
WhatsApp monitoring for
Fun and Stalking

by Flavio Giobergia

The idea behind the project

If you have used WhatsApp at least once in your life, you know that there is a really lovely/shitty
(depending on the situation) feature that comes with it: you can see whether the person you are
talking to is typing, online or offline and, in the latter case, when this person was last seen online.

There is something really interesting about this feature: you can see such information even though
the other person does not know you and has never talked to you before. All you need is this
person's phone number. This happens because the value of the “Last seen” option (Settings –
Account – Privacy – Last seen) is defaulted to “Everyone”. Bear in mind that, even if you change
this option, others will still be able to know whether you are online or not.

Once you know someone's activity on WhatsApp you may start to deduce a lot about this person,
assuming that the target uses WhatsApp on a daily basis: an intensive use of WhatsApp can be
usually associated with leisure time, while sporadic connections are usually due to work/school or
whatever keeps one busy – but not too much. A complete absence of WhatsApp activity can be
either due to a task that requires one's every attention, like driving, or maybe the target is
sleeping. Many other things can be deduced assuming that enough logs are collected.

Please keep in mind that the data that can be collected about somebody might be insufficient to
draw any conclusion: this might be because of a lack of data (i.e. the person does not use
WhatsApp frequently enough) or one's time spent on WhatsApp does not follow any precise
pattern (i.e. the person uses WhatsApp only when needed, and does not spend hours and hours
talking rubbish).

This paper will explain how to create a Proof of Concept that will collect someone's WhatsApp logs.

Collecting the data

There is a number of different ways of collecting the logs. Since all I am talking about in this paper
is a Proof of Concept, I chose to follow the easiest way possible. This results in a raw, inelegant
solution.

At first I did not know much about how WhatsApp worked, but I was already expecting that I would
have never found any official API. I thought of using the unofficial API, but that would have meant
reading some documentation, and we all know that reading documentation is boring. The other
options were to use a packet sniffer to read the communications between server and client, but it
seemed to be encrypted. Learning how XMPP works was off the table: why spending time reading
documentation for a protocol that, although related to, is different from the one used by
WhatsApp? I could decompile the apk, but I was looking for something more immediate: if I were
to decompile it, I would have had to a) understand the code, b) locate the part of interest, c) adapt
said part to my purposes and d) recompile it. Sounds like a lot of work, does it not?

The number of possible ways of doing it was getting smaller, but I eventually came up with the
laziest and easiest to implement solution. Since all I needed was a short text displayed on the
screen, why not taking a screenshot, and then reading the part of interest? I have already worked
a few times with OCR applied to captchas, so I already knew pretty much everything that needed
to be done. It is actually easier to read a screenshot, rather than a captcha: when working with the
latter, you also have to mind the noise introduced to make it hard for bots to read the images.

Capturing the screenshot

There are a few ways to take a screenshot from an android device. Some of them require the
device to be rooted. Although this is not a problem in my case, I decided to use another way: since
I needed an easy-to-write way for taking screenshots for this PoC, I decided to use adb, directly
from a computer.

The command needed to save the screenshot on a computer is rather simple, and was found on
this website.

adb shell screencap p | sed 's/\r$//' > screen.png

One small detail that is actually important for this command to work is that the device has not to
be sleeping. Luckily enough, among the Developer options there is the “Stay awake” option which,
if enabled, will not let the screen sleep while charging. Since the device will be connected to the
computer via an USB cable, this is exactly what we are going to need. This is what the screenshot
will look like:

http://blog.shvetsov.com/2013/02/grab-android-screenshot-to-computer-via.html

From PNG to PPM

The screenshot is now available for manipulations. The format it is stored in is PNG: although PNG
can be handled rather easily, I decided to convert the image to an even easier format: PPM. For
those of you who have never heard of it, PPM is a lossless format, which can be easily read by
humans, although absolutely not efficient space-wise. For the conversion, convert is used.

convert screen.png screen.ppm

Now, a brief explaination of how the PPM format (P6) works. The first line of the file contains the
“P6” string, which is used to identify the format. The following line contains the width and the
height of the image, and then a following line indicates the max color (in our case, 255). The rest
of the file contains the triplets R, G B for every pixel in the image. R, G and B are 1 byte each, and
are expressed using ASCII characters.

P6
5 3
255
random image :)
Wow, looks fun
OnE MoRe PlS!

Will produce this 5x3 pixels image (here enhanced for your viewing pleasure)

This is because the hex for “random image :)\r\nWow, looks fun\r\nOnE MoRe PlS!” is

72 61 6e 64 6f 6d 20 69 6d 61 67 65 20 3a 29 0d 0a 57 6f 77 2c 20 6c 6f 6f
6b 73 20 66 75 6e 0d 0a 4f 6e 45 20 4d 6f 52 65 20 50 6c 53 21

That is #72616E (first row, first column), #646F6D (first row, second column), #20696D (first row,
third column) and so on.

PPM Manipulation

Now that the PPM image is available, it can be read straightforwardly. The device I am using is a
Samsung Galaxy SII mini, the resolution of the screenshot will always be of 320x480; therefore

every screenshot, converted to PPM, will start with

P6\n
320 480\n
255\n
IMAGE

This means that the actual image will start 15 bytes after the beginning of the file. If we read the
content of the file and store it in an array a, the first pixel's R, G and B bytes are contained in
a[15],a[16] and a[17] and, in general, the pixel located at the y-th row and x-th column is
described by a[y*WIDTH+x+15], a[y*WIDTH+x+16],a[y*WIDTH+x+17], WIDTH being the width
of the image, i.e. 320 pixels.

The next step consists in finding out where the text of interest (i.e. the “last seen” part) is kept.
After thorough investigation, I came up with the conclusion that the text is stored in a rectangle of
pixels having fixed height, but variable width (depending on the length of the text): the top left
corner is at the 55th column, 62nd row, and the height is of 14 pixels. The width can be found out
from time to time. The background color is #2F4444. When a fixed number of columns only
containing background pixels is found, the text can be considered as ended. This fixed number of
columns can be decided so that it is larger than the distance between adjacent words. I decided to
use 7, and it seems to work just fine.

 Starting pixel (55,62) 7 background columns

Each of the pixels can be accessed the way it was shown before.

Reading the image

Before actually reading the image, there is one more step to do: it may appear that every letter in
the text is written using a single color: this is actually not true. When zooming the image, it is clear
that different, although not that much, colors are used:

Before reading the image, it would be great if we could convert it to b/w. Since we know both the
background color (#2F4444) and the text's brightest color (#B2B4B4) we can find the color “in the
middle”: (2F+B2)/2, (44+B4)/2, (44+B4)/2 = #707C7C. A pixel P (RP, GP, BP) can be considered as
part of the background if RP ≤ 70 && GP ≤ 7C && BP ≤ 7C; it is part of the text otherwise. It
basically means that if a pixel is darker than the average of the background and the text colors, it
is considered as part of the background.

Based on this assumption, the image is interpreted as follows:

This might seem poorly readable by any human being (at least, it is when compared to the original
text), but let's keep in mind that this text will be read by a computer.

Now, we are almost ready. The last thing we need to do is deciding how to know when one letter
ends and another begins. Based on the font, it is fairly safe to assume that a blank column is a
good separator between characters. There are some cases that do not follow this rule, such as the
'st' sequence. Let's not give too much weight to this now; we will see later how to solve this
problem.

We are now capable of taking a screenshot, finding the text we are interested in, converting it to
b/w and splitting the rectangle in characters. What now?

To be honest, we are almost done: in case you did not think of it, every single character can be
read as a matrix of 0s and 1s (0 being white and 1 black for instance). The fact that the text does
not contain any noise leads to the fact that every single matrix representing the same character
will be exactly the same, no matter what. This may seem obvious, but it is not: when working with
captchas, this assumption can not be made, thus making captchas harder to read.

So, all that is left to be done is taking a few screenshots, reading them and saving the matrix for
every new character found. Only a few characters are actually needed (mostly letters and digits).
The following if the list of those characters:

a d e g i l n o p s t y A M P 0 1 2 3 4 5 6 7 8 9 / : . st ty

As mentioned before, there are some problems when splitting some characters. Since the problem
is only with the sequences 'st' and 'ty' I decided to consider those chunks as if they were ordinary
characters, rather than using some other more complicated splitting technique to separate them.

The following Ruby code can read a screenshot's “last seen” text using an hash containing the
matrix for every character needed. The usage is straightforward, since you only need to place a
“screen.ppm” image in the same directory as the script, and it will do the rest.

$ ruby script.rb
lastseentodayat4:02PM
$

The spaces are not recognized: it would not be hard to detect them (the script would only need to
find multiple blank columns to know where a space is), but since it is no use for the script, all
spaces are ignored.

WIDTH = 320

hash={
'l'=>[[1,1,1,1,1,1,1,1,1,1,1,0,0,0]],
'i'=>[[1,1,0,0,1,1,1,1,1,1,1,0,0,0]],
'ty'=>[[0,0,0,0,1,0,0,0,0,0,0,0,0,0],
 [0,0,0,1,1,1,1,1,1,1,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,1,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,1,1,1,0,0,0,0,0,0,1],
 [0,0,0,0,0,0,1,1,1,1,0,0,1,1],
 [0,0,0,0,0,0,0,0,1,1,1,1,1,0],
 [0,0,0,0,0,0,1,1,1,1,0,0,0,0],
 [0,0,0,0,1,1,1,0,0,0,0,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,0,0,0,0]],
'st'=>[[0,0,0,0,1,1,1,0,0,1,0,0,0,0],
 [0,0,0,0,1,0,1,0,0,0,1,0,0,0],
 [0,0,0,1,1,0,0,1,0,0,1,0,0,0],
 [0,0,0,0,1,0,0,1,0,0,1,0,0,0],
 [0,0,0,0,1,1,0,1,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,0,1,1,0,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,1,0,0,0]],
's'=>[[0,0,0,0,1,1,1,0,0,1,0,0,0,0],
 [0,0,0,0,1,0,1,0,0,0,1,0,0,0],
 [0,0,0,1,1,0,0,1,0,0,1,0,0,0],
 [0,0,0,0,1,0,0,1,0,0,1,0,0,0],
 [0,0,0,0,1,1,0,1,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,0,1,1,0,0,0,0]],
'e'=>[[0,0,0,0,0,1,1,1,1,1,0,0,0,0],
 [0,0,0,0,1,0,1,1,0,1,1,0,0,0],
 [0,0,0,1,1,0,1,1,0,0,1,0,0,0],
 [0,0,0,0,1,0,1,1,0,0,1,0,0,0],
 [0,0,0,0,1,1,1,1,0,0,1,0,0,0],
 [0,0,0,0,0,1,1,0,0,0,0,0,0,0]],
'n'=>[[0,0,0,0,1,1,1,1,1,1,1,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,0,0,0,0],
 [0,0,0,1,1,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,1,1,0,0,0,0,0,0,0,0],
 [0,0,0,0,1,1,1,1,1,1,1,0,0,0]],
't'=>[[0,0,0,0,1,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,1,0,0,0]],
'o'=>[[0,0,0,0,0,1,1,1,1,1,0,0,0,0],
 [0,0,0,0,1,0,0,0,0,1,1,0,0,0],
 [0,0,0,1,1,0,0,0,0,0,1,0,0,0],
 [0,0,0,1,1,0,0,0,0,0,1,0,0,0],
 [0,0,0,0,1,1,0,0,0,1,1,0,0,0],
 [0,0,0,0,0,1,1,1,1,1,0,0,0,0]],

'd'=>[[0,0,0,0,1,1,1,1,1,1,0,0,0,0],
 [0,0,0,0,1,0,0,0,0,1,1,0,0,0],
 [0,0,0,1,1,0,0,0,0,0,1,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,1,0,0,0],
 [0,0,0,0,1,1,0,0,0,1,1,0,0,0],
 [1,1,1,1,1,1,1,1,1,1,1,0,0,0]],
'a'=>[[0,0,0,0,0,1,0,1,1,1,1,0,0,0],
 [0,0,0,0,1,0,0,1,0,0,1,0,0,0],
 [0,0,0,1,1,0,0,1,0,0,1,0,0,0],
 [0,0,0,0,1,0,0,1,0,0,1,0,0,0],
 [0,0,0,0,1,1,1,1,1,1,1,0,0,0],
 [0,0,0,0,0,1,1,1,1,1,1,0,0,0]],
'y'=>[[0,0,0,0,1,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,1,1,1,0,0,0,0,0,0,1],
 [0,0,0,0,0,0,1,1,1,1,0,0,1,1],
 [0,0,0,0,0,0,0,0,1,1,1,1,1,0],
 [0,0,0,0,0,0,1,1,1,1,0,0,0,0],
 [0,0,0,0,1,1,1,0,0,0,0,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,0,0,0,0]],
'9'=>[[0,0,1,1,1,1,1,0,0,0,1,0,0,0],
 [0,1,1,0,0,0,1,0,0,0,1,0,0,0],
 [0,1,0,0,0,0,0,1,0,0,1,0,0,0],
 [0,1,0,0,0,0,1,1,0,0,1,0,0,0],
 [0,1,1,1,0,1,1,0,1,1,1,0,0,0],
 [0,0,0,1,1,1,1,1,1,0,0,0,0,0]],
':'=>[[0,0,0,0,1,0,0,0,0,0,1,0,0,0]],
'1'=>[[0,1,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,0,0,0]],
'4'=>[[0,0,0,0,0,0,1,1,1,0,0,0,0,0],
 [0,0,0,0,0,1,1,0,1,0,0,0,0,0],
 [0,0,0,1,1,0,0,0,1,0,0,0,0,0],
 [0,1,1,1,0,0,0,1,1,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,0,1,0,0,0,0,0]],
'P'=>[[0,1,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,1,0,0,0,0,1,0,0,0,0,0,0,0],
 [0,1,0,0,0,0,1,0,0,0,0,0,0,0],
 [0,1,0,0,0,0,1,0,0,0,0,0,0,0],
 [0,1,1,0,0,1,1,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,0,0,0,0,0,0,0,0]],
'M'=>[[0,1,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,0,0,1,1,1,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,1,1,1,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,1,1,1,1,0,0,0,0,0],
 [0,0,0,1,1,1,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,0,0,0]],

'5'=>[[0,0,0,1,1,1,1,0,1,1,0,0,0,0],
 [0,1,1,1,1,1,0,0,0,1,1,0,0,0],
 [0,1,0,0,0,1,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,1,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,1,1,0,0,1,1,0,0,0],
 [0,1,0,0,0,0,1,1,1,1,0,0,0,0]],
'0'=>[[0,0,1,1,1,1,1,1,1,1,0,0,0,0],
 [0,1,1,0,0,0,0,0,0,1,1,0,0,0],
 [0,1,0,0,0,0,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,0,0,0,0,0,1,0,0,0],
 [0,1,1,0,0,0,0,0,0,1,1,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,0,0,0,0]],
'8'=>[[0,0,1,1,1,0,0,1,1,1,0,0,0,0],
 [0,1,1,0,1,1,1,0,0,1,1,0,0,0],
 [0,1,0,0,0,1,1,0,0,0,1,0,0,0],
 [0,1,0,0,0,1,1,0,0,0,1,0,0,0],
 [0,1,1,1,1,1,1,0,0,1,1,0,0,0],
 [0,0,1,1,1,0,0,1,1,1,0,0,0,0]],
'3'=>[[0,0,1,1,0,0,0,0,1,1,0,0,0,0],
 [0,1,1,0,0,0,0,0,0,1,1,0,0,0],
 [0,1,0,0,0,1,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,1,1,0,0,0,1,0,0,0],
 [0,1,1,0,1,1,1,0,0,1,1,0,0,0],
 [0,0,1,1,1,0,0,1,1,1,0,0,0,0]],
'7'=>[[0,1,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,0,0,0,0,1,1,1,1,1,0,0,0],
 [0,1,0,0,1,1,1,0,0,0,0,0,0,0],
 [0,1,0,1,1,0,0,0,0,0,0,0,0,0],
 [0,1,1,0,0,0,0,0,0,0,0,0,0,0]],
'/'=>[[0,0,0,0,0,0,0,0,0,0,0,1,0,0],
 [0,0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,1,1,1,0,0,0,0,0],
 [0,0,0,1,1,1,0,0,0,0,0,0,0,0],
 [0,1,1,1,0,0,0,0,0,0,0,0,0,0]],
'2'=>[[0,0,1,1,0,0,0,0,0,1,1,0,0,0],
 [0,1,1,0,0,0,0,0,1,1,1,0,0,0],
 [0,1,0,0,0,0,0,1,1,0,1,0,0,0],
 [0,1,0,0,0,0,1,1,0,0,1,0,0,0],
 [0,1,1,0,1,1,1,0,0,0,1,0,0,0],
 [0,0,1,1,1,0,0,0,0,0,1,0,0,0]],
'6'=>[[0,0,0,1,1,1,1,1,1,1,0,0,0,0],
 [0,0,1,1,0,1,1,0,0,1,1,0,0,0],
 [0,1,0,0,0,1,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,1,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,1,0,0,0,1,1,0,0,0],
 [0,0,0,0,0,0,1,1,1,1,0,0,0,0]],
'A'=>[[0,0,0,0,0,0,0,0,0,0,1,0,0,0],
 [0,0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,1,1,1,1,0,0,0,0,0],
 [0,0,1,1,1,1,0,1,0,0,0,0,0,0],
 [0,1,1,1,0,0,0,1,0,0,0,0,0,0],
 [0,0,1,1,1,1,0,1,0,0,0,0,0,0],

 [0,0,0,0,0,1,1,1,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,1,1,1,0,0,0]],
'p'=>[[0,0,0,0,1,1,1,1,1,1,1,1,1,1],
 [0,0,0,0,1,0,0,0,0,1,1,0,0,0],
 [0,0,0,0,1,0,0,0,0,0,1,0,0,0],
 [0,0,0,1,1,0,0,0,0,0,1,0,0,0],
 [0,0,0,0,1,1,0,0,0,1,1,0,0,0],
 [0,0,0,0,0,1,1,1,1,1,0,0,0,0]],
'g'=>[[0,0,0,0,0,1,1,1,1,1,0,0,0,0],
 [0,0,0,0,1,1,0,0,0,1,1,0,0,1],
 [0,0,0,1,1,0,0,0,0,0,1,0,0,1],
 [0,0,0,0,1,0,0,0,0,0,1,0,0,1],
 [0,0,0,0,1,1,0,0,0,1,1,0,1,1],
 [0,0,0,0,1,1,1,1,1,1,1,1,1,0]],
'.'=>[[0,0,0,0,0,0,0,0,0,0,1,0,0,0]]

}

def bw(a,y,x)
i=y*WIDTH+x
(a[15+i*3].ord>112 && a[15+i*3+1].ord>124 && a[15+i*3+2].ord>124) ? 1

: 0
end

a = File.open("screen.ppm","rb").read

c=0
b=[]

62.upto WIDTH do |d|
f = 0
t=[]
55.upto 68 do |i|

t << bw(a,i,d)
end
unless t.include?1

c += 1
hash.each do |k,v|

print k if v == b
end
b = []

else
b << t
c=0

end
break if c == 7

end

puts

Parsing the string

Now that we can easily retrieve the text from the image, there is little more to do to finally
complete our script. Basically, we need to convert the text to a time. Being this a Proof of Concept,
we are going to assume that the tests we are running will cover a day (12:00 AM to 11:59 PM).
There is a number of different ways for us to store the fact that the target was either online or not
at any given moment.

The first one that comes to mind is using an array of booleans x containing values for each minute
of the day (24*60 = 1440 values), every single element will be defaulted to false . Then a
screenshot is retrieved every 60 seconds, the content of the image's text is read and converted to
an index i, representing the last time the target was seen online: the value x[i] will then be set
to true. By the end, x will contain all the information, minute per minute.

There are mainly 2 different situations that can be found when reading the text: either the target is
online, or not.

– The target is online when the text read is either “online” or “typing...”. In those cases, the
index returned is the one associated with the current time.

– The target is not online when the text starts with the “last seen” string. In this case, the
target was either last seen today or earlier. I will only cover the “last seen today” scenario,
since the Proof of Concept is written so that it only analyzes the current day. Using some
basic regex (/^lastseentodayat([09]{1,2}):([09]{2})(A|P)M$/) the string can
be parsed, and the time retrieved. It can then be converted to the “1440 format” using
some basic operations.

The following is the final script: it stores the activity in the x array, for further analysis.

$hash = { … }

def bw(a,y,x)
i=y*WIDTH+x
(a[15+i*3].ord>112 && a[15+i*3+1].ord>124 && a[15+i*3+2].ord>124) ? 1

: 0
end

def get_string
`adb shell screencap p | sed 's/\r$//' > screen.png`
`convert screen.png screen.ppm`
a = File.open("screen.ppm","rb").read
c=0
b=[]
s = ""
62.upto WIDTH do |d|

f = 0
t=[]
55.upto 68 do |i|

t << bw(a,i,d)
end
unless t.include?1

c += 1
$hash.each do |k,v|

s << k if v == b
end
b = []

else
b << t
c=0

end
break if c == 7

end
File.delete "screen.ppm"
File.delete "screen.png"
s

end

def last(str, time)
if str == "online" || str == "typing..."

return time
end
if m = str.match(/^lastseentodayat([09]{1,2}):([09]{2})(A|P)M$/)

t = m[1].to_i*60+m[2].to_i
t = 12*60 if m[3]=="A"&&m[1].to_i==12
t += 12*60 if m[3]=="P"&&m[1].to_i!=12
return t

end
1

end
m = t.min1
d = t.day

while d == t.day
t = Time.new
unless m == t.min

m = t.min
now = t.hour*60+t.min
retrieve string
str = get_string
now = last(str,now)
x[now] = true if now != 1
puts "online @ #{now}"

else
sleep 1

end
end

x = Array.new(false)
t = Time.new
m = t.min1
d = t.day

while d == t.day
t = Time.new

unless m == t.min
m = t.min
now = t.hour*60+t.min
str = get_string
now = last(str,now)
x[now] = true if now != 1

else
sleep 1

end
end

You may have noticed that the Ruby code I am using is rather inelegant: I apologize about that,
but I only have studied Ruby a few weeks, and this is the first actual script I have written using this
scripting language.

Flavio Giobergia

 flavio.giobergia@gmail.com

 @FlavioGiobergia

https://twitter.com/FlavioGiobergia
mailto:flavio.giobergia@gmail.com

