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1 Introduction

This is a set of notes | wrote while teaching courses in dittigiory for undergraduate electrical engineering
students. They can be read in connection with any good stahdak on the subject. They basically contain
the essence of a large chunk of a circuit theory course. Cittweory is, of course, obtained by making an
idealization of Maxwell's equations in the absence of ckargnd when we can ignore magnetic fields. From
a mathematical point of view, circuit theory can be seen apm in graph theory, a topic in linear algebra,
but also a topic in discrete harmonic analysis. The benigofd€irchoff’s laws and Ohm’s laws, familiar to
any electrical engineer, in other words a mere set of lingaagons, contains, in disguise, a lot of physical
and mathematical beauty. The point of the notes is to firdia@xgvhy a circuit can be solved, and, second,
present the standard methods for doing so (variants of wéicdt in common software packages for circuit
simulation).

2 Fromacircuit toitsgraph

The first thing we do here is to identify tlygaphof the circuit. That is, we identify the set wérticesV’, and
the set ofedgesE. The graph iS5 = (V, E)). Next, each edge is given an arbitranjentation If the edge
between vertices and/ is considered unoriented, it is denoted{dy ¢}. If it is oriented it is designated as
(k, ), wherek is thestart-vertexand/ is theend-vertex For example, here is a circuit and its graph.
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Figure 1: ACIRCUIT AND ITS GRAPH

The set of vertices i% = {1,2,3,4,5}. The set of edges iE = {e1, es, €3, €4, €5, €6, €7, €5 }. The edge
orientation is entirely arbitrary. For examplegif is considered as unoriented, it is denotecthy= {2, 3}.
Taking into account the orientation, we write = (2, 3). We say that an edgfg, ¢} is incidentto a vertex if
this vertex isk or £. We do not consider self-edges, that is edges that startrahdt¢he same vertex.

Much of what we say holds for circuits containing dependentrses, transformers, and other linear
elements. However, to make the exposition simple, we ingtfiat we have only resistors (which could take
complex values) and independent voltage and current seuftes is not a restriction of generalit! Also, we



arrange so that there is at most one edge per pair of verbgaatfoducing, if necessary, additional nodes).
So, again, assuming that there is at most one edge per paértifes is no loss of generality. A word on
terminology: an edge is sometimes callednch and a vertex is calledode especially if we refer to the
actual electrical circuit. The graph of Fig. 1pganar, in that it can be drawn on the plane, without edge
intersections. On the contrary, the graph below (Fig. 2pis-planar. The reason is that, no matter how you
redraw it, at least two of its edges will intersect.
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Figure 2: ANON-PLANAR GRAPH

The nice thing about graphs, is that they contain the mininfafmation about the “topological structure”
of the circuit, which is responsible for the writing of thedwircuit laws: Kirchhoff's Current Law (KCL)
and Kirchhoff’s Voltage Law (KVL). It is often nice and pleéag to reduce a model into its bare minimum
SO we can see exactly how much we can say about it, withoubhgetbnfused by redundant information.

3 Currentsand voltages

A current configurationor simply current, for a grap¥ = (V, E) is a collection = (i., e € E) of numbers
i. associated to edgesso that they satisfy KCL. That is, for each vertelook at all edge incident tok,
letby, . be+1 is k is a start-vertex o or —1 if k is an end-vertex of and write

> bgeic =0. (1)

If we defineby, . to be0 if e is not incident to vertex, then the above summation can be extended over all
ec FE.

Next, we turn to KVL. Acycle(or loop) ¢ of G is a collection of distinct vertices, . .., k;, such that
{k1,ko}, {ko, ks}, ..., {kj—1,k;}, {k;, k1 } are all edges of thanorientedgraph. Thecycle orientatiorof
cycle ¢ is the orientation at which we traverse its vertices. Theaabrientation of a particular edgeof
¢ may or may not agree with that 6f We define numbers, . as follows: ife does not belong to cyclé
thena, . = 0; if e belongs tof ande has the same orientation sthena. = +1; otherwisega, = —1. A
voltage configuration = (v., e € E) is an assignment of numbersto the edges of G in a way that KVL
is satisfied. KVL, for a given cyclé, says that

S arev = 0. @)

4 From graphsto matrices

We can encode KCL by using the language of matrices. For thisgse, we define thacidence matrixB
of the graphG = (V, E) (whose edges have been given an arbitrary orientation) atraxrwhoserows are



indexed by verticesndcolumns by edged he entry ofB corresponding to row (verteX)and column (edge)
e is simply taken to bé;, . as defined above. For instance, in the first example, we have

o -1 -1 1 0 0
0 0 0 -1 1 1
-1 0 1 0O -1 0 -1
1 0 0 0 0 0
0 1 0 0 0o -1 1 1
€1 €z €3 €4 €5 €g €7 €Eg

g wnN P

Thus, columm3 of B has1 at position3 and—1 at position1, meaning that edge; starts at vertex and
ends at vertex. If we thus leti = (41, 12, i3, 14, i5, 16, i7, 95)" De @ column of a current configuration, we can
encode KCL as follows:
Bi=0. 3
Indeed, if, e.g., we multiply the second row Bfby i we get—i4 + i5 + ig = 0, which is KCL at vertex.
We can encode KVL (1) by introducing tlogcle matrixA, whoserows are indexed by oriented cycles
andcolumns by oriented edgeand whose typical element, corresponding to row (cyc&)d column (edge)

eisay ., as defined above. For instance, in the example of Fig. 1, weethe cyclesl,2,5), (2, 3,4, 5), etc.
There are too many cycles, so I'm not going to list them alle Tcle matrix is

0 10 1 0 1 0 O cycle(1,2,5)
-1 0 0o o0 1 -1 0 -1 cycle(2,3,4,5)

Again, | only listed its first two rows, corresponding to theles(1, 2, 5) and(2, 3,4, 5). KVL (2) now reads
Av =0. (4)

So, with the identification of a graph and the introductiothaf matrices3 and A, we managed to encode
the relevant information of the circuit and express KCL and_Kn the form of (3) and (4). Let us see what
we can say about these two laws, before we introduce anyi@ullitconstraints, i.e., before we take into
account the actual identity of the circuit elements sita¢ghe various branches of the circuit.

A WORD ON NOTATION: Suppose thatl is am x n matrix. We will useA™ to denote theransposeof
A, i.e. then x m matrix whose rows are the columnsAf If B is anothem x k matrix then the rule for the
transpose of the product says tiiatB)" = BT A". The set alln-vectorsz such thatdxz = 0 is denoted by
M(A):
N(A) :={z: Az =0}.

The set of allm-vectorsy such thaty = Az for some vecton-vectorz is denoted byR(A):
R(A) :={y: y = Az for somez}.

Note then, that every suchis a linear combination of the columns df In other wordsfi(A) contains all
linear combinations of the columns df In the same vein, the set containing all linear combinatioiithe
rows of A is denoted byR(A") (because rows ofl are columns ofd™).

5 Spacesof circuit variables

We identify four spaces and use the following notation/iantogy:



1. CURR-SP (current space): It is the set of all current configuratidres, all i satisfying (3). Thus,
CURR-SP = M(B).

2. VOLT-SP (voltage space): It is the set of all voltage configuratidres, all v satisfying (4). Thus,
VOLT-SP = 91(A).

3. CYCL-SP (cycle space): It is the set of all linear combinations oflegcthat is, of rows ofA. Thus,
CYCL-SP = R(A").

4. VERT-SP (vertex space): Itis the set of all linear combinations efse@f B. Thus,VERT-SP = R(B").

These spaces are not unrelated. In this, and the followwwgséetions, we will study their relations. This
study will turn out to be quite fruitful because, as by-prod it will give us some general methods for
solving circuits, it will tell us what energy conservatioctaally means, and it will essentially exhaust the
study of circuits.

First, observe that every row df (i.e. every cycle vector) is a valid current configuratios, ithat every
row of A satisfies (3). To see this, consider a verteand a loop¢. Eitherk does not belong té, in which
case the contribution dfto the KCL atk is zero, ork belongs to/; in the latter case, there are two edges in
¢ Fig. tok, one ending ak and one starting dt; Hence the contribution afto the KCL atk is —1 + 1 = 0.

In matrix notation,
BA" =0. (5)

A consequence of (5) is that the cycle space is containectinuhrent space:

CYCL-SP C CURR-SP. (6)

Indeed, a vector in the cycle space is, by definition, of thenfd"z. But thenB(A™z) = 0. So A"z is also
in the current space. Now we can take transpose in (5) to get

AB" =0, )
which means that the node space is contained in the voltage sp
VERT-SP C VOLT-SP. (8)

In fact, we claim that the opposite inclusions in (6) and (8paold. To show this, we need a bit more of
graph theory.

6 Spanningtrees. voLT-sp = VERT-sP

Assume that the graph mnnectedthe general case follows easily), withvertices andn edges. Since
every vertex is connected by an edge to some other vertexawe h

m>n—1.

A treeis a connected graph that has no cycles at allspAnning treeof G is a tree that contains all the
vertices ofG. Consider then a fixed spanning trfBe= (V, E1) of G. Here is a spanning tree (Fig. 3) for our
example of Fig. 1. Its edge setisr = {eq, €5, €6, e5}. These are thegee branchesThe remaining edges

are callecchords

It is easy to see that every spanning tree has 1 branches. We are going to show that every voltage
configurationv can be written as a linear combination of rowsi®f This is nothing else but the familiar
idea that every voltage configuration on the edgeS chin be defined by means opatential configuration




Figure 3: ASPANNING TREE

on the vertices ofz. The spanning tre helps to rigorously prove that. Pick a vertex’Bfand call it the
root or theground node Now, for any vertex, there is a unique path ¢hf connectings to the root. Define
the orientation of this path to be that from the rootitoDefine the potentigb;, of vertexk to be the sum
of the voltages over all edges of this path, with the corragpt.sThat is, if edge: of the path has the same
orientation as the path, then addwith sign+1, or else, with sign-1. It is now easy to check that for any
edgee = (k, ¢) (not necessarily if") the voltagev, is just

Ve = Pr — Do, ()]

i.e., the difference of the potential of the start node mias of the end node. Indeedgifs in T', then this is
obvious. Ife = (k, £) is a chord, then let be the vertex at which the path fnd the path of first intersect,
and apply KVL at the obvious cycle containing vertices, £. (See Fig. 4.)

Figure 4: $IOWING THAT v = pj, — D¢

Now check that the above display (9) can be written, in matotation, as
v = Bp.

In other words, ifv is a voltage configuration, then we showed that there is @vgda potential configura-
tion) such thaty = BTp. This means that every voltage configuration is a linear d¢oation of rows ofB,
or that

VOLT-SP C VERT-SP. (10)

Putting (8) and (10) together we arrive at the result Yt T-SP is identical tovVERT-SP .

A byproduct of our discussion is that every voltagean be defined by means of— 1 numbers, the
potentials of the vertices other than the root vertex. H&@EeT-SP is an(n — 1)-dimensional linear space:

dimVOLT-SP =n — 1.



Next, we want to show that the reverse inclusion in (6) aldd$i0We can do this in two ways. Either we
can use another graph argument (and talk about chords addrfwental cycles) or use algebra and deduce it
from (10). We prefer the latter. (We are going to talk aboetfitrmer approach in connection to the general
methods for solving circuits later.)

7 A bit of algebra: curr-sp=cycL-sp

We claim that this last inclusion (10) implies the oppositeusion of (6). Let be some current configuration
andv some voltage configuration. Hence= B™p andBi = 0. This gives

i'v=4"(B"p)=(Bi)')p=0-p=0.

By the way, this relationship between a current configuraiiand a voltage configuration is called
Tellegen’s theorerand it is a generalization of thginciple of energy conservation

We now do the following trick: pick set of linearly indepemdecolumns ofA. Call these columns
ai,as,...,a.. (We can achieve this by starting with the first columrdotthen picking the next column that
is not a multiple ofe, and call itas, then the next one that is not a linear combinatioaQfuz2, and so on.)
Suppose that; occurs at the-th position ofA. Letw; be a unit column, with at thep-th position and
everywhere else. Then

a; =Au;, j=1,...,r

Next pick a maximal set of linearly independent voltage apnfations. This is easy to do: every row Bf

is a voltage configuration. Any — 1 rows (for example all but the last row) are linearly indepemtd Call
these rows, ..., v, _;. We claim thatu,, ..., u,, v1,...,v,_1 are linearly independent. Indeed, suppose
that there are numbers, ..., A\, i1, ..., tn—1, Such that

r n—1
Z Ajug + Z pirvi = 0.
j=1 k=1

Then, by applying4 to both sides (and remembering thhi; = a;, andAv;, = 0), we find

zr: )\jaj =0.
j=1

But the a;'s have been chosen to be linearly independent; thus= 0 for all j = 1,...,r. But then
22;11 urvr = 0, and, since they, are linearly independent, we haug = 0, forallk =1,...,n — 1.

Now fix a column vector: = (z., e € E) and consider the produgtz. This is really a linear combination
of the columns ofd. Since every column is a linear combination of the colurmans. ., a, chosen above,
we have thatdz itself is a linear combination of these columns. We can thritew

Ar = Z)\j&j.
j=1
Using the same coefficients;, define the column
Y= Z Ajug.
j=1

We havexr = (z —y) +y, andA(x — y) = Az — Ay = 0. Hencex — y € DM(A)VOLT-SP. Thus, any
m~vectorx can be written as a sum of a vectoN@LT-SP and a vecto which is the linear combination of
r unit vectors. Remembering thdim VOLT-SP = n — 1, we have

m=n-1)+r



Instead of using theu, ..., u,, we can, instead, uselinearly independent rows ofl. Call these rows
wi,...,w.. The vectorsvy,...,v,_1, wi,...,w, are linearly independent and amy-vector z can be
written as a linear combination of theée — 1) + » = m vectors. In particular, this is true for a current
configurationi: we can writei = v + w, wherew is a linear combination ofy, . .., v,_1, andw is a linear
combination ofwy, . .., w,. Sincev € VOLT-SP, we know that™v = 0. Hence) = (v+w)"™v = v"v +w'v.
Butw = A'u, for someu, becausev € CYCL-SP. Sow™v = (A'w)"™v = w'Av = 0. Sov'™v = 0, and
this means that = 0, so thati = w, and soi € CYCL-SP. We thus proved any from CURR-SP is also
contained inCYCL-SP.

CURR-SP C CYCL-SP. (11)

Putting (6) and (11) together we arrive at the result ¢1aRR-SP is the same aSYCL-SP . In particular, we
have shown that
dim CURR-SP = m —n + 1.

MNEMONIC RULE: The V-spacesOLT-SP andVERT-SP ) are identical, and so are the C-spac&sRR-SP and
CYCL-SP).

8 Thenodeand loop methods

If a spanning tred" is chosen then the — 1 potentialsp;, on every vertex: other than the root define all
voltages. This was explained above. This actually leadfieémode methodor circuit analysis. In this
method, we consider the — 1 potentials as the unknowns and, for each vektadhich is not root, we write
KCL.

The dual to this method is tHeop methodIn class, we explained how to pick meshes in a planar graph.
If the graph is not necessarily planar, then the way we pitledrly independent” cycles (loops) is again
by considering a spanning trédeé Each edge: which is not inT" (called chord) defines a cycle, in the
following manner: if we ad@ to 7" then a unique cycle is formed, called tumdamental cyclef the chord
e. For example, in Fig. 3, if we ade} to the tree we obtain the cycléd, 3,2,5). We give the fundamental
cycle the orientation of the chord that defines it. We showstler (11) thatCURR-SP C CYCL-SP. This
means that every current configuratiois a linear combination of cycles. But we never said whichis t
linear combination. This is achieved by letting the cursgpton each chord (on each fundamental cyele)
undefined, and by expressing the vectas a linear combination of thegg's. These variables are called
fundamentaloop currents For instance, Fig. 3 can be redrawn as follows (Fig. 5). Tigisre shows the
fundamental cycles and their currents.

Figure 5: RUNDAMENTAL CYCLES AND CURRENTS



Now, a current on a branch of the tree can be expressed as ratiohi of the loop currents for each
fundamental loop containing this branch. So we have

i1 =J1 i5 = —Jj1+J3 — Jr
i2 = J4 — J3 ¢ =J1—J3s+Jja+Jj7
i3 =73 i7 = Jr

iy = J4 ig = J1

Another way to think of these is as follows. Each branch ofttbe separates it into two upon its removal.
Let V4, V5 be the set of vertices of each part. For instance, by remoyjnge havel; = {1,4,5} and
V2 = {2,3}. The removed edge together with the chords fignto V; form afundamental cytand each of
the above equations is nothing else but KCL for this fundaaiemut. For example, the fundamental cut of
eg containsey, e7, ey, ez andeg. The equationis = j; — js + ja + j7 is KCL for this cut. Next observe that
we can write the equations above in matrix form as follows:

; 1 0 0 0
1 0 -1 1 0
22 0 1 0 0
4
. ) 0 ) 0 |1 . 0
bl =0 +J3 1 + J4 0 + J7 1
% 1 1 1 1
27 0 0 0 1
8 1 0 0 0
In matrix notation,
1 =j"A,
whereA is thereduced cycle matrix
1 0 00 -1 1 01
i_0 110 1 100
“10 1 0 1 O 1 0 0
0O 0 00 -1 1 10

In general, the reduced cycle mateixis obtained from the cycle matri® by eliminating all rows except a
maximal set of linearly independent ones. It thushas n + 1 rows andm columns.

One then considers the — n + 1 loop currents as unknowns and requires that, for each fuadtah
loop, a KVL be written. It leads te» — n + 1 linearly independent equationssim — n + 1 unknowns.

In practice, choosing the right method, or picking a spagiae?” in a “correct” way are both matters
that require some experience.

9 Tellegen'stheorem

This was proven earlier: any current configuratias orthogonal to any voltage configuration:
v =0.

Notice that the only requirement is that batandwv refer to the same graph. We have not used the identity
of the circuit elements. And, although this can be integuets the energy conservation principle, it is a fact
that reflects simply the geometry of the spaces of variables.



10 General solution

We present the solution to “any” linear circuit. First, wsase that the circuit is well-defined. We leave this
notion vague, but what we mean is that the circuit should aotain, for example, current sources connected
in a way that they violate KCL, neither voltage sources \iotaKVL. By source transformations we can
then reduce the circuit so that each braadiontains a resistor, in series with a voltage sourge. (See Fig.

6.) We then have

Figure 6: ATYPICAL BRANCH

Ve = Tele + Ye,

for each edge. In matrix notation,
v = Ri+g, (12)

whereR is a diagonal matrix containing the resistances. NowBldte the reduced incidence matrix, that is,
the matrix B with the last row omitted. This has now the property thattalkows are linearly independent.
Then choose a spanning trée as explained earlier. Finally, arrange the edges in twg sebse irll’, and
those not irl", and permute the columns of bathand A to reflect that splitting. For instance, in the earlier
exaple,A is rewritten as

0 -1 1 1 100 0

~ ]l-1 1 =1 00100 ~

A=117 0 1 000 1 o =W 4y
0 -1 1 000 0 1

Notice thatZN is the identity matrix. Similarly, write3 = (ET §N), i = (ir,in), v = (vp,vn). We
write (5) as: o o o B
OZBTA}-FBNAT :BTATT+BN.

Since By hasn — 1 rows andn — 1 columns, and its rows are linearly independent, it is inktat Hence
Al = -B;'By.
Next, KCL (3) is written as

0= Bi—(Br By) (;;) — Brip + Buin.

Hence L B
ir = —B3'Byin = Aliy.

B O
1=\ %" iy =AiN.
<A5v>

Now write KVL (4) together with the branch equations (12).

This means that

0= Av = A(Ri+g) = ARA"iy + Ag.



Observe thatlRA™ is a square matrix of siz@ —n+ 1 with linearly independent rows. Hence itis invertible.
So o B

iy =—(ARAT) "' Ag.
And so, the complete solution of the circuit is

i=—A"(ARA)"'Ag.
Actually, in this section, not only we have produced a solutbut we have also shown that a solution always
exists and is unique.

11 Minimum norm interpretation

If all resistances are equal tgothen KVL together with (12) yields
Ai = —Ag.

The solutioni = —AT(AA™)~1Ag is the minimum Euclidean norm solution. In fact!(AA™)~! is the
pseudo-inverse ofl. See exercises.

12 Circuitswith oneindependent source: combinatorial solution

The principle of superpositiorsays that the general solution to a circuit containinipdependent sources
is obtained by adding the solutions kbfcircuits. Each circuit is formed by setting all but one indedent
source to zero.

It is thus not a great restriction to consider a circuit wiiktja single source. Suppose that this source is
a current source and suppose that current enters at vefttes source) and leaves at verteithe sink), as in
the example of Figure 7.

Rs C b

on

Figure 7: ACIRCUIT WITH A SINGLE CURRENT SOURCE

Let us consider the grapfi of the circuit, omitting the current source. We assume thatgraph is
connected. We also assume thdltresistances are equal to one Ohend thatthe current source sends
current of one Amperd_et N be the total number of spanning trees. For each édge}, wherea, b are two
distinct vertices, wéet N (s, a, b, t) be the number of spanning trees®that containa, b and, in addition,
the path that starts at and ends at containsa andb in this order. Then the following is a beautiful formula
that gives the curren, ;, on each edgéu, b):

. N(s,a,b,t) — N(s,b,a,t)
la,b = N .

10



Since resistances are &llwe havev, ;, = i,5. To prove that this is correct, we need to check that KCL are
satisfied and then that KVL are satisfied.

Consider KCL at. We need to show that _, s » = 1, where the sum is over all neighborsf s, i.e.,
thatNv = 5" N(s,s,z,t)— > . N(s,z,s,t). Clearly, N(s,z,s,t) = 0 because no tree can contain
(s,z) and(z, s). On the other hand, every spanning tleontains exactly one neighberof s. Hence
N=> . N(ss,z,1).

To check KCL att amounts to the same reasoning.
To check KCL at a vertex other thans or ¢, we need to show thgt,

ZN(&Q,:L‘,ZL) = ZN(s,x,a,t).

r~a xr~a

a2 = 0, Or that

r~a

Let 7 (s,a,t) be the set of spanning tre@ssuch that the unique path fromto ¢ of T' containsa. Each
T € T (s,a,t) there is exactly one ~ a such that(a, x) is on the path of” from s to ¢ and with the same
orientation. Hence,

T (s,a,t)| = > N(s,a,,t).

r~a
Similarly,

T (s,a,t)| = > N(s,z,a,t).

r~a

To check KVL, we need to consider an oriented cycland show thaE(ayb)Ec iq,p = 0, Or that

Z N(s,a,b,t) = Z N(s,b,a,t),

(a,b)eC (a,b)eC

which is further equivalent to

> H@b)eC: TeT(s,a,bt)l=> |{(a,b)€C: T €T(s,bat)}.

TeT TeT

(Here,T is the set of all spanning trees.) Fix a ttBand an oriented cycl€, and let(a, b) be en edge which
belongs taC” and to the path df’ from s to ¢, respecting both orientations. If we remove the e@dgé), then
the tree is split into two components, one containirgall it T, and one containing-call it 7. The edge
(a,b) is oriented fromT to T;. The cycleC' must contain another edge, s@y y), oriented fromT; to 7.
If we pick the “earliest possible such edge” afterb) on C, then, by replacinda, b} by {z, y} we obtain
another tred” such thafl” € T (s, y, x,t). This proves the validity of the formula.

Let us now consider the example of Figure 7. Fig. 8 below depilt spanning trees in the first column.
There are 11 of them. Each of the other columns concerns iaydartedge and lists the appearances of this
edge on the trees. For examp(e,b) appears twice an@, a) once. ThusN (s, a,b,t) = 2, N(s,b,a,t) = 1.
The current on the edde, b) is thus equal t§2 — 1)/11 = 1/11. Similarly, we find

is,a =1, Gge=4/11, icp, = 4/11, igq = T/11, iqp = 1/11, iy = 5/11, igq, = 6/11.

We can extend the formula to the case where the resistareastanecessarily equal. In this case, define
the weight of a spanning tree to be the product of the invesséise resistances of its edges. Then define
N(s,a,b,t) to be the sum of the weights of all trees at whiehb) appears. With this new definition, the
previous formula remains valid. See exercises.

11
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Figure 8: @WMPUTING CURRENTS USING THE COMBINATORIAL FORMULA

Exercises

To solve these exercises, you need to have understood tieeimhaere, but also have the physical intuition
obtained in the circuit theory class.

1. Show that every connected graph has a spanning tree (easy)

2. If a circuit graph is planar then it can be embedded (=djawrhe plane. A face is a cycle which
contains no edges inside. Show that the rows of the cyclebmatcorresponding to cycles which are
not faces are linear combinations of the rows which cornedto faces.

3. We claimed that considering graphs where there is at mesedge per pair of vertices is no loss of
generality. Explain how more general circuits (with two oom@ edges corresponding to at least one
pair of vertices) can be reduced to the previous case. Hitrbduce new vertices.

4. Prove that the rank of the incidence matrix is never equtie number of edges.

12
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10.

11.
12.

13.

14.

15.

16.
17.

18.

Explain whyAB™ = 0 implies thatvERT-SP C VOLT-SP.

. Suppose that the circuit contains other linear, but dyoaetlements, such as capacitors and induc-

tors. If the system is in sinusoidal steady state (that iall fthe sources are sinusoids with the same
frequency) and if the system is in steady state, then explav) by using complex, rather than real,
resistances, one can reduce the study of this circuit toritbeconsidered here.

. Explain how, by using operators instead of resistanaescan actually extend our discussion to even

more general circuits (not necesserily sinusoidal sojirces

. Show, by considering the circuit directly, that every rofxB is a valid voltage configuration. Then

observe that this means thatd™ = 0.

. Since KVL, KCL and Ohm’s law are linear, the principle opsuposition follows: if there circuit is

driven by a number of sources, then, by considering a faniityrouits, one for each source (when the
rest are removed), we can find the general solution by, sinagliging the individual solutions. Prove
this.

Use the principle of superposition to give another pafahe fact that, for every circuit, there is at
most one solution. Hint: if there are two, then we can find atmgal solution for a circuit that
has no external sources. Physically this is impossiblewShat it is also mathematically (logically)
impossible.

Generalize the combinatorial formula for the case otgalresistances.

Show how the combinatorial formula, together with thegple of superposition, imply uniqgueness
of solution.

Explain why it is no loss of generality to consider citswiith sources of one kind only (either current
or voltage sources, but not both).

For every pair of vertices b, define the equivalent resistanRg, = Ry, as the voltage induced at the
edgeab, when a unit current source is applied. Observe that the stiomatrix|[R,;] consisting of
all equivalent resistances provides the full solution t® ¢ircuit (every quantity can be computed in
terms of this matrix).

Consider a graph whose vertices and edges are those bka Each edge contains a resistance in
series with (a possibly zero) voltage source. Explain whglietter to use the loop method, rather than
the node method, to solve the circuit.

Find a circuit for which the node method is easier tharidbp method.
Consider an arbitrary circuit with unit resistancesowlthat
i=—AT(AAT) "1 Ag
achieves the minimum in
min{[Ji[? : Ai = —Ag},

where||i||? := 2. In other words, among all possible current configuratitins,one that nature
chooses is the one which has least energy.

Generalize the above to an arbitrary circuit, i.e., fgate and prove a minimum energy theorem.
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