
Int J Comput Vis (2008) 76: 123–139
DOI 10.1007/s11263-007-0052-1

Nonlocal Image and Movie Denoising

Antoni Buades · Bartomeu Coll · Jean-Michel Morel

Received: 11 April 2006 / Accepted: 7 March 2007 / Published online: 4 July 2007
© Springer Science+Business Media, LLC 2007

Abstract Neighborhood filters are nonlocal image and
movie filters which reduce the noise by averaging similar
pixels. The first object of the paper is to present a uni-
fied theory of these filters and reliable criteria to compare
them to other filter classes. A CCD noise model will be
presented justifying the involvement of neighborhood fil-
ters. A classification of neighborhood filters will be pro-
posed, including classical image and movie denoising meth-
ods and discussing further a recently introduced neighbor-
hood filter, NL-means. In order to compare denoising meth-
ods three principles will be discussed. The first principle,
“method noise”, specifies that only noise must be removed
from an image. A second principle will be introduced,
“noise to noise”, according to which a denoising method
must transform a white noise into a white noise. Contrar-
ily to “method noise”, this principle, which characterizes
artifact-free methods, eliminates any subjectivity and can be
checked by mathematical arguments and Fourier analysis.
“Noise to noise” will be proven to rule out most denoising
methods, with the exception of neighborhood filters. This
is why a third and new comparison principle, the “statistical
optimality”, is needed and will be introduced to compare the
performance of all neighborhood filters.

The three principles will be applied to compare ten dif-
ferent image and movie denoising methods. It will be first
shown that only wavelet thresholding methods and NL-
means give an acceptable method noise. Second, that neigh-
borhood filters are the only ones to satisfy the “noise to
noise” principle. Third, that among them NL-means is clos-
est to statistical optimality. A particular attention will be
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paid to the application of the statistical optimality crite-
rion for movie denoising methods. It will be pointed out
that current movie denoising methods are motion compen-
sated neighborhood filters. This amounts to say that they
are neighborhood filters and that the ideal neighborhood of
a pixel is its trajectory. Unfortunately the aperture prob-
lem makes it impossible to estimate ground true trajecto-
ries. It will be demonstrated that computing trajectories and
restricting the neighborhood to them is harmful for denois-
ing purposes and that space-time NL-means preserves more
movie details.

Keywords Image denoising · Movie denoising · Motion
estimation

1 Introduction

1.1 Neighborhood Filters

The main objective of this paper is to set under a common
framework and give comparison principles to all neighbor-
hood filters, including movie filters which are usually treated
as a different class. We shall call neighborhood filters all im-
age and movie filters which reduce the noise by averaging
similar pixels. General CCD noise models (briefly presented
in Sect. 2) imply that noise in digital images and movies is
signal dependent. Fortunately two pixels which received the
same energy from the outdoor scene undergo the same kind
of perturbations and therefore have the same noise model.
Under the fairly general assumption that at each energy level
the noise model is additive and white, denoising can be
achieved by first finding out the pixels which received the
same original energy and then averaging their observed grey
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levels. This observation has led to the wide class of neigh-
borhood filters classified in (Yaroslavsky 1985). Since the
original image value is lost these filters proceed by picking
for each pixel i the set of pixels J (i) spatially close to i and
with a similar grey level value.

Neighborhood filters proceed by replacing the grey
level value of i, u(i), by the average NFu(i) = 1

|J (i)| ×∑
j∈J (i) u(j). (Depending on the noise model other statis-

tical estimates are of course possible like the median, etc.)
Under the assumption that pixels j ∈ J (i) indeed received
the same original energy as i, NFu(i) is a denoised version
of u(i). The more famous neighborhood filters are Lee’s
σ -filter (Lee 1983), SUSAN (Smith and Brady 1997) and
the bilateral filter (Tomasi and Manduchi 1998) where the
neighborhoods are Gaussian in space and grey level.

1.2 Non Local Means

In a recent communication (Buades et al. 2005b) (see also
Buades et al. 2005a for a mathematical analysis) the authors
of the present paper extended the above mentioned neigh-
borhood filters to a wide class which they called non-local
means (NL-means). This algorithm class defines the neigh-
borhood J (i) of i by the condition: j ∈ J (i) if the grey level
of a whole window around j is close to the grey level of the
window around i. The spatial constraint is instead relaxed.

NL-means filters can be given two origins beyond classi-
cal neighborhood filters. The same Markovian pixel similar-
ity model was used in the seminal paper (Efros and Leung
1999) for texture synthesis from a texture sample. In that
case the neighborhood J (i) is not used for denoising. The
aim was to estimate from the texture sample the law of i

knowing its neighborhood. This law is used to synthesize
similar texture images by an iterative algorithm.

1.3 Movie Denoising

Last but not least, most state of the art movie denois-
ing methods are neighborhood filters and some of them,
in some sense, NL-means filters. Indeed, motion compen-
sated denoising methods start with the search for a temporal
neighborhood J (i), the trajectory, followed by an averaging
process. By the Lambertian assumption a pixel belonging
to a certain object conserves the same grey level value dur-
ing its trajectory. Therefore this is computed as a grey level
neighborhood of i in the sense of neighborhood filters. The
comparison of grey levels is not a sufficient criterion, a diffi-
culty usually called the aperture problem. Thus several mo-
tion compensated filters involve block matching. They con-
struct J (i) by comparing a whole block around j to a whole
block around i.

In all of these movie denoising algorithms the neighbor-
hood J (i) picks a single pixel per frame. One of our objec-
tives is to prove that this restriction is actually counterpro-
ductive. In fact the performance of movie denoising filters

improves significantly by forgetting about trajectories and
using all similar pixels in space-time, no matter how many
are picked per frame. For this reason the NL-means filter
treats movies as a union of images, rather than an image se-
quence. The time ordering of this union is irrelevant. The
aperture problem results in the existence of more samples
for each pixel and therefore increases the denoising perfor-
mance by nonlocal means.

1.4 Three Comparison Principles

A systematic comparison of the huge variety of denoising
methods is requested. On the other hand a comparison be-
tween methods which are based on very different principles
cannot be performed without formal comparison criteria. Vi-
sual comparison of artificially noisy images with their de-
noised version is subjective. Tables comparing distances of
the denoised image to the original are useful. They have two
drawbacks, though. The added noise is usually not realis-
tic, generally a white uniform noise with too large variance.
Such comparison methods depend strongly on the choice of
the image and do not permit to address the main issues: the
loss of image structure in noise and the creation of artifacts.

Thus we shall apply three principles aiming at more ob-
jective benchmarks. The first principle (already presented in
Buades et al. 2005b) asks that noise and only noise be re-
moved from an image. It has to be perceptually tested di-
rectly on an image with no artificial noise added. The com-
parison of methods is performed on the difference between
the image and its denoised version. We called this differ-
ence method noise. It is much easier to evaluate whether a
method noise contains some structure removed from the im-
age or not. The outcome of such experiments is clear cut on
a wide class of denoising filters of all origins including all
mentioned neighborhood filters.

We shall introduce here a second principle, noise to
noise, which requires that a denoising algorithm transforms
a white noise into a white noise. This paradoxical require-
ment seems to be the best way to characterize artifact-free
algorithms. It is affordable to mathematical analysis and to
Fourier spectrum testing. Mathematical and experimental ar-
guments will show that bilateral filters and NL-means are
the only ones satisfying the noise to noise principle.

The third principle, the statistical optimality is restricted
to neighborhood filters. It questions whether a given neigh-
borhood filter is able or not to retrieve faithfully the neigh-
borhood J (i) of any pixel i. NL-means will be shown to
best match this requirement. We shall apply this principle to
demonstrate that, contrarily to the current dominant technol-
ogy, motion estimation or compensation is not needed, and
even harmful, to perform movie denoising.
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1.5 The Extension of Patch-based Denoising Methods

Since a first version (Buades et al. 2005c) of the present pa-
per was disclosed in May 2005, several variants of nonlocal,
or “patch-based” methods and very careful denoising bench-
marks have been published by several authors. Mahmoudi
and Sapiro (2005) reported excellent denoising results and
acceleration methods for the non local means algorithms
applied to images and movies. Kervrann and Boulanger
(2006), Boulanger et al. (2006) proposed an adaptive exten-
sion of NL-means with variable window size depending on
statistical estimates, and performed an impressive compar-
ison benchmark. Awate and Whitaker (2005) have simulta-
neously proposed a method whose principles stand close to
the NL-means algorithm, since the method involves com-
parison between subwindows to estimate a restored value.
The objective of the algorithm “UINTA, for unsupervised
information theoretic adaptive filter”, is to denoise the im-
age by decreasing the randomness of the image. Azzabou et
al. (2006) have proposed an acceleration of NL-means by a
random walk exploration around each pixel and have again
reported impressive results for this accelerated NL-means.
Kindermann et al. (2005) and Gilboa et al. (2006) have given
a new, variational framework to non-local denoising leading
to iterated algorithms. They have also performed extensive
comparisons with total variation denoising.

Probably the most impressive results for a block match-
ing based denoising have been just reported by Dabov et al.
(2006). Let us summarize their methods in their own terms:
(We start by) “grouping similar 2D image fragments (e.g.
blocks) into 3D data arrays called “groups”. Collabora-
tive filtering is a special procedure developed to deal with
these 3D groups. We realize it using the three successive
steps: 3D transformation of 3D group, shrinkage of trans-
form spectrum, and inverse 3D transformation. The result is
a 3D estimate that consists of the jointly filtered grouped im-
age blocks. By attenuating the noise, the collaborative filter-
ing reveals even the finest details shared by grouped blocks
and at the same time it preserves the essential unique fea-
tures of each individual block. The filtered blocks are then
returned to their original positions. Because these blocks
are overlapping, for each pixel we obtain many different
estimates which need to be combined. Aggregation is a
particular averaging procedure which is exploited to take
advantage of this redundancy. (...) The experimental re-
sults presented here demonstrate that the developed meth-
ods achieve state-of-the-art denoising performance in terms
of both peak signal-to-noise ratio and subjective visual qual-
ity.”

The most striking point of this method is the fusion of
NL-means with a transform-domain shrinkage. The main
step remains block matching, but then the process is anal-
ogous to a motion compensated movie denoising algorithm:

all similar blocks are put into a single 3D volume, where
time is replaced by a similarity order. We may anticipate that
our conclusions are similar to the conclusions of (Dabov et
al. 2006). Applied to a movie, their algorithm will lead to
substitute to the movie time a “similarity time”, where all
blocks are put after each other based on their similarity and
not on their time order. This yields much more redundancy,
and therefore to a better denoising.

1.6 Plan

We shall proceed as follows. Section 2 presents a realistic
CCD noise model which leads to the basic hypothesis jus-
tifying neighborhood filters. Neighborhood filters including
NL-means and motion compensated movie denoising filters
are defined in Sect. 3. This section describes and discusses
some main movie filters. Section 4 proposes the three prin-
ciples to evaluate the performance of any denoising method.
All three principles are designed to serve comparative exper-
iments. Finally, the last section is devoted to a more mathe-
matical comparison of classical neighborhood filters and the
NL-means.

2 Noise Model

Most digital images and movies are obtained by a CCD de-
vice. Following (Colleen Gino 2004; Howell 2000; Gonza-
lez and Woods 2002), CCD’s show three kinds of noise. The
first one is the shot noise proportional to the square root of
the number of incoming photons in the captors during the
exposure time, namely

n0 =
√

Φ

hν
t · A · η,

where Φ is the light power (W/m2), hν the photon energy
(W s), t the exposure time in seconds (s), A the pixel area
(m2) and η the quantum efficiency. The other constants be-
ing fixed we can simply retain n0 = c

√
Φ where Φ is the

“true image” and C a constant (see Fig. 1).
Second, a dark or obscurity noise n1 is due to spurious

photons produced by the captor itself. We can assume the
dark noise to be white, additive and with zero mean. The
zero mean property is due to the substraction of a dark frame
from the raw image. The dark frame is obtained by averag-
ing the obscurity noise over a long period of time.

Third, the read out noise n2 is another electronic additive
and signal independent noise. This noise can be assumed to
have zero mean by the substraction from the raw image of a
bias frame.

Digital images eventually undergo a “gamma” correc-
tion, i.e. a nonlinear increasing contrast change g: “Gamma
correction is the name of an internal adjustment made in the
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Fig. 1 Simulated shot noise.
Left: original image u. Right:
noise image

√
un where n is the

realization of a zero mean white
noise with standard deviation
σ = 1. The noise in bright parts
is larger than in dark parts, an
effect which is corrected and
sometimes reversed by
gamma-correction

rendering of images through photography, television, and
computer imaging. The adjustment causes the spacing of
steps of shade between the brightest and dimmest part of an
image to appear “appropriate” (Gonzalez and Woods 2002).
Summarizing,

u(i) = g(Φ(i) + c
√

Φ(i)n0(i) + n1(i) + n2(i)),

where u(i) is the observed intensity at a pixel i, Φ(i) the
“true physical” light intensity average power sent by the
scene to pixel i, c a constant, n0(i), n1(i) and n2(i) three
independent and signal independent white noises. In prac-
tice g(s) = sα with 0 < α < 1. When Φ(i) is large the shot
noise

√
Φ(i) dominates n1 and n2 and is dominated by the

signal Φ(i). Thus we can expand u(i) as

u(i) � g(Φ(i)) + g′(Φ(i))(c
√

Φ(i)n0(i) + n1(i) + n2(i))

=: g(Φ(i)) + n(i). (1)

If instead Φ(i) is small with respect to n1(i) + n2(i),

n(i) � u(i) � g(n1(i) + n2(i)). (2)

Let us mention a case of particular interest. If g(s) � s
1
2 , the

noise n(i) reads

n(i) �
{

n0(i) in the bright parts of the image,√
n1(i) + n2(i) in the dark parts of the image.

(3)

In all cases the noise is signal dependent but independent
at different pixels. Figure 1 displays a simulated shot noise
associated to the Lena image. This noise is signal dependent
and much stronger in bright regions than in dark regions. In
order to apply many computer vision algorithms, the noise
parameters must be first estimated. For the study of these
parameters for the previous real CCD model we refer the
reader to (Liu et al. 2006).

In the following we aim at recovering g(Φ(i)), namely
the true image up to the unknown gamma correction. Equa-
tions (1), (2) and the white noise and independence assump-
tions on n0, n1 and n2 legitimate the following hypothesis:

Hypothesis 1 In a digital image, the noise model at each
pixel i only depends on the original pixel value Φ(i) and is
additive. Let J (i) be the set of pixels with the same original
value as i. Then n(j), j ∈ J (i) are independent and identi-
cally distributed.

Hypothesis 1 cannot be used directly because Φ(i) is
unknown. The challenge is to find out J (i) for every i.
The simplest idea to do so is to assume that all pixels with
the same observed value u(i) have the same noise model.
A more sophisticated use of Hypothesis 1 is the follow-
ing: for a given pixel in an image, detect all pixels which
have the same underlying model. By Hypothesis 1 each j

in J (i) obeys a model u(j) = v(i) + n(j) where n(j) are
i.i.d. It is then licit to perform a denoising of u(i) by re-
placing it by NFu(i) =: 1

|J (i)|
∑

j∈J (i) u(j). By the vari-
ance formula for independent variables one then obtains
NFu(i) = v(i) + ñ(i) where

Var(ñ(i)) = 1

|J (i)|Var(n(i)). (4)

By (4) if nine pixels with the same color plus some uncorre-
lated noise are averaged the noise is divided by three. Algo-
rithms proceeding in this way will be called neighborhood
filters. We shall now examine several classical or new in-
stances.

3 General Neighborhood Filters

3.1 Local Neighborhood Filters

The more primitive neighborhood filters replace the color of
a pixel with an average of the nearby pixels colors. Thus
J (i) is a spatial neighborhood. The filtered value can be
written as

Mρu(x) = 1

πρ2

∫

R2
e
− |x−y|2

ρ2 u(y)dy,

where the parameter ρ is roughly the size of the spatial
neighborhood involved in the filtering. Now, the closest pix-
els to i have not necessarily the same color as i. For instance
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Fig. 2 The nine pixels in the
baboon image on the left have
been enlarged. They present a
high red-blue contrast. In the red
pixels, the first (red) component
is stronger. In the blue pixels,
the third component, blue,
dominates. Neighborhood filters
select pixels with the same color
for averaging. In this case the
neighborhood of the central
pixel should contain the six red
pixels or, still better, the pixels
of the central column

Fig. 3 Most image details occur repeatedly. Each color indicates a
group of squares in the image which are almost indistinguishable. Im-
age self-similarity can be used to eliminate noise. It suffices to average
the squares which resemble each other

the red pixel placed in the middle of Fig. 2 has five red neigh-
bors and three blue ones. If its color is replaced by the av-
erage of the colors of its neighbors, it turns blue. The same
process would likewise redden the blue pixels of this figure.
Thus, the border between red and blue would be blurred.

In order to denoise the central red pixel, it is better to
average the color of this pixel with the nearby red pixels
and only them, excluding the blue ones. This is exactly the
technique of the sigma-filter. This famous algorithm is gen-
erally attributed to Lee (1983) but can be traced back to
Yaroslavsky and the Soviet Union image processing school
(Yaroslavsky 1985). The idea is to average neighboring pix-
els which also have a similar color value. The filtered value
by this strategy can be written

NFh,ρu(x) = 1

C(x)

∫

Bρ(x)

e
− |u(y)−u(x)|2

h2 u(y)dy, (5)

where u(x) is the color at x and NFh,ρu(x) its denoised ver-
sion. Only pixels inside Bρ(x) are averaged, h controls the
color similarity and C(x) is the normalization factor. SU-
SAN (Smith and Brady 1997) and the bilateral filter (Tomasi

and Manduchi 1998) make this process more symmetric by
involving a “bilateral” Gaussian depending on both space
and grey level. This leads to

SNFh,ρu(x) = 1

C(x)

∫

e
− |x−y|2

ρ2 e
− |u(y)−u(x)|2

h2 u(y)dy.

There is another way to avoid the blurring effect of the spa-
tial filtering Mρ by a statistical correction which we are go-
ing to use in the sequel. When the Gaussian mean is per-
formed on an edge, the variance of the performed mean can
become larger than the variance of the noise. This is a clue
that the average is not licit. A statistically optimal correction
was proposed by Lee again (Lee 1980),

LMρu(x) = Mρu(x) + σ 2
x

σ 2
x + σ 2

(u(x) −Mρu(x)),

where

σ 2
x = max

(

0,
1

πρ2

∫

R2
e
− |x−y|2

ρ2 (u(y) −Mρu(x))2dy − σ 2
)

and σ is the noise standard deviation. The original noisy
values are less altered when the variance of the performed
mean dominates the variance of the noise. This happens near
the edges or in textured regions. In consequence, the noise
is mainly reduced in flat zones as displayed in Fig. 4.

The bilateral filters perform a better denoising than Lee’s
correction. They maintain sharp boundaries, since they av-
erage pixels belonging to the same region as the reference
pixel. Bilateral filters fail when the standard deviation of
the noise exceeds the edge contrast. This fact is more ex-
tensively exposed in Sect. 5. In the following experiments
we do not distinguish between the classical neighborhood
filter and SUSAN or the bilateral filter. The following expe-
riments have been performed using a fixed spatial neighbor-
hood and a Gaussian weighted grey level difference.

Let us finally mention that the mean operation can be re-
placed by nonlinear operator like the median filter. The me-
dian filter (Tukey 1977) chooses the median value, that is,
the value which has exactly the same number of grey level
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Fig. 4 Comparison of neighborhood filters. From top to bottom and left to right: noisy image (σ = 15), Gaussian filtering, anisotropic filtering,
Lee’s statistical filter, sigma or bilateral filter and the NL-means algorithm. All methods except the Gaussian filtering maintain sharp edges.
However, the anisotropic filtering removes small details and fine structures. These features are nearly untouched by Lee’s statistical filter and
therefore completely noisy. The comparison of noisy grey level values by the sigma or bilateral filter is not so robust and irregularities are created
on the edges. The NL-means better cleans the edges without losing too many fine structures and details

values above and below in a fixed neighborhood. The me-
dian filter preserves the main boundaries, but it tends to re-
move the details. This filter is optimal for the removal of
impulse noise on images and doesn’t blur edges. It is equiv-
alent to an average of the pixels in a direction orthogonal to
the gradient, that is to an anisotropic diffusion or mean cur-
vature motion (Merriman et al. 1992). In the following, we
shall also show experiments based on the mean curvature
motion implemented as originally proposed in (Alvarez et
al. 1993). For a more recent review of the subject see (Keel-
ing and Stollberger 2002).

Figure 4 compares the performance of the various con-
sidered local neighborhood filters on a noisy image. Even if
each method provides a reasonable solution (all except the
Gaussian filtering maintain sharp edges), none of them is
fully acceptable. The anisotropic filter removes small details
and fine structures. These features are nearly untouched by
Lee’s statistical filter and therefore completely noisy. The
bilateral filters create irregularities on the edges and leave
some residual noise on flat zones.

3.2 Nonlocal Averaging

The most similar pixels to a given pixel have no reason to
be close to it. Think of periodic patterns, or of the elongated

edges which appear in most images. In 1999 Efros and Le-
ung (1999) used non local self-similarities as the ones illus-
trated in Fig. 3 to synthesize textures and to fill in holes in
images. Their algorithm scans a vast portion of the image in
search of all the pixels that resemble the pixel in restoration.
The resemblance is evaluated by comparing a whole win-
dow around each pixel, not just the color of the pixel itself.
Applying this idea to neighborhood filters leads to a gener-
alized neighborhood filter which we called non-local means
(or NL-means) (Buades et al., Buades et al. 2005a, 2005b).
NL-means has a formula quite similar to the sigma-filter,

NLu(x) = 1

C(x)

∫

Ω

e
− (Gρ∗|u(x+.)−u(y+.)|2)(0)

h2 u(y)dy, (6)

where Gρ is the Gauss kernel with standard deviation ρ,
C(x) is the normalizing factor, h acts as a filtering parameter
and

(Gρ ∗ |u(x + .) − u(y + .)|2)(0)

=
∫

R2
Gρ(t)|u(x + t) − u(y + t)|2dt.

The formula (6) means that u(x) is replaced by a weighted
average of u(y). The weights are significant only if a
Gaussian window around y looks like the corresponding
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Fig. 5 Comparison of different
denoising methods on a text
image. Top: noisy image. Below
and from left to right: crop of
the noisy image, the total
variation minimization, the
stationary wavelet thresholding,
the neighborhood filter with
spatial neighborhood 11 × 11
and the NL-means with the
whole image as search window.
NL-means seems well adapted
to text denoising since
characters and combinations of
characters are easily repeated in
a text. Since we have used only
three paragraphs the result can
be substantially improved by
using a complete page or even
more pages. In that case the
problem would be the huge time
of computation

Gaussian window around x. Thus the non-local means al-
gorithm uses image self-similarity to reduce the noise as
illustrated in Fig. 4. As Fig. 5 shows, the NL-means seems
to be well adapted to text denoising since characters and
combinations of characters are easily repeated in a text. One
of the limitations of the NL-means algorithm is the removal
of highly structured noise as in jpeg compressed images (see
Fig. 6). The NL-means is able to remove the block artifact
due to compression but at the cost of removing some de-
tails as the difference between the compressed and restored
images shows.

3.3 NL-Means Implementation Details

A NL-means simple version averages pixels which have a
grey level window around at a distance less or equal than a
certain threshold. The comparison of both windows is made

by an Euclidean norm of their difference. Indeed, if the noise
samples are locally i.i.d. with zero mean and variance σ 2 ,

E‖u(Ni ) − u(Nj )‖2 = ‖u0(Ni ) − u0(Nj )‖2 + 2σ 2,

where u0 denotes the original (unknown) image and u the
noisy one obtained by the addition of a white noise. Thus
using a threshold function and setting this hard threshold to
2σ 2 leads to take an average of pixels which originally had
an almost identical window around them.

So the point is: why using a soft Gaussian threshold in-
stead of a hard one? We may find pixels for which there is
no identical or nearly identical window in the image. In that
case, the threshold strategy should leave exactly the noise
value at such points. The result would visually be identified
as an impulse noise and the noise to noise principle would
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Fig. 6 Application of NL-means to restore a highly compressed image. Top: compressed and restored image by NL-means. Bottom: detail of
previous images and its difference. NL-means is able to remove block artifacts due to compression but at the cost of removing some details, as the
difference between the compressed and restored image shows

be violated. An exponential function is used instead of the
threshold and makes a more adaptive weighting distribution.

The Euclidean distance between two windows is also
weighted by a Gaussian-like kernel decaying from the cen-
ter of the window to its boundary. Indeed in digital images,
closer pixels are more dependent and therefore closer pix-
els to the reference one should have more importance in the
window comparison. In order to involve the current pixel in
its own average, the distance between the window centered
at the reference pixel and itself is set equal to the minimum
of the other distances. Otherwise, the probability distribu-
tion should be excessively large at the pixel itself.

For computational purposes of the NL-means algorithm,
we can restrict the search of similar windows in a larger
“search window” of size S × S pixels. In all experiments
we have fixed a 21 × 21 pixels search window and a simi-
larity square neighborhood of 7 × 7 pixels (this can be re-
duced for color images). If the image has a size N × N ,
then the final complexity of the algorithm is about 49 ×
441 × N2. The acceleration of the algorithm by multireso-
lution strategies has been proposed in (Buades et al. 2005a;
Mahmoudi and Sapiro 2005).

The filtering parameter h has been fixed to k ∗σ with k ∈
[0.75,1], when a noise of standard deviation σ is added. Due
to the fast decay of the exponential kernel, large Euclidean
distances lead to nearly zero weights acting as an automatic
threshold (see Figs. 16 and 18).

3.4 Movie Denoising

Nearly all state of the art movie filters are motion compen-
sated. The underlying idea is the existence of a “ground
true” physical motion, which motion estimation algorithms
should be able to estimate. Legitimate information should
exist only along these physical trajectories. The motion com-
pensated filters estimate explicitly the motion of the se-
quence by a motion estimation algorithm. The motion com-
pensated movie yields a new stationary data on which a sta-
tic filter can be applied.

One of the major difficulties in motion estimation is
the ambiguity of trajectories, the so called aperture prob-
lem. This problem is illustrated in Fig. 8. At most pixels,
there are several options for the displacement vector. All
of these options have a similar grey level value and a simi-
lar block around them. Now, motion estimators have to se-
lect one by some additional criterion. The most classical
approaches to motion estimation are the optical flow con-
straint (OFC) based methods and the block matching algo-
rithms. OFC methods assume that the grey level value of
the objects during their trajectory is nearly constant (Lam-
bertian assumption). In order to obtain a unique flow they
impose the flow field to vary smoothly in space. There
has been a constant progress in this estimation Horn and
Schunck (1981), Nagel (1983), Weickert (1998), Weickert
and Schnörr (2001). Other constraints enforcing the con-
stancy of the gradient and the Laplacian can be added as
proposed in Papenberg et al. (2006).



Int J Comput Vis (2008) 76: 123–139 131

Fig. 7 Three consecutive
frames of a degraded image
sequence. The sparse time
sampling in film sequences
makes restoration more difficult
than in 3D images

Fig. 8 Aperture problem and the ambiguity of trajectories are the
most difficult problem in motion estimation: There can be many good
matches. The motion estimation algorithms must pick one

The second class of motion estimation algorithms com-
putes the displacement at each pixel by comparing the grey
level values in a whole block around it. The similarity is
measured by a l1 or a l2 distance. As Fig. 8 shows, there can
be many blocks with similar configurations in the reference
frame.

Once the motion compensation has been performed one
can classify the movie denoising methods by the kind of 3D
neighborhood filter they apply to the compensated movie.
We refer to (Brailean et al. 1995) for a comprehensive re-
view. Samy (1985) and Sezan et al. (1991) proposed the
LMMSE filter which is a motion compensated Lee’s filter.
Ozkan et al. (1993) proposed the AWA filter, a motion com-
pensation of the neighborhood filters. Huang (1981) and
Martinez (1986) implemented motion compensated median
filters. Motion compensated Wiener filters were earlier pro-
posed by Kokaram (1993).

Figure 9 illustrates the improvement of motion compen-
sated algorithms compared with their static version. The
static filters are obtained by extending the 2D image filter
support to the 3D time-space support. We call them static
because they do not take into account the dynamic character
of image sequences. As this figure illustrates, the details are
better preserved and the boundaries less blurred with mo-
tion compensation. This explains why most recent papers
propose motion compensated algorithms.

3.5 Nonlocal Means for Movies

The above description of movie denoising algorithms and
its juxtaposition to the NL-means principle shows how the

main problem, motion estimation, can be circumvented. In
denoising, the more samples we have the happier we are.
The aperture problem is just a name for the fact that there
are many blocks in the next frame similar to a given one
in the current frame. Thus, singling out one of them in the
next frame to perform the motion compensation is an unnec-
essary and probably harmful step. A much simpler strategy
which takes advantage of the aperture problem is to denoise
a movie pixel by involving indiscriminately spatial and tem-
poral similarities: let the best win! In that way, we propose
to apply the NL-means to a movie in the following way:

NLu(x, t) = 1

C(x, t)

∫

Ω

∫

R

e
− (Gρ∗|u(x+.,t)−u(y+.,s)|2)(0)

h2

× u(y, s)dyds. (7)

Notice that the Gauss kernel Gρ is 2D but the integral in-
volves time and space. In practical terms NL-means takes
a spatial block around pixel x in frame t and looks for all
similar blocks in all frames including the current one. Then
a weighted average of all the similar pixels (y, s) is per-
formed. Figure 9 compares NL-means with motion compen-
sated neighborhood filters. The NL-means also reduces mo-
tion blur since it is not affected by possible errors of motion
estimation algorithms.

4 Three Principles for Denoising Algorithms
Evaluation

In this section, we shall address the problem of comparing
different denoising methods by proposing three formal com-
parison criteria.

4.1 Method Noise

A difference between the original image and its filtered ver-
sion shows the “noise” removed by the algorithm. This pro-
cedure has been introduced recently in Buades et al. (2005a)
and this difference or residue is called method noise. In
principle the method noise should look like a noise. Oth-
erwise, the method noise can be filtered again and its de-
terministic part turned back to the image. Recent denois-
ing methods adopted this recursive strategy to recover im-
age information lost in method noise (Osher et al. 2005;
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Fig. 9 Comparison of static filters, motion compensated filters and NL-means applied to the sequence of Fig. 7. Only a piece of the central
frame is displayed. From top to bottom and left to right: Lee’s correction, Lee’s correction with block matching (BM)-(LMMSE), sigma filter and
sigma filter with block-matching (AWA). Middle: the noise removed by each method (difference between the noisy and filtered frame). Motion
compensation improves the static algorithms by better preserving the details and creating less blur. The noise removed by LMMSE is nearly zero
on the strong boundaries. Thus, these boundaries are kept noisy. We can read the titles of the books in the noise removed by AWA. Therefore,
that much information has been removed from the original. Finally, the NL-means algorithm (bottom row) has almost no noticeable structure in its
removed noise. As a consequence, the filtered sequence has kept more details and is less blurred

Tadmor et al. 2004). When the standard deviation of the
noise is higher than the feature contrast a visual exploration
of the method noise is not reliable. Image features can be
masked in method noise. Thus the evaluation of a denoising
method should not rely on experiments where a white noise
with standard deviation larger than 5 has been added to the
original. The best way is actually not to add noise at all.

Definition 1 (Method noise) Let u be a (not necessarily
noisy) image and Dh a denoising operator depending on h.
The method noise of u is the image difference

n(Dh,u) = u − Dh(u). (8)

Principle 1 For every denoising algorithm, the method
noise must be zero if the image contains no noise and should
be in general an image of independent zero-mean random
variables.

Figures 10 and 11 display the method noise of various
denoising methods on a simple geometrical image. The al-

gorithms are applied to a slightly noisy version of the image
(σ = 2.5). Method parameters are fixed so that the method
noise has exactly σ 2 variance per pixel. The same parame-
ters have been used in the second experiment on a real im-
age. These method noise images should look like a white
noise in Fig. 10 and like a constant image in Fig. 11. The
Gaussian filter method noise highlights all the boundaries
and corners of the image. Averages are performed on a ra-
dial neighborhood and therefore do not adapt to the geo-
metrical configuration of the image. The anisotropic (me-
dian, mean curvature equation) filter averages pixels in the
direction of contours and therefore tends to preserve straight
edges. However, the corners are not well preserved since
they move at the speed of their high curvature. The iteration
of the median or the application of the mean curvature mo-
tion for larger times would completely modify the image and
even straight edges would not be preserved. The total vari-
ation minimization (Rudin et al. 1992) is praised for main-
taining sharp boundaries. However, most structures are mod-
ified and even straight edges are not well preserved. This
fact has received a mathematical proof in Meyer (2002). The
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Fig. 10 Method noise obtained
by various denoising methods
applied to a slightly noisy image
(σ = 2.5). From top to bottom
and left to right: noisy image,
Gaussian mean, mean curvature
motion, total variation
minimization, translation
invariant soft and hard
thresholding, bilateral filter and
NL-means. The various method
parameters have been adjusted
so that the method noise has a
per pixel variance equal to σ 2

Fig. 11 Method noise
experiment. Application of
various denoising methods to
the non noisy image of Fig. 10
with the same filtering
parameters. From top to bottom
and left to right: noisy image,
Gaussian mean, mean curvature
motion, total variation
minimization, translation
invariant soft and hard
thresholding, bilateral filter and
the NL-means

wavelet thresholding (Donoho and Johnstone 1994) method
noise is concentrated on the edges and corners. These struc-
tures lead to coefficients of large enough value but lower
than the threshold and which are erroneously canceled. The
method noise of the soft thresholding is not only based on
the small coefficients but also on an attenuation of the large
ones, leading to a general alteration of the original image.

The bilateral filter preserves the flat zones, but the edges
with a low contrast have been modified. The NL-means
method noise is the one which looks the more like a white
noise. When applying the algorithms to the non noisy image,
the removed features are more noticeable. The corners of
the squares can now be seen in the NL-means method noise.
These are the only features with a reduced amount of similar
samples, since for every corner there are only three similar
corners in the image. The experiment of Fig. 11 has been de-
signed to illustrate the usage of the method noise on images
without noise at all, usually synthetic images. Such experi-
ments characterize immediately the image features sensitive
to a given denoising method.

Finally, Fig. 12 displays the method noise on a real im-
age. The algorithms were applied to the original Lena image
scanned in 1973, in grey level. It contains a little amount
of noise. None of the methods can be claimed to deliver a
method noise looking like a noise. The hard thresholding
and NL-means give the least structured method noise. The
method noise of Lena in color is displayed in Fig. 13. Color

images are obviously easier to denoise by neighborhood fil-
ters.

4.2 Noise to Noise Principle

The noise to noise principle asks that a white noise be trans-
formed into a white noise. This requirement may look para-
doxical since noise is what we wish to get rid of. Now, it is
impossible to totally remove noise. The question is how the
remnants of noise look like. The transformation of a white
noise into any correlated signal creates structure and arti-
facts. Only white noise is perceptually devoid of structure,
as was pointed out by Attneave (1954).

Principle 2 A denoising algorithm must transform a white
noise image into a white noise image (with lower variance).

There are two ways to check this principle for a given de-
noising method. One of them is to find a mathematical proof
that the pixels remain independent (or at least uncorrelated)
and identically distributed random variables. The experi-
mental device simply is an observation the effect of de-
noising on the simulated realization of a white noise. Since
the Fourier transform of a white Gaussian noise is a white
Gaussian noise, the visualization of the Fourier transform
also is an adequate tool. Let us review how well classical al-
gorithms match the noise to noise principle. Figures 14 and
15 respectively display the filtered noises and their Fourier
transforms.
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Fig. 12 Method noise
experiment on Lena (gray levels
only). From top to bottom and
left to right: original image,
Gaussian mean, mean curvature
motion, total variation
minimization, translation
invariant soft and hard
thresholding, bilateral filter and
NL-means

Fig. 13 Lena method noise (in
color) by the sigma filter and the
NL-means. The results of
neighborhood filters improve
dramatically on color images
because similar pixels are much
better identifiable with three
components

Gaussian Convolution The convolution with a Gauss ker-
nel Gh is equivalent to the product in the Fourier domain
with a Gauss kernel of inverse standard deviation G1/h.
Therefore, convolving the noise with a kernel reinforces the
low frequencies and cancels the high ones. Thus, the filtered
noise will no more be a white noise and actually shows big
grains due to its prominent low frequencies.

Total Variation Minimization The Fourier transforms of
the total variation minimization and the Gaussian filtering
are quite similar even if the total variation preserves some
high frequency components.

Wavelet Thresholding Noise filtered by a wavelet thresh-
olding is no more a white noise. The few coefficients with
a magnitude larger than the threshold are spread all over
the image. The pixels which do not belong to the support
of one of these coefficients are set to zero. The visual result
is a constant image with superposed wavelets as displayed in
Fig. 14. It is easy to prove that the denoised noise is spatially
highly correlated.

Bilateral Filter For simplicity consider the case where the
grey level neighborhood is an interval. Given a noise realiza-
tion, the filtered value by the bilateral filter at a pixel i only
depends on its value n(i) and the parameters h and ρ. The
bilateral filter averages noise values at a distance from n(i)

less or equal than h. Thus as the size ρ of the neighborhood
increases by the law of large numbers the filtered value tends
to the expectation of the Gauss distribution restricted to the

interval (n(i) − h,n(i) + h). The filtered value is therefore
a deterministic function of n(i) and h. Independent random
variables are mapped by a deterministic function on inde-
pendent variables. Thus the noise to noise requirement is as-
ymptotically satisfied by the bilateral filter. A visual check
in Fig. 15 fully confirms this theoretical result.

NL-Means Algorithm Figure 15 indicates that NL-means
satisfies the noise to noise principle in the same extent as a
classical bilateral filter. However, a mathematical statement
and proof of this property are intricate and we shall skip
them.

4.3 Statistical Optimality

The statistical optimality means the ability of a generalized
neighborhood filter to find the right set of pixels J (i) for
performing the average yielding the new estimate for u(i).
This principle for the comparison of denoising algorithms
applies for all algorithms performing an average over a set
of selected pixels, namely, all neighborhood filters including
NL-means and all motion compensated movie denoising al-
gorithms (AWA, LMMSE, . . .).

Principle 3 A generalized neighborhood filter is optimal if
it finds for each pixel i all and only the pixels j having the
same model as i.

Returning to the signal dependent noise model given by
Hypothesis 1, we notice that the ideal denoising algorithm
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Fig. 14 Noise to noise
principle: Application of the
denoising algorithms to a noise
sample. From left to right and
top to bottom: noise sample
(σ = 15), filtered noise by the
Gaussian filtering, total
variation minimization, hard
wavelet thresholding, bilateral
filter and the NL-means
algorithm. The parameters of
each algorithm have been tuned
in order to have a filtered noise
of standard deviation 2.5. For
the neighborhood or bilateral
filter the research zone has been
fixed to 21 × 21 and for
NL-means we have used the
whole image. Therefore, only
the h parameter has been tuned
in order to obtain the desired
standard deviation

Fig. 15 Noise to Noise
principle: Fourier transforms of
the filtered noises displayed in
Fig. 14. The Fourier transform
of a Gaussian white noise is a
Gaussian white noise

from that point of view would give for J (i) the set of all pix-
els j with the same original, noiseless value Φ(j) = Φ(i)

as i. This aim is not attainable and can be replaced by a
search for pixels j which are likely to have the same value
as i. In movies, by the Lambertian assumption, it can be as-
sumed that a non occluded pixel keeps the same grey level
in several frames. Thus in motion compensated movie fil-
ters, J (i) is the trajectory of i. In the case of NL-means,
it is assumed that pixels having similar neighborhoods for
some distance also have close colors. Principle 3 cannot be
checked in theory but can be in practice explored by dis-
playing the probability distribution of w(j), j ∈ J (i) for
various algorithms and images. In that way it can be checked
whether J (i) corresponds to the pixels j perceptually equiv-
alent or similar to i. This visualization is actually quite in-
formative as illustrated in Figs. 16 and 18.

As displayed in Fig. 16, the orientation computed by the
anisotropic filter is not exactly the expected one. This fact
is due to the noise interference on the gradient computation.
The noise also degrades the probability distribution of the bi-
lateral filter. The window comparison of NL-means is more
robust to noise and yields a more adapted weight configura-
tion. In the wall example of Fig. 16 NL-means does not find
picks the pixels with a similar grey level value while the
classical neighborhood does. This avoids mistakes when the
standard deviation of the noise is increased as displayed in
Fig. 17. NL-means shows a good ability for the restoration
of binary textures without assuming any prior about the tex-
ture statistics. When this prior is available optimal solutions
can be obtained by imposing the statistical constraints as re-
cently proposed in Cremers and Grady (2006) via a graph
cuts algorithm.
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Fig. 16 Weight distribution of NL-means, the bilateral filter and the anisotropic filter used to estimate the central pixel in four detail images

Fig. 17 Denoising experiment
on a noisy periodic texture.
From top to bottom and left to
right: noisy image (standard
deviation 35), total variation
minimization, translation
invariant hard thresholding
(threshold 3σ ), translation
invariant hard thresholding
(optimal threshold

√
2 logNσ ),

bilateral filter and NL-means

4.3.1 Statistical Optimality and the Aperture Problem

Let us now address the problem of statistical optimality for
movies. We shall sustain the position that, in fact, motion
estimation is not only unnecessary, but probably counter-
productive. The aperture problem, viewed as a general phe-
nomenon in movies, can be positively interpreted in the fol-
lowing way: There are many pixels in the next or previous
frames which can match the current pixel. Thus, it seems
sound to use not just one trajectory, but rather all similar
pixels to the current pixel across time and space.

Motion estimation algorithms try to solve the aperture
problem. The block matching algorithm chooses the pixel
with the more similar configuration, thus loosing many other
interesting possibilities, as displayed in Fig. 8. Algorithms
based on the optical flow constraint must impose a regular-
ity condition of the flow field in order to choose a single tra-
jectory. Thus, the motion estimation algorithms are forced to
choose a candidate among all possible equally good choices.
However, when dealing with sequence restoration, the re-
dundancy is not a problem but an advantage. Figure 8 shows
all possible and equally good candidates for the averaging.
Why not take all of them.

Figure 18 displays the probability distribution of the
weights computed by NL-means for three different cases.

The algorithm favors pixels with a similar local configura-
tion even if they are far away from the reference pixel. As
the similar configurations move, so do the weights. Thus,
the algorithm is able to follow the similar configurations
when they move without any explicit motion computation.
No need to solve any aperture problem. This problem turns
out to be a help for denoising purposes.

5 NL-means vs Classical Neighborhood Filters.
A Simple Example

In this section we shall discuss more extensively the applica-
tion of the neighborhood filters to a simple piece-wise con-
stant image as the one displayed in Fig. 19. The analysis of
this image can be decomposed in two parts depending if the
research window contains the edge or it is totally flat. For
this analysis we shall use a simplified version of the NL-
means and neighborhood filter, that is,

NLh,nu(i) = 1

|J (i)|
∑

j∈J (i)

u(j),

where J (i) = {j ∈ R(i) | dn(i, j) ≤ h}, R(i) denotes a re-
search zone around the interest pixel and dn(i, j) denotes the
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Fig. 18 Weight distribution of
NL-means applied to a movie.
In (a), (b) and (c) the first row
shows a five frames image
sequence. In the second row, the
weight distribution used to
estimate the central pixel (in
white) of the middle frame is
shown. The weights are equally
distributed over the successive
frames, including the current
one. They actually involve all
the candidates for the motion
estimation instead of picking
just one per frame. The aperture
problem can be taken advantage
of for a better denoising
performance by involving more
pixels in the average

Fig. 19 Comparison of neighborhood filters and NL-means on a piecewise constant image. From left to right: input image, NL-means filtered
image and the neighborhood filter with an increasing value of h. Using the whole image as research zone, NL-means is able to recover the original
image almost perfectly with h = 2σ 2. For the neighborhood filter we have used a research zone of 7 × 7 pixels. For h small the neighborhood filter
is not able to reduce much noise and by increasing the value of h we begin to filter excessively the edge. In contrast with the neighborhood filter,
NL-means is able to reduce the noise with a very conservative value of the filtering parameter

squared normalized Euclidean distance between two com-
parison windows around i and j of size n.

5.1 A Research Zone Totally Contained Inside the Same
Region

In that case, the original grey level value of the considered
pixels is the same. This case can be viewed as the application

of the algorithm to a noise sample and the committed error
just as the noise reduction.

As we discussed in Sect. 4.2, the filtered noise value of
the neighborhood filter does not depend on the size of the
research window but only on the value of h. This means
that in order to decrease the error inside flat zones we must
increase the value of h as illustrated in Fig. 19. As we use
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the same value for all the image this fact becomes critical
when we get near any edge or detail.

The use of a comparison window by NL-means permits
a higher noise reduction while keeping a small value of h.
We begin by studying the difference between two noise win-
dows of size n. If we denote by dn the normalized squared
Euclidean distance, then

dn

2σ 2
= 1

n

∑

i

(
mi√
2σ

)2

where mi/
√

2σ follows a N(0,1) and then ndn/2σ 2 follows
a χ -squared distribution with n degrees of freedom.

For a sake of simplicity in the mathematical calculations,
we assume that the central point of the window is not used in
the comparisons. In that case independent values are being
averaged and the next theorem estimates the achieved noise
reduction.

Theorem 1 Assume that the n(i) are i.i.d. with zero mean
and variance σ 2. Then, the filtered noise by the NL-means
algorithm NLh,n satisfies,

VarNLh,nn(i) = 1

βn(
h

2σ 2 )|R(i)|σ
2,

where

βn(x) =
∫ nx

−∞
fχ2

n
(y)dy,

and fχ2
n

denotes the probability distribution function of

a χ2
n .

This result shows that we can increase the noise reduction
by increasing the size of the sample and keeping the same
value of h as illustrated in Fig. 19. We can for example set a
conservative threshold h = 2σ 2 and have a noise reduction
tending to 2

|R(i)| as n increases.

5.2 A Research Zone Containing the Edge

In this case, the risk is to average pixels with an original
value different from the pixel of interest. Therefore, we want
to separate as much as possible the distances from the cor-
rect pixels from the distances of the incorrect ones. Follow-
ing the same notations of the above section and denoting by
c the contrast between the two different regions of the im-
age, we can write the distance between two windows as

dn

2σ 2
= 1

n

{
W∑

i=0

(
mi√
2σ

)2

+
n∑

j=W+1

(
ni√
2σ

)2

}

,

where mi/
√

2σ and ni/
√

2σ follow a N(c/
√

2σ,1) and
N(0,1) distributions, respectively, and W denotes the num-
ber of pixels with a different grey level value inside the com-
parison window. The distribution of the above distances fol-
lows a non central chi squared distribution of parameters n

and λ = W ∗ (
√

2σ)2.
The above normalized distance has mean 1 + (W/n)λ2

and variance 2
n
(1 + 2λ2(W/n)). Therefore, the distance be-

tween two windows completely contained in different sides
of the edge has a mean 1 + λ2 and a variance 2

n
(1 + 2λ2).

The mean is independent of n while the variance tends to
zero as n increases. Thus, windows from the same side of
the edge can be better separated from the incorrect ones as
n increases. The same argument applies when the ratio W/n

is kept constant while n increases. For the neighborhood fil-
ter (n = 1), the above statistics shows that the comparison of
one single pixel is not robust enough. Indeed, the standard
deviation of the distance of two pixels on different sides of
the edge is larger than the distance between the mean dis-
tances of the correct and incorrect choices.

6 Conclusion

A common framework for the study of the neighborhood fil-
ters has been presented. We have proposed three principles
for the comparison of denoising methods evaluating the loss
of image structure, the creation of artifacts, and the com-
plete usage of image self-similarity. After a structural com-
parison of non-local denoising methods with other classes,
we have shown that movie denoising can avoid the explicit
computation of an optical flow estimate. What is left to be
done? The very recent extensions of NL-means we men-
tioned in the introduction point towards the involvement of
still more sophisticated statistical instruments. Beyond de-
noising, we have seen that the association with each pixel
of a probability distribution weighting its similarity with the
other pixels of the image may become a central tool in image
analysis. This rich structure unfolds image information and
should be used for algorithm which simultaneously analyze
and process images. The recent work of Gilboa and Osher
(2006) points towards this direction. These authors use NL-
means as a segmentation tool.
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