.9 percent for subsequent axes. My fourteen vectors formed an extremely tight swarm (all practically overlapping); the first axis went through the middle of the swarm. My pelycosaurs ranged in body length from less than two to more than eleven feet. They all look pretty much alike, and big animals have larger measures for all fourteen bones. All correlation coefficients of bones with other bones are very high; in fact, the lowest is still a whopping 0.912.

6.5 Computing the amount of information in a vector explained by an axis. Draw a line from the tip of the vector to the axis, perpendicular to the axis. The amount of information resolved by the axis is the ratio of the projected length on the axis to the true length of the vector. If a vector lies close to the axis, then this ratio is high and most of the information in the vector is resolved by the axis. Vector AB lies close to the axis and the ratio of the projection AB' to the vector itself, AB, is high. Vector AC lies far from the axis and the ratio of its projected length AC to the vector itself, AC, is low.
Scarcely surprising. After all, large animals have large bones, and small animals small bones. I can interpret my first principal component as an abstracted size factor, thus reducing (with minimal loss of information) my fourteen original measurements into a single dimension interpreted as increasing body size. In this case, factor analysis has achieved both simplification by reduction of dimensions (from fourteen to effectively one), and explanation by reasonable biological interpretation of the first axis as a size factor.

But—and here comes an enormous but—before we rejoice and extol factor analysis as a panacea for understanding complex systems of correlation, we should recognize that it is subject to the same cautions and objections previously examined for the correlation coefficients themselves. I consider two major problems in the following sections.

The error of reification

The first principal component is a mathematical abstraction that can be calculated for any matrix of correlation coefficients; it is not a "thing" with physical reality. Factorists have often fallen prey to a temptation for reification—forwarding physical meaning to all strong principal components. Sometimes this is justified; I believe that I can make a good case for interpreting my first pelycosaurian axis as a size factor. But such a claim can never arise from the mathematics alone, only from additional knowledge of the physical nature of the measures themselves. For nonsensical systems of correlation have principal components as well, and they may resolve more information than meaningful components do in other systems. A factor analysis for a five-by-five correlation matrix of my age, the population of Mexico, the price of swiss cheese, my pet turtle's weight, and the average distance between galaxies during the past ten years will yield a strong first principal component. This component—since all the correlations are so strongly positive—will probably resolve as high a percentage of information as the first axis in my study of pelycosaurs. It will also have no enlightening physical meaning whatever.

In studies of intelligence, factor analysis has been applied to matrices of correlation among mental tests. Ten tests may, for example, be given to each of one hundred people. Each meaningful entry in the ten-by-ten correlation matrix is a correlation coef-
icient between scores on two tests taken by each of the one hundred persons. We have known since the early days of mental testing—and it should surprise no one—that most of these correlation coefficients are positive: that is, people who score highly on one kind of test tend, on average, to score highly on others as well. Most correlation matrices for mental tests contain a preponderance of positive entries. This basic observation served as the starting point for factor analysis. Charles Spearman virtually invented the technique in 1904 as a device for inferring causes from correlation matrices of mental tests.

Since most correlation coefficients in the matrix are positive, factor analysis must yield a reasonably strong first principal component. Spearman calculated such a component indirectly in 1904 and then made the cardinal invalid inference that has plagued factor analysis ever since. He reified it as an "entity" and tried to give it an unambiguous causal interpretation. He called it g, or general intelligence, and imagined that he had identified a unitary quality underlying all cognitive mental activity—a quality that could be expressed as a single number and used to rank people on a unilinear scale of intellectual worth.

Spearman's g—the first principal component of the correlation matrix of mental tests—never attains the predominant role that a first component plays in many growth studies (as in my pelycosaurs). At best, g resolves 50 to 60 percent of all information in the matrix of tests. Correlations between tests are usually far weaker than correlations between two parts of a growing body. In most cases, the highest correlation in a matrix of tests does not come close to reaching the lowest value in my pelycosaur matrix—0.912.

Although g never matches the strength of a first principal component of some growth studies, I do not regard its fair resolving power as accidental. Causal reasons lie behind the positive correlations of most mental tests. But what reasons? We cannot infer the reasons from a strong first principal component any more than we can induce the cause of a single correlation coefficient from its magnitude. We cannot reify g as a "thing" unless we have convincing, independent information beyond the fact of correlation itself.

The situation for mental tests resembles the hypothetical case I presented earlier of correlation between throwing and hitting a baseball. The relationship is strong and we have a right to regard...
it as nonaccidental. But we cannot infer the cause from the correlation, and the cause is certainly complex.

Spearman's g is particularly subject to ambiguity in interpretation, if only because the two most contradictory causal hypotheses are both fully consistent with it: 1) that it reflects an inherited level of mental acuity (some people do well on most tests because they are born smarter); or 2) that it records environmental advantages and deficits (some people do well on most tests because they are well schooled, grew up with enough to eat, books in the home, and loving parents). If the simple existence of g can be theoretically interpreted in either a purely hereditarian or purely environmentalist way, then its mere presence—even its reasonable strength—cannot justly lead to any reification at all. The temptation to reify is powerful. The idea that we have detected something "underlying" the externalities of a large set of correlation coefficients, something perhaps more real than the superficial measurements themselves, can be intoxicating. It is Plato's essence, the abstract, eternal reality underlying superficial appearances. But it is a temptation that we must resist, for it reflects an ancient prejudice of thought, not a truth of nature.

Rotation and the nonnecessity of principal components

Another, more technical, argument clearly demonstrates why principal components cannot be automatically reified as causal entities. If principal components represented the only way to simplify a correlation matrix, then some special status for them might be legitimately sought. But they represent only one method among many for inserting axes into a multidimensional space. Principal components have a definite geometric arrangement, specified by the criterion used to construct them—that the first principal component shall resolve a maximal amount of information in a set of vectors and that subsequent components shall all be mutually perpendicular. But there is nothing sacrosanct about this criterion; vectors may be resolved into any set of axes placed within their space. Principal components provide insight in some cases, but other criteria are often more useful.

Consider the following situation, in which another scheme for placing axes might be preferred. In Figure 6.6 I show correlations between four mental tests, two of verbal and two of arithmetical
aptitude. Two "clusters" are evident, even though all tests are positively correlated. Suppose that we wish to identify these clusters by factor analysis. If we use principal components, we may not recognize them at all. The first principal component (Spearman's g) goes right up the middle, between the two clusters. It lies close to no vector and resolves an approximately equal amount of each, thereby masking the existence of verbal and arithmetic clusters. Is this component an entity? Does a "general intelligence" exist? Or is g, in this case, merely a meaningless average based on the invalid amalgamation of two types of information?

We may pick up verbal and arithmetic clusters on the second principal component (called a "bipolar factor" because some projections upon it will be positive and others negative when vectors lie on both sides of the first principal component). In this case, verbal tests project on the negative side of the second component, and arithmetic tests on the positive side. But we may fail to detect these clusters altogether if the first principal component dominates all vectors. For projections on the second component will then be small, and the pattern can easily be lost (see Fig. 6.6).

During the 1930s factorists developed methods to treat this dilemma and to recognize clusters of vectors that principal components often obscured. They did this by rotating factor axes from the principal components orientation to new positions. The rotations, established by several criteria, had as their common aim the positioning of axes near clusters. In Figure 6.7, for example, we use the criterion: place axes near vectors occupying extreme or outlying positions in the total set. If we now resolve all vectors into these rotated axes, we detect the clusters easily; for arithmetic tests project high on rotated axis 1 and low on rotated axis 2, while verbal tests project high on 2 and low on 1. Moreover, g has disappeared. We no longer find a "general factor" of intelligence, nothing that can be reified as a single number expressing overall ability. Yet we have lost no information. The two rotated axes resolve as much information in the four vectors as did the two principal components. They simply distribute the same information differently upon the resolving axes. How can we argue that g has any claim to reified status as an entity if it represents but one of numerous possible ways to position axes within a set of vectors?

In short, factor analysis simplifies large sets of data by reducing
dimensionality and trading some loss of information for the recognition of ordered structure in fewer dimensions. As a tool for simplification, it has proved its great value in many disciplines. But many factorists have gone beyond simplification, and tried to define factors as causal entities. This error of reification has plagued the technique since its inception. It was "present at the creation" since Spearman invented factor analysis to study the correlation matrix of mental tests and then reified his principal component as *g* or innate, general intelligence. Factor analysis may help us to understand causes by directing us to information beyond the

6.6 A principal components analysis of four mental tests. All correlations are high and the first principal component, Spearman's *g*, expresses the overall correlation. But the group factors for verbal and mathematical aptitude are not well resolved in this style of analysis.
mathematics of correlation. But factors, by themselves, are neither things nor causes; they are mathematical abstractions. Since the same set of vectors (see Figs. 6.6, 6.7) can be partitioned into g and a small residual axis, or into two axes of equal strength that identify verbal and arithmetical clusters and dispense with g entirely, we cannot claim that Spearman's "general intelligence" is an ineluctable entity necessarily underlying and causing the correlations among mental tests. Even if we choose to defend g as a nonaccidental result, neither its strength nor its geometric position can specify what it means in causal terms—if only because its features are equally consistent with extreme hereditarian and extreme environmentalist views of intelligence.

6.7 Rotated factor axes for the same four mental tests depicted in Fig. 6.6. Axes are now placed near vectors lying at the periphery of the cluster. The group factors for verbal and mathematical aptitude are now well identified (see high projections on the axes indicated by dots), but g has disappeared.
Charles Spearman and general intelligence

The two-factor theory

Correlation coefficients are now about as ubiquitous and unsurprising as cockroaches in New York City. Even the cheapest pocket calculators produce correlation coefficients with the press of a button. However indispensable, they are taken for granted as automatic accouterments of any statistical analysis that deals with more than one measure. In such a context, we easily forget that they were once hailed as a breakthrough in research, as a new and exciting tool for discovering underlying structure in tables of raw measures. We can sense this excitement in reading early papers of the great American biologist and statistician Raymond Pearl (see Pearl, 1905 and 1906, and Pearl and Fuller, 1905). Pearl completed his doctorate at the turn of the century and then proceeded, like a happy boy with a gleaming new toy, to correlate everything in sight, from the lengths of earth worms vs. the number of their body segments (where he found no correlation and assumed that increasing length reflects larger, rather than more, segments), to size of the human head vs. intelligence (where he found a very small correlation, but attributed it to the indirect effect of better nutrition).

Charles Spearman, an eminent psychologist and fine statistician as well* began to study correlations between mental tests during these heady times. If two mental tests are given to a large number of people, Spearman noted, the correlation coefficient between them is nearly always positive. Spearman pondered this result and wondered what higher generality it implied. The positive correlations clearly indicated that each test did not measure an independent attribute of mental functioning. Some simpler structure lay behind the pervasive positive correlations; but what structure? Spearman imagined two alternatives. First, the positive correlations might reduce to a small set of independent attributes—the "faculties" of the phrenologists and other schools of early psychology. Perhaps the mind had separate "compartments" for arithmetic, verbal, and spatial aptitudes, for example. Spearman called such

Spearmen took a special interest in problems of correlation and invented a measure that probably ranks second in use to Pearson's r as a measure of association between two variables—the so-called Spearman's rank-correlation coefficient.
theories of intelligence "oligarchic." Second, the positive correlations might reduce to a single, underlying general factor—a notion that Spearman called "monarchic." In either case, Spearman recognized that the underlying factors—be they few (oligarchic) or single (monarchic)—would not encompass all information in a matrix of positive correlation coefficients for a large number of mental tests. A "residual variance" would remain—information peculiar to each test and not related to any other. In other words, each test would have its "anarchic" component. Spearman called the residual variance of each test its s, or specific information. Thus, Spearman reasoned, a study of underlying structure might lead to a "two-factor theory" in which each test contained some specific information (its s) and also reflected the operation of a single, underlying factor, which Spearman called g, or general intelligence. Or each test might include its specific information and also record one or several among a set of independent, underlying faculties—a many-factor theory. If the simplest two-factor theory held, then all common attributes of intelligence would reduce to a single underlying entity—a true "general intelligence" that might be measured for each person and might afford an unambiguous criterion for ranking in terms of mental worth.

Charles Spearman developed factor analysis—still the most important technique in modern multivariate statistics—as a procedure for deciding between the two- vs. the many-factor theory by determining whether the common variance in a matrix of correlation coefficients could be reduced to a single "general" factor, or only to several independent "group" factors. He found but a single "intelligence," opted for the two-factor theory, and, in 1904, published a paper that later won this assessment from a man who opposed its major result: "No single event in the history of mental testing has proved to be of such momentous importance as Spearman's proposal of his famous two-factor theory" (Guilford, 1936, p. 155). Elated, and with characteristic immodesty, Spearman gave his 1904 paper a heroic title: "General Intelligence Objectively Measured and Determined." Ten years later (1914, p. 237), he exulted: "The future of research into the inheritance of ability must center on the theory of 'two factors.' This alone seems capable of reducing the bewildering chaos of facts to a perspicuous orderliness. By its means, the problems are rendered clear; in many
respects, their answers are already foreshadowed; and everywhere, they are rendered susceptible of eventual decisive solution."

The method of tetrad differences

In his original work, Spearman did not use the method of principal components described on pp. 275–278. Instead, he developed a simpler, though tedious, procedure better suited for a precomputer age when all calculations had to be performed by hand.* He computed the entire matrix of correlation coefficients between all pairs of tests, took all possible groupings of four measures and computed for each a number that he called the "tetrad difference." Consider the following example as an attempt to define the tetrad difference and to explain how Spearman used it to test whether the common variance of his matrix could be reduced to a single general factor, or only to several group factors.

Suppose that we wish to compute the tetrad difference for four measures taken on a series of mice ranging in age from babies to adults—leg length, leg width, tail length, and tail width. We compute all correlation coefficients between pairs of variables and find, unsurprisingly, that all are positive—as mice grow, their parts get larger. But we would like to know whether the common variance in the positive correlations all reflects a single general factor—growth itself—or whether two separate components of growth must be identified—in this case, a leg factor and a tail factor, or a length factor and a width factor. Spearman gives the following formula for the tetrad difference

\[r_{13} \cdot r_{24} - r_{14} \cdot r_{23} \]

where \(r \) is the correlation coefficient and the two subscripts represent the two measures being correlated (in this case, 1 is leg length, 2 is leg width, 3 is tail length and 4 is tail width—so that \(r_{13} \) is the correlation coefficient between the first and the third measure, or between leg length and tail length). In our example, the tetrad difference is

\[(\text{leg length and tail length}) \times (\text{leg width and tail width}) - (\text{leg width and tail length}) \times (\text{leg length and tail width})\]

*The calculation by the tetrad formula is conceptually equivalent and mathematically almost equivalent to the first principal component described on pp. 275–278 and used in modern factor analysis.
Spearman argued that tetrad differences of zero imply the existence of a single general factor while either positive or negative values indicate that group factors must be recognized. Suppose, for example, that group factors for general body length and general body width govern the growth of mice. In this case, we would get a high positive value for the tetrad difference because the correlation coefficients of a length with another length or a width with another width would tend to be higher than correlation coefficients of a width with a length. (Note that the left-hand side of the tetrad equation includes only lengths with lengths or widths with widths, while the right-hand side includes only lengths with widths.) But if only a single, general growth factor regulates the size of mice, then lengths with widths should show as high a correlation as lengths with lengths or widths with widths—and the tetrad difference should be zero. Fig. 6.8 shows a hypothetical correlation matrix for the four measures that yields a tetrad difference of zero (values taken from Spearman's example in another context, 1927, p. 74). Fig. 6.8 also shows a different hypothetical matrix yielding a positive tetrad difference and a conclusion (if other tetrads show the same pattern) that group factors for length and width must be recognized.

The top matrix of Fig. 6.8 illustrates another important point that reverberates throughout the history of factor analysis in psychology. Note that, although the tetrad difference is zero, the correlation coefficients need not be (and almost invariably are not) equal. In this case, leg width with leg length gives a correlation of 0.80, while tail width with tail length yields only 0.18. These differences reflect varying "saturations" with g, the single general factor when the tetrad differences are zero. Leg measures have higher saturations than tail measures—that is, they are closer to g, or reflect it better (in modern terms, they lie closer to the first principal component in geometric representations like Fig. 6.6). Tail measures do not load strongly on g. They contain little common variance and must be explained primarily by their s—the information unique to each measure. Moving now to mental tests: if g represents general intelligence, then mental tests most saturated with

*The terms "saturation" and "loading" refer to the correlation between a test and a factor axis. If a test "loads" strongly on a factor then most of its information is explained by the factor.
Tetrad differences of zero (above) and a positive value (below) from hypothetical correlation matrices for four measurements: LL = leg length, LW = leg width, TL = tail length, and TW = tail width. The positive tetrad difference indicates the existence of group factors for lengths and widths.
g are the best surrogates for general intelligence, while tests with low \textit{g-loadings} (and high s values) cannot serve as good measures of general mental \textit{worth}. Strength of \textit{g-loading} becomes the criterion for determining whether or not a particular mental test (IQ, for example) is a good measure of general intelligence.

Spearman's tetrad procedure is very laborious when the correlation matrix includes a large number of tests. Each tetrad difference must be calculated separately. If the common variance reflects but a single general factor, then the tetrads should equal zero. But, as in any statistical procedure, not all cases meet the expected value (half heads and half tails is the expectation in coin flipping, but you will flip six heads in a row about once in sixty-four series of six flips). Some calculated tetrad differences will be positive or negative even when a single \textit{g} exists and the expected value is zero. Thus, Spearman computed all tetrad differences and looked for normal frequency distributions with a mean tetrad difference of zero as his test for the existence of \textit{g}.

\textit{Spearman's g and the great instauration of psychology}

Charles Spearman computed all his tetrads, found a distribution close enough to normal with a mean close enough to zero, and proclaimed that the common variance in mental tests recorded but a single underlying \textit{factor}—Spearman's \textit{g}, or general intelligence. Spearman did not hide his pleasure, for he felt that he had discovered the elusive entity that would make psychology a true science. He had found the innate essence of intelligence, the reality underlying all the superficial and inadequate measures devised to search for it. Spearman's \textit{g} would be the philosopher's stone of psychology, its hard, quantifiable \textit{thing}—a fundamental particle that would pave the way for an exact science as firm and as basic as physics.

In his 1904 paper, Spearman proclaimed the ubiquity of \textit{g} in all processes deemed intellectual: "All branches of intellectual activity have in common one fundamental function . . . whereas the remaining or specific elements seem in every case to be wholly different from that in all the others. . . . This \textit{g}, far from being confined to some small set of abilities whose intercorrelations have actually been measured and drawn up in some particular table, may enter into all abilities whatsoever."
The conventional school subjects, insofar as they reflect aptitude rather than the simple acquisition of information, merely peer through a dark glass at the single essence inside: "All examination in the different sensory, school, and other specific faculties may be considered as so many independently obtained estimates of the one great common Intellective Function" (1904, p. 273). Thus Spearman tried to resolve a traditional dilemma of conventional education for the British elite: why should training in the classics make a better soldier or a statesman? "Instead of continuing ineffectively to protest that high marks in Greek syntax are no test as to the capacity of men to command troops or to administer provinces, we shall at last actually determine the precise accuracy of the various means of measuring General Intelligence" (1904, p. 277). In place of fruitless argument, one has simply to determine the g-loading of Latin grammar and military acuity. If both lie close to g, then skill in conjugation may be a good estimate of future ability to command.

There are different styles of doing science, all legitimate and partially valid. The beetle taxonomist who delights in noting the peculiarities of each new species may have little interest in reduction, synthesis, or in probing for the essence of "beetleness"—if such exists! At an opposite extreme, occupied by Spearman, the externalities of this world are only superficial guides to a simpler, underlying reality. In a popular image (though some professionals would abjure it), physics is the ultimate science of reduction to basic and quantifiable causes that generate the apparent complexity of our material world. Reductionists like Spearman, who work in the so-called soft sciences of organismic biology, psychology, or sociology, have often suffered from "physics envy." They have strived to practice their science according to their clouded vision of physics—to search for simplifying laws and basic particles. Spearman described his deepest hopes for a science of cognition (1923, p. 30):

Deeper than the uniformities of occurrence which are noticeable even without its aid, it [science] discovers others more abstruse, but correspondingly more comprehensive, upon which the name of laws is bestowed. . . . When we look around for any approach to this ideal, something of the sort can actually be found in the science of physics as based on the three primary laws of motion. Coordinate with this *physica corporis* [physics of bodies], then, we are today in search of a *physica animae* [physics of the soul].
THE REAL ERROR OF CYRIL BURT

With g as a quantified, fundamental particle, psychology could take its rightful place among the real sciences. "In these principles," he wrote in 1923 (p. 355), "we must venture to hope that the so long missing genuinely scientific foundation for psychology has at last been supplied, so that it can henceforward take its due place along with the other solidly founded sciences, even physics itself." Spearman called his work "a Copernican revolution in point of view" (1927, p. 411) and rejoiced that "this Cinderella among the sciences has made a bold bid for the level of triumphant physics itself" (1937, p. 21).

Spearman's g and the theoretical justification of IQ

Spearman, the theorist, the searcher for unity by reduction to underlying causes, often spoke in most unflattering terms about the stated intentions of IQ testers. He referred to IQ (1931) as "the mere average of sub-tests picked up and put together without rhyme or reason." He decried the dignification of this "gallimaufry of tests" with the name intelligence. In fact, though he had described his g as general intelligence in 1904, he later abandoned the word intelligence because endless arguments and inconsistent procedures of mental testers had plunged it into irremediable ambiguity (1927, p. 412; 1950, p. 67).

Yet it would be incorrect—indeed it would be precisely contrary to Spearman's view—to regard him as an opponent of IQ testing. He had contempt for the atheoretical empiricism of the testers, their tendency to construct tests by throwing apparently unrelated items together and then offering no justification for such a curious procedure beyond the claim that it yielded good results. Yet he did not deny that the Binet tests worked, and he rejoiced in the resuscitation of the subject thus produced: "By this one great investigation [the Binet scale] the whole scene was transformed. The recently despised tests were now introduced into every country with enthusiasm. And everywhere their practical application was brilliantly successful" (1914, p. 312).

What galled Spearman was his conviction that IQ testers were doing the right thing in amalgamating an array of disparate items into a single scale, but that they refused to recognize the theory behind such a procedure and continued to regard their work as rough-and-ready empiricism.

Spearman argued passionately that the justification for Binet
testing lay with his own theory of a single \(g \) underlying all cognitive activity. IQ tests worked because, unbeknownst to their makers, they measured \(g \) with fair accuracy. Each individual test has a \(g \)-loading and its own specific information (or \(s \)), but \(g \)-loading varies from nearly zero to nearly 100 percent. Ironically, the most accurate measure of \(g \) will be the average score for a large collection of individual tests of the most diverse kind. Each measures \(g \) to some extent. The variety guarantees that \(s \)-factors of the individual tests will vary in all possible directions and cancel each other out. Only \(g \) will be left as the factor common to all tests. IQ works because it measures \(g \).

An explanation is at once supplied for the success of their extraordinary procedure of . . . pooling together tests of the most miscellaneous description. For if every performance depends on two factors, the one always varying randomly, while the other is constantly the same, it is clear that in the average the random variations will tend to neutralize one another, leaving the other, or constant factor, alone dominant (1914, p. 313; see also, 1923, p. 6, and 1927, p. 77).

Binet's "hotchpot of multitudinous measurements" was a correct theoretical decision, not only the intuitive guess of a skilled practitioner: "In such wise this principle of making a hotchpot, which might seem to be the most arbitrary and meaningless procedure imaginable, had really a profound theoretical basis and a supremely practical utility" (Spearman quoted in Tuddenham, 1962, p. 503).

Spearman's \(g \), and its attendant claim that intelligence is a single, measurable entity, provided the only promising theoretical justification that hereditarian theories of IQ have ever had. As mental testing rose to prominence during the early twentieth century, it developed two traditions of research that Cyril Burt correctly identified in 1914 (p. 36) as correlational methods (factor analysis) and age-scale methods (IQ testing). Hearnshaw has recently made the same point in his biography of Burt (1979, p. 47): "The novelty of the 1900's was not in the concept of intelligence itself, but in its operational definition in terms of correlational techniques, and in the devising of practicable methods of measurement."

No one recognized better than Spearman the intimate connection between his model of factor analysis and hereditarian interpretations of IQ testing. In his 1914 *Eugenics Review* article, he
prophesied the union of these two great traditions in mental testing: "Each of these two lines of investigation furnishes a peculiarly happy and indispensable support to the other. . . . Great as has been the value of the Simon-Binet tests, even when worked in theoretical darkness, their efficiency will be multiplied a thousand-fold when employed with a full light upon their essential nature and mechanism." When Spearman's style of factor analysis came under attack late in his career (see pp. 326-332), he defended \(g \) by citing it as the rationale for IQ: "Statistically, this determination is grounded on its extreme simpleness. Psychologically, it is credited with affording the sole base for such useful concepts as those of 'general ability,' or 'IQ'" (1939, p. 79).

To be sure, the professional testers did not always heed Spearman's plea for an adoption of \(g \) as the rationale for their work. Many testers abjured theory and continued to insist on practical utility as the justification for their efforts. But silence about theory does not connote an absence of theory. The reification of IQ as a biological entity has depended upon the conviction that Spearman's \(g \) measures a single, scalable, fundamental "thing" residing in the human brain. Many of the more theoretically inclined mental testers have taken this view (see Terman et al., 1917, p. 152). C. C. Brigham did not base his famous recantation solely upon a belated recognition that the army mental tests had considered patent measures of culture as inborn properties (pp. 262–263). He also pointed out that no strong, single \(g \) could be extracted from the combined tests, which, therefore, could not have been measures of intelligence after all (Brigham, 1930). And I will at least say this for Arthur Jensen: he recognizes that his hereditarian theory of IQ depends upon the validity of \(g \), and he devotes much of his major book (1979) to a defense of Spearman's argument in its original form, as do Richard Herrnstein and Charles Murray in The Bell Curve (1994)—see essays at end of this book. A proper understanding of the conceptual errors in Spearman's formulation is a prerequisite for criticizing hereditarian claims about IQ at their fundamental level, not merely in the tangled minutiae of statistical procedures.

Spearman's reification of \(g \)

Spearman could not rest content with the idea that he had probed deeply under the empirical results of mental tests and
found a single abstract factor underlying all performance. Nor could he achieve adequate satisfaction by identifying that factor with what we call intelligence itself.* Spearman felt compelled to ask more of his g: it must measure some physical property of the brain; it must be a "thing" in the most direct, material sense. Even if neurology had found no substance to identify with g, the brain's performance on mental tests proved that such a physical substrate must exist. Thus, caught up in physics envy again, Spearman described his own "adventurous step of deserting all actually observable phenomena of the mind and proceeding instead to invent an underlying something which—by analogy with physics—has been called mental energy" (1927, p. 89).

Spearman looked to the basic property of g—its influence in varying degree, upon mental operations—and tried to imagine what physical entity best fitted such behavior. What else, he argued, but a form of energy pervading the entire brain and activating a set of specific "engines," each with a definite locus. The more energy, the more general activation, the more intelligence. Spearman wrote (1923, p. 5):

This continued tendency to success of the same person throughout all variations of both form and subject matter—that is to say, throughout all conscious aspects of cognition whatever—appears only explicable by some factor lying deeper than the phenomena of consciousness. And thus there emerges the concept of a hypothetical general and purely quantitative factor underlying all cognitive performances of any kind. . . . The factor was taken, pending further information, to consist in something of the nature of an "energy" or "power" which serves in common the whole cortex (or possibly, even, the whole nervous system)."

If g pervades the entire cortex as a general energy, then the s-factors for each test must have more definite locations. They must represent specific groups of neurons, activated in different ways by the energy identified with g. The s-factors, Spearman wrote (and not merely in metaphor), are engines fueled by a circulating g.

Each different operation must necessarily be further served by some specific factor peculiar to it. For this factor also, a physiological substrate has been suggested, namely the particular group of neurons specially serve-

*At least in his early work. Later, as we have seen, he abandoned the word intelligence as a result of its maddening ambiguity in common usage. But he did not cease to regard g as the single cognitive essence that should be called intelligence, had not vernacular (and technical) confusion made such a mockery of the term.
ing the particular kind of operation. These neural groups would thus function as alternative "engines" into which the common supply of "energy" could be alternatively distributed. Successful action would always depend, partly on the potential of energy developed in the whole cortex, and partly on the efficiency of the specific group of neurons involved. The relative influence of these two factors could vary greatly according to the kind of operation; some kinds would depend more on the potential of the energy, others more on the efficiency of the engine (1923, pp. 5-6).

The differing g-loadings of tests had been provisionally explained: one mental operation might depend primarily upon the character of its engine (high s and low g-loading), another might owe its status to the amount of general energy involved in activating its engine (high g-loading).

Spearman felt sure that he had discovered the basis of intelligence, so sure that he proclaimed his concept impervious to disproof. He expected that a physical energy corresponding with g would be found by physiologists: "There seem to be grounds for hoping that a material energy of the kind required by psychologists will some day actually be discovered" (1927, p. 407). In this discovery, Spearman proclaimed, "physiology will achieve the greatest of its triumphs" (1927, p. 408). But should no physical energy be found, still an energy there must be—but of a different sort:

And should the worst arrive and the required physiological explanation remain to the end undiscoverable, the mental facts will none the less remain facts still. If they are such as to be best explained by the concept of an underlying energy, then this concept will have to undergo that which after all is only what has long been demanded by many of the best psychologists—it will have to be regarded as purely mental (1927, p. 408).

Spearman, in 1927 at least, never considered the obvious alternative: that his attempt to reify g might be invalid in the first place.

Throughout his career, Spearman tried to find other regularities of mental functioning that would validate his theory of general energy and specific engines. He enunciated (1927, p. 133) a "law of constant output" proclaiming that the cessation of any mental activity causes others of equal intensity to commence. Thus, he reasoned, general energy remains intact and must always be activating something. He found, on the other hand, that fatigue is "selectively transferred"—that is, tiring in one mental activity entails fatigue in some related areas, but not in others (1927, p. 318). Thus, fatigue
cannot be attributed to "decrease in the supply of the general psycho-physiological energy," but must represent a build up of toxins that act selectively upon certain kinds of neurons. Fatigue, Spearman proclaimed, "primarily concerns not the energy but the engines" (1927, p. 318).

Yet, as we find so often in the history of mental testing, Spearman's doubts began to grow until he finally recanted in his last (posthumously published) book of 1950. He seemed to pass off the theory of energy and engines as a folly of youth (though he had defended it staunchly in middle age). He even abandoned the attempt to reify factors, recognizing belatedly that a mathematical abstraction need not correspond with a physical reality. The great theorist had entered the camp of his enemies and recast himself as a cautious empiricist (1950, p. 25):

We are under no obligation to answer such questions as: whether "factors" have any "real" existence? do they admit of genuine "measurement"? does the notion of "ability" involve at bottom any kind of cause, or power? Or is it only intended for the purpose of bare description? . . . At their time and in their place such themes are doubtless well enough. The senior writer himself has indulged in them not a little. Dulce est desipere in loco [it is pleasant to act foolishly from time to time—a line from Horace]. But for the present purposes he has felt himself constrained to keep within the limits of barest empirical science. These he takes to be at bottom nothing but description and prediction. . . . The rest is mostly illumination by way of metaphor and similes.

The history of factor analysis is strewn with the wreckage of misguided attempts at reification. I do not deny that patterns of causality may have identifiable and underlying, physical reasons, and I do agree with Eysenck when he states (1953, p. 113): "Under certain circumstances, factors may be regarded as hypothetical causal influences underlying and determining the observed relationships between a set of variables. It is only when regarded in this light that they have interest and significance for psychology." My complaint lies with the practice of assuming that the mere existence of a factor, in itself, provides a license for causal speculation. Factorists have consistently warned against such an assumption, but our Platonic urges to discover underlying essences continue to prevail over proper caution. We can chuckle, with the beneficence of hindsight, at psychiatrist T. V. Moore who, in 1933, postulated def-
THE REAL ERROR OF CYRIL BURT

inites genes for catatonic, deluded, manic, cognitive, and constitutional depression because his factor analysis grouped the supposed measures of these syndromes on separate axes (in Wolfle, 1940). Yet in 1972 two authors found an association of dairy production with florid vocalization on the tiny thirteenth axis of a nineteen-axis factor analysis for musical habits of various cultures—and then suggested "that this extra source of protein accounts for many cases of energetic vocalizing" (Lomax and Berkowitz, 1972, p. 232).

Automatic reification is invalid for two major reasons. First, as I discussed briefly on pp. 282-285 and will treat in full on pp. 326-347, no set of factors has any claim to exclusive concordance with the real world. Any matrix of positive correlation coefficients can be factored, as Spearman did, into g and a set of subsidiary factors or, as Thurstone did, into a set of "simple structure" factors that usually lack a single dominant direction. Since either solution resolves the same amount of information, they are equivalent in mathematical terms. Yet they lead to contrary psychological interpretations. How can we claim that one, or either, is a mirror of reality?

Second, any single set of factors can be interpreted in a variety of ways. Spearman read his strong g as evidence for a single reality underlying all cognitive mental activity, a general energy within the brain. Yet Spearman's most celebrated English colleague in factor analysis, Sir Godfrey Thomson, accepted Spearman's mathematical results but consistently chose to interpret them in an opposite manner. Spearman argued that the brain could be divided into a set of specific engines, fueled by a general energy. Thomson, using the same data, inferred that the brain has hardly any specialized structure at all. Nerve cells, he argued, either fire completely or not at all—they are either off or on, with no intermediary state. Every mental test samples a random array of neurons. Tests with high g-loadings catch many neurons in the active state; others, with low g-loadings, have simply sampled a smaller amount of unstructured brain. Thomson concluded (1939): "Far from being divided up into a few 'unitary factors,' the mind is a rich, comparatively undifferentiated complex of innumerable influences—on the physiological side an intricate network of possibilities of intercommunication." If the same mathematical pattern can yield such disparate interpretations, what claim can either have upon reality?
Two of Spearman's primary claims appear in most hereditarian theories of mental testing: the identification of intelligence as a unitary "thing," and the inference of a physical substrate for it. But these claims do not complete the argument: a single, physical substance may achieve its variable strength through effects of environment and education, not from inborn differences. A more direct argument for the heritability of g must be made, and Spearman supplied it.

The identification of g and s with energy and engines again provided Spearman with his framework. He argued that the s-factors record training in education, but that the strength of a person's g reflects heredity alone. How can g be influenced by education, Spearman argued (1927, p. 392), if g ceases to increase by about age sixteen but education may continue indefinitely thereafter? How can g be altered by schooling if it measures what Spearman called education (or the ability to synthesize and draw connections) and not retention (the ability to learn facts and remember them)—when schools are in the business of imparting information? The engines can be stuffed full of information and shaped by training, but the brain's general energy is a consequence of its inborn structure:

The effect of training is confined to the specific factor and does not touch the general one; physiologically speaking, certain neurons become habituated to particular kinds of action, but the free energy of the brain remains unaffected. . . . Though unquestionably the development of specific abilities is in large measure dependent upon environmental influences, that of general ability is almost wholly governed by heredity (1914, pp. 233–234).

IQ, as a measure of g, records an innate general intelligence; the marriage of the two great traditions in mental measurement (IQ testing and factor analysis) was consummated with the issue of heredity.

On the vexatious issue of group differences, Spearman's views accorded with the usual beliefs of leading western European male scientists at the time (see Fig. 6.9). Of blacks, he wrote (1927, p. 379), invoking g to interpret the army mental tests:
On the average of all the tests, the colored were about two years behind the white; their inferiority extended through all ten tests, but it was most marked in just those which are known to be most saturated with g.

In other words, blacks performed most poorly on tests having strongest correlations with g, or innate general intelligence.

Of whites from southern and eastern Europe, Spearman wrote (1927, p. 379), praising the American Immigration Restriction Act of 1924:

The general conclusion emphasized by nearly every investigator is that, as regards "intelligence," the Germanic stock has on the average a marked advantage over the South European. And this result would seem to have

609 Racist stereotype of a Jewish financier, reproduced from the first page of Spearman's 1914 article (see Bibliography). Spearman used this figure to criticize beliefs in group factors for such particular items of intellect, but its publication illustrates the acceptable attitudes of another age.
had vitally important practical consequences in shaping the recent very stringent American laws as to admission of immigrants.

Yet it would be incorrect to brand Spearman as an architect of the hereditarian theory for differences in intelligence among human groups. He supplied some important components, particularly the argument that intelligence is an innate, single, scorable "thing." He also held conventional views on the source of average differences in intelligence between races and national groups. But he did not stress the ineluctability of differences. In fact, he attributed sexual differences to training and social convention (1927, p. 229) and had rather little to say about social classes. Moreover, when discussing racial differences, he always coupled his hereditarian claim about average scores with an argument that the range of variation within any racial or national group greatly exceeds the small average difference between groups—so that many members of an "inferior" race will surpass the average intelligence of a "superior" group (1927, p. 380, for example).*

Spearman also recognized the political force of hereditarian claims, though he did not abjure either the claim or the politics: "All great efforts to improve human beings by way of training are thwarted through the apathy of those who hold the sole feasible road to be that of stricter breeding" (1927, p. 376).

But, most importantly, Spearman simply didn't seem to take much interest in the subject of hereditary differences among peoples. While the issue swirled about him and buried his profession in printer's ink, and while he himself had supplied a basic argument for the hereditarian school, the inventor of g stood aside in apparent apathy. He had studied factor analysis because he wanted to understand the structure of the human brain, not as a guide to measuring differences between groups, or even among individuals. Spearman may have been a reluctant courtier, but the politically potent union of IQ and factor analysis into a hereditarian theory of intelligence was engineered by Spearman's successor in the chair of psychology at University College—Cyril Burt. Spearman may have cared little, but the innate character of intelligence was the idee fixe of Sir Cyril's life.

* Richard Herrnstein and Charles Murray emphasize the same arguments to obviate a charge of racism against *The Bell Curve* (1994)—see first two essays at end of book.
Cyril Burt and the hereditarian synthesis

The source of Burt's uncompromising hereditarianism

Cyril Burt published his first paper in 1909. In it, he argued that intelligence is innate and that differences between social classes are largely products of heredity; he also cited Spearman's \(g \) as primary support. Burt's last paper in a major journal appeared posthumously in 1972. It sang the very same tune: intelligence is innate and the existence of Spearman's \(g \) proves it. For all his more dubious qualities, Cyril Burt certainly had staying power. The 1972 paper proclaims:

The two main conclusions we have reached seem clear and beyond all question. The hypothesis of a general factor entering into every type of cognitive process, tentatively suggested by speculations derived from neurology and biology, is fully borne out by the statistical evidence; and the contention that differences in this general factor depend largely on the individual's genetic constitution appears incontestable. The concept of an innate, general, cognitive ability, which follows from these two assumptions, though admittedly a sheer abstraction, is thus wholly consistent with the empirical facts (1972, p. 188).

Only the intensity of Sir Cyril's adjectives had changed. In 1912 he had termed this argument "conclusive"; by 1972 it had become "incontestable."

Factor analysis lay at the core of Burt's definition of intelligence as \(\text{i.g.c.} \) (innate, general, cognitive) ability. In his major work on factor analysis (1940, p. 216), Burt developed his characteristic use of Spearman's thesis. Factor analysis shows that "a general factor enters into all cognitive processes," and "this general factor appears to be largely, if not wholly, inherited or \(\text{innate} \)--again, \(\text{i.g.c.} \) ability. Three years earlier (1937, pp. 10-11) he had tied \(g \) to an ineluctable heredity even more graphically:

This general intellectual factor, central and all-pervading, shows a further characteristic, also disclosed by testing and statistics. It appears to be inherited, or at least inborn. Neither knowledge nor practice, neither \text{interest} nor \text{industry}, will avail to increase it.

Others, including Spearman himself, had drawn the link between \(g \) and heredity. Yet no one but Sir Cyril ever pursued it with such stubborn, almost obsessive gusto: and no one else
wielded it as such an effective political tool. The combination of hereditarian bias with a reification of intelligence as a single, measurable entity defined Burt's unyielding position.

I have discussed the roots of the second component: intelligence as a reified factor. But where did the first component—rigid hereditarianism—arise in Burt's view of life? It did not flow logically from factor analysis itself, for it cannot (see pp. 280-282). I will not attempt to answer this question by referring either to Burt's psyche or his times (though Hearnshaw, 1979, has made some suggestions). But I will demonstrate that Burt's hereditarian argument had no foundation in his empirical work (either honest or fraudulent), and that it represented an a priori bias imposed upon the studies that supposedly proved it. It also acted, through Burt's zealous pursuit of his idee fixe, as a distorter of judgment and finally as an incitement to fraud.*

BURT'S INITIAL "PROOF" OF INNATENESS

Throughout his long career, Burt continually cited his first paper of 1909 as a proof that intelligence is innate. Yet the study falters both on a flaw of logic (circular reasoning) and on the remarkably scant and superficial character of the data themselves. This publication proves only one thing about intelligence—that Burt began his study with an a priori conviction of its innateness, and reasoned back in a vicious circle to his initial belief. The "evidence"—what there was of it—served only as selective window dressing.

At the outset of his 1909 paper, Burt set three goals for himself. The first two reflect the influence of Spearman's pioneering work in factor analysis ("can general intelligence be detected and measured"; "can its nature be isolated and its meaning analyzed"). The third represents Burt's peculiar concern: "Is its development predominantly determined by environmental influence and individual acquisition, or is it rather dependent upon the inheritance of a racial character or family trait" (1909, p. 96).

Not only does Burt proclaim this third question "in many ways

* Of Burt's belief in the innateness of intelligence, Hearnshaw writes (1979, p. 49): "It was for him almost an article of faith, which he was prepared to defend against all opposition, rather than a tentative hypothesis to be refuted, if possible, by empirical tests. It is hard not to feel that almost from the first Burt showed an excessive assurance in the finality and correctness of his conclusions."
THE REAL ERROR OF CYRIL BURT

the most important of all," but he also gives away his answer in stating why we should be so concerned. Its importance rests upon:

. . . the growing belief that innate characters of the family are more potent in evolution than the acquired characters of the individual, the gradual apprehension that unsupplemented humanitarianism and philanthropy may be suspending the natural elimination of the unfit stocks—these features of contemporary sociology make the question whether ability is inherited one of fundamental moment (1909, p. 169).

Burt selected forty-three boys from two Oxford schools, thirty sons of small tradesmen from an elementary school and thirteen upper-class boys from preparatory school. In this "experimental demonstration that intelligence is hereditary" (1909, p. 179), with its ludicrously small sample, Burt administered twelve tests of "mental functions of varying degrees of complexity" to each boy. (Most of these tests were not directly cognitive in the usual sense, but more like the older Galtonian tests of physiology—attention, memory, sensory discrimination, and reaction time). Burt then obtained "careful empirical estimates of intelligence" for each boy. This he did not by rigorous Binet testing, but by asking "expert" observers to rank the boys in order of their intelligence independent of mere school learning. He obtained these rankings from the headmasters of the schools, from teachers, and from "two competent and impartial boys" included in the study. Writing in the triumphant days of British colonialism and derring-do, Burt instructed his two boys on the meaning of intelligence:

Supposing you had to choose a leader for an expedition into an unknown country, which of these 30 boys would you select as the most intelligent? Failing him, which next? (1909, p. 106)

Burt then searched for correlations between performance on the twelve tests and the rankings produced by his expert witnesses. He found that five tests had correlation coefficients with intelligence above 0.5, and that poorest correlations involved tests of "lower senses—touch and weight," while the best correlations included tests of clearer cognitive import. Convinced that the twelve tests measured intelligence, Burt then considered the scores themselves. He found that the upper-class boys performed better than the lower-middle-class boys in all tests save those involving weight and touch. The upper-class boys must therefore be smarter.

But is the superior smartness of upper-class boys innate or
acquired as a function of advantages in home and schooling? Burt gave four arguments for discounting environment:

1. The environment of lower-middle-class boys cannot be poor enough to make a difference since their parents can afford the ninepence a week required to attend school: "Now in the case of the lowest social classes, general inferiority at mental tests might be attributable to unfortunate environmental and post-natal influences. . . . But such conditions could not be suspected with the boys who, at a fee of 9d a week, attended the Central Elementary School" (1909, p. 173). In other words, environment can't make a difference until it reduces a child to near starvation.

2. The "educative influences of home and social life" seem small. In making this admittedly subjective assessment, Burt appealed to a fine intuition honed by years of gut-level experience. "Here, however, one must confess, such speculative arguments can convey little conviction to those who have not witnessed the actual manner of the respective boys."

3. The character of the tests themselves precludes much environmental influence. As tests of sensation and motor performance, they do not involve "an appreciable degree of acquired skill or knowledge. . . . There is reason, therefore, to believe that the differences revealed are mainly innate" (1909, p. 180).

4. A retesting of the boys eighteen months later, after several had entered professions or new schools, produced no important readjustment of ranks. (Did it ever occur to Burt that environment might have its primary influence in early life, and not only in immediate situations?)

The problem with all these points, and with the design of the entire study, is a patent circularity in argument. Burt's claim rested upon correlations between test performances and a ranking of intelligence compiled by "impartial" observers. (Arguments about the "character" of the tests themselves are secondary, for they would count for nothing in Burt's design if the tests did not correlate with independent assessments of intelligence.) We must know what the subjective rankings mean in order to interpret the correlations and make any use of the tests themselves. For if the rankings of teachers, headmasters, and colleagues, however sincerely attempted, record the advantages of upbringing more than the differential blessings of genetics, then the ranks are primarily a record
of environment, and the test scores may provide just another (and more imperfect) measure of the same thing. Burt used the correlation between two criteria as evidence for heredity without ever establishing that either criterion measured his favored property.

In any case, all these arguments for heredity are indirect. Burt also claimed, as his final proof, a direct test of inheritance: the boys' measured intelligence correlated with that of their parents:

Wherever a process is correlated with intelligence, these children of superior parentage resemble their parents in being themselves superior. . . . Proficiency at such tests does not depend upon opportunity or training, but upon some quality innate. The resemblance in degree of intelligence between the boys and their parents must, therefore, be due to inheritance. We thus have an experimental demonstration that intelligence is hereditary (1909, p. 181).

But how did Burt measure parental intelligence? The answer, remarkable even from Burt's point of view, is that he didn't: he merely assumed it from profession and social standing. Intellectual, upper-class parents must be innately smarter than tradesmen. But the study was designed to assess whether or not performance on tests reflects inborn qualities or the advantages of social standing. One cannot, therefore, turn around and infer intelligence directly from social standing.

We know that Burt's later studies of inheritance were fraudulent. Yet his early and honest work is riddled with flaws so fundamental that they stand in scarcely better light. As in the 1909 study, Burt continually argued for innateness by citing correlations in intelligence between parents and offspring. And he continually assessed parental intelligence by social standing, not by actual tests.

For example, after completing the Oxford study, Burt began a more extensive program of testing in Liverpool. He cited high correlations between parents and offspring as a major argument for innate intelligence, but never provided parental scores. Fifty years later, L. S. Penrose read Burt's old work, noted the absent data, and asked Burt how he had measured parental intelligence. The old man replied (in Hearnshaw, 1979, p. 29):

The intelligence of the parents was assessed primarily on the basis of their actual jobs, checked by personal interviews; about a fifth were also tested to standardize the impressionistic assessments.
Hearnshaw comments (1979, p. 30): "Inadequate reporting and incautious conclusions mark this first incursion of Burt into the genetic field. We have here, right at the beginning of his career, the seeds of later troubles."

Even when Burt did test subjects, he rarely reported the actual scores as measured, but "adjusted" them according to his own assessment of their failure to measure true intelligence as he and other experts subjectively judged it. He admitted in a major work (1921, p. 280):

I did not take my test results just as they stood. They were carefully discussed with teachers, and freely corrected whenever it seemed likely that the teacher's view of the relative merits of his own pupils gave a better estimate than the crude test marks.

Such a procedure is not without its commendable intent. It does admit the inability of a mere number, calculated during a short series of tests, to capture such a subtle notion as intelligence. It does grant to teachers and others with extensive personal knowledge the opportunity to record their good judgment. But it surely makes a mockery of any claim that a specific hypothesis is under objective and rigorous test. For if one believes beforehand that well-bred children are innately intelligent, then in what direction will the scores be adjusted?*

Despite his minuscule sample, his illogical arguments, and his dubious procedures, Burt closed his 1909 paper with a statement of personal triumph (p. 176):

Parental intelligence, therefore, may be inherited, individual intelligence measured, and general intelligence analyzed; and they can be analyzed, measured and inherited to a degree which few psychologists have hitherto legitimately ventured to maintain.

When Burt recycled these data in a 1912 paper for the _Eugenics Review_, he added additional "proof" with even smaller samples. He

*Sometimes, Burt descended even further into circular illogic and claimed that tests must measure innate intelligence because the testers constructed them to do so: "Indeed from Binet onwards practically all the investigators who have attempted to construct 'intelligence tests' have been primarily searching for some measure of inborn capacity, as distinct from acquired knowledge or skill. With such an interpretation it obviously becomes foolish to inquire how far 'intelligence' is due to environment and how far it is due to innate constitution: the very definition begs and sets the question" (1943, p. 88).
THE REAL ERROR OF CYRIL BURT

discussed Alfred Binet's two daughters, noted that their father had been disinclined to connect physical signs with mental prowess, and pointed out that the blond, blue-eyed, large-headed daughter of Teutonic appearance was objective and forthright, while the darker daughter tended to be impractical and sentimental. Touche.

Burt was no fool. I confess that I began reading him with the impression, nurtured by spectacular press reports of his fraudulent work, that he was simply a devious and foxy charlatan. To be sure, that he became and for complex reasons (see pp. 264–269). But as I read, I gained respect for Burt's enormous erudition, for his remarkable sensitivity in most areas, and for the subtlety and complexity of his reasoning; I ended up liking most things about him in spite of myself. And yet, this assessment makes the extraordinary weakness of his reasoning about the innateness of intelligence all the more puzzling. If he had simply been a fool, then foolish arguments would denote consistency of character.

My dictionary defines an idee fixe, or fixed idea, as "a persistent or obsessing idea, often delusional, from which a person cannot escape." The innateness of intelligence was Burt's idee fixe. When he turned his intellectual skills to other areas, he reasoned well, subtly, and often with great insight. When he considered the innateness of intelligence, blinders descended and his rational thinking evaporated before the hereditarian dogma that won his fame and eventually sealed his intellectual doom. It may be remarkable that Burt could operate with such a duality in styles of reasoning. But I find it much more remarkable that so many others believed Burt's statements about intelligence when his arguments and data, all readily available in popular publications, contained such patent errors and specious claims. What does this teach us about shared dogma masquerading as objectivity?

LATER ARGUMENTS

Perhaps I have been unfair in choosing Burt's earliest work for criticism. Perhaps the foolishness of youth soon yielded to mature wisdom and caution. Not at all; Burt was nothing if not ontogenetically consistent. The argument of 1909 never changed, never gained subtlety, and ended with manufactured support. The innateness of intelligence continued to function as dogma. Consider the primary argument of Burt's most famous book, The Back-
ward Child (1937), written at the height of his powers and before his descent into conscious fraud.

Backwardness, Burt notes, is defined by achievement in school, not by tests of intelligence: backward children are more than a year behind in their schoolwork. Burt argues that environmental effects, if at all important, should have most impact upon children in this category (those much further behind in school are more clearly genetically impaired). Burt therefore undertook a statistical study of environment by correlating the percentage of backward children with measures of poverty in the boroughs of London. He calculated an impressive array of strong correlations: 0.73 with percentage of people below the poverty line, 0.89 with overcrowding, 0.68 with unemployment, and 0.93 with juvenile mortality. These data seem to provide a prima-facie case for a dominant environmental influence upon backwardness, but Burt demurs. There is another possibility. Perhaps the innately poorest stocks create and then gravitate to the worst boroughs, and degree of poverty is merely an imperfect measure of genetic worthlessness.

Burt, guided by his idee fixe, opted for innate stupidity as the primary cause of poverty (1937, p. 105). He invoked IQ testing as his major argument. Most backward children score 1 to 2 standard deviations below the mean (70-85), within a range technically designated as "dull." Since IQ records innate intelligence, most backward children perform poorly in school because they are dull, not (or only indirectly) because they are poor. Again, Burt rides his circle. He wishes to prove that deficiency of innate intelligence is the major cause of poor performance in school. He knows full well that the link between IQ score and innateness is an unresolved issue in intense debates about the meaning of IQ—and he admits in many places that the Stanford-Binet test is, at best, only an imperfect measure of innateness (e.g., 1921, p. 90). Yet, using the test scores as a guide, he concludes:

In well over half the cases, the backwardness seems due chiefly to intrinsic mental factors; here, therefore, it is primary, innate, and to that extent beyond all hope of cure (1937, p. 110).

Consider Burt's curious definition of innate in this statement. An innate character, as inborn and, in Burt's usage, inherited, forms part of an organism's biological constitution. But the demonstra-
tion that a trait represents nature unaffected by nurture does not guarantee its ineluctable state. Burt inherited poor vision. No doctor ever rebuilt his eyes to an engineer's paradigm of normal design, but Burt wore eyeglasses and the only clouding of his vision was conceptual.

The Backward Child also abounds in tangential statements that record Burt's hereditarian biases. He writes about an environmental handicap—recurrent catarrh among the poor—and discusses hereditary susceptibility (quite plausible) with an arresting quip for graphic emphasis:

... exceptionally prevalent in those whose faces are marked by developmental defects—by the round receding forehead, the protruding muzzle, the short and upturned nose, the thickened lips, which combine to give to the slum child's profile a negroid or almost simian outline. ... "Apes that are hardly anthropoid" was the comment of one headmaster, who liked to sum up his cases in a phrase (1937, p. 186).

He wonders about the intellectual achievement of Jews and attributes it, in part, to inherited myopia that keeps them off the playing fields and adapts them for poring over account books.

Before the invention of spectacles, the Jew whose living depended upon his ability to keep accounts and read them, would have been incapacitated by the age of 50, had he possessed the usual tendency to hypermetropia: on the other hand (as I can personally testify) the myope ... can dispense with glasses for near work without much loss of efficiency (1937, p. 219).

Burt's Blindness

The blinding power of Burt's hereditarian biases can best be appreciated by studying his approach to subjects other than intelligence. For here he consistently showed a commendable caution. He recognized the complexity of causation and the subtle influence that environment can exert. He railed against simplistic assumptions and withheld judgment pending further evidence. Yet as soon as Burt returned to his favorite subject of intelligence, the blinders descended and the hereditarian catechism came forward again.

Burt wrote with power and sensitivity about the debilitating effects of poor environments. He noted that 23 percent of the cockney youth he interviewed had never seen a field or a patch of
grass, not "even in a Council park," 64 percent had never seen a
train, and 98 percent had never seen the sea. The following pas-
sage displays a measure of paternalistic condescension and stereo-
typing, but it also presents a powerful image of poverty in working-
class homes, and its intellectual effect upon children (1937, p. 127).

His mother and father know astonishingly little of any life except their
own, and have neither the time nor the leisure, neither the ability nor the
disposition, to impart what little they know. The mother's conversation
may be chiefly limited to the topics of cleaning, cooking, and scolding. The
father, when not at work, may spend most of his time "round the corner"
refreshing a worn-out body, or sitting by the fire with cap on and coat off,
sucking his pipe in gloomy silence. The vocabulary that the child absorbs
is restricted to a few hundred words, most of them inaccurate, uncouth, or
mispronounced, and the rest unfit for reproduction in the schoolroom. In
the home itself there is no literature that deserves the title; and the child's
whole universe is closed in and circumscribed by walls of brick and a pall
of smoke. From one end of the year to the other, he may go no farther
than the nearest shops or the neighborhood recreation ground. The coun-
try or the seaside are mere words to him, dimly suggesting some place to
which cripples are sent after an accident, visualized perhaps in terms of
some photographic "souvenir from Southend" or some pictorial
"memento from Margate," all framed in shells, brought back by his par-
ents on a bank-holiday trip a few weeks after their wedding.

Burt appended this comment from a "burly bus conductor" to his
description: "Book learning isn't for kids that'll have to earn their
bread. It's only for them as likes to give themselves the hairs of the
'ighbrow."

Burt could apply what he understood so well to subjects other
than intelligence. Consider his views on juvenile delinquency and
left-handedness. Burt wrote extensively on the cause of delin-
quency and attributed it to complex interactions between children
and their environment: "The problem never lies in the 'problem
child' alone: it lies always in the relations between that child and his
environment" (1940, p. 243). If poor behavioral performance mer-
its such an assessment, why not say the same about poor intellectual
performance? One might suspect that Burt relied again upon test
scores, arguing that delinquents tested well and could not be mis-
behaving as a result of innate stupidity. But, in fact, delinquents
often tested as badly as poor children regarded by Burt as innately
deficient in intelligence. Yet Burt recognized that IQ scores of
delinquents may not reflect inherited ability because they rebel against taking the tests:

For what to them must seem nothing but a resuscitated school examination, delinquents, as a rule, feel little inclination and much distaste. From the outset they assume they are more likely to fail than succeed, more likely to be reproached than commended. ... Unless, indeed, to circumvent their suspicion and secure their good-will special manoeuvres be tactfully tried, their apparent prowess with all such tests will fall much below their veritable powers. ... In the causation of juvenile delinquency, ... the share contributed by mental defect has unquestionably been magnified by those who, trusting so exclusively to the Binet-Simon scale, have ignored the factors which depreciate its results (1921, pp. 189-190).

But why not say that poverty often entails a similar disinclination and sense of defeat?

Burt (1937, p. 270) regarded left-handedness as the "motor disability ... which interferes most widely with the ordinary tasks of the classroom." As chief psychologist of the London schools, he therefore devoted much study to its cause. Unburdened by a priori conviction in this case, he devised and attempted to test a wide range of potential environmental influences. He studied medieval and Renaissance paintings to determine if Mary usually carried the infant Jesus on her right hip. If so, babies would wrap their left arms about their mother's neck, leaving their right hand free for more dextrous (literally right-handed) motion. He wondered if greater frequency of right-handedness might record the asymmetry of internal organs and the need for protection imposed by our habits. If heart and stomach lie to the left of the midline, then a warrior or worker would naturally turn his left side away from potential danger, "trust to the more solid support of the right side of the trunk, and so use his right hand and arm for wielding heavy instruments and weapons" (1937, p. 270). In the end, Burt opted for caution and concluded that he could not tell:

should in the last resort contend that probably all forms of left-handedness are only indirectly hereditary: postnatal influence seems always to enter in. ... I must accordingly repeat that, here as elsewhere in psychology, our present knowledge is far too meager to allow us to declare with any assurance what is inborn and what is not (1937, pp. 303-304).

Substitute "intelligence" for "left-handedness" and the statement is a model of judicious inference. In fact, left-handedness is more
clearly an entity than intelligence, and probably more subject to
definite and specifiable hereditary influence. Yet here, where his
case for innateness was better, Burt tested all the environmental
influences—*some* rather *farfetched*—that he could devise, and
finally declared the subject too complex for resolution.

BURT'S POLITICAL USE OF INNATENESS

Burt extended his belief in the innateness of individual intelli-
gence to only one aspect of average differences between groups.
He did not feel *(1912)* that races varied much in inherited intelli-
gence, and he argued *(1921, p. 197)* that the different behaviors of
boys and girls can be traced largely to parental treatment. But dif-
fferences in social class, the wit of the successful and dullness of the
poor, are reflections of inherited ability. If race is America's pri-
mary social problem, then class has been Britain's corresponding
concern.

In his watershed* paper *(1943)* on "ability and income," Burt
concludes that "the wide inequality in personal income is largely,
though not entirely, an indirect effect of the wide inequality in
innate intelligence." The data "do not support the view (still held
by many educational and social reformers) that the apparent ine-
quality in intelligence of children and adults is in the main an indi-
rect consequence of inequality in economic conditions" *(1943, p.
141)*.

Burt often denied that he wished to limit opportunities for
achievement by regarding tests as measures of innate intelligence.
He argued, on the contrary, that tests could identify those few
individuals in the lower classes whose high innate intelligence
would not otherwise be recognized under a veneer of environmen-
tal disadvantage. For "among nations, success in the struggle for
survival is bound to depend more and more on the achievements
of a small handful of individuals who are endowed by nature with
outstanding gifts of ability and character" *(1959, p. 31)*. These peo-
ple must be identified and nurtured to compensate for "the com-
parative ineptitude of the general public" *(1959, p. 31)*. They must
be encouraged and rewarded, for the rise and fall of a nation does
not depend upon genes peculiar to an entire race, but upon

*Hearnshaw *(1979)* suspects that this paper marks Burt's first use of fraudulent
data.
"changes in the relative fertility of its leading members or its leading classes" (1962, p. 49).

Tests may have been the vehicle by which a few children escaped from the strictures of a fairly inflexible class structure. But what was their effect on the vast majority of lower-class children whom Burt unfairly branded as unable, by inheritance, ever to develop much intelligence—and therefore undeserving, by reason, of higher social standing?

Any recent attempt to base our educational policy for the future on the assumption that there are no real differences, or at any rate no important differences, between the average intelligence of the different social classes, is not only bound to fail; it is likely to be fraught with disastrous consequences for the welfare of the nation as a whole, and at the same time to result in needless disappointments for the pupils concerned. The facts of genetic inequality, whether or not they conform to our personal wishes and ideals, are something that we cannot escape (1959, p. 28). . . . A definite limit to what children can achieve is inexorably set by the limitations of their innate capacity (1969).

Burt's extension of Spearman's theory

Cyril Burt may be known best to the public as a hereditarian in the field of mental testing, but his reputation as a theoretical psychologist rested primarily upon his work in factor analysis. He did not invent the technique, as he later claimed; but he was Spearman's successor, both literally and figuratively, and he became the leading British factorist of his generation.

Burt's genuine achievements in factor analysis were substantial. His complex and densely reasoned book on the subject (1940) was the crowning achievement of Spearman's school. Burt wrote that it "may prove to be a more lasting contribution to psychology than anything else I have yet written" (letter to his sister quoted in Hearnshaw, 1979, p. 154). Burt also pioneered (though he did not invent) two important extensions of Spearman's approach—an inverted technique (discussed on pp. 322-323) that Burt called "correlation between persons" (now known to aficionados as "Q-mode factor analysis"), and an expansion of Spearman's two-factor theory to add "group factors" at a level between \(g\) and \(s\).

Burt toed Spearman's line in his first paper of 1909. Spearman had insisted that each test recorded only two properties of mind—
a general factor common to all tests and a specific factor peculiar to that test alone. He denied that clusters of tests showed any significant tendency to form "group factors" between his two levels—that is, he found no evidence for the "faculties" of an older psychology, no clusters representing verbal, spatial, or arithmetic ability, for example. In his 1909 paper, Burt did note a "discernible, but small" tendency for grouping in allied tests. But he proclaimed it weak enough to ignore ("vanishingly minute" in his words), and argued that his results "confirm and extend" Spearman's theory.

But Burt, unlike Spearman, was a practitioner of testing (responsible for all of London's schools). Further studies in factor analysis continued to distinguish group factors, though they were always subsidiary to g. As a practical matter for guidance of pupils, Burt realized that he could not ignore the group factors. With a purely Spearmanian approach, what could a pupil be told except that he was generally smart or dumb? Pupils had to be guided toward professions by identifying strengths and weaknesses in more specific areas.

By the time Burt did his major work in factor analysis, Spearman's cumbersome method of tetrad differences had been replaced by the principal components approach outlined on pp. 275–280. Burt identified group factors by studying the projection of individual tests upon the second and subsequent principal components. Consider Fig. 6.6: In a matrix of positive correlation coefficients, vectors representing individual tests are all clustered together. The first principal component, Spearman's g runs through the middle of the cluster and resolves more information than any other axis could. Burt recognized that no consistent patterns would be found on subsequent axes if Spearman's two-factor theory held—for the vectors would not form subclusters if their only common variance had already been accounted for by g. But if the vectors form subclusters representing more specialized abilities, then the first principal component must run between the subclusters if it is to be the best average fit to all vectors. Since the second principal component is perpendicular to the first, some subclusters must project positively upon it and others negatively (as Fig. 6.6 shows with its negative projections for verbal tests and positive projections for arithmetic tests). Burt called these axes bipolar factors, because they included clusters of positive and negative pro-
jections. He identified as *group factors* the clusters of positive and negative projections themselves.

Burt's identification of group factors may seem, superficially, to challenge Spearman's theory, but in fact it provided an extension and improvement that Spearman eventually welcomed. The essence of Spearman's claim is the primacy of *g*, and the subordination of all other determinants of intelligence to it. Burt's identification of group factors preserved this notion of hierarchy, and extended it by adding another level between *g* and *s*. In fact, Burt's treatment of group factors as a level in a hierarchy subordinate to *g* saved Spearman's theory from the data that seemed to threaten it. Spearman originally denied group factors, but evidence for them continued to accumulate. Many factorists began to view this evidence as a denigration of *g* and as a wedge for toppling Spearman's entire edifice. Burt strengthened the building, preserved the preeminent role of *g*, and extended Spearman's theory by enumerating further levels subordinate to *g*. The factors, Burt wrote (1949, p. 199), are "organized on what may be called a hierarchical basis. . . . There is first a comprehensive general factor, covering all cognitive activities; next a comparatively small number of broad group factors, covering different abilities classified according to their form or content. . . . The whole series appears to be arranged on successive levels, the factors on the lowest level being the most specific and the most numerous of all."

Spearman had advocated a two-factor theory; Burt proclaimed a four-factor theory: the *general* factor or Spearman's *g*, the particular or *group* factors that he had identified, the *specific* factors or Spearman's *s* (attributes of a single trait measured on all *occasions*), and what Burt called *accidental* factors, or attributes of a single trait measured only on a single *occasion*. Burt had synthesized all perspectives. In Spearman's terms, his theory was monarchic in recognizing the domination of *g*, oligarchic in its identification of group factors, and anarchic *in* recognizing *s*-factors for each test. But Burt's scheme was no compromise; it was Spearman's hierarchical theory with yet another level subordinate to *g*.

*This accidental variance, representing peculiarities of particular testing situations, forms part of what statisticians call "measurement error." It is important to quantify, for it may form a basic level of comparison for the identification of causes in a family of techniques called the "analysis of variance." But it represents the peculiarity of an occasion, not a quality either of a test or a testee.
Moreover, Burt accepted and greatly elaborated Spearman's views on the differential innateness of levels. Spearman had regarded g as inherited, s as a function of training. Burt agreed, but promoted the influence of education to his group factors as well. He retained the distinction between an inherited and ineluctable g, and a set of more specialized abilities amenable to improvement by education:

Although defect in general intelligence inevitably places a definite limit to educational progress, defect in special intellectual abilities rarely does so (1937, p. 537).

Burt also declared, with his usual intensity and persistence, that the primary importance of factor analysis lay in its capacity for identifying inherited, permanent qualities:

From the very outset of my educational work it has seemed essential, not merely to show that a general factor underlies the cognitive group of mental activities, but also that this general factor (or some important component of it) is innate or permanent (1940, p. 57).

The search for factors thus becomes, to a great extent, an attempt to discover inborn potentialities, such as will permanently aid or limit the individual's behavior later on (1940, p. 230).

Burt on the reification of factors

Burt's view on reification, as Hearnshaw has noted with frustration (1979, p. 166), are inconsistent and even contradictory (sometimes within the same publication).* Often, Burt branded reification of factors as a temptation to be avoided:

No doubt, this causal language, which we all to some extent favor, arises partly from the irrepressible disposition of the human mind to reify and even to personify whatever it can—to picture inferred reasons as realities and to endow those realities with an active force (1940, p. 66).

*Other scholars often complained of Burt's tendency to obfuscate, temporize, and argue both sides as his own when treating difficult and controversial issues. D. F. Vincent wrote of his correspondence with Burt about the history of factor analysis (in Hearnshaw, 1979, pp. 177-178): "I should not get a simple answer to a simple question. I should get half a dozen foolscap sheets of typescript, all very polite and very cordial, raising half a dozen subsidiary issues in which I was not particularly interested, and to which out of politeness I should have to reply . . . I should then get more foolscap pages of typescript raising more extraneous issues. . . . After the first letter my problem has been how to terminate the correspondence without being discourteous."
He spoke with eloquence about this error of thought:

The ordinary mind loves to reduce patterns to single atomlike existents—to treat memory as an elementary faculty lodged in a phrenological organ, to squeeze all consciousness into the pineal gland, to call a dozen different complaints rheumatic and regard them all as the effect of a specific germ, to declare that strength resides in the hair or in the blood, to treat beauty as an elementary quality that can be laid on like so much varnish. But the whole trend of current science is to seek its unifying principles, not in simple unitary causes, but in the system or structural pattern as such (1940, p. 237).

And he explicitly denied that factors were things in the head (1937, p. 459):

The "factors," in short, are to be regarded as convenient mathematical abstractions, not as concrete mental "faculties," lodged in separate "organs" of the brain.

What could be more clearly stated?

Yet in a biographical comment, Burt (1961, p. 53) centered his argument with Spearman not on the issue of whether or not factors should be reified, but rather how they should be reified: "Spearman himself identified the general factor with 'cerebral energy.' I identified it with the general structure of the brain." In the same article, he provided more details of suspected physical locations for entities identified by mathematical factors. Group factors, he argues, are definite areas of the cerebral cortex (1961, p. 57), while the general factor represents the amount and complexity of cortical tissue: "It is this general character of the individual's brain-tissue—viz., the general degree of systematic complexity in the neuronal architecture—that seems to me to represent the general factor, and account for the high positive correlations obtained between various cognitive tests" (1961, pp. 57-58; see also 1959, p. 106).*

*One might resolve this apparent contradiction by arguing that Burt refused to reify on the basis of mathematical evidence alone (in 1940), but did so later when independent neurological information confirmed the existence of structures in the brain that could be identified with factors. It is true that Burt advanced some neurological arguments (1961, p. 57, for example) in comparing the brains of normal individuals and "low grade defectives." But these arguments are sporadic, perfunctory, and peripheral. Burt repeated them virtually verbatim, in publication after publication, without citing sources or providing any specific reason for allying mathematical factors with cortical properties.
Lest one be tempted to regard these later statements as a shift in belief from the caution of a scholar in 1940 to the poor judgment of a man mired in the frauds of his later years, I note that Burt presented the same arguments for reification in 1940, right alongside the warnings against it:

Now, although I do not identify the general factor g with any form of energy, I should be ready to grant it quite as much "real existence" as physical energy can justifiably claim (1940, p. 214). Intelligence I regard not indeed as designating a special form of energy, but rather as specifying certain individual differences in the structure of the central nervous system—differences whose concrete nature could be described in histological terms (1940, pp. 216-217).

Burt even went so far as to suggest that the all-or-none character of neural discharge "supports the demand for an ultimate analysis into independent or 'orthogonal' factors" (1940, p. 222).

But perhaps the best indication of Burt's hope for reification lies in the very title he chose for his major book of 1940. He called it *The Factors of the Mind*.

Burt followed Spearman in trying to find a physical location in the brain for mathematical factors extracted from the correlation matrix of mental tests. But Burt also went further, and established himself as a reifier in a domain that Spearman himself would never have dared to enter. Burt could not be satisfied with something so vulgar and material as a bit of neural tissue for the residence of factors. He had a wider vision that evoked the spirit of Plato himself. Material objects on earth are immediate and imperfect representations of higher essences in an ideal world beyond our ken.

Burt subjected many kinds of data to factor analysis during his long career. His interpretations of factors display a Platonic belief in a higher reality, embodied imperfectly by material objects, but discernible in them through an idealization of their essential, underlying properties on principal component factors. He analyzed a suite of emotional traits (1940, pp. 406-408) and identified his first principal component as a factor of "general emotionality." (He also found two bipolar factors for extrovert-introvert and euphoric-sorrowful.) He discovered "a general paranormal factor" in a study of ESP data (in Hearnshaw, 1979, p. 222). He analyzed human anatomy and interpreted the first principal component as an ideal type for humanity (1940, p. 113).
One needn't, from these examples, infer Burt's belief in a literal, higher reality: perhaps he thought of these idealized general factors as mere principles of classification to aid human understanding. But, in a factor analysis of aesthetic judgment, Burt explicitly expressed his conviction that real standards of beauty exist, independent of the presence of human beings to appreciate them. Burt selected fifty postcards with illustrations ranging from the great masters down to "the crudest and most flashy birthday card that I could find at a paper shop in the slums." He asked a group of subjects to rank the cards in order of beauty and performed a factor analysis of correlations among the ranks. Again, he discerned an underlying general factor on the first principal component, declared it to be a universal standard of beauty, and expressed a personal contempt for Victorian ceremonial statuary in identifying this higher reality:

We see beauty because it is there to be seen. . . . I am tempted to contend that aesthetic relations, like logical relations, have an independent, objective existence: the Venus of Milo would remain more lovely than Queen Victoria's statue in the Mall, the Taj Mahal than the Albert Memorial, though every man and woman in the world were killed by a passing comet's gas.

In analyses of intelligence, Burt often claimed (1939, 1940, 1949, for example) that each level of his hierarchical, four-factor theory corresponded with a recognized category in "the traditional logic of classes" (1939, p. 85)—the general factor to the genus, group factors to species, specific factors to the proprium, and accidental factors to the accidens. He seemed to regard these categories as more than conveniences for human ordering of the world's complexity, but as necessary ways of parsing a hierarchically structured reality.

Burt certainly believed in realms of existence beyond the material reality of everyday objects. He accepted much of the data of parapsychology and postulated an oversoul or psychon—"a kind of group mind formed by the subconscious telepathic interaction of the minds of certain persons now living, together perhaps with the psychic reservoir out of which the minds of individuals now deceased were formed, and into which they were reabsorbed on the death of their bodies" (Burt quoted in Hearnshaw, 1979, p. 225). In this higher realm of psychic reality, the "factors of the
mind" may have real existence as modes of truly universal thought.

Burt managed to espouse three contradictory views about the nature of factors: mathematical abstractions for human convenience; real entities lodged in physical properties of the brain; and real categories of thought in a higher, hierarchically organized realm of psychic reality. Spearman had not been very daring as a reifier; he never ventured beyond the Aristotelian urge for locating idealized abstractions within physical bodies themselves. Burt, at least in part, soared beyond into a Platonic realm above and beyond physical bodies. In this sense, Burt was the boldest, and literally most extensive, reifier of them all.

Burt and the political uses of g

Factor analysis is usually performed on the correlation matrix of tests. Burt pioneered an "inverted" form of factor analysis, mathematically equivalent to the usual style, but based on correlation between persons rather than tests. If each vector in the usual style (technically called R-mode analysis) represents the scores of several people on a single test, then each vector in Burt's inverted style (called Q-mode analysis) reflects the results of several tests for a single person. In other words, each vector now represents a person rather than a test, and the correlation between vectors measures the degree of relationship between individuals.

Why did Burt go to such lengths to develop a technique mathematically equivalent to the usual form, and generally more cumbersome and expensive to apply (since an experimental design almost always includes more people than tests)? The answer lies in Burt's uncommon focus of interest. Spearman, and most other factorists, wished to learn about the nature of thought or the structure of mind by studying correlations between tests measuring different aspects of mental functioning. Cyril Burt, as official psychologist of the London County Council (1913-1932), was interested in ranking pupils. Burt wrote in an autobiographical statement (1961, p. 56): "[Sir Godfrey] Thomson was interested primarily in the description of the abilities tested and in the differences between those abilities; I was interested rather in the persons tested and in the differences between them" (Burt's italics).

Comparison, for Burt, was no abstract issue. He wished to assess pupils in his own characteristic way, based upon two guiding
THE REAL ERROR OF CYRIL BURT

principles: first (the theme of this chapter) that general intelligence is a single, measurable entity (Spearman's \(g \)); second (Burt's own idee fixe) that a person's general intelligence is almost entirely innate and unchangeable. Thus, Burt sought the relationship among persons in a unilinear ranking of inherited mental worth. He used factor analysis to validate this single scale and to plant people upon it. "The very object of the factor-analysis," he wrote (1940, p. 136), "is to deduce from an empirical set of test measurements a single figure for each single individual." Burt sought (1940, p. 176) "one ideal order, acting as a general factor, common to every examiner and to every examinee, predominating over, though no doubt disturbed by, other irrelevant influences."

Burt's vision of a single ranking based on inherited ability fueled the major political triumph in Britain of hereditarian theories of mental testing. If the Immigration Restriction Act of 1924 signalled the chief victory of American hereditarians in psychology, then the so-called examination at 11+ awarded their British counterparts a triumph of equal impact. Under this system for streaming children into different secondary schools, pupils took an extensive examination at age ten or eleven. As a result of these tests, largely an attempt to assess Spearman's \(g \) for each child, 20 percent were sent to "grammar" schools where they might prepare for entry to a university, while 80 percent were relegated to technical or "secondary modern" schools and regarded as unfit for higher education.

Cyril Burt defended this separation as a wise step for "warding off the ultimate decline and fall that has overtaken each of the great civilizations of the past" (1959, p. 117):

It is essential in the interests alike of the children themselves and of the nation as a whole, that those who possess the highest ability—the cleverest of the clever—should be identified as accurately as possible. Of the methods hitherto tried out the so-called 11+ exam has proved to be by far the most trustworthy (1959, p. 117).

Burt's only complaint (1959, p. 32) was that the test and subsequent selection came too late in a child's life.

The system of examination at 11+ and subsequent separation of schools arose in conjunction with a series of official reports issued by government committees during twenty years (the Hadow
reports of 1926 and 1931, the Spens report of 1938, the Norwood report of 1943, and the Board of Education's White Paper on Educational Reconstruction—all leading to the Butler Education Act of 1944, which set policy until the mid-1960s when the Labour party vowed to end selection at 11 plus). In the flak surrounding the initial revelation of Burt's fraudulent work, he was often identified as the architect of the 11+ examination. This is not accurate; Burt was not even a member of the various reporting committees, though he did consult frequently with them and he did write extensively for their reports.* Yet it hardly matters whether or not Burt's hand actually moved the pen. The reports embody a particular view of education, clearly identified with the British school of factor analysis, and evidently linked most closely with Cyril Burt's version.

The 11+ examination was an embodiment of Spearman's hierarchical theory of intelligence, with its innate general factor pervading all cognitive activity. One critic referred to the series of reports as "hymns of praise to the 'g' factor" (in Hearnshaw, 1979, p. 112). The first Hadow report defined intellectual capacity measured by tests in Burt's favored terms as i.g.c. (innate, general, cognitive) ability: "During childhood, intellectual development progresses as if it were governed largely by a single, central factor, usually known as 'general intelligence,' which may be broadly defined as innate, all round, intellectual [my italics for i.g.c] ability, and appears to enter into everything the child attempts to think, say, or do: this seems the most important factor in determining his work in the classroom."

The 11+ owed its general rationale to the British factorists; in addition, several of its details can also be traced to Burt's school. Why, for example, testing and separation at age eleven? There were practical and historical reasons to be sure; eleven was about the traditional age for transition between primary and secondary schools. But the factorists supplied two important theoretical supports. First, studies on the growth of children showed that g varied

*Hearnshaw (1979) reports that Burt had greatest influence over the 1938 Spens report, which recommended sorting at 11 plus and explicitly rejected comprehensive schooling under a single roof thereafter. Burt was piqued at the Norwood report because it downgraded psychological evidence; but, as Hearnshaw notes, this annoyance "masked a basic agreement with the recommendations, which in principle did not differ so much from those of the Spens committee, which he had earlier approved."
widely in early life and first stabilized at about age eleven. Spearman wrote in 1927 (p. 367): "If once, then, a child of 11 years or so has had his relative amount of g measured in a really accurate manner, the hope of teachers and parents that he will ever rise to a much higher standing as a late-bloomer would seem to be illusory." Second, Burt's "group factors," which (for purposes of separation by general mental worth) could only be viewed as disturbers of g, did not strongly affect a child until after age eleven. The 1931 Hadow report proclaimed that "special abilities rarely reveal themselves in any notable degree before the age of 11."

Burt often claimed that his primary goal in supporting 11+ was a "liberal" one—to provide access to higher education for disadvantaged children whose innate talents might otherwise not be recognized. I do not doubt that a few children of high ability were thus aided, though Burt himself did not believe that many people of high intelligence lay hidden in the lower classes. (He also believed that their numbers were rapidly decreasing as intelligent people moved up the social ladder leaving the lower classes more and more depleted of intellectual talent—1946, p. 15. R. Herrnstein [1971] caused quite a ruckus with the identical argument, recycled, a few years back.)*

Yet the major effect of 11+, in terms of human lives and hopes, surely lay with its primary numerical result—80 percent branded as unfit for higher education by reason of low innate intellectual ability. Two incidents come to mind, memories of two years spent in Britain during the regime of 11+: children, already labeled sufficiently by the location of their school, daily walking through the streets of Leeds in their academic uniforms, readily identified by all as the ones who hadn't qualified; a friend who had failed 11+ but reached the university anyway because she had learned Latin on her own, when her secondary modern school did not teach it and universities still required it for entrance into certain courses (how many other working-class teenagers would have had the means or motivation, whatever their talents and desires?).

Burt was committed to his eugenic vision of saving Britain by finding and educating its few people of eminent talent. For the rest, I assume that he wished them well and hoped to match their education with their ability as he perceived it. But the 80 percent

*The recycling reached full and lengthy fruition when Herrnstein and Charles Murray used the same claim as the opening gambit and general basis for The Bell Curve (1994).
were not included in his plan for the preservation of British greatness. Of them, he wrote (1959, p. 123):

It should be an essential part of the child's education to teach him how to face a possible beating on the 11+ (or any other examination), just as he should learn to take a beating in a half-mile race, or in a bout with boxing gloves, or a football match with a rival school.

Could Burt feel the pain of hopes dashed by biological proclamation if he was willing seriously to compare a permanent brand of intellectual inferiority with the loss of a single footrace?

L. L. Thurstone and the vectors of mind

Thurstone's critique and reconstruction

L. L. Thurstone was born (1887) and bred in Chicago (Ph.D., University of Chicago, 1917, professor of psychology at his alma mater from 1924 to his death in 1955). Perhaps it is not surprising that a man who wrote his major work from the heart of America during the Great Depression should have been the exterminating angel of Spearman's g. One could easily construct a moral fable in the heroic mold: Thurstone, free from the blinding dogmas of class bias, sees through the error of reification and hereditarian assumptions to unmask g as logically fallacious, scientifically worthless, and morally ambiguous. But our complex world grants validity to few such tales, and this one is as false and empty as most in its genre. Thurstone did undo g for some of the reasons cited above, but not because he acknowledged the deeper conceptual errors that had engendered it. In fact, Thurstone disliked g because he felt that it was not real enough!

Thurstone did not doubt that factor analysis should seek, as its primary objective, to identify real aspects of mind that could be linked to definite causes. Cyril Burt named his major book *The Factors of the Mind*, Thurstone, who invented the geometrical depiction of tests and factors as vectors (Figs. 6.6, 6.7), called his major work (1935) *The Vectors of Mind*. "The object of factor analysis," Thurstone wrote (1935, p. 53), "is to discover the mental faculties."

Thurstone argued that Spearman and Burt's method of principal components had failed to identify true vectors of mind because it placed factor axes in the wrong geometrical positions.
He objected strenuously both to the first principal component (which produced Spearman's g) and to the subsequent components (which identified "group factors" in clusters of positive and negative projections of tests).

The first principal component, Spearman's g, is a grand average of all tests in matrices of positive correlation coefficients, where all vectors must point in the same general direction (Fig. 6.4). What psychological meaning can such an axis have, Thurstone asked, if its position depends upon the tests included, and shifts drastically from one battery of tests to another?

Consider Fig. 6.10 taken from Thurstone's expansion (1947) of the Vectors of Mind. The curved lines form a spherical triangle on the surface of a sphere. Each vector radiates from the center of the sphere (not shown) and intersects the sphere's surface at a point represented by one of the twelve small circles. Thurstone assumes that the twelve vectors represent tests for three "real" faculties of mind, A, B, and C (call them verbal, numerical, and spatial, if you will). The left set of twelve tests includes eight that primarily measure spatial ability and fall near C; two tests measure verbal ability and lie near A, while two reflect numerical skill. But there is nothing sacrosanct about either the number or distribution of tests in a battery. Such decisions are arbitrary; in fact, a tester usually can't impose a decision at all because he doesn't know, in advance, which tests measure what underlying faculty. Another battery of tests (right side of Fig. 6.10) may happen to include eight for verbal skills and only two each for numerical and spatial ability.

The three faculties, Thurstone believes, are real and invariant in position no matter how many tests measure them in any battery. But look what happens to Spearman's g. It is simply the average of all tests, and its position—the x in Fig. 6.10—shifts markedly for the arbitrary reason that one battery includes more spatial tests (forcing g near spatial pole C) and the other more verbal tests (moving g near verbal pole A). What possible psychological meaning can g have if it is only an average, buffeted about by changes in the number of tests for different abilities? Thurstone wrote of g (1940, p. 208):

Such a factor can always be found routinely for any set of positively correlated tests, and it means nothing more or less than the average of all the abilities called for by the battery as a whole. Consequently, it varies
from one battery to another and has no fundamental psychological significance beyond the arbitrary collection of tests that anyone happens to put together. . . . We cannot be interested in a general factor which is only the average of any random collection of tests.

Burt had identified group factors by looking for clusters of positive and negative projections on the second and subsequent principal components. Thurstone objected strenuously to this method, not on mathematical grounds, but because he felt that tests could not have negative projections upon real "things." If a factor represented a true vector of mind, then an individual test might either measure that entity in part, and have a positive projection upon the factor, or it might not measure it at all, and have a zero projection. But a test could not have a negative projection upon a real vector of mind:

A negative entry . . . would have to be interpreted to mean that the possession of an ability has a detrimental effect on the test performance. One can readily understand how the possession of a certain ability can aid

6.10 Thurstone's illustration of how the position of the first principal component (the x in both figures) is affected by the types of tests included in a battery.
in a test performance, and one can imagine that an ability has no effect on a test performance, but it is difficult to think of abilities that are as often detrimental as helpful in the test performances. Surely, the correct factor matrix for cognitive tests does not have many negative entries, and preferably it should have none at all (1940, pp. 193-194).

Thurstone therefore set out to find the "correct factor matrix" by eliminating negative projections of tests upon axes and making all projections either positive or zero. The principal component axes of Spearman and Burt could not accomplish this because they, perforce, contained all positive projections on the first axis \((g)\) and combinations of negative and positive groups on the subsequent "bipolars."

Thurstone's solution was ingenious and represents the most strikingly original, yet simple, idea in the history of factor analysis. Instead of making the first axis a grand average of all vectors and letting the others encompass a steadily decreasing amount of remaining information in the vectors, why not try to place all axes near clusters of vectors. The clusters may reflect real "vectors of mind," imperfectly measured by several tests. A factor axis placed near such a cluster will have high positive projections for tests measuring that primary ability* and very low zero projections for all tests measuring other primary abilities—as long as the primary abilities are independent and uncorrelated.

But how, mathematically, can factor axes be placed near clusters? Here, Thurstone had his great insight. The principal component axes of Burt and Spearman (Fig. 6.6) do not lie in the only position that factor axes can assume. They represent one possible solution, dictated by Spearman's a priori conviction that a single general intelligence exists. They are, in other words, theory-bound, not mathematically necessary—and the theory may be wrong. Thurstone decided to keep one feature of the Spearman-Burt scheme: his factor axes would remain mutually perpendicular, and therefore mathematically uncorrelated. The real vectors of mind, Thurstone reasoned, must represent independent primary abilities.

*Thurstone reified his factors, calling them "primary abilities," or "vectors of mind." All these terms represent the same mathematical object in Thurstone's system—factor axes placed near clusters of test vectors.
Thurstone therefore calculated the Spearman-Burt principal components and then rotated them to different positions until they lay as close as they could (while still remaining perpendicular) to actual clusters of vectors. In this rotated position, each factor axis would receive high positive projections for the few vectors clustered near it, and zero or near zero projections for all other vectors. When each vector has a high projection on one factor axis and zero or near zero projections on all others, Thurstone referred to the result as a simple structure. He redefined the factor problem as a search for simple structure by rotating factor axes from their principal components orientation to positions maximally close to clusters of vectors.

Figs. 6.6 and 6.7 show this process geometrically. The vectors are arranged in two clusters representing verbal and mathematical tests. In Fig. 6.6 the first principal component \((g)\) is an average of all vectors, while the second is a bipolar, with verbal tests projecting negatively and arithmetic tests positively. But the verbal and arithmetic clusters are not well defined on this bipolar factor because most of their information has already been projected upon \(g\), and little remains for distinction on the second axis. But if the axes are rotated to Thurstone's simple structure (Fig. 6.7), then both clusters are well defined because each is near a factor axis. The arithmetic tests project high on the first simple structure axis and low on the second; the verbal tests project high on the second and low on the first.

The factor problem is not solved pictorially, but by calculation. Thurstone used several mathematical criteria for discovering simple structure. One, still in common use, is called "varimax," or the search for maximum variance upon each rotated factor axis. The "variance" of an axis is measured by the spread of test projections upon it. Variance is low on the first principal component because all tests have about the same positive projection, and the spread is limited. But variance is high on rotated axes placed near clusters, because such axes have a few very high projections and other zero or near zero projections, thus maximizing the spread.*

The principal component and simple structure solutions are

* Readers who have done factor analysis for a course on statistics or methodology in the biological or social sciences will remember something about rotating axes to varimax positions. Like me, they are probably taught this procedure as if it were a mathematical deduction based on the inadequacy of principal components in find-
mathematically equivalent; neither is "better." Information is neither gained nor lost by rotating axes; it is merely redistributed. Preferences depend upon the meaning assigned to factor axes. The first principal component demonstrably exists. For Spearman, it is to be cherished as a measure of innate general intelligence. For Thurstone, it is a meaningless average of an arbitrary battery of tests, devoid of psychological significance, and calculated only as an intermediary step in rotation to simple structure.

Not all sets of vectors have a definable "simple structure." A random array without clusters cannot be fit by a set of factors, each with a few high projections and a larger number of near zero projections. The discovery of a simple structure implies that vectors are grouped into clusters, and that clusters are relatively independent of each other. Thurstone continually found simple structure among vectors of mental tests and therefore proclaimed that the tests measure a small number of independent "primary mental abilities," or vectors of mind—a return, in a sense, to an older "faculty psychology" that viewed the mind as a congeries of independent abilities.

Now it happens, over and over again, that when a factor matrix is found with a very large number of zero entries, the negative entries disappear at the same time. It does not seem as if all this could happen by chance. The reason is probably to be found in the underlying distinct mental processes that are involved in the different tasks. . . . These are what I have called primary mental abilities (1940, p. 194).

Thurstone believed that he had discovered real mental entities with fixed geometric positions. The primary mental abilities (or PMA's as he called them) do not shift their position or change their number in different batteries of tests. The verbal PMA exists in its designated spot whether it is measured by just three tests in one battery, or by twenty-five different tests in another.

The factorial methods have for their object to isolate the primary abilities by objective experimental procedures so that it may be a question of fact how many abilities are represented in a set of tasks (1938, p. 1).
Thurstone reified his simple structure axes as primary mental abilities and sought to specify their number. His opinion shifted as he found new PMA's or condensed others, but his basic model included seven PMA's—V for verbal comprehension, W for word fluency, N for number (computational), S for spatial visualization, M for associative memory, P for perceptual speed, and R for reasoning.*

But what had happened to \(g \)—Spearman's ineluctable, innate, general intelligence—amidst all this rotation of axes? It had simply disappeared. It had been rotated away; it was not there anymore (Fig. 6.7). Thurstone studied the same data used by Spearman and Burt to discover \(g \). But now, instead of a hierarchy with a dominant, innate, general intelligence and some subsidiary, trainable group factors, the same data had yielded a set of independent and equally important PMA's, with no hierarchy and no dominant general factor. What psychological meaning could \(g \) claim if it represented but one possible rendering of information subject to radically different, but mathematically equivalent, interpretations? Thurstone wrote of his most famous empirical study (1938, p. vii):

So far in our work we have not found the general factor of Spearman. . . . As far as we can determine at present, the tests that have been supposed to be saturated with the general common factor divide their variance among primary factors that are not present in all the tests. We cannot report any general common factor in the battery of 56 tests that have been analyzed in the present study.

The egalitarian interpretation of PMA's

Group factors for specialized abilities have had an interesting odyssey in the history of factor analysis. In Spearman's system they were called "disturbers" of the tetrad equation, and were often purposely eliminated by tossing out all but one test in a cluster—a remarkable way of rendering a hypothesis impervious to disproof. In a famous study, done specifically to discover whether or not

*Thurstone, like Burt, submitted many other sets of data to factor analysis. Burt, chained to his hierarchical model, always found a dominant general factor and subsidiary bipolars, whether he studied anatomical, parapsychological, or aesthetic data. Thurstone, wedged to his model, always discovered independent primary factors. In 1950, for example, he submitted tests of temperament to factor analysis and found primary factors, again seven in number. He named them activity, impulsiveness, emotional stability, sociability, athletic interest, ascendance, and reflectiveness.
group factors existed, Brown and Stephenson (1933) gave twenty-two cognitive tests to three hundred ten-year-old boys. They calculated some disturbingly high tetrads and dropped two tests "because 20 is a sufficiently large number for our present purpose." They then eliminated another for the large tetrads that it generated, excusing themselves by stating: "at worst it is no sin to omit one test from a battery of so many." More high values prompted the further excision of all tetrads including the correlation between two of the nineteen remaining tests, since "the mean of all tetrads involving this correlation is more than 5 times the probable error." Finally, with about one-fourth of the tetrads gone, the remaining eleven thousand formed a distribution close enough to normal. Spearman's "theory of two factors," they proclaimed, "satisfactorily passes the test of experience." "There is in the proof the foundation and development of a scientific experimental psychology; and, although we would be modest, to that extent it constitutes a 'Copernican revolution'" (Brown and Stephenson, 1933, p. 353).

For Cyril Burt, the group factors, although real and important in vocational guidance, were subsidiary to a dominant and innate g.

For Thurstone, the old group factors became primary mental abilities. They were the irreducible mental entities; g was a delusion.

Copernicus's heliocentric theory can be viewed as a purely mathematical hypothesis, offering a simpler representation for the same astronomical data that Ptolemy had explained by putting the earth at the center of things. Indeed, Copernicus's cautious and practical supporters, including the author of the preface to De Revolutionibus, urged just such a pragmatic course in a world populated with inquisitions and indices of forbidden books. But Copernicus's theory eventually produced a furor when its supporters, led by Galileo, insisted upon viewing it as a statement about the real organization of the heavens, not merely as a simpler numerical representation of planetary motion.

So it was with the Spearman-Burt vs. the Thurstone school of factor analysis. Their mathematical representations were equivalent and equally worthy of support. The debate reached a fury of intensity because the two mathematical schools advanced radically
different views about the real nature of intelligence—and the acceptance of one or the other entailed a set of fundamental consequences for the practice of education.

With Spearman's g, each child can be ranked on a single scale of innate intelligence; all else is subsidiary. General ability can be measured early in life and children can be sorted according to their intellectual promise (as in the 11+ examination).

With Thurstone's PMA's, there is no general ability to measure. Some children are good at some things, others excel in different and independent qualities of mind. Moreover, once the hegemony of g was broken, PMA's could bloom like the flowers in spring. Thurstone recognized only a few, but other influential schemes advocated 120 (Guilford, 1956) or perhaps more (Guilford, 1959, p. 477). (Guilford’s 120 factors are not induced empirically, but predicted from a theoretical model—represented as a cube of dimensions $6 \times 5 \times 4 = 120$—designating factors for empirical studies to find).

Unilinear ranking of pupils has no place, even in Thurstone's world of just a few PMA's. The essence of each child becomes his individuality, Thurstone wrote (1935, p. 53):

Even if each individual can be described in terms of a limited number of independent reference abilities, it is still possible for every person to be different from every other person in the world. Each person might be described in terms of his standard scores in a limited number of independent abilities. The number of permutations of these scores would probably be sufficient to guarantee the retention of individualities.

From the midst of an economic depression that reduced many of its intellectual elite to poverty, an America with egalitarian ideals (however rarely practiced) challenged Britain's traditional equation of social class with innate worth. Spearman's g had been rotated away, and general mental worth evaporated with it.

One could read the debate between Burt and Thurstone as a mathematical argument about the location of factor axes. This would be as myopic as interpreting the struggle between Galileo and the Church as an argument between two mathematically equivalent schemes for describing planetary motion. Burt certainly understood this larger context when he defended the 11+ examination against Thurstone's assault:
In educational practice the rash assumption that the general factor has at length been demolished has done much to sanction the impracticable idea that, in classifying children according to their varying capabilities, we need no longer consider their degree of general ability, and have only to allot them to schools of different types according to their special aptitudes; in short, that the examination at 11 plus can best be run on the principle of the caucus-race in Wonderland, where everybody wins and each get some kind of prize (1955, p. 165).

Thurstone, for his part, lobbied hard, producing arguments (and alternate tests) to support his belief that children should not be judged by a single number. He wished, instead, to assess each person as an individual with strengths and weaknesses according to his scores on an array of PMA's (as evidence of his success in altering the practice of testing in the United States, see Guilford, 1959, and Tuddenham, 1962, p. 515).

Instead of attempting to describe each individual's mental endowment by a single index such as a mental age or an intelligence quotient, it is preferable to describe him in terms of a profile of all the primary factors which are known to be significant. . . . If anyone insists on having a single index such as an I.Q., it can be obtained by taking an average of all the known abilities. But such an index tends so to blur the description of each man that his mental assets and limitations are buried in the single index (1946, p. 110).

Two pages later, Thurstone explicitly links his abstract theory of intelligence with preferred social views.

This work is consistent not only with the scientific object of identifying the distinguishable mental functions but it seems to be consistent also with the desire to differentiate our treatment of people by recognizing every person in terms of the mental and physical assets which make him unique as an individual (1946, p. 112).

Thurstone produced his fundamental reconstruction without attacking either of the deeper assumptions that had motivated Spearman and Burt—reification and hereditarianism. He worked within established traditions of argument in factor analysis, and reconstructed results and their meaning without altering the premises.

Thurstone never doubted that his PMA's were entities with identifiable causes (see his early work of 1924, pp. 146–147, for the
seeds of commitment to reifying abstract concepts—gregariousness in this case—as things within us). He even suspected that his mathematical methods would identify attributes of mind before biology attained the tools to verify them: "It is quite likely that the primary mental abilities will be fairly well isolated by the factorial methods before they are verified by the methods of neurology or genetics. Eventually the results of the several methods of investigating the same phenomena must agree" (1938, p. 2).

The vectors of mind are real, but their causes may be complex and multifarious. Thurstone admitted a strong potential influence for environment, but he emphasized inborn biology:

Some of the factors may turn out to be defined by endocrinological effects. Others may be defined by biochemical or biophysical parameters of the body fluids or of the central nervous system. Other factors may be defined by neurological or vascular relations in some anatomical locus; still others may involve parameters in the dynamics of the autonomic nervous system; still others may be defined in terms of experience and schooling (1947, p. 57).

Thurstone attacked the environmentalist school, citing evidence from studies of identical twins for the inheritance of PMA's. He also claimed that training would usually enhance innate differences, even while raising the accomplishments of both poorly and well-endowed children:

Inheritance plays an important part in determining mental performance. It is my own conviction that the arguments of the environmentalists are too much based on sentimentalism. They are often even fanatic on this subject. If the facts support the genetic interpretation, then the accusation of being undemocratic must not be hurled at the biologists. If anyone is undemocratic on this issue, it must be Mother Nature. To the question whether the mental abilities can be trained, the affirmative answer seems to be the only one that makes sense. On the other hand, if two boys who differ markedly in visualizing ability, for example, are given the same amount of training with this type of thinking, I am afraid that they will differ even more at the end of the training than they did at the start (1946, p. 111).

As I have emphasized throughout this book, no simple equation can be made between social preference and biological commitment. We can tell no cardboard tale of hereditarian baddies relegating whole races, classes, and sexes to permanent biological
inferiority—or of environmentalist goodies extolling the irreducible worth of all human beings. Other biases must be factored (pardon the vernacular usage) into a complex equation. Hereditarianism becomes an instrument for assigning groups to inferiority only when combined with a belief in ranking and differential worth. Burt united both views in his hereditarian synthesis. Thurstone exceeded Burt in his commitment to a naive form of reification, and he did not oppose hereditarian claims (though he certainly never pursued them with the single-minded vigor of a Burt). But he chose not to rank and weigh on a single scale of general merit, and his destruction of Burt's primary instrument of ranking—Spearman's g—altered the history of mental testing.

Spearman and Burt react

When Thurstone dispersed g as an illusion, Spearman was still alive and pugnacious as ever, while Burt was at the height of his powers and influence. Spearman, who had deftly defended g for thirty years by incorporating critics within his flexible system, realized that Thurstone could not be so accommodated:

Hitherto all such attacks on it [g] appear to have eventually weakened into mere attempts to explain it more simply. Now, however, there has arisen a very different crisis; in a recent study, nothing has been found to explain; the general factor has just vanished. Moreover, the said study is no ordinary one. Alike for eminence of the author, for judiciousness of plan, and for comprehensiveness of scope, it would be hard to find any match for the very recent work on Primary Mental Abilities by L. L. Thurstone (Spearman, 1939, p. 78).

Spearman admitted that g, as an average among tests, could vary in position from battery to battery. But he held that its wandering was minor in scope, and that it always pointed in the same general direction, determined by the pervasive positive correlation between tests. Thurstone had not eliminated g; he had merely obscured it by a mathematical dodge, distributing it by bits and pieces among a set of group factors: "The new operation consisted essentially in scattering g among such numerous group factors, that the fragment assigned to each separately became too small to be noticeable" (1939, p. 14).

Spearman then turned Thurstone's favorite argument against him. As a convinced reifier, Thurstone believed that PMA's were
"out there" in fixed positions within a factorial space. He argued that Spearman and Burt's factors were not "real" because they varied in number and position among different batteries of tests. Spearman retorted that Thurstone's PMA's were also artifacts of chosen tests, not invariant vectors of mind. A PMA could be created simply by constructing a series of redundant tests that would measure the same thing several times, and establish a tight cluster of vectors. Similarly, any PMA could be dispersed by reducing or eliminating the tests that measure it. PMA's are not invariant locations present before anyone ever invented tests to identify them; they are products of the tests themselves:

We are led to the view that group factors, far from constituting a small number of sharply cut "primary" abilities, are endless in number, indefinitely varying in scope, and even unstable in existence. Any constituent of ability can become a group factor. Any can cease being so (1939, p. 15).

Spearman had reason to complain. Two years later, for example, Thurstone found a new PMA that he could not interpret (in Thurstone and Thurstone, 1941). He called it X_1 and identified it by strong correlations between three tests that involved the counting of dots. He even admitted that he would have missed X_1 entirely, had his battery included but one test of dotting:

All these tests have a factor in common; but since the three dot-counting tests are practically isolated from the rest of the battery and without any saturation on the number factor, we have very little to suggest the nature of the factor. It is, no doubt, the sort of function that would ordinarily be lost in the specific variance of the tests if only one of these dot-counting tests had been included in the battery (Thurstone and Thurstone, 1941, pp. 23-24).

Thurstone's attachment to reification blinded him to an obvious alternative. He assumed that X_1 really existed and that he had previously missed it by never including enough tests for its recognition. But suppose that X_1 is a creation of the tests, now "discovered" only because three redundant measures yield a cluster of vectors (and a potential PMA), whereas one different test can only be viewed as an oddball.

There is a general flaw in Thurstone's argument that PMA's are not test-dependent, and that the same factors will appear in any properly constituted battery. Thurstone claimed that an indi-
individual test would always record the same PMA’s only in simple structures that are "complete and overdetermined" (1947, p. 363)—in other words, only when all the vectors of mind have been properly identified and situated. Indeed, if there really are only a few vectors of mind, and if we can know when all have been identified, then any additional test must fall into its proper and unchanging position within the invariant simple structure. But there may be no such thing as an "overdetermined" simple structure, in which all possible factor axes have been discovered. Perhaps the factor axes are not fixed in number, but subject to unlimited increase as new tests are added. Perhaps they are truly test-dependent, and not real underlying entities at all. The very fact that estimates for the number of primary abilities have ranged from Thurstone’s 7 or so to Guilford’s 120 or more indicates that vectors of mind may be figments of mind.

If Spearman attacked Thurstone by supporting his beloved g, then Burt parried by defending a subject equally close to his heart—the identification of group factors by clusters of positive and negative projections on bipolar axes. Thurstone had attacked Spearman and Burt by agreeing that factors must be reified, but disparaging the English method for doing so. He dismissed Spearman’s g as too variable in position, and rejected Burt’s bipolar factors because "negative abilities" cannot exist. Burt replied, quite properly, that Thurstone was too unsubtle a reifier. Factors are not material objects in the head, but principles of classification that order reality. (Burt often argued the contrary position as well—see p. 318–322.) Classification proceeds by logical dichotomy and antithesis (Burt, 1939). Negative projections do not imply that a person has less than zero of a definite thing. They only record a relative contrast between two abstract qualities of thought. More of something usually goes with less of another—administrative work and scholarly productivity, for example.

As their trump card, both Spearman and Burt argued that Thurstone had not produced a cogent revision of their reality, but only an alternative mathematics for the same data.

We may, of course, invent methods of factorial research that will always yield a factor-pattern showing some degree of "hierarchical" formation of if we prefer) what is sometimes called "simple structure." But again the ults will mean little or nothing: using the former, we could almost
always demonstrate that a general factor exists; using the latter, we could almost always demonstrate, even with the same set of data, that it does not exist (Burt, 1940, pp. 27-28).

But didn't Burt and Spearman understand that this very defense constituted their own undoing as well as Thurstone's? They were right, undeniably right. Thurstone had not proven an alternate reality. He had begun from different assumptions about the structure of mind and invented a mathematical scheme more in accord with his preferences. But the same criticism applies with equal force to Spearman and Burt. They too had started with an assumption about the nature of intelligence and had devised a mathematical system to buttress it. If the same data can be fit into two such different mathematical schemes, how can we say with assurance that one represents reality and the other a diversionary tinkering? Perhaps both views of reality are wrong, and their mutual failure lies in their common error: a shared belief in the reification of factors.

Copernicus was right, even though acceptable tables of planetary positions can be generated from Ptolemy's system. Burt and Spearman might be right even though Thurstone's mathematics treats the same data with equal facility. To vindicate either view, some legitimate appeal must be made outside the abstract mathematics itself. In this case, some biological grounding must be discovered. If biochemists had ever found Spearman's cerebral energy, if neurologists had ever mapped Thurstone's PMA's to definite areas of the cerebral cortex, then the basis for a preference might have been established. All combatants made appeals to biology and advanced tenuous claims, but no concrete tie has even been confirmed between any neurological object and a factor axis.

We are left only with the mathematics, and therefore cannot validate either system. Both are plagued with the conceptual error of reification. Factor analysis is a fine descriptive tool; I do not think that it will uncover the elusive (and illusory) factors, or vectors, of mind. Thurstone dethroned \(g \) not by being right with his alternate system, but by being equally wrong—and thus exposing the methodological errors of the entire enterprise.*

*Tuddenham (1962, p. 516) writes: "Test constructors will continue to employ factorial procedures, provided they pay off in improving the efficiency and predictive value of our test batteries, but the hope that factor analysis can supply a short inven-
Oblique axes and second-order g

Since Thurstone pioneered the geometrical representation of tests as vectors, it is surprising that he didn't immediately grasp a technical deficiency in his analysis. If tests are positively correlated, then all vectors must form a set in which no two are separated by an angle of more than 90° (for a right angle implies a correlation coefficient of zero). Thurstone wished to put his simple structure axes as near as possible to clusters within the total set of vectors. Yet he insisted that axes be perpendicular to each other. This criterion guarantees that axes cannot lie really close to clusters of vectors—as Fig. 6.11 indicates. For the maximal separation of vectors is less than 90°, and any two axes, forced to be perpendicular, must therefore lie outside the clusters themselves. Why not abandon this criterion, let the axes themselves be correlated (separated by an angle of less than 90°), and permit them to lie right within the clusters of vectors?

Perpendicular axes have a great conceptual advantage. They are mathematically independent (uncorrelated). If one wishes to identify factor axes as "primary mental abilities," perhaps they had best be uncorrelated—for if factor axes are themselves correlated, then doesn't the cause of that correlation become more "primary" than the factors themselves? But correlated axes also have a different kind of conceptual advantage: they can be placed nearer to clusters of vectors that may represent "mental abilities." You can't have it both ways for sets of vectors drawn from a matrix of positive correlation coefficients: factors may be independent and only close to clusters, or correlated and within clusters. (Neither system is "better"; each has its advantages in certain circumstances. Correlated and uncorrelated axes are both still used, and the argument continues, even in these days of computerized sophistication in factor analysis.)

Thurstone invented rotated axes and simple structure in the early 1930s. In the late 1930s he began to experiment with sotory of 'basic abilities' is already waning. The continuous difficulties with factor analysis over the last half century suggest that there may be something fundamentally wrong with models which conceptualize intelligence in terms of a finite number of linear dimensions. To the statistician's dictum that whatever exists can be measured, the factorist has added the assumption that whatever can be 'measured' must exist. ut the relation may not be reversible, and the assumption may be false."
called oblique simple structures, or systems of correlated axes. (Uncorrelated axes are called "orthogonal" or mutually perpendicular; correlated axes are "oblique" because the angle between them is less than 90°.) Just as several methods may be used for determining orthogonal simple structure, oblique axes can be calculated in a variety of ways, though the object is always to place axes within clusters of vectors. In one relatively simple method, shown in Fig. 6.11, actual vectors occupying extreme positions within the total set are used as factor axes. Note, in contrasting Figs. 6.7 and 6.11, how the factor axes for verbal and mathematical skills have moved from outside the actual clusters (in the orthogonal solution) to the clusters themselves (in the oblique solution).

Most factor-analysts work upon the assumption that correlations may have causes and that factor axes may help us to identify them. If the factor axes are themselves correlated, why not apply

\[6.11\] Thurstone's oblique simple structure axes for the same four mental tests depicted in Figs. 6-6 and 6-7. Factor axes are no longer perpendicular to each other. In this example, the factor axes coincide with the peripheral vectors of the cluster.
the same argument and ask whether this correlation reflects some higher or more basic cause? The oblique axes of a simple structure for mental tests are usually positively correlated (as in Fig. 6.11). May not the cause of this correlation be identified with Spearman’s g? Is the old general factor ineluctable after all?

Thurstone wrestled with what he called this "second-order" g. I confess that I do not understand why he wrestled so hard, unless the many years of working with orthogonal solutions had set his mind and rendered the concept too unfamiliar to accept at first. If anyone understood the geometrical representation of vectors, it was Thurstone. This representation guarantees that oblique axes will be positively correlated, and that a second-order general factor must therefore exist. Second-order g is merely a fancier way of acknowledging what the raw correlation coefficients show—that nearly all correlation coefficients between mental tests are positive.

In any case, Thurstone finally bowed to inevitability and admitted the existence of a second-order general factor. He once even described it in almost Spearmanian terms (1946, p. 110):

> There seems to exist a large number of special abilities that can be identified as primary abilities by the factorial methods, and underlying these special abilities there seems to exist some central energizing factor which promotes the activity of all these special abilities.

It might appear as if all the sound and fury of Thurstone’s debate with the British factorists ended in a kind of stately compromise, more favorable to Burt and Spearman, and placing poor Thurstone in the unenviable position of struggling to save face. If the correlation of oblique axes yields a second-order g, then weren’t Spearman and Burt right all along in their fundamental insistence upon a general factor? Thurstone may have shown that group factors were more important than any British factorist had ever admitted, but hadn’t the primacy of g reasserted itself?

Arthur Jensen (1979) presents such an interpretation, but it badly misrepresents the history of this debate. Second-order g did not unite the disparate schools of Thurstone and the British factorists; it did not even produce a substantial compromise on either side. After all, the quotes I cited from Thurstone on the futility of thinking by IQ and the necessity of constructing profiles based on primary mental abilities for each individual were written after he
had admitted the second-order general factor. The two schools were not united and Spearman's g was not vindicated for three basic reasons:

1. For Spearman and Burt, g cannot merely exist; it must dominate. The hierarchical view—with a controlling innate g and subsidiary trainable group factors—was fundamental for the British school. How else could unilinear ranking be supported? How else could the 11+ examination be defended? For this examination supposedly measured a controlling mental force that defined a child's general potential and shaped his entire intellectual future.

Thurstone admitted a second-order g, but he regarded it as secondary in importance to what he continued to call "primary" mental abilities. Quite apart from any psychological speculation, the basic mathematics certainly supports Thurstone's view. Second-order g (the correlation of oblique simple structure axes) rarely accounts for more than a small percentage of the total information in a matrix of tests. On the other hand, Spearman's g (the first principal component) often encompasses more than half the information. The entire psychological apparatus, and all the practical schemes, of the British school depended upon the preeminence of g, not its mere presence. When Thurstone revised The Vectors of Mind in 1947, after admitting a second-order general factor, he continued to contrast himself with the British factorists by arguing that his scheme treated group factors as primary and the second-order general factor as residual, while they extolled g and considered group factors as secondary.

2. The central reason for claiming that Thurstone's alternate view disproves the necessary reality of Spearman's g retains its full force. Thurstone derived his contrasting interpretation from the same data simply by placing factor axes in different locations. One could no longer move directly from the mathematics of factor axes to a psychological meaning.

In the absence of corroborative evidence from biology for one scheme or the other, how can one decide? Ultimately, however much a scientist hates to admit it, the decision becomes a matter of taste, or of prior preference based on personal or cultural biases. Spearman and Burt, as privileged citizens of class-conscious Britain, defended g and its linear ranking. Thurstone preferred individual profiles and numerous primary abilities. In an
unintentionally amusing aside, Thurstone once mused over the technical differences between Burt and himself, and decided that Burt’s propensity for algebraic rather than geometrical representation of factors arose from his deficiency in the spatial PMA:

The configurational interpretations are evidently distasteful to Burt, for he does not have a single diagram in his text. Perhaps this is indicative of individual differences in imagery types which lead to differences in methods and interpretation among scientists (1947, p. ix).

3. Burt and Spearman based their psychological interpretation of factors on a belief that \(g \) was dominant and real—an innate, general intelligence, marking a person’s essential nature. Thurstone’s analysis permitted them, at best, a weak second-order \(g \). But suppose they had prevailed and established the inevitability of a dominant \(g \)? Their argument still would have failed for a reason so basic that it passed everybody by. The problem resided in a logical error committed by all the great factorists I have discussed—the desire to reify factors as entities. In a curious way, the entire history that I have traced didn’t matter. If Burt and Thurstone had never lived, if an entire profession had been permanently satisfied with Spearman’s two-factor theory and had been singing the praises of its dominant \(g \) for three-quarters of a century since he proposed it, the flaw would be as glaring still.

The fact of pervasive positive correlation between mental tests must be among the most unsurprising major discoveries in the history of science. For positive correlation is the prediction of almost every contradictory theory about its potential cause, including both extreme views: pure hereditarianism (which Spearman and Burt came close to promulgating) and pure environmentalism (which no major thinker has ever been foolish enough to propose). In the first, people do jointly well or poorly on all sorts of tests because they are born either smart or stupid. In the second, they do jointly well or poorly because they either ate, read, learned, and lived in an enriched or a deprived fashion as children. Since both theories predict pervasive positive correlation, the fact of correlation itself can confirm neither. Since \(g \) is merely one elaborate way of expressing the correlations, its putative existence also says nothing about causes.
Thurstone on the uses of factor analysis

Thurstone sometimes advanced grandiose claims for the explanatory scope of his work. But he also possessed a streak of modesty that one never detects in Burt or Spearman. In reflective moments, he recognized that the choice of factor analysis as a method records the primitive state of knowledge in a field. Factor analysis is a brutally empirical technique, used when a discipline has no firmly established principles, but only a mass of crude data, and a hope that patterns of correlation might provide suggestions for further and more fruitful lines of inquiry. Thurstone wrote (1935, p. xi):

No one would think of investigating the fundamental laws of classical mechanics by correlational methods or by factor methods, because the laws of classical mechanics are already well known. If nothing were known about the law of falling bodies, it would be sensible to analyze, factorially, a great many attributes of objects that are dropped or thrown from an elevated point. It would then be discovered that one factor is heavily loaded with the time of fall and with the distance fallen but that this factor has a zero loading in the weight of the object. The usefulness of the factor methods will be at the borderline of science.

Nothing had changed when he revised The Vectors of Mind (1947, p. 56):

The exploratory nature of factor analysis is often not understood. Factor analysis has its principal usefulness at the borderline of science. . . . Factor analysis is useful, especially in those domains where basic and fruitful concepts are essentially lacking and where crucial experiments have been difficult to conceive. The new methods have a humble role. They enable us to make only the crudest first map of a new domain.

Note the common phrase—useful "at the borderline of science." According to Thurstone, the decision to use factor analysis as a primary method implies a deep ignorance of principles and causes. That the three greatest factorists in psychology never got beyond these methods—despite all their lip service to neurology, endocrinology, and other potential ways of discovering an innate biology—proves how right Thurstone was. The tragedy of this tale is that the British hereditarians promoted an innatist interpretation of dominant nonetheless, and thereby blunted the hopes of millions.
Epilogue: Arthur Jensen and the resurrection of Spearman's g

When I researched this chapter in 1979, I knew that the ghost of Spearman's g still haunted modern theories of intelligence. But I thought that its image was veiled, and its influence largely unrecognized. I hoped that a historical analysis of conceptual errors in its formulation and use might expose the hidden fallacies in some contemporary views of intelligence and IQ. I never expected to find a modern defense of IQ from an explicitly Spearmanian perspective.

But then America's best-known hereditarian, Arthur Jensen (1979) revealed himself as an unreconstructed Spearmanian, and centered an eight-hundred-page defense of IQ on the reality of g. More recently, Richard Herrnstein and Charles Murray also base their equally long Bell Curve (1994) on the same fallacy. I shall analyze Jensen's error here and The Bell Curve's version in the first two essays at the end of the book. History often cycles its errors.

Jensen performs most of his factor analyses in Spearman and Burt's preferred principal components orientation (though he is also willing to accept g in the form of Thurstone's correlation between oblique simple structure axes). Throughout the book, he names and reifies factors by the usual invalid appeal to mathematical pattern alone. We have g's for general intelligence as well as g's for general athletic ability (with subsidiary group factors for hand and arm strength, hand-eye coordination, and body balance).

Jensen explicitly defines intelligence as "the g factor of an indefinitely large and varied battery of mental tests" (p. 249). "We identify intelligence with $g," he states. "To the extent that a test orders individuals on g, it can be said to be a test of intelligence" (p. 224). IQ is our most effective test of intelligence because it projects so strongly upon the first principal component (g) in factor analyses of mental tests. Jensen reports (p. 219) that Full Scale IQ of the Wechsler adult scale correlates about 0.9 with g, while the 1937 Stanford-Binet projects about 0.8 upon a g that remains "highly stable over successive age levels" (while the few small group factors are not always present and tend to be unstable in any case).

Jensen proclaims the "ubiquity" of g, extending its scope into realms that might even have embarrassed Spearman himself. Jensen would not only rank people; he believes that all God's creatures
can be ordered on a scale from amoebae at the bottom (p. 175) to extraterrestrial intelligences at the top (p. 248). I have not encountered such an explicit chain of being since last I read Kant's speculations about higher beings on Jupiter that bridge the gap between man and God.

Jensen has combined two of the oldest cultural prejudices of Western thought: the ladder of progress as a model for organizing life, and the reification of some abstract quality as a criterion for ranking. Jensen chooses "intelligence" and actually claims that the performance of invertebrates, fishes, and turtles on simple behavioral tests represents, in diminished form, the same essence that humans possess in greater abundance—namely g, reified as a measurable object. Evolution then becomes a march up the ladder to realms of more and more g.

As a paleontologist, I am astounded. Evolution forms a copiously branching bush, not a unilinear progressive sequence. Jensen speaks of "different levels of the phyletic scale—that is, earthworms, crabs, fishes, turtles, pigeons, rats, and monkeys." Doesn't he realize that modern earthworms and crabs are descendants of lineages that have evolved separately from vertebrates for more than 500 million years? They are not our ancestors; they are not even "lower" or less complicated than humans in any meaningful sense. They represent good solutions for their own way of life; they must not be judged by the hubristic notion that one peculiar primate forms a standard for all of life. As for vertebrates, "the turtle" is not, as Jensen claims, "phylogenetically higher than the fish." Turtles evolved much earlier than most modern fishes, and they exist as hundreds of species, while modern bony fishes include almost twenty thousand distinct kinds. What then is "the fish" and "the turtle"? Does Jensen really think that pigeon-rat-monkey-human represents an evolutionary sequence among warm-blooded vertebrates?

Jensen's caricature of evolution exposes his preference for unilinear ranking by implied worth. With such a perspective, g becomes almost irresistible, and Jensen uses it as a universal criterion of rank:

The common features of experimental tests developed by comparative psychologists that most clearly distinguish, say, chickens from dogs, dogs from monkeys, and monkeys from chimpanzees suggests that they are
roughly scalable along a dimension. . . . can be viewed as an interspecies concept with a broad biological base culminating in the primates (p. 251).

Not satisfied with awarding a real status as guardian of earthly ranks, Jensen would extend it throughout the universe, arguing that all conceivable intelligence must be measured by it:

The ubiquity of the concept of intelligence is clearly seen in discussions of the most culturally different beings one could well imagine—extraterrestrial life in the universe. . . . Can one easily imagine "intelligent" beings for whom there is no g, or whose g is qualitatively rather than quantitatively different from g as we know it (p. 248).

Jensen discusses Thurstone's work, but dismisses it as a criticism because Thurstone eventually admitted a second-order g. But Jensen has not recognized that if g is only a numerically weak, second-order effect, then it cannot support a claim that intelligence is a unitary, dominant entity of mental functioning. I think that Jensen senses his difficulty, because on one chart (p. 220) he calculates both classical g as a first principal component and then rotates all the factors (including g) to obtain a set of simple structure axes. Thus, he records the same thing twice for each test—g as a first principal component and the same information dispersed among simple structure axes—giving some tests a total information of more than 100 percent. Since big g's appear in the same chart with large loadings on simple-structure axes, one might be falsely led to infer that g remains large even in simple-structure solutions.

Jensen is contemptuous of Thurstone's orthogonal simple structure, dismissing it as "flatly wrong" (p. 675) and as "scientifically an egregious error" (p. 258). Since he acknowledges that simple structure is mathematically equivalent to principal components, why the uncompromising rejection? It is wrong, Jensen argues, "not mathematically, but psychologically and scientifically" (p. 675) because "it artificially hides or submerges the large general factor" (p. 258) by rotating it away. Jensen has fallen into a vicious circle. He assumes a priori that g exists and that simple structure is wrong because it disperses g. But Thurstone developed the concept of simple structure largely to claim that g is a mathematical artifact. Thurstone wished to disperse g and succeeded; it is no disproof of his position to reiterate that he did so.

Jensen also uses g more specifically to buttress his claim that the average difference in IQ between whites and blacks records an
innate deficiency of intelligence among blacks. He cites the quotation on p. 271 as "Spearman's interesting hypothesis" that blacks score most poorly with respect to whites on tests strongly correlated with \(g \):

This hypothesis is important to the study of test bias, because, if true, it means that the white-black difference in test scores is not mainly attributable to idiosyncratic cultural peculiarities in this or that test, but to a general factor that all the ability tests measure in common. A mean difference between populations that is related to one or more small group factors would seem to be explained more easily in terms of cultural differences than if the mean group difference is most closely related to a broad general factor common to a wide variety of tests (p. 535).

Here we see a reincarnation of the oldest argument in the Spearmanian tradition—the contrast between an innate dominant \(g \) and trainable group factors. But \(g \), as I have shown, is neither clearly a thing, nor necessarily innate if a thing. Even if data existed to confirm Spearman's "interesting hypothesis," the results could not support Jensen's notion of ineluctable, innate difference.

I am grateful to Jensen for one thing: he has demonstrated by example that a reified Spearman's \(g \) is still the only promising justification for hereditarian theories of mean differences in IQ among human groups. The Bell Curve of Herrnstein and Murray (1994) has reinforced this poverty, indeed bankruptcy, of justification for the theory of unitary, rankable, innate, and effectively immutable intelligence—for these authors also ground their entire edifice on the fallacy of Spearman's \(g \). The conceptual errors of reification have plagued \(g \) from the start, and Thurstone's critique remains as valid today as it was in the 1930s. Spearman's \(g \) is not an ineluctable entity; it represents one mathematical solution among many equivalent alternatives. The chimerical nature of \(g \) is the rotten core of Jensen's work, The Bell Curve, and of the entire hereditarian school.

A final thought

The tendency has always been strong to believe that whatever received a name must be an entity or being, having an independent existence of its own. And if no real entity answering to the name could be found, men did not for that reason suppose that none existed, but imagined that it was something peculiarly abstruse and mysterious.

JOHN STUART MILL
A Positive Conclusion

WALT WHITMAN, that great man of little brain (see p.124), advised us to "make much of negatives," and this book has heeded his words, some might say with a vengeance. While most of us can appreciate a cleansing broom, such an object rarely elicits much affection; it certainly produces no integration. But I do not regard this book as a negative exercise in debunking, offering nothing in return once the errors of biological determinism are exposed as social prejudice. I believe that we have much to learn about ourselves from the undeniable fact that we are evolved animals. This understanding cannot permeate through entrenched habits of thought that lead us to reify and rank—habits that arise within social contexts and support them in return. My message, as I hope to convey it at least, is strongly positive for three major reasons.

Debunking as positive science

The popular impression that disproof represents a negative side of science arises from a common, but erroneous, view of history. The idea of unilinear progress not only lies behind the racial rankings that I have criticized as social prejudice throughout this book; it also suggests a false concept of how science develops. In this view, any science begins in the nothingness of ignorance and moves toward truth by gathering more and more information, constructing theories as facts accumulate. In such a world, debunking would be primarily negative, for it would only shuck some rotten apples from the barrel of accumulating knowledge. But the barrel of theory is always full; sciences work with elaborated contexts for explaining facts from the very outset. Creationist biology was dead
wrong about the origin of species, but Cuvier's brand of creationism was not an emptier or less-developed world view than Darwin's. Science advances primarily by replacement, not by addition. If the barrel is always full, then the rotten applies must be discarded before better ones can be added.

Scientists do not debunk only to cleanse and purge. They refute older ideas in the light of a different view about the nature of things.

Learning by debunking

If it is to have any enduring value, sound debunking must do more than replace one social prejudice with another. It must use more adequate biology to drive out fallacious ideas. (Social prejudices themselves may be refractory, but particular biological supports for them can be dislodged.)

We have rejected many specific theories of biological determinism because our knowledge about human biology, evolution, and genetics has increased. For example, Morton's egregious errors could not be repeated in so bald a way by modern scientists constrained to follow canons of statistical procedure. The antidote to Goddard's claim that a single gene causes feeble-mindedness was not primarily a shift in social preferences, but an important advance in genetical theory—the idea of polygenic inheritance. Absurd as it seems today, the early Mendelians did try to attribute even the most subtle and complex traits (of apolitical anatomy as well as character) to the action of single genes. Polygenic inheritance affirms the participation of many genes—and a host of environmental and interactive effects—in such characters as human skin color.

More importantly, and as a plea for the necessity of biological knowledge, the remarkable lack of genetic differentiation among human groups—a major biological basis for debunking determinism—is a contingent fact of evolutionary history, not an a priori or necessary truth. The world might have been ordered differently. Suppose, for example, that one or several species of our ancestral genus *Australopithecus* had survived—a perfectly reasonable scenario in theory, since new species arise by splitting off from old ones (with ancestors usually surviving, at least for a time), not by the wholesale transformation of ancestors to descendants. We—that is,
Homo sapiens—would then have faced all the moral dilemmas involved in treating a human species of distinctly inferior mental capacity. What would we have done with them—slavery? extirpation? coexistence? menial labor? reservations? zoos?

Similarly, our own species, *Homo sapiens*, might have included a set of subspecies (races) with meaningfully different genetic capacities. If our species were millions of years old (many are), and if its races had been geographically separated for most of this time without significant genetic interchange, then large genetic differences might have slowly accumulated between groups. But *Homo sapiens* is, at most, a few hundred thousand years old, and all modern human races probably split from a common ancestral stock only about a hundred thousand years ago. A few outstanding traits of external appearance lead to our subjective judgment of important differences. But biologists have recently affirmed—as long suspected—that the overall genetic differences among human races are astonishingly small. Although frequencies for different states of a gene differ among races, we have found no "race genes"—that is, states fixed in certain races and absent from all others. Lewontin (1972) studied variation in seventeen genes coding for differences in blood and found that only 6.3 percent of the variation can be attributed to racial membership. Fully 85.4 percent of the variation occurred within local populations (the remaining 8.3 percent records differences among local populations within a race). As Lewontin remarked (personal communication): if the holocaust comes and a small tribe deep in the New Guinea forests are the only survivors, almost all the genetic variation now expressed among the innumerable groups of our five billion people will be preserved.

This information about limited genetic differences among human groups is useful as well as interesting, often in the deepest sense—for saving lives. When American eugenicists attributed diseases of poverty to the inferior genetic construction of poor people, they could propose no systematic remedy other than sterilization. When Joseph Goldberger proved that pellagra was not a genetic disorder, but a result of vitamin deficiency among the poor, he could cure it.
Biology and human nature

If people are so similar genetically, and if previous claims for a direct biological mapping of human affairs have recorded cultural prejudice and not nature, then does biology come up empty as a guide in our search to know ourselves? Are we after all, at birth, the *tabula rasa*, or blank slate, imagined by some eighteenth-century empiricist philosophers? As an evolutionary biologist, I cannot adopt such a nihilistic position without denying the fundamental insight of my profession. The evolutionary unity of humans with all other organisms is the cardinal message of Darwin's revolution for nature's most arrogant species.

We are inextricably part of nature, but human uniqueness is not negated thereby. "Nothing but" an animal is as fallacious a statement as "created in God's own image." It is not mere hubris to argue that *Homo sapiens* is special in some sense—for each species is unique in its own way; shall we judge among the dance of the bees, the song of the humpback whale, and human intelligence?

The impact of human uniqueness upon the world has been enormous because it has established a new kind of evolution to support the transmission across generations of learned knowledge and behavior. Human uniqueness resides primarily in our brains. It is expressed in the culture built upon our intelligence and the power it gives us to manipulate the world. Human societies change by cultural evolution, not as a result of biological alteration. We have no evidence for biological change in brain size or structure since *Homo sapiens* appeared in the fossil record some fifty thousand years ago. (Broca was right in stating that the cranial capacity of Cro Magnon skulls was equal if not superior to ours.) All that we have done since then—the greatest transformation in the shortest time that our planet has experienced since its crust solidified nearly four billion years ago—is the product of cultural evolution. Biological (Darwinian) evolution continues in our species, but its rate, compared with cultural evolution, is so incomparably slow that its impact upon the history of *Homo sapiens* has been small. While the gene for sickle-cell anemia declines in frequency among black Americans, we have invented the railroad, the automobile, radio and television, the atom bomb, the computer, the airplane and spaceship.
Cultural evolution can proceed so quickly because it operates, as biological evolution does not, in the "Lamarckian" mode—by the inheritance of acquired characters. Whatever one generation learns, it can pass to the next by writing, instruction, inculcation, ritual, tradition, and a host of methods that humans have developed to assure continuity in culture. Darwinian evolution, on the other hand, is an indirect process: genetic variation must first be available to construct an advantageous feature, and natural selection must then preserve it. Since genetic variation arises at random, not preferentially directed toward advantageous features, the Darwinian process works slowly. Cultural evolution is not only rapid; it is also readily reversible because its products are not coded in our genes.

The classical arguments of biological determinism fail because the features they invoke to make distinctions among groups are usually the products of cultural evolution. Determinists did seek evidence in anatomical traits built by biological, not cultural, evolution. But, in so doing, they tried to use anatomy for making inferences about capacities and behaviors that they linked to anatomy and we regard as engendered by culture. Cranial capacity per se held as little interest for Morton and Broca as variation in third-toe length; they cared only about the mental characteristics supposedly associated with differences in average brain size among groups. We now believe that different attitudes and styles of thought among human groups are usually the nongenetic products of cultural evolution. In short, the biological basis of human uniqueness leads us to reject biological determinism. Our large brain is the biological foundation of intelligence; intelligence is the ground of culture; and cultural transmission builds a new mode of evolution more effective than Darwinian processes in its limited realm—the "inheritance" and modification of learned behavior. As philosopher Stephen Toulmin stated (1977, p. 4): "Culture has the power to impose itself on nature from within."

Yet, if human biology engenders culture, it is also true that culture, once developed, evolved with little or no reference to genetic variation among human groups. Does biology, then, play no other valid role in the analysis of human behavior? Is it only a foundation without any insight to offer beyond the unenlightening recognition that complex culture requires a certain level of intelligence?
Most biologists would follow my argument in denying a genetic basis for most behavioral differences between groups and for change in the complexity of human societies through the recent history of our species. But what about the supposed constancies of personality and behavior, the traits of mind that humans share in all cultures? What, in short, about a general "human nature"? Some biologists would grant Darwinian processes a substantial role not only in establishing long ago, but also in actively maintaining now, a set of specific adaptive behaviors forming a biologically conditioned "human nature." I believe that this old tradition of argument—which has found its most recent expression as "human sociobiology"—is invalid not because biology is irrelevant and human behavior only reflects a disembodied culture, but because human biology suggests a different and less constraining role for genetics in the analysis of human nature.

Sociobiology begins with a modern reading of what natural selection is all about—differential reproductive success of individuals. According to the Darwinian imperative, individuals are selected to maximize the contribution of their own genes to future generations, and that is all. (Darwinism is not a theory of progress, increasing complexity, or evolved harmony for the good of species or ecosystems.) Paradoxically (as it seems to many), altruism as well as selfishness can be selected under this criterion—acts of kindness may benefit individuals either because they establish bonds of reciprocal obligation, or because they aid kin who carry copies of the altruist's genes.

Human sociobiologists then survey our behaviors with this criterion in mind. When they identify a behavior that seems to be adaptive in helping an individual's genes along, they develop a story for its origin by natural selection operating upon genetic variation influencing the specific act itself. (These stories are rarely backed by any evidence beyond the inference of adaptation.) Human sociobiology is a theory for the origin and maintenance of specific, adaptive behaviors by natural selection*; these behaviors must

*The brouhaha over sociobiology during the past few years was engendered by this hard version of the argument—genetic proposals (based on an inference of adaptation) for specific human behaviors. Other evolutionists call themselves "sociobiologists," but reject this style of guesswork about specifics. If a sociobiologist is anyone
therefore have a genetic basis, since natural selection cannot operate in the absence of genetic variation. Sociobiologists have tried, for example, to identify an adaptive and genetic foundation for aggression, spite, xenophobia, conformity, homosexuality,* and perhaps upward mobility as well (Wilson, 1975).

I believe that modern biology provides a model standing between the despairing claim that biology has nothing to teach us about human behavior and the deterministic theory that specific items of behavior are genetically programmed by the action of natural selection. I see two major areas for biological insight:

1. Fruitful analogies. Much of human behavior is surely adaptive; if it weren't, we wouldn't be around any more. But adaptation, in humans, is neither an adequate, nor even a good argument for genetic influence. For in humans, as I argued above (p. 324), adaptation may arise by the alternate route of nongenetic, cultural evolution. Since cultural evolution is so much more rapid than Darwinian evolution, its influence should prevail in the behavioral diversity displayed by human groups. But even when an adaptive behavior is nongenetic, biological analogy may be useful in interpreting its meaning. Adaptive constraints are often strong, and some functions may have to proceed in a certain way whether their underlying impetus be learning or genetic programming.

For example, ecologists have developed a powerful quantitative

who believes that biological evolution is not irrelevant to human behavior, then I suppose that everybody (creationists excluded) is a sociobiologist. At this point, however, the term loses its meaning. Human sociobiology entered the literature (professional and popular) as a definite theory about the adaptive and genetic basis of specific traits of human behavior.

*Lest homosexuality seem an unlikely candidate for adaptation since exclusive homosexuals have no children, I report the following story, advocated by E. O. Wilson (1975, 1978). Ancestral human society was organized as a large number of competing family units. Some units were exclusively heterosexual; the gene pool of other units included factors for homosexuality. Homosexuals functioned as helpers to raise the offspring of their heterosexual kin. This behavior aided their genes since the large number of kin they helped to raise held more copies of their genes than their own offspring (had they been heterosexual) might have carried. Groups with homosexual helpers raised more offspring, since they could more than balance, by extra care and higher rates of survival, the potential loss by nonfecundity of their homosexual members. Thus, groups with homosexual members ultimately prevailed over exclusively heterosexual groups, and genes for homosexuality have survived.
theory, called optimal foraging strategy, for studying patterns of exploitation in nature (herbivores by carnivores, plants by her­bivores). Cornell University anthropologist Bruce Winterhalder has shown that a community of Cree-speaking peoples in northern Ontario follow some predictions of the theory in their hunting and trapping behavior. Although Winterhalder used a biological theory to understand some aspects of human hunting, he does not believe that the people he studied were genetically selected to hunt as ecological theory predicts they should. He writes (personal communi­cation, July 1978):

It should go without saying . . . that the causes of human variability of hunting and gathering behavior lie in the socio-cultural realm. For that reason, the models that I used were adapted, not adopted, and then applied to a very circumscribed realm of analysis. . . . For instance, the models assist in analyzing what species a hunter will seek from those available once a decision has been made to go hunting [his italics]. They are, however, useless for analyzing why the Cree still hunt (they don't need to), how they decide on a particular day whether to hunt or join a construction crew, the meaning of hunting to a Cree, or any of a plethora of important questions.

In this area, sociobiologists have often fallen into one of the most common errors of reasoning: discovering an analogy and inferring a genetic similarity (literally, in this case!). Analogies are useful but limited; they may reflect common constraints, but not common causes.

a. Biological potentiality vs. biological determinism. Humans are animals, and everything we do is constrained, in some sense, by our biology. Some constraints are so integral to our being that we rarely even recognize them, for we never imagine that life might proceed in another way. Consider our narrow range of average adult size and the consequences of living in the gravitational world of large organisms, not the world of surface forces inhabited by insects (Went, 1968; Gould, 1977). Or the fact that we are born helpless (many animals are not), that we mature slowly, that we must sleep for a large part of the day, that we do not photosyn­thesize, that we can digest both meat and plants, that we age and die. These are all results of our genetic construction, and all are important influences upon human nature and society.

These biological boundaries are so evident that they have never
A POSITIVE CONCLUSION

engendered controversy. The contentious subjects are specific behaviors that distress us and that we struggle with difficulty to change (or enjoy and fear to abandon): aggression, xenophobia, male dominance, for example. Sociobiologists are not genetic determinists in the old eugenical sense of postulating single genes for such complex behaviors. All biologists know that there is no gene "for" aggression, any more than for your lower-left wisdom tooth. We all recognize that genetic influence can be spread diffusely among many genes and that genes set limits to ranges; they do not provide blueprints for exact replicas. In one sense, the debate between sociobiologists and their critics is an argument about the breadth of ranges. For sociobiologists, ranges are narrow enough to program a specific behavior as the predictable result of possessing certain genes. Critics argue that the ranges permitted by these genetic factors are wide enough to include all behaviors that sociobiologists atomize into distinct traits coded by separate genes.

But in another sense, my dispute with human sociobiology is not just a quantitative debate about the extent of ranges. It will not be settled amicably at some golden midpoint, with critics admitting more constraint, sociobiologists more slop. Advocates of narrow and broad ranges do not simply occupy different positions on a smooth continuum; they hold two qualitatively different theories about the biological nature of human behavior. If ranges are narrow, then genes do code for specific traits and natural selection can create and maintain individual items of behavior separately. If ranges are characteristically broad, then selection may set some deeply recessed generating rules; but specific behaviors are epiphenomena of the rules, not objects of Darwinian attention in their own right.

I believe that human sociobiologists have made a fundamental mistake in categories. They are seeking the genetic basis of human behavior at the wrong level. They are searching among the specific products of generating rules—Joe's homosexuality, Martha's fear of strangers—while the rules themselves are the genetic deep structures of human behavior. For example, E. O. Wilson (1978, p. 99) writes: "Are human beings innately aggressive? This is a favorite question of college seminars and cocktail party conversations, and one that raises emotion in political ideologues of all stripes. The
answer to it is yes." As evidence, Wilson cites the prevalence of warfare in history and then discounts any current disinclination to fight: "The most peaceable tribes of today were often the ravagers of yesteryear and will probably again produce soldiers and murderers in the future." But if some peoples are peaceable now, then aggression itself cannot be coded in our genes, only the potential for it. If innate only means possible, or even likely in certain environments, then everything we do is innate and the word has no meaning. Aggression is one expression of a generating rule that anticipates peacefulness in other common environments. The range of specific behaviors engendered by the rule is impressive and a fine testimony to flexibility as the hallmark of human behavior. This flexibility should not be obscured by the linguistic error of branding some common expressions of the rule as "innate" because we can predict their occurrence in certain environments.

Sociobiologists work as if Galileo had really mounted the Leaning Tower (apparently he did not), dropped a set of diverse objects over the side, and sought a separate explanation for each behavior—the plunge of the cannonball as a result of something in the nature of cannonballness; the gentle descent of the feather as intrinsic to featherness. We know, instead, that the wide range of different falling behaviors arises from an interaction between two physical rules—gravity and frictional resistance. This interaction can generate a thousand different styles of descent. If we focus on the objects and seek an explanation for the behavior of each in its own terms, we are lost. The search among specific behaviors for the genetic basis of human nature is an example of biological determinism. The quest for underlying generating rules expresses a concept of biological potentiality. The question is not biological nature vs. nonbiological nurture. Determinism and potentiality are both biological theories—but they seek the genetic basis of human nature at fundamentally different levels.

Pursuing the Galilean analogy, if cannonballs act by cannonballness, feathers by featherness, then we can do little beyond concocting a story for the adaptive significance of each. We would never think of doing the great historical experiment—equalizing the effective environment by placing both in a vacuum and observing an identical behavior in descent. This hypothetical example illustrates the social role of biological determinism. It is fundamen-
A POSITIVE CONCLUSION

tally a theory about limits. It takes current ranges in modern environments as an expression of direct genetic programing, rather than a limited display of much broader potential. If a feather acts by featherness, we cannot change its behavior while it remains a feather. If its behavior is an expression of broad rules tied to specific circumstances, we anticipate a wide range of behaviors in different environments.

Why should human behavioral ranges be so broad, when anatomical ranges are generally narrower? Is this claim for behavioral flexibility merely a social hope, or is it good biology as well? Two different arguments lead me to conclude that wide behavioral ranges should arise as consequences of the evolution and structural organization of our brain. Consider, first of all, the probable adaptive reasons for evolving such a large brain. Human uniqueness lies in the flexibility of what our brain can do. What is intelligence, if not the ability to face problems in an unprogramed (or, as we often say, creative) manner? If intelligence sets us apart among organisms, then I think it probable that natural selection acted to maximize the flexibility of our behavior. What would be more adaptive for a learning and thinking animal: genes selected for aggression, spite, and xenophobia; or selection for learning rules that can generate aggression in appropriate circumstances and peacefulness in others?

Secondly, we must be wary of granting too much power to natural selection by viewing all basic capacities of our brain as direct adaptations. I do not doubt that natural selection acted in building our oversized brains—and I am equally confident that our brains became large as an adaptation for definite roles (probably a complex set of interacting functions). But these assumptions do not lead to the notion, often uncritically embraced by strict Darwinians, that all major capacities of the brain must arise as direct products of natural selection. Our brains are enormously complex computers. If I install a much simpler computer to keep accounts in a factory, it can also perform many other, more complex tasks unrelated to its appointed role. These additional capacities are ineluctable consequences of structural design, not direct adaptations. Our vastly more complex organic computers were also built for reasons, but possess an almost terrifying array of additional capacities—including, I suspect, most of what makes us human. Our ancestors
7.1 A juvenile and adult chimpanzee showing the greater resemblance of humans to the baby and illustrating the principle of neoteny in human evolution.
did not read, write, or wonder why most stars do not change their relative positions while five wandering points of light and two larger disks move through a path now called the zodiac. We need not view Bach as a happy spinoff from the value of music in cementing tribal cohesion, or Shakespeare as a fortunate consequence of the role of myth and epic narrative in maintaining hunting bands. Most of the behavioral "traits" that sociobiologists try to explain may never have been subject to direct natural selection at all—and may therefore exhibit a flexibility that features crucial to survival can never display. Should these complex consequences of structural design even be called "traits"? Is this tendency to atomize a behavioral repertory into a set of "things" not another example of the same fallacy of reification that has plagued studies of intelligence throughout our century?

Flexibility is the hallmark of human evolution. If humans evolved, as I believe, by neoteny (see Chapter 4 and Gould, 1977, pp. 352-404), then we are, in a more than metaphorical sense, permanent children. (In neoteny, rates of development slow down and juvenile stages of ancestors become the adult features of descendants.) Many central features of our anatomy link us with fetal and juvenile stages of primates: small face, vaulted cranium and large brain in relation to body size, unrotated big toe, foramen magnum under the skull for correct orientation of the head in upright posture, primary distribution of hair on head, armpits, and pubic areas. If one picture is worth a thousand words, consider Fig. 7.1. In other mammals, exploration, play, and flexibility of behavior are qualities of juveniles, only rarely of adults. We retain not only the anatomical stamp of childhood, but its mental flexibility as well. The idea that natural selection should have worked for flexibility in human evolution is not an ad hoc notion born in hope, but an implication of neoteny as a fundamental process in our evolution. Humans are learning animals.

In T. H. White's novel The Once and Future King, a badger relates a parable about the origin of animals. God, he recounts, created all animals as embryos and called each before his throne, offering them whatever additions to their anatomy they desired. All opted for specialized adult features—the lion for claws and sharp teeth, the deer for antlers and hoofs. The human embryo stepped forth last and said:
"Please God, I think that you made me in the shape which I now have for reasons best known to Yourselves and that it would be rude to change. If I am to have my choice, I will stay as I am. I will not alter any of the parts which you gave me. . . . I will stay a defenceless embryo all my life, doing my best to make myself a few feeble implements out of the wood, iron, and the other materials which You have seen fit to put before me. . . ." "Well done," exclaimed the Creator in delighted tone. "Here, all you embryos, come here with your beaks and whatnots to look upon Our first Man. He is the only one who has guessed Our riddle. . . . As for you, Man. . . . You will look like an embryo till they bury you, but all the others will be embryos before your might. Eternally undeveloped, you will always remain potential in Our image, able to see some of Our sorrows and to feel some of Our joys. We are partly sorry for you, Man, but partly hopeful. Run along then, and do your best."
Epilogue

In 1927 Oliver Wendell Holmes, Jr., delivered the Supreme Court's decision upholding the Virginia sterilization law in Buck v. Bell. Carrie Buck, a young mother with a child of allegedly feeble mind, had scored a mental age of nine on the Stanford-Binet. Carrie Buck's mother, then fifty-two, had tested at mental age seven. Holmes wrote, in one of the most famous and chilling statements of our century:

We have seen more than once that the public welfare may call upon the best citizens for their lives. It would be strange if it could not call upon those who already sap the strength of the state for these lesser sacrifices. . . . Three generations of imbeciles are enough.

(The line is often miscited as "three generations of idiots. . . ." But Holmes knew the technical jargon of his time, and the Bucks, though not "normal" by the Stanford-Binet, were one grade above idiots.)

Buck v. Bell is a signpost of history, an event linked with the distant past in my mind. The Babe hit his sixty homers in 1927, and legends are all the more wonderful because they seem so distant. I was therefore shocked by an item in the Washington Post on 23 February 1980—for few things can be more disconcerting than a juxtaposition of neatly ordered and separated temporal events. "Over 7,500 sterilized in Virginia," the headline read. The law that Holmes upheld had been implemented for forty-eight years, from 1924 to 1972. The operations had been performed in mental-health facilities, primarily upon white men and women considered feeble-minded and antisocial—including "unwed mothers, prostitutes, petty criminals and children with disciplinary problems."
Carrie Buck, then in her seventies, was still living near Charlottesville. Several journalists and scientists visited Carrie Buck and her sister, Doris, during the last years of their lives. Both women, though lacking much formal education, were clearly able and intelligent. Nonetheless, Doris Buck had been sterilized under the same law in 1928. She later married Matthew Figgins, a plumber. But Doris Buck was never informed. "They told me," she recalled, "that the operation was for an appendix and rupture." So she and Matthew Figgins tried to conceive a child. They consulted physicians at three hospitals throughout her child-bearing years; no one recognized that her Fallopian tubes had been severed. Last year, Doris Buck Figgins finally discovered the cause of her lifelong sadness.

One might invoke an unfeeling calculus and say that Doris Buck's disappointment ranks as nothing compared with millions dead in wars to support the designs of madmen or the conceits of rulers. But can one measure the pain of a single dream unfulfilled, the hope of a defenseless woman snatched by public power in the name of an ideology advanced to purify a race. May Doris Buck's simple and eloquent testimony stand for millions of deaths and disappointments and help us to remember that the Sabbath was made for man, not man for the Sabbath: "I broke down and cried. My husband and me wanted children desperately. We were crazy about them. I never knew what they'd done to me."
Critique of *The Bell Curve*

The Bell Curve by Richard J. Herrnstein and Charles Murray provides a superb and unusual opportunity for insight into the meaning of experiment as a method in science. Reduction of confusing variables is the primary desideratum in all experiments. We bring all the buzzing and blooming confusion of the external world into our laboratories and, holding all else constant in our artificial simplicity, try to vary just one potential factor at a time. Often, however, we cannot use such an experimental method, particularly for most social phenomena when importation into the laboratory destroys the subject of our investigation—and then we can only yearn for simplifying guides in nature. If the external world therefore obliges and holds some crucial factors constant for us, then we can only offer thanks for such a natural boost to understanding.

When a book garners as much attention as *The Bell Curve* has received, we wish to know the causes. One might suspect content itself—a startling new idea, or an old suspicion now verified by persuasive data—but the reason might well be social acceptability, or just plain hype. *The Bell Curve* contains no new arguments and presents no compelling data to support its anachronistic social Darwinism. I must therefore conclude that its initial success in winning such attention must reflect the depressing temper of our time—a historical moment of unprecedented ungenerosity, when a mood for slashing social programs can be so abetted by an argument that beneficiaries cannot be aided due to inborn cognitive limits expressed as low IQ scores.

The Bell Curve rests upon two distinctly different but sequential
arguments, which together encompass the classical corpus of biological determinism as a social philosophy. The first claim (Chapters 1—12) rehashes the tenets of social Darwinism as originally constituted. ("Social Darwinism" has often been used as a general term for any evolutionary argument about the biological basis of human differences, but the initial meaning referred to a specific theory of class stratification within industrial societies, particularly to the idea that a permanently poor underclass consisting of genetically inferior people had precipitated down into their inevitable fate.)

This social Darwinian half of The Bell Curve arises from a paradox of egalitarianism. So long as people remain on top of the social heap by accident of a noble name or parental wealth, and so long as members of despised castes cannot rise whatever their talents, social stratification will not reflect intellectual merit, and brilliance will be distributed across all classes. But if true equality of opportunity can be attained, then smart people rise and the lower classes rigidify by retaining only the intellectually incompetent.

This nineteenth-century argument has attracted a variety of twentieth-century champions, including Stanford psychologist Lewis M. Terman, who imported Binet's original test from France, developed the Stanford-Binet IQ test, and gave a hereditarian interpretation to the results (one that Binet had vigorously rejected in developing this style of test); Prime Minister Lee Kuan Yew of Singapore, who tried to institute a eugenics program of rewarding well-educated women for higher birthrates; and Richard Herrnstein, coauthor of The Bell Curve and author of a 1971 Atlantic Monthly article that presented the same argument without documentation. The general claim is neither uninteresting nor illogical, but does require the validity of four shaky premises, all asserted (but hardly discussed or defended) by Herrnstein and Murray. Intelligence, in their formulation, must be depictable as a single number, capable of ranking people in linear order, genetically based, and effectively immutable. If any of these premises are false, the entire argument collapses. For example, if all are true except immutability, then programs for early intervention in education might work to boost IQ permanently, just as a pair of eyeglasses may correct a genetic defect in vision. The central argument of The Bell Curve fails because most of the premises are false.

The second claim (Chapters 13-22), the lightning rod for most
CRITIQUE OF *The Bell Curve*

commentary, extends the argument for innate cognitive stratification by social class to a claim for inherited racial differences in IQ—small for Asian superiority over Caucasian, but large for Caucasians over people of African descent. This argument is as old as the study of race. The last generation's discussion centered upon the sophisticated work of Arthur Jensen (far more elaborate and varied than anything presented in *The Bell Curve*, and therefore still a better source for grasping the argument and its fallacies) and the cranky advocacy of William Shockley.

The central fallacy in using the substantial heritability of within-group IQ (among whites, for example) as an explanation for average differences between groups (whites vs. blacks, for example) is now well known and acknowledged by all, including Herrnstein and Murray, but deserves a restatement by example. Take a trait far more heritable than anyone has ever claimed for IQ, but politically uncontroversial—body height. Suppose that I measure adult male height in a poor Indian village beset with pervasive nutritional deprivation. Suppose the average height of adult males is 5 feet 6 inches, well below the current American mean of about 5 feet 9 inches. Heritability within the village will be high—meaning that tall fathers (they may average 5 feet 8 inches) tend to have tall sons, while short fathers (5 feet 4 inches on average) tend to have short sons. But high heritability within the village does not mean that better nutrition might not raise average height to 5 feet 10 inches (above the American mean) in a few generations. Similarly the well-documented 15-point average difference in IQ between blacks and whites in America, with substantial heritability of IQ in family lines within each group, permits no conclusion that truly equal opportunity might not raise the black average to equal or surpass the white mean.

Since Herrnstein and Murray know and acknowledge this critique, they must construct an admittedly circumstantial case for attributing most of the black-white mean difference to irrevocable genetics—while properly stressing that the average difference doesn't help at all in judging any particular person because so many individual blacks score above the white mean in IQ. Quite apart from the rhetorical dubriety of this old ploy in a shopworn genre—"some-of-my-best-friends-are-group-x"—Herrnstein and Murray violate fairness by converting a complex case that can only yield agnosticism into a biased brief for permanent and heritable differ-
CRITIQUE OF The Bell Curve

ence. They impose this spin by turning every straw on their side into an oak, while mentioning but downplaying the strong circumstantial case for substantial malleability and little average genetic difference (impressive IQ gains for poor black children adopted into affluent and intellectual homes; average IQ increases in some nations since World War II equal to the entire 15-point difference now separating blacks and whites in America; failure to find any cognitive differences between two cohorts of children born out of wedlock to German women, and raised in Germany as Germans, but fathered by black and white American soldiers).

Disturbing as I find the anachronism of The Bell Curve, I am even more distressed by its pervasive disingenuousness. The authors omit facts, misuse statistical methods, and seem unwilling to admit the consequences of their own words.

Disingenuousness of content

The ocean of publicity that has engulfed The Bell Curve has a basis in what Murray and Herrnstein (New Republic, October 31, 1994) call "the flashpoint of intelligence as a public topic: the question of genetic differences between the races." And yet, since the day of publication, Murray has been temporizing and denying that race is an important subject in the book at all; instead, he blames the press for unfairly fanning these particular flames. He writes with Herrnstein (who died just a month before publication) in the New Republic: "Here is what we hope will be our contribution to the discussion. We put it in italics; if we could we would put it in neon lights: The answer doesn't much matter."

Fair enough in the narrow sense that any individual may be a rarely brilliant member of an averagely dumb group (and therefore not subject to judgment by the group mean), but Murray cannot deny that The Bell Curve treats race as one of two major topics, with each given about equal space; nor can he pretend that strongly stated claims about group differences have no political impact in a society obsessed with the meanings and consequences of ethnicity. The very first sentence of The Bell Curve's preface acknowledges equality of treatment for the two subjects of individual and group differences: "This book is about differences in intellectual capacity among people and groups and what these differences mean for America's future." And Murray and Herrnstein's New Republic arti-
CRITIQUE OF The Bell Curve

The critique begins by identifying racial difference as the key subject of interest: "The private dialogue about race in America is far different from the public one."

Disingenuousness of argument

The Bell Curve is a rhetorical masterpiece of scientism, and the particular kind of anxiety and obfuscation that numbers impose upon nonprofessional commentators. The book runs to 845 pages, including more than 100 pages of appendices filled with figures. So the text looks complicated, and reviewers shy away with a knee-jerk claim that, while they suspect fallacies of argument, they really cannot judge. So Mickey Kaus writes in the New Republic (October 31): "As a lay reader of The Bell Curve, I'm unable to judge fairly," as does Leon Wieseltier in the same issue: "Murray, too, is hiding the hardness of his politics behind the hardness of his science. And his science for all I know is soft. . . . Or so I imagine. I am not a scientist. I know nothing about psychometrics." Or Peter Passell in the New York Times (October 27, 1994): "But this reviewer is not a biologist, and will leave the argument to experts."

In fact, The Bell Curve is extraordinarily one-dimensional. The book makes no attempt to survey the range of available data, and pays astonishingly little attention to the rich and informative history of this contentious subject. (One can only recall Santayana's dictum, now a cliche of intellectual life: "Those who cannot remember the past are condemned to repeat it"). Virtually all the analysis rests upon a single technique applied to a single set of data—all probably done in one computer run. (I do agree that the authors have used the most appropriate technique—multiple regression—and the best source of information—the National Longitudinal Survey of Youth—though I shall expose a core fallacy in their procedure below. Still, claims as broad as those advanced in The Bell Curve simply cannot be adequately defended—that is, either properly supported or denied—by such a restricted approach.)

The blatant errors and inadequacies of The Bell Curve could be picked up by lay reviewers if only they would not let themselves be frightened by numbers—for Herrnstein and Murray do write clearly and their mistakes are both patent and accessible. I would rank the fallacies in two categories: omissions and confusions, and content.
1. Omissions and confusions: While disclaiming on his own ability to judge, Mickey Kaus (in the *New Republic*) does correctly identify "the first two claims" that are absolutely essential "to make the pessimistic ‘ethnic difference’ argument work": "(1) that there is a single, general measure of mental ability; (2) that the IQ tests that purport to measure this ability . . . aren't culturally biased."

Nothing in *The Bell Curve* angered me more than the authors' failure to supply any justification for their central claim, the *sine qua non*, of their entire argument: the reality of IQ as a number that measures a real property in the head, the celebrated "general factor" of intelligence (known as *g*) first identified by Charles Spearman in 1904. Murray and Herrnstein simply proclaim that the issue has been decided, as in this passage from their *New Republic* article: "Among the experts, it is by now beyond much technical dispute that there is such a thing as a general factor of cognitive ability on which human beings differ and that this general factor is measured reasonably well by a variety of standardized tests, best of all by IQ tests designed for that purpose."

Such a statement represents extraordinary obfuscation, achieved by defining "expert" as "that group of psychometricians working in the tradition of *g* and its avatar IQ." The authors even admit (pp. 14–19) that three major schools of psychometric interpretation now contend, and that only one supports their view of *g* and IQ—the classicists as championed in *The Bell Curve* ("intelligence as a structure"), the revisionists ("intelligence as information processing"), and the radicals ("the theory of multiple intelligences").

This vital issue cannot be decided, or even understood without discussing the key and only rationale that *g* has maintained since Spearman invented the concept in 1904—factor analysis. The fact that Herrnstein and Murray barely mention the factor analytic argument (the subject receives fleeting attention in two paragraphs) provides a central indictment and illustration of the vacuousness in *The Bell Curve*. How can authors base an eight-hundred-page book on a claim for the reality of IQ as measuring a genuine, and largely genetic, general cognitive ability—and then hardly mention, either pro or con, the theoretical basis for their certainty? Various cliches like "Hamlet without the Prince of Denmark" come immediately to mind.
Admittedly, factor analysis is a difficult and mathematical subject, but it can be explained to lay readers with a geometrical formulation developed by L. L. Thurstone in the 1930s and used by me in Chapter 7 of *The Mismeasure of Man*. A few paragraphs cannot suffice for adequate explanation, so, although I offer some sketchy hints below, readers should not question their own IQ's if the topic still seems arcane.

In brief, a person's performances on various mental tests tend to be positively correlated—that is, if you do well on one kind of test, you tend to do well on the others. This result is scarcely surprising, and is subject to either purely genetic (the innate thing in the head that boosts all scores) or purely environmental interpretation (good books and good childhood nutrition to enhance all performances). Therefore, the positive correlations say nothing in themselves about causes.

Charles Spearman used factor analysis to identify a single axis—which he called g—that best identifies the common factor behind positive correlations among the tests. But Thurstone later showed that g could be made to disappear by simply rotating the factor axes to different positions. In one rotation, Thurstone placed the axes near the most widely separated of attributes among the tests—thus giving rise to the theory of multiple intelligences (verbal, mathematical, spatial, etc., with no overarching g). This theory (the "radical" view in Herrnstein and Murray's classification) has been supported by many prominent psychometricians, including J. P. Guilford in the 1950s, and most prominently today by Howard Gardner. In this perspective, g cannot have inherent reality, for g emerges in one form of mathematical representation for correlations among tests, and disappears (or at least greatly attenuates) in other forms that are entirely equivalent in amounts of information explained. In any case, one can't grasp the issue at all without a clear exposition of factor analysis—and *The Bell Curve* cops out completely on this central concept.

On Kaus's second theme of "cultural bias," *The Bell Curve* 's presentation matches Arthur Jensen's, and that of other hereditarians, in confusing a technical (and proper) meaning of bias (I call it "S-bias" for "statistical") with the entirely different vernacular concept (I call it "V-bias") that agitates popular debate. All these authors swear up and down (and I agree with them completely) that the tests
are not biased—in the statistician's definition. Lack of S-bias means that the same score, when achieved by members of different groups, predicts the same consequence—that is, a black person and a white person with an identical IQ score of 100 will have the same probabilities for doing anything that IQ is supposed to predict. (I should hope that mental tests aren't S-biased, for the testing profession isn't worth very much if practitioners can't eliminate such an obvious source of unfairness by careful choice and framing of questions.)

But V-bias, the source of public concern, embodies an entirely different issue that, unfortunately, uses the same word. The public wants to know whether blacks average 85 and whites 100 because society treats blacks unfairly—that is, whether lower black scores record biases in this social sense. And this crucial question (to which we do not know the answer) cannot be addressed by a demonstration that S-bias doesn't exist (the only issue treated, however correctly, by The Bell Curve).

2. Content: As stated above, virtually all the data in The Bell Curve derive from one analysis—a plotting, by a technique called multiple regression, of the social behaviors that agitate us, such as crime, unemployment, and births out of wedlock (treated as dependent variables), against both IQ and parental socioeconomic status (treated as independent variables). The authors first hold IQ constant and consider the relationship of social behaviors to parental socioeconomic status. They then hold socioeconomic status constant and consider the relationship of the same social behaviors to IQ. In general, they find a higher correlation with IQ than with socioeconomic status; for example, people with low IQ are more likely to drop out of high school than people whose parents have low socioeconomic status.

But such analyses must engage two issues—form and strength of the relationship—and Herrnstein and Murray only discuss the issue that seems to support their viewpoint, while virtually ignoring (and in one key passage almost willfully and purposely hiding) the other factor that counts so profoundly against them. Their numerous graphs only present the form of the relationships—that is, they draw the regression curves of their variables against IQ and parental socioeconomic status. But, in violation of all statistical norms that I've ever learned, they plot only the regression curve and do not show the scatter of variation around the curve, so their graphs show nothing
about the strength of the relationship—that is, the amount of variation in social factors explained by IQ and socioeconomic status.

Now why would Herrnstein and Murray focus on the form and ignore the strength? Almost all of their relationships are very weak—that is, very little of the variation in social factors can be explained by either IQ or socioeconomic status (even though the form of this small amount tends to lie in their favored direction). In short, IQ is not a major factor in determining variation in nearly all the social factors they study—and their vaunted conclusions thereby collapse, or become so strongly attenuated that their pessimism and conservative social agenda gain no significant support.

Herrnstein and Murray actually admit as much in one crucial passage on page 117, but then they hide the pattern. They write: "It almost always explains less than 20 percent of the variance, to use the statistician's term, usually less than 10 percent and often less than 5 percent. What this means in English is that you cannot predict what a given person will do from his IQ score. . . . On the other hand, despite the low association at the individual level, large differences in social behavior separate groups of people when the groups differ intellectually on the average." Despite this disclaimer, their remarkable next sentence makes a strong causal claim: "We will argue that intelligence itself, not just its correlation with socioeconomic status, is responsible for these group differences." But a few percent of statistical determination is not equivalent to causal explanation (and correlation does not imply cause in any case, even when correlations are strong—as in the powerful, perfect, positive correlation between my advancing age and the rise of the national debt). Moreover, their case is even worse for their key genetic claims—for they cite heritabilities of about 60 percent for IQ, so you must nearly halve the few percent explained if you want to isolate the strength of genetic determination by their own criteria!

My charge of disingenuity receives its strongest affirmation in a sentence tucked away on the first page of Appendix 4, page 593, where the authors state: "In the text, we do not refer to the usual measure of goodness of fit for multiple regressions, R^2, but they are presented here for the cross-sectional analysis." Now why would they exclude from the text, and relegate to an appendix that very few people will read or even consult, a number that, by their own admission, is "the usual measure of goodness of fit." I can only
conclude that they did not choose to admit in the main text the extreme weakness of their vaunted relationships.

Herrnstein and Murray's correlation coefficients are generally low enough by themselves to inspire lack of confidence. (Correlation coefficients measure the strength of linear relationships between variables; positive values run from 0.0 for no relationship to 1.0 for perfect linear relationship.) Although low figures are not atypical in the social sciences for large surveys involving many variables, most of Herrnstein and Murray's correlations are very weak—often in the 0.2 to 0.4 range. Now, 0.4 may sound respectably strong, but—and now we come to the key point—\(R^2 \) is the square of the correlation coefficient, and the square of a number between 0 and 1 is less than the number itself, so a 0.4 correlation yields an \(R^2 \)-squared of only 0.16. In Appendix 4, then, we discover that the vast majority of measures for \(R^2 \), excluded from the main body of the text, have values less than 0.1. These very low values of \(R^2 \) expose the true weakness, in any meaningful vernacular sense, of nearly all the relationships that form the heart of The Bell Curve.

Disingenuousness of program

Like so many conservative ideologues who rail against a largely bogus ogre of suffocating political correctness, Herrnstein and Murray claim that they only seek a hearing for unpopular views so that truth will out. And here, for once, I agree entirely. As a card-carrying First Amendment (near) absolutist, I applaud the publication of unpopular views that some people consider dangerous. I am delighted that The Bell Curve was written—so that its errors could be exposed, for Herrnstein and Murray are right in pointing out the difference between public and private agendas on race, and we must struggle to make an impact upon the private agendas as well.

But The Bell Curve can scarcely be called an academic treatise in social theory and population genetics. The book is a manifesto of conservative ideology, and its sorry and biased treatment of data records the primary purpose—advocacy above all. The text evokes the dreary and scary drumbeat of claims associated with conservative think tanks—reduction or elimination of welfare, ending of affirmative action in schools and workplaces, cessation of Head Start and other forms of preschool education, cutting of programs for
slowest learners and application of funds to the gifted (Lord knows I would love to see more attention paid to talented students, but not at this cruel and cynical price).

The penultimate chapter presents an apocalyptic vision of a society with a growing underclass permanently mired in the inevitable sloth of their low IQ's. They will take over our city centers, keep having illegitimate babies (for many are too stupid to practice birth control), commit more crimes, and ultimately require a kind of custodial state, more to keep them in check (and out of our high IQ neighborhoods) than with any hope for an amelioration that low IQ makes impossible in any case. Herrnstein and Murray actually write (p. 526): "In short, by custodial state, we have in mind a high-tech and more lavish version of the Indian reservation for some substantial minority of the nation's population, while the rest of America tries to go about its business."

The final chapter then tries to suggest an alternative, but I have never read anything so feeble, so unlikely, so almost grotesquely inadequate. They yearn romantically for the "good old days" of towns and neighborhoods where all people could be given tasks of value and self-esteem could be found for all steps in the IQ hierarchy (so Forrest Gump might collect the clothing for the church raffle, while Mr. Murray and the other bright folks do the planning and keep the accounts. Have they forgotten about the town Jew and the dwellers on the other side of the tracks in many of these idyllic villages?). I do believe in this concept of neighborhood, and I will fight for its return. I grew up in such a place within that mosaic known as Queens, New York City, but can anyone seriously find solutions (rather than important palliatives) to our social ills therein?

However, if Herrnstein and Murray are wrong about IQ as an immutable thing in the head, with humans graded in a single scale of general capacity, leaving large numbers of custodial incompetents at the bottom, then the model that generates their gloomy vision collapses, and the wonderful variousness of human abilities, properly nurtured, reemerges. We must fight the doctrine of The Bell Curve both because it is wrong and because it will, if activated, cut off all possibility of proper nurturance for everyone's intelligence. Of course we cannot all be rocket scientists or brain surgeons (to use the two current slang synecdoches for smartest of the smart), but
those who can't might be rock musicians or professional athletes (and gain far more social prestige and salary thereby)—while others will indeed serve by standing and waiting.

I closed Chapter 7 in The Mismeasure of Man on the unreality of g and the fallacy of regarding intelligence as a single innate thing-in-the-head (rather than a rough vernacular term for a wondrous panoply of largely independent abilities) with a marvelous quote from John Stuart Mill, well worth repeating to debunk this generation’s recycling of biological determinism for the genetics of intelligence:

The tendency has always been strong to believe that whatever received a name must be an entity or being, having an independent existence of its own. And if no real entity answering to the name could be found, men did not for that reason suppose that none existed, but imagined that it was something particularly abstruse and mysterious.

How strange that we would let a single false number divide us, when evolution has united all people in the recency of our common ancestry—thus undergirding with a shared humanity that infinite variety which custom can never stale. *E pluribus unum.*
Ghosts of Bell Curves Past

I don't know whether or not most white men can jump (though I can attest, through long observation, that Larry Bird cannot—but, oh, Lord, could he play basketball). And I don't much care, though I suppose that the subject bears some interest and marginal legitimacy in an alternate framing that avoids such biologically meaningless categories as white and black. Yet I can never give a speech on the subject of human diversity without attracting some variant of this inquiry in the subsequent question period. I hear the "sports version," I suppose, as an acceptable surrogate for what really troubles people of good will (and bad, though for other reasons).

The old days of overt racism did not engender such squeamishness. When the grandfather of modern academic racism, Joseph-Arthur, comte de Gobineau (1816–1882), asked a similar question about the nature of supposedly inborn and unchangeable differences among racial groups, he laid it right on the line. The title of the concluding chapter to Volume 1 of his most influential work, *Essai sur l'inégalité des races humains* (Essay on the Inequality of Human Races), reads: "Moral and Intellectual Characteristics of the Three Great Varieties." Our concerns have always centered upon smarts and decency, not jumping height and susceptibility to cardiovascular arrest.

And Gobineau left no doubt about his position:

The idea of an innate and permanent difference in the moral and mental endowments of the various groups of the human species, is one of the most ancient, as well as universally adopted, opinions. With few exceptions, and these mostly in our own times, it has formed the basis of almost all political theories, and has been the fundamental maxim of government of every nation, great or small. The prejudices of country have no other cause; each nation believes in its own superiority over its neighbors, and very often different parts of the same nation regard each other with contempt.

Gobineau was undoubtedly the most influential academic racist of the nineteenth century. His writings strongly affected such intellectuals as Wagner and Nietzsche and inspired a social movement as Gobinism. Largely through his impact on the English
zealot Houston Stewart Chamberlain, Gobineau's ideas served as a foundation for the racial theories espoused by Adolf Hitler. Gobineau, an aristocratic royalist by background, interspersed writing with a successful diplomatic career for the French government. He authored several novels and works of historical nonfiction (a history of the Persian people and of the European Renaissance, for example), but became most famous for his four-volume work on racial inequality, published between 1853 and 1855.

Gobineau's basic position can be easily summarized: the fate of civilizations is largely determined by racial composition, with decline and fall usually attributable to dilution of pure stocks by interbreeding. (Gobineau feared that the contemporary weakening of France, largely to German advantage, could be "traced to the great variety of incongruous ethnical elements composing the population," as his translator wrote in introducing the first American edition of 1856). The white races (especially the dominant Aryan subgroups) might remain in command, Gobineau hoped, but only if they could be kept relatively free from miscegenation with intellectually and morally inferior stocks of yellows and blacks (Gobineau used these crude terms of color for his three major groups).

No one would doubt the political potency of such ideas, and no one would credit any claim that Gobineau wrote only in the interest of abstract truth, with no agenda of advocacy in mind. Nonetheless, it does no harm to point out that the American translation, published in Philadelphia in 1856, as Dred Scott's case came before the Supreme Court near the brink of our Civil War, surely touched a nerve in parlous times—for Gobineau's distinctive notion of racial purity, and the danger of intermixing, surely struck home in our nation of maximal racial diversity and pervasive inequality, with enslavement of blacks and decimation of Indians. J. C. Nott of Mobile, America's most active popularizer of anthropology in the racist mode, wrote a long appendix to the translation (his textbook *Types of Mankind*, written with G. R. Gliddon in 1854, was the contemporary American best seller in the field). Lest anyone miss the point of local relevance for this European treatise, the translator wrote in his preface:

The aim [of studying racial differences] is certainly a noble one, and its pursuit cannot be otherwise than instructive to the statesman and histo
CRITIQUE OF *The Bell Curve*

and no less so to the general reader. In this country, it is particularly interesting and important, for not only is our immense territory the abode of the three best defined varieties of the human species—the white, the negro, and the Indian—to which the extensive immigration of the Chinese on our Pacific coast is rapidly adding a fourth, but the fusion of diverse nationalities is nowhere more rapid and complete.

Yet Gobineau needed evidence for his claims. (My previous quotation from Gobineau only asserts that most people believe in innate inequality, and does not present any evidence that this common impression is correct.) Therefore, in the last chapter of his work, Gobineau outlines an approach to securing the necessary data for his racism. He begins by telling us how we should *not* frame the argument. We should not, he claims, point to the poor accomplishments of individuals belonging to "inferior races," for such a strategy will backfire as egalitarians search for rare exemplars of high achievement within generally benighted groups. Gobineau begins his final chapter by writing (the quotation is long, and chilling, but well worth the space for its reminder about "certainties" of a not so distant past):

In the preceding pages, I have endeavored to show that . . . the various branches of the human family are distinguished by permanent and ineradicable differences, both mentally and physically. They are unequal in intellectual capacity, in personal beauty, and in physical strength. . . . In coming to this conclusion, I have totally eschewed the method which is, unfortunately for the cause of science, too often resorted to by the ethnologists, and which, to say the least of it, is simply ridiculous. The discussion has not rested upon the moral and intellectual worth of isolated individuals.

I shall not even wait for the vindicators of the absolute equality of all races to adduce to me such and such a passage in some missionary's or navigator's journal, wherefrom it appears that some Yolof has become a skilful carpenter, that some Hottentot has made an excellent domestic, that some Caffre plays well on the violin, or that some Bambara has made very respectable progress in arithmetic.

I am prepared to admit—and to admit without proof—anything of that sort, however remarkable, that may be related of the most degraded savages. . . . Nay, I go farther than my opponents, and am not in the least disposed to doubt that, among the chiefs of the rude negroes of Africa, there could be found a considerable number of active and vigorous minds, greatly surpassing in fertility of ideas and mental resources the average of our Peasantry, and even of some of our middle classes.
CRITIQUE OF The Bell Curve

(Pervasity of prejudice does reside in the unconscious details. Note how Gobineau, writing in his "generous" mode, still cannot imagine, for an African ruler, any higher intellectual status than the European peasantry or perhaps the lower reaches of the bourgeoisie—but never, heaven forfend, even the worst of the upper classes!)

How, then, shall racial status be affirmed if arguments about individuals have no validity? Gobineau states that we must find a measure, preferably imbued with the prestige of mathematics, for average properties of groups:

Once for all, such arguments [about individuals] seem to me unworthy of real science. . . . Let us leave such puerilities, and compare, not the individuals, but the masses. . . . This difficult and delicate task cannot be accomplished until the relative position of the whole mass of each race shall have been nicely, and, so to say, mathematically defined.

I was, I confess, prompted to reread Gobineau by the current brouhaha over The Bell Curve by Charles Murray and my late colleague Richard Herrnstein—for I recognized that they use exactly the same structure of argument about individuals and groups, though for quite a different purpose, and the disparity within the similarity struck me as eerie. Herrnstein and Murray also claim that average differences in intelligence between racial groups are real and salient (also largely innate and effectively immutable), and they also insist that such group disparities carry no implication for the judgment of individuals. In this way, they hope to avoid a charge of racism and secure a judgment as upholders of human rights—for no black individual, in their view, should be devalued because his group is innately less intelligent than whites; after all, this particular individual may be a rarely brilliant member of his averagely dumb race. (I must say that I regard such an argument as either disingenuous or naïve—and I can't view Mr. Murray as naïve—given the realities of racial attitudes in America vs. our idealized hope for judgment of all individuals on their personal achievements and attributes alone, and not by their group membership.)

Gobineau wished to separate individual and group judgment because he didn't want the "reality" of group differences to be blurred by the uncharacteristic performance of rare individuals. Herrnstein and Murray make the distinction in a very different political climate; they emphasize the reality of individual achieve
merit (rather than its annoying confusion) in order to avoid (fairly enough) the charge of racism while maintaining something quite close to Gobineau's differences in intelligence and the unlikelihood of their erasure. (Please understand that I am not trying to besmirch Herrnstein and Murray by name-calling from the past. I am not attempting to establish my indirect linkage to the Third Reich—and neither can we blame Gobineau for Hitler's extreme usages via Chamberlain. But I am fascinated that structures of ideas can be so similar across the centuries, while thinkers of basically consonant mind emphasize different parts of an entity in the climates of varying times.)

Gobineau, seeking a mathematical basis for group differences in intelligence and morality, was stuck with the crude and direct measures of nineteenth-century racist science—mainly shapes and sizes of skulls and other body parts (for no supposedly "direct" assessment by mental testing had yet been developed). For example, Gobineau located black destiny in external anatomy:

"The dark races are the lowest on the scale. The shape of the pelvis has character of animalism, which is imprinted on the individuals of that ace ere their birth, and seems to portend their destiny. . . . The negro's narrow and receding forehead seems to mark him as inferior in reasoning parity."

Moreover, in a manner so characteristic of this pseudoscience, Gobineau manages to spin every observation in the light of his preconception about black inferiority. Even ostensibly favorable traits are redeployed in the service of racist interpretation. On the supposed stoicism of blacks in the face of pain, for example, Gobineau cites the testimony of a doctor: "They bear surgical operations much better than white people, and what would be the cause of insupportable pain to a white man, a negro would almost disregard. I have amputated the legs of many negroes, who have held the upper part of the limb themselves." Any white man would be praised for bravery, courage, and nobility, but Gobineau attributes this supposed toleration of pain by blacks to "a moral cowardice which readily seeks refuge in death, or in a sort of monstrous impassivity."

As measurement of bodies formed the crude and only marginally successful (even in their own terms) devices of scientific racism in the nineteenth century, so has the more sophisticated technology
of mental testing—measuring the subtle inside, as it were, rather than the indirect outside—set the basis for most arguments about human inequality in the twentieth century. (As I explain in much greater detail in the main text, I am not opposed to all forms of mental testing and I certainly do not view the enterprise as inherently racist or devoted to arguing for immutable human differences—for exactly the opposite intention has often been promoted in using tests to measure the improvement that good education can supply.)

However, one particular philosophy of mental testing does undergird most arguments about intellectual differences among human groups made in our century. Moreover, this philosophy does emerge directly from the cruder techniques for measuring bodies that defined the subject in the nineteenth century. In this sense, we may trace continuity from Gobineau to the modern hereditarian theory of IQ. I thought that this philosophy had receded from influence as a joint result of well-exposed fallacies in the general argument and failure of data to validate the essential premises. But Herrnstein and Murray have revived this philosophy in its full and original form in *The Bell Curve*—and we must therefore return to the historical sources of fallacy.

The "Gobinist" version of mental testing—using the enterprise to argue for innate and ineradicable differences in general intelligence among human groups—relies upon four sequential and interrelated premises; each must be true individually (and all the linkages must hold as well), or else the entire edifice collapses:

1. The wonderfully multifarious and multidimensional set of human attributes that we call "intelligence" in the vernacular must all rest upon a single, overarching (or undergirding) factor of general intellectual capacity, usually called g, or the general factor of intelligence (see my critique of this notion and its mathematical basis in Chapter 7 of the main text).

2. The general "amount" of intelligence in each person must be measurable as a single number (usually called "IQ"); a linear ranking of people by IQ must therefore establish a hierarchy of differential intelligence; and, finally (for the social factor in the argument), people's achievements in life, and their social ranks in hierarchies of worth and wealth, must be strongly correlated with their IQ scores.
3. This single number must measure an inborn quality of genetic constitution, highly heritable across generations.

4. A person's IQ score must be stable and permanent—subject to little change (but only minor and temporary tinkering) by any program of social and educational intervention.

In other words, to characterize each of the four arguments in a word or two, human intelligence must be abstractable (as a single number), rankable, highly heritable, and effectively immutable. If any of these assumptions fails, the entire argument and associated political agenda go belly up. For example, if only the fourth premise of immutability is false, then social programs of intense educational remediation may well boost, substantially and permanently, an innate and highly heritable disadvantage in IQ—just as I may purchase a pair of eyeglasses to correct an entirely inborn and fully heritable defect of vision. (The false equation of "heritable" with "permanent" or "unchangeable" has long acted as a cardinal misconception in this debate.)

I cannot, in this essay, present a full critique of *The Bell Curve* (see the previous essay for more details). I only wish to trace some historical roots and to expose a stunning irony. *The Bell Curve’s* argument about average intelligence among racial groups is no different from and no more supportable than Gobineau's founding version. The major addition is a change in methodology and sophistication—from measuring bodies to measuring the content of heads in intelligence testing. But the IQ version relies upon assumptions (the four statements above) as unsupportable as those underpinning the old hierarchies of skull sizes proposed by nineteenth-century participants. In this light, we can gain great insight by revisiting the philosophy and intent of the man who first invented the modern style of mental testing during the first decade of our century—the French psychologist Alfred Binet (who later became the eponym of the test when Stanford professor Lewis M. Terman imported the apparatus to America, developed a local version, and called it the Stanford-Binet IQ test).

I shall show that Binet's intentions sharply contradicted the innatist version, for he believed strongly in educational remediation and explicitly rejected any hereditarian reading of his results. Ironically, the hereditarian theory of IQ (the imposition of Binet's apparatus
upon Gobineau's argument) arose in America, land of liberty and justice for all (but during our most jingoistic period during and following World War I). The exposure of Binet's original intent does not prove him right or the hereditarians wrong (after all, a doctrine of original intent works even less well in science than in constitutional law!). Rather, Binet is right because his arguments continue to have validity, and the distortion of his wise and humane effort must rank as one of the great tragedies of twentieth-century science.

In 1904, Binet was commissioned by the minister of public education in France to devise a way of identifying children in primary school whose difficulties in normal classrooms suggested some need for special education. (In French public schools, classes tended to be quite large and curricula inflexible; teachers had little time to devote to individual students with particular needs.) Binet decided on a purely practical approach. He devised a test based upon a hodgepodge of diverse tasks related to everyday problems of life (counting coins, for example) and supposedly involving basic processes of reasoning (logic, ordering, correction) rather than explicitly learned skills like reading. By mixing together enough tests of different attributes, Binet hoped to abstract a child's general potential with a single score. Binet emphasized the rough-and-ready, empirical nature of his test with a dictum: "It matters very little what the tests are so long as they are numerous."

Binet explicitly denied that his test—later called an intelligence quotient (or IQ) when the German psychologist W. Stern scored the results by dividing "mental age" (as ascertained on the test) by chronological age—could be measuring an internal biological property worthy of the name "general intelligence." First of all, Binet believed that the complex and multifarious property called intelligence could not, in principle, be captured by a single number capable of ranking children in a linear hierarchy. He wrote in 1905:

The scale, properly speaking, does not permit the measure of the intelligence because intellectual qualities are not superposable, and therefore cannot be measured as linear surfaces are measured.

Moreover, Binet feared that if teachers read the IQ number as an inflexible inborn quality, rather than (as he intended) a guide for identifying students in need of help, they would use the scores as
CRITIQUE OF The Bell Curve

a cynical excuse for expunging, rather than aiding, troublesome students. Binet wrote of such teachers: "They seem to reason in the following way: 'Here is an excellent opportunity for getting rid of all the children who trouble us,' and without the true critical spirit, they designate all who are unruly, or disinterested in the school." Binet also feared the powerful bias that has since been labeled "self-fulfilling prophecy" or the Pygmalion effect: if teachers are told that a student is inherently uneducable based on misinterpretation of low IQ scores, they will treat the student as unable, thereby encouraging poor performance by their inadequate nurture, rather than the student's inherent nature. Invoking the case then racking France, Binet wrote:

It is really too easy to discover signs of backwardness in an individual when one is forewarned. This would be to operate as the graphologists did who, when Dreyfus was believed to be guilty, discovered in his handwriting signs of a traitor or a spy.

Binet felt that this test could best be used to identify mild forms of retardation or learning disability. Yet even for such specific and serious difficulties, Binet firmly rejected the idea that his test could identify causes of educational problems, particularly their potential basis in biological inheritance. He only wished to identify children with special needs, so that help could be provided:

Our purpose is to be able to measure the intellectual capacity of a child who is brought to us in order to know whether he is normal or retarded. . . . We shall neglect his etiology, and we shall make no attempt to distinguish between acquired and congenital [retardation]. . . . We do not attempt to establish or prepare a prognosis, and we leave unanswered the question of whether this retardation is curable, or even improvable. We shall limit ourselves to ascertaining the truth in regard to his present mental state.

Binet avoided any claim about inborn biological limits because he knew that an innatist interpretation (which the test scores didn't warrant in any case) would perversely destroy his aim of helping children with educational problems. Binet upbraided teachers who used an assessment of irremediable stupidity to avoid the special effort that difficult students require: "They have neither sympathy nor respect for [these students], and their intemperate language leads them to say such things in their presence as 'This is a child who will never amount to anything . . . he is not intelligent at all.' How
often have I heard these imprudent words." In an eloquent passage, Binet then vented his anger against teachers who claim that a student can "never" succeed as a result of inferior biology:

Never! What a momentous word. Some recent thinkers seem to have given their moral support to these deplorable verdicts by affirming that an individual's intelligence is a fixed quantity, a quantity that cannot be increased. We must protest and react against this brutal pessimism; we must try to demonstrate that it is founded upon nothing.

Finally, Binet took pleasure in the successes of teachers who did use his tests to identify students and provide needed help. He defended remedial programs and insisted that gains so recorded must be read as genuine increases in intelligence:

It is in this practical sense, the only one accessible to us, that we say that the intelligence of these children has been increased. We have increased what constitutes the intelligence of a pupil: the capacity to learn and to assimilate instruction.

How tragic and how ironic! If IQ tests had been consistently used as Binet intended, their results would have been entirely beneficent (in this sense, as I stated, I do not oppose mental testing on principle, but only certain versions and philosophies). But the very innatist and antimeliorist spin that Binet had foreseen and decried did become the dominant interpretation, and Binet's intentions were overturned and inverted. And this reversal—the establishment of the hereditarian theory of IQ—occurred in America, not in elitist Europe. The major importers of Binet's method promoted the biodeterminist version that Binet had opposed—and the results continue to ring falsely in our time as The Bell Curve.

Consider the two leading initial promoters of Binet's scale in America. Psychologist H. H. Goddard, who translated Binet's articles into English and agitated for the general use of his test, adopted both the hard-line hereditarian view and the argument for intelligence as a single entity:

Stated in its boldest form, our thesis is that the chief determiner of human conduct is a unitary mental process which we call intelligence: that this process is conditioned by a nervous mechanism which is inborn: that the degree of efficiency to be attained by that nervous mechanism and the consequent grade of intellectual or mental level for each individual is deter-
mined by the kind of chromosomes that come together with the union of the germ cells: that it is but little affected by any later influences except such serious accidents as may destroy part of the mechanism.

Lewis M. Terman, who codified IQ for America as the Stanford-Binet test, held the same opinion, first on intelligence as a unitary quantity: "Is intellectual ability a bank account, on which we can draw for any desired purpose, or is it rather a bundle of separate drafts, each drawn for a specific purpose and inconvertible?" Terman opted for the general bank account. He also stated his hereditarian conviction: "The study has strengthened my impression of the relatively greater importance of endowment over training as a determinant of an individual's intellectual rank among his fellows."

But Binet had supplied all the right arguments in opposition—and his words, even today, can serve as a primer for the scientifically accurate and ethically principled refutation of Herrnstein and Murray's *Bell Curve*, the living legacy of America's distinctive contribution to mental testing: the hereditarian interpretation. Intelligence, Binet told us, cannot be abstracted as a single number. IQ is a helpful device for identifying children in need of aid, not a dictate of inevitable biology. Such aid can be effective, for the human mind is, above all, flexible. We are not all equal in endowment, and we do not enter the world as blank slates, but most deficiencies can be mediated to a considerable degree, and the palling effect of biological determinism defines its greatest tragedy—for if we give up (because we accept the doctrine of immutable inborn limits), but could have helped, then we have committed the most grievous error of chaining the human spirit.

Why must we follow the fallacious and dichotomous model of pitting a supposedly fixed and inborn biology against the flexibility of training—or nature vs. nurture in the mellifluous pairing of words that so fixes this false opposition in the public mind? Biology is not inevitable destiny; education is not an assault upon biological limits. Rather, our extensive capacity for educational improvement records a genetic uniqueness vouchsafed only to humans among animals.

I was both heartened and distressed by a recent report in *Newsweek* (October 24, 1994) on a Bronx high school committed to high expectations for disadvantaged students. *Newsweek* reports:
These 300 black and Latino students provide the basis for a strong retort to "The Bell Curve." Richard Herrnstein and Charles Murray argue that IQ is largely genetic and that low IQ means scant success in society. Therefore, they contend, neither effective schools nor a healthier environment can do much to alter a person's destiny. Yet, at Hostos, reading scores nearly doubled over two years. The dropout rate is low, and attendance is high. About 70 percent of the class of 1989 graduated on time, double the city's average.

Wonderful news, and a fine boost to Binet's original intentions. But I must object to the headline for this report: "In Defiance of Darwin," and to the initial statement: "Today, at 149th Street and the Grand Concourse, a public high school for at-risk children defies Darwin on a daily basis."

Why is Darwin the enemy and impediment? Perhaps Newsweek only intended the metaphorical meaning of Darwinism (also a serious misconception) as struggle in a tough world, with most combatants weeded out. But I think that the Newsweek editors used "Darwin" as a stand-in for a blinkered view of "biology"—in telling us that this school refutes the idea of fixed genetic limits. Biology is not the enemy of human flexibility, but the source and potentiator (while genetic determinism represents a false theory of biology). Darwinism is not a statement about fixed differences, but the central theory for a discipline—evolutionary biology—that has discovered the sources of human unity in minimal genetic distances among our races and in the geological yesterday of our common origin.
Three Centuries’ Perspectives on Race and Racism

Age-Old Fallacies of Thinking and Stinking

We shudder at the thought of repeating the initial sins of our species. Thus, Hamlet’s uncle bewails his act of fratricide by recalling Cain’s slaying of Abel:

O! my offense is rank, it smells to heaven;
It hath the primal eldest curse upon ’t;
A brother’s murder!

Such metaphors of unsavory odor are especially powerful because our sense of smell lies so deep in our evolutionary construction, yet remains (perhaps for this reason) so undervalued and often unmentioned in our culture. A later seventeenth-century English writer recognized this potency and particularly warned his readers against using olfactory metaphors because common people will take them literally:

Metaphorical expression did often proceed into a literal construction; but was fraudulent. . . . How dangerous it is in sensible things to use metaphorical expressions unto the people, and what absurd conceits they will swallow in their literals.

This quotation comes from a chapter in the 1646 work of Sir Thomas Browne: *Pseudodoxia Epidemica*; or, *Enquiries into Very Many Received Tenents [sic], and Commonly Presumed Truths*. Browne, a physician from Norwich, is better known for his wonderful and still widely read work of 1642, the part autobiographical, part philo-
sophical, and part whimsical *Religio Medici*, or "Religion of a Doc­
tor." The *Pseudodoxia Epidemica* (his Latinized title for a plethora
of false truths) is the granddaddy of a most honorable genre still
vigorously *pursued*—*exposés* of common errors and popular igno­
rance, particularly the false beliefs most likely to cause social harm.

I cited Browne's statement from the one chapter (among more
than a hundred) sure to send shudders down the spine of modern
readers—his debunking of the common belief "that Jews stink."
Browne, although almost maximally *philo-Semitic* by the standards
of his century, was not free of all prejudicial feelings against Jews.
He attributed the origin of the canard about Jewish *malodor—*
hence, my earlier *quotation*—to a falsely literal reading of a meta­
phor legitimately applied (or so he thought) to the descendants of
people who had advocated the crucifixion of Jesus. Browne wrote:
"Now the ground that begat or propagated this assertion, might be
the distasteful averseness of the Christian from the Jew, upon the
villainy of that fact, which made them abominable and stink in the
nostrils of all men." (Modern apostles of political correctness should
ponder the noninclusiveness of Browne's "all men" in this context.)

As a rationale for debunking a compendium of common errors,
Browne correctly notes that false beliefs arise from incorrect theo­
ries about nature and therefore serve as active impediments to
knowledge, not just as laughable signs of primitivity: "To purchase
a clear and warrantable body of truth, we must forget and part with
much we know." Moreover, Browne notes, truth is hard to ascertain
and ignorance is far more common than accuracy. Writing in the
mid-seventeenth century, Browne uses "America" as a metaphor
for domains of uncharted ignorance, and he bewails our failure to
use good tools of reason as guides through this *terra incognita*: "We
find no open tract. . . in this labyrinth; but are oft-times fain to
wander in the America and untravelled parts of truth."

The *Pseudodoxia Epidemica*, Browne's peregrination through the
maze of human ignorance, contains 113 chapters gathered into
seven books on such general topics as mineral and vegetable bodies,
animals, humans, Bible tales, and geographical and historical myths.
Browne debunks quite an array of common opinions, including
claims that elephants have no joints, that the legs of badgers are
shorter on one side than the other, and that ostriches can digest iron.

As an example of his style of argument, consider Book 3, Chap-
ter 4: "That a bever [sic] to escape the hunter, bites off his testicles or stones"—a harsh tactic that, according to legend, either distracts the pursuer or persuades him to settle for a meal smaller than an entire body. Browne labels this belief as "a tenet very ancient; and hath had thereby advantages of propagation. . . . The Egyptians also failed in the ground of their hieroglyphick, when they expressed the punishment of adultery by the bever depriving himself of his testicles, which was amongst them the penalty of such incontinency."

Browne prided himself on using a mixture of reason and observation to achieve his debunking. He begins by trying to identify the source of error—in this case a false etymological inference from the beaver's Latin name, Castor, which does not share the same root with "castration" (as the legend had assumed) but derives ultimately from a Sanskrit world for "musk"; and an incorrect interpretation of purposeful mutilation from the internal position, and therefore near invisibility, of the beaver's testicles. He then cites the factual evidence of intact males, and the reasoned argument that a beaver couldn't even reach his own testicles if he wanted to bite them off (and thus, cleverly, the source of common error—the external invisibility of the testicles—becomes the proof of falsity!).

The testicles properly so called, are of a lesser magnitude, and seated inwardly upon the loins: and therefore it were not only a fruitless attempt, but impossible act, to eunuchate or castrate themselves: and might be an hazardous practice of art, if at all attempted by others.

Book 7, Chapter 2 debunks the legend "that a man hath one rib less than a woman"—"a common conceit derived from the history of Genesis, wherein it stands delivered, that Eve was framed out of a rib of Adam." (I regret to report that this bit of nonsense still commands some support. I recently appeared on a nationally televised call-in show for high school students and one young woman, a creationist, cited this "well-known fact" as proof of the Bible's inerrancy and evolution's falsity.) Again, Browne opts for a mixture of logic and observation in stating: "this will not consist with reason or inspection." A simple count on skeletons (Browne was a physician by trade) affirms equality of number between sexes. Moreover, reason provides no argument for assuming that Adam's single loss would be propagated to future members of his sex:
Although we concede there wanted one rib in the skeleton of Adam, yet were it repugnant unto reason and common observation, that his posterity should want the same [in the old meaning of "want" as "lack"]. For we observe that mutilations are not transmitted from father unto son; the blind begetting such as can see, men with one eye children with two, and cripples mutilate in their own persons do come out perfect in their generations.

Book 4, Chapter 10—"That Jews Stink"—is one of the longest, and clearly held special importance for Dr. Browne. His arguments are more elaborate, but he follows the same procedure used to dispel less noxious myths—citation of contravening facts interlaced with more general support from logic and reason.

Browne begins with a statement of the fallacy: "That Jews stink naturally, that is, that in their race and nation there is an evil savor, is a received opinion." Browne then allows that species may have distinctive odors, and that individual men surely do: "Aristotle says no animal smells sweet save the pard. We confess that beside the smell of the species, there may be individual odors, and every man may have a proper and peculiar savor; which although not perceptible unto man, who hath this sense but weak, is yet sensible unto dogs, who hereby can single out their masters in the dark."

In principle, then, discrete groups of humans might carry distinctive odors, but reason and observation permit no such attribution to Jews as a group: "That an unsavory odor is gentilitious or national unto the Jews, if rightly understood, we cannot well concede, nor will the information of Reason or Sense induce it."

On factual grounds, direct experience has provided no evidence for this noxious legend: "This offensive odor is no way discoverable in their Synagogues where many are, and by reason of their number could not be concealed: nor is the same discernible in commerce or conversation with such as are cleanly in apparel, and decent in their houses." The "test case" of Jewish converts to Christianity proves the point, for even the worst bigots do not accuse such people of smelling bad: "Unto converted Jews who are of the same seed, no man imputeth this unsavory odor; as though aromatized by their conversion, they lost their scent with their religion, and smelt no longer." If people of Jewish lineage could be identified by smell, the Inquisition would greatly benefit from a surefire guide for identifying insincere converts: "There are at present many thousand Jews in Spain... and some dispensed withal even to the degree of Priest-
hood; it is a matter very considerable, and could they be smelled out, would much advantage, not only the Church of Christ, but also the Coffers of Princes."

Turning to arguments from reason, foul odors might arise among groups of people from unhealthy habits of diet or hygiene. But Jewish dietary laws guarantee moderation and good sense, while drinking habits tend to abstemiousness—"seldom offending in ebriety or excess of drink, nor erring in gulosity or superfluity of meats; whereby they prevent indigestion and crudities, and consequently putrescence of humors."

If no reason can therefore be found in Jewish habits of life, the only conceivable rationale for a noxious racial odor would lie in a divine "curse derived upon them by Christ...as a badge or brand of a generation that crucified their Salvator." But Browne rejects this proposal even more forcefully as a "conceit without all warrant; and an easie way to take off dispute in what point of obscurity so ever." The invocation of miraculous agency, when no natural explanation can be found, is a coward's or lazy man's escape from failure. (Browne does not object to heavenly intervention for truly great events like Noah's flood or the parting of the Red Sea, but a reliance upon miracles for small items, like the putative racial odor of unfairly stigmatized people, makes a mockery of divine grandeur. Browne then heaps similar ridicule on the legend that Ireland has no snakes because St. Patrick cast them out with his rod. Such inappropriate claims for a myriad of minor miracles only stifles discussion about the nature of phenomena and the workings of genuine causes.)

But Browne then caps his case against the proposition "that Jews stink" with an even stronger argument based on reason. The entire subject, he argues, makes no sense because the category in question—the Jewish people—does not represent the kind of entity that could bear such properties as a distinctive national odor.

Among the major fallacies of human reason, such "category mistakes" are especially common in the identification of groups and the definition of their characters—problems of special concern to taxonomists like myself. Much of Browne's text is archaic, and strangely fascinating therefore as a kind of conceptual fossil. But his struggle with errors of categories in debunking the proposition "that Jews stink" interleaves a layer of modern relevance, and un-
covers a different kind of reason for contemporary interest in the arguments of *Pseudodoxia Epidemica*.

Browne begins by noting that traits of individuals can't automatically be extended to properties of groups. We do not doubt that individuals have distinctive odors, but groups might span the full range of individual differences, and thereby fail to maintain any special identity. What kind of group might therefore qualify as a good candidate for such distinctive properties?

Browne argues that such a group would have to be tightly defined, either by strict criteria of genealogy (so that members might share properties by heredity of unique descent) or by common habits and modes of life not followed by other people (but Browne had already shown that Jewish lifestyles of moderation and hygiene disprove any claim for unsavory national odor).

Browne then clinches his case by arguing that the Jewish people do not represent a strict genealogical group. Jews have been dispersed throughout the world, reviled and despised, expelled and excluded. Many subgroups have been lost by assimilation, others diluted by extensive intermarriage. Most nations, in fact, are strongly commingled and therefore do not represent discrete groups by genealogical definition; this common tendency has been exaggerated among the Jewish people. Jews are not a distinct hereditary group, and therefore cannot have such properties as a national odor:

> There will be found no easie assurance to fasten a material or temperamental propriety upon any nation; ... much more will it be difficult to make out this affection in the Jews; whose race however pretended to be pure, must needs have suffered inseparable commixtures with nations of all sorts. ... It being therefore acknowledged that some [Jews] are lost, evident that others are mixed, and not assured that any are distinct, it will be hard to establish this quality [of national odor] upon the Jews.

In many years of pondering over fallacious theories of biological determinism, and noting their extraordinary persistence and tendency to reemerge after presumed extirpation, I have been struck by a property that I call "surrogacy." Specific arguments raise a definite charge against a particular group—that Jews stink, that Irishmen drink, that women love mink, that Africans can't think—but each specific claim acts as a surrogate for any other. The general
form of argument is always the same, and always permeated by identical fallacies over the centuries. Scratch the argument that women, by their biological nature, cannot be effective as heads of state and you will uncover the same structure of bad inference underlying someone else's claim that African Americans will never form a high percentage of the pool of Ph.D. candidates.

Thus, Browne's old refutation of the myth "that Jews stink" continues to be relevant for our modern struggle, since the form of his argument applies to our current devaluings of people for supposedly inborn and unalterable defects of intelligence or moral vision. Fortunately (since I belong to the group), Jews are not taking much heat these days (though I need hardly mention the searing events of my parents' generation to remind everyone that current acceptance should breed no complacency). This season's favorite myth has recalled another venerable chapter in this general form of infamy—The Bell Curve's version of the claim that people of African descent have, on average, less innate intelligence than all other folks.

Following Browne's strategy, this claim can be debunked with a mixture of factual citation and logical argument. I shall not go through the full exercise here, lest this essay become a book. (see the first two essays of this section). But I do wish to emphasize that Browne's crowning point in refuting the legend "that Jews stink"—his explication of category mistakes in defining Jews as a biological group—also undermines the modern myth of black intellectual inferiority, from Jensen and Shockley in the 1960s to Murray and Herrnstein today.

The African American population of the United States today does not form a genealogical unit in the same sense that Browne's Jews lacked inclusive definition by descent. As a legacy of our ugly history of racism, anyone with a visually evident component of African ancestry belongs to the category of "black" even though many persons so designated have substantial, often majoritarian Caucasian ancestry as well. (An old "trick" question for baseball aficionados asks: "What Italian American player hit more than forty home runs for the Brooklyn Dodgers in 1953"? The answer is "Roy Campanella," who had a Caucasian Italian father and a black mother, but who, by our social conventions, is always identified as black.)

(As a footnote on the theme of surrogacy, explanations of the same category mistake for blacks and Jews often take the same prej-
udicial form of blaming the victim. Browne, though generally and refreshingly free of anti-Jewish bias, cites a particularly ugly argument in explaining high rates of miscegenation between Jews and Christians—the supposed lasciviousness of Jewish women and their preference for blond Christian men over swarthy and unattractive Jews. Browne writes: "Nor are fornications infrequent between them both [Jewish women and Christian men]; there commonly passing opinions of invitement, that their women desire copulation with them rather than their own nation, and affect Christian carnality above circumcised venery." American racists often made the same claim during slavery days—a particularly disgraceful lie in this case, for the argument works to excuse rapists by blaming the truly powerless. For example, Louis Agassiz wrote in 1863: "As soon as the sexual desires are awakening in the young men of the South, they find it easy to gratify themselves by the readiness with which they are met by colored [half-breed] house servants. . . . This blunts his better instincts in that direction and leads him gradually to seek more spicy partners, as I have heard the full blacks called by fast young men.")

Obviously, we cannot make a coherent claim for "blacks" being innately anything by heredity if the people so categorized do not form a distinctive genealogical grouping. But the category mistake goes far, far deeper than dilution by extensive intermixture with other populations. The most exciting and still emerging discovery in modern paleoanthropology and human genetics will force us to rethink the entire question of human categories in a radical way. We shall be compelled to recognize that "African black" cannot rank as a racial group with such conventional populations as "Native American," "European Caucasian," or "East Asian," but must be viewed as something more inclusive than all the others combined, not really definable as a discrete group, and therefore not available for such canards as "African blacks are less intelligent" or "African blacks sure can play basketball."

The past decade of anthropology has featured a lively debate about the origin of the only living human species, Homo sapiens. Did our species emerge separately on three continents (Africa, Europe, and Asia) from precursor populations of Homo erectus inhabiting all these areas—the so-called multiregionalist view? Or did Homo sapiens arise in one place, probably Africa, from just one of these Homo
erectus populations, and then spread out later to cover the globe—the so-called out-of-Africa view?

The tides of argument have swung back and forth, but recent evidence seems to be cascading toward Out of Africa. As more and more genes are sequenced and analyzed for their variation among human racial groups, and as we reconstruct genealogical trees based upon these genetic differences, the same strong signal and pattern seem to be emerging: Homo sapiens arose in Africa; the migration into the rest of the world did not begin until 112,000 to 280,000 years ago, with the latest, more technologically sophisticated studies favoring dates near the younger end of this spectrum.

In other words, all non-African racial diversity—whites, yellows, reds, everyone from the Hopi to the Norwegians, to the Fijians—may not be much older than one hundred thousand years. By contrast, Homo sapiens has lived in Africa for a longer time. Consequently, since genetic diversity roughly correlates with time available for evolutionary change, genetic variety among Africans alone exceeds the sum total of genetic diversity for everyone else in the rest of the world combined! How, therefore, can we lump "African blacks" together as a single group, and imbue them with traits either favorable or unfavorable, when they represent more evolutionary space and more genetic variety than we find in all non-African people in all the rest of the world? Africa is most of humanity by any proper genealogical definition; all the rest of us occupy a branch within the African tree. This non-African branch has surely flourished, but can never be topologically more than a subsection within an African structure.

We will need many years, and much pondering, to assimilate the theoretical, conceptual, and iconographic implications of this startling reorientation in our views about the nature and meaning of human diversity. For starters, though, I suggest that we finally abandon such senseless statements as "African blacks have more rhythm, less intelligence, greater athleticism." Such claims, apart from their social perniciousness, have no meaning if Africans cannot be construed as a coherent group because they represent more diversity than all the rest of the world put together.

Our greatest intellectual adventures often occur within us—not in the restless search for new facts and new objects on the earth or the stars, but from a need to expunge old prejudices and build
new conceptual structures. No hunt can have a sweeter reward, a more admirable goal, than the excitement of thoroughly revised understanding—the inward journey that thrills real scholars and scares the bejesus out of the rest of us. We need to make such an internal expedition in reconceptualizing our views of human genealogy and the meaning of evolutionary diversity. Thomas Browne—for we must award him the last word—praised such inward adventures above all other intellectual excitement. Interestingly, in the same passage, he also invoked Africa as a metaphor for unknown wonder. He could not have known the uncanny literal accuracy of his words (from Religio Medici, Book 1, Section 15):

I could never content my contemplation with those general pieces of wonder, the flux and reflux of the sea, the increase of Nile, the conversion of the [compass] needle to the north; and have studied to match and parallel those in the more obvious and neglected pieces of nature, which without further travel I can do in the cosmography of myself; we carry with us the wonders we seek without us: there is all Africa and her prodigies in us; we are that bold and adventurous piece of nature.
Racial Geometry

Interesting stories often lie encoded in names that seem either capricious or misconstrued. Why, for example, are political radicals called "left" and their conservative counterparts "right"? In most European legislatures, maximally distinguished members sat at the chairman's right, following a custom of courtesy as old as all our prejudices for favoring the dominant hand of most people. (These biases run deep, extending well beyond can openers and writing desks to language itself, where "dextrous" comes from the Latin for "right," and "sinister" for "left.") Since these distinguished nobles and moguls tended to espouse conservative views, the right and left wings of the legislature came to define a geometry of political views.

Among such apparently capricious names in my own field of biology and evolution, none seems more curious, and none elicits more inquiry from correspondents and questioners after lectures, than the official designation of light-skinned people from Europe, western Asia, and North Africa as Caucasian. Why should this most common racial group of the Western world be named for a range of mountains in Russia? J. F. Blumenbach (1752–1840), the German naturalist who established the most influential of all racial classifications, invented this name in 1795, in the third edition of his seminal work, De generis humanivarietate nativa (On the Natural Variety of Mankind). Blumenbach's original definition cites two reasons for his choice—the maximal beauty of people from this small region, and the probability that humans had first been created in this area. Blumenbach wrote:

Caucasian variety. I have taken the name of this variety from Mount Caucasus, both because its neighborhood, and especially its southern slope, produces the most beautiful race of men, and because ... in that region, if anywhere, we ought with the greatest probability to place the autochthones [original forms] of mankind.

Blumenbach, one of the greatest and most honored naturalists of the Enlightenment, spent his entire career as a professor at the University of Göttingen in Germany. He first presented his work De
generis humanivarietate nativa as a doctoral dissertation to the medical faculty of Gottingen in 1775, as the minutemen of Lexington and Concord began the American Revolution. He then republished the text for general distribution in 1776, as a fateful meeting in Philadelphia proclaimed our independence. The coincidence of three great documents in 1776—Jefferson's Declaration of Independence (on the politics of liberty), Adam Smith's Wealth of Nations (on the economics of individualism), and Blumenbach's treatise on racial classification (on the science of human diversity)—records the social ferment of these decades, and sets the wider context that makes Blumenbach's taxonomy, and his decision to call the European race Caucasian, so important for our history and current concerns.

The solution to big puzzles often hinges upon tiny curiosities, easy to miss or to pass over. I suggest that the key to understanding Blumenbach's classification, the foundation of so much that continued to influence and disturb us today, lies in a peculiar criterion that he used to name the European race Caucasian—the supposed maximal beauty of people from this region. Why, first of all, should anyone attach such importance to an evidently subjective assessment; and why, secondly, should an aesthetic criterion become the basis for a scientific judgment about place of origin? To answer these questions, we must turn to Blumenbach's original formulation of 1775, and then move to the changes he introduced in 1795, when Caucasians received their name.

Blumenbach's final taxonomy of 1795 divided all humans into five groups defined by both geography and appearance—in his order, the "Caucasian variety" for light-skinned people of Europe and adjacent areas; the "Mongolian variety" for inhabitants of eastern Asia, including China and Japan; the "Ethiopian variety" for dark-skinned people of Africa; the "American variety" for native populations of the New World; and the "Malay variety" for Polynesians and Melanesians of Pacific islands, and for the aborigines of Australia. But Blumenbach's original classification of 1775 recognized only the first four of these five, and united members of the "Malay variety" with the other people of Asia whom Blumenbach later named "Mongolian."

We now encounter the paradox of Blumenbach's reputation as the inventor of modern racial classification. The original four-race system, as I shall illustrate in a moment, did not arise from Blumen-
bach's observations or theorizing, but only represents, as Blumenbach readily admits, the classification adopted and promoted by his guru Carolus Linnaeus in the founding document of taxonomy, the *Systema naturae* of 1758. Therefore, the later addition of a "Malay variety" for some Pacific peoples originally included in a broader Asian group, represents Blumenbach's only original contribution to racial classification. This change seems so minor. Why, then, do we credit Blumenbach, rather than Linnaeus, as the founder of racial classification? (One might prefer to say "discredit," as the enterprise does not, for good reason, enjoy high repute these days.) I wish to argue that Blumenbach's apparently small change actually records a theoretical shift that could not have been broader, or more portentous, in scope. This change has been missed or misconstrued in most commentaries because later scientists have not grasped the vital historical and philosophical principle that theories are models subject to visual representation, usually in clearly definable geometric terms.

By moving from the Linnaean four-race system to his own five-race scheme, Blumenbach radically changed the geometry of human order from a geographically based model without explicit ranking to a double hierarchy of worth, oddly based upon perceived beauty and fanning out in two directions from a Caucasian ideal. The addition of a Malay category, as we shall see, was crucial to this geometric reformulation—and Blumenbach's "minor" change between 1775 and 1795 therefore becomes the key to a conceptual transformation rather than a simple refinement of factual information within an old scheme. (For the insight that scientific revolutions embody such geometric shifts, I am grateful to my wife, Rhonda Roland Shearer, who portrays these themes in her sculptures and in her forthcoming book, *The Flatland Hypothesis*, named for Abbott's great science fiction work of 1884 on the limitations imposed by geometry upon our general thoughts and social theories.)

Blumenbach idolized his teacher Linnaeus. On the first page of the 1795 edition of his racial classification, Blumenbach hailed "the immortal Linnaeus, a man quite created for investigating the characteristics of the works of nature, and arranging them in systematic order." Blumenbach also acknowledged Linnaeus as the source of his original fourfold classification: "I have followed Linnaeus in the number, but have defined my varieties by other boundaries" (1775
THREE CENTURIES' PERSPECTIVES

edition). Later, in adding his "Malay variety," Blumenbach identified his change as a departure from his old guru Linnaeus: "It became very clear that the Linnaean division of mankind could no longer be adhered to; for which reason I, in this little work, ceased like others to follow that illustrious man."

Linnaeus divided his species *Homo sapiens* into four varieties, defined primarily by geography and secondarily by three words indicating color, temperament, and stance. (Linnaeus also included two other false or fanciful varieties within *Homo sapiens*—*satur* "wild boys" occasionally discovered in the woods and possibly raised by animals [most turned out to be retarded or mentally ill youngsters abandoned by their parents]; and *monstruosus* for travelers' tales of hairy people with tails, and other assorted fables.)

Linnaeus then presented the four major varieties arranged by geography and, interestingly, not in the ranked order favored by most Europeans in the racist tradition. He discussed, in sequence, *Americanus* (North American), *Europeus, Asiaticus, and Afer* (or African). In so doing, Linnaeus presented nothing at all original, but merely mapped humans onto the four geographic regions of conventional cartography.

In the first line of his descriptions, Linnaeus characterized each group by three words for color, temperament, and posture in that order. Again, none of these three categories implies any ranking by worth. Moreover, Linnaeus again bowed to classical taxonomic theories rather than his own observations in making these decisions. For example, his separations by temperament (or "humor") record the ancient and medieval theory that a person's mood arises from a balance of four fluids (humor is Latin for "moisture")—blood, phlegm, choler (or yellow bile), and melancholy (or black bile). One of the four substances would dominate, and a person would therefore be sanguine (the cheerful realm of blood), phlegmatic (sluggish), choleric (prone to anger), or melancholic (sad). Four geographic regions, four humors, four races.

For the American variety, Linnaeus wrote "*rufus, cholericus, rectus*" (red, choleric, upright); for the European, "*albus, sanguineus, torosus*" (white, sanguine, muscular); for the Asian, "*luridus, melancholicus, rigidus*" (pale-yellow, melancholy, stiff); and for the African, "*niger, phlegmaticus, laxus*" (black, phlegmatic, relaxed).

I don't mean to deny that Linnaeus held conventional beliefs
Three Centuries' Perspectives

about the superiority of his own European variety over all others. He surely maintained the almost universal racism of his time—and being sanguine and muscular as a European surely sounds better than being melancholy and stiff as an Asian. Moreover, Linnaeus included a more overtly racist label in his last line of description for each variety. Here he tries to epitomize supposed behavior in a single word following the statement "regitur" (ruled)—for the American, consuetudine (by habit); for the European, ritibus (by custom); for the Asian, opinionibus (by belief); and for the African, arbitrio (by caprice). Surely, regulation by established and considered custom beats the unthinking rule of habit or belief, and all these are superior to caprice—thus leading to the implied and conventional racist ranking of Europeans first, Asians and Americans in the middle, and Africans at the bottom.

Nonetheless, and despite these implications, the overt geometry of Linnaeus's model is not linear or hierarchical. When we epitomize his scheme as an essential picture in our mind, we see a map of the world divided into four regions, with the people in each region characterized by a list of different traits. In short, Linnaeus uses cartography as a primary principle for human ordering; if he had wished to push ranking as the essential picture of human variety, he would surely have listed Europeans first and Africans last, but he started with Native Americans instead.

The shift from a geographic to a hierarchical ordering of human diversity marks a fateful transition in the history of Western science—for what, short of railroads and nuclear bombs, had more practical impact, in this case almost entirely negative, upon our collective lives and nationalities. Ironically, J. F. Blumenbach is the focus of this shift—for his five-race scheme became canonical, and he changed the geometry of human order from Linnaean cartography to linear ranking by putative worth.

I say ironic because Blumenbach was the least racist, most egalitarian, and most genial of all Enlightenment writers on the subject of human diversity. How peculiar that the man most committed to human unity, and to inconsequential moral and intellectual differences among groups, should have changed the mental geometry of human order to a scheme that has promoted conventional racism ever since. Yet, on second thought, this situation is really not so peculiar or unusual—for most scientists have always been unaware
of the mental machinery, and particularly of the visual or geometric implications, behind all theorizing.

An old tradition in science proclaims that changes in theory must be driven by observation. Since most scientists believe this simplistic formula, they assume that their own shifts in interpretation only record their better understanding of newly discovered facts. Scientists therefore tend to be unaware of their own mental impositions upon the world’s messy and ambiguous factuality. Such mental impositions arise from a variety of sources, including psychological predisposition and social context. Blumenbach lived in an age when ideas of progress, and of the cultural superiority of European life, dominated the political and social world of his contemporaries. Implicit and loosely formulated (or even unconscious) notions of racial ranking fit well with such a world view; almost any other taxonomic scheme would have been anomalous. In changing the geometry of human order to a system of ranking by worth, I doubt that Blumenbach did anything consciously in the overt service of racism. I think that he was only, and largely passively, recording the pervasive social view of his time. But ideas have consequences, whatever the motives or intentions of their promoters.

Blumenbach certainly thought that his switch from the Linnaean four-race system to his own five-race scheme—the basis for his fateful geometric shift, as we shall see, from cartography to hierarchy—arose only from his improved understanding of nature’s factuality. He so stated in the second (1781) edition of his treatise, when he announced his change: "Formerly in the first edition of his work, I divided all mankind into four varieties; but after I had more actively investigated the different nations of Eastern Asia and America, and, so to speak, looked at them more closely, I was compelled to give up that division, and to place in its stead the following five varieties, as more consonant to nature." And, in the preface to the third edition of 1795, Blumenbach states that he gave up the Linnaean scheme in order to arrange "the varieties of man according to the truth of nature." When scientists adopt the myth that theories arise solely from observation, and do not scrutinize the personal and social influences emerging from their own psyches, they not only miss the causes of their changed opinions, but may also fail to comprehend the deep and pervasive mental shift encoded by their own new theory.
Blumenbach strongly upheld the unity of the human species against an alternative view, then growing in popularity (and surely more conducive to conventional forms of racism), that each major race had been separately created. He ended the third edition of his treatise by writing: "No doubt can any longer remain but that we are with great probability right in referring all varieties of man ... to one and the same species."

As his major argument for unity, Blumenbach notes that all supposed racial characters grade continuously from one people to another, and cannot define any separate and bounded group.

For although there seems to be so great a difference between widely separate nations, that you might easily take the inhabitants of the Cape of Good Hope, the Greenlanders, and the Circassians for so many different species of man, yet when the matter is thoroughly considered, you see that all do so run into one another, and that one variety of mankind does so sensibly pass into the other, that you cannot mark out the limits between them.

He particularly refutes the common claim that black Africans, as lowest on the conventional racist ladder, bear unique features of their inferiority: "There is no single character so peculiar and so universal among the Ethiopians, but what it may be observed on the one hand everywhere in other varieties of men."

Blumenbach believed that Homo sapiens had been created in a single region and had then spread out over the globe. Our racial diversity, he then argued, arose as a result of our movement to other climates and topographies, and our consequent adoption of different habits and modes of life in these various regions. Following the terminology of his time, Blumenbach referred to these changes as "degenerations"—not intending, by this word, the modern sense of deterioration, but the literal meaning of departure from an initial form of humanity at the creation (de means "from" and genus refers to our original stock).

Most of these degenerations, Blumenbach argues, arise directly from differences in climate—ranging from such broad patterns as the correlation of dark skin with tropical environments, to more particular (and fanciful) attributions, including a speculation that the narrow eye slits of some Australian people may have arisen as their response to "constant clouds of gnats ... contracting the natural face of the inhabitants." Other changes then originate as a conse-
quence of varying modes of life adopted in these different regions. For example, nations that compress the heads of babies by swaddling boards or papoose carriers end up with relatively long skulls. Blumenbach holds that "almost all the diversity of the form of the head in different nations is to be attributed to the mode of life and to art."

Blumenbach does not deny that such changes, promoted over many generations, may eventually become hereditary (by a process generally called "Lamarckism," or "inheritance of acquired characters" today, but serving as the folk wisdom of the late eighteenth century, and as nothing peculiar to Lamarck, as Blumenbach's support illustrates). "With the progress of time," Blumenbach writes, "art may degenerate into a second nature."

But Blumenbach strongly held that most racial variation, as superficial impositions of climate and mode of life, could be easily altered or reversed by moving to a new region or by adopting new styles of behavior. White Europeans living for generations in the tropics may become dark-skinned, while Africans transported as slaves to high latitudes may eventually become white: "Color, whatever be its cause, be it bile, or the influence of the sun, the air, or the climate, is, at all events, an adventitious and easily changeable thing, and can never constitute a diversity of species."

Backed by these views on the superficiality of racial variation, Blumenbach stoutly defended the mental and moral unity of all peoples. He held particularly strong opinions on the equal status of black Africans and white Europeans—perhaps because Africans had been most stigmatized by conventional racist beliefs.

Blumenbach established a special library in his house devoted exclusively to writings by black authors. He may have been patronizing in praising "the good disposition and faculties of these our black brethren," but paternalism is better than contempt. He campaigned for the abolition of slavery when such views did not enjoy widespread assent, and he asserted the moral superiority of slaves to their captors, speaking of a "natural tenderness of heart, which has never been benumbed or extirpated on board the transport vessels or on the West India sugar plantations by the brutality of their white executioners."

Blumenbach affirmed "the perfectibility of the mental faculties and the talents of the Negro," and he listed the fine works of his
Blumenbach's racial geometry with two lines of "degeneration" extending out through intermediary stages from a central Caucasian "ideal." Figure modified from Anthropological Treatises, J. F. Blumenbach, 1865.
library, offering special praise for the poetry of Phillis Wheatley, a Boston slave whose writings have only recently been rediscovered and reprinted in America: "I possess English, Dutch, and Latin poems by several [black authors], amongst which however above all, those of Phillis Wheatley of Boston, who is justly famous for them, deserves mention here." Finally, Blumenbach noted that many Caucasian nations could not boast so fine a set of authors and scholars as black Africa has produced under the most depressing circumstances of prejudice and slavery: "It would not be difficult to mention entire well-known provinces of Europe, from out of which you would not easily expect to obtain off-hand such good authors, poets, philosophers, and correspondents of the Paris Academy."

Nonetheless, when Blumenbach presented his implied mental picture of human diversity—his transposition from Linnaean geography to hierarchical ranking—he chose to identify a central group as closest to the created ideal, and then to characterize other groups by relative degrees of departure from this archetypal standard. He ended up with a system (see the accompanying illustration from his treatise) that placed a single race at the pinnacle of closest approach to the original creation, and then envisioned two symmetrical lines of departure from this ideal toward greater and greater degeneration.

We may now return to the riddle of the name Caucasian, and to the significance of Blumenbach's addition of a fifth race, the Malay variety. Blumenbach chose to regard his own European variety as closest to the created ideal, and he then searched within the variety of Europeans for a smaller group of greatest perfection—the highest of the highest, so to speak. As we have seen, he identified the people around Mount Caucasus as the closest embodiments of an original ideal, and he then named the entire European race for their finest representatives.

But Blumenbach now faced a dilemma. He had already affirmed the mental and moral equality of all peoples. He therefore could not use these conventional standards of racist ranking to establish degrees of relative departure from the Caucasian ideal. Instead, and however subjective (and even risible) we view the criterion today, Blumenbach chose physical beauty as his guide to ranking. He simply affirmed that Europeans were most beautiful, with people of the Caucasus on the highest pinnacle of comeliness (hence his linking,
in the quotation presented at the beginning of this article, of max­imal beauty with place of human origin—for Blumenbach viewed all subsequent variation as departure from a created ideal, and the most beautiful people must therefore live closest to our primal home).

Blumenbach's descriptions are pervaded by his personal sense of relative beauty, presented as though he were discussing an objective and quantifiable property, not subject to doubt or disagreement. He describes a Georgian female skull (from closest to Mount Caucasus) in his collection as "really the most beautiful form of skull which . . . always of itself attracts every eye, however little observant." He then defends his European standard on aesthetic grounds:

In the first place, that stock displays . . . the most beautiful form of the skull, from which, as from a mean and primeval type, the others diverge by most easy gradations. . . . Besides, it is white in color, which we may fairly assume to have been the primitive color of mankind, since . . . it is very easy for that to degenerate into brown, but very much more difficult for dark to become white.

Blumenbach then presented all human variety on two lines of successive departure from this Caucasian ideal, ending in the two most degenerate (least attractive, not morally unworthy or mentally obtuse) forms of humanity—Asians on one side, and Africans on the other. But Blumenbach also wanted to designate intermediary forms between ideal and most degenerate—especially since even gradation formed his primary argument for human unity. In his original four-race system, he could identify Native Americans as intermediary between Europeans and Asians, but who would serve as the transnational form between Europeans and Africans?

The four-race system contained no appropriate group, and could therefore not be transformed into the new geometry of a pinnacle with two symmetrical limbs leading to maximal departure from ideal form. But invention of a fifth racial category for forms intermediate between Europeans and Africans would complete the new geometry—and Blumenbach therefore added the Malay race, not as a minor factual refinement, but as the enabler of a thorough geometric transformation in theories (mental pictures) about human diversity. As an intermediary between Europeans and
Africans, the Malay variety provided crucial symmetry for Blumenbach's hierarchical taxonomy. This Malay addition therefore completed the geometric transformation from an unranked geographic model to the conventional hierarchy of implied worth that has fostered so much social grief ever since. Blumenbach epitomized his system in this geometric manner, and explicitly defended the necessary role of his Malay addition:

I have allotted the first place to the Caucasian... which makes me esteem it the primeval one. This diverges in both directions into two, most remote and very different from each other; on the one side, namely, into the Ethiopian, and on the other into the Mongolian. The remaining two occupy the intermediate positions between that primeval one and these two extreme varieties; that is, the American between the Caucasian and Mongolian; the Malay between the same Caucasian and Ethiopian.

Scholars often suppose that academic ideas must remain, at worst, harmless and, at best, mildly amusing or even instructive. But ideas do not reside in the ivory tower of our usual metaphor about academic irrelevancy. People are, as Pascal said, thinking reeds, and ideas motivate human history. Where would Hitler have been without racism, Jefferson without liberty? Blumenbach lived as a cloistered professor all his life, but his ideas reverberate through our wars, our conquests, our sufferings, and our hopes. I therefore end by returning to the coincidence of 1776, as Jefferson wrote the Declaration of Independence while Blumenbach published the first edition of his treatise in Latin. Consider the words of Lord Acton on the power of ideas to propel history, as illustrated by potential passage from Latin to action:

It was from America that... ideas long locked in the breast of solitary thinkers, and hidden among Latin folios—burst forth like a conqueror upon the world they were destined to transform, under the title of the Rights of Man.
The Moral State of Tahiti—and of Darwin

Childhood precocity is an eerie and fascinating phenomenon. But let us not forget the limits; age and experience confer some blessing. The compositions that Mozart wrote at four and five are not enduring masterpieces, however sweet. We even have a word for such "literary or artistic works produced in the author's youth" (*Oxford English Dictionary*)—*juvenilia*. The term has always borne a derogatory tinge; artists certainly hope for substantial ontogenetic improvement! John Donne, in the second recorded use of the word (1633) entitled his early works: "Iuuuenilia: or certaine paradoxes and *problemes*.”

I shouldn't place myself in such august company, but I do feel the need to confess. My first work was a poem about dinosaurs, written at age eight. I cringe to remember its first *verse*:

Once there was a *Triceratops*
With his horns he gave big bops
He gave them to an allosaur
Who went away without a roar.

(I cringe even more to recall its eventual disposition. I sent the poem to my boyhood hero, Ned Colbert, curator of dinosaurs at the American Museum of Natural History. Fifteen years later, when I was taking his course as a graduate student, Colbert happened to clean out his old files, found the poem, and gleefully shared it with all my classmates one afternoon.)

Now, a trivia question on the same theme: What was Charles Darwin's first published work? A speculation on evolution? Perhaps a narrative of scientific discovery on the *Beagle*? No, this greatest and most revolutionary of all biologists, this inverter of the established order, published his first work in the *South African Christian Recorder* for 1836—a joint article with *Beagle* skipper Robert FitzRoy on "The Moral State of Tahiti." (The standard catalogue of Darwin's publications lists one prior *item*—a booklet of *Beagle* letters addressed to Professor Henslow and printed by the Cambridge Philosophical Society in 1835. But this pamphlet was issued only for private distribution among *members*—the equivalent of an informal modern
The Moral State of Tahiti represents Darwin's first public appearance in print, and biographers record this article as his first publication—even though the writing is mostly FitzRoy's, with long excerpts from Darwin's diaries patched in and properly acknowledged.

The great Russian explorer Otto von Kotzebue had poured fuel on an old and worldwide dispute by arguing that Christian missionaries had perpetrated far more harm than good in destroying native cultures (while often cynically fronting for colonial power) under the guise of "improvement." FitzRoy and Darwin wrote their article to attack Kotzebue and to defend the good work of English missionaries in Tahiti and New Zealand.

The two shipmates began by noting with sorrow the strong antimissionary sentiments that they had encountered when the Beagle called at Cape Town:

A very short stay at the Cape of Good Hope is sufficient to convince even a passing stranger, that a strong feeling against the Missionaries in South Africa is there very prevalent. From what cause a feeling so much to be lamented has arisen, is probably well known to residents at the Cape. We can only notice the fact: and feel sorrow.

Following a general defense of missionary activity, FitzRoy and Darwin move to specific cases of their own prior observation, particularly to the improved "moral state" of Tahiti:

Quitting opinions ... it may be desirable to see what has been doing at Otaheite (now called Tahiti) and at New Zealand, towards reclaiming the "barbarians." ... The Beagle passed a part of last November at Otaheite or Tahiti. A more orderly, quiet, inoffensive community I have not seen in any other part of the world. Every one of the Tahitians appeared anxious to oblige, and naturally good tempered and cheerful. They showed great respect for, and a thorough good will towards, the missionaries; ... and most deserving of such a feeling did those persons appear to be.

FitzRoy and Darwin were, obviously, attentive to a possible counterargument—that the Tahitians have always been so decent, and that missionary activity had been irrelevant to their good qualities by European taste. The article is largely an argument against this interpretation and a defense for direct and substantial "improvement" by missionaries. Darwin, in particular, presents two ar-
guments, both quoted directly from his journals. First, Tahitian Christianity seems deep and genuine, not "for show" and only in the presence of missionaries. Darwin cites an incident from his travels with native Tahitians into the island's interior, far from scrutiny. (This event must have impressed Darwin powerfully, for he told the tale in several letters to family members back home and included an account in his *Voyage of the Beagle*):

Before we laid ourselves down to sleep, the elder Tahitian fell on his knees, and repeated a long prayer. He seemed to pray as a christian should, with fitting reverence to his God, without ostentatious piety, or fear of ridicule. At daylight, after their morning prayer, my companions prepared an excellent breakfast of bananas and fish. Neither of them would taste food without saying a short grace. Those travellers, who hint that a Tahitian prays only when the eyes of the missionaries are fixed on him, might have profited by similar evidence.

Second, and more important, Tahitian good qualities have been created, or substantially fostered, by missionary activity. They were a dubious lot, Darwin asserts, before Western civilization arrived.

On the whole, it is my opinion that the state of morality and religion in Tahiti is highly creditable. . . . Human sacrifices,—the bloodiest warfare,—parricide,—and infanticide,—the power of an idolatrous priesthood,—and a system of profligacy unparalleled in the annals of the world,—have been abolished,—and dishonesty, licentiousness, and intemperance have been greatly reduced, by the introduction of Christianity.

(On the subject of sexual freedom in women, so long an issue and legend for Tahitian travelers from Captain Cook to Fletcher Christian, FitzRoy remarked: "I would scarcely venture to give a general opinion, after only so short an acquaintance; but I may say that I witnessed no improprieties." Nonetheless, FitzRoy did admit that "human nature in Tahiti cannot be supposed superior to erring human nature in other parts of the world." Darwin then added a keen observation on hypocrisy in Western male travelers who do not sufficiently credit missionaries as a result of their private frustration on this issue: "I do believe that, disappointed in not finding the field of licentiousness so open as formerly, and as was expected, they will not give credit to a morality which they do not wish to practise.

Many arguments float back and forth through this interesting
article, but the dominant theme can surely be summarized in a single word: paternalism. We know what is good for the primitives—and thank God they are responding and improving on Tahiti by becoming more European in their customs and actions. Praise the missionaries for this exemplary work. One comment, again by FitzRoy, captures this theme with special discomfort (to modern eyes) for its patronizing approach, even to royalty:

The Queen, and a large party, passed some hours on board the Beagle. Their behavior was extremely correct, and their manners were inoffensive. Judging from former accounts, and what we witnessed, I should think that they are improving yearly.

Thus, we may return to my opening issue—the theme of juvenilia. Shall we place this article on the "Moral State of Tahiti," Darwin's very first, into the category of severe later embarrassments? Did Darwin greatly revise his views on non-Western peoples and civilizations, and come to regard his early paternalism as a folly of youthful inexperience? Much traditional commentary in the hagiographical mode would say so—and isolated quotations can be cited from here and there to support such an interpretation (for Darwin was a complex man who wrestled with deep issues, sometimes in contradictory ways, throughout his life).

But I would advance the opposite claim as a generality. I don't think that Darwin ever substantially revised his anthropological views. His basic attitude remained: "they" are inferior but redeemable. His mode of argument changed in later life. He would no longer frame his attitude in terms of traditional Christianity and missionary work. He would temper his strongest paternalistic enthusiasm with a growing understanding (cynicism would be too strong a word) of the foibles of human nature in all cultures, including his own. (We see the first fruits of such wisdom in his comment, cited previously, on why sexually frustrated travelers fail to credit Tahitian missionaries.) But his basic belief in a hierarchy of cultural advance, with white Europeans on top and natives of different colors on the bottom, did not change.

Turning to the major work of Darwin's maturity, The Descent of Man (1871), Darwin writes in summary:

The races differ also in constitution, in acclimatisation, and in liability to certain diseases. Their mental characteristics are likewise very distinct;
chiefly as it would appear in their emotional, but partly in their intellectual faculties. Every one who has had the opportunity of comparison, must have been struck with the contrast between the taciturn, even morose, aborigines of S. America and the lighthearted, talkative negroes.

The most striking passage occurs in a different context. Darwin is arguing that discontinuities in nature do not speak against evolution, because most intermediate forms are now extinct. Just think, he tells us, how much greater the gap between apes and humans will become when both the highest apes and the lowest people are exterminated:

At some future period, not very distant as measured by centuries, the civilized races of man will almost certainly exterminate and replace throughout the world the savage races. At the same time the anthropomorphous apes . . . will no doubt be exterminated. The break will then be rendered wider, for it will intervene between man in a more civilized state, as we may hope, than the Caucasian, and some ape as low as a baboon, instead of as at present between the negro or Australian and the gorilla.

The common (and false) impression of Darwin's egalitarianism arises largely from selective quotation. Darwin was strongly attracted to certain peoples often despised by Europeans, and some later writers have falsely extrapolated to a presumed general attitude. On the Beagle voyage, for example, he spoke highly of African blacks enslaved in Brazil:

It is impossible to see a negro and not feel kindly towards him; such cheerful, open, honest expressions and such fine muscular bodies; I never saw any of the diminutive Portuguese with their murderous countenances, without almost wishing for Brazil to follow the example of Hayti.

But toward other peoples, particularly the Fuegians of southernmost South America, Darwin felt contempt: "I believe if the world was searched, no lower grade of man could be found." Elaborating later on the voyage, Darwin writes:

Their red skins filthy and greasy, their hair entangled, their voices discordant, their gesticulation violent and without any dignity. Viewing such men, one can hardly make oneself believe that they are fellow creatures placed in the same world. . . . It is a common subject of conjecture, what pleasure in life some of the less gifted animals can enjoy? How much more reasonably it may be asked with respect to these men.
On the subject of sexual differences, so often a surrogate for racial attitudes, Darwin writes in *The Descent of Man* (and with direct analogy to cultural variation):

It is generally admitted that with woman the powers of intuition, of rapid perception, and perhaps of imitation, are more strongly marked than in man; but some, at least, of these faculties are characteristic of the lower races, and therefore of a past and lower state of civilization. The chief distinction in the intellectual powers of the two sexes is shown by man attaining to a higher eminence, in whatever he takes up, than woman can attain—whether requiring deep thought, reason, or imagination, or merely the use of the senses and hands.

Darwin attributes these differences to the evolutionary struggle that males must pursue for success in mating: "These various faculties will thus have been continually put to the test, and selected during manhood." In a remarkable passage, he then expresses thanks that evolutionary innovations of either sex tend to pass, by inheritance, to both sexes—lest the disparity between men and women become ever greater by virtue of exclusively male accomplishment:

It is, indeed, fortunate that the law of the equal transmission of characters to both sexes has commonly prevailed throughout the whole class of mammals; otherwise it is probable that man would have become as superior in mental endowment to woman, as the peacock is in ornamental plumage to the peahen.

Shall we then simply label Darwin as a constant racist and sexist all the way from youthful folly to mature reflection? Such a stiff-necked and uncharitable attitude will not help us if we wish to understand and seek enlightenment from our past. Instead I will plead for Darwin on two grounds, one general, the other personal.

The general argument is obvious and easy to make. How can we castigate someone for repeating a standard assumption of his age, however much we may legitimately deplore that attitude today? Belief in racial and sexual inequality was unquestioned and canonical among upper-class Victorian males—probably about as controversial as the Pythagorean theorem. Darwin did construct a different rationale for a shared certainty—and for this we may exact some judgment. But I see no purpose in strong criticism for a largely passive acceptance of common wisdom. Let us rather analyze why
such potent and evil nonsense then passed for certain knowledge.

If I choose to impose individual blame for all past social ills, there will be no one left to like in some of the most fascinating periods of our history. For example, and speaking personally, if I place every Victorian anti-Semite beyond the pale of my attention, my compass of available music and literature will be pitifully small. Though I hold no shred of sympathy for active persecutors, I cannot excoriate individuals who acquiesced passively in a standard societal judgment. Rail instead against the judgment, and try to understand what motivates men of decent will.

The personal argument is more difficult and requires substantial biographical knowledge. Attitudes are one thing, actions another—and by their fruits ye shall know them. What did Darwin do with his racial attitudes, and how do his actions stack up against the mores of his contemporaries? By this proper criterion, Darwin merits our admiration.

Darwin was a meliorist in the paternalistic tradition, not a believer in biologically fixed and ineradicable inequality. Either attitude can lead to ugly statements about despised peoples, but practical consequences are so different. The meliorist may wish to eliminate cultural practices, and may be vicious and uncompromising in his lack of sympathy for differences, but he does view "savages" (Darwin's word) as "primitive" by social circumstance and biologically capable of "improvement" (read "Westernization"). But the determinist regards "primitive" culture as a reflection of unalterable biological inferiority, and what social policy must then follow in an era of colonial expansion: elimination, slavery, permanent domination?

Even for his most despised Fuegians, Darwin understood the small intrinsic difference between them in their nakedness and him in his regalia. He attributed their limits to a harsh surrounding climate and hoped, in his usual paternalistic way, for their eventual improvement. He wrote in his Beagle diary for February 24, 1834:

Their country is a broken mass of wild rocks, lofty hills and useless forests, and these are viewed through mists and endless storms. . . . How little can the higher powers of the mind come into play; what is there for imagination to paint, for reason to compare, for judgment to decide upon? To knock a limpet from the rock does not even require cunning, that lowest power of the mind. . . . Although essentially the same creature, how little must the
mind of one of these beings resemble that of an educated man. What a scale of improvement is comprehended between the faculties of a Fuegian savage and a Sir Isaac Newton!

Darwin’s final line on the Fuegians (in the *Voyage of the Beagle*) uses an interesting and revealing phrase in summary: "I believe, in this extreme part of South America, man exists in a lower state of improvement than in any other part of the world." You may cringe at the paternalism, but "lower state of improvement" does at least stake a claim for potential brotherhood. And Darwin did recognize the beam in his own shipmates' eyes in writing of their comparable irrationalisms:

Each [Fuegian] family or tribe has a wizard or conjuring doctor. . . . [Yet] I do not think that our Fuegians were much more superstitious than some of the sailors; for an old quartermaster firmly believed that the successive heavy gales, which we encountered off Cape Horn, were caused by our having the Fuegians on board.

I must note a precious irony and summarize (all too briefly) a bizarre and wonderful story. Were it not for paternalism, the *Beagle* might never have sailed, and Darwin would probably have lost his date with history. Regret paternalism, laugh at it, cringe mightily—but grant this most salutary, if indirect, benefit for Darwin. Captain FitzRoy had made a previous voyage to Tierra del Fuego. There he "acquired," through ransom and purchase, four Fuegian natives, whom he brought to England for a harebrained experiment in the "improvement" of "savages." They arrived at Plymouth in October 1830 and remained until the *Beagle* set sail again in December 1831.

One of the four soon died of smallpox, but the others lived at Walthamstow and received instruction in English manners, language, and religion. They attracted widespread attention, including an official summons for a visit with King William IV. FitzRoy, fiercely committed to his paternalistic experiment, planned the next *Beagle* voyage primarily to return the three Fuegians, along with an English missionary and a large cargo of totally incongruous and useless goods (including tea trays and sets of fine china) donated, with the world’s best will and deepest naivete, by women of the parish. There on the tip of South America, FitzRoy planned to establish a mission to begin the great task of improvement for the earth’s most lowly creatures.
FitzRoy would have chartered a boat at his own expense to return York Minster, Jemmy Button, and Fuegia Basket to their homes. (Fitzroy's names for his charges also reek with paternalistic derision. How would you like to be named Chrysler Building—the secular modern American counterpart to York Minster?) But the Admiralty, pressured by FitzRoy's powerful relatives, finally outfitted the Beagle and sent FitzRoy forth again, this time with Darwin's company. Darwin liked the three Fuegians, and his long contact in close quarters helped to convince him that all people share a common biology, whatever their cultural disparity. Late in life, he recalled in the Descent of Man (1871):

The American aborigines, Negroes and Europeans differ as much from each other in mind as any three races that can be named; yet I was incessantly struck, whilst living with the Fuegians on board the "Beagle," with the many little traits of character, showing how similar their minds were to ours.

FitzRoy's noble experiment ended in predictable disaster. They docked near Jemmy Button's home, built huts for a mission station, planted European vegetables, and landed Mr. Matthews, avatar of Christ among the heathen, along with the three Fuegians. Matthews lasted about two weeks. His china smashed, his vegetables trampled, FitzRoy ordered him back to the Beagle and eventually left him in New Zealand with his missionary brother.

FitzRoy returned a year and a month later. He met Jemmy Button, who told him that York and Fuegia had robbed him of all his clothes and tools, and left by canoe for their own nearby region. Jemmy, meanwhile, had "reverted" completely to his former mode of life, though he remembered some English, expressed much gratitude to FitzRoy, and asked the captain to take some presents to his special friends—a bow and quiver full of arrows to the schoolmaster of Walthamstow... and two spearheads made expressly for Mr. Darwin." In a remarkable example of stiff upper lip in the face of adversity, FitzRoy put the best possible spin upon a personal disaster. He wrote in conclusion:

Perhaps a ship-wrecked seaman may hereafter receive help and kind treatment from Jemmy Button's children; prompted, as they can hardly fail to be, by the traditions they will have heard of men of other lands; and by an idea, however faint, of their duty to God as well as their neighbor.
But the strongest argument for admiring Darwin lies not in the relatively beneficent character of his belief, but in his chosen form of action upon these convictions. We cannot use a modern political classification as termini of an old spectrum. The egalitarian end did not exist for the policymakers of Darwin's day. All were racists by modern standards. On that spectrum, those we now judge most harshly urged that inferiority be used as an excuse for dispossession and slavery, while those we most admire in retrospect urged a moral principle of equal rights and nonexploitation, whatever the biological status of people.

Darwin held this second position along with the two Americans best regarded by later history: Thomas Jefferson and Darwin's soul-mate (for they shared the same birthdate) Abraham Lincoln. Jefferson, though expressing himself tentatively, wrote: "I advance it, therefore, as a suspicion only, that the blacks . . . are inferior to the whites in the endowment both of body and of mind." But he wished no policy of forced social inequality to flow from this suspicion: "Whatever be their degree of talents, it is no measure of their rights." As for Lincoln, many sources have collected his chilling (and frequent) statements about black inferiority. Yet he is national hero numero uno for his separation of biological assessment from judgments about moral issues and social policies.

Darwin, too, was a fervent and active abolitionist. Some of the most moving passages ever written against the slave trade occur in the last chapter of the *Voyage of the Beagle*. Darwin's ship, after calling at Tahiti, New Zealand, Australia, and South Africa (where FitzRoy and Darwin submitted their bit of juvenilia to a local paper), stopped for a last visit in Brazil, before setting a straight course to England. Darwin wrote:

On the 19th of August we finally left the shores of Brazil. I thank God I shall never again visit a slave-country. . . . Near Rio de Janeiro I lived opposite to an old lady, who kept screws to crush the fingers of her female slaves. I have stayed in a house where a young household mulatto, daily and hourly, was reviled, beaten, and persecuted enough to break the spirit of the lowest animal. I have seen a little boy, six or seven years old, struck thrice with a horse-whip (before I could interfere) on his naked head, for having handed me a glass of water not quite clean. . . . I was present when a kind-hearted man was on the point of separating forever the men, women, and little children of a large number of families who had long lived together.
In the next line, Darwin moves from description to refutation and a plea for action:

I will not even allude to the many heart-sickening atrocities which I authentically heard of;—nor would I have mentioned the above revolting details, had I not met with several people so blinded by the constitutional gaiety of the negro as to speak of slavery as a tolerable evil.

Refuting the standard argument for benevolent treatment with a telling analogy from his own land, Darwin continues:

It is argued that self-interest will prevent excessive cruelty; as if self-interest protected our domestic animals, which are far less likely than degraded slaves to stir up the rage of their savage masters.

Though I have read them a hundred times, I still cannot encounter Darwin's closing lines without experiencing a spinal shiver for the power of his prose—and without feeling great pride in having an intellectual hero with such admirable human qualities as well (the two don't mesh very often):

Those who look tenderly at the slave owner and with a cold heart at the slave, never seem to put themselves into the position of the latter; what a cheerless prospect, with not even a hope of change! Picture to yourself the chance, ever hanging over you, of your wife and your little children—those objects which nature urges even the slave to call his own—being torn from you and sold like beasts to the first bidder! And these deeds are done and palliated by men, who profess to love their neighbors as themselves, who believe in God, and pray that his Will be done on earth! It makes one's blood boil, yet heart tremble, to think that we Englishmen and our American descendants, with their boastful cry of liberty, have been and are so guilty.

Thus, if we must convene a court more than 150 years after the event—a rather foolish notion in any case, though we seem driven to such anachronism—I think that Darwin will pass through the pearly gates, with perhaps a short stay in purgatory to think about paternalism. What then is the antidote to paternalism and its modern versions of insufficient appreciation for human differences (combined with too easy an equation of one's own particular and largely accidental way with universal righteousness)? What else but the direct and sympathetic study of cultural diversity—the world's most fascinating subject in any case, whatever its virtues in moral education. This is the genuine theme behind our valuable modern