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This course gives an introduction to the value distribution theory of the Riemann
zeta-function ζ(s) with a special emphasis on its remarkable universality property. Our
main goal is to derive Voronin’s celebrated universality theorem which states, roughly
speaking, that any(!) non-vanishing analytic function on a sufficiently small disc can
be uniformly approximated by ζ(s) . For that aim we go along Voronin’s original proof;
the modern approach via limit theorems for weak convergent probability measures is
beyond the scope of this course. We state some consequences as there is the classical
result due to H. Bohr that the set of values of ζ(s) taken on vertical lines in the right
half of the critical strip lies dense in the complex plane, and an answer to Hilbert’s
question whether the zeta-function satisfies an algebraic differential equation. Finally,
we shall discuss some open questions in this field (the problem of effectivization and
Bagchi’s reformulation of Riemann’s hypothesis) and the recent progress done towards
their solution.

This course bases mainly on the nicely written monography [25] on the Riemann
zeta-function. However, we also have to use some results from other fields different than
analytic number theory, namely approximation theory of numbers and of functions, the
theory of linear operators in Hilbert spaces and complex analysis, for which we refer to
[14] and [55], respectively. Unfortunately, we cannot give a detailed proof of all facts
which are required to prove Voronin’s theorem (as for example the seperation theorem
from functional analysis). However,the motivated reader can fill by the given references
all these gaps.

I am very grateful to Rasa Šlezevičienė, Ramunas Garunkštis and Antanas Lau-
rinčikas (Vilnius University) for many fruitful discussions, helpful remarks and unlim-
ited interest.

Jörn Steuding, Frankfurt 10/20/2002.
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1 Introduction

In this introduction we give a brief historical overview on the phenomenon of univer-
sality; more details can be found in [21].

The first in the mathematical literature appearing universal object was discov-
ered by Fekete in 1914/15 (see [42]); he proved that there exists a real power series∑∞
n=1 anx

n with the property that for any continuous function on the interval [−1, 1]
with f(0) = 0 there is a sequence of positive integers (mk) such that the partial sums∑

1≤n≤mk anx
n converge to f(x) uniformly on [−1, 1] . We shall prove the following

variant due to Luh [38]:

Theorem 1.1 There exists a real power series

∞∑
n=0

anx
n

with the property that for any interval [a, b] with 0 6∈ [a, b] and any continuous function
f(x) on [a, b] there exists a sequence of positive integers (mk) such that

mk∑
n=0

anx
n −→ f(x) uniformly on [a, b]

as k →∞ .

The proof relies mainly on Weierstrass’ approximation theorem, which states that each
continuous function f(x) on a closed interval is the limit of a uniformly convergent
sequence of polynomials; for a proof see [14].

Proof. Denote by (Qn) the sequence of polynomials with rational coefficients; this is
obviously a countable set. We construct a sequence of polynomials (Pn) as follows: let
P0 = Q0 , and assume that for n ∈ N the polynomials P0, . . . , Pn−1 are known. Let dn
be the degree of Pn−1 . Further, let ϕn(x) be a continuous function on [−n, n] such
that

ϕn(x) =

(
Qn(x)−

n−1∑
ν=0

Pν(x)

)
x−dn−1 for x ∈ In :=

[
−n,−

1

n

]
∪
[
1

n
, n

]
.

Then, by Weierstrass’ approximation theorem, there exists a polynomial Fn with

max
x∈[−n,n]

|Fn(x)− ϕn(x)| < n−dn−2.

Setting Pn(x) = Fn(x)xdn+1 , the sequence (Pn) is constructed, and Pn satisfies

max
x∈In

∣∣∣∣∣
n∑
k=0

Pk(x)−Qn(x)

∣∣∣∣∣ = max
x∈In
|(Fn(x)− ϕn(x))x

dn+1| <
1

n
.
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Obviously, distinct Pn have no powers in common. Thus we can rearrange formally
the polynomial series into a power series:

∞∑
n=0

anx
n :=

∞∑
n=0

Pn(x)

(note that this would be impossible if infinitely many Pn would have a term xn in
common).

Again by Weiertstrass’ approximation theorem, to any continuous function f(x)
on [a, b] there exists a sequence of positive integers (nk) , tending to infinity, such that

max
x∈[−1,1]

|f(x)−Qnk(x)| <
1

k
.

For sufficiently large k the interval [a, b] is contained in Ink . In view of the above
estimates we obtain

max
x∈[a,b]

∣∣∣∣∣∣f(x)−
dnk+1∑
n=0

anx
n

∣∣∣∣∣∣ = max
x∈[a,b]

∣∣∣∣∣f(x)−
nk∑
n=0

Pn(x)

∣∣∣∣∣
≤ max

x∈[a,b]
|f(x)−Qnk(x)|+ max

x∈[a,b]

∣∣∣∣∣Qnk(x)−
nk∑
n=0

Pn(x)

∣∣∣∣∣ < 1

k
+

1

nk
,

which tends to zero as k → ∞ . Thus, putting mk = dnk + 1, the assertion of the
theorem follows. •

In the years after Fekete’s discovery many of such universal approximations were
found. Here we have to mention Birkhoff [6] who proved the existence of an entire
function f(z) with the property that to any given entire function g(z) there exists a
sequence (an) such that

f(z + an)→ g(z) locally uniformly in C.

It was Marcinkiewicz [39] in 1935 who was the first to use the notion universality
when he proved the existence of a continuous function whose difference quotients can
approximate any measurable function in the sense of convergence almost everywhere.

In all these examples there are two characteristic aspects of universality, namely
the existence of a single object which

• is maximal divergent, and

• (via a countable process) allows to approximate a maximal class of objects.

This observation led to understand universality as a phenomenon which occurs quite
naturally in limiting processes which diverge or behave irregularly in some cases. Mean-
while it turned out that the phenomenon of universality is anything but a rare event
in analysis! See [21] for an interesting survey on more or less all known types of uni-
versalities and an approach to unify them all.
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However, for a long time no explicit example of a universal object was found. Sur-
prisingly, Voronin discovered in 1975 that a very famous function has a remarkable
universal property.

Let s = σ + it with i2 = −1 and σ, t ∈ R be a complex variable (this mixture
of latin and greek letters is tradition in number theory). Then the Riemann zeta-
function is given by the series

ζ(s) =
∞∑
n=1

1

ns
for σ > 1. (1.1)

Since |ns| = nσ , it follows easily (by the integral test) that the series converges ab-

solutely in the half-plane σ > 1. Series of the type
∑
n
a(n)
ns

are called Dirichlet series;
see [54], Section IX for details. However, the true analytic character of the Riemann
zeta-function becomes only visible by continuing ζ(s) to the left of σ = 1. Later we
will prove the identity

ζ(s) =
s

s− 1
+ s

∫ ∞
1

[x]− x

xs+1
dx for σ > 0; (1.2)

here [x] := max{z ∈ Z : z ≤ x} is the integer part function. Since the appearing
integral converges, we have found an analytic continuation for ζ(s) to the half-plane
σ > 0 except for a simple pole at s = 1 with residue 1. As we shall see later on,
the value distribution of the Riemann zeta-function in the so-called critical strip
0 ≤ σ ≤ 1 is of special interest out of different points of view.

Now, since we have an expression for ζ(s) in the critical strip, we are in the position
to formulate Voronin’s result [57].

Theorem 1.2 Let 0 < r < 1
4

and let f(s) be a non-vanishing continuous function on
the disc |s| ≤ r , which is analytic in the interior. Then, for any ε > 0 there exists a
τ > 0 such that

max
|s|≤r

∣∣∣∣ζ (3

4
+ s+ iτ

)
− f(s)

∣∣∣∣ < ε.

Thus, ζ(s) approximates any such function with any precision somewhere in 1
2
< σ <

1. Interpreting the absolute value of an analytic funtion as an analytic landscape over
the complex plane, we see that any analytic landscape can be found in the analytic
landscape of ζ(s) (up to an arbitrarily small error). Therefore, in German we say:

Wer die Zetafunktion kennt, kennt die Welt!

However, we do not know the zeta-function good enough; we even have not proved the
analytic continuation (1.2).
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2 The Riemann zeta-function

In this section we shall prove first properties of ζ(s) which also give a first impression
on the leading role of the zeta-function in multiplicative number theory.

In the introduction we have seen that the series in (1.1) converges absolutely for
σ > 1. Since, for σ ≥ σ0 > 1,∣∣∣∣∣

∞∑
n=1

1

ns

∣∣∣∣∣ ≤
∞∑
n=1

1

nσ0
≤ 1 +

∞∑
n=2

∫ n

n−1

du

uσ0
(2.1)

= 1 +
∫ ∞

1
u−σ0 du = 1 +

1

σ0 − 1
,

the series in question converges uniformly in any half-plane σ > σ0 with σ0 > 1.
A well-known theorem of Weierstrass states that the limit of a uniformly convergent
sequence of holomorphic functions is holomorphic; see [54], §2.8. Thus

Theorem 2.1 ζ(s) is analytic for σ > 1 and satisfies in this half-plane the identity

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1−

1

ps

)−1

. (2.2)

Here and in the sequel p denotes always a prime number. The product in (2.2) is
taken over all primes; it is called Euler product since it was discovered by Euler in
1737. As we shall see in the proof below it can be regarded as the analytic version of
the unique prime factorization of the integers.

Proof. It remains to show the identity between the series and the product in (2.2).
In view of the geometric series expansion and the unique prime factorization of the
integers, ∏

p≤x

(
1−

1

ps

)−1

=
∏
p≤x

(
1 +

1

ps
+

1

p2s
+ . . .

)
=

∑
n

p|n⇒p≤x

1

ns
;

as usual, we write d|n if the integer d divides the integer n , and d6 |n otherwise. Since∣∣∣∣∣∣∣
∞∑
n=1

1

ns
−

∑
n

p|n⇒p≤x

1

ns

∣∣∣∣∣∣∣ ≤
∑
n>x

1

nσ
≤
∫ ∞
x

u−σ du =
x1−σ

σ − 1

tends to zero as x → ∞ , we get identity (2.2) by sending x → ∞ . The theorem is
proved. •

We shall see later on that the Euler product (2.2) is the key to prove Voronin’s
universality theorem (in spite of the fact that the product does not converge in the
region of universality). However, the representation (2.2) gives also a first glance on
the close connection between ζ(s) and the distribution of prime numbers. A first im-
mediate consequence is Euler’s proof of the infinitude of the prime numbers: assuming
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that there are only finitely many primes, the product in (2.2) is finite, and therefore
convergent throughout the whole complex plane, contradicting the fact that the ζ(s)
defining Dirichlet series reduces to the divergent harmonic series as s → 1+. Hence,
there are infinitely many prime numbers. This fact is well known since Euclid’s elemen-
tary proof, but the analytic access gives much deeper knowledge on the distribution of
prime numbers.

It was the young Gauss who conjectured in 1792 for the number of primes under
a given magnitide:

π(x) := ]{p ≤ x} ∼ Li(x), (2.3)

where the logarithmic integral is defined by

Li(x) =
∫ x

2

du

log u
;

here and in the sequel we write f(x) = O(g(x)) , resp. f(x) � g(x) , with a positive
function g(x) if

lim sup
x→∞

|f(x)|

g(x)

is bounded, and we write f(x) ∼ g(x) if the latter quantity is actually a limit and
equals one. By partial integration it is easily seen that

Li(x) =
∫ x

2

du

log u
=

n∑
k=1

x(k − 1)!

(log x)k
+O

(
x

(log x)n+1

)
.

Thus, Gauss’ conjecture states that, in first approximation, the number of primes ≤ x
is asymptotically x

log x
. Čebyshev proved in 1852 by elementary methods that for

sufficiently large x

0.921 . . . ≤ π(x) ·
log x

x
≤ 1.055 . . . ,

and additionally that if

lim
x→∞

π(x) ·
log x

x

exists, then the limit has to be equal to one, which supports (2.3).
However, as Riemann showed Euler’s analytic access, i.e. the link between the

zeta-function and the primes by (2.2), encodes much more arithmetic information than
Čhebyshev’s elemenatry approach. In his only but outstanding paper [49] on number
theory Riemann noticed the importance of studying ζ(s) as a function of a complex
variable (Euler dealt only with real s ). Riemann proved:

• the function

ζ(s)−
1

s− 1

is entire; consequently, ζ(s) has an anlytic continuation throughout the whole
complex plane except for s = 1 where ζ(s) has a simple pole with residue 1 .
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• ζ(s) satisfies the functional equation

π−
s
2 Γ
(
s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

Note that the Gamma-function, defined by

Γ(z) =
∫ ∞

0
uz−1 exp(−u) du for Re z > 0,

plays an important role in the theory of the zeta-function; see [54], §1.86 and §4.41,
for a collection of its most important properties.

In view of the Euler product (2.2) it is easily seen that ζ(s) has no zeros in the
half-plane σ > 1. Using the functional equation, it turns out that ζ(s) vanishes in
σ < 0 exactly at the so-called trivial zeros

ζ(−2n) = 0 for n ∈ N;

this is caused by the simple poles of the Gamma-function at the non-positive integers.
All other zeros of ζ(s) are said to be nontrivial, and it comes out that they are all
non-real, and that there location is in fact a nontrivial task. We denote the nontrivial
zeros by % = β + iγ . Obviously, they have to lie in the critical strip 0 ≤ σ ≤ 1 The
functional equation, in addition with the reflection principle

ζ(s) = ζ(s), (2.4)

show some symmetries of ζ(s) . In particular, the nontrivial zeros of ζ(s) have to be
distributed symmetrically with respect to the real axis and the so-called critical line
σ = 1

2
. It was Riemann’s ingenious contribution to number theory to point out how

the distribtuion of these nontrivial zeros is linked to the distribution of prime numbers.
Riemann conjectured:

• the number N(T ) of nontrivial zeros % = β + iγ with 0 ≤ γ ≤ T (counted
according multiplicities) satisfies

N(T ) ∼
T

2π
log

T

2πe
;

this was proved in 1895/1905 by von Mangoldt, who found more precisely

N(T ) =
T

2π
log

T

2πe
+O(log T ). (2.5)

• all nontrivial zeros lie on the critical line σ = 1
2
, or equivalently,

ζ(s) 6= 0 for σ >
1

2
; (2.6)
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this is the famous, yet unproved Riemann hypothesis. Riemann worked with
ζ(1

2
+ it) and wrote ”...und es ist sehr wahrscheinlich, dass alle Wurzeln reell sind.

Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe indess die Auf-
suchung desselben nach einigen flüchtigen vergeblichen Versuchen vorläufig bei Seite
gelassen...”. Note that Riemann also calculated the first zeros: for example, the first
is % = 1

2
+ i · 14.134 . . . . Further, Riemann conjectured

• there exist some constants A,B such that

1

2
s(s− 1)π−

s
2 Γ
(
s

2

)
ζ(s) = exp(A+Bs)

∏
%

(
1−

s

%

)
exp

(
s

%

)
;

• the explicit formula: for any x ≥ 2

π(x) +
∞∑
n=2

π(x1/n)

n
= Li(x)−

∑
%=β+iγ
γ>0

(
Li(x%) + Li(x1−%)

)
(2.7)

+
∫ ∞
x

du

u(u2 − 1) log u
− log 2;

this was proved in 1895 by von Mangoldt whereas the last but one conjecture was
proved by Hadamard. The explicit formula follows from both product representations
of ζ(s) , the Euler product on one side and the Hadamard product on the other side.

Riemann’s ideas led to the first proof of Gauss’ conjecture (2.3), the celebrated
prime number theorem, by Hadamard and de La Vallée Poussin (independendly) in
1896.

3 The approximate functional equation

In this section we shall derive not only an analytic continuation for ζ(s) to the half-
plane σ > 0 but also a quite good approximation which will be very useful later on.
Unfortunately, the proof is rather technical; we follow [55], §IV.

What happens on the abscissa of convergence σ = 1? At s = 1 the zeta-function
defining series reduces to the harmonic series. To obtain an analytic continuation for
ζ(s) we have to seperate this singularity. For that purpose we need Abel’s partial
summation:

Lemma 3.1 Let λ1 < λ2 < . . . be a divergent sequence of real numbers, define for
αn ∈ C the function A(u) =

∑
λn≤u αn , and let F : [λ1,∞) → C be a continuous

differentiable function. Then

∑
λn≤x

αnF (λn) = A(x)F (x)−
∫ x

λ1

A(u)F ′(u) du.
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For those who are familiar with the Riemann-Stieltjes integral there is nearly nothing
to show. Anyway,

Proof. We have

A(x)F (x)−
∑
λn≤x

αnF (λn) =
∑
λn≤x

αn(F (x)− F (λn)) =
∑
λn≤x

∫ x

λn
αnF

′(u) du.

Since λ1 ≤ λn ≤ u ≤ x , interchanging integration and summation yields the assertion.
•

Now we apply partial summation to finite pieces of the series (1.1). Let N <M be
positive integers and σ > 1. Then, application of Lemma 3.1 with F (u) = u−s, αn = 1
and λn = n yields∑

N<n≤M

1

ns
= M1−s −N1−s + s

∫ M

N

[u]

us+1
du

= M1−s −N1−s + s
∫ M

N

[u]− u

us+1
du+ s

∫ M

N
u−s du

=
1

s− 1
(N1−s −M1−s) + s

∫ M

N

[u]− u

us+1
du.

Sending M →∞ we obtain

Theorem 3.2 For σ > 0 ,

ζ(s) =
∑
n≤N

1

ns
+
N1−s

s− 1
+ s

∫ ∞
N

[u]− u

us+1
du.

Thus, ζ(s) has an analytic continuation to the half-plane σ > 0 except for one simple
pole at s = 1 with residue 1 .

Putting N = 1 in the formula of Theorem 3.2, we obtain the analytic continuation
(1.2) for ζ(s) from the introduction. But this integral representation gives also a very
useful approximation of ζ(s) in the critical strip. By the periodicity of the function
[u] − u we expect that the contribution of the integral is small. In order to give a
rigorous proof of this idea we have to do some preliminary observations.

Let f(u) be any function with continuous derivative on the interval [a, b] . Using
the lemma on partial summation with αn = 1 if n ∈ (a, b] , and αn = 0 otherwise, we
get

∑
a<n≤b

f(n) = ([b]− [a])f(b)−
∫ b

a
([u]− [a])f ′(u) du = [b]f(b)− [a]f(a)−

∫ b

a
[u]f ′(u) du.

Obviously,

−
∫ b

a
[u]f ′(u) du =

∫ b

a

(
u− [u]−

1

2

)
f ′(u) du−

∫ b

a

(
u−

1

2

)
f ′(u) du.

Applying partial integration to the last integral on the right hand side, we deduce
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Lemma 3.3 (Euler’s summation formula) Assume that f : [a, b]→ R has a con-
tinuous derivative. Then∑

a<n≤b

f(n) =
∫ b

a
f(u) du+

∫ b

a

(
u− [u]−

1

2

)
f ′(u) du

+
(
a− [a]−

1

2

)
f(a)−

(
b− [b]−

1

2

)
f(b).

An easy application is the well-known asymptotic formula∑
n≤x

1

n
= log n+ γ +O

(
1

x

)
as x→∞, (3.1)

where γ = 0.577 . . . is the Euler-Mascheroni constant. This formula describes very
precisely the rate of divergence of the harmonic series. Our application is more difficult.
First, we replace in Euler’s summation formula the function u− [u]− 1

2
by its Fourier

series expansion.

Lemma 3.4 For u 6∈ Z ,∣∣∣∣∣∣∣u−
1

2
−

∑
|m|≤M
m6=0

exp(−2πimu)

2πim

∣∣∣∣∣∣∣ ≤
1

2πM(u− [u])
,

and, for u ∈ R ,

∞∑
m6=0

exp(−2πimu)

2πim
=

{
u− [u]− 1

2
if u 6∈ Z,

0 if u ∈ Z,

where the terms with ±m have to be added together; the partial sums are uniformly
bounded in α and M .

Proof. By symmetry and periodicity it suffices to consider only the case 0 < u ≤ 1
2
.

Since ∫ 1
2

u
exp(−2πimx) dx =

(−1)m+1 + exp(−2πimu)

2πim
for 0 6= m ∈ Z,

we obtain ∑
|m|≤M
m6=0

exp(−2πimu)

2πim
− u+

1

2
=

∫ 1
2

u

∑
|m|≤M

exp(2πimx) dx

=
∫ 1

2

u

sin((2M + 1)πx)

sin(πx)
dx. (3.2)

By the mean-value theorem there exists a ξ ∈ (u, 1
2
) such that the latter integral equals∫ ξ

u

sin((2M + 1)πx)

sin(πu)
dx.
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This implies immediately both formulas of the lemma. It remains to show that the
partial sums of the Fourier series are uniformly bounded in u and M . Substituting
y = (2M + 1)πx in (3.2), we get∫ 1

2

u

sin((2M + 1)πx)

sin(πx)
dx =

∫ 1
2

u

sin((2M + 1)πx)

πx
dx

+
∫ 1

2

u
sin((2M + 1)πx)

(
1

sin(πx)
−

1

πx

)
dx

�
∫ ∞

0

sin(y)

y
dy +

∫ 1
2

0

∣∣∣∣∣ 1

sin(πx)
−

1

πx

∣∣∣∣∣ dx

with an implicit constant not depending on α and M ; obviously both integrals exist,
which gives the uniform boundedness. •

Further, we will make use of the following estimate of exponential integrals.

Lemma 3.5 Assume that F : [a, b] → R has a continuous non-vanishing derivative
and that G : [a, b]→ R is continuous. If G

F ′
is monotonic on [a, b] , then∣∣∣∣∣

∫ b

a
G(u) exp(iF (u)) du

∣∣∣∣∣ ≤ 4
∣∣∣∣GF ′ (a)

∣∣∣∣+ 4
∣∣∣∣GF ′ (b)

∣∣∣∣ .
Proof. First, we assume that F ′(u) > 0 for a ≤ u ≤ b . Since (F−1(v))′ =
F ′(F−1(v))−1 , substituting u = F−1(v) leads to∫ b

a
G(u) exp(iF (u)) du =

∫ F (b)

F (a)

G(F−1(v))

F ′(F−1(v))
exp(iv) dv.

Application of the mean-value theorem gives, in case of a monotonically increasing G
F ′

,

Re

{∫ F (b)

F (a)

G(F−1(v))

F ′(F−1(v))
exp(iv) dv

}
=
G

F ′
(F (a))

∫ ξ

F (a)
cos v dv +

G

F ′
(F (b))

∫ F (b

ξ
cos v dv

with some ξ ∈ (a, b) . This gives the desired estimate. The same idea applies to the
imaginary part. Furthermore, the case F ′(u) < 0 can be treated analogously. The
lemma is proved. •

Now we are in the position to prove van der Corput’s summation formula.

Theorem 3.6 To any given η > 0 there exists a positive constant C = C(η) only
depending on η with the following property: assume that f : [a, b]→ R is a function
with continuous derivative, g : [a, b]→ [0,∞) is differentiable function, and that f ′, g
and |g′| are all monotically decreasing. Then

∑
a<n≤b

g(n) exp(2πif(n)) =
∑

f ′(a)−η<m<f ′(b)+η

∫ b

a
g(u) exp(2πi(f(u)−mu)) du+ E,

where
|E| ≤ C(η) (|g′(a) + g(a) log(|f ′(a)|+ |f ′(b)|+ 2)) .
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Van der Corput’s summation formula looks rather technical but the idea is simple as
we will shortly explain. The integral∫ b

a
g(u) exp(2πi(f(u)−mu)) du

is (up to a constant factor) the Fourier transform of g(u) exp(2πif(u)) at u = m
(therefore, we may interpret Theorem 3.6 as an approximate version of Poisson’s sum-
mation formula).

Proof of Theorem 3.6. Using Euler’s summation formula with F (u) =
g(u) exp(2πif(u)) and the Fourier series expansion of Lemma 3.4, we get

∑
a<n≤b

g(n) exp(2πif(n)) =
∫ b

a
g(u) exp(2πif(u)) du+O(g(a))

+
∫ b

a

∑
m6=0

exp(−2πimu)

2πim

d

du
(g(u) exp(2πif(u))) du.

Since the series on the right hand side converges uniformly on each compact subset,
which is free of integers, and since its partial sums are uniformly bounded, we may
interchange summation and integration. This yields

∑
a<n≤b

g(n) exp(2πif(n)) =
∫ b

a
g(u) exp(2πif(u)) du (3.3)

+
∑
m6=0

1

m

(
I1(m) +

1

2πi
I2(m)

)
+O(g(a),

where

I1(m) :=
∫ b

a
f ′(u)g(u) exp(2πi(f(u)−mu)) du,

I2(m) :=
∫ b

a
g′(u) exp(2πi(f(u)−mu)) du.

Partial integration gives

I1(m) =

[
exp(2πi(f(u)−mu))g(u)

2πi

]b
u=a

−
∫ b

a

exp(2πif(u))

2πi

d

du
g(u) exp(−2πimu) du,

= O(g(a))−
1

2πi
I2(m) +m

∫ b

a
g(u) exp(2πi(f(u)−mu)) du.

Thus,

∑
f ′(a)−η<m<f ′(b)+η

m6=0

1

m

(
I1(m) +

1

2πi
I2(m)

)

11



=
∑

f ′(a)−η<m<f ′(b)+η
m6=0

∫ b

a
g(u) exp(2πi(f(u)− hu)) du

+O

 ∑
f ′(a)−η<m<f ′(b)+η

m6=0

g(a)

|m|

 .
Now assume that m > f ′(a)+ η and f ′(b) > 0. Then f ′(u) > 0 for a ≤ u ≤ b . Using
Lemma 3.5 with F (u) = 2π(f(u)−mu) and G = gf ′ , we find

I1(m)�

∣∣∣∣∣ g(a)f ′(a)f ′(a)−m

∣∣∣∣∣ .
Hence, ∑

m>f ′(a)+η
m6=0

∣∣∣∣∣I1(m)

m

∣∣∣∣∣� g(a)
∑

0<m≤2|f ′(a)|

1

m
+ g(a)

∑
m>|f ′(a)|

|f ′(a)|

m2
.

The contribution arising from m < f ′(b)− η can be treated similarly. This gives

∑
m6∈[f ′(b)−η,f ′(a)+η]

m6=0

∣∣∣∣∣I1(m)

m

∣∣∣∣∣� g(a) log(|f ′(a)|+ |f ′(b)|+ 2).

Now assume m > f ′(a) + η and m 6= 0. Then, by the mean-value theorem,

Re I2(m) = −
∫ b

a
|g′(u)| cos 2π(f(u)−mu) du = g′(a)

∫ ξ

a
cos 2π(f(u)−mu) du

with some ξ ∈ (a, b) . Partial integration yields

∫ ξ

a
cos 2π(f(u)−mu) du =

[
−Re

exp(2πi(f(u)−mu)

2πim

]ξ
u=a

+Re
1

m

∫ ξ

a
f ′(u) exp(2πi(f(u)−mu)) du

�
1

|m|

(
1 +

|f ′(a)|

|f ′(a)−m|

)
.

Therefore, ∑
m>f ′(a)+η

∣∣∣∣∣Re I2(m)

m

∣∣∣∣∣� g′(a).

With slight modifiactions this method applies also to the cases Im I2(m) and m ≤
f ′(b)− η . Further, if 0 6∈ [f ′(b)− η, f ′(a) + η] , then Lemma 3.5 gives∫ b

a
g(u) exp(2πif(u)) du� g(a).

12



In view of (3.3) the theorem follows from the above estimates under the condition
f ′(b) > 0. If this condition is not fulfilled, then argue with f(u) − ku , where k :=
1− [f ′(b)] , instead of f(u) . •

Now we apply van der Corput’s summation formula to the zeta-function. Let σ > 0.
By Theorem 3.2 we have

ζ(s) =
∑
n≤x

1

ns
+

∑
x<n≤N

exp(−it logn)

nσ
+
N1−s

s− 1
+ s

∫ ∞
N

[u]− u

us+1
du.

Setting g(u) = u−σ and f(u) = − t
2π

log u , we get f ′(u) = − t
2πu

. Assume that
|t| ≤ 4x , then |f ′(u)| ≤ 7

8
. With the choice ε = 1

10
the interval (f ′(b)− η, f ′(a) + η)

contains only the integer m = 0. Thus Theorem 3.6 yields

∑
x<n≤N

exp(−it logn)

nσ
=
∫ N

x
u−s du+O(x−σ) =

N1−s − x1−s

1− s
+O(x−σ).

In addition with

s
∫ ∞
N

[u]− u

us+1
du� |s|N−σ

we deduce

Theorem 3.7 We have, uniformly for σ ≥ σ0 > 0, |t| ≤ 4x ,

ζ(s) =
∑
n≤x

1

ns
+
x1−s

s− 1
+O

(
x−σ

)
.

This so-valled approximate functional equation was found by Hardy and Little-
wood [22] in 1921 (the name comes from the appearing quantities s and 1 − s as
in the functional equation) but was also known by Riemann (see Siegel’s paper [50]
on Riemann’s unpublished papers on ζ(s) ). Meanwhile there are better approximate
functional equations known, that means an approximation by shorter sums with a
smaller error term. However, to indicate the power of this simple approximation we
note

ζ

(
1

2
+ it

)
� t

1
2 as t→∞ (3.4)

for any ε > 0. Also here much better estimates known. For example, using the
functional equation and the Phragmén-Lindelöf principle (that is a kind of maximum
principle for unbounded domains), one can obtain 1

4
+ ε instead of 1

2
for any positive

ε ; Huxley [23] holds the record with the exponent 89
570

+ε . The yet unproved Lindelöf
hypothesis states

ζ

(
1

2
+ it

)
� tε as t→∞; (3.5)

note that the truth of the Riemann hypothesis would imply this estimate but not vice
versa.
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4 Density theorems

By use of the approximate functional equation, we shall first derive a mean-square
formula for ζ(s) in the half-plane σ > 1

2
. Such mean-square formulae are an important

tool in the theory of the Riemann zeta-function; in particular, they give information
on the number of zeros as we shall see below. We follow [55], §VII and §IX.

Theorem 4.1 For σ > 1
2
,

∫ T

1
|ζ(σ + it)|2 dt = ζ(2σ)T +O(T 2−2σ log T ).

Proof. By the approximate functional equation,

ζ(σ + it) =
∑
n<t

1

nσ+it
+O(t−σ).

Thus, by the reflection principle (2.4),

∫ T

1

∣∣∣∣∣∑
n<t

1

nσ+it

∣∣∣∣∣
2

dt =
∫ T

1

∑
m,n<t

1

nσ+itmσ−it
dt =

∑
m,n<T

1

(mn)σ

∫ T

τ

(
m

n

)it
dt

with τ := max{m,n} . The diagonal terms m = n give the contribution

∑
n<T

T − n

n2σ
= T

ζ(2σ)−
∑
n≥T

1

n2σ

− ∑
n<T

1

n2σ−1
= ζ(2σ)T +O(T 2−2σ)

by the trick (2.1). The non-diagonal terms m 6= n contribute

∑
m,n<T
m6=n

1

(mn)σ

(
m
n

)iT
−
(
m
n

)iτ
i log n

m

�
∑

0<m<n<T

1

(mn)σ log n
m

.

If m < n
2

then log n
m
> log 2 > 0, and hence

∑
n<T

∑
m<n

2

1

(mn)σ log n
m

�

(∑
n<T

1

nσ

)2

� T 2−2σ.

If m ≥ n
2

we write n = m+ r with 1 ≤ r ≤ n
2
. By the Taylor series expansion of the

logarithm,

log
n

m
= − log

(
1−

r

n

)
>
r

n
.

This gives, in view of (3.1),

∑
n<T

∑
r≤n

2

1

(mn)σ log n
m

�
∑
n<T

n1−2σ
∑
r≤n

2

1

r
� T 2−2σ logT.
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Collecting together, the assertion of the theorem follows. •

Obviously, with regard to the simple pole of the zeta-function, the mean-square
formula above cannot hold on the critical line: ζ(2σ) is unbounded as σ → 1

2
+.

We can derive from the above theorem some information on the zero distribution
of ζ(s) . This observation dates back to H. Bohr and Landau [11], resp. Littlewood
[37]. For that purpose we have to use some facts from classical function theory.

The theorem of residues states: let C be a closed path in the complex plane without
double points, and let f(s) be meromorphic with poles at s1, . . . , sm inside C , then

1

2πi

∫
C
f(s) ds =

m∑
j=1

Ress=sjf(s), (4.1)

where

Ress=sjf(s) :=
1

2πi

∮
|s−sj |=ε

f(s) ds

is the residue of f(s) at s = sj (which coincides with the coefficient a−1 in the
Laurent expansion of f(s) at sj , i.e. f(s) =

∑∞
m=−∞ am(s − sj)m ). The special case

of a logarithmic derivative gives the possibility to count zeros and poles. If f(s) and
C satisfies the conditions above, and if N(0) denotes the number of zeros, N(∞) the
number of poles of f(s) (according multiplicities) inside C , then

1

2πi

∫
C

f ′

f
(s) ds = N(0)−N(∞). (4.2)

In particular, we obtain the so-called argument principle, which states that if f(s) is
analytic, then the change in the argument of arg f(s) as s varies on C (in positive
direction) equals the number of zeros of f(s) inside C .

All these statements are well-known facts in complex analysis; see [54], Section III.
Further, we need Littlewood’s lemma, i.e. the following integrated version of (4.2):

Lemma 4.2 Let f(s) be regular in and upon the boundary of the rectangle R with
vertices b, b+ iT, a+ iT, a , and not zero on σ = b . Denote by n(σ, T ) the number of
zeros % = β + iγ of f(s) inside the rectangle with β > σ including those with γ = T
but not γ = 0 . Then∫

R
log f(s) ds = −2πi

∫ a

b
n(σ, T ) dσ.

Since the complex logarithm is a multi-valued function, we have to be careful! Obvi-
ously, f(s) is non-vanishing in the neighbourhood of σ = b , and thus we define log f(s)
here starting with any one value of the logarithm, and for other points s of the rec-
tangle by analytic continuation along the polygon with corners b + it, s = σ + it ,
provided that the path does not cross a zero or pole of f(s) ; if it does, put
log f(s) = limε→0+ log f(σ + it+ iε) .
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Proof. Without loss of generality we may assume that the lines t = 0 and t = T are
free off zeros and poles of f(s) . Obviously,∫

R
log f(s) ds =

∫ b

a
log f(σ) dσ −

∫ b

a
log f(σ + iT ) dσ

+
∫ T

0
(log f(b + it) + log f(a+ it)) i dt. (4.3)

The last integral equals∫ T

0
i
∫ b

a

f ′

f
(σ + it) dσ dt =

∫ b

a

∫ σ+iT

σ

f ′

f
(s) dsdσ.

By (4.2), ∫ σ+iT

σ

f ′

f
(s) ds =

{∫ b

σ
+
∫ b+iT

b
−
∫ b+iT

σ+iT

}
f ′

f
(s) ds− 2πin(σ, T ).

Substituting this in formula (4.3) proves the lemma. •

Note that Littlewood’s lemma can be used, in addition with Stirling’s formula and
some facts about entire functions, to prove the Riemann-von Mangoldt formula (2.5)
(see [5]).

We finish our short excursion to function theory and continue with our investigations
on the zeros of the Riemann zeta-function. Let N(σ, T ) denote the number of zeros
% = β+ iγ of ζ(s) with β > σ, 0 < γ ≤ T (counting multiplicities). Then, application
of Littlewood’s lemma with fixed b = σ0 >

1
2

yields

2π
∫ 1

σ0

N(σ, T ) dσ =
∫ T

0
log |ζ(σ0 + it)|dt−

∫ T

0
log |ζ(2 + it)|dt (4.4)

+
∫ σ0

2
arg ζ(σ + iT ) dσ −

∫ σ0

2
arg ζ(σ)) dσ.

The main contribution comes from the first integral on the right hand side. The last
integral does not depend on T and so it is bounded. Since ζ(s) has an Euler product
representation (2.2), the logarithm has a Dirichlet series representation:

log ζ(s) = −
∑
p

log

(
1−

1

ps

)
=
∑
p,k

1

kpks
for σ > 1, (4.5)

where k runs through the positive integers; here we choose that branch of the logarithm
which is real on the positive real axis. Hence we obtain∫ T

0
log |ζ(2 + it)|dt = Re

∑
p,k

1

kp2k

∫ T

0
exp(−itk log p) dt

�
∞∑
n=2

1

n2
� 1.

It remains to estimate arg ζ(σ + iT ) . We may assume that T is not the ordinate
of zero. Since arg ζ(2) = 0 and

arg ζ(s) = arctan

(
Im ζ(s)

Re ζ(s)

)
,
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where

Re ζ(2 + it) =
∞∑
n=1

cos(it logn)

n2
≥ 1−

∞∑
n=2

1

n2
> 1−

∫ ∞
1

du

u2
= 0,

we have by the argument principle

| arg ζ(2 + iT )| ≤
π

2
.

Now assume that Re ζ(σ + iT ) vanishes q times as 1
2
≤ σ ≤ 2. Devide the interval

[ 1
2
+ iT, 2+ iT ] into q+1 parts, throughout each of which Re ζ(s) is of constant sign.

Hence, again by the argument principle, in each part the variation of arg ζ(s) does not
exceed π . This gives

| arg ζ(s)| ≤
(
q +

3

2

)
π for σ ≥

1

2
.

Further, q is the number of zeros of the function

g(z) =
1

2
(ζ(z + iT ) + ζ(z − iT ))

for Im z = 0 and 1
2
≤ Re z ≤ 2. Thus, q ≤ n(3

2
) , where n(r) is the number of zeros

of ζ(s) for |z − 2| ≤ r . Obviously,

∫ 2

0

n(r)

r
dr ≥

∫ 2

3
2

n(r)

r
dr ≥ n

(
3

2

)∫ 2

3
2

dr

r
= n

(
3

2

)
log

4

3
.

Jensen’s formula states that if f(s) is an analytic function for |s| ≤ R with zeros
s1, . . . , sm (according their multiplicities) and f(0) 6= 0 , then

1

2π

∫ 2π

0
log |f(r exp(iθ))|dθ = log

rm|f(0)|

|s1 · . . . · sm|

for r < R (in a sense, this is nothing else than Poisson’s integral formula; see [54],
§3.61). This gives here

∫ 2

0

n(r)

r
dr =

1

2π

∫ 2π

0
log |ζ(2 + r exp(iθ))|dθ − log |ζ(2)|.

In view of (3.4) we obtain

q ≤ n

(
3

2

)
≤

1

log 4
3

∫ 2

0

n(r)

r
dr� log T.

This yields

arg ζ(σ + iT )� logT uniformly for σ ≥
1

2
,
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and, consequently, the same bound holds by integration with respect to 1
2
≤ σ ≤ 2.

The restriction that T has not to be an imaginary part of a zero of ζ(s) can be removed
from considerations of continuity. Therefore, we may replace (4.4) by∫ 1

σ0

N(σ, T ) dσ =
1

2π

∫ T

0
log |ζ(σ0 + it)|dt+O(log T ). (4.6)

Now we need a further analytic fact due to Jensen: Jensen’s inequality states that for
any continuous function f(u) on [a, b] ,

1

b− a

∫ b

a
log f(u) du ≤ log

(
1

b− a

∫ b

a
f(u) du

)

(for instance, this can be deduced from the arithmetic-geometric mean inequality, or
see [54], §9.623).

Hence, we obtain for any fixed σ0 >
1
2∫ T

0
log |ζ(σ + it)|dt ≤

T

2
log

(
1

T

∫ T

0
|ζ(σ + it)|2 dt

)
� T

by applying Theorem 4.1. Thus, ∫ 1

σ0

N(σ, T ) dσ � T.

Let σ1 = 1
2

+ 1
2
(σ0 − 1

2
) , then we get

N(σ0, T ) ≤
1

σ0 − σ1

∫ σ0

σ1

N(σ, T ) dσ ≤
2

σ0 −
1
2

∫ 1

σ1

N(σ, T )� T.

With view to (4.6) we have proved

Theorem 4.3 For any fixed σ > 1
2
,

N(σ, T )� T.

The theorem above is a first density theorem. In view of the Riemann-von Mangoldt
formula (2.5) we see that, supporting Riemann’s hypothesis, all but an infinitesimal
proportion of the zeros of ζ(s) lie in the strip 1

2
− ε < σ < 1

2
+ ε , however small ε may

be!
However, for later applications we need a stronger result.

Theorem 4.4 For any fixed σ in 1
2
< σ < 1 ,

N(σ, T )� T 4σ(1−σ)(log T )10.
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Proof. For 2 ≤ V ≤ T let N1(σ, V ) count the zeros % = β + iγ of ζ(s) with β ≥ σ

and 1
2
V < γ ≤ V . Taking x = V in Theorem 3.7

ζ(s) =
∑
k≤V

1

ks
+
V 1−s

s− 1
+O

(
V −σ

)
for 1

2
V < t ≤ V and 1

2
≤ σ ≤ 1. Multiplying this with the Dirichlet polynomial

MX(s) :=
∑
m≤X

µ(m)

ms
,

where X = V 2σ−1 , gives
ζ(s)MX(s) = P (s) +R(s),

where

P (s) :=
∑
m≤X

µ(m)

ms

∑
k≤V

1

ks
=

∑
n≤XV

a(n)

ns

with

a(n) :=
∑
m|n

m≤X,n≤mV

µ(m) =

{
1 if m = 1,
0 if 1 < n ≤ X,

(4.7)

and
R(s)� |MX(s)|V −σ.

Note that MX(s) , as the truncated Dirichlet series of the reciprocal of ζ(s) , mollifies
1
ζ(s)

. We shall use P (s) as a zero-detector. Let s = % be a zero of the zeta-function

with 1
2
V < γ ≤ V . Then,

1 ≤

∣∣∣∣∣∣
∑

X<n≤XV

a(n)

n%

∣∣∣∣∣∣+O(|MX(%)|V −β),

1 �

∣∣∣∣∣∣
∑

X<n≤XV

a(n)

n%

∣∣∣∣∣∣
2

+O(|MX(%)|2V −2β).

Then, summing up both sides of the latter inequality over all such N zeros leads to

N1(V )�
∑
σ≤β≤1

1
2V <γ≤V


∣∣∣∣∣∣

∑
X<n≤XV

a(n)

n%

∣∣∣∣∣∣
2

+ |MX(%)|2V −2σ

 . (4.8)

Now we divide the interval [1
2
V, V ] into subintervals of length 1 of the form [2m+n−

1, 2m+ n] , where n = 1, 2 and 1
4
V − 1 ≤ m ≤ 1

2
V . Then, we may write

∑
σ≤β≤1

1
2V <γ≤V

≤
∑

1
4
V −1≤m≤1

2
V

2∑
n=1

∑
2m+n−1<γ≤2m+n

≤ 2 max
1≤n≤2

∑
1
4
V−1≤m≤1

2
V

∑
2m+n−1<γ≤2m+n

.
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In view of the Riemann-von Mangoldt formula (2.5) there are only � logV many
zeros with 2m + n − 1 < γ ≤ 2m + n . Now let

∑′
% denote the largest of the related

sums according to 2m + n− 1 < γ ≤ 2m+ n . Then

∑
σ≤β≤1

1
2
V <γ≤V

� logV
′∑
%

,

resp. in (4.8)

N1(V )� logV
′∑
%


∣∣∣∣∣∣

∑
X<n≤XV

a(n)

n%

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑
m≤X

µ(m)

m%

∣∣∣∣∣∣
2

V −2σ

 . (4.9)

First of all we shall give a bound for

S(Y ) :=
′∑
%

∣∣∣∣∣∣
∑

Y <n≤U

b(n)

n%

∣∣∣∣∣∣
2

,

where U ≤ 2Y and V ≥ Y ≥ 1 and

b(n)�
∑
d|n

1 =: σ0(n). (4.10)

By partial summation, for fixed % = β + iγ ,

∑
Y <n≤U

b(n)

n%
=
∫ U

Y
C(u) du−β with C(u) :=

∑
Y <n≤u

b(n)

niγ
.

Applying the Cauchy-Schwarz inequality we obtain∣∣∣∣∣∣
∑

Y <n≤U

b(n)

n%

∣∣∣∣∣∣ � Y −β−1
∫ U

Y
|C(u)|du+ Y −β|C(U)|,

∣∣∣∣∣∣
∑

Y <n≤U

b(n)

n%

∣∣∣∣∣∣
2

� Y −2β−1
∫ U

Y
|C(u)|2 du+ Y −2β|C(U)|2.

This leads to

S(Y )� Y −2σ
′∑
%

∣∣∣∣∣∣
∑

Y <n≤W

b(n)

niγ

∣∣∣∣∣∣
2

,

where W ≤ U . Since the distance of the imaginary parts of counted zeros %r = βr+iγr
is ≥ 1, we can find∣∣∣∣∣∣

∑
Y <n≤W

b(n)niγr+1

∣∣∣∣∣∣
2

≤
∫ γr+1

γr

∣∣∣∣∣∣
∑

Y <n≤W

b(n)nit

∣∣∣∣∣∣
2

dt

+2
∫ γr+1

γr

∣∣∣∣∣∣
∑

Y <n≤W

b(n)nit ·
∑

Y <m≤W

b(m) logm ·mit

∣∣∣∣∣∣ dt.
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Summation over r and application of Cauchy-Schwarz yields

S(Y )� Y −2σ(I1 +
√
I1I2),

where

I1 :=
∫ V

1
2
V

∣∣∣∣∣∣
∑

Y <n≤W

b(n)nit

∣∣∣∣∣∣
2

dt , I2 :=
∫ V

1
2
V

∣∣∣∣∣∣
∑

Y <n≤W

b(n) logn · nit

∣∣∣∣∣∣
2

dt.

Taking (4.7) into account, |a(n)| satisfies condition (4.10) on b(n) . By elementary
estimates one can show that ∑

n≤x

σk0(n)� x(log x)k,

where the implicit constant depends only on k ; a proof can be found in [25]. This
yields

I1 � (V + Y ) logV
∑

Y <n≤2Y

σ2
0(n)� (V Y + Y 2)(logV )5,

I2 � (V Y + Y 2)(log V )7.

Now dividing the first sum on the right hand side of (4.9) into � log V sums, appli-
cation of the latter estimates yields

logV
′∑
%

∣∣∣∣∣∣
∑

X<n≤V X

a(n)

n%

∣∣∣∣∣∣
2

� (V X1−2σ + (V X)2−2σ)(log V )9.

Similarly, we get for the second term

V −2σ(logT )2
′∑
%

∣∣∣∣∣∣
∑
m≤X

µ(m)

m%

∣∣∣∣∣∣
2

� V −2σ(V +X2−2σ)(logV )9.

Substituting this in (4.9) with regard to X = V 2σ−1 , we obtain

N1(V )� V 4σ(1−σ)(logV )9.

Using this with V = T 1−n and summing up over all n ∈ N , proves the theorem. •

Theorem 4.4 is due to Bohr and Landau [12]. There are stronger estimates known.
For instance, the strongest unconditional estimate which holds throughout the right
half of the critical strip is

N(σ, T )� T 2.4(1−σ)(log T )18.2

due to Gritsenko [20]. The density hypothesis states that

N(σ, T )� T (2+ε)(1−σ)

for all ε > 0; one can show that the Lindelöf hypothesis (3.5) implies the density
hypothesis.
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5 A zero-free region

In order to prove Gauss’ conjecture we need further knowledge on the zero distribution
of ζ(s) . We shall establish a zero-free region for ζ(s) which covers the abscissa of ab-
solute convergence σ = 1. In this delicate problem we follow (with slight modifications)
the ideas of de La Vallée Poussin; see [55], Section 3.

In the sequel we only argue for s = σ + it from the upper half-plane; with regard
to (2.4) all estimates below can be reflected with respect to the real axis.

Lemma 5.1 We have, for t ≥ 8, 1− 1
2
(log t)−1 ≤ σ ≤ 2 ,

ζ(s)� log t and ζ ′(s)� (log t)2.

Proof. Let 1− (log t)−1 ≤ σ ≤ 3. If n ≤ t , then

|ns| = nσ ≥ n1−(log t)−1

= exp

((
1−

1

log t

)
log n

)
� n.

Thus, the approximate functional equation (Theorem 3.7) in addition with (3.1) implies

ζ(s)�
∑
n≤t

1

n
+ t−1 � log t.

The estimate for ζ ′(s) follows immediately from Cauchy’s formula (which is actually
a consequence of the theorem of residues (4.1))

ζ ′(s) =
1

2πi

∮ ζ(z)

(z − s)2
dz,

and standard estimates of integrals, or alternatively, by differentiation of the formula
of Theorem 3.2. •

In view of the Euler product (2.2) we have for σ > 1

|ζ(σ + it)| = exp(Re log ζ(s)) = exp

∑
p,k

cos(kt log p)

kpkσ

 .
Since

17 + 24 cosα + 8cos(2α) = (3 + 4 cos α)2 ≥ 0,

it follows that

ζ(σ)17|ζ(σ + it)|24|ζ(σ + 2it)|8 ≥ 1. (5.1)

This inequality is the main idea for our following observations. By the approximate
functional equation, Theorem 3.7, we have for small σ > 1

ζ(σ)�
1

σ − 1
.
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Assuming that ζ(1 + it) has a zero for t = t0 6= 0, it would follow that

|ζ(σ + it0)| � σ − 1,

leading to
lim
σ→1+

ζ(σ)17|ζ(σ + it0)|
24 = 0,

which contradicts (5.1). Thus
ζ(1 + it) 6= 0.

It can be shown that the non-vanishing of ζ(1 + it) is equivalent to Gauss’ conjecture
(2.3), i.e. the prime number theorem without error term; see [55], §3.7. But we
are interested in a prime number theorem with error term. A simple refinement of
the argument allows a lower estimate for the modulus of ζ(1 + it) : for t ≥ 1 and
1 < σ < 2, we deduce from (5.1) and Lemma 5.1

1

|ζ(σ + it)|
≤ ζ(σ)

17
24 |ζ(σ + 2it)|

1
3 � (σ − 1)−

17
24 (log t)

1
3 .

Furthermore, with Lemma 5.1,

ζ(1 + it)− ζ(σ + it) = −
∫ σ

1
ζ ′(u+ it) du� |σ − 1|(log t)2. (5.2)

Hence

|ζ(1 + it)| ≥ |ζ(σ + it)| − c1(σ − 1)(log t)2

≥ c2(σ − 1)
17
24 (log t)−

1
3 − c1(σ − 1)(log t)2,

where c1, c2 are certain positive constants. Chosing a constant B > 0 such that
A := c2B

17
24 − c1B > 0 and putting σ = 1 +B(log t)−8 , we obtain

|ζ(1 + it)| ≥
A

(log t)6
. (5.3)

This gives an estimate on the left of the line σ = 1.

Lemma 5.2 There exists a positive constant δ such that

ζ(s) 6= 0 for σ ≥ 1− δmin{1, (log t)−8}.

Proof. In view of Lemma 5.1 the estimate (5.2) holds for 1 − δ(log t)−8 ≤ σ ≤ 1.
Using (5.3), it follows that

|ζ(σ + it)| ≥
A− c1δ

(log t)6
,

where the right hand side is positive for sufficiently small δ . This yields the zero-free
region of Lemma 5.2. •

The largest known zero-free region for the zeta-function was found by Vinogradov
[56] and Korobov [26]. Using Vinogradov’s ingenious method for exponential sums,
they proved

ζ(s) 6= 0 in σ ≥ 1−
c

(log |t|)
1
3 (log log |t|)

2
3

(5.4)

for some positive constant c and sufficiently large |t| ; see [25], §IV.3.
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6 The prime number theorem

The aim of this section is to prove Gauss’ conjecture (2.3), the celebrated prime number
theorem.

Out of technical reasons we work with the logarithmic derivative of ζ(s) (instead
of log ζ(s) as Riemann did). Logarithmic differentiation of the Euler product (2.2),
resp. differentiation of (4.5), gives for σ > 1

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)

ns
, where Λ(n) :=

{
log p if n = pk,

0 otherwise,

is the von Mangoldt Λ -function. Since ζ(s) does not vanish in the half-plane
σ > 1, the logarithmic derivative is analytic for σ > 1. As we shall see below all
information on π(x) is encoded in

ψ(x) :=
∑
n≤x

Λ(n) =
∑
p≤x

log p+O
(
x

1
2

)
. (6.1)

The idea of proof is ingenious but simple. Partial summation gives

−
ζ ′

ζ
(s) = s

∫ ∞
1

ψ(x)
dx

xs+1
.

If we can now transform this into a formula in which ψ(x) is isolated, we may hope to
find an asymptotic formula for ψ(x) by contour integration methods. The first step of
this program can be done by a type of Fourier transformation.

Lemma 6.1 Let c and y be positive and real. Then

1

2πi

∫ c+i∞

c−i∞

ys

s
ds =


0 if 0 < y < 1,
1
2

if y = 1,
1 if y > 1.

Proof. If y = 1, then the integral in question equals

1

2π

∫ ∞
−∞

dt

c+ it
=

1

π
lim
T→∞

∫ T

0

c

c2 + t2
dt =

1

π
lim
T→∞

arctan
T

c
=

1

2
,

by well-known properties of the arctan -function. Now assume that 0 < y < 1 and
r > c . Since the integrand is analytic in σ > 0, Cauchy’s theorem (resp. the theorem
of residues (4.1)) implies, for T > 0,∫ c+iT

c−iT

ys

s
ds =

{∫ r−iT

c−iT
+
∫ r+iT

r−iT
+
∫ c+iT

r+iT

}
ys

s
ds.

It is easily seen that∫ c±iT

r±iT

ys

s
ds �

1

T

∫ c

r
yσ dσ �

yc

T | log y|
,∫ r+iT

r−iT

ys

s
ds �

yr

r
+ yr

∫ T

1

dt

t
� yr

(
1

r
+ log T

)
.
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Sending now r and then T to infinity, the first case follows. Finally, if y > 1,
then we bound the corresponding integrals over the rectangular contour with corners
c± iT,−r ± iT , analogously. Now the pole of the integrand at s = 0 with residue

Res s=0
ys

s
= lim

s→0

ys

s
· s = 1

gives the values 2πi for the integral in this case. •

We apply this to the logarithmic derivative of the zeta-function and obtain for x 6∈ Z
and c > 1 ∫ c+i∞

c−i∞

∞∑
n=1

Λ(n)

ns
xs

s
ds =

∞∑
n=1

Λ(n)
∫ c+i∞

c−i∞

(
x

n

)s ds

s
;

here interchanging integration and summation is allowed by the absolute convergence
of the series. In view of Lemma 6.1 it follows that

∑
n≤x

Λ(n) =
1

2πi

∫ c+i∞

c−i∞

∞∑
n=1

Λ(n)

ns
xs

s
ds,

resp.

ψ(x) =
1

2πi

∫ c+i∞

c−i∞

(
−
ζ ′

ζ
(s)

)
xs

s
ds;

this is Perron’s formula. Since

∫ c±i∞

c±iT

ys

s
ds =

ys

s log y

∣∣∣∣∣
c±i∞

s=c±iT

+
1

log y

∫ c±i∞

c±iT

ys

s2
ds�

yc

T | log y|

for 0 < y 6= 1 and T > 0, it follows that

∫ c±i∞

c±iT

(
∞∑
n=2

Λ(n)

ns

)
xs

s
ds�

xc

T

∞∑
n=2

Λ(n)

nc
∣∣∣log x

n

∣∣∣ � xc

T

∣∣∣∣∣ζ ′ζ (c)

∣∣∣∣∣+ x(log x)2

T
+ log x.

This yields

ψ(x) = −
1

2πi

∫ c+iT

c−iT

ζ ′

ζ
(s)

xs

s
ds+O

(
xc

T

∣∣∣∣∣ζ ′ζ (c)

∣∣∣∣∣+ x(log x)2

T
+ log x

)
, (6.2)

which holds for arbitrary x . To find an asymptotic formula for the integral above we
move the path of integration to the left, excluding s = 0. By the theorem of residues
we expect contributions to the main term from the poles of the integrand, i.e.

• the nontrivial zeros of ζ(s) ,

• the pole of ζ(s) at s = 1.
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However, for our purpose it is sufficient to exclude the zeros of the zeta-function. In
view of the zero-free region of Lemma 5.2 we put c = 1+λ with λ = δ(log t)−8 , where
δ is given by Lemma 5.2, and integrate over the boundary of the rectangle R given by
the corners 1± λ± iT . By this choice ζ(s) does not vanish in and on the boundary
of R . The theorem of residues (4.1) implies∫ c+iT

c−iT

(
−
ζ ′

ζ
(s)

)
xs

s
ds =

{∫ 1−λ−iT

1+λ−iT
+
∫ 1−λ+iT

1−λ−iT
+
∫ 1+λ−iT

1−λ+iT

}(
−
ζ ′

ζ
(s)

)
xs

s
ds

+2πiRes s=1

(
−
ζ ′

ζ
(s)

)
xs

s
.

For the logarithmic derivative of ζ(s) we have

−
ζ ′

ζ
(s) = −

d

ds
log ζ(s) =

1

s− 1
+O(1)

as s→ 1. Thus, we obtain for the residue

Res s=1

(
−
ζ ′

ζ
(s)

)
xs

s
= lim

s→1
(s− 1) ·

(
1

s− 1
+O(1)

)
xs

s
= x.

It remains to bound the integrals. For the horizontal integrals we find with regard to
Lemma 5.2 ∫ 1+λ±iT

1−λ±iT

(
−
ζ ′

ζ
(s)

)
xs

s
ds�

x1+λ

T
.

Further, for the vertical integral,

∫ 1+λ+iT

1−λ−iT

(
−
ζ ′

ζ
(s)

)
xs

s
ds� x1−λ(logT )9.

Collecting together, we dedcue from (6.2)

ψ(x) = x+O

(
x1+λ

Tλ
+ x1−λ(log T )9 +

x(log x)2

T
+ log x

)
.

Choosing T = exp(δ
1
10 (log x)

1
9 ) , we arrive at

ψ(x) = x+O
(
x exp(−c(log x)

1
9 )
)
.

Setting
θ(x) :=

∑
p≤x

log p,

it follows from (6.1) that also

θ(x) = x+O
(
x exp(−c(log x)

1
9 )
)
.
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Applying now partial summation, we find

π(x) =
∑
p≤x

log p ·
1

log p
=

θ(x)

log x
−
∫ x

2
θ(u)

d

du

1

log u
du

=
x

log x
−
∫ x

2
u

d

du

1

log u
du+O

(
x exp

(
−c(log x)

1
9

))
.

Partial integration leads to prime number theorem:

Theorem 6.2 There exists a positive constant c such that for x ≥ 2

π(x) = Li (x) +O
(
x exp

(
−c(log x)

1
9

))
.

Thus, the simple pole of the zeta-function is not only the key in Euler’s proof of the
infinitude of primes (Section 2) but gives also the main term of the asymptotic formula
in the prime number theorem.

We see that the prime numbers, which - on a first look - seem to be randomly
distributed among the positive integers, satisfy a strong distribution law! For example,
the prime number theorem implies that, if pn is the n -th prime number, then

pn ∼ n log n.

In view of the largest known zero-free region (5.4) one can obtain

π(x) = Li(x) +O

x exp

−c (log x)
3
5

(log log x)
1
5

 .
With a little bit more effort and a little bit more facts from the theory of functions

it is possible to prove the analogue of Riemann’s explicit formula (2.7). Integrating
over the full complex plane one can show for x 6= pk the exact(!) explicit formula

ψ(x) = x−
∑
%

x%

%
−

1

2
log

(
1−

1

x2

)
− log(2π),

resp. its truncated version

ψ(x) = x−
∑
|γ|≤T

x%

%
+O

(
x

T
(log(xT ))2

)
. (6.3)

This shows a deep relation between the error term in the prime number theorem and
the distribution of the nontrivial zeros of the zeta-function.

Theorem 6.3 For fixed θ ∈ [ 1
2
, 1) ,

ψ(x)− x� xθ+ε ⇐⇒ ζ(s) 6= 0 for σ > θ.
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With regard to known zeros of ζ(s) on the critical line it turns out that an error term
with θ < 1

2
is impossible; see [24] for more details.

Unfortunately, for the proof of one implication of Theorem 6.3 we have to use some
facts we have not proved; the interested reader may find all missing details in [25].

Proof. By partial summation we obtain for σ > 1

−
ζ ′

ζ
(s) =

s

s− 1
+ s

∫ ∞
1

ψ(u)− u

us+1
du.

If ψ(x) − x � xθ+ε , then the integral above converges for σ > θ , giving an analytic
continuation for

ζ ′

ζ
(s)−

1

s− 1

to the half-plane σ > θ , and, in particular, ζ(s) does not vanish there.
Conversely, if all nontrivial zeros % = β + iγ satisfy β ≤ θ , then it follows from

(6.3) that

ψ(x)− x� xθ
∑
|γ|≤T

1

|γ|
+
x

T
(log(xT ))2. (6.4)

In view of the Riemann-von Mangoldt-Formel (2.5) we have

N(T + 1)−N(T )� log T,

and therefore ∑
|γ|≤T

1

|γ|
�

[T ]+1∑
m=1

logm

m
� (logT )2.

Substituting this in (6.4) leads to

ψ(x)− x� xθ(logT )2 +
x

T
(log(xT ))2.

Now the choice T = x1−θ finishes the proof of this implication. •

Theorem 6.3 shows that the Riemann’s hypothesis (2.6) is true if and only if

ψ(x) = x+O
(
x

1
2

+ε
)
,

and since the latter estimate is best possible (there are zeros on the critical line),
Riemann’s hypothesis states that the prime numbers are as uniformly distributed as
possible!

In order to prove Voronin’s universality theorem we have to do some preliminaries.
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7 Diophantine approximation

In the theory of diophantine approximations one investigates how good an irrational
number can be approximated by rational numbers; this has a plenty of applications in
various fields of mathematics and natural sciences. We follow [25], A.8.

For abbreviation we denote vectors of RN by x = (x1, . . . , xN ) ∈ RN , we write
τx = (τx1, . . . , τxN) for τ ∈ R and x · y = x1y1 + . . .+ xNyN . Further, for x ∈ RN
and γ ⊂ RN we write x ∈ γ mod 1 if there exists y ∈ ZN such that x − y ∈ γ .
Moreover, we have to introduce the notion of the Jordan volume of a region γ ⊂ RN .
Therefore, we consider the sets of parallelepipeds γ1 and γ2 with sides parallel to the
axes and of volume Γ1 and Γ2 with γ2 ⊂ γ ⊂ γ2 ; if there are γ1 and γ2 such that
lim supγ1

Γ1 coincides with lim infγ2 Γ2 , then γ has the Jordan volume

Γ = lim sup
γ1

Γ1 = lim sup
γ2

Γ2.

The Jordan sense of volume is more restrictive than the one of Lebesgue, but if the
Jordan volume exists it is also defined in the sense of Lebesgue and equal to it.

Weyl [59] proved

Theorem 7.1 Let a1, . . . , aN ∈ R be linearly independent over the field of rational
numbers, and let γ be a subregion of the N -dimensional unit cube with Jordan volume
Γ . Let a = (a1, . . . , aN) , then

lim
T→∞

1

T
meas {τ ∈ (0, T ) : τa ∈ γ mod 1} = Γ.

Proof. From the definition of the Jordan measure it follows that for any ε > 0 there
exist two finite sets of open parallelepipeds {

∏−
j } and {

∏+
j } inside the unit cube such

that

⋃ −∏
j

⊂ int γ ⊂
⋃ +∏

j

and meas

⋃ +∏
j

\
⋃ −∏

j

 < ε; (7.1)

here, as usual, M denotes the closure of the set M , and int M its interior. Denote
by χ± the characteristic function of

⋃∏±
j , i.e.

χ±(x) =

{
1 if x ∈

⋃∏±
j ,

0 if x 6∈
⋃∏±

j .

Further, let χ be the characteristic function of γ mod 1. Consequently,

0 ≤ χ−(x) ≤ χ(x) ≤ χ+(x) ≤ 1,

and ∫
[0,1]N

(χ+(x)− χ−(x)) dx < ε,
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where the integral is N -dimensional with dx = dx1 · · · dxN . Define

Φ(x) =

 0 if |x| ≥ 1
2
,

c exp
(
−
(

1
x+1

2

+ 1
x−1

2

))
if |x| < 1

2
,

where c is given by ∫ 1
2

−1
2

Φ(x) dx = 1.

Consequently, Φ(x) is an infintely differentiable function, and hence the functions,
defined by

χ̃±(x) = δ−N
∫

[0,1]N
χ±(y)Φ

(
x1 − y1

δ

)
· · ·Φ

(
xN − yN

δ

)
dy.

for 0 < δ < 1, are infinitely differentiable functions, too. From (7.1) it follows that for
sufficiently small δ we have

0 ≤ χ̃−(x) ≤ χ(x) ≤ χ̃+(x) ≤ 1,

and

0 ≤
∫

[0,1]N
(χ̃+(x)− χ̃−(x)) dx < 2ε. (7.2)

We conclude∫ T

0
χ̃−(τa) dτ ≤ meas {(τ ∈ (0, T ) : τa ∈ γ mod 1} ≤

∫ T

0
χ̃+(τa) dτ (7.3)

and

0 ≤
∫ T

0
χ̃+(τa) dτ −

∫ T

0
χ̃−(τa) dτ ≤ 2εT.

Both integrands above are infinitely differentiable functions which are 1-periodic in
each variable. Thus, we have the Fourier expansion

χ̃±(x) =
∑

n∈ZN
c±n exp(2πin · x),

where
c±n =

∫
[0,1]N

χ̃±(x) exp(−2πin · x) dx.

Note that c±0 is the volume of
⋃∏±

j . Integration by parts gives

c±n �
N∏
j=1

(|nj|+ 1)−k for k = 1, 2, . . . ,

where the implicit constant depends only on k . This shows that the Fourier series
converges absolutely, and hence, for every ε > 0 there exists a finite set M⊂ ZN such
that

χ̃±(x) =
∑

n∈M

c±n exp(2πin · x) +R(x) with |R(x)| < ε.
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This yields

1

T

∫ T

0
χ̃±(τa) dτ =

1

T

∫ T

0

∑
n∈M

c±n exp(2πiτn · x)) dτ + θε

with |θ| < 1. Consequently,

1

T

∫ T

0
χ̃±(τa) dτ = c±0 +

∑
06=n∈M

c±n
T

∫ T

0
exp(2πiτn · a) dτ + θε.

Since the an are linearly independent over Q , we have n · a 6= 0 for n 6= 0. It follows
for such n that ∫ T

0
exp(2πiτn · a)) dτ � 1.

Since ε > 0 is arbitrary, we obtain

lim
T→∞

1

T

∫ T

0
χ̃±(τa) dτ = c±0 .

This gives with regard to (7.3)

c−0 − ε ≤ lim inf
T→∞

1

T
meas {(τ ∈ (0, T ) : τa ∈ γ mod 1}

≤ lim sup
T→∞

1

T
meas {(τ ∈ (0, T ) : τa ∈ γ mod 1} ≤ c+

0 + ε

for any positive ε . From (7.2) it follows that 0 ≤ c+
0 − c

−
0 ≤ 2ε . Now sending ε→ 0,

the theorem is proved. •

As an immediate consequence of Theorem 7.1 we get the classical inhomogeneous Kro-
necker approximation theorem:

Corollary 7.2 Let α1, . . . , αN ∈ R be linearly independent over the field of rationals,
let β1, . . . , βN be arbitrary real numbers, and let q be a positive number. Then there
exists a number τ > 0 and integers x1, . . . , xN such that

|ταn − βn − xn| <
1

q
for 1 ≤ n ≤ N.

We give an application to the value distribution of the zeta-function. As we have seen
above ζ(s) is in the half-plane σ > 1 given by an absolute convergent Dirichlet series.
However, the value distribution of the zeta-function in that region is anything but
boring. Answering a question of Hilbert, H. Bohr and Landau [10], [13] showed that
|ζ(s)| takes arbitrarily large and arbitrarily small values in σ > 1 - in spite of the
absence of zeros!
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Theorem 7.3 For any ε > 0 and any real θ there exists an infinite sequence of
s = σ + it with σ → 1+ and t→∞ such that

Re {exp(iθ) log ζ(σ + it)} ≥ (1− ε) log ζ(σ) +O(1).

In particular,
lim inf
σ>1,t≥1

|ζ(s)| = 0 and lim sup
σ>1,t≥1

|ζ(s)| =∞.

Our proof differs slightly from the original one.

Proof. By (4.5) one easily finds

log ζ(s) =
∑
p

1

ps
+O(1) for σ > 1. (7.4)

Thus, we have for any t ≥ 1 and x ≥ 2

Re {exp(iθ) log ζ(σ + it)} ≥
∑
p≤x

cos(t log p− θ)

pσ
−
∑
p>x

1

pσ
+O(1). (7.5)

Here we use diophantine approximation. By the unique (!) prime factorization of the
integers the logarithms of the prime numbers are linearly independent. Denote by pn
the n -th prime, then Kronecker’s approximation theorem implies that for any given
integers q,N the existence of some real number τ > 0 and integers x1, . . . , xN with∣∣∣∣∣τ log pn

2π
−

θ

2π
− xn

∣∣∣∣∣ < 1

q
for n = 1, . . . , N.

Obviously, we get with q → ∞ infinitely many τ with the above property. Setting
N = π(x) , we obtain

cos (τ log p− θ) ≥ cos

(
2π

q

)
for all p ≤ x,

provided that q ≥ 4. Therefore, we deduce from (7.5)

Re {exp(iθ) log ζ(σ + iτ )} ≥ cos

(
2π

q

)∑
p≤x

1

pσ
−
∑
p>x

1

pσ
+O(1),

resp.

Re {exp(iθ) log ζ(σ + iτ )} ≥ cos

(
2π

q

)
log ζ(σ)− 2

∑
p>x

1

pσ
+O(1) (7.6)

in view of (7.4). Sending q, x→∞ we obtain the estimate of the theorem. In view of
the simple pole of ζ(s) at s = 1 we get with θ = 0, resp. θ = π , by sending σ → 1+
the further assertions follow. •
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It is even possible to give quantitative estimates for the rate of divergence; see [55],
§8.6, and [51].

We conclude with the notion of uniform distribution modulo 1. Let γ(τ ) be a
continuous function with domain of definition [0,∞) and range RN . Then the curve
γ(τ ) is said to be uniformly distributed mod 1 in RN if for every parallelepiped∏

= [α1, β1]× . . .× [αN , βN ] with 0 ≤ αj < βj ≤ 1 for 1 ≤ j ≤ N

lim
T→∞

1

T
meas {(τ ∈ (0, T ) : γ(τ ) ∈

∏
mod 1} =

N∏
j=1

(βj − α1).

In a sense, a curve is uniformly distributed mod 1 if the right proportion of values lies
in a given subset of the unit cube.

Since in questions about uniform distribution mod 1 one is interested in the frac-
tional part only, we define for a curve γ(τ ) in RN

{γ(τ )} = (γ1(τ )− [γ1(τ )], . . . , γN (τ )− [γN (τ )]);

recall that [x] is the integral part of x ∈ R .

Theorem 7.4 Suppose that the curve γ(τ ) is uniformly distributed mod1 in RN .
Let D be a closed and Jordan measurable subregion of the unit cube in RN and let Ω
be a family of complex-valued continuous functions defined on D . If Ω is uniformly
bounded and equicontinuous, then

lim
T→∞

1

T

∫ T

0
f({γ(τ )})χγD(τ ) dτ =

∫
D
f(x) dx

uniformly with respect to f ∈ Ω , where χγD(τ ) is equal to 1 if γ(τ ) ∈ D mod 1 , and
zero otherwise.

Proof. By the definition of the Riemann-integral as a limit of Riemann sums, we have
for any Riemann integrable function F on the unit cube in RN

lim
T→∞

1

T

∫ T

0
F ({γ(τ )}) dτ =

∫
[0,1]N

F (x) dx. (7.7)

By the assumptions on Ω, for every ε > 0 there exist f1, . . . , fn ∈ Ω such that for
every f ∈ Ω there is an fj with 1 ≤ j ≤ n, and

sup
x∈D
|f(x)− fj(x)| < ε.

By (7.7) there exists T0 such that for any T > T0 and for each function f1, . . . , fn one
has ∣∣∣∣∣

∫
D
fj(x) dx−

1

T

∫ T

0
fj({γ(τ )})χ

γ
D(τ ) dτ

∣∣∣∣∣ < ε.
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Now, for any f ∈ Ω,∣∣∣∣∣
∫
D
f(x) dx−

1

T

∫ T

0
f({γ(τ )})χγD(τ ) dτ

∣∣∣∣∣
≤

∣∣∣∣∣
∫
D
fj(x) dx−

1

T

∫ T

0
fj({γ(τ )})χ

γ
D(τ ) dτ

∣∣∣∣∣+
∣∣∣∣∫
D
(f(x)− fj(x)) dx

∣∣∣∣
+

1

T

∣∣∣∣∣
∫ T

0
(f({γ(τ )})− fj({γ(τ )}))χ

γ
D(τ ) dτ

∣∣∣∣∣
By the estimates above, this is bounded by 3ε . Since ε > 0 is arbitrary, the assertion
of the theorem follows. •

In the next section we shall meet the heart of Voronin’s universality theorem.

8 Conditionally convergent series

A series
∑
n an of real numbers an is called conditionally convergent if

∑
n |an|

is divergent but
∑
n an is convergent for an appropiate rearrangement of the terms

an . Riemann proved that any conditionally convergent series can be rearranged such
that its sum converges to an arbitrary preassigned real number; see [2]; hence, every
convergent series, which does not converge absolutely, is conditionally convergent. For
instance, to any given c ∈ R there exists a permutation π of N (i.e. a one-to-one
mapping on N ) such that

∞∑
n=1

(−1)

π(n)
= c;

here and in what follows do not confuse the permutation π with the prime counting
function. Thus, all conditionally convergent series are in a certain sense universal with
respect to R !

It is the aim of this section to extended Riemann’s rearrangement theorem to Hilbert
spaces; recall that a complete normed linear space with inner product is called Hilbert
space. We shall give an example which will be of interest later on. Let R be a positive
real number, then the Hardy space HR

2 is the set of functions f(s) which are analytic
for |s| < R and for which

‖f‖ := lim
r→R−

∫ ∫
|s|<r
|f(s)|dσ dt <∞.

We define on HR
2 an inner product by

〈f, g〉 = Re
∫ ∫

|s|≤R
f(s)g(s) dσ dt. (8.1)

This makes HR
2 into a real Hilbert space.

Pechersky [45] proved
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Theorem 8.1 Suppose that a series
∑
n un of vectors in a real Hilbert space H satis-

fies the condition
∞∑
n=1

‖un‖
2 <∞,

and for any e ∈ H with ‖e‖ = 1 the series
∑
n〈un, e〉 converges conditionally. Then

for any v ∈ H there is a permutation π of N such that

∞∑
n=1

uπ(n) = v

in the norm of H .

It is obvious how the notion of conditionally convergent series has to be extended to
real Hilbert spaces.

The proof is a bit more complicated than the one for Riemann’s rearrangement
theorem but the idea behind is still the same. We start with

Lemma 8.2 Under the assumptions of Theorem 8.1, for any v ∈ H and any ε > 0
there exist a positive integer N and numbers ε1, . . . , εN , equal to 0 or 1 , such that

∥∥∥s− N∑
n=1

εnun
∥∥∥ < ε.

Proof. We choose an integer m so that

∞∑
n=m

‖un‖
2 <

ε2

9
.

Denote by Pm the set of all linear combinations

N∑
n=m

λnun with λn ∈ [0, 1] and N = m,m+ 1,m+ 2, . . . ;

obviously, Pm is convex. Let Pm be the closure of Pm with respect to the norm of H ;
consequently Pm is a closed convex set. Now we shall show that Pm coincides with
H .

The seperation theorem for linear operators states that if X is a normed linear
space and D is a convex subset of X which is closed in the norm of X , then for any
s ∈ X \D there exist ε > 0 and a linear functional F on X such that

F (x) ≤ F (s)− ε for all x ∈ D.

The proof follows from the well-known theorem of Hahn-Banach, which relates linear
functionals to convex sets; see [14], §V.2.7. A simple consequence is that for any proper
convex subset D of real Hilbert space H , which is closed in the norm of H , there exists
a vector e ∈ H with ‖e‖ = 1 such that

sup
x∈D
〈x, e〉 <∞.
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We return to our problem: suppose that Pm 6= H , then, by the above reasoning,
there exists e ∈ H with ‖e‖ = 1 such that supx∈Pm〈x, e〉 <∞ . Since, by assumption,
the series

∑∞
n≥m〈un, e〉 converges conditionally with some arrangement of the terms,

the series of the positive terms of the series only is divergent. Thus, for any C there
exist an N and a sequence εm, . . . , εN , equal to 0 or 1 , such that

N∑
n=m

εn〈un, e〉 > C.

Since
∑N
m εnun ∈ Pm , it follows that supx∈Pm〈x, e〉 =∞ , giving the contradiction.

So we have shown Pm = H . Consequently, there exist N ≥ m and λm, . . . , λN ∈
[0, 1] such that ∥∥∥v − N∑

n=m

λnun
∥∥∥ < ε

3
.

By induction we can construct εm, . . . , εN , equal to 0 or 1 , such that for any M with
m ≤M ≤ N the inequality

∥∥∥ M∑
n=m

λnun −
M∑
n=m

εnun
∥∥∥ ≤ M∑

n=m

‖un‖
2

holds. Therefore, we may set εm = 1 and suppose that εm, . . . , εM have been chosen
so that the last inequality is fulfilled. With εM+1 , equal to 0 or 1 , satisfying

(λM+1 − εM+1)
〈 M∑
n=m

(λn − εn)un, un
〉
≤ 0,

we get

∥∥∥M+1∑
n=m

λnun −
M+1∑
n=m

εnun
∥∥∥2
≤
∥∥∥ M∑
n=m

(λn − εn)un
∥∥∥2

+ ‖uM+1‖
2 ≤

M+1∑
n=m

‖un‖
2.

In particular, ∥∥∥ N∑
n=m

λnun −
N∑

n=m

εnun
∥∥∥2
≤

N∑
n=m

‖un‖
2 <

ε2

9
,

which proves the lemma. •

The next step is

Lemma 8.3 Under the assumptions of Theorem 8.1, there exists a permutation {nk}
of N such that some subsequence of the partial sums of the series

∑
k unk converges to

v in the norm of H .

Proof. Let n1 = 1. Applying Lemma 8.2 to the series
∑
n≥2 un , yields the existence

of a finite set T1 ⊂ {2, 3, . . .} such that∥∥∥v − u1 −
∑
n∈T1

un
∥∥∥ < 1

2
.
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Now write the indices in T1 in an arbitrary order. If 2 6∈ T1 , then write 2 . Denote by
T2 the set of all indices we have so far, and define N1 = max{n ∈ T2} . Applying (8.2)
to the series

∑∞
n=N1+1 un , shows that there exists a finite set T3 ⊂ {N1 +1, N1 +2, . . .}

such that ∥∥∥v − ∑
n∈T2

un −
∑
n∈T3

un
∥∥∥ < 1

4
.

Continuing this process, the assertion of the lemma follows. • .

Further, we have to prove

Lemma 8.4 Let v1, . . . , vN be arbitrary elements in a real Hilbert space H . Then
there exists a permutation π of the set {1, . . . , N} such that

max
1≤m≤N

∥∥∥ N∑
n=1

vπ(n)

∥∥∥ ≤ ( N∑
n=1

‖vn‖
2

) 1
2

+ 2
∥∥∥ N∑
n=1

vn
∥∥∥.

Proof. First, suppose that
N∑
n=1

vn = 0.

Then we shall construct by induction a permutation {n1, . . . , nN} of {1, . . . , N} such
that

max
1≤m≤N

∥∥∥ m∑
k=1

vnk

∥∥∥ ≤ ( N∑
n=1

‖vn‖
2

)1
2

. (8.2)

Therefore, set n1 = 1 and suppose that n1, . . . , nj with 1 ≤ j ≤ N − 1 have been
chosen, satisfying

max
1≤m≤j

∥∥∥ m∑
k=1

vnk

∥∥∥2
≤

j∑
n=1

‖vn‖
2.

Then we choose nj+1 from the remaining numbers such that

〈
j∑

k=1

vnk , vnj+1〉 ≤ 0;

obviously, such an nj+1 exists since otherwise

∑
j 6=nk

〈 j∑
k=1

vnk , vj
〉

=
〈 j∑
k=1

vnk ,−
j∑

k=1

vnk

〉
> 0.

Hence, ∥∥∥ j+1∑
k=1

vnk

∥∥∥2
≤

j+1∑
k=1

‖vnk‖
2.

This yields the existence of a permutation π such that (8.2) holds under the assumption∑N
n=1 vn = 0.
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For arbitrary v1, . . . , vN define

vN+1 = −
N∑
n=1

vn,

and apply the already proved fact; obviously this leads to the additional term

‖vN+1‖
2 =

∥∥∥ N∑
n=1

vn
∥∥∥2
,

multiplied by 2, in (8.2). The lemma is shown. •

Now we are in the position for the

Proof of Theorem 8.1. Without loss of generality we may assume, by Lemma 8.3,
that some subsequence of the partial sums of the series

∑
k uk converges to v in the

norm of H ; we define

Un =
n∑
k=1

uk,

and suppose that the sequence of the Unj converges to v . For each j ∈ N there is a
permutation π of the set of vectors {Unj+1, . . . , Unj+1} in such a way that the value of

mj := max
1≤m≤nj+1−nj

∥∥∥ nj+m∑
n=nj+1

uπ(n)

∥∥∥
is minimal. By Lemma 8.4 it follows that

mj ≤

 ∞∑
n=nj+1

‖un‖
2

1
2

+ 2‖Unj+1 − Unj‖,

which obviously tends to zero as j → ∞ . Hence, the corresponding series converges
to v in the norm of H . Theorem 8.1 is proved. •

In the following section we shall return to the zeta-function and start with the proof
of Voronin’s universality theorem.

9 Finite Euler products

As we have seen in the beginning the Euler product (2.2) does not represent the zeta-
function inside the critical strip. However, as Bohr [7] discovered in his investigations on
the value distribution of ζ(s) , an appropriate truncated Euler product (2.2) converges
almost everywhere inside the critical strip to the zeta-function; see (10.5) below. This
important observation can be used for our approximation problem: if we are able to
approximate a given function by a finite Euler product, then we finally have only to
switch from the finite Euler product to the zeta-function itself!
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Let Ω denote the set of all sequences of real numbers indexed by the primes, that
are all infinite vectors of the form ω := (ω2, ω3, . . .) with ωp ∈ R . Then we define for
any finite subset M of the set of all primes, any ω ∈ Ω and all complex s

ζM (s, ω) =
∏
p∈M

(
1−

exp(−2πiωp)

ps

)−1

.

Obviously, ζM(s, ω) is an analytic function in s without zeros in the half-plane σ > 0.
Consequently, its logarithm exists and equals

log ζM (s, ω) = −
∑
p∈M

log

(
1−

exp(−2πiωp)

ps

)

(out of technical reasons we prefer to consider series than products); here as for log ζ(s)
we may take the principal branch of the logarithm.

The first step in the proof of Voronin’s theorem is to show

Theorem 9.1 Let 0 < r < 1
4

and suppose that g(s) is continuous on |s| ≤ r and

analytic in the interior. Further, let ω0 =
(

1
4
, 2

4
, 3

4
, . . .

)
. Then for any ε > 0 and any

y > 0 there exists a finite set M of prime numbers, containing at least all primes
p ≤ y , such that

max
|s|≤r

∣∣∣∣log ζM (
s+

3

4
, ω0

)
− g(s)

∣∣∣∣ < ε.

Unfortunately, the proof makes use of some classical results from analysis, which proofs
are beyond the scope of this course.

Proof. Since g(s) is continuous for |s| ≤ r , there exists κ > 1 such that κ2r < 1
4

and

max
|s|≤r

∣∣∣∣g ( sκ2

)
− g(s)

∣∣∣∣ < ε

2
. (9.1)

The function g
(
s
κ2

)
is bounded on the disc |s| ≤ κr =: R , and thus belongs to the

Hardy space HR
2 .

Denote by pk the k -th prime number. We consider the series

∞∑
k=1

uk(s) with uk(s) := log

1−
exp(−2πiωpk)

p
s+3

4
k

−1

.

First, we shall prove that for every v ∈ HR
2 there exists a rearrangement of the series∑

uk(s) for which
∞∑
k=1

ujk(s) = v(s).

In view of the Taylor expansion of the logarithm the series
∑
k uk(s) differs from

∞∑
k=1

ηk(s) =
∞∑
k=1

exp

(
−

2πik

4

)
p
−s−3

4
k

39



by an absolute convergent series. Therefore, it is sufficient to verify the conditions of
the rearrangement theorem 8.1 for the series

∑
k ηk(s) . Since R < 1

4
,

∞∑
k=1

‖ηk‖
2 �

∑
p

1

p
3
2

<∞.

Further, we have to check that for any ϕ ∈ HR
2 with ‖ϕ‖2 = 1 the series

∞∑
k=1

〈ηk, ϕ〉 (9.2)

is conditionally convergent for some rearrangement of its terms. With view to the
Cauchy-Schwarz inequality,

∞∑
k=1

〈ηk, ϕ〉 ≤
∥∥∥ ∞∑
k=1

ηk
∣∣∣ 12 · ‖ϕ∣∣∣ 12 =

∥∥∥ ∞∑
k=1

ηk
∣∣∣ 12 <∞,

it suffices to show that there exist two subseries of (9.2), where one is diverging to +∞
and the other one to −∞ .

By (8.1),

〈ηk, ϕ〉 = Re
∫ ∫

|s|≤R
exp

(
−

2πik

4

)
p
−s−3

4
k ϕ(s) dσ dt

= Re

{
exp

(
−

2πik

4

) ∫ ∫
|s|≤R

p
−s−3

4
k ϕ(s) dσ dt

}
. (9.3)

This shows
lim
k→∞
〈ηk, ϕ〉 = 0.

Now define

∆(x) =
∫ ∫

|s|≤R
exp

(
−x

(
s+

3

4

))
ϕ(s) dσ dt,

then the integral appearing on the right handside of (9.3) equals ∆(log pk) . Further,
let ϕ(s) =

∑∞
m=0 αms

m , then we may express ∆(x) in terms of the Taylor coefficients
αm as follows: obviously,

∆(x) = exp
(
−

3x

4

) ∫ ∫
|s|≤R

exp(−sx)ϕ(s) dσ dt

= exp
(
−

3x

4

) ∫ ∫
|s|≤R

∞∑
n=0

(−sx)n

n!

∞∑
m=0

αms
m dσ dt

= exp
(
−

3x

4

) ∞∑
m=0

∞∑
n=0

(−1)nxn

n!
αm

∫ ∫
|s|≤R

smsn dσ dt.

Using polar coordinates,

∫ ∫
|s|≤R

smsn dσ dt =
∫ R

0

∫ 2π

0
%m+n exp(iθ(n−m)) dθ d% =

{
2πR

2m+2

2m+2
if m = n,

0 if m 6= n.
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This yields

∆(x) = πR2 exp
(
−

3x

4

) ∞∑
m=0

(−1)mxmαm
m!(m+ 1)

R2m

= πR2 exp
(
−

3x

4

) ∞∑
m=0

βm
m!

(xR)m, (9.4)

where βm = (−1)mαmRm

m+1
. Since ‖ϕ‖ = 1, we get

1 =
∫ ∫

|s|≤R
|ϕ(s)|2 dσ dt =

∞∑
m=0

|αm|
2
∫ ∫

|s|≤R
|s|2m dσ dt = πR2

∞∑
m=0

|αm|2

m+ 1
R2m.

Hence,

0 <
∞∑
m=0

|βm|
2 ≤ 1, (9.5)

which implies |βm| ≤ 1. The function F (z) , given by

F (z) =
∞∑
m=0

βm

m!
zm,

defines an entire function in z .
Now we shall show that for any δ > 0 there exists a sequence of positive real

numbers zj , tending to +∞ , for which

|F (zj)| > exp(−(1 + 2δ)zj). (9.6)

Suppose the contrary. Then there is a δ ∈ (0, 1) and a constant B such that |F (z)| <
B exp(−(1 + 2δ)z) for any z ≥ 0. Consequently,

| exp((1 + δ)z)F (z)| < B exp(−(1 + δ)z) for z ≥ 0; (9.7)

Since |βm| ≤ 1, this estimate even holds for z < 0 by a suitable change of the constant
B .

Here we have to apply the theorem of Paley-Wiener [44], Theorem X in Section 1,
which states that if α > 0 , then the identity

G(z) =
∫ α

−α
g(ξ) exp(iξz) dξ

holds for some function g(ξ) if and only if∫ ∞
−∞
|G(z)|2 dz <∞

and G(z) has an analytic continuation throughout the complex plane satisfying G(z)�
exp((α + ε)z) for any ε > 0 , and where the implicit constant may depend on ε (this
characterizes all transcendent functions of fixed exponential type ≤ α ). Further, we
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have to make use of Plancherel’s theorem [46] which states that under the assumptions
on G(z) in the theorem of Paley-Wiener,

g(ξ) =
1

2π

∫ ∞
−∞

G(z) exp(−iξz) dz

almost everywhere in R . The proofs can be found in [44] and [1]; they rely essentially
on Fourier theory.

Application of the theorem of Paley-Wiener in our case with G(z) = exp(3z)F (z)
yields, with regard to (9.7), the representation

exp((1 + δ)z)F (z) =
∫ 3

−3
f(ξ) exp(iξz) dξ,

where f(ξ) is a square integrable function with support on the interval [−3, 3] . Fur-
ther, Plancherel’s theorem implies

f(ξ) =
1

2π

∫ ∞
−∞

F (z) exp((1 + δ)z − iξz) dz

almost everywhere. Hence, f(ξ) is analytic in a strip covering the real axis. Since the
support of f(ξ) lies inside a compact interval, the integral above has to be zero outside
this interval. Hence, F (z) has to vanish identically, contradicting the existence of a
sequence of positive real numbers zj with (9.6).

Let xj = zj
R

. Then it follows from (9.4) that

|∆(xj)| > πR2 exp
(
−

3xj
4

)
F (xjR) ≥ πR2 exp

(
−xj

(
3

4
+R(1 + 2δ)

))
.

Thus, with sufficiently small δ′ > 0 we obtain the existence of a sequence of positive
real numbers xj , tending to +∞ , for which

|∆(xj)| > exp(−(1− δ′)xj). (9.8)

Now we shall approximate F and ∆ by polynomials. Let Nj = [xj]+1 and assume
that xj − 1 ≤ x ≤ xj + 1. Since |βm| ≤ 1,

∞∑
m=N2

j +1

βm

m!
(xR)m �

(xR)N
2
j

(N2
j )!

∞∑
n=0

(xR)n

n!
�

N
N2
j

j exp(Nj)

(N2
j )!

� exp(−2xj),

by Stirling’s formula n! ∼
√

2πnnn exp(−n) . Similarly,

∞∑
m=N2

j +1

1

m!

(
−

3x

4

)m
� exp(−2xj).

Therefore,

F (xR) =


N2
j∑

m=0

+
∞∑

m=N2
j +1

 βm

m!
(xR)m = Pj(x) +O(exp(−2xj))
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and analogously

exp
(
−

3x

4

)
= P̃j(x) +O(exp(−2xj)),

where Pj and P̃j are polynomials of degree ≤ N2
j . This yields in view of (9.4)

∆(x) = Qj(x) +O(exp(−xj)) for xj − 1 ≤ x ≤ xj + 1,

where Qj = PjP̃j is a polynomial of degree ≤ N4
j .

In order to find lower bounds for Qj(x) we have to apply a classical theorem of A.A.
Markov [43] which states that if Q is a polynomial of degree N with real coefficients
which satisfies the inequality

max
−1≤x≤1

|Q(x)| ≤ 1,

then
max
−1≤x≤1

|Q′(x)| ≤ N2;

for a proof see [43].
We return to the proof of Theorem 9.1. In view of (9.8) suppose that

µ := max
xj−1≤x≤xj+1

|Re Qj(x)| >
1

2
exp(−(1− δ′)xj), (9.9)

then there exists a ξ ∈ [xj − 1, xj + 1] such that Re Qj(ξ) = µ . In view of the
mean-value theorem from real analysis there exists a κ in between x and ξ for which

|Re Qj(ξ) − Re Qj(x)| = |Re Q′j(κ)(ξ − x)|.

Define λ = N8
j |ξ− x| . Markov’s theorem, applied to Q(x) = 1

µ
Re Qj(x− xj) , implies

|Re Qj(ξ) − Re Qj(x)| ≤ λµ.

If λ ≤ 1
2
, then

|Re Qj(x)| ≥
µ

2
≥

1

16
exp(−(1− δ′)xj)

for |ξ− x| ≤ 1
2
N−8 . If (9.9) does not hold, we may argue analogously with Im Qj . In

any case it follows that for sufficiently large xj the intervals [xj − 1, xj + 1] contains
intervals [α, α + β] of length ≥ 1

200
N−8
j all of whose points satisfy at least one of the

inequalities

|Re ∆(x)| >
1

200
exp(−(1− δ′)x) , |Im ∆(x)| >

1

200
exp(−(1− δ′)x);(9.10)

in particular

xj − 1 ≤ α ≤ xj + 1−
1

2x8
j

and
1

2x8
j

≤ β ≤ 2.

In order to prove the divergence of a subseries of (9.2) we note that one of the in-
equalities in (9.10) is satisfied infinitely many often as x → ∞ ; we may assume
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that it is the one with the real part. By the prime number theorem 6.2, the inter-
val [exp(α), exp(α+ β)] contains∫ exp(α+β)

exp(α)

du

log u
+O

(
exp

(
α− c(α+ β)

1
9

))
=

exp(α+ β)

α+ β
−

exp(α)

α
+O

(
exp

(
α− c(α+ β)

1
9

))
=

exp(α)

α

(
exp(β)− 1 +O

(
α exp

(
−c(α + β)

1
9

)))
many primes, where c > 0 is some absolute constant. An easy computation shows

π(exp(α + β))− π(exp(α))�
exp(xj)

x9
j

.

Under these prime numbers pk ∈ [exp(α), exp(α + β)] we choose those with k ≡
0 mod 4. Since ωpk = k

4
, we get with view to (9.3)

∑
k≡0 mod 4

α≤log pk≤α+β

〈ηk, ϕ〉 =
∑

k≡0 mod 4
α≤log pk≤α+β

Re ∆(log pk)� exp(−(1− δ′)xj)
exp(xj)

x9
j

=
exp(δ′xj)

x9
j

,

which diverges with xj → ∞ . Analogously, one can create a subseries of (9.2) which
diverges to −∞ .

Thus, we have shown that the series (9.2) satsifies the conditions of Theorem 8.1.
Hence, there exists a rearrangement of the series (9.2) for which

∞∑
k=1

ujk(s) = g

(
s

κ2

)
. (9.11)

Before we can finish the proof of Theorem 9.1 we have to prove the following

Lemma 9.2 Suppose that F (s) is continuous on |s| ≤ R . Suppose that there is a
sequence of analytic functions fn(s) for which

lim
n→∞

∫ ∫
|s|≤r
|F (s)− fn(s)|

2 dσ dt = 0,

then for any ε > 0 there is an integer m such that for any fixed r ∈ (0, R) and any
n ≥ m

max
|s|≤r
|F (s)− f(s)| < ε.

Proof. Define Gn(s) = F (s)− fn(s) . By Cauchy’s formula,

Gn(s)
2 =

1

2πi

∮
|s−z|=%

Gn(z)
2

z − s
dz =

1

2π

∫ 2π

0
G2
n(s+ % exp(iθ)) dθ
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for any % ≤ R . Fix 0 < r < R . Taking the absolute modulus and integrating % with
0 < R− r , we arrive at

|Gn(s)|
2
∫ R−r

0
%d% =

1

2π

∫ R−r

0

∫ 2π

0
|Gn(s+ % exp(iθ))|2%dθ d%

=
1

2π

∫ ∫
|s|≤R
|Gn(s)|

2 dσ dt.

This yields

|Gn(s)|
2 ≤

1

2π(R − r)2

∫ ∫
|s|≤R
|Gn(s)|

2 dσ dt for |s| ≤ R < r.

Now the assumption on the limit implies the estimate of the lemma. •

We return to the proof of Theorem 9.1. According to (9.11),

lim
n→∞

n∑
k=1

ujk(s) = g

(
s

κ2

)

in the norm of HR
2 . This implies

lim
n→∞

∫ ∫
|s|≤R

∣∣∣∣∣g
(
s

κ2

)
−

n∑
k=1

ujk(s)

∣∣∣∣∣
2

dσ dt = 0

uniformly on |s| ≤ R . Thus, application of Lemma 9.2 shows that for sufficiently large
m

max
|s|≤R

∣∣∣∣∣g
(
s

κ2

)
−

m∑
k=1

ujk(s)

∣∣∣∣∣ < ε

2
.

Now, by definition, there exists a finite set M , containing without loss of generality
all primes p ≤ y , such that

log ζM

(
s+

3

4
, ω0

)
:=

m∑
k=1

ujk(s).

Hence, in view of (9.1) it follows that

max
|s|≤r

∣∣∣∣log ζM (
s+

3

4
, ω0

)
− g(s)

∣∣∣∣
≤ max|s|≤r

∣∣∣log ζM (
s+ 3

4
, ω0

)
− g

(
s
κ2

)∣∣∣+ max|s|≤r
∣∣∣g ( s

κ2

)
− g(s)

∣∣∣ < ε.

This finishes the proof of Theorem 9.1. •
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10 Voronin’s universality theorem

The next and main step in the proof of the universality theorem 1.2 is to switch from
log ζM to the logarithm of the zeta-function.

Theorem 10.1 Let 0 < r < 1
4

and suppose that g(s) is continuous on |s| ≤ r and
analytic in the interior. Then, for any ε > 0 ,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K

∣∣∣∣log ζ (s+
3

4
+ iτ

)
− g(s)

∣∣∣∣ < ε

}
> 0.

Note that log ζ(s) has singularities at the zeros of ζ(s) . The truth of Riemann’s
hypothesis would imply that all such singularities lie to the left of the strip of univer-
sality 1

2
< σ < 1. However, unconditionally the set of such singularities has in view of

the density theorem 4.4 zero density. Therefore the existence of these singularities is
negligeable for our observations.

Proof. We choose κ > 1 and ε ∈ (0, 1) such that κr < 1
4

and

max
|s|≤r

∣∣∣∣g ( sκ
)
− g(s)

∣∣∣∣ < ε1.

Set Q = {p ≤ z} and let E = {s : −κr < σ ≤ 2,−1 ≤ t ≤ t} . We shall estimate

I :=
∫ 2T

T

∫ ∫
E

∣∣∣∣ζ−1
Q

(
s+

3

4
+ iτ,0

)
ζ

(
s+

3

4
+ iτ

)
− 1

∣∣∣∣2 dσ dt dτ,

where 0 = (0, 0, . . .) . By Theorem 3.7,

ζ(s+ iτ ) =
∑
n≤T

1

ns+iτ
+O(T−σ).

This gives

I =
∫ ∫

E+3
4

∫ 2T

T
|ζ−1
Q (s+ iτ,0)ζ(s+ iτ )− 1|2 dτ dσ dt

�
∫ ∫

E+3
4

∫ 2T

T

∣∣∣∣∣∣ζ−1
Q (s+ iτ,0)

∑
n≤T

1

ns+iτ
− 1

∣∣∣∣∣∣
2

dτ dσ dt

+
∫ ∫

E+3
4

∫ 2T

T
T−σ|ζ−1

Q (s+ iτ,0)|2 dτ dσ dt, (10.1)

where E + 3
4

is the set of all s with s− 3
4
∈ E . By definition,

ζ−1
Q (s,0) =

∏
p∈Q

(
1−

1

ps

)
=

∞∑
m=1

p|m⇒p∈Q

µ(m)

ms
.
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Obviously, we may bound the second term appearing on the right hand side of (10.1)
by

T−2(3
4
−κr) max

s∈E+3
4

∫ 2T

T
|ζ−1
Q (s+ iτ,0)|2 dτ � T 2κr−1

2

∣∣∣∣ζ−1
Q

(
3

4
− κr,0

)∣∣∣∣2 .
Furthermore, for T > z a simple computation gives

ζ−1
Q (s,0)

∑
n≤T

1

ns
= 1 +

∑
z<k≤zzT

bk

ks
with bk =

∑
m|k

p|m⇒p∈Q;k≤mT

1.

By a classical estimate for the divisor function from elementary number theory

σ0(n)� nε (10.2)

(for a proof see [25]). Thus, similarly as in (4.7) we have

|bk| ≤ σ0(k)� kε for any ε > 0. (10.3)

Hence, for T > z

∫ 2T

T

∣∣∣∣∣∣ζ−1
Q (s+ iτ,0)

∑
n≤T

1

ns+iτ
− 1

∣∣∣∣∣∣
2

dτ =
∫ 2T

T

∣∣∣∣∣∣
∑

z<k≤zzT

bk

ks

∣∣∣∣∣∣
2

dτ

= T
∑

z<k≤zzT

|bk|2

k2σ
+O

 ∑
0<l<k≤zzT

|bkbl|

(kl)σ

∣∣∣∣∣∣
∫ 2T

T

(
k

l

)iτ
dτ

∣∣∣∣∣∣
 ,

Using estimate (10.3) with ε = ε1
2

, the above is bounded by

T
∑
k>z

σ2
0(k)

k2σ
+

∑
0<l<k≤zzT

σ0(k)σ0(l)

(kl)σ log k
l

� Tz1−2σ+ε1 + (zzT )ε1
∑

0<l<k≤zzT

1

(kl)σ log k
l

.

The appearing sum can be estimated by ((zzT )2−2σ + 1) log2(zzT ) as we did in the
proof of Theorem 4.1. Thus, we finally arrive at

∫ ∫
E+3

4

∫ 2T

T

∣∣∣∣∣∣ζ−1
Q (s+ iτ,0)

∑
n≤T

1

ns+iτ
− 1

∣∣∣∣∣∣
2

dτ dσ dt

�
∫ ∫

E+3
4

(
Tz1−2σ+ε1 + (zzT )ε1((zzT )2−2σ + 1) log2(zzT )

)
dσ dt

� z2κr+ε1−
1
2T.

In view of (10.1) we conclude that for any ε2 > 0 there exists z0 such that

I � ε4
2T, (10.4)

provided that z > z0 and T sufficiently large, say T > T0 , depending on ε2 and z .
Define

AT =

{
τ ∈ [T, 2T ] :

∫ ∫
E+3

4

|ζ−1
Q (s+ iτ,0)ζ(s+ iτ )− 1|2 dσ dt� ε2

2

}
.
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Then it follows from (10.1) and (10.4) that for sufficiently large z and T

measAT > (1− ε2)T, (10.5)

which is surprisingly large; this idea goes back to Bohr [7]. Application of Lemma 9.2
gives for τ ∈ AT

max
|s|≤r
|ζ−1
Q (s+ iτ,0)ζ(s+ iτ )− 1| < Cε2,

where C is a positive constant, depending only on κ . For sufficiently small ε2 we
deduce

max
|s|≤r

∣∣∣∣log ζ (s+
3

4
+ iτ

)
− log ζQ

(
s+

3

4
+ iτ,0

)∣∣∣∣ < 2Cε2, (10.6)

provided τ ∈ AT ; here we used a truncated Taylor expansion of the exponential
function exp z = 1 + z +O(|z|2) .

By Theorem 9.1 there exists a sequence of finite sets of prime numbers M1 ⊂M2 ⊂
. . . such that ∪∞k=1Mk contains all primes and

lim
k→∞

max
|s|≤κr

∣∣∣∣log ζMk

(
s +

3

4
, ω0

)
− g

(
s

κ

)∣∣∣∣ = 0. (10.7)

Let ω′ = (ω′2, ω
′
3, . . .) . By the continuity of log ζM

(
s+ 3

4
, ω0

)
, for any ε1 > 0 there

exists a positive δ for which, whenever

‖ωp − ω
′
p‖ < δ for all p ∈Mk, (10.8)

then

max
|s|≤κr

∣∣∣∣log ζMk

(
s+

3

4
, ω0

)
− log ζMk

(
s+

3

4
, ω′
)∣∣∣∣ < ε. (10.9)

Setting

BT =

{
τ ∈ [T, 2T ] :

∥∥∥τ log p

2π
− ωp

∥∥∥ < δ

}
,

we get

1

T

∫
B

∫ ∫
|s|≤κr

∣∣∣∣log ζQ (s+
3

4
+ iτ,0

)
− log ζMk

(
s+

3

4
+ iτ,0

)∣∣∣∣2 dσ dt dτ

=
∫ ∫

|s|≤κr

1

T

∫
BT

∣∣∣∣log ζQ (s+
3

4
+ iτ,0

)
− log ζMk

(
s+

3

4
+ iτ,0

)∣∣∣∣2 dτ dσ dt.

Putting ω(τ ) =
(
τ log 2

2π
, τ log 3

2π
, . . .

)
, we may rewrite the inner integral as

∫
BT

∣∣∣∣log ζQ (s+
3

4
, ω(τ )

)
− log ζMk

(
s+

3

4
+ iτ, ω(τ )

)∣∣∣∣2 dτ.
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Application of Theorem 7.1 to the curve γ(τ ) =
(
τ log 2

2π
, τ log 3

2π
, . . . , τ logpN

2π

)
(the loga-

rithms of the prime numbers are linearly independent as we have seen in the proof of
Theorem 7.3) yields

lim
T→∞

1

T

∫
BT

∣∣∣∣log ζQ (s +
3

4
, ω(τ )

)
− log ζMk

(
s +

3

4
+ iτ, ω(τ )

)∣∣∣∣2 dτ

=
∫
D

∣∣∣∣log ζQ (s+
3

4
, ω
)
− log ζMk

(
s+

3

4
+ iτ, ω

)∣∣∣∣2 dµ

uniformly in s for |s| ≤ κr , where D is the subregion of the unit cube in RN given by
the inequalities (10.8) and dµ is the Lebesgue measure. By the definition of ζM(s, ω)
it follows that for Mk ⊂ Q

ζQ(s, ω) = ζMk
(s, ω)ζQ\Mk

(s, ω),

and thus∫
D

∣∣∣∣log ζQ (s+
3

4
, ω

)
− log ζMk

(
s+

3

4
+ iτ, ω

)∣∣∣∣2 dµ

=
∫
D

∣∣∣∣log ζQ\Mk

(
s+

3

4
, ω

)∣∣∣∣2 dµ = measD ·
∫

[0,1]N

∣∣∣∣log ζQ\Mk

(
s+

3

4
, ω

)∣∣∣∣2 dµ.

Since

log ζQ\Mk

(
s+

3

4
, ω

)
=

∑
p∈Q\Mk

∞∑
n=1

exp(−2πiωp)

npn(s+
3
4)

,

we obtain ∫
[0,1]N

∣∣∣∣log ζQ\Mk

(
s+

3

4
, ω
)∣∣∣∣2 dµ =

∑
p∈Q\Mk

∞∑
n=1

1

n2p2σ+3n
2

.

If Mk contains all primes ≤ yk , then

∑
p∈Q\Mk

∞∑
n=1

exp(−2πiωp)

n2p2nσ+3n
2

� y
2κr−1

2
k .

Hence, we finally get

1

T

∫
BT

∫ ∫
|s|≤κr

∣∣∣∣log ζQ (s+
3

4
+ iτ,0

)
− log ζMk

(
s+

3

4
+ iτ,0

)∣∣∣∣2 dσ dt dτ

� y
2κr−1

2
k measD.

A further application of Theorem 7.1 shows

lim
T→∞

1

T
measBT = measD,

which implies for yk sufficiently large

meas

{
τ ∈ BT :

∫ ∫
|s|≤κr

∣∣∣∣log ζQ (s+
3

4
+ iτ,0

)
− log ζMk

(
s+

3

4
+ iτ,0

)∣∣∣∣2 dσ dt

< y
κr−1

4
k

}
>

measD

2
T.
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The curve γ(τ ) is uniformly distributed mod1. Thus, application of Theorem 7.4
yields

meas

{
τ ∈ BT : max

|s|≤κr

∣∣∣∣log ζQ (s+
3

4
+ iτ,0

)
− log ζMk

(
s+

3

4
+ iτ,0

)∣∣∣∣
< y

1
5(κr−

1
4)

k

}
>

measD

2
T. (10.10)

If we now take 0 < ε2 <
1
2
measD , then (10.5) implies

meas AT ∩ BT > 0.

Thus, in view of (10.7) we may approximate g
(
s
κ

)
by log ζMk

(
s+ 3

4
,0
)

(independent

on τ ), with (10.9) and (10.10) the latter function by log ζQ
(
s+ 3

4
,0
)
, and finally

with regard to (10.6) by log ζ
(
s+ 3

4
+ iτ

)
on a set of τ with positive measure. The

theorem is proved. •

It is obvious what we have to do to get rid of the logarithm in Theorem 10.1. Let
f(s) = exp(g(s)) ; it is fundamental in complex analysis that every analytic function
f(s) without zeros has an analytic logarithm g(s) . Obviously,

f(s) − ζ
(
s+

3

4

)
= f(s)

(
1− exp

(
log ζ

(
s+

3

4

)
− g(s)

))
.

Let ε > 0 and κ > 1 such that κr < 1
4

and

max
|s|≤r

∣∣∣∣f(s)− f
(
s

κ

)∣∣∣∣ < ε.

Then, since exp z = 1− z +O(|z|2) , we obtain

max
|s|≤r

∣∣∣∣ζ (s+
3

4
+ iτ

)
− f

(
s

κ

)∣∣∣∣ = max
|s|≤r

∣∣∣∣ζ (s+
3

4
+ iτ

)
− exp

(
g

(
s

κ

))∣∣∣∣
≤ max

|s|≤r

∣∣∣∣f ( sκ
)∣∣∣∣ ·max

|s|≤r

∣∣∣∣exp
(
log ζM

(
s+

3

4
, ω0

)
− g

(
s

κ

))
− 1

∣∣∣∣
≤ max

|s|≤r

∣∣∣∣f ( sκ
)∣∣∣∣ ·max

|s|≤r

∣∣∣∣log ζM (
s+

3

4
, ω0

)
− g

(
s

κ

)∣∣∣∣ ,
which can be made sufficiently small by Theorem 10.1. Thus, we finally have proved
Voronin’s theorem:

Corollary 10.2 Let 0 < r < 1
4

and suppose that f(s) is a continuous non-vanishing
function on |s| ≤ r which is analytic in the interior. Then, for any ε > 0 ,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣ζ (s+
3

4
+ iτ

)
− f(s)

∣∣∣∣ < ε

}
> 0.
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Surprisingly, the set of translates on which ζ(s) approximate a given function f(s)
with arbitrary precision has a positive lower density! This improves Theorem 1.2 from
the introduction significantly.

Bagchi [3] extended Voronin’s result significantly in different ways after some first
progress due to Reich [47]. By that it was possible to replace the discs by arbitrary
compact subsets of the strip 1

2
< σ < 1 with connected complement. Actually, Bagchi

found a new and very transparent proof by using limit theorems for weakly convergent
probability measures. This approach was completed and extended by Laurinčikas in
various details and directions; see [28]. The strongest version of Voronin’s universality
theorem is

Theorem 10.3 Let K be a compact subset of 1
2
< σ < 1 with connected complement

and suppose that f(s) is a continuous non-vanishing function on K which is analytic
in the interior. Then, for any ε > 0 ,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ )− f(s)| < ε

}
> 0.

11 Functional independence

We state some consequences of the universality property of the zeta-function. We start
with a classical result due to Bohr [7], namely that the set of values taken by ζ(s) on
a vertical line σ ∈ (1

2
, 1) lies dense in the complex plane. This can be extended to

Theorem 11.1 Let 1
2
< σ < 1 be fixed, then the sets

{(log ζ(s), (log ζ(s))′, . . . , (log ζ(s))(n−1)) : t ∈ R}

and
{(ζ(s), ζ ′(s), . . . , ζ(n−1)(s)) : t ∈ R}

lie everywhere dense in Cn .

Proof. Suppose that we are given a vector (b0, b1, . . . , bn−1) ∈ Cn . Let

r =
1

4
−

1

2
min

{
σ −

1

2
, 1− σ

}
and define

g(s) =
n−1∑
k=0

bk

k!
sk.

Obviously, g(k)(0) = bk for k = 0, 1, . . . , n− 1. By Cauchy’s formula, we have further

f (k)(0) =
k!

2πi

∮
|s|=%

f(s)

sk+1
ds (11.1)
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for any % > 0. With view to Theorem 10.1 the function g(s) can be approximated to

arbitrary precision on the disc |s| ≤ r by log ζ
(
s+ 3

4
+ iτ

)
for some τ . Hence, taking

f(s) = g(s)− log ζ
(
s+

3

4
+ iτ

)
and % < r in (11.1), shows that (log ζ(s), log ζ ′(s), . . . , log ζ(s)(n−1)) with 1

2
< σ < 1

lies somewhere arbtrarily close to (g(0), g′(0), . . . , g(n−1)(0)) = (b0, b1, . . . , bn−1) . This
implies the statement for the first set.

We use induction on m to prove that for any (m+1)-tuple (a0, a1, . . . , am) ∈ Cm+1 ,
where a0 6= 0, there exists (b0, b1, . . . , bm) ∈ Cm+1 for which

exp

(
m∑
k=0

bks
k

)
≡

m∑
k=0

ak

k!
sk mod sm+1.

For m = 0 one only has to choose b0 = log a0 . By the induction assumption, we may
assume that with some α

exp

(
m∑
k=0

bks
k

)
≡

m∑
k=0

ak

k!
sk + αsm+1 mod sm+2.

Thus,

exp

(
m∑
k=0

bks
k + βsm+1

)
≡ (1 + βsm+1)

(
m∑
k=0

ak

k!
sk + αsm+1

)
mod sm+2.

Hence, let bm+1 = β be the solution of the equation

βa0 + α =
am+1

(m+ 1)!
,

which exists by the restriction on a0 . This shows

exp

(
m+1∑
k=0

bks
k

)
≡

m+1∑
k=0

ak

k!
sk mod sm+2,

proving the claim.
Now

f(s) := exp

(
n−1∑
k=0

bks
k

)
≡

m+1∑
k=0

ak

k!
sk mod sn.

By Voronin’s universality theorem, Corollary 10.2, there exists a sequence τj , tending
with j to infinity, such that

lim
j→∞

max
|s|≤r

∣∣∣∣ζ (s+
3

4
+ iτj

)∣∣∣∣ = 0

for some r ∈ (0, 1
4
) . In view of (11.1) we obtain

lim
j→∞

max
|s|≤r−ε

∣∣∣∣ζ(k)
(
s+

3

4
+ iτj

)
− f (k)(s)

∣∣∣∣ = 0

for k = 1, . . . , n− 1 and any ε ∈ (0, r) . Arguing as above, this proves the theorem. •

Further, the universality result implies functional independence:
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Theorem 11.2 Let z = (z0, z1, . . . , zn−1) ∈ C . Suppose that F0(z), F1(z), . . . , FN(z)
are continuous functions, not all identically zero, then

N∑
k=0

skFk(ζ(s), ζ(s)
′, . . . , ζ(s)(n−1)) 6= 0

for some s ∈ C ,

In particular, we see that the zeta-function does not satisfy any algebraic functional
equation. This solves one of Hilbert’s famous problems which he posed at the Inter-
national Congress of Mathematicians in Paris 1900. The first proof of this result was
given by Ostrowski [41].

Proof. First, we shall show that if F (z) is a continuous function and

F (ζ(s), ζ(s)′, . . . , ζ(s)(n−1))) = 0

identically in s ∈ C , then F vanishes identically.
Suppose the contrary, i.e. F (z) 6≡ 0. Then there exists a ∈ Cn for which F (a) 6= 0.

Since F is continuous, there exist a neighbourhood U of a and a positive ε such that

|F (z)| > ε for z ∈ U.

Choosing an arbitrary σ ∈ (1
2
, 1) , application of Theorem 11.1 yields the existence of

some t for which
(ζ(s), ζ(s)′, . . . , ζ(s)(n−1)) ∈ U,

which contradicts our assumption. This proves our claim, resp. the assertion of the
theorem with N = 0.

Without loss of generality we may assume that F0(z) is not identically zero. As
above there exist an open bounded set U and a positive ε such that

|F0(z)| > ε for z ∈ U.

Denote by M the maximum of all indices m for which

sup
z∈U
|Fm(z)| 6= 0.

If M = 0, then the assertion of the theorem follows from the result proved above.
Otherwise, we may take a subset V ⊂ U such that

inf
z∈V
|FM(z)| > ε

for some positive ε . By Theorem 11.1, there exists a sequence tj , tending with j to
infinity, such that

(ζ(σ + itj), ζ(σ + itj)
′, . . . , ζ(σ + itj)

(n−1)) ∈ V.

This implies

lim
j→∞

∣∣∣∣∣
M∑
k=0

(σ + itj)
kFk(ζ(σ + itj), ζ(σ + itj)

′, . . . , ζ(σ + itj)
(n−1))

∣∣∣∣∣ =∞.
This proves the theorem. •
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12 Self-similarity and the Riemann hypothesis

In view of Voronin’s universality theorem a natural question arises: is it possible to
approximate functions with zeros? The answer is more or less negative but of special
interest. We give an heuristic argument which however can be made waterproof with
a bit more effort and the same techniques which we shall use later on.

In order to see that the zeta-function cannot approximate uniformly a function with
zeros recall Rouche’s theorem, which states that if f(s) and g(s) are analytic inside
and on a contour C , and |f(s)| < |g(s)| on C , then g(s) and f(s) + g(s) have the
same number of zeros inside C ; for a proof see [54], §3.42.

Now assume that f(s) is an analytic function on |s| ≤ r , where 0 < r < 1
4
,

which has a zero λ with |λ| < r but which is non-vanishing on the boundary. For
ε > 0 sufficiently small we may assume that max|s|=r |f(s)| > ε . Hence, whenever the
inequality

max
|s|≤r

∣∣∣∣ζ (s+
3

4
+ iτ

)
− ζ(s)

∣∣∣∣ < ε < min
|s|≤r
|ζ(s)|; (12.1)

holds, ζ
(
s+ 3

4
+ iτ

)
has to have a zero inside |s| ≤ r (since by the maximum principle

the maximum on the left hand side is actually taken on the boundary). Note that the
second inequality in (12.1) holds for sufficiently small ε (since the zeros of an analytic
function lie discrete or the function vanishes identically). Therefore, if for any ε > 0

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣ζ (s+
3

4
+ iτ

)
− f(s)

∣∣∣∣ < ε

}
> 0,

then we expect � T many complex zeros of ζ(s) in the strip 3
4
− r < σ < 3

4
+ r (for

a rigorous proof one has to consider exactly the densities of values τ satisfying (12.1);
this can be done along the lines of the proof of Theorem 12.1 below). This contradicts
the density theorem 4.4, which gives

N

(
3

4
− r, T

)
= o(T ).

Thus, an approximation of a function with a zero on a sufficiently rich set cannot be
done!

The above reasoning shows that the location of the complex zeros of the zeta-
function is closely connected with its universality property. We can go a little bit
further.

Theorem 12.1 The Riemann hypothesis is true if and only if for any compact subset
K of 1

2
< σ < 1 with connected complement and any ε > 0

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ )− ζ(s)| < ε

}
> 0. (12.2)
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This theorem is due to Bagchi [3]; in [4] he generalized this result in various directions.
Since Bagchi’s proof relies mainly on the theory of topolgical dynamics he speaks about
the property (12.2) as strong recurrence. However, we call it self-similarity. It should be
noted that Bohr [8] detected in 1922 a similar result. Therefore, we have to introduce
an important class of zeta-functions.

For a character χ mod q (i.e. a non-trivial group homomorphism on the prime
residue class mod q ) the Dirichlet L -function is for σ > 1 given by

L(s, χ) =
∏
p

(
1−

χ(p)

ps

)−1

=
∞∑
n=1

χ(n)

ns
.

Dirichlet L -functions have similar behaviour and properties as the Riemann zeta-
function; actually, ζ(s) may be regarded as Dirichlet L -function associated to the
principal character χ0 mod 1. As for the Riemann zeta-function it is conjectured
that L(s, χ) does not vanish in σ > 1

2
, this is the so-called Generalized Riemann

hypothesis. Harald Bohr introduced the fruitful notion of almost periodicity into
analysis. We say that a function L(s) is almost periodic in K if for all ε > there
exists a sequence of values . . . , τ−1 < 0 < τ1 < τ2 < . . . ... with

lim inf
m→±∞

(τm+1 − τm) > 0 and lim sup
m→±∞

τm

|m|
<∞

for which
|L(s+ iτm)− L(s)| < ε for all s ∈ K.

Bohr proved that Dirichlet series are almost periodic in their half-plane of absolute
convergence. Moreover, he discovered an interesting relation between Riemann’s hy-
pothesis and almost periodicity: if χ is a non-trivial character, then the Riemann
hypothesis for L(s, χ) is true if and only if L(s, χ) is almost periodic for σ > 1

2
. Note

that self-similarity implies almost periodicity (but not vice versa). The condition on
the character seems somehow unnatural but Bohr’s argument does not apply to ζ(s) .
However, by Voronin’s universality theorem this gap can be filled. We shall give a
simple proof of Bagchi’s theorem which actually combines Bohr’s idea with the one of
Bagchi.

Proof. If Riemann’s hypothesis is true, then we can apply the universality theorem
10.3 with g(s) = ζ(s) , which implies the self-similarity. The idea for the proof of the
other implication is that if there is at least one proof to the right of the critical line,
then the self-similarity property implies the existence of many zeros, too many with
regard to well-known density theorems).

Suppose that the Riemann hypothesis is not true, then there exists a zero λ of ζ(s)
with Re λ > 1

2
. Further, we We have to show that there exists a disc |s| ≤ r < 1

4
and

ε > 0 such that

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ

)
− ζ(s)| < ε} = 0. (12.3)
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Locally, the zeta-function has the expansion

ζ(s) = c(s− λ)m +O
(
|s− λ|m+1|

)
(12.4)

with some non-zero c ∈ C and m ∈ N . Now assume for a neighbourhood Kδ := {s ∈
C : |s− λ ≤ δ} of λ that

max
s∈Kδ
|ζ(s+ iτ )− ζ(s)| < ε < min

|s|=δ
|ζ(s)|; (12.5)

this formula should be compared with (12.1). Then Rouche’s theorem implies the
existence of a zero % of ζ(s + iτ ) in Kδ . We may say that the zero λ of ζ(s)
generates the zero % of ζ(s+ iτ ) . With regard to (12.4) and (12.5) the zeros λ and
% are intimately related, more precisely:

ε > |ζ(%)− ζ(%− iτ )| = |ζ(%− iτ )|

≥ |c| · |%− iτ − λ|m +O
(
|%− iτ − λ|m+1

)
.

Hence,

|%− iτ − λ| ≤

(
ε

|c|

) 1
m

+O
(
δ1+ 1

m

)
,

and in particular

1

2
< Re λ− 2

(
ε

|c|

) 1
m

< Re % < 1,

|Im % − (τ + Im λ)| < 2

(
ε

|c|

) 1
m

for sufficiently small δ = o(εm+1) . It may happen that different values of τ for which
(12.5) hold lead to the same zero % . Therefore, we have to consider the densities for
such τ . If we now write

I :=
⋃
j

Ij := {τ ∈ [0, T ] : max
s∈Kδ
|ζ(s+ iτ )− ζ(s)| < ε},

where the Ij are disjoint intervals, then it follows that there are

≥

1

4

(
|c|

ε

) 1
m

measIj

+ 1 >
1

4

(
|c|

ε

) 1
m

measIj

many zeros according to τ ∈ Ij , and thus

N

Re λ− 2

(
ε

|c|

) 1
m

, T + Im λ+ 2

(
ε

|c|

) 1
m

 ≥ 1

4

(
|c|

ε

) 1
m

measI;

recall that the zero-counting function N(σ, T ) was defined in Section 4. By the density
theorem 4.4 we obtain measI = o(T ) , which implies (12.3). The theorem is proved.
•
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The critical line is a natural borderline for self-similarity since Levinson [36] proved
that the frequency of c -values of the zeta-function, i.e. solutions of ζ(s) = c , close
to the critical line increases rapidly with increasing imaginary part; similar as the
Riemann von-Mangold formula (2.5) in connection with Theorem 4.3 show for the
particular case of zeros.

Assuming Riemann’s hypothesis the self-similarity property (12.2) has an interest-
ing interpretation. The amplitude of light waves is a physical bound for the size of
objects which human beings can see (even with microscopes), or take the Planck con-
stant 10−33 which is the smallest size of objects in quantum mechanics. Thus, if we
assume that ε is less than this quantity, then we cannot distinguish between ζ(s) and
ζ(s+ iτ ) whenever

max
s∈K
|ζ(s+ iτ )− ζ(s)| < ε.

This shows that even if one would have all knowledge on the zeta-function, one could
not decide wherever one actually is in the analytic landscape of ζ(s) above the right
half of the critical strip without moving to the boundary. The zeta-function as an
amazing maze!

Theorem 12.1 offers an interesting approach towards Riemann’s hypothesis. How-
ever, we shall only prove, following Bohr’s argument, that the zeta-function is self-
similar in the half-plane of absolute convergence.

Theorem 12.2 Let K be any compact subset in the half-plane σ > 1 . Then, for any
ε > 0 ,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ )− ζ(s)| < ε

}
> 0.

Proof. Since ζ(s) is regular and zero-free in σ > 1, we may define the logarithm
(by choosing any one of the values of the logarithm). In view of the Euler product
representation it is easily shown that

log ζ(s) =
∑
p,k

1

kpks
for σ > 1,

where the sum is taken over all prime numbers p and all positive integers k . Hence,

log ζ(s)− log ζ(s+ iτ ) =
∑
p,k≥1

1

kpks

(
1−

1

pikτ

)
. (12.6)

We shall use diophantine approximation to find values of τ for which p−ikτ lies suf-
ficiently close to 1. We apply Theorem 7.1 with an = 1

2π
log pn where, as usual, pn

denotes the n -th prime number. Further, we choose

γ =
{
(z1, . . . , zN ) ∈ RN : ‖zn‖ <

1

ω
for 1 ≤ n ≤ N

}
,

where the parameter ω > 0 will be chosen later and where ‖z‖ denotes the distance
of z to the next integer. Then we find about

Γ = T

(
4π

ω

)N
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many values of τ ∈ [0, T ] such that

‖τ log pn‖ <
2π

ω
for 1 ≤ n ≤ N

as T tends to infinity. Consequently,

cos(kτ log p) = 1 +O

(
k2

ω2

)
, sin(kτ log p) = O

(
k

ω

)
,

resp.

|1− p−ikτ |2 = (1− cos(kτ log p))2 + sin2(kτ log p)�
k2

ω2

for p ≤ pN , provided that ω > 4k ; here and in the sequel all implicit constants are
absolute. This yields ∑

p≤x,k≤y

1

ps

(
1−

1

piτ

)
�

xy

ω
,

where x = pN . Furthermore, we have

∑
p≤x,k>y

1

kpks

(
1−

1

pikτ

)
�

1

y

∑
p≤x

1

pσy
�

x

y2y
,

and ∑
p>x,k≥1

1

kpks

(
1−

1

pikτ

)
�

∑
n>x

1

nσ
�

x1−σ

σ − 1
.

In view of (12.6) we obtain

log ζ(s)− log ζ(s+ iτ )�
xy

2σω
+ +

x

y2y
+
x1−σ

σ − 1
(12.7)

for a set of values of τ ∈ [0, T ] with positive lower density as T →∞ and any σ > 1;
note that the estimates can easily be improved. Since K is compact, there exists
κ := min{σ : s ∈ K} . Then

max
s∈K
|ζ(s)| ≤ ζ(κ).

Now for any given ε′ > 0 we can find values x, y and ω such that the right hand side
of (12.7) is < ε′ . It remains to get rid of the logarithm. Obviously,

ζ(s)− ζ(s+ iτ ) = ζ(s)(1− exp{log ζ(s+ iτ )− log ζ(s)}).

Hence,

max
s∈K
|ζ(s)− ζ(s+ iτ )| ≤ ζ(κ) ·max

s∈K
| log ζ(s + iτ )− log ζ(s)| < ε′ζ(κ).

The choice ε′ = ε
2M

proves the theorem. •

Taking Theorems 12.1 and 12.2 into account, we might conjecture that the zeta-
function has the above self-similarity property for σ > 1

2
.
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13 Effective bounds

However, the known proofs of Voronin’s universality theorem are ineffective, giving
neither an estimate for the first approximating translate τ nor lower bounds for the
positive lower density. This is caused by Pechersky’s ineffective theorem 8.1 on the
rearrangement of series. In this section we shall prove for a sufficiently large class of
functions upper bounds for the upper density; for more on this topic see [52].

Denote by Br the closed disc of radius r > 0 with center in the origin. For our
purpose we consider analytic isomorphisms g : Br → B1 , i.e. the inverse g−1

exists and is analytic. Obviously, such an analytic isomorphisms g has exactly one
simple zero λ in the interior of Br ; moreover, it can be shown (by the Schwarz lemma,
see [54], §7.2) that g ∈ Ar has the representation

g(s) = r exp(iϕ)
λ− s

r2 − λs
with ϕ ∈ R, |λ| < r. (13.1)

Denote by Ar the class of analytic isomorphisms from Br onto the unit disc. Further,
define for an analytic isomorphisms g ∈ Ar with fixed r ∈

(
0, 1

4

)
and a positive ε the

upper density

d(ε, g) := lim sup
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣log ζ (s+
3

4
+ iτ

)
− g(s)

∣∣∣∣ < ε

}

and the lower density d(ε, g) analogously; note that (d(ε, g) > 0 implies the univer-
sality property of Corollary 10.2 with respect to g . Finally, let N(σ1, σ2, T ) count the
number of zeros of log ζ(s) in 1

2
< σ1 < σ < σ2 < 1 (according multiplicities). Then

Theorem 13.1 Suppose that g ∈ Ar and d(ε, g) > 0 for all ε > 0 . Then, for any

ε ∈
(
0, 1

2r

(
1
4

+ Re |λ|
))

,

d(ε, g) ≤
8r4ε

r2 − |λ|2
lim sup
T→∞

1

T
N
(

3

4
+ Re λ− 2rε,

3

4
+ Re λ + 2rε, T

)
(13.2)

= o(ε).

Therefore, the decay of d(ε, g) with ε→ 0 is more than linear in ε .

Proof. The idea of proof is (as in the proof of Theorem 12.1) that the zero λ of g
generates some zeros of log ζ(s) in 1

2
< σ < 1. Since g maps the boundary of Br onto

the unit circle, Rouche’s theorem implies the existence of one simple zero % of log ζ(z)
in

Kτ :=
{
z =

3

4
+ s+ iτ : s ∈ Br

}
whenever (12.1) holds.

Universality (as self-similarity) is a phenomenon that happens in intervalls. Now
we have to prove an upper bound for the distance of different translates generating the
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same zero % of log ζ(s) : suppose that a zero % of log ζ(s) , generated by λ , lies in two
different translates Kτ1 and Kτ2 , then

|τ1 − τ2| <
8r4ε

r2 − |λ|2
. (13.3)

Suppose that there exist

sj = Re % −
3

4
+ itj ∈ Br, and τj ∈ R with log ζ

(
sj +

3

4
+ iτj

)
= 0,

for j = 1, 2, such that

% = s1 +
3

4
+ iτ1 = s2 +

3

4
+ iτ2.

In view of (13.1),

|g(s2)− g(s1)| =
r2 − |λ|2

|r2 − λs1||r2 − λs2|
|s2 − s1|.

We deduce from (12.1) that |g(sj)| < ε for j = 1, 2, and therefore

|τ1 − τ2| = |t2 − t1| ≤
4r4

r2 − |λ|2
|g(s2)− g(s1)| <

8r4ε

r2 − |λ|2
,

which proves estimate (13.3).
Now, denote by Ij(T ) the disjoint intervalls in [0, T ] such that (12.1) is valid

exactly for
τ ∈

⋃
j

Ij(T ) =: I(T ).

Using (13.3), in every intervall Ij(T ) lie at least

1 +

[
r2 − |λ|2

8r4ε
measIj(T )

]
≥
r2 − |λ|2

8r4ε
meas Ij(T )

zeros % of log ζ(s) in the strip 1
2
< σ < 1. Therefore, the number N (T ) of such zeros

% satisfies the estimate

8r4ε

r2 − |λ|2
N (T ) ≥ measI(T ). (13.4)

The next step is to replace N (T ) by the zero counting function appearing in the
theorem.

Obviously, the value distribution of log ζ(z) in Kτ is ruled by that of g(s) in Br .
As we shall see below, this gives a restriction on the real parts of zeros % . Let s ∈ Br .
If |g(s)| ≥ ε , then, in view of (12.1),∣∣∣∣log ζ (s+

3

4
+ iτ

)∣∣∣∣ ≥ |g(s)| − ∣∣∣∣g(s)− log ζ
(
s+

3

4
+ iτ

)∣∣∣∣ > 0.
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Since (13.1) implies

|g(s)| ≥
|λ− s|

2r
,

we obtain the estimate∣∣∣∣Re %−
3

4
−Re λ

∣∣∣∣ < 2rε (13.5)

by taking the real parts.
In view of (13.5) we find

N (T ) ≤ N
(

3

4
+ Re λ− 2rε,

3

4
+ Re λ+ 2rε, T

)
. (13.6)

On the other side, since d(ε, g) > 0, there exists an incresing sequence (Tk) with
limk→∞ Tk =∞ such that for any δ > 0

measI(Tk) ≥ (d(ε, g)− δ)Tk.

Consequently, this together with (13.6), leads in (13.4) to

8r4ε

r2 − |λ|2
N

(
3

4
+ Re λ− 2rε,

3

4
+ Re λ + 2rε, Tk

)
≥ (d(ε, g)− δ)Tk.

Sending δ → 0, yields the estimate (13.2) of the theorem. As it was shown by Bohr
and Jessen the limit

lim
T→∞

1

T
N
(

3

4
+ Re λ− δ,

3

4
+ Re λ + δ, T

)
exists, and tends with ε to zero (see Hilfssatz 6 , [9]). Further, one has

max
s∈Br

∣∣∣∣ζ (s+
3

4
+ iτ

)
− exp g(s)

∣∣∣∣
≤ max

s∈Br
| exp g(s)| ×max

s∈Br

∣∣∣∣exp
(
log ζ

(
s+

3

4
+ iτ

)
− g(s)

)
− 1

∣∣∣∣
≤ emax

s∈Br

∣∣∣∣ζ (s+
3

4
+ iτ

)
− exp g(s)

∣∣∣∣ .
The Theorem is shown. •

Recently, Garunkštis [17] proved a first effective universality theorem along the lines
of Voronin’s proof in addition with some old ideas due to Good [19] and new insights.
In particular, his remarkable result shows that if f(s) is analytic in |s| ≤ 0.05 with
max|s|≤0.06 |f(s)| ≤ 1 , then for any 0 < ε < 1

2
there exists a

τ ≤ exp
(
exp

(
10ε−13

))
such that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤0.0001

∣∣∣∣ζ (s+
3

4
+ iτ

)
− f(s)

∣∣∣∣ < ε

}
≥ exp

(
−ε−13

)
.

Another approach via the rate of convergence of weak convergent probability measures
is due to Laurinčikas [31].
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14 Other zeta-functions

It is natural to ask whether other functions with similar properties as the Riemann
zeta-function are universal. Meanwhile, it is known that there exists a rich zoo of
Dirichlet series having the universality property; we mention only some further signif-
icant examples:

• Joint universality for Dirichlet L -functions, i.e. for a collection of Dirichlet L -
functions attached to pairwise non-equivalent characters χ mod q (nontrivial
group homomorphisms on the group of prime residue classes), proved by Voronin
[58];

• Dirichlet L -functions with respect to the modulus of the characters, by Eminyan
[15];

• Dedekind zeta-functions associated to a number field K over Q

ζK(s) =
∞∑
A

1

(NA)s
=
∏
P

(
1−

1

(NP)s

)−1

,

where the sum is taken over all non-zero integral ideals, the product is taken over
all prime ideals of the ring of integers of K and where NA is the norm of the
ideal A , obtained by Reich [48];

• Dirichlet series with multiplicative coefficients, by Laurinčikas [27], Laurinčikas
and Šleževicienė [35];

• Matsumoto zeta-functions, obtained by Laurinčikas [30];

• L -functions associated to cusp forms, resp. new forms (or elliptic curves by Wiles
et al. celebrated proof of Fermat’s last theorem), by Laurinčikas and Matsumoto
[33], resp. Laurinčikas, Matsumoto and Steuding [34];

• Hurwitz zeta-functions

ζ(s, α) =
∞∑
m=0

1

(m+ α)s
(14.1)

with parameter α ∈ (0, 1] where α is rational 6= 1
2
, 1 or transcendental, proved

by Gonek [18], Bagchi [3];

• Lerch zeta-functions, proved by Laurinčikas [29];

This list could be continued with Hecke L -functions, Artin L -functions, Rankin-
Selberg convolution L -functions to mention only some more important examples.

Some of the examples given above, e.g. Hurwitz zeta-functions, have the strong
universality property, i.e. that they can approximate functions with zeros. It seems
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that the restriction to a conditional universality property is intimately linked to the
property of the Dirichlet series in question to have an Euler product, and by that, to
satisfy Riemann’s hypothesis. It should be noted that the strong universality leads by
the arguments used in the proof of Theorem 12.1 to the existence of many zeros off the
critical line; see [16] for more details.

All known proofs of universality for zeta-functions depend on a certain indepen-
dence, namely that the logarithms of the prime numbers are linearly independent (as
we have used it in the proof of Voronin’s universality theorem when we applied Kro-
necker’s approximation theorem 7.1), resp. that the numbers log(n+α) for n ∈ N are
linearly independent if α is transcendental (which is necessary to deal with (14.1)).
The Linnik-Ibragimov conjecture states that all functions given by Dirichlet series
and analytically continuable to the left of the half plane of absolute convergence are
universal. However, this is better to understand as a program than a conjecture. For
example, define a(n) = 1 if n = 2k, k ∈ N ∪ {0} , and a(n) = 0 otherwise, then

A(s) =
∞∑
n=1

a(n)

ns
=
∞∑
k=0

1

2sk
=

1

1− 2−s
,

and obviously, this function is far away from beeing universal. However, in [53] a
universality theorem for the so-called Selberg class, which covers all from a number
theoretical point of view interesting Dirichlet series known so far (i.e. with Euler
product), was proved.

More detailed surveys on the value distribution of zeta-functions are the excellent
written papers [32] and [40].
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[31] A. Laurinčikas, On the effectivization of the universality theorem for the Lerch
zeta-function, Liet. Matem. Rink. 40 (2000), 172-178 (in Russian); Lith. Math. J.
40 (2000), 135-139
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