0.0

THE QUEST FOR ARTIFICIAL INTELLIGENCE

A HISTORY OF IDEAS AND ACHIEVEMENTS

Web Version
Print version published by Cambridge University Press
http://www.cambridge.org/us/0521122937

Nils J. Nilsson
Stanford University

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.cambridge.org/us/0521122937
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

For Grace McConnell Abbott,

my wife and best friend

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0.0

Contents

I Beginnings

1 Dreams and Dreamers

2 Clues
2.1 From Philosophy and Logic
2.2 From Life Itself
2.2.1 Neurons and the Brain
2.2.2 Psychology and Cognitive Science
2.23 Evolution
2.2.4 Development and Maturation
2.2.5 Bionics
2.3 From Engineering Lo oL oL
2.3.1 Automata, Sensing, and Feedback
2.3.2 Statistics and Probability
2.3.3 The Computer

II Early Explorations: 1950s and 1960s

3 Gatherings

3.1 Session on Learning Machines
3.2 The Dartmouth Summer Project
3.3 Mechanization of Thought Processes

4 Pattern Recognition

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/

All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

17

19

27
27
33
34
37
43
45
46
46
46
52
53

71

73
73
T
81

89

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

CONTENTS

4.1 Character Recognition
4.2 Neural Networks
4.2.1 Perceptrons
4.2.2 ADALINES and MADALINES
4.2.3 The MINOS Systems at SRI
4.3 Statistical Methods Lo o

4.4 Applications of Pattern Recognition to Aerial Reconnaissance . .

Early Heuristic Programs

5.1 The Logic Theorist and Heuristic Search
5.2 Proving Theorems in Geometry
5.3 The General Problem Solver
5.4 Game-Playing Programs

Semantic Representations
6.1 Solving Geometric Analogy Problems.
6.2 Storing Information and Answering Questions

6.3 Semantic Networks

Natural Language Processing
7.1 Linguistic Levels 0.
7.2 Machine Translation

7.3 Question Answering

1960s’ Infrastructure

8.1 Programming Languages
8.2 Early Al Laboratories
8.3 Research Supporto
8.4 All Dressed Up and Placesto Go

IITI Efflorescence: Mid-1960s to Mid-1970s

9 Computer Vision

9.1 Hints from Biology oL

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

113
113
118
121
123

131
131
134
136

141
141
146
150

155
155
157
160
163

167

169

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0.0 CONTENTS
9.2 Recognizing Faces o o oL 172
9.3 Computer Vision of Three-Dimensional Solid Objects 173

9.3.1 An Early Vision System 173
9.3.2 The “Summer Vision Project” 175
9.3.3 Image Filtering 176
9.3.4 Processing Line Drawings 181

10 “Hand—-Eye” Research 189
10.1 At MIT .. . oo 189
10.2 At Stanford o 190
103 In Japano 193
10.4 Edinburgh’s ““REDDY” 193

11 Knowledge Representation and Reasoning 199
11.1 Deductions in Symbolic Logic 200
11.2 The Situation Calculus 202
11.3 Logic Programming 203
11.4 Semantic Networks 205
11.5 Scripts and Frames o o 207

12 Mobile Robots 213
12.1 Shakey, the SRI Robot 213

12.1.1 A*: A New Heuristic Search Method 216
12.1.2 Robust Action Execution 221
12.1.3 STRIPS: A New Planning Method 222
12.1.4 Learning and Executing Plans 224
12.1.5 Shakey’s Vision Routines 224
12.1.6 Some Experiments with Shakey 228
12.1.7 Shakey Runs into Funding Troubles 229
12.2 The Stanford Cart L. 231

13 Progress in Natural Language Processing 237
13.1 Machine Translation 237
13.2 Understandingo 238

5

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/

All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0 CONTENTS
13.2.1 SHRDLU 238
13.2.2 LUNAR 243
13.2.3 Augmented Transition Networks 244
13.24 GUS e 246
14 Game Playing 251
15 The Dendral Project 255
16 Conferences, Books, and Funding 261

IV Applications and Specializations: 1970s to Early

1980s 265
17 Speech Recognition and Understanding Systems 267
17.1 Speech Processing L 267
17.2 The Speech Understanding Study Group 270
17.3 The DARPA Speech Understanding Research Program 271
1731 Workat BBN 0. 271
17.3.2 Work at CMU 272
17.3.3 Summary and Impact of the SUR Program 280
17.4 Subsequent Work in Speech Recognition 281
18 Consulting Systems 285
18.1 The SRI Computer-Based Consultant 285
18.2 Expert Systems oo 291
18.2.1 MYCIN . . . o o e 291
18.2.2 PROSPECTOR o oo i ittt 295
18.2.3 Other Expert Systems 300
18.2.4 Expert Companies 303
19 Understanding Queries and Signals 309
19.1 The Setting o . oo 309
19.2 Natural Language Access to Computer Systems 313
19.2.1 LIFER o 313

6

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/

All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0.0 CONTENTS

19.2.2 CHAT-80 o v v ittt e 315

19.2.3 Transportable Natural Language Query Systems 318

19.3 HASP/SIAP 319

20 Progress in Computer Vision 327

20.1 Beyond Line-Finding 327

20.1.1 Shape from Shading 327

20.1.2 The 25-D Sketch 329

20.1.3 Imtrinsic Images.o 329

20.2 Finding Objects in Scenes 333

20.2.1 Reasoning about Scenes 333

20.2.2 Using Templates and Models 335

20.3 DARPA’s Image Understanding Program 338

21 Boomtimes 343

V “New-Generation” Projects 347

22 The Japanese Create a Stir 349

22.1 The Fifth-Generation Computer Systems Project 349

22.2 Some Impacts of the Japanese Project 354
22.2.1 The Microelectronics and Computer Technology Corpo-

ration Lo 354

22.2.2 The Alvey Program 355

22.2.3 ESPRIT 355

23 DARPA'’s Strategic Computing Program 359

23.1 The Strategic Computing Plan 359

23.2 Major Projects 362

23.2.1 The Pilot’s Associate 363

23.2.2 Battle Management Systems 364

23.2.3 Autonomous Vehicles 366

23.3 Al Technology Base 369

23.3.1 Computer Vision, 370

7

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

CONTENTS

234

23.3.2 Speech Recognition and Natural Language Processing . . 370

23.3.3 Expert Systems

Assessment L.

VI Entriacte

24 Speed Bumps

24.1

24.2

24.3
24.4

Opinions from Various Onlookers
24.1.1 The Mind Is Not a Machine
24.1.2 The Mind Is Not a Computer
24.1.3 Differences between Brains and Computers
24.1.4 But Should We?
24.1.5 Other Opinions
Problems of Scale
24.2.1 The Combinatorial Explosion
24.2.2 Complexity Theory
24.2.3 A Sober Assessment
Acknowledged Shortcomings
The “Al Winter”

25 Controversies and Alternative Paradigms

25.1
25.2
25.3
254

25.5

25.6
25.7

About Logic.o
Uncertainty
“Kludginess”
About Behavioro
25.4.1 Behavior-Based Robots
25.4.2 Teleo-Reactive Programs
Brain-Style Computation
25.5.1 Neural Networks
25.5.2 Dynamical Processes
Simulating Evolution

Scaling Back AT's Goals

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/

379

381

......... 381
......... 381
......... 383

........ 392
......... 393
......... 398
......... 399
......... 399
......... 401
......... 402
......... 406
......... 408

All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0.0

CONTENTS

VII The Growing Armamentarium: From the 1980s

Onward

26 Reasoning and Representation

26.1 Nonmonotonic or Defeasible Reasoning
26.2 Qualitative Reasoning
26.3 Semantic Networks
26.3.1 Description Logics
26.3.2 WordNet
26.3.3 Cyc. . . . oo

27 Other Approaches to Reasoning and Representation
27.1 Solving Constraint Satisfaction Problems
27.2 Solving Problems Using Propositional Logic

27.2.1 Systematic Methods
27.2.2 Local Search Methods
27.2.3 Applications of SAT Solvers
27.3 Representing Text as Vectors
27.4 Latent Semantic Analysis

28 Bayesian Networks

28.1 Representing Probabilities in Networks

28.2 Automatic Construction of Bayesian Networks

28.3 Probabilistic Relational Models
28.4 Temporal Bayesian Networks

29 Machine Learning

29.1 Memory-Based Learning
29.2 Case-Based Reasoning
29.3 Decision Trees.
29.3.1 Data Mining and Decision Trees
29.3.2 Constructing Decision Trees
29.4 Neural Networks
29.4.1 The Backprop Algorithm

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/

433

435

475

........ 475
........ 482
........ 486
........ 488

495

........ 496
........ 498
........ 500
........ 500
........ 502
........ 507
........ 508

All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0 CONTENTS
29.4.2 NETtalk o0 i i 509

29.4.3 ALVINN 510

29.5 Unsupervised Learning 513
29.6 Reinforcement Learning 515
29.6.1 Learning Optimal Policies 515

29.6.2 TD-GAMMON o 522

29.6.3 Other Applications 523

29.7 Enhancements L oo 524
30 Natural Languages and Natural Scenes 533
30.1 Natural Language Processing 533
30.1.1 Grammars and Parsing Algorithms 534

30.1.2 Statistical NLP 535

30.2 Computer Vision L 539
30.2.1 Recovering Surface and Depth Information 541

30.2.2 Tracking Moving Objects 544

30.2.3 Hierarchical Models 548

30.2.4 Tmage Grammars 5b5

31 Intelligent System Architectures 561
31.1 Computational Architectures 563
31.1.1 Three-Layer Architectures 563

31.1.2 Multilayered Architectures 563

31.1.3 The BDI Architecture 569

31.1.4 Architectures for Groups of Agents 572

31.2 Cognitive Architectures 576
31.2.1 Production Systems 576

31.2.2 ACT-R o 578

31.2.3 SOAR L 581

VIII Modern AI: Today and Tomorrow 589
32 Extraordinary Achievements 591

10

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/

All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0.0 CONTENTS
321 Gameso 591
32.1.1 Chess 591

32.1.2 Checkers. 595

32.1.3 Other Games 598

32.2 Robot Systems o 600
32.2.1 Remote Agent in Deep Space 1 600

32.2.2 Driverless Automobiles 603

33 Ubiquitous Artificial Intelligence 615
33.1 ATat Home 616
33.2 Advanced Driver Assistance Systems 617
33.3 Route Finding in Maps 618
33.4 You Might Also Like... 618
33.5 Computer Games 619
34 Smart Tools 623
34.1 In Medicine oL 623
34.2 For Scheduling L o 625
34.3 For Automated Trading 626
34.4 In Business Practices oo L. 627
34.5 In Translating Languages 628
34.6 For Automating Invention 628
34.7 For Recognizing Faces 628

35 The Quest Continues 633
351 Inthe Labs Lo 634
35.1.1 Specialized Systems oL 634

35.1.2 Broadly Applicable Systems 638

35.2 Toward Human-Level Artificial Intelligence 646
35.2.1 Eyeon the Prize, 646

35.2.2 Controversies 648

35.2.3 How Do We Get It? 649

35.2.4 Some Possible Consequences of HLAT 652

11

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

CONTENTS

12

353 Summing Up065

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0.0

Preface

Artificial intelligence (AI) may lack an agreed-upon definition, but someone
writing about its history must have some kind of definition in mind. For me,
artificial intelligence is that activity devoted to making machines intelligent,
and intelligence is that quality that enables an entity to function appropriately
and with foresight in its environment. According to that definition, lots of
things — humans, animals, and some machines — are intelligent. Machines, such
as “smart cameras,” and many animals are at the primitive end of the
extended continuum along which entities with various degrees of intelligence
are arrayed. At the other end are humans, who are able to reason, achieve
goals, understand and generate language, perceive and respond to sensory
inputs, prove mathematical theorems, play challenging games, synthesize and
summarize information, create art and music, and even write histories.
Because “functioning appropriately and with foresight” requires so many
different capabilities, depending on the environment, we actually have several
continua of intelligences with no particularly sharp discontinuities in any of
them. For these reasons, I take a rather generous view of what constitutes Al.
That means that my history of the subject will, at times, include some control
engineering, some electrical engineering, some statistics, some linguistics, some
logic, and some computer science.

There have been other histories of AI, but time marches on, as has Al, so
a new history needs to be written. I have participated in the quest for artificial
intelligence for fifty years — all of my professional life and nearly all of the life
of the field. I thought it would be a good idea for an “insider” to try to tell
the story of this quest from its beginnings up to the present time.

I have three kinds of readers in mind. One is the intelligent lay reader
interested in scientific topics who might be curious about what AT is all about.
Another group, perhaps overlapping the first, consists of those in technical or
professional fields who, for one reason or another, need to know about AI and
would benefit from a complete picture of the field — where it has been, where it
is now, and where it might be going. To both of these groups, I promise no
complicated mathematics or computer jargon, lots of diagrams, and my best
efforts to provide clear explanations of how Al programs and techniques work.
(I also include several photographs of AI people. The selection of these is

13

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0 CONTENTS

somewhat random and doesn’t necessarily indicate prominence in the field.)

A third group consists of Al researchers, students, and teachers who
would benefit from knowing more about the things AI has tried, what has and
hasn’t worked, and good sources for historical and other information. Knowing
the history of a field is important for those engaged in it. For one thing, many
ideas that were explored and then abandoned might now be viable because of
improved technological capabilities. For that group, I include extensive
end-of-chapter notes citing source material. The general reader will miss
nothing by ignoring these notes. The main text itself mentions Web sites
where interesting films, demonstrations, and background can be found. (If
links to these sites become broken, readers may still be able to access them
using the “Wayback Machine” at http://www.archive.org.)

The book follows a roughly chronological approach, with some backing
and filling. My story may have left out some actors and events, but I hope it is
reasonably representative of AI’s main ideas, controversies, successes, and
limitations. I focus more on the ideas and their realizations than on the
personalities involved. I believe that to appreciate AI’s history, one has to
understand, at least in lay terms, something about how Al programs actually
work.

If AT is about endowing machines with intelligence, what counts as a
machine? To many people, a machine is a rather stolid thing. The word
evokes images of gears grinding, steam hissing, and steel parts clanking.
Nowadays, however, the computer has greatly expanded our notion of what a
machine can be. A functioning computer system contains both hardware and
software, and we frequently think of the software itself as a “machine.” For
example, we refer to “chess-playing machines” and “machines that learn,”
when we actually mean the programs that are doing those things. The
distinction between hardware and software has become somewhat blurred
because most modern computers have some of their programs built right into
their hardware circuitry.

Whatever abilities and knowledge I bring to the writing of this book stem
from the support of many people, institutions, and funding agencies. First, my
parents, Walter Alfred Nilsson (1907-1991) and Pauline Glerum Nilsson
(1910-1998), launched me into life. They provided the right mixture of disdain
for mediocrity and excuses (Walter), kind care (Pauline), and praise and
encouragement (both). Stanford University is literally and figuratively my
alma mater (Latin for “nourishing mother”). First as a student and later as a
faculty member (now emeritus), I have continued to learn and to benefit from
colleagues throughout the university and especially from students. SRI
International (once called the Stanford Research Institute) provided a home
with colleagues who helped me to learn about and to “do” AI. I make special
acknowledgement to the late Charles A. Rosen, who persuaded me in 1961 to
join his “Learning Machines Group” there. The Defense Advanced Research
Projects Agency (DARPA), the Office of Naval Research (ONR), the Air Force

14

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.archive.org
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0.0 CONTENTS

Office of Scientific Research (AFOSR), the U.S. Geological Survey (USGS),
the National Science Foundation (NSF), and the National Aeronautics and
Space Administration (NASA) all supported various research efforts I was part
of during the last fifty years. I owe thanks to all.

To the many people who have helped me with the actual research and
writing for this book, including anonymous and not-so-anonymous reviewers,
please accept my sincere appreciation together with my apologies for not
naming all of you personally in this preface. There are too many of you to list,
and I am afraid I might forget to mention someone who might have made
some brief but important suggestions. Anyway, you know who you are. You
are many of the people whom I mention in the book itself. However, I do want
to mention Heather Bergman, of Cambridge University Press, Mykel
Kochenderfer, a former student, and Wolfgang Bibel of the Darmstadt
University of Technology. They all read carefully early versions of the entire
manuscript and made many helpful suggestions. (Mykel also provided
invaluable advice about the KTEX typesetting program.)

I also want to thank the people who invented, developed, and now
manage the Internet, the World Wide Web, and the search engines that helped
me in writing this book. Using Stanford’s various site licenses, I could locate
and access journal articles, archives, and other material without leaving my
desk. (I did have to visit libraries to find books. Publishers, please allow
copyrighted books, especially those whose sales have now diminished, to be
scanned and made available online. Join the twenty-first century!)

Finally, and most importantly, I thank my wife, Grace, who cheerfully
and patiently urged me on.

In 1982, the late Allen Newell, one of the founders of Al, wrote
“Ultimately, we will get real histories of Artificial Intelligence. .., written with
as much objectivity as the historians of science can muster. That time is
certainly not yet.”

Perhaps it is now.

15

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

CONTENTS

16

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

0.0

Part 1

Beginnings

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

17

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

18

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

1.0

Chapter 1

Dreams and Dreamers

The quest for artificial intelligence (AI) begins with dreams — as all quests do.
People have long imagined machines with human abilities — automata that
move and devices that reason. Human-like machines are described in many
stories and are pictured in sculptures, paintings, and drawings.

You may be familiar with many of these, but let me mention a few. The
Iliad of Homer talks about self-propelled chairs called “tripods” and golden
“attendants” constructed by Hephaistos, the lame blacksmith god, to help him
get around.'* And, in the ancient Greek myth as retold by Ovid in his
Metamorphoses, Pygmalian sculpts an ivory statue of a beautiful maiden,
Galatea, which Venus brings to life:?

The girl felt the kisses he gave, blushed, and, raising her bashful
eyes to the light, saw both her lover and the sky.

The ancient Greek philosopher Aristotle (384-322 BCE) dreamed of
automation also, but apparently he thought it an impossible fantasy — thus
making slavery necessary if people were to enjoy leisure. In his The Politics,
he wrote?

For suppose that every tool we had could perform its task, either
at our bidding or itself perceiving the need, and if — like. . . the
tripods of Hephaestus, of which the poet [that is, Homer]| says that
“self-moved they enter the assembly of gods” — shuttles in a loom
could fly to and fro and a plucker [the tool used to pluck the
strings| play a lyre of their own accord, then master craftsmen
would have no need of servants nor masters of slaves.

*So as not to distract the general reader unnecessarily, numbered notes containing citations
to source materials appear at the end of each chapter. Each of these is followed by the number
of the page where the reference to the note occurred.

19

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

1 Dreams and Dreamers

Aristotle might have been surprised to see a Jacquard loom weave of itself or a
player piano doing its own playing.

Pursuing his own visionary dreams, Ramon Llull (circa 1235-1316), a
Catalan mystic and poet, produced a set of paper discs called the Ars Magna
(Great Art), which was intended, among other things, as a debating tool for
winning Muslims to the Christian faith through logic and reason. (See Fig.
1.1.) One of his disc assemblies was inscribed with some of the attributes of
God, namely goodness, greatness, eternity, power, wisdom, will, virtue, truth,
and glory. Rotating the discs appropriately was supposed to produce answers
to various theological questions.*

Figure 1.1: Ramon Llull (left) and his Ars Magna (right).

Ahead of his time with inventions (as usual), Leonardo Da Vinci sketched
designs for a humanoid robot in the form of a medieval knight around the year
1495. (See Fig. 1.2.) No one knows whether Leonardo or contemporaries tried
to build his design. Leonardo’s knight was supposed to be able to sit up, move
its arms and head, and open its jaw.?

The Talmud talks about holy persons creating artificial creatures called
“golems.” These, like Adam, were usually created from earth. There are
stories about rabbis using golems as servants. Like the Sorcerer’s Apprentice,
golems were sometimes difficult to control.

In 1651, Thomas Hobbes (1588-1679) published his book Leviathan about
the social contract and the ideal state. In the introduction Hobbes seems to
say that it might be possible to build an “artificial animal.”®

For seeing life is but a motion of limbs, the beginning whereof is in
some principal part within, why may we not say that all automata
(engines that move themselves by springs and wheels as doth a

20

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

1.0

Figure 1.2: Model of a robot knight based on drawings by Leonardo da Vinci.

watch) have an artificial life? For what is the heart, but a spring;
and the nerves, but so many strings; and the joints, but so many
wheels, giving motion to the whole body. ..

Perhaps for this reason, the science historian George Dyson refers to Hobbes
as the “patriarch of artificial intelligence.””

In addition to fictional artifices, several people constructed actual
automata that moved in startlingly lifelike ways.® The most sophisticated of
these was the mechanical duck designed and built by the French inventor and
engineer, Jacques de Vaucanson (1709-1782). In 1738, Vaucanson displayed
his masterpiece, which could quack, flap its wings, paddle, drink water, and
eat and “digest” grain.

As Vaucanson himself put it,’

21

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

1 Dreams and Dreamers

My second Machine, or Automaton, is a Duck, in which I represent
the Mechanism of the Intestines which are employed in the
Operations of Eating, Drinking, and Digestion: Wherein the
Working of all the Parts necessary for those Actions is exactly
imitated. The Duck stretches out its Neck to take Corn out of your
Hand; it swallows it, digests it, and discharges it digested by the
usual Passage.

There is controversy about whether or not the material “excreted” by the
duck came from the corn it swallowed. One of the automates-anciens Web
sites'® claims that “In restoring Vaucanson’s duck in 1844, the magician
Robert-Houdin discovered that ‘The discharge was prepared in advance: a sort
of gruel composed of green-coloured bread crumb ...".”

Leaving digestion aside, Vaucanson’s duck was a remarkable piece of
engineering. He was quite aware of that himself. He wrote!!

I believe that Persons of Skill and Attention, will see how difficult
it has been to make so many different moving Parts in this small
Automaton; as for Example, to make it rise upon its Legs, and
throw its Neck to the Right and Left. They will find the different
Changes of the Fulchrum’s or Centers of Motion: they will also see
that what sometimes is a Center of Motion for a moveable Part,
another Time becomes moveable on that Part, which Part then
becomes fix’d. In a Word, they will be sensible of a prodigious
Number of Mechanical Combinations.

This Machine, when once wound up, performs all its different
Operations without being touch’d any more.

I forgot to tell you, that the Duck drinks, plays in the Water with
his Bill, and makes a gurgling Noise like a real living Duck. In
short, I have endeavor’d to make it imitate all the Actions of the
living Animal, which I have consider’d very attentively.

Unfortunately, only copies of the duck exist. The original was burned in a
museum in Nijninovgorod, Russia around 1879. You can watch, ANAS, a
modern version, performing at http://www.automates-anciens.com/video_1/
duck_automaton_vaucanson_500.wmv.'? It is on exhibit in the Museum of
Automatons in Grenoble and was designed and built in 1998 by Frédéric
Vidoni, a creator in mechanical arts. (See Fig. 1.3.)

Returning now to fictional automata, I'll first mention the mechanical,
life-sized doll, Olympia, which sings and dances in Act I of Les Contes
d’Hoffmann (The Tales of Hoffmann) by Jacques Offenbach (1819-1880). In
the opera, Hoffmann, a poet, falls in love with Olympia, only to be crestfallen
(and embarrassed) when she is smashed to pieces by the disgruntled Coppélius.

22

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.automates-anciens.com/video_1/duck_automaton_vaucanson_500.wmv
http://www.automates-anciens.com/video_1/duck_automaton_vaucanson_500.wmv
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

1.0

Figure 1.3: Frédéric Vidoni’s ANAS, inspired by Vaucanson’s duck. (Photo-
graph courtesy of Frédéric Vidoni.)

A play called R.U.R. (Rossum’s Universal Robots) was published by Karel
éapek (pronounced CHAH pek), a Czech author and playwright, in 1920. (See
Fig. 1.4.) Capek is credited with coining the word “robot,” which in Czech
means “forced labor” or “drudgery.” (A “robotnik” is a peasant or serf.)

The play opened in Prague in January 1921. The Robots (always
capitalized in the play) are mass-produced at the island factory of Rossum’s
Universal Robots using a chemical substitute for protoplasm. According to a

23

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

1 Dreams and Dreamers

Web site describing the play,'® “Robots remember everything, and think of
nothing new. According to Domin [the factory director] ‘They’d make fine
university professors.’” ...once in a while, a Robot will throw down his work
and start gnashing his teeth. The human managers treat such an event as
evidence of a product defect, but Helena [who wants to liberate the Robots]
prefers to interpret it as a sign of the emerging soul.”

I won’t reveal the ending except to say that Capek did not look eagerly
on technology. He believed that work is an essential element of human life.
Writing in a 1935 newspaper column (in the third person, which was his habit)
he said: “With outright horror, he refuses any responsibility for the thought
that machines could take the place of people, or that anything like life, love, or
rebellion could ever awaken in their cogwheels. He would regard this somber
vision as an unforgivable overvaluation of mechanics or as a severe insult to
life.” 14

Figure 1.4: A scene from a New York production of R.U.R.

There is an interesting story, written by éapek himself, about how he
came to use the word robot in his play. While the idea for the play “was still
warm he rushed immediately to his brother Josef, the painter, who was
standing before an easel and painting away. ... ‘I don’t know what to call
these artificial workers,” he said. ‘I could call them Labori, but that strikes me

24

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

1.0 NOTES

as a bit bookish.” ‘Then call them Robots,” the painter muttered, brush in
mouth, and went on painting.”!®

The science fiction (and science fact) writer Isaac Asimov wrote many
stories about robots. His first collection, I, Robot, consists of nine stories
about “positronic” robots.'® Because he was tired of science fiction stories in
which robots (such as Frankenstein’s creation) were destructive, Asimov’s
robots had “Three Laws of Robotics” hard-wired into their positronic brains.
The three laws were the following:

First Law: A robot may not injure a human being, or, through inaction,
allow a human being to come to harm.
Second Law: A robot must obey the orders given it by human beings
except where such orders would conflict with the First Law.
Third Law: A robot must protect its own existence as long as such
protection does not conflict with the First or Second Law.

Asimov later added a “zeroth” law, designed to protect humanity’s interest:'”

Zeroth Law: A robot may not injure humanity, or, through inaction, allow
humanity to come to harm.

The quest for artificial intelligence, quixotic or not, begins with dreams
like these. But to turn dreams into reality requires usable clues about how to
proceed. Fortunately, there were many such clues, as we shall see.

Notes

1. The Iliad of Homer, translated by Richmond Lattimore, p. 386, Chicago: The
University of Chicago Press, 1951. (Paperback edition, 1961.) [19]

2. Ovid, Metamorphoses, Book X, pp. 243-297, from an English translation, circa 1850.
See http://www.pygmalion.ws/stories/ovid2.htm. [19]

3. Aristotle, The Politics, p. 65, translated by T. A. Sinclair, London: Penguin Books,
1981. [19]

4. See E. Allison Peers, Fool of Love: The Life of Ramon Lull, London: S. C. M. Press,
Ltd., 1946. [20]

5. See http://en.wikipedia.org/wiki/Leonardo’s_robot. [20]
6. Thomas Hobbes, The Leviathon, paperback edition, Kessinger Publishing, 2004. [20]

7. George B. Dyson, Darwin Among the Machines: The Evolution of Global Intelligence,
p. 7, Helix Books, 1997. [21]

8. For a Web site devoted to automata and music boxes, see
http://www.automates-anciens.com/english_version/frames/english_frames.htm. [21]

9. From Jacques de Vaucanson, “An account of the mechanism of an automaton, or image
playing on the German-flute: as it was presented in a memoire, to the gentlemen of the

25

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.pygmalion.ws/stories/ovid2.htm
http://en.wikipedia.org/wiki/Leonardo's_robot
http://www.automates-anciens.com/english_version/frames/english_frames.htm
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

1 NOTES

Royal-Academy of Sciences at Paris. By M. Vaucanson ... Together with a description of an
artificial duck.” Translated out of the French original, by J. T. Desaguliers, London,
1742. Available at http://e3.uci.edu/clients/bjbecker /NatureandArtifice/week5d.html. [21]

10. http://www.automates-anciens.com/english_version/automatons-music-boxes/
vaucanson-automatons-androids.php. [22]

11. de Vaucanson, Jacques, op. cit. [22]

12. I thank Prof. Barbara Becker of the University of California at Irvine for telling me about
the automates-anciens.com Web sites. [22]

13. http://jerz.setonhill.edu/resources/RUR /index.html. [24]

14. For a translation of the column entitled “The Author of Robots Defends Himself,” see
http://www.depauw.edu/sfs/documents/capek68.htm. [24]

15. From one of a group of Web sites about éapek7
http://Capek.misto.cz/english /robot.html. See also http://Capek.misto.cz/english/. [25]

16. The Isaac Asimov Web site, http://www.asimovonline.com/, claims that “Asimov did
not come up with the title, but rather his publisher ‘appropriated’ the title from a short
story by Eando Binder that was published in 1939.” [25]

17. See http://www.asimovonline.com/asimov_FAQ.html#series13 for information about
the history of these four laws. [25]

26

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://e3.uci.edu/clients/bjbecker/NatureandArtifice/week5d.html
http://www.automates-anciens.com/english_version/automatons-music-boxes/vaucanson-automatons-androids.php
http://www.automates-anciens.com/english_version/automatons-music-boxes/vaucanson-automatons-androids.php
http://jerz.setonhill.edu/resources/RUR/index.html
http://www.depauw.edu/sfs/documents/capek68.htm
http://Capek.misto.cz/english/robot.html
http://Capek.misto.cz/english/
http://www.asimovonline.com/
http://www.asimovonline.com/asimov_FAQ.html#series13
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.1

Chapter 2

Clues

Clues about what might be needed to make machines intelligent are scattered
abundantly throughout philosophy, logic, biology, psychology, statistics, and
engineering. With gradually increasing intensity, people set about to exploit
clues from these areas in their separate quests to automate some aspects of
intelligence. I begin my story by describing some of these clues and how they
inspired some of the first achievements in artificial intelligence.

2.1 From Philosophy and Logic

Although people had reasoned logically for millennia, it was the Greek
philosopher Aristotle who first tried to analyze and codify the process.
Aristotle identified a type of reasoning he called the syllogism “...in which,
certain things being stated, something other than what is stated follows of
necessity from their being so.”!

Here is a famous example of one kind of syllogism:2

1. All humans are mortal. (stated)
2. All Greeks are humans. (stated)

3. All Greeks are mortal. (result)

The beauty (and importance for AI) of Aristotle’s contribution has to do
with the form of the syllogism. We aren’t restricted to talking about humans,
Greeks, or mortality. We could just as well be talking about something else — a
result made obvious if we rewrite the syllogism using arbitrary symbols in the
place of humans, Greeks, and mortal. Rewriting in this way would produce

1. All B’s are A. (stated)

27

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

2. All C’s are B’s. (stated)
3. All C’s are A. (result)

One can substitute anything one likes for A, B, and C. For example, all
athletes are healthy and all soccer players are athletes, and therefore all soccer
players are healthy, and so on. (Of course, the “result” won’t necessarily be
true unless the things “stated” are. Garbage in, garbage out!)

Aristotle’s logic provides two clues to how one might automate reasoning.
First, patterns of reasoning, such as syllogisms, can be economically
represented as forms or templates. These use generic symbols, which can stand
for many different concrete instances. Because they can stand for anything,
the symbols themselves are unimportant.

Second, after the general symbols are replaced by ones pertaining to a
specific problem, one only has to “turn the crank” to get an answer. The use
of general symbols and similar kinds of crank-turning are at the heart of all
modern Al reasoning programs.

In more modern times, Gottfried Wilhelm Leibniz (1646-1716; Fig. 2.1)
was among the first to think about logical reasoning. Leibniz was a German
philosopher, mathematician, and logician who, among other things,
co-invented the calculus. (He had lots of arguments with Isaac Newton about
that.) But more importantly for our story, he wanted to mechanize reasoning.
Leibniz wrote?

It is unworthy of excellent men to lose hours like slaves in the labor
of calculation which could safely be regulated to anyone else if
machines were used.

and

For if praise is given to the men who have determined the number
of regular solids. .. how much better will it be to bring under
mathematical laws human reasoning, which is the most excellent
and useful thing we have.

Leibniz conceived of and attempted to design a language in which all
human knowledge could be formulated — even philosophical and metaphysical
knowledge. He speculated that the propositions that constitute knowledge
could be built from a smaller number of primitive ones — just as all words can
be built from letters in an alphabetic language. His lingua characteristica or
universal language would consist of these primitive propositions, which would
comprise an alphabet for human thoughts.

The alphabet would serve as the basis for automatic reasoning. His idea
was that if the items in the alphabet were represented by numbers, then a

28

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.1 From Philosophy and Logic

Figure 2.1: Gottfried Leibniz.

complex proposition could be obtained from its primitive constituents by
multiplying the corresponding numbers together. Further arithmetic
operations could then be used to determine whether or not the complex
proposition was true or false. This whole process was to be accomplished by a
calculus ratiocinator (calculus of reasoning). Then, when philosophers
disagreed over some problem they could say, “calculemus” (“let us calculate”).
They would first pose the problem in the lingua characteristica and then solve
it by “turning the crank” on the calculus ratiocinator.

The main problem in applying this idea was discovering the components
of the primitive “alphabet.” However, Leibniz’s work provided important
additional clues to how reasoning might be mechanized: Invent an alphabet of
simple symbols and the means for combining them into more complex
expressions.

Toward the end of the eighteenth century and the beginning of the
nineteenth, a British scientist and politician, Charles Stanhope (Third Earl of
Stanhope), built and experimented with devices for solving simple problems in
logic and probability. (See Fig. 2.2.) One version of his “box” had slots on the
sides into which a person could push colored slides. From a window on the
top, one could view slides that were appropriately positioned to represent a

29

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

specific problem. Today, we would say that Stanhope’s box was a kind of
analog computer.

])J-‘, MONSTRAT QIt,

A EANL sTANUHOPE

Figure 2.2: The Stanhope Square Demonstrator, 1805. (Photograph courtesy
of Science Museum/SSPL.)

The book Computing Before Computers gives an example of its
operation:*

To solve a numerical syllogism, for example:

Eight of ten A’s are B’s; Four of ten A’s are C'’s;
Therefore, at least two B’s are C’s.

Stanhope would push the red slide (representing B) eight units
across the window (representing A) and the gray slide
(representing C) four units from the opposite direction. The two
units that the slides overlapped represented the minimum number
of B’s that were also C’s.

In a similar way the Demonstrator could be used to solve a
traditional syllogism like:

No M is A; All B is M, Therefore, No B is A.

Stanhope was rather secretive about his device and didn’t want anyone to
know what he was up to. As mentioned in Computing Before Computers,

30

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.1 From Philosophy and Logic

“The few friends and relatives who received his privately distributed account
of the Demonstrator, The Science of Reasoning Clearly Explained Upon New
Principles (1800), were advised to remain silent lest ‘some bastard imitation’
precede his intended publication on the subject.”

But no publication appeared until sixty years after Stanhope’s death.
Then, the Reverend Robert Harley gained access to Stanhope’s notes and one
of his boxes and published an article on what he called “The Stanhope
Demonstrator.”?

Contrasted with Llull’s schemes and Leibniz’s hopes, Stanhope built the
first logic machine that actually worked — albeit on small problems. Perhaps
his work raised confidence that logical reasoning could indeed be mechanized.

In 1854, the Englishman George Boole (1815-1864; Fig. 2.3) published a
book with the title An Investigation of the Laws of Thought on Which Are
Founded the Mathematical Theories of Logic and Probabilities.> Boole’s
purpose was (among other things) “to collect. . .some probable intimations
concerning the nature and constitution of the human mind.” Boole considered
various logical principles of human reasoning and represented them in
mathematical form. For example, his “Proposition IV” states “...the principle
of contradiction. . . affirms that it is impossible for any being to possess a
quality, and at the same time not to possess it....” Boole then wrote this
principle as an algebraic equation,

z(l—z) =0,

in which x represents “any class of objects,” (1 — z) represents the “contrary or
supplementary class of objects,” and 0 represents a class that “does not exist.”

In Boolean algebra, an outgrowth of Boole’s work, we would say that 0
represents falsehood, and 1 represents truth. Two of the fundamental
operations in logic, namely OR and AND, are represented in Boolean algebra
by the operations + and X, respectively. Thus, for example, to represent the
statement “either p or ¢ or both,” we would write p + q. To represent the
statement “p and ¢,” we would write p x ¢g. Each of p and ¢ could be true or
false, so we would evaluate the value (truth or falsity) of p+ ¢ and p x ¢ by
using definitions for how + and x are used, namely,

140=1,
1x0=0,
1+1=1,
Ix1=1,
0+0=0,
and
0x0=0.
31
Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

Figure 2.3: George Boole.

Boolean algebra plays an important role in the design of telephone
switching circuits and computers. Although Boole probably could not have
envisioned computers, he did realize the importance of his work. In a letter
dated January 2, 1851, to George Thomson (later Lord Kelvin) he wrote”

I am now about to set seriously to work upon preparing for the
press an account of my theory of Logic and Probabilities which in
its present state I look upon as the most valuable if not the only
valuable contribution that I have made or am likely to make to
Science and the thing by which I would desire if at all to be
remembered hereafter. . .

Boole’s work showed that some kinds of logical reasoning could be
performed by manipulating equations representing logical propositions — a
very important clue about the mechanization of reasoning. An essentially
equivalent, but not algebraic, system for manipulating and evaluating
propositions is called the “propositional calculus” (often called “propositional
logic”), which, as we shall see, plays a very important role in artificial
intelligence. [Some claim that the Greek Stoic philospher Chrysippus (280-209
BCE) invented an early form of the propositional calculus.®]

32

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.2 From Life Itself

One shortcoming of Boole’s logical system, however, was that his
propositions p, ¢, and so on were “atomic.” They don’t reveal any entities
internal to propositions. For example, if we expressed the proposition “Jack is
human” by p, and “Jack is mortal” by ¢, there is nothing in p or ¢ to indicate
that the Jack who is human is the very same Jack who is mortal. For that, we
need, so to speak, “molecular expressions” that have internal elements.

Toward the end of the nineteenth century, the German mathematician,
logician, and philosopher Friedrich Ludwig Gottlob Frege (1848-1925)
invented a system in which propositions, along with their internal components,
could be written down in a kind of graphical form. He called his language
Begriffsschrift, which can be translated as “concept writing.” For example, the
statement “All persons are mortal” would have been written in Begriffsschrift
something like the diagram in Fig. 2.4.°

L M(x)
P(x)

Figure 2.4: Expressing “All persons are mortal” in Begriffsschrift.

Note that the illustration explicitly represents the z who is predicated to be a
person and that it is the same x who is then claimed to be mortal. It’s more
convenient nowadays for us to represent this statement in the linear form
(Vz)P(x)DM (x), whose English equivalent is “for all z, if is a person, then z
is mortal.”

Frege’s system was the forerunner of what we now call the “predicate
calculus,” another important system in artificial intelligence. It also
foreshadows another representational form used in present-day artificial
intelligence: semantic networks. Frege’s work provided yet more clues about
how to mechanize reasoning processes. At last, sentences expressing
information to be reasoned about could be written in unambiguous, symbolic
form.

2.2 From Life Itself

In Proverbs 6:6-8, King Solomon says “Go to the ant, thou sluggard; consider
her ways and be wise.” Although his advice was meant to warn against
slothfulness, it can just as appropriately enjoin us to seek clues from biology
about how to build or improve artifacts.

33

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

Several aspects of “life” have, in fact, provided important clues about
intelligence. Because it is the brain of an animal that is responsible for
converting sensory information into action, it is to be expected that several
good ideas can be found in the work of neurophysiologists and
neuroanatomists who study brains and their fundamental components,
neurons. Other ideas are provided by the work of psychologists who study (in
various ways) intelligent behavior as it is actually happening. And because,
after all, it is evolutionary processes that have produced intelligent life, those
processes too provide important hints about how to proceed.

2.2.1 Neurons and the Brain

In the late nineteenth and early twentieth centuries, the “neuron doctrine”
specified that living cells called “neurons” together with their interconnections
were fundamental to what the brain does. One of the people responsible for
this suggestion was the Spanish neuroanatomist Santiago Ramoén y Cajal
(1852-1934). Cajal (Fig. 2.5) and Camillo Golgi won the Nobel Prize in
Physiology or Medicine in 1906 for their work on the structure of the nervous
system.

A neuron is a living cell, and the human brain has about ten billion (10'°)
of them. Although they come in different forms, typically they consist of a
central part called a soma or cell body, incoming fibers called dendrites, and
one or more outgoing fibers called azons. The axon of one neuron has
projections called terminal buttons that come very close to one or more of the
dendrites of other neurons. The gap between the terminal button of one
neuron and a dendrite of another is called a synapse. The size of the gap is
about 20 nanometers. Two neurons are illustrated schematically in Fig. 2.6.

Through electrochemical action, a neuron may send out a stream of pulses
down its axon. When a pulse arrives at the synapse adjacent to a dendrite of
another neuron, it may act to excite or to inhibit electrochemical activity of
the other neuron across the synapse. Whether or not this second neuron then
“fires” and sends out pulses of its own depends on how many and what kinds
of pulses (excitatory or inhibitory) arrive at the synapses of its various
incoming dendrites and on the efficiency of those synapses in transmitting
electrochemical activity. It is estimated that there are over half a trillion
synapses in the human brain. The neuron doctrine claims that the various
activities of the brain, including perception and thinking, are the result of all
of this neural activity.

In 1943, the American neurophysiologist Warren McCulloch (1899-1969;
Fig. 2.7) and logician Walter Pitts (1923-1969) claimed that the neuron was,
in essence, a “logic unit.” In a famous and important paper they proposed
simple models of neurons and showed that networks of these models could
perform all possible computational operations.'® The McCulloch-Pitts
“neuron” was a mathematical abstraction with inputs and outputs

34

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.2 From Life Itself

Figure 2.5: Ramén y Cajal.

(corresponding, roughly, to dendrites and axons, respectively). Each output
can have the value 1 or 0. (To avoid confusing a McCulloch-Pitts neuron with
a real neuron, I'll call the McCulloch—Pitts version, and others like it, a
“neural element.”) The neural elements can be connected together into
networks such that the output of one neural element is an input to others and
so on. Some neural elements are excitatory — their outputs contribute to
“firing” any neural elements to which they are connected. Others are
inhibitory — their outputs contribute to inhibiting the firing of neural elements
to which they are connected. If the sum of the excitatory inputs less the sum
of the inhibitory inputs impinging on a neural element is greater than a
certain “threshold,” that neural element fires, sending its output of 1 to all of
the neural elements to which it is connected.

Some examples of networks proposed by McCullough and Pitts are shown
in Fig. 2.8.

The Canadian neuropsychologist Donald O. Hebb (1904-1985) also

35

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

Terminal Button

Dendrites

Figure 2.6: Two neurons. (Adapted from Science, Vol. 316, p. 1416, 8 June
2007. Used with permission.)

believed that neurons in the brain were the basic units of thought. In an
influential book,'* Hebb suggested that “when an axon of cell A is near
enough to excite B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased.” Later, this so-called
Hebb rule of change in neural “synaptic strength” was actually observed in
experiments with living animals. (In 1965, the neurophysiologist Eric Kandel
published results showing that simple forms of learning were associated with
synaptic changes in the marine mollusk Aplysia californica. In 2000, Kandel
shared the Nobel Prize in Physiology or Medicine “for their discoveries
concerning signal transduction in the nervous system.”)

Hebb also postulated that groups of neurons that tend to fire together
formed what he called cell assemblies. Hebb thought that the phenomenon of
“firing together” tended to persist in the brain and was the brain’s way of
representing the perceptual event that led to a cell-assembly’s formation. Hebb
said that “thinking” was the sequential activation of sets of cell assemblies.'?

36

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.2 From Life Itself

Figure 2.7: Warren McCulloch.

2.2.2 Psychology and Cognitive Science

Psychology is the science that studies mental processes and behavior. The
word is derived from the Greek words psyche, meaning breath, spirit, or soul,
and logos, meaning word. One might expect that such a science ought to have
much to say that would be of interest to those wanting to create intelligent
artifacts. However, until the late nineteenth century, most psychological
theorizing depended on the insights of philosophers, writers, and other astute
observers of the human scene. (Shakespeare, Tolstoy, and other authors were
no slouches when it came to understanding human behavior.)

Most people regard serious scientific study to have begun with the

37

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

Figure 2.8: Networks of McCulloch—Pitts neural elements. (Adapted from Fig.
1 of Warren S. McCulloch and Walter Pitts, “A Logical Calculus of Ideas Im-
manent in Nervous Activity,” Bulletin of Mathematical Biophysics, Vol. 5, pp.
115-133, 1943.)

German Wilhelm Wundt (1832-1920) and the American William James
(1842-1910).'3 Both established psychology labs in 1875 — Wundt in Leipzig
and James at Harvard. According to C. George Boeree, who teaches the
history of psychology at Shippensburg University in Pennsylvania, “The
method that Wundt developed is a sort of experimental introspection: The

38

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.2 From Life Itself

researcher was to carefully observe some simple event — one that could be
measured as to quality, intensity, or duration — and record his responses to
variations of those events.” Although James is now regarded mainly as a
philosopher, he is famous for his two-volume book The Principles of
Psychology, published in 1873 and 1874.

Both Wundt and James attempted to say something about how the brain
worked instead of merely cataloging its input—output behavior. The
psychiatrist Sigmund Freud (1856-1939) went further, postulating internal
components of the brain, namely, the id, the ego, and the superego, and how
they interacted to affect behavior. He thought one could learn about these
components through his unique style of guided introspection called
psychoanalysis.

Attempting to make psychology more scientific and less dependent on
subjective introspection, a number of psychologists, most famously B. F.
Skinner (1904-1990; Fig. 2.9), began to concentrate solely on what could be
objectively measured, namely, specific behavior in reaction to specific stimuli.
The behaviorists argued that psychology should be a science of behavior, not
of the mind. They rejected the idea of trying to identify internal mental states
such as beliefs, intentions, desires, and goals.

Figure 2.9: B. F. Skinner. (Photograph courtesy of the B. F. Skinner Founda-
tion.)

39

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

This development might at first be regarded as a step backward for people
wanting to get useful clues about the internal workings of the brain. In
criticizing the statistically oriented theories arising from “behaviorism,”
Marvin Minsky wrote “Originally intended to avoid the need for ‘meaning,’
[these theories] manage finally only to avoid the possibility of explaining it.” '+
Skinner’s work did, however, provide the idea of a reinforcing stimulus — one
that rewards recent behavior and tends to make it more likely to occur (under
similar circumstances) in the future.

Reinforcement learning has become a popular strategy among Al
researchers, although it does depend on internal states. Russell Kirsch (circa
1930—), a computer scientist at the U.S. National Bureau of Standards (now
the National Institute for Standards and Technology, NIST), was one of the
first to use it. He proposed how an “artificial animal” might use reinforcement
to learn good moves in a game. In some 1954 seminar notes he wrote the
following:'® “The animal model notes, for each stimulus, what move the
opponent next makes, ... Then, the next time that same stimulus occurs, the
animal duplicates the move of the opponent that followed the same stimulus
previously. The more the opponent repeats the same move after any given
stimulus, the more the animal model becomes ‘conditioned’ to that move.”

Skinner believed that reinforcement learning could even be used to
explain verbal behavior in humans. He set forth these ideas in his 1957 book
Verbal Behavior,' claiming that the laboratory-based principles of selection
by consequences can be extended to account for what people say, write,
gesture, and think.

Arguing against Skinner’s ideas about language the linguist Noam
Chomsky (1928 ; Fig. 2.10), in a review!” of Skinner’s book, wrote that

careful study of this book (and of the research on which it draws)
reveals, however, that [Skinner’s] astonishing claims are far from
justified. ...the insights that have been achieved in the
laboratories of the reinforcement theorist, though quite genuine,
can be applied to complex human behavior only in the most gross
and superficial way, and that speculative attempts to discuss
linguistic behavior in these terms alone omit from consideration
factors of fundamental importance. . .

How, Chomsky seems to ask, can a person produce a potentially infinite
variety of previously unheard and unspoken sentences having arbitrarily
complex structure (as indeed they can do) through experience alone? These
“factors of fundamental importance” that Skinner omits are, according to
Chomsky, linguistic abilities that must be innate — not learned. He suggested
that “human beings are somehow specially created to do this, with
data-handling or ‘hypothesis-formulating’ ability of [as yet] unknown character
and complexity.” Chomsky claimed that all humans have at birth a “universal

40

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.2 From Life Itself

Figure 2.10: Noam Chomsky. (Photograph by Don J. Usner.)

grammar” (or developmental mechanisms for creating one) that accounts for
much of their ability to learn and use languages.'®

Continuing the focus on internal mental processes and their limitations,
the psychologist George A. Miller (1920-) analyzed the work of several
experimenters and concluded that the “immediate memory” capacity of
humans was approximately seven “chunks” of information.'® In the
introduction to his paper about this “magical number,” Miller humorously
notes “My problem is that I have been persecuted by an integer. For seven
years this number has followed me around, has intruded in my most private
data, and has assaulted me from the pages of our most public journals. This
number assumes a variety of disguises, being sometimes a little larger and
sometimes a little smaller than usual, but never changing so much as to be
unrecognizable. The persistence with which this number plagues me is far
more than a random accident.” Importantly, he also claimed that “the span of
immediate memory seems to be almost independent of the number of bits per
chunk.” That is, it doesn’t matter what a chunk represents, be it a single digit
in a phone number, a name of a person just mentioned, or a song title; we can
apparently only hold seven of them (plus or minus two) in our immediate

41

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

memory.

Miller’s paper on “The Magical Number Seven,” was given at a
Symposium on Information Theory held from September 10 to 12, 1956, at
MIT.2° Chomsky presented an important paper there too. It was entitled
“Three Models for the Description of Language,” and in it he proposed a
family of rules of syntax he called phrase-structure grammars.?' It happens
that two pioneers in Al research (of whom we’ll hear a lot more later), Allen
Newell (1927-1992), then a scientist at the Rand Corporation, and Herbert
Simon (1916-2001), a professor at the Carnegie Institute of Technology (now
Carnegie Mellon University), gave a paper there also on a computer program
that could prove theorems in propositional logic. This symposium, bringing
together as it did scientists with these sorts of overlapping interests, is thought
to have contributed to the birth of cognitive science, a new discipline devoted
to the study of the mind. Indeed, George Miller wrote??

I went away from the Symposium with a strong conviction, more
intuitive than rational, that human experimental psychology,
theoretical linguistics, and computer simulation of cognitive
processes were all pieces of a larger whole, and that the future
would see progressive elaboration and coordination of their shared
concerns. . .

In 1960, Miller and colleagues wrote a book proposing a specific internal
mechanism responsible for behavior, which they called the TOTE unit
(Test—Operate-Test—Exit).?3 There is a TOTE unit corresponding to every
goal that an agent might have. Using its perceptual abilities, the unit first
tests whether or not its goal is satisfied. If so, the unit rests (exits). If not,
some operation specific to achieving that goal is performed, and the test for
goal achievement is performed again, and so on repetitively until the goal
finally is achieved. As a simple example, consider the TOTE unit for driving a
nail with a hammer. So long as the nail is not completely driven in (the goal),
the hammer is used to strike it (the operation). Pounding stops (the exit)
when the goal is finally achieved. It’s difficult to say whether or not this book
inspired similar work by artificial intelligence researchers. The idea was
apparently “in the air,” because at about the same time, as we shall see later,
some early work in AT used very similar ideas. [I can say that my work at SRI
with behavior (intermediate-level) programs for the robot, Shakey, and my
later work on what I called “teleo-reactive” programs were influenced by
Miller’s ideas.]

Cognitive science attempted to explicate internal mental processes using
ideas such as goals, memory, task queues, and strategies without (at least
during its beginning years) necessarily trying to ground these processes in
neurophysiology.?* Cognitive science and artificial intelligence have been
closely related ever since their beginnings. Cognitive science has provided
clues for AT researchers, and Al has helped cognitive science with newly

42

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.2 From Life Itself

invented concepts useful for understanding the workings of the mind.

2.2.3 Evolution

That living things evolve gives us two more clues about how to build
intelligent artifacts. First, and most ambitiously, the processes of evolution
itself — namely, random generation and selective survival — might be simulated
on computers to produce the machines we dream about. Second, those paths
that evolution followed in producing increasingly intelligent animals can be
used as a guide for creating increasingly intelligent artifacts. Start by
simulating animals with simple tropisms and proceed along these paths to
simulating more complex ones. Both of these strategies have been followed
with zest by Al researchers, as we shall see in the following chapters. Here, it
will suffice to name just a few initial efforts.

Early attempts to simulate evolution on a computer were undertaken at
Princeton’s Institute for Advanced Study by the viral geneticist Nils Aall
Barricelli (1912-1993). His 1954 paper described experiments in which
numbers migrated and reproduced in a grid.?

Motivated by the success of biological evolution in producing complex
organisms, some researchers began thinking about how programs could be
evolved rather than written. R. N. Friedberg and his IBM colleagues?®
conducted experiments in which, beginning with a population of random
computer programs, they attempted to evolve ones that were more successful
at performing a simple logical task. In the summary of his 1958 paper,
Friedberg wrote that “[m]achines would be more useful if they could learn to
perform tasks for which they were not given precise methods. ...It is
proposed that the program of a stored-program computer be gradually
improved by a learning procedure which tries many programs and chooses,
from the instructions that may occupy a given location, the one most often
associated with a successful result.” That is, Friedberg installed instructions
from “successful” programs into the programs of the next “generation,” much
as how the genes of individuals successful enough to have descendants are
installed in those descendants.

Unfortunately, Friedberg’s attempts to evolve programs were not very
successful. As Marvin Minsky pointed out,?”

The machine [described in the first paper| did learn to solve some
extremely simple problems. But it took of the order of 1000 times
longer than pure chance would expect. . ..

The second paper goes on to discuss a sequence of

modifications. . . With these, and with some ‘priming’ (starting the
machine off on the right track with some useful instructions), the
system came to be only a little worse than chance.

43

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

Minsky attributes the poor performance of Friedberg’s methods to the
fact that each descendant machine differed very little from its parent, whereas
any helpful improvement would require a much larger step in the “space” of
possible machines.

Other early work on artificial evolution was more successful. Lawrence
Fogel (1928-2007) and colleagues were able to evolve machines that could
make predictions of the next element in a sequence.?® Woodrow W. Bledsoe
(1921-1995) at Panoramic Research and Hans J. Bremermann (1926-1969) at
the University of California, Berkeley, used simulated evolution to solve
optimization and mathematical problems, respectively.?? And Ingo
Rechenberg (according to one Al researcher) “pioneered the method of
artificial evolution to solve complex optimization tasks, such as the design of
optimal airplane wings or combustion chambers of rocket nozzles.”3°

The first prominent work inspired by biological evolution was John
Holland’s development of “genetic algorithms” beginning in the early 1960s.
Holland (1929-), a professor at the University of Michigan, used strings of
binary symbols (0’s and 1’s), which he called “chromosomes” in analogy with
the genetic material of biological organisms. (Holland says he first came up
with the notion while browsing through the Michigan math library’s open
stacks in the early 1950s.)3! The encoding of 0’s and 1’s in a chromosome
could be interpreted as a solution to some given problem. The idea was to
evolve chromosomes that were better and better at solving the problem.
Populations of chromosomes were subjected to an evolutionary process in
which individual chromosomes underwent “mutations” (changing a component
1 to a 0 and vice versa), and pairs of the most successful chromosomes at each
stage of evolution were combined to make a new chromosome. Ultimately, the
process would produce a population containing a chromosome (or
chromosomes) that solved the problem.3?

Researchers would ultimately come to recognize that all of these
evolutionary methods were elaborations of a very useful mathematical search
strategy called “gradient ascent” or “hill climbing.” In these methods, one
searches for a local maximum of some function by taking the steepest possible
uphill steps. (When searching for a local minimum, the analogous method is
called “gradient descent.”)

Rather than attempt to duplicate evolution itself, some researchers
preferred to build machines that followed along evolution’s paths toward
intelligent life. In the late 1940s and early 1950s, W. Grey Walter
(1910-1977), a British neurophysiologist (born in Kansas City, Missouri), built
some machines that behaved like some of life’s most primitive creatures. They
were wheeled vehicles to which he gave the taxonomic name Machina
speculatriz (machine that looks; see Fig. 2.11).33 These tortoise-like machines
were controlled by “brains” consisting of very simple vacuum-tube circuits
that sensed their environments with photocells and that controlled their wheel
motors. The circuits could be arranged so that a machine either moved toward

44

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.2 From Life Itself

or away from a light mounted on a sister machine. Their behaviors seemed
purposive and often complex and unpredictable, so much so that Walter said
they “might be accepted as evidence of some degree of self-awareness.”
Machina speculatriz was the beginning of a long line of increasingly
sophisticated “behaving machines” developed by subsequent researchers.

Figure 2.11: Grey Walter (top left), his Machina speculatriz (top right), and
its circuit diagram (bottom). (Grey Walter photograph from Hans Moravec,
ROBOT, Chapter 2: Caution! Robot Vehicle!, p. 18, Oxford: Oxford University
Press, 1998; “Turtle” photograph courtesy of National Museum of American
History, Smithsonian Institution; the circuit diagram is from W. Grey Walter,
The Living Brain, p. 200, London: Gerald Duckworth & Co., Ltd., 1953.)

2.2.4 Development and Maturation

Perhaps there are alternatives to rerunning evolution itself or to following its
paths toward increasing complexity from the most primitive animals. By
careful study of the behavior of young children, the Swiss psychologist Jean
Piaget proposed a set of stages in the maturation of their thinking abilities

45

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

from infancy to adolescence.?* Might these stages provide a set of steps that
could guide designers of intelligent artifacts? Start with a machine that is able
to do what an infant can do, and then design machines that can mimic the
abilities of children at each rung of the ladder. This strategy might be called
“ontogenetic” to contrast it with the “phylogenetic” strategy of using
simlulated evolution.

Of course, it may be that an infant mind is far too complicated to
simulate and the processes of its maturation too difficult to follow. In any
case, this particular clue remains to be exploited.

2.2.5 Bionics

At a symposium in 1960, Major Jack E. Steele, of the Aerospace Division of
the United States Air Force, used the term “bionics” to describe the field that
learns lessons from nature to apply to technology.3®

Several bionics and bionics-related meetings were held during the 1960s.
At the 1963 Bionics Symposium, Leonard Butsch and Hans Oestreicher wrote
“Bionics aims to take advantage of millions of years of evolution of living
systems during which they adapted themselves for optimum survival. One of
the outstanding successes of evolution is the information processing capability
of living systems [the study of which is] one of the principal areas of Bionics
research.” 36

Today, the word “bionics” is concerned mainly with orthotic and
prosthetic devices, such as artificial cochleas, retinas, and limbs. Nevertheless,
as Al researchers continue their quest, the study of living things, their
evolution, and their development may continue to provide useful clues for
building intelligent artifacts.

2.3 From Engineering

2.3.1 Automata, Sensing, and Feedback

Machines that move by themselves and even do useful things by themselves
have been around for centuries. Perhaps the most common early examples are
the “verge-and-foliot” weight-driven clocks. (See Fig. 2.12.) These first
appeared in the late Middle Ages in the towers of large Italian cities. The
verge-and-foliot mechanism converted the energy of a falling weight into
stepped rotational motion, which could be used to move the clock hands.
Similar mechanisms were elaborated to control the actions of automata, such
as those of the Munich Glockenspiel.

One of the first automatic machines for producing goods was
Joseph-Marie Jacquard’s weaving loom, built in 1804. (See Fig. 2.13.) It

46

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 From Engineering

regulating
weight

Figure 2.12: A verge-and-foliot mechanism (left) and automata at the Munich
Glockenspiel (right).

followed a long history of looms and improved on the “punched card” design of
Jacques de Vaucanson’s loom of 1745. (Vaucanson did more than build
mechanical ducks.) The punched cards of the Jacquard loom controlled the
actions of the shuttles, allowing automatic production of fabric designs. Just a
few years after its invention, there were some 10,000 Jacquard looms weaving
away in France. The idea of using holes in paper or cards was later adopted by
Herman Hollerith for tabulating the 1890 American census data and in player
pianos (using perforated rolls instead of cards). The very first factory “robots”
of the so-called pick-and-place variety used only modest elaborations of this
idea.

It was only necessary to provide these early machines with an external
source of energy (a falling weight, a wound-up spring, or humans pumping
pedals). Their behavior was otherwise fully automatic, requiring no human
guidance. But, they had an important limitation — they did not perceive
anything about their environments. (The punched cards that were “read” by
the Jacquard loom are considered part of the machine — not part of the
environment.) Sensing the environment and then letting what is sensed
influence what a machine does is critical to intelligent behavior. Grey
Walters’s “tortoises,” for example, had photocells that could detect the
presence or absence of light in their environments and act accordingly. Thus,
they seem more intelligent than a Jacquard loom or clockwork automata.

One of the simplest ways to allow what is sensed to influence behavior
involves what is called “feedback control.” The word derives from feeding some
aspect of a machine’s behavior, say its speed of operation, back into the

47

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

Figure 2.13: Reconstruction of a Jacquard loom.

internals of the machine. If the aspect of behavior that is fed back acts to
diminish or reverse that aspect, the process is called “negative feedback.” If,
on the other hand, it acts to increase or accentuate that aspect of behavior, it
is called “positive feedback.” Both types of feedback play extremely important
roles in engineering.

48

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 From Engineering

Negative feedback techniques have been used for centuries in mechanical
devices. In 270 BCE, a Greek inventor and barber, Ktesibios of Alexandria,
invented a float regulator to keep the water level in a tank feeding a water
clock at a constant depth by controlling the water flow into the tank.?” The
feedback device was a float valve consisting of a cork at the end of a rod. The
cork floated on the water in the tank. When the water level in the tank rose,
the cork would rise, causing the rod to turn off the water coming in. When the
water level fell, the cork would fall, causing the rod to turn on the water. The
water level in modern flush toilets is regulated in much the same way. In 250
BCE, Philon of Byzantium used a similar float regulator to keep a constant
level of oil in a lamp.3®

The English clockmaker John Harrison (1693-1776) used a type of
negative feedback control in his clocks. The ambient temperature of a clock
affects the length of its balance spring and thus its time-keeping accuracy.
Harrison used a bimetallic strip (sometimes a rod), whose curvature depends
on temperature. The strip was connected to the balance spring in such a way
that it produced offsetting changes in the length of the spring, thus making
the clock more independent of its temperature. The strip senses the
temperature and causes the clock to behave differently, and more accurately,
than it otherwise would. Today, such bimetallic strips see many uses, notably
in thermostats. (Dava Sobel’s 1995 book, Longitude: The True Story of a
Lone Genius Who Solved the Greatest Scientific Problem of His Time,
recounts the history of Harrison’s efforts to build a prize-winning clock for
accurate time-keeping at sea.)

Perhaps the most graphic use of feedback control is the centrifugal flyball
governor perfected in 1788 by James Watt for regulating the speed of his
steam engine. (See Fig. 2.14.) As the speed of the engine increases, the balls
fly outward, which causes a linking mechanism to decrease air flow, which
causes the speed to decrease, which causes the balls to fall back inward, which
causes the speed to increase, and so on, resulting in an equilibrium speed.

In the early 1940s, Norbert Wiener (1894-1964) and other scientists noted
similarities between the properties of feedback control systems in machines
and in animals. In particular, inappropriately applied feedback in control
circuits led to jerky movements of the system being controlled that were
similar to pathological “tremor” in human patients. Arturo Rosenblueth,
Norbert Wiener, and Julian Bigelow coined the term “cybernetics” in a 1943
paper. Wiener’s book by that name was published in 1948. The word is
related to the word “governor.” (In Latin gubernaculum means helm, and
gubernator means helmsman. The Latin derives from the Greek kybernetike,
which means the art of steersmanship.3?)

Today, the prefix “cyber” is used to describe almost anything that deals
with computers, robots, the Internet, and advanced simulation. For example,
the author William Gibson coined the term “cyberspace” in his 1984 science
fiction novel Neuromancer. Technically, however, cybernetics continues to

49

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

-
S 3

b

(|
i
X
%
\:
Y

A

\
;\‘.'

)

Figure 2.14: Watt’s flyball governor.

describe activities related to feedback and control.*9

The English psychiatrist W. Ross Ashby (1903-1972; Fig. 2.15)
contributed to the field of cybernetics by his study of “ultrastability” and
“homeostasis.” According to Ashby, ultrastability is the capacity of a system
to reach a stable state under a wide variety of environmental conditions. To
illustrate the idea, he built an electromechanical device called the
“homeostat.” It consisted of four pivoted magnets whose positions were
rendered interdependent through feedback mechanisms. If the position of any
was disturbed, the effects on the others and then back on itself would result in
all of them returning to an equilibrium condition. Ashby described this device
in Chapter 8 of his influential 1952 book Design For a Brain. His ideas had an
influence on several Al researchers. My “teleo-reactive programs,” to be

50

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 From Engineering

described later, were motivated in part by the idea of homeostasis.

Figure 2.15: W. Ross Ashby, Warren McCulloch, Grey Walter, and Norbert
Wiener at a Meeting in Paris. (From P. de Latil, Thinking by Machine: A
Study of Cybernetics, Boston: Houghton, Mifflin, 1957.)

Another source of ideas, loosely associated with cybernetics and bionics,
came from studies of “self-organizing systems.” Many unorganized
combinations of simple parts, including combinations of atoms and molecules,
respond to energetic “jostling” by falling into stable states in which the parts
are organized in more complex assemblies. An online dictionary devoted to
cybernetics and systems theory has a nice example: “A chain made out of
paper clips suggests that someone has taken the trouble to link paper clips
together to make a chain. It is not in the nature of paper clips to make
themselves up into a chain. But, if you take a number of paper clips, open
them up slightly and then shake them all together in a cocktail shaker, you
will find at the end that the clips have organized themselves into short or long
chains. The chains are not so neat as chains put together by hand but,
nevertheless, they are chains.”*!

The term “self-organizing” seems to have been first introduced by Ashby
in 1947.42 Ashby emphasized that self-organization is not a property of an
organism itself, in response to its environment and experience, but a property
of the organism and its environment taken together. Although self-organization
appears to be important in ideas about how life originated, it is unclear
whether or not it provides clues for building intelligent machines.

51

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

2.3.2 Statistics and Probability

Because nearly all reasoning and decision making take place in the presence of
uncertainty, dealing with uncertainty plays an important role in the
automation of intelligence. Attempts to quantify uncertainty and “the laws of
chance” gave rise to statistics and probability theory. What would turn out to
be one of the most important results in probability theory, at least for artificial
intelligence, is Bayes’s rule, which I’ll define presently in the context of an
example. The rule is named for Reverend Thomas Bayes (1702-1761), an
English clergyman.*3

One of the important applications of Bayes’s rule is in signal detection.
Let’s suppose a radio receiver is tuned to a station that after midnight
broadcasts (randomly) one of two tones, either tone A or tone B, and on a
particular night we want to decide which one is being broadcast. On any given
day, we do not know ahead of time which tone is to be broadcast that night,
but suppose we do know their probabilities. (For example, it might be that
both tones are equally probable.) Can we find out which tone is being
broadcast by listening to the signal coming in to the receiver? Well, listening
can’t completely resolve the matter because the station is far away, and
random noise partially obscures the tone. However, depending on the nature
of the obscuring noise, we can often calculate the probability that the actual
tone that night is A (or that it is B). Let’s call the signal y and the actual
tone x (which can be either A or B). The probability that x = A, given the
evidence for it contained in the incoming signal, y, is written as p(x = A | y)
and read as “the probability that = is A, given that the signal is y.” The
probability that 2 = B, given the same evidence is p(z = B | y).

A reasonable “decision rule” would be to decide in favor of tone A if
p(z = A y) is larger than p(x = B | y). Otherwise, decide in favor of tone B.
(There is a straightforward adjustment to this rule that takes into account
differences in the “costs” of the two possible errors.) The problem in applying
this rule is that these two probabilities are not readily calculable, and that is
where Bayes’s rule comes in. It allows us to calculate these probabilities in
terms of other probabilities that are more easily guessed or otherwise
obtainable. Specifically, Bayes’s rule is

p(z|y) =ply | z)p(z)/p(y).

Using Bayes’s rule, our decision rule can now be reformulated as

Decide in favor of tone A if p(y | z = A)p(x = A)/p(y) is greater
than p(y | = B)p(z = B)/p(y). Otherwise, decide in favor of tone
B.

Because p(y) occurs in both expressions and therefore does not affect which
one is larger, the rule simplifies to

52

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 From Engineering

Decide in favor of tone A if p(y | ¢ = A)p(xz = A) is greater than
p(y | x = B)p(xz = B). Otherwise, decide in favor of tone B.

We assume that we know the a priori probabilities of the tones, namely,

p(x = A) and p(x = B), so it remains only for us to calculate p(y | x) for

= A and x = B. This expression is called the likelihood of y given x. When
the two probabilities, p(x = A) and p(x = B), are equal (that is, when both
tones are equally probable a priori), then we can decide in favor of which
likelihood is greater. Many decisions that are made in the presence of
uncertainty use this “maximum-likelihood” method . The calculation for these
likelihoods depends on how we represent the received signal, y, and on the
statistics of the interfering noise.

In my example, y is a radio signal, that is, a voltage varying in time. For
computational purposes, this time-varying voltage can be represented by a
sequence of samples of its values at appropriately chosen, uniformly spaced
time points, say y(t1), y(t2), ... y(t:), ..., y(tx). When noise alters these
values from what they would have been without noise, the probability of the
sequence of them (given the cases when the tone is A and when the tone is B)
can be calculated by using the known statistical properties of the noise. I
won’t go into the details here except to say that, for many types of noise
statistics, these calculations are quite straightforward.

In the twentieth century, scientists and statisticians such as Karl Pearson
(1857-1936), Sir Ronald A. Fisher (1890-1962), Abraham Wald (1902-1950),
and Jerzey Neyman (1894-1981) were among those who made important
contributions to the use of statistical and probabilistic methods in estimating
parameters and in making decisions. Their work set the foundation for some of
the first engineering applications of Bayes’s rule, such as the one I just
illustrated, namely, deciding which, if any, of two or more electrical signals is
present in situations where noise acts to obscure the signals. A paper by the
American engineers David Van Meter and David Middleton, which I read as a
beginning graduate student in 1955, was my own introduction to these
applications.** For artificial intelligence, these uses of Bayes’s rule provided
clues about how to mechanize the perception of both speech sounds and visual
images. Beyond perception, Bayes’s rule lies at the center of much other
modern work in artificial intelligence.

2.3.3 The Computer
A. Early Computational Devices

Proposals such as those of Leibniz, Boole, and Frege can be thought of as early
attempts to provide foundations for what would become the “software” of
artificial intelligence. But reasoning and all the other aspects of intelligent
behavior require, besides software, some sort of physical engine. In humans

53

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

and other animals, that engine is the brain. The simple devices of Grey Walter
and Ross Ashby were, of course, physical manifestations of their ideas. And,
as we shall see, early networks of neuron-like units were realized in physical
form. However, to explore the ideas inherent in most of the clues from logic,
from neurophysiology, and from cognitive science, more powerful engines
would be required. While McCulloch, Wiener, Walter, Ashby, and others were
speculating about the machinery of intelligence, a very powerful and essential
machine bloomed into existence — the general-purpose digital computer. This
single machine provided the engine for all of these ideas and more. It is by far
the dominant hardware engine for automating intelligence.

Building devices to compute has a long history. William Aspray has
edited an excellent book, Computing Before Computers, about computing’s
early days.?® The first machines were able to do arithmetic calculations, but
these were not programmable. Wilhelm Schickard (1592-1635; Fig. 2.16) built
one of the first of these in 1623. It is said to have been able to add and
subtract six-digit numbers for use in calculating astronomical tables. The
machine could “carry” from one digit to the next.

In 1642 Blaise Pascal (1623-1662; Fig. 2.16) created the first of about
fifty of his computing machines. It was an adding machine that could perform
automatic carries from one position to the next. “The device was contained in
a box that was small enough to fit easily on top of a desk or small table. The
upper surface of the box. .. consisted of a number of toothed wheels, above
which were a series of small windows to show the results. In order to add a
number, say 3, to the result register, it was only necessary to insert a small
stylus into the toothed wheel at the position marked 3 and rotate the wheel
clockwise until the stylus encountered the fixed stop...”%6

Figure 2.16: Wilhelm Schickard (left) and Blaise Pascal (right).

54

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 From Engineering

Inspired by Pascal’s machines, Gottfried Leibniz built a mechanical
multiplier called the “Step Reckoner” in 1674. It could add, subtract, and do
multiplication (by repeated additions). “To multiply a number by 5, one
simply turned the crank five times.”*7

Several other calculators were built in the ensuing centuries. A
particularly interesting one, which was too complicated to build in its day, was
designed in 1822 by Charles Babbage (1791-1871), an English mathematician
and inventor. (See Fig. 2.17.) Called the “Difference Engine,” it was to have
calculated mathematical tables (of the kind used in navigation at sea, for
example) using the method of finite differences. Babbage’s Difference Engine
No. 2 was actually constructed in 1991 (using Babbage’s designs and
nineteenth-century mechanical tolerances) and is now on display at the
London Science Museum. The Museum arranged for another copy to be built
for Nathan Myhrvold, a former Microsoft Chief Technology Officer. (A
description of the machine and a movie is available from a Computer History
Museum Web page at http://www.computerhistory.org/babbage/.)

Adding machines, however, can only add and subtract (and, by repetition
of these operations, also multiply and divide). These are important operations
but not the only ones needed. Between 1834 and 1837 Babbage worked on the
design of a machine called the “Analytical Engine,” which embodied most of
the ideas needed for general computation. It could store intermediate results
in a “mill,” and it could be programmed. However, its proposed realization as
a collection of steam-driven, interacting brass gears and cams ran into funding
difficulties and was never constructed.

Ada Lovelace (1815-1852), the daughter of Lord Byron, has been called
the “world’s first programmer” for her alleged role in devising programs for
the Analytical Engine. However, in the book Computing Before Computers
the following claim is made:*®

This romantically appealing image is without foundation. All but
one of the programs cited in her notes [to her translation of an
account of a lecture Babbage gave in Turin, Italy] had been
prepared by Babbage from three to seven years earlier. The
exception was prepared by Babbage for her, although she did
detect a “bug” in it. Not only is there no evidence that Ada
Lovelace ever prepared a program for the Analytical Engine but
her correspondence with Babbage shows that she did not have the
knowledge to do so.

For more information about the Analytical Engine and an emulator and
programs for it, see http://www.fourmilab.ch/babbage/.

Practical computers had to await the invention of electrical, rather than
brass, devices. The first computers in the early 1940s used electromechanical
relays. Vacuum tubes (thermionic valves, as they say in Britain) soon won out

55

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.computerhistory.org/babbage/
http://www.fourmilab.ch/babbage/
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

Figure 2.17: Charles Babbage (left) and a model of his Analytical Engine (right).

because they permitted faster and more reliable computation. Nowadays,
computers use billions of tiny transistors arrayed on silicon wafers. Who
knows what might someday replace them?

B. Computation Theory

Even before people actually started building computers, several logicians and
mathematicians in the 1930s pondered the problem of just what could be
computed. Alonzo Church came up with a class of functions that could be
computed, ones he called “recursive.”” The English logician and
mathematician, Alan Turing (1912-1954; Fig. 2.18), proposed what is now
understood to be an equivalent class — ones that could be computed by an
imagined machine he called a “logical computing machine (LCM),” nowadays
called a “Turing machine.”®" (See Fig. 2.19.) The claim that these two notions
are equivalent is called the “Church—Turing Thesis.” (The claim has not been
proven, but it is strongly supported by logicians and no counterexample has
ever been found.)>!

The Turing machine is a hypothetical computational device that is quite
simple to understand. It consists of just a few parts. There is an infinite tape
(which is one reason the device is just imagined and not actually built) divided
into cells and a tape drive. Each cell has printed on it either a 1 or a 0. The
machine also has a read—write head positioned over one cell of the tape. The
read function reads what is on the tape. There is also a logic unit that can
decide, depending on what is read and the state of the logic machine, to change
its own state, to command the write function to write either a 1 or a 0 on the

56

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 From Engineering

Figure 2.18: Alan Mathison Turing. (Photograph by Elliott & Fry © and used
with permission of the National Portrait Gallery, London.)

cell being read (possibly replacing what is already there), to move the tape one
cell to the left or to the right (at which time the new cell is read and so on), or
to terminate operation altogether. The input (the “problem” to be computed)
is written on the tape initially. (It turns out that any such input can be coded
into 1I’s and 0’s.) When, and if, the machine terminates, the output (the coded
“answer” to the input problem) ends up being printed on the tape.

Turing proved that one could always specify a particular logic unit (the
part that decides on the machine’s actions) for his machine such that the
machine would compute any computable function. More importantly, he
showed that one could encode on the tape itself a prescription for any logic
unit specialized for a particular problem and then use a general-purpose logic
unit for all problems. The encoding for the special-purpose logic unit can be
thought of as the “program” for the machine, which is stored on the tape (and
thus subject to change by the very operation of the machine!) along with the
description of the problem to be solved. In Turing’s words, “It can be shown
that a single special machine of that type can be made to do the work of all.

o7

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

if in state 37, reading a 1,
overwrite the symbol with
a 0, go to state 61, and move

tape one cell to the left.
)
logic L
unit now in state
read/write 37 reading a 1
head

ojrj1|jof1fojrj1j1fofoj1j0j1fo0fo0

movable infinite tape

Figure 2.19: A Turing machine.

It could in fact be made to work as a model of any other machine. The special
machine may be called the universal machine.” 2

C. Digital Computers

Somewhat independently of Turing, engineers began thinking about how to
build actual computing devices consisting of programs and logical circuitry for
performing the instructions contained in the programs. Some of the key ideas
for designing the logic circuits of computers were developed by the American
mathematician and inventor Claude Shannon (1916-2001; Fig. 2.20).%3 In his
1937 Yale University master’s thesis®® Shannon showed that Boolean algebra
and binary arithmetic could be used to simplify telephone switching circuits.
He also showed that switching circuits (which can be realized either by
combinations of relays, vacuum tubes, or whatever) could be used to
implement operations in Boolean logic, thus explaining their importance in
computer design.

It’s hard to know who first thought of the idea of storing a computer’s
program along with its data in the computer’s memory banks. Storing the
program allows changes in the program to be made easily, but more

58

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 From Engineering

Figure 2.20: Claude Shannon. (Photograph courtesy of MIT Museum.)

importantly it allows the program to change itself by changing appropriate
parts of the memory where the program is stored. Among those who might
have thought of this idea first are the German engineer Konrad Zuse
(1910-1995) and the American computer pioneers J. Presper Eckert
(1919-1995) and John W. Mauchly (1907-1980). (Of course Turing had
already proposed storing what amounted to a program on the tape of a
universal Turing machine.)

For an interesting history of Konrad Zuse’s contributions, see the family
of sites available from
http://irb.cs.tu-berlin.de/~zuse/Konrad_Zuse/en/index.html. One of these
mentions that “it is undisputed that Konrad Zuse’s Z3 was the first fully
functional, program controlled (freely programmable) computer of the world.
... The Z3 was presented on May 12, 1941, to an audience of scientists in
Berlin.” Instead of vacuum tubes, it used 2,400 electromechanical relays. The
original Z3 was destroyed by an Allied air raid on December 21, 1943.5° A

59

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://irb.cs.tu-berlin.de/~zuse/Konrad_Zuse/en/index.html
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

reconstructed version was built in the early 1960s and is now on display at the
Deutsche Museum in Munich. Zuse also is said to have created the first
programming language, called the Plankalkil.

The American mathematician John von Neumann (1903-1957) wrote a
“draft report” about the EDVAC, an early stored-program computer.®®
Perhaps because of this report, we now say that these kinds of computers use
a “von Neumann architecture.” The ideal von Neumann architecture separates
the (task-specific) stored program from the (general-purpose) hardware
circuitry, which can execute (sequentially) the instructions of any program
whatsoever. (We usually call the program “software” to distinguish it from the
“hardware” part of a computer. However, the distinction is blurred in most
modern computers because they often have some of their programs built right
into their circuitry.)

Other computers with stored programs were designed and built in the
1940s in Germany, Great Britain, and the United States. They were large,
bulky machines. In Great Britain and the United States they were mainly
used for military purposes. Figure 2.21 shows one such machine.

el
1|:|.I- £| LR

T S A R AL [-
o L O e

oy

Figure 2.21: The Cambridge University EDSAC computer (circa 1949). (Pho-
tograph used with permission of the Computer Laboratory, University of Cam-

bridge ©.)

60

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 From Engineering

We call computers “machines” even though today they can be made
completely electrical with no moving parts whatsoever. Furthermore, when we
speak of computing machines we usually mean the combination of the
computer and the program it is running. Sometimes we even call just the
program a machine. (As an example of this usage, I'll talk later about a
“checker-playing machine” and mean a program that plays checkers.)

The commanding importance of the stored-program digital computer
derives from the fact that it can be used for any purpose whatsoever — that is,
of course, any computational purpose. The modern digital computer is, for all
practical purposes, such a universal machine. The “all-practical-purposes”
qualifier is needed because not even modern computers have the infinite
storage capacity implied by Turing’s infinite tape. However, they do have
prodigious amounts of storage, and that makes them practically universal.

D. “Thinking” Computers

After some of the first computers were built, Turing reasoned that if they were
practically universal, they should be able to do anything. In 1948 he wrote,

“The importance of the universal machine is clear. We do not need to have an
infinity of different machines doing different jobs. A single one will suffice. The
engineering problem of producing various machines for various jobs is replaced
by the office work of ‘programming’ the universal machine to do these jobs.”5”

Among the things that Turing thought could be done by computers was
mimicking human intelligence. One of Turing’s biographers, Andrew Hodges,
claims, “he decided the scope of the computable encompassed far more than
could be captured by explicit instruction notes, and quite enough to include all
that human brains did, however creative or original. Machines of sufficient
complexity would have the capacity for evolving into behaviour that had never
been explicitly programmed.”®>8

The first modern article dealing with the possibility of mechanizing all of
human-style intelligence was published by Turing in 1950.>° This paper is
famous for several reasons. First, Turing thought that the question “Can a
machine think?” was too ambiguous. Instead he proposed that the matter of
machine intelligence be settled by what has come to be called “the Turing
test.”

Although there have been several reformulations (mostly simplifications)
of the test, here is how Turing himself described it:

The new form of the problem [Can machines think?] can be
described in terms of a game which we call the “imitation game.”
It is played with three people, a man (A), a woman (B), and an
interrogator (C) who may be of either sex. The interrogator stays
in a room apart from the other two. The object of the game for the

61

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

interrogator is to determine which of the other two is the man and
which is the woman. He knows them by labels X and Y, and at the
end of the game he says either “X is A and Y is B” or “X is B and
Y is A.” The interrogator is allowed to put questions to A and B
thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A’s object
in the game to try and cause C to make the wrong identification.
His answer might therefore be

“My hair is shingled, and the longest strands are about nine inches
long.”

In order that tones of voice may not help the interrogator the
answers should be written, or better still, typewritten. The ideal
arrangement is to have a teleprinter communicating between the
two rooms. Alternatively the question and answers can be repeated
by an intermediary. The object of the game for the third player
(B) is to help the interrogator. The best strategy for her is
probably to give truthful answers. She can add such things as “I
am the woman, don’t listen to him!” to her answers, but it will
avail nothing as the man can make similar remarks.

We now ask the question, “What will happen when a machine
takes the part of A in this game?” Will the interrogator decide
wrongly as often when the game is played like this as he does when
the game is played between a man and a woman? These questions
replace our original, “Can machines think?”

Most of the simplifications of Turing’s test involve attempting to have a
computer “in the other room” fool an interrogator into believing the computer
is a human. To stimulate progress toward that goal, a prize has been
established — annual prizes in fact. In the words of the Web site announcing
the prizes, “In 1990 Hugh Loebner agreed with The Cambridge Center for
Behavioral Studies to underwrite a contest designed to implement the Turing
Test. Dr. Loebner pledged a Grand Prize of $100,000 and a Gold Medal for
the first computer whose responses were indistinguishable from a human’s.
Such a computer can be said ‘to think.” Each year an annual prize of $2000
and a bronze medal is awarded to the most human-like computer. The winner
of the annual contest is the best entry relative to other entries that year,
irrespective of how good it is in an absolute sense.” %0

However, several people have pointed to inadequacies of both the
simplifications and even of the original test.%' In fact, it has been alleged that
even Joseph Weizenbaum’s patently unintelligent 1966 conversational
program, ELIZA, has fooled people into thinking it is human.5?

For example, here is part of a transcript of a conversation with ELIZA:

62

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3

From Engineering

ELIZA: How do you do. Please state your problem.
> I spend too much time with computers.
ELIZA: Why do you mention computers?

> You are one.

ELIZA: Does it please you to believe I am one?
> Yes.

ELIZA: You seem to be quite positive.

> I suppose I am.

ELIZA: How long have you been?

> 31 years.

ELIZA: I’'m not sure I understand you fully.

> Join the club.

ELIZA: Please go on.

> You don’t make too much sense yourself.

ELIZA: We were discussing you — not me.

The first part of the conversation seems reasonable, but ELIZA bogs down

in the middle because the program was expecting “I suppose I am” to be
followed by some word like “happy.” (There are several ELIZA simulations on
the Web. One that claims to reproduce faithfully the original ELIZA program
is at http://www.chayden.net/eliza/Eliza.html. Try one out!)

A second important feature of Turing’s 1950 paper was his handling of

arguments that people might raise against the possibility of achieving
intelligent computers. I’ll quote the ones Turing mentions:

(1) The Theological Objection: Thinking is a function of man’s
immortal soul. God has given an immortal soul to every man and
woman, but not to any other animal or to machines. Hence no
animal or machine can think.

(2) The ‘Heads in the Sand’ Objection: “The consequences of
machines thinking would be too dreadful. Let us hope and believe
that they cannot do so.”

(3) The Mathematical Objection: There are a number of results of
mathematical logic that can be used to show that there are
limitations to the powers of discrete-state machines.

(4) The Argument from Consciousness: This argument is very well
expressed in Professor Jefferson’s Lister Oration for 1949, from
which I quote:

“Not until a machine can write a sonnet or compose a concerto
because of thoughts and emotions felt, and not by the chance fall

63

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/

All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.chayden.net/eliza/Eliza.html
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2 Clues

of symbols, could we agree that machine equals brain — that is, not
only write it but know that it had written it. No mechanism could
feel (and not merely artificially signal, an easy contrivance)
pleasure at its successes, grief when its valves fuse, be warmed by
flattery, be made miserable by its mistakes, be charmed by sex, be
angry or depressed when it cannot get what it wants.”

(5) Arguments from Various Disabilities: These arguments take the
form, “I grant you that you can make machines do all the things
you have mentioned but you will never be able to make one to do
X.”

(6) Lady Lovelace’s Objection: Our most detailed information of
Babbage’s Analytical Engine comes from a memoir by Lady
Lovelace. In it she states, “The Analytical Engine has no
pretensions to originate anything. It can do whatever we know how
to order it to perform” (her italics).

(7) Argument from Continuity in the Nervous System: The
nervous system is certainly not a discrete-state machine. A small
error in the information about the size of a nervous impulse
impinging on a neuron may make a large difference to the size of
the outgoing impulse. It may be argued that, this being so, one
cannot expect to be able to mimic the behavior of the nervous
system with a discrete-state system.

(8) The Argument from Informality of Behavior: It is not possible
to produce a set of rules purporting to describe what a man should
do in every conceivable set of circumstances.

(9) The Argument from Extra-Sensory Perception.

In his paper, Turing nicely (in my opinion) handles all of these points,
with the possible exception of the last one (because he apparently thought
that extra-sensory perception was plausible). I'll leave it to you to read
Turing’s 1950 paper to see his counterarguments.

The third important feature of Turing’s 1950 paper is his suggestion
about how we might go about producing programs with human-level
intellectual abilities. Toward the end of his paper, he suggests, “Instead of
trying to produce a programme to simulate the adult mind, why not rather try
to produce one which simulates the child’s? If this were then subjected to an
appropriate course of education one would obtain the adult brain.” This
suggestion is really the source for the idea mentioned earlier about using an
ontogenetic strategy to develop intelligent machines.

Allen Newell and Herb Simon (see Fig. 2.22) were among those who had
no trouble believing that the digital computer’s universality meant that it
could be used to mechanize intelligence in all its manifestations — provided it
had the right software. In their 1975 ACM Turing Award lecture,® they

64

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 From Engineering

described a hypothesis that they had undoubtedly come to believe much
earlier, the “Physical Symbol System Hypothesis.” It states that “a physical
symbol system has the necessary and sufficient means for intelligent action.”
Therefore, according to the hypothesis, appropriately programmed digital
computers would be capable of intelligent action. Conversely, because humans
are capable of intelligent action, they must be, according to the hypothesis,
physical symbol systems. These are very strong claims that continue to be
debated.

Figure 2.22: Herbert Simon (seated) and Allen Newell (standing). (Courtesy of
Carnegie Mellon University Archives.)

Both the imagined Turing machine and the very real digital computer are
symbol systems in the sense Newell and Simon meant the phrase. How can a
Turing machine, which uses a tape with 0’s and 1’s printed on it, be a “symbol
system”? Well, the 0’s and 1’s printed on the tape can be thought of as
symbols standing for their associated numbers. Other symbols, such as “A”
and “M,” can be encoded as sequences of primitive symbols, such as 0’s and
1’s. Words can be encoded as sequences of letters, and so on. The fact that
one commonly thinks of a digital computer as a machine operating on 0’s and
1’s need not prevent us from thinking of it also as operating on more complex
symbols. After all, we are all used to using computers to do “word processing”
and to send e-mail.

65

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

9 NOTES

Newell and Simon admitted that their hypothesis could indeed be false:
“Intelligent behavior is not so easy to produce that any system will exhibit it
willy-nilly. Indeed, there are people whose analyses lead them to conclude
either on philosophical or on scientific grounds that the hypothesis is false.
Scientifically, one can attack or defend it only by bringing forth empirical
evidence about the natural world.” They conclude the following;:

The symbol system hypothesis implies that the symbolic behavior
of man arises because he has the characteristics of a physical
symbol system. Hence, the results of efforts to model human
behavior with symbol systems become an important part of the
evidence for the hypothesis, and research in artificial intelligence
goes on in close collaboration with research in information
processing psychology, as it is usually called.

Although the hypothesis was not formally described until it appeared in
the 1976 article, it was certainly implicit in what Turing and other researchers
believed in the 1950s. After Allen Newell’s death, Herb Simon wrote, “From
the very beginning something like the physical symbol system hypothesis was
embedded in the research.” %4

Inspired by the clues we have mentioned and armed with the
general-purpose digital computer, researchers began, during the 1950s, to
explore various paths toward mechanizing intelligence. With a firm belief in
the symbol system hypothesis, some people began programming computers to
attempt to get them to perform some of the intellectual tasks that humans
could perform. Around the same time, other researchers began exploring
approaches that did not depend explicitly on symbol processing. They took
their inspiration mainly from the work of McCulloch and Pitts on networks of
neuron-like units and from statistical approaches to decision making. A split
between symbol-processing methods and what has come to be called
“brain-style” and “nonsymbolic” methods still survives today.

Notes

1. Aristotle, Prior Analytics, Book I, written circa 350 BCE, translated by A. J. Jenkinson,
Web addition published by eBooks@Adelaide, available online at
http://etext.library.adelaide.edu.au/a/aristotle/a8pra/. [27]

2. Medieval students of logic gave names to the different syllogisms they studied. They
used the mnemonic Barbara for this one because each of the three statements begins with
“All,” whose first letter is “A.” The vowels in “Barbara” are three“a”s. [27]

3. From Martin Davis, The Universal Computer: The Road from Leibniz to Turing, New
York: W. W. Norton & Co., 2000. For an excerpt from the paperback version containing
this quotation, see http://www.wwnorton.com/catalog/fall01/032229EXCERPT htm. [28]

4. Quotation from William Aspray (ed.), Computing Before Computers, Chapter 3, “Logic

66

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://etext.library.adelaide.edu.au/a/aristotle/a8pra/
http://www.wwnorton.com/catalog/fall01/032229EXCERPT.htm
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 NOTES

Machines,” pp. 107-8, Ames, Iowa: Iowa State Press, 1990. (Also available from
http://ed-thelen.org/comp-hist/CBC.html.) [30]

5. Robert Harley, “The Stanhope Demonstrator, Mind, Vol. IV, pp. 192-210, 1879. [31]

6. George Boole, An Investigation of the Laws of Thought on Which are Founded the
Mathematical Theories of Logic and Probabilities, Dover Publications, 1854. [31]

7. See D. McHale, George Boole: His Life and Work, Dublin, 1985. This excerpt was taken
from http://www-groups.dcs.st-and.ac.uk/~history /Mathematicians/Boole.html. [32]

8. See, for example, Gerard O’Regan, A Brief History of Computing, p. 17, London:
Springer-Verlag, 2008. [32]

9. I follow the pictorial version used in the online Stanford Encyclopedia of Philosophy
(http://plato.stanford.edu/entries/frege/), which states that “...we are modifying Frege’s
notation a bit so as to simplify the presentation; we shall not use the special typeface
(Gothic) that Frege used for variables in general statements, or observe some of the special
conventions that he adopted....” [33]

10. Warren S. McCulloch and Walter Pitts, “A Logical Calculus of Ideas Immanent in
Nervous Activity,” Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133, Chicago:
University of Chicago Press, 1943. (See Marvin Minsky, Computation: Finite and Infinite
Machines, Englewood Cliffs, NJ: Prentice-Hall, 1967, for a very readable treatment of the
computational aspects of “McCulloch-Pitts neurons.”) [34]

11. Donald O. Hebb, The Organization of Behavior: A Neuropsychological Theory, New
York: John Wiley, Inc., 1949. [36]

12. For more about Hebb, see http://www.cpa.ca/Psynopsis/special_eng.html. [36]

13. For a summary of the lives and work of both men, see a Web page entitled “Wilhelm
Wundt and William James” by Dr. C. George Boeree at
http://www.ship.edu/~cgboeree/wundtjames.html. [38]

14. M. Minsky (ed.), “Introduction,” Semantic Information Processing, p. 2, Cambridge,
MA: MIT Press, 1968. [40]

15. Russell A. Kirsch, “Experiments with a Computer Learning Routine,” Computer
Seminar Notes, July 30, 1954. Available online at
http://www.nist.gov/msidlibrary/doc/kirsch_1954_artificial.pdf. [40]

16. B. F. Skinner, Verbal Behavior, Engelwood Cliffs, NJ: Prentice Hall, 1957. [40]

17. Noam Chomsky, “A Review of B. F. Skinner’s Verbal Behavior,” in Leon A. Jakobovits
and Murray S. Miron (eds.), Readings in the Psychology of Language, Engelwood Cliffs, NJ:
Prentice-Hall, 1967. Available online at http://www.chomsky.info/articles/1967----.htm.
[40]

18. See, for example, N. Chomsky, Aspects of the Theory of Syntax, Cambridge: MIT Press,
1965. [41]

19. George A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information,” The Psychological Review, Vol. 63, pp. 81-97,
1956. [41]

20. IRE Transactions on Information Theory, Vol IT-2, 1956. [42]
21. For a copy of his paper, see http://www.chomsky.info/articles/195609--.pdf. [42]

22. George A. Miller, “A Very Personal History,” MIT Center for Cognitive Science
Occasional Paper No. 1, 1979. [42]

23. George A. Miller, E. Galanter, and K. H. Pribram, Plans and the Structure of Behavior,
New York: Holt, Rinehart & Winston, 1960. [42]

24. For a thorough history of cognitive science, see Margaret A. Boden, Mind As Machine:

67

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ed-thelen.org/comp-hist/CBC.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Boole.html
http://plato.stanford.edu/entries/frege/
http://www.cpa.ca/Psynopsis/special_eng.html
http://www.ship.edu/~cgboeree/wundtjames.html
http://www.nist.gov/msidlibrary/doc/kirsch_1954_artificial.pdf
http://www.chomsky.info/articles/1967----.htm
http://www.chomsky.info/articles/195609--.pdf
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

9 NOTES

A History of Cognitive Science, vols. 1 and 2, Oxford: Clarendon Press, 2006. For an
earlier, one-volume treatment, see Howard E. Gardner, The Mind’s New Science: A History
of the Cognitive Revolution, New York: Basic Books, 1985. [42]

25. An English translation appeared later: N.A. Barricelli, “Symbiogenetic Evolution
Processes Realized by Artificial Methods,” Methodos, Vol. 9, Nos. 35-36, pp. 143-182, 1957.
For a summary of Barricelli’s experiments, see David B. Fogel, “Nils Barricelli — Artificial
Life, Coevolution, Self-Adaptation,” IEEE Computational Intelligence Magazine, Vol. 1, No.
1, pp. 41-45, February 2006. [43]

26. R. M. Friedberg, “A Learning Machine: Part I,” IBM Journal of Research and
Development, Vol. 2, No. 1, pp. 2-13, 1958, and R. M. Friedberg, B. Dunham, and J. H.
North, “A Learning Machine: Part II,” IBM Journal of Research and Development, Vol. 3,
No. 3, pp. 282-287, 1959. The papers are available (for a fee) at
http://www.research.ibm.com/journal/rd /021 /ibmrd0201B.pdf and
http://www.research.ibm.com/journal/rd/033/ibmrd0303H.pdf. [43]

27. Marvin L. Minsky, “Steps Toward Artificial Intelligence,” Proceedings of the Institute of
Radio Engineers, Vol. 49, pp. 8-30, 1961. Paper available at
http://web.media.mit.edu/~minsky/papers/steps.html. [43]

28. Lawrence J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through
Simulated Evolution, New York: Wiley, 1966. [44]

29. Woodrow W. Bledsoe, “The Evolutionary Method in Hill Climbing: Convergence
Rates,” Technical Report, Panoramic Research, Inc., Palo Alto, CA, 1962.; Hans J.
Bremermann, “Optimization through Evolution and Recombination, M. C. Yovits, G. T.
Jacobi, and G. D. Goldstein (eds.), Self-Organizing Systems, pp. 93-106, Washington, DC:
Spartan Books, 1962. [44]

30. Jirgen Schmidhuber, “2006: Celebrating 75 Years of AI — History and Outlook: The
Next 25 Years,” in Max Lungarella et al. (eds.), 50 Years of Artificial Intelligence: Essays
Dedicated to the 50th Anniversary of Artificial Intelligence, Berlin: Springer-Verlag, 2007.
Schmiduber cites Ingo Rechenberg, “Evolutionsstrategie — Optimierung Technischer Systeme
Nach Prinzipien der Biologischen Evolution,” Ph.D. dissertation, 1971 (reprinted by
Frommann-Holzboog Verlag, Stuttgart, 1973). [44]

31. See http://www.aaai.org/AlTopics/html/genalg.html. [44]

32. John H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor: The
University of Michigan Press, 1975. Second edition, MIT Press, 1992. [44]

33. W. Grey Walter, “An Imitation of Life,” Scientific American, pp. 42-45, May 1950. See
also W. Grey Walter, The Living Brain, London: Gerald Duckworth & Co. Ltd., 1953. [44]

34. B. Inhelder and J. Piaget, The Growth of Logical Thinking from Childhood to
Adolescence, New York: Basic Books, 1958. For a summary of these stages, see the following
Web pages: http://www.childdevelopmentinfo.com/development/piaget.shtml and
http://www.ship.edu/~cgboeree/piaget.html. [46]

35. Proceedings of the Bionics Symposium: Living Prototypes — the Key to new Technology,
Technical Report 60-600, Wright Air Development Division, Dayton, Ohio, 1960. [46]

36. Proceedings of the Third Bionics Symposium, Aerospace Medical Division, Air Force
Systems Command, United States Air Force, Wright-Patterson AFB, Ohio, 1963. [46]

37. http://www.mlahanas.de/Greeks/Ctesibiusl.htm. [49]
38. http://www.asc-cybernetics.org/foundations/timeline.htm. [49]
39. From http://www.nickgreen.pwp.blueyonder.co.uk/control.htm. [49]

40. For a history of cybernetics, see a Web page of the American Society for Cybernetics at
http://www.asc-cybernetics.org/foundations/history.htm. [50]

68

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.research.ibm.com/journal/rd/021/ibmrd0201B.pdf
http://www.research.ibm.com/journal/rd/033/ibmrd0303H.pdf
http://web.media.mit.edu/~minsky/papers/steps.html
http://www.aaai.org/AITopics/html/genalg.html
http://www.childdevelopmentinfo.com/development/piaget.shtml
http://www.ship.edu/~cgboeree/piaget.html
http://www.mlahanas.de/Greeks/Ctesibius1.htm
http://www.asc-cybernetics.org/foundations/timeline.htm
http://www.nickgreen.pwp.blueyonder.co.uk/control.htm
http://www.asc-cybernetics.org/foundations/history.htm
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3 NOTES

41. From http://pespmcl.vub.ac.be/ASC/SELF-ORGANIhtml. [51]

42. W. Ross Ashby, “Principles of the Self-Organizing Dynamic System,” Journal of
General Psychology, Vol. 37, pp. 125-128, 1947. See also the Web pages at
http://en.wikipedia.org/wiki/Self_organization. [51]

43. Bayes wrote an essay that is said to have contained a version of the rule. Later, the
Marquis de Laplace (1749-1827) generalized (some say independently) what Bayes had
done. For a version of Bayes’s essay (posthumously written up by Richard Price), see
http://www.stat.ucla.edu/history/essay.pdf. [52]

44. David Van Meter and David Middleton, “Modern Statistical Approaches to Reception in
Communication Theory,” Symposium on Information Theory, IRE Transactions on
Information Theory, PGIT-4, pp. 119-145, September 1954. [53]

45. William Aspray (ed.), Computing Before Computers, Ames, lowa: Iowa State University
Press, 1990. Available online at http://ed-thelen.org/comp-hist/CBC.html. [54]

46. Ibid, Chapter 1. [54]
47. Ibid. [55]
48. Ibid, Chapter 2. [55]

49. Alonzo Church, “An Unsolvable Problem of Elementary Number Theory,” American
Journal of Mathematics, Vol. 58, pp. 345-363, 1936. [56]

50. Alan M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Society, Series 2, Vol. 42,
pp. 230-265, 1936-1937. [56]

51. For more information about Turing, his life and works, see the Web pages maintained by
the Turing biographer, Andrew Hodges, at http://www.turing.org.uk/turing/. [56]

52. The quotation is from Alan M. Turing, “Lecture to the London Mathematical Society,”
p.- 112, typescript in King’s College, Cambridge, published in Alan M. Turing’s ACE Report
of 1946 and Other Papers (edited by B. E. Carpenter and R. W. Doran, Cambridge, MA:
MIT Press, 1986), and in Volume 3 of The Collected Works of A. M. Turing (edited D. C.
Ince, Amsterdam: North-Holland 1992). [58]

53. For a biographical sketch, see
http://www.research.att.com/~njas/doc/shannonbio.html. [58]

54. In his book The Mind’s New Science, Howard Gardner called this thesis “possibly the
most important, and also the most famous, master’s thesis of the century.” [58]

55. Various sources give different dates for the air raid, but a letter in the possession of
Zuse’s son, Horst Zuse, gives the 1943 date (according to an e-mail sent me on February 10,
2009, by Wolfgang Bibel, who has communicated with Horst Zuse). [59]

56. A copy of the report, plus introductory commentary, can be found at
http://qgss.stanford.edu/~godfrey/. [60]

57. Alan M. Turing, “Intelligent Machinery,” National Physical Laboratory Report, 1948.
Reprinted in B. Meltzer and D. Michie (eds), Machine Intelligence 5, Edinburgh: Edinburgh
University Press, 1969. A facsimile of the report is available online at
http://www.AlanTuring.net/intelligent_machinery. [61]

58. Andrew Hodges, Turing, London: Phoenix, 1997. [61]

59. Alan M. Turing, “Computing Machinery and Intelligence,” Mind, Vol. LIX, No. 236, pp.
433-460, October 1950. (Available at http://www.abelard.org/turpap/turpap.htm.) [61]

60. See the “Home Page of the Loebner Prize in Artificial Intelligence” at
http://www.loebner.net /Prizef/loebner-prize.html. [62]

61. For discussion, see the Wikipedia article at http://en.wikipedia.org/wiki/Turing_test.

69

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://pespmc1.vub.ac.be/ASC/SELF-ORGANI.html
http://en.wikipedia.org/wiki/Self_organization
http://www.stat.ucla.edu/history/essay.pdf
http://ed-thelen.org/comp-hist/CBC.html
http://www.turing.org.uk/turing/
http://www.research.att.com/~njas/doc/shannonbio.html
http://qss.stanford.edu/~godfrey/
http://www.AlanTuring.net/intelligent_machinery
http://www.abelard.org/turpap/turpap.htm
http://www.loebner.net/Prizef/loebner-prize.html
http://en.wikipedia.org/wiki/Turing_test
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

9 NOTES

[62]

62. Joseph Weizenbaum, “ELIZA—A Computer Program for the Study of Natural
Language Communication between Man and Machine,” Communications of the ACM, Vol.
9, No. 1, pp. 36-35, January 1966. Available online at
http://i5.nyu.edu/~mm64/x52.9265/january1966.html. [62]

63. Allen Newell and Herbert A. Simon, “Computer Science as Empirical Inquiry: Symbols
and Search,” Communications of the ACM, Vol. 19, No. 3, pp. 113-126, March 1976. [64]

64. National Academy of Sciences, Biographical Memoirs, Vol. 71, 1997. Available online at
http://www.nap.edu/catalog.php?record_id=5737. [66]

70

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://i5.nyu.edu/~mm64/x52.9265/january1966.html
http://www.nap.edu/catalog.php?record_id=5737
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

2.3

Part 11

Early Explorations: 1950s
and 1960s

If machines are to become intelligent, they must, at the very least, be able
to do the thinking-related things that humans can do. The first steps then in
the quest for artificial intelligence involved identifying some specific tasks
thought to require intelligence and figuring out how to get machines to do
them. Solving puzzles, playing games such as chess and checkers, proving
theorems, answering simple questions, and classifying visual images were
among some of the problems tackled by the early pioneers during the 1950s
and early 1960s. Although most of these were laboratory-style, sometimes
called “toy,” problems, some real-world problems of commercial importance,
such as automatic reading of highly stylized magnetic characters on bank
checks and language translation, were also being attacked. (As far as I know,
Seymour Papert was the first to use the phrase “toy problem.” At a 1967 Al
workshop I attended in Athens, Georgia, he distinguished among tau or “toy”
problems, rho or real-world problems, and theta or “theory” problems in
artificial intelligence. This distinction still serves us well today.)

In this part, I'll describe some of the first real efforts to build intelligent
machines. Some of these were discussed or reported on at conferences and
symposia — making these meetings important milestones in the birth of Al T’ll
also do my best to explain the underlying workings of some of these early Al
programs. The rather dramatic successes during this period helped to
establish a solid base for subsequent artificial intelligence research.

Some researchers became intrigued (one might even say captured) by the
methods they were using, devoting themselves more to improving the power
and generality of their chosen techniques than to applying them to the tasks

71

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

thought to require them. Moreover, because some researchers were just as
interested in explaining how human brains solved problems as they were in
getting machines to do so, the methods being developed were often proposed
as contributions to theories about human mental processes. Thus, research in
cognitive psychology and research in artificial intelligence became highly
intertwined.

72

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3.1

Chapter 3

Gatherings

In September 1948, an interdisciplinary conference was held at the California
Institute of Technology (Caltech) in Pasadena, California, on the topics of how
the nervous system controls behavior and how the brain might be compared to
a computer. It was called the Hixon Symposium on Cerebral Mechanisms in
Behavior. Several luminaries attended and gave papers, among them Warren
McCulloch, John von Neumann, and Karl Lashley (1890-1958), a prominent
psychologist. Lashley gave what some thought was the most important talk at
the symposium. He faulted behaviorism for its static view of brain function
and claimed that to explain human abilities for planning and language,
psychologists would have to begin considering dynamic, hierarchical
structures. Lashley’s talk laid out the foundations for what would become
cognitive science.!

The emergence of artificial intelligence as a full-fledged field of research
coincided with (and was launched by) three important meetings — one in 1955,
one in 1956, and one in 1958. In 1955, a “Session on Learning Machines” was
held in conjunction with the 1955 Western Joint Computer Conference in Los
Angeles. In 1956 a “Summer Research Project on Artificial Intelligence” was
convened at Dartmouth College. And in 1958 a symposium on the
“Mechanization of Thought Processes,” was sponsored by the National
Physical Laboratory in the United Kingdom.

3.1 Session on Learning Machines

Four important papers were presented in Los Angeles in 1955. In his
chairman’s introduction to this session, Willis Ware wrote

These papers do not suggest that future learning machines should
be built in the pattern of the general-purpose digital computing

73

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3 Gatherings

device; it is rather that the digital computing system offers a
convenient and highly flexible tool to probe the behavior of the
models. ... This group of papers suggests directions of
improvement for future machine builders whose intent is to utilize
digital computing machinery for this particular model technique.
Speed of operation must be increased manyfold; simultaneous
operation in many parallel modes is strongly indicated; the size of
random access storage must jump several orders of magnitude; new
types of input—output equipment are needed. With such
advancements and the techniques discussed in these papers, there
is considerable promise that systems can be built in the relatively
near future which will imitate considerable portions of the activity
of the brain and nervous system.

Fortunately, we have made substantial progress on the items on Ware’s list
of “directions for improvement.” Speed of operation has increased manyfold,
parallel operation is utilized in many Al systems, random access storage has
jumped several orders of magnitude, and many new types of input—output
equipment are available. Perhaps even further improvements will be necessary.

The session’s first paper, by Wesley Clark and Belmont Farley of MIT’s
Lincoln Laboratory, described some pattern-recognition experiments on
networks of neuron-like elements.? Motivated by Hebb’s proposal that
assemblies of neurons could learn and adapt by adjusting the strengths of their
interconnections, experimenters had been trying various schemes for adjusting
the strengths of connections within their networks, which were usually
simulated on computers. Some just wanted to see what these networks might
do whereas others, such as Clark and Farley, were interested in specific
applications, such as pattern recognition. To the dismay of neurophysiologists,
who complained about oversimplification, these networks came to be called
neural networks. Clark and Farley concluded that “crude but useful
generalization properties are possessed even by randomly connected nets of the
type described.”?

The next pair of papers, one by Gerald P. Dinneen (1924—) and one by
Oliver Selfridge (1926-2008; Fig. 3.1), both from MIT’s Lincoln Laboratory,
presented a different approach to pattern recognition. Dinneen’s paper*
described computational techniques for processing images. The images were
presented to the computer as a rectangular array of intensity values
corresponding to the various shades of gray in the image. Dinneen pioneered
the use of filtering methods to remove random bits of noise, thicken lines, and
find edges. He began his paper with the following:

Over the past months in a series of after-hour and luncheon
meetings, a group of us at the laboratory have speculated on
problems in this area. Our feeling, pretty much unanimously, was
that there is a real need to get practical, to pick a real live problem

74

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3.1 Session on Learning Machines

and go after it.

Selfridge’s paper® was a companion piece to that of Dinneen. Operating
on “cleaned-up” images (as might be produced by Dinneen’s program, for
example), Selfridge described techniques for highlighting “features” in these
images and then classifying them based on the features. For example, corners
of an image known to be either a square or a triangle are highlighted, and then
the number of corners is counted to determine whether the image is of a
square or of a triangle. Selfridge said that “eventually, we hope to be able to
recognize other kinds of features, such as curvature, juxtaposition of singular
points (that is, their relative bearings and distances), and so forth.”

Figure 3.1: Oliver Selfridge. (Photograph courtesy of Oliver Selfridge.)

The methods pioneered by Selfridge and Dinneen are fundamental to
most of the later work in enabling machines to “see.” Their work is all the
more remarkable when one considers that it was done on a computer, the
Lincoln Laboratory “Memory Test Computer,” that today would be regarded
as extremely primitive. [The Memory Test Computer (MTC) was the first to
use the ferrite core random-access memory modules developed by Jay
Forrester. It was designed and built by Ken Olsen in 1953 at the Digital
Equipment Corporation (DEC). The MTC was the first computer to simulate
the operation of neural networks — those of Clark and Farley.|

The next paper® was about programming a computer to play chess. It
was written by Allen Newell, then a researcher at the Rand Corporation in
Santa Monica. Thanks to a biographical sketch of Newell written by his

75

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3 Gatherings

colleague, Herb Simon of Carnegie Mellon University, we know something
about Newell’s motivation and how he came to be interested in this problem:”

In September 1954 Allen attended a seminar at RAND in which
Oliver Selfridge of Lincoln Laboratory described a running
computer program that learned to recognize letters and other
patterns. While listening to Selfridge characterizing his rather
primitive but operative system, Allen experienced what he always
referred to as his “conversion experience.” It became instantly clear
to him “that intelligent adaptive systems could be built that were
far more complex than anything yet done.” To the knowledge Allen
already had about computers (including their symbolic
capabilities), about heuristics, about information processing in
organizations, about cybernetics, and proposals for chess programs
was now added a concrete demonstration of the feasibility of
computer simulation of complex processes. Right then he
committed himself to understanding human learning and thinking
by simulating it.

Simon goes on to summarize Newell’s paper on chess:

[It] outlined an imaginative design for a computer program to play
chess in humanoid fashion, incorporating notions of goals,
aspiration levels for terminating search, satisfying with “good
enough” moves, multidimensional evaluation functions, the
generation of subgoals to implement goals, and something like best
first search. Information about the board was to be expressed
symbolically in a language resembling the predicate calculus. The
design was never implemented, but ideas were later borrowed from
it for use in the NSS [Newell, Shaw, and Simon] chess program in
1958.8

Newell hinted that his aims extended beyond chess. In his paper he wrote
“The aim of this effort, then, is to program a current computer to learn to
play good chess. This is the means to understanding more about the kinds of
computers, mechanisms, and programs that are necessary to handle
ultracomplicated problems.” Newell’s proposed techniques can be regarded as
his first attempt to produce evidence for what he and Simon later called the
Physical Symbol System Hypothesis.

Walter Pitts, a commentator for this session, concluded it by saying,
“But, whereas Messrs. Farley, Clark, Selfridge, and Dinneen are imitating the
nervous system, Mr. Newell prefers to imitate the hierarchy of final causes
traditionally called the mind. It will come to the same thing in the end, no
doubt....” To “come to the same thing,” these two approaches, neural
modeling and symbol processing, must be recognized simply as different levels

76

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3.2 The Dartmouth Summer Project

of description of what goes on in the brain. Different levels are appropriate for
describing different kinds of mental phenomena. I’ll have more to say about
description levels later in the book.

3.2 The Dartmouth Summer Project

In 1954, John McCarthy (1927— ; Fig 3.2) joined Dartmouth College in
Hanover, New Hampshire, as an Assistant Professor of Mathematics.
McCarthy had been developing a continuing interest in what would come to be
called artificial intelligence. It was “triggered,” he says, “by attending the
September 1948 Hixon Symposium on Cerebral Mechanisms in Behavior held
at Caltech where I was starting graduate work in mathematics.”® While at
Dartmouth he was invited by Nathaniel Rochester (1919-2001) to spend the
summer of 1955 in Rochester’s Information Research Department at IBM in
Poughkeepsie, New York. Rochester had been the designer of the IBM 701
computer and had also participated in research on neural networks.?

At IBM that summer, McCarthy and Rochester persuaded Claude
Shannon and Marvin Minsky (1927—; Fig. 3.2), then a Harvard junior fellow in
mathematics and neurology, to join them in proposing a workshop to be held
at Dartmouth during the following summer. Shannon, whom I have previously
mentioned, was a mathematician at Bell Telephone Laboratories and already
famous for his work on switching theory and statistical information theory.
McCarthy took the lead in writing the proposal and in organizing what was to
be called a “Summer Research Project on Artificial Intelligence.” The proposal
was submitted to the Rockefeller Foundation in August 1955.

Extracts from the proposal read as follows:!!

We propose that a 2 month, 10 man study of artificial intelligence
be carried out during the summer of 1956 at Dartmouth College in
Hanover, New Hampshire. The study is to proceed on the basis of
the conjecture that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a
machine can be made to simulate it. An attempt will be made to
find how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and
improve themselves. We think that a significant advance can be
made in one or more of these problems if a carefully selected group
of scientists work on it together for a summer.

For the present purpose the artificial intelligence problem is taken
to be that of making a machine behave in ways that would be
called intelligent if a human were so behaving.

7

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3 Gatherings

Figure 3.2: John McCarthy (left) and Marvin Minsky (right). (McCarthy photo-
graph courtesy of John McCarthy. Minsky photograph courtesy MIT Museum.)

The Rockefeller Foundation did provide funding for the event, which took
place during six weeks of the summer of 1956. It turned out, however, to be
more of a rolling six-week workshop than a summer “study.” Among the
people attending the workshop that summer, in addition to McCarthy,
Minsky, Rochester, and Shannon were Arthur Samuel (1901-1990), an
engineer at the IBM corporation who had already written a program to play
checkers, Oliver Selfridge, Ray Solomonoff of MIT, who was interested in
automating induction, Allen Newell, and Herbert Simon. Newell and Simon
(together with another Rand scientist, Cliff Shaw) had produced a program for
proving theorems in symbolic logic. Another attending IBM scientist was Alex
Bernstein, who was working on a chess-playing program.

McCarthy has given a couple of reasons for using the term “artificial
intelligence.” The first was to distinguish the subject matter proposed for the
Dartmouth workshop from that of a prior volume of solicited papers, titled
Automata Studies, co-edited by McCarthy and Shannon, which (to
McCarthy’s disappointment) largely concerned the esoteric and rather narrow
mathematical subject called “automata theory.” The second, according to
McCarthy, was “to escape association with ‘cybernetics.” Its concentration on
analog feedback seemed misguided, and I wished to avoid having either to
accept Norbert Wiener as a guru or having to argue with him.” 2

78

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3.2 The Dartmouth Summer Project

There was (and still is) controversy surrounding the name. According to
Pamela McCorduck’s excellent history of the early days of artificial
intelligence, Art Samuel remarked, “The word artificial makes you think
there’s something kind of phony about this, or else it sounds like it’s all
artificial and there’s nothing real about this work at all.”*® McCorduck goes
on to say that “[nJeither Newell or Simon liked the phrase, and called their
own work complex information processing for years thereafter.” But most of
the people who signed on to do work in this new field (including myself) used
the name “artificial intelligence,” and that is what the field is called today.
(Later, Newell became reconciled to the name. In commenting about the
content of the field, he concluded, “So cherish the name artificial intelligence.
It is a good name. Like all names of scientific fields, it will grow to become
exactly what its field comes to mean.”)'4

The approaches and motivations of the people at the workshop differed.
Rochester came to the conference with a background in networks of neuron-like
elements. Newell and Simon had been pursuing (indeed had helped originate)
the symbol-processing approach. Among the topics Shannon wanted to think
about (according to the proposal) was the “application of information theory
concepts to computing machines and brain models.” (After the workshop,
however, Shannon turned his attention away from artificial intelligence.)

McCarthy wrote that he was interested in constructing “an artificial
language which a computer can be programmed to use on problems requiring
conjecture and self-reference. It should correspond to English in the sense that
short English statements about the given subject matter should have short
correspondents in the language and so should short arguments or conjectural
arguments. I hope to try to formulate a language having these properties ...”
Although McCarthy later said that his ideas on this topic were still too “ill
formed” for presentation at the conference, it was not long before he made
specific proposals for using a logical language and its inference mechanisms for
representing and reasoning about knowledge.

Although Minsky’s Ph.D. dissertation'® and some of his subsequent work
concentrated on neural nets, around the time of the Dartmouth workshop he
was beginning to change direction. Now, he wrote, he wanted to consider a
machine that “would tend to build up within itself an abstract model of the
environment in which it is placed. If it were given a problem, it could first
explore solutions within the internal abstract model of the environment and
then attempt external experiments.” At the workshop, Minsky continued work
on a draft that was later to be published as a foundational paper, “Steps
Toward Artificial Intelligence.” '

One of the most important technical contributions of the 1956 meeting
was work presented by Newell and Simon on their program, the “Logic
Theorist (LT),” for proving theorems in symbolic logic. LT was concrete
evidence that processing “symbol structures” and the use of what Newell and
Simon called “heuristics” were fundamental to intelligent problem solving. I’ll

79

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3 Gatherings

describe some of these ideas in more detail in a subsequent chapter.

Newell and Simon had been working on ideas for LT for some months and
became convinced in late 1955 that they could be embodied in a working
program. According to Edward Feigenbaum (1936—), who was taking a course
from Herb Simon at Carnegie in early 1956, “It was just after Christmas
vacation — January 1956 — when Herb Simon came into the classroom and
said, ‘Over Christmas Allen Newell and I invented a thinking machine.” 7
What was soon to be programmed as LT was the “thinking machine” Simon
was talking about. He called it such, no doubt, because he thought it used
some of the same methods for solving problems that humans use. Simon later
wrote'® “On Thursday, Dec. 15...1 succeeded in simulating by hand the first
proof...I have always celebrated Dec. 15, 1955, as the birthday of heuristic
problem solving by computer.” According to Simon’s autobiography Models of
My Life,' LT began by hand simulation, using his children as the computing
elements, while writing on and holding up note cards as the registers that
contained the state variables of the program.?°

Another topic discussed at Dartmouth was the problem of proving
theorems in geometry. (Perhaps some readers will recall their struggles with
geometry proofs in high school.) Minsky had already been thinking about a
program to prove geometry theorems. McCorduck quotes him as saying the
following:2!

[P]robably the important event in my own development — and the
explanation of my perhaps surprisingly casual acceptance of the
Newell-Shaw—Simon work — was that I had sketched out the
heuristic search procedure for [a] geometry machine and then been
able to hand-simulate it on paper in the course of an hour or so.
Under my hand the new proof of the isosceles-triangle theorem
came to life, a proof that was new and elegant to the participants —
later, we found that proof was well-known. ..

In July 2006, another conference was held at Dartmouth celebrating the
fiftieth anniversary of the original conference. (See Fig. 3.3.) Several of the
founders and other prominent AI researchers attended and surveyed what had
been achieved since 1956. McCarthy reminisced that the “main reason the
1956 Dartmouth workshop did not live up to my expectations is that AT is
harder than we thought.” In any case, the 1956 workshop is considered to be
the official beginning of serious work in artificial intelligence, and Minsky,
McCarthy, Newell, and Simon came to be regarded as the “fathers” of Al. A
plaque was dedicated and installed at the Baker Library at Dartmouth
commemorating the beginning of artificial intelligence as a scientific discipline.

80

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3.3 Mechanization of Thought Processes

Figure 3.3: Some of AI’s founders at the July 2006 Dartmouth fiftieth anniver-
sary meeting. From the left are Trenchard More, John McCarthy, Marvin Min-
sky, Oliver Selfridge, and Ray Solomonoff. (Photograph courtesy of photogra-
pher Joe Mehling and the Dartmouth College Artificial Intelligence Conference:
The Next Fifty Years.)

3.3 Mechanization of Thought Processes

In November 1958, a symposium on the “Mechanisation of Thought
Processes” was held at the National Physical Laboratory in Teddington,
Middlesex, England. According to the preface of the conference proceedings,
the symposium was held “to bring together scientists studying artificial
thinking, character and pattern recognition, learning, mechanical language
translation, biology, automatic programming, industrial planning and clerical
mechanization.”

Among the people who presented papers at this symposium were many
whom I have already mentioned in this story. They include Minsky (by then a
staff member at Lincoln Laboratory and on his way to becoming an assistant
professor of Mathematics at MIT), McCarthy (by then an assistant professor
of Communication Sciences at MIT), Ashby, Selfridge, and McCulloch. (John

81

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3 Gatherings

Backus, one of the developers of the computer programming language
FORTRAN, and Grace Murray Hopper, a pioneer in “automatic programming,”
also gave papers.)

The proceedings of this conference?? contains some papers that became

quite influential in the history of artificial intelligence. Among these, I'll
mention ones by Minsky, McCarthy, and Selfridge.

Minsky’s paper, “Some Methods of Artificial Intelligence and Heuristic
Programming,” was the latest version of a piece he had been working on since
just before the Dartmouth workshop. The paper described various methods
that were (and could be) used in heuristic programming. It also covered
methods for pattern recognition, learning, and planning. The final version,
which was soon to be published as “Steps Toward Artificial Intelligence,” was
to become required reading for new recruits to the field (including me).

I have already mentioned McCarthy’s hope to develop an artificial
language for Al. He summarized his conference paper, “Programs with
Common Sense,” as follows:

This paper will discuss programs to manipulate in a suitable formal
language (most likely a part of the predicate calculus) common
instrumental statements. The basic program will draw immediate
conclusions from a list of premises. These conclusions will be either
declarative or imperative sentences. When an imperative sentence
is deduced, the program takes a corresponding action.

In his paper, McCarthy suggested that facts needed by an Al program,
which he called the “advice taker,” might be represented as expressions in a
mathematical (and computer-friendly) language called “first-order logic.” For
example, the facts “I am at my desk” and “My desk is at home” would be
represented as the expressions at (I, desk) and at(desk, home). These,
together with similarly represented information about how to achieve a change
in location (by walking and driving for example), could then be used by the
proposed (but not yet programmed) advice taker to figure out how to achieve
some goal, such as being at the airport. The advice taker’s reasoning process
would produce imperative logical expressions involving walking to the car and
driving to the airport.

Representing facts in a logical language has several advantages. As
McCarthy later put it,2?

Expressing information in declarative sentences is far more
modular than expressing it in segments of computer program or in
tables. Sentences can be true in much wider contexts than specific
programs can be useful. The supplier of a fact does not have to
understand much about how the receiver functions, or how or
whether the receiver will use it. The same fact can be used for

82

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3.3 Mechanization of Thought Processes

many purposes, because the logical consequences of collections of
facts can be available.

McCarthy later expanded on these ideas in a companion memorandum.?*
As T'll mention later, some of McCarthy’s advice-taker proposals were finally

implemented by a Stanford graduate student, C. Cordell Green.

I have already mentioned the 1955 pattern-recognition work of Oliver
Selfridge. At the 1958 Teddington Symposium, Selfridge presented a paper on
a new model for pattern recognition (and possibly for other cognitive tasks
also).?” He called it “Pandemonium,” meaning the place of all the demons.
His model is especially interesting because its components, which Selfridge
called “demons,” can either be instantiated as performing lower level
nerve-cell-type functions or higher level cognitive functions (of the
symbol-processing variety). Thus, Pandemonium can take the form of a neural
network, a hierarchically organized set of symbol processors — all working in
parallel, or some combination of these forms. If the latter, the model is a
provocative proposal for joining these two disparate approaches to Al.

In the introduction to his paper, Selfridge emphasized the importance of
computations performed in parallel:

The basic motif behind our model is the notion of parallel
processing. This is suggested on two grounds: first, it is often easier
to handle data in a parallel manner, and, indeed, it is usually the
more “natural” manner to handle it in; and, secondly, it is easier to
modify an assembly of quasi-independent modules than a machine
all of whose parts interact immediately and in a complex way.

Selfridge made several suggestions about how Pandemonium could learn.
It’s worth describing some of these because they foreshadow later work in
machine learning. But first I must say a bit more about the structure of
Pandemonium.

Pandemonium’s structure is something like that of a business organization
chart. At the bottom level are workers, whom Selfridge called the “data
demons.” These are computational processes that “look at” the input data,
say an image of a printed letter or number. Each demon looks for something
specific in the image, perhaps a horizontal bar; another might look for a
vertical bar; another for an arc of a circle; and so on. Each demon “shouts” its
findings to a set of demons higher in the organization. (Think of these higher
level demons as middle-level managers.) The loudness of a demon’s shout
depends on how certain it is that it is seeing what it is looking for. Of course,
Selfridge is speaking metaphorically when he uses terms such as “looking for”
and “shouting.” Suffice it to say that it is not too difficult to program
computers to “look for” certain features in an image. (Selfridge had already
shown how that could be done in his 1955 paper that I mentioned earlier.)
And a “shout” is really the strength of the output of a computational process.

83

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3 Gatherings

Each of the next level of demons specializes in listening for a particular
combination of shouts from the data demons. For example, one of the demons
at this level might be tuned to listen for shouts from data demon 3, data
demon 11, and data demon 22. If it finds that these particular demons are
shouting loudly, it responds with a shout of its own to the demons one level up
in the hierarchy, and so on.

Just below the top level of the organization are what Selfridge called the
“cognitive demons.” As at the other levels, these listen for particular
combinations of shouts from the demons at the level below, and they respond
with shouts of their own to a final “decision demon” at the top — the overall
boss. Depending on what it hears from its “staff,” the decision demon finally
announces what it thinks is the identity of the image — perhaps the letter “A”
or the letter “R” or whatever.

Actual demon design depends on what task Pandemonium is supposed to
be doing. But even without specifying what each demon was to do, Selfridge
made very interesting proposals about how Pandemonium could learn to
perform better at whatever it was supposed to be doing. One of his proposals
involved equipping each demon with what amounted to a “megaphone”
through which it delivered its shout. The volume level of the megaphone could
be adjusted. (Selfridge’s Pandemonium is just a bit more complicated than the
version I am describing. His version has each demon using different channels
for communicating with each of the different demons above it. The volume of
the shout going up each channel is individually adjusted by the learning
mechanism.) The demons were not allowed to set their own volume levels,
however. All volume levels were to be set through an outside learning process
attempting to improve the performance of the whole assembly. Imagine that
the volume levels are initially set either at random or at whatever a designer
thinks would be appropriate. The device is then tested on some sample of
input data and its performance score is noted. Say, it gets a score of 81%.
Then, small adjustments are made to the volume levels in all possible ways
until a set of adjustments is found that improves the score the most, say to
83%. This particular set of small adjustments is then made and the process is
repeated over and over (possibly on additional data) until no further
improvement can be made.

(Because there might be a lot of megaphones in the organization, it might
seem impractical to make adjustments in all possible ways and to test each of
these ways to find its score. The process might indeed take some time, but
computers are fast — even more so today. Later in the book, I’ll show how one
can calculate, rather than find by experiment, the best adjustments to make in
neural networks organized like Pandemonium.)

If we think of the score as the height of some landscape and the
adjustments as movements over the landscape, the process can be likened to
climbing a hill by always taking steps in the direction of steepest ascent.
Gradient ascent (or hill-climbing methods, as they are sometimes called) are

84

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3.3 NOTES

well known in mathematics. Selfridge had this to say about some of the
pitfalls of their use:

This may be described as one of the problems of training, namely,
to encourage the machine or organism to get enough on the
foot-hills so that small changes. .. will produce noticeable
improvement in his altitude or score. One can describe learning
situations where most of the difficulty of the task lies in finding any
way of improving one’s score, such as learning to ride a unicycle,
where it takes longer to stay on for a second than it does to
improve that one second to a minute; and others where it is easy to
do a little well and very hard to do very well, such as learning to
play chess. It’s also true that often the main peak is a plateau
rather than an isolated spike.

Selfridge described another method for learning in Pandemonium. This
method might be likened to replacing managers in an organization who do not
perform well. As Selfridge puts it,

At the conception of our demoniac assembly we collected somewhat
arbitrarily a large number of subdemons which we guessed would
be useful. .. but we have no assurance at all that the particular
subdemons we selected are good ones. Subdemon selection
generates new subdemons for trial and eliminates inefficient ones,
that is, ones that do not much help improve the score.

The demon selection process begins after the volume-adjusting learning
mechanism has run for a while with no further improvements in the score.
Then the “worth” of each demon is evaluated by using, as Selfridge suggests, a
method based on the learned volume levels of their shouting. Demons having
high volume levels have a large effect on the final score, and so they can be
thought to have high worth. First, the demons with low volume levels are
eliminated entirely. (That step can’t hurt the score very much.) Next, some of
the demons undergo random “mutations” and are put back in service. Next,
some pairs of worthy demons are selected and, as Selfridge says, “conjugated”
into offspring demons. The precise method Selfridge proposed for conjugation
need not concern us here, but the spirit of the process is to produce offspring
that share, one hopes, useful properties of the parents. The offspring are then
put into service. Now the whole process of adjusting volume levels of the
surviving and “evolved” demons can begin again to see whether the score of
the new assembly can be further improved.

Notes
85
Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3 NOTES

1. The proceedings of the symposium were published in L. A. Jeffries (ed.), Cerebral
Mechanisms in Behavior: The Hizon Symposium, New York: Wiley, 1951. An excellent
review of Lashley’s points are contained in Chapter 2 of The Mind’s New Science: A History
of the Cognitive Revolution, by Howard E Gardner, New York: Basic Books, 1985. [73]

2. W. A. Clark and B. G. Farley, “Generalization of Pattern Recognition in a
Self-Organizing System,” Proceedings of the 1955 Western Joint Computer Conference,
Institute of Radio Engineers, New York, pp. 86-91, 1955. Clark and Farley’s experiments
continued some work they had reported on earlier in B. G. Farley and W. A. Clark,
“Simulation of Self-Organizing Systems by Digital Computer, IRE Transactions on
Information Theory, Vol. 4, pp. 76-84, 1954. (In 1962 Clark built the first personal
computer, the LINC.) [74]

3. Alan Wilkes and Nicholas Wade credit Scottish psychologist Alexander Bain
(1818-1903) with the invention of the first neural network, which Bain described in his 1873
book Mind and Body: The Theories of Their Relation.” (See Alan L. Wilkes and Nicholas J.
Wade, “Bain on Neural Networks,” Brain and Cognition, Vol. 33, pp. 295-305, 1997.) [74]

4. Gerald P. Dinneen, “Programming Pattern Recognition,” Proceedings of the 1955
Western Joint Computer Conference, Institute of Radio Engineers, New York, pp. 94-100,
1955. [74]

5. Oliver Selfridge, “Pattern Recognition and Modern Computers,” Proceedings of the 1955
Western Joint Computer Conference, Institute of Radio Engineers, New York, pp. 91-93,
1955. [75]

6. Allen Newell, “The Chess Machine: An Example of Dealing with a Complex Task by
Adaptation,” Proceedings of the 1955 Western Joint Computer Conference, Institute of
Radio Engineers, New York, pp. 101-108, 1955. (Also issued as RAND Technical Report
P-620.) [75]

7. National Academy of Sciences, Biographical Memoirs, Vol. 71, 1997. Available online at
http://www.nap.edu/catalog.php?record_id=5737. [76]

8. Allen Newell, J. C. Shaw, and Herbert A. Simon, “Chess-Playing Programs and the
Problem of Complexity,” IBM Journal of Research and Development, Vol. 2, pp. 320-335,
1958. The paper is available online at http://domino.watson.ibm.com/tchjr/journalindex.
nsf/0/237cfeded3bel03585256bfa00683d4d?OpenDocument. [76]

9. From John McCarthy’s informal comments at the 2006 Dartmouth celebration. [77]

10. Nathan Rochester et al., “Tests on a Cell Assembly Theory of the Action of the Brain
Using a Large Digital Computer,” IRE Transaction of Information Theory, Vol. IT-2, pp.
80-93, 1956. [77]

11. From http://www-formal.stanford.edu/jmc/history /dartmouth/dartmouth.html.
Portions of the proposal have been reprinted in John McCarthy, Marvin L. Minsky,
Nathaniel Rochester, and Claude E. Shannon, “A Proposal for the Dartmouth Summer
Research Project on Artificial Intelligence,” AI Magazine, Vol. 27, No. 4, p. 12, Winter
2006. [77]

12. From http://www-formal.stanford.edu/jmc/reviews/bloomfield /bloomfield.html. [78]

13. Pamela McCorduck, Machines Who Think: A Personal Inquiry into the History and
Prospects of Artificial Intelligence, p. 97, San Francisco: W. H. Freeman and Co., 1979. [79]

14. See Allen Newell, “The First AAAI President’s Message,” AI Magazine, Vol. 26, No. 4,
pp. 24-29, Winter 2005. [79]

15. M. L. Minsky, Theory of Neural-Analog Reinforcement Systems and Its Application to
the Brain-Model Problem, Ph.D. thesis, Princeton University, 1954. [79]

16. Marvin L. Minsky, “Steps Toward Artificial Intelligence,” Proceedings of the IRE, Vol.
49, No. 1, pp. 8-30, January 1961. Also appears in Edward A. Feigenbaum, and Julian

86

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.nap.edu/catalog.php?record_id=5737
http://domino.watson.ibm.com/tchjr/journalindex.nsf/0/237cfeded3be103585256bfa00683d4d?OpenDocument
http://domino.watson.ibm.com/tchjr/journalindex.nsf/0/237cfeded3be103585256bfa00683d4d?OpenDocument
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www-formal.stanford.edu/jmc/reviews/bloomfield/bloomfield.html
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

3.3 NOTES

Feldman (eds.), Computers and Thought, New York: McGraw Hill, 1963. (Available online
at http://web.media.mit.edu/~minsky/papers/steps.html.) [79]

17. Pamela McCorduck, op. cit., p. 116. [80]

18. Herbert A. Simon, Models of My Life, Cambridge, MA: MIT Press, 1996. The quote is
from http://www.post-gazette.com/pg/06002/631149.stm. [80]

19. Ibid. [80]

20. http://www.post-gazette.com/downloads/20060102simon_notes.pdf contains sketches of
Simon’s simulation of an LT proof. [80]

21. Pamela McCorduck, op. cit., p. 106. [80]

22. D. V. Blake and A. M. Uttley (eds.), Proceedings of the Symposium on Mechanisation
of Thought Processes, Vols. 1 and 2, London: Her Majesty’s Stationary Office, 1959. [82]

23. John McCarthy, “Artificial Intelligence, Logic and Formalizing Common Sense,” in
Philosophical Logic and Artificial Intelligence, Richmond Thomason (ed.), Dordrecht:
Kluwer Academic, 1989. [82]

24. J. McCarthy, “Situations, Actions and Causal Laws, Stanford Artificial Intelligence
Project,” Memo 2, 1963. The two pieces are reprinted together in M. Minsky (ed.),
Semantic Information Processing, pp. 410-417, Cambridge, MA: MIT Press, 1968. Related
topics are explored in J. McCarthy and Patrick Hayes, “Some Philosophical Ideas From the
Standpoint of Artificial Intelligence,” MI-4, 1969. [83]

25. Oliver G. Selfridge, “Pandemonium: A Paradigm for Learning,” in D. V. Blake and A.
M. Uttley (eds.), Proceedings of the Symposium on Mechanisation of Thought Processes, pp,
511-529, London: Her Majesty’s Stationary Office, 1959. [83]

87

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://web.media.mit.edu/~minsky/papers/steps.html
http://www.post-gazette.com/pg/06002/631149.stm
http://www.post-gazette.com/downloads/20060102simon_notes.pdf
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

NOTES

88

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.1

Chapter 4

Pattern Recognition

Most of the attendees of the Dartmouth summer project were interested in
mimicking the higher levels of human thought. Their work benefitted from a
certain amount of introspection about how humans solve problems. Yet, many
of our mental abilities are beyond our power of introspection. We don’t know
how we recognize speech sounds, read cursive script, distinguish a cup from a
plate, or identify faces. We just do these things automatically without
thinking about them. Lacking clues from introspection, early researchers
interested in automating some of our perceptual abilities based their work
instead on intuitive ideas about how to proceed, on networks of simple models
of neurons, and on statistical techniques. Later, workers gained additional
insights from neurophysiological studies of animal vision.

In this chapter, I'll describe work during the 1950s and 1960s on what is
called “pattern recognition.” This phrase refers to the process of analyzing an
input image, a segment of speech, an electronic signal, or any other sample of
data and classifying it into one of several categories. For character recognition,
for example, the categories would correspond to the several dozen or so
alphanumeric characters.

Most of the pattern-recognition work in this period dealt with
two-dimensional material such as printed pages or photographs. It was already
possible to scan images to convert them into arrays of numbers (later called
“pixels”), which could then be processed by computer programs such as those
of Dinneen and Selfridge. Russell Kirsch and colleagues at the National
Bureau of Standards (now the National Institute for Standards and
Technology) were also among the early pioneers in image processing. In 1957
Kirsch built and used a drum scanner to scan a photograph of his
three-month-old son, Walden. Said to be the first scanned photograph, it
measured 176 pixels on a side and is depicted in Fig. 4.1.% Using his scanner,
he and colleagues experimented with picture-procesing programs running on
their SEAC (Standards Eastern Automatic Computer) computer.?

89

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

Figure 4.1: An early scanned photograph. (Photograph used with permission
of NIST.)

4.1 Character Recognition

Early efforts at the perception of visual images concentrated on recognizing
alphanumeric characters on documents. This field came to be known as
“optical character recognition.” A symposium devoted to reporting on
progress on this topic was held in Washington, DC, in January 1962.3 In
summary, devices existed at that time for reasonably accurate recognition of
fixed-font (typewritten or printed) characters on paper. Perhaps the state of
things then was best expressed by one of the participants of the symposium, J.
Rabinow of Rabinow Engineering, who said “We think, in our company, that
we can read anything that is printed, and we can even read some things that
are written. The only catch is, ‘how many bucks do you have to spend?””*

A notable success during the 1950s was the magnetic ink character
recognition (MICR) system developed by researchers at SRI International
(then called the Stanford Research Institute) for reading stylized magnetic ink
characters at the bottom of checks. (See Fig. 4.2.) MICR was part of SRI’s
ERMA (Electronic Recording Method of Accounting) system for automating
check processing and checking account management and posting.

According to an SRI Web site, “In April 1956, the Bank of America
announced that General Electric Corporation had been selected to
manufacture production models. ...In 1959, General Electric delivered the
first 32 ERMA computing systems to the Bank of America. ERMA served as the
Bank’s accounting computer and check handling system until 1970.”5

90

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.1 Character Recognition

ac3LIE7HERO0

Figure 4.2: The MICR font set.

Most of the recognition methods at that time depended on matching a
character (after it was isolated on the page and converted to an array of 0’s
and 1’s) against prototypical versions of the character called “templates” (also
stored as arrays in the computer). If a character matched the template for an
“A.” say, sufficiently better than it matched any other templates, the input
was declared to be an “A.” Recognition accuracy degraded if the input
characters were not presented in standard orientation, were not of the same
font as the template, or had imperfections.

The 1955 papers by Selfridge and Dinneen (which T have already
mentioned on p. 74) proposed some ideas for moving beyond template
matching. A 1960 paper by Oliver Selfridge and Ulrich Neisser carried this
work further.® That paper is important because it was a successful, early
attempt to use image processing, feature extraction, and learned probability
values in hand-printed character recognition. The characters were scanned and
represented on a 32 x 32 “retina” or array of 0’s and 1’s. They were then
processed by various refining operations (similar to those I mentioned in
connection with the 1955 Dinneen paper) for removing random bits of noise,
filling gaps, thickening lines, and enhancing edges. The “cleaned-up” images
were then inspected for the occurrence of “features” (similar to the features I
mentioned in connection with the 1955 Selfridge paper.) In all, 28 features
were used — features such as the maximum number of times a horizontal line
intersected the image, the relative lengths of different edges, and whether or
not the image had a “concavity facing south.”

Recalling Selfridge’s Pandemonium system, we can think of the
feature-detection process as being performed by “demons.” At one level higher
in the hierarchy than the feature demons were the “recognition demons” — one
for each letter. (The version of this system tested by Worthie Doyle of Lincoln
Laboratory was designed to recognize ten different hand-printed characters,
namely, A, E, I, L, M, N, O, R, S, and T.) Each recognition demon received
inputs from each of the feature-detecting demons. But first, the inputs to each
recognition demon were multiplied by a weight that took into account the
importance of the contribution of the corresponding feature to the decision.
For example, if feature 17 were more important than feature 22 in deciding
that the input character was an “A,” then the input to the “A” recognizer

91

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

from feature 17 would be weighted more heavily than would be the input from
feature 22. After each recognition demon added up the total of its weighted
inputs, a final “decision demon” decided in favor of that character having the
largest sum.

The values of the weights were determined by a learning process during
which 330 “training” images were analyzed. Counts were tabulated for how
many times each feature was detected for each different letter in the training
set. These statistical data were used to make estimates of the probabilities
that a given feature would be detected for each of the letters. These
probability estimates were then used to weight the features summed by the
recognizing demons.

After training, the system was tested on samples of hand-printed
characters that it had not yet seen. According to Selfridge and Neisser, “This
program makes only about 10 percent fewer correct identifications than human
readers make — a respectable performance, to be sure.”

4.2 Neural Networks

4.2.1 Perceptrons

In 1957, Frank Rosenblatt (1928-1969; Fig. 4.3), a psychologist at the Cornell
Aeronautical Laboratory in Buffalo, New York, began work on neural
networks under a project called PARA (Perceiving and Recognizing
Automaton). He was motivated by the earlier work of McCulloch and Pitts
and of Hebb and was interested in these networks, which he called perceptrons,
as potential models of human learning, cognition, and memory.”

Continuing during the early 1960s as a professor at Cornell University in
Ithaca, New York, he experimented with a number of different kinds of
perceptrons. His work, more than that of Clark and Farley and of the other
neural network pioneers, was responsible for initiating one of the principal
alternatives to symbol-processing methods in Al, namely, neural networks.

Rosenblatt’s perceptrons consisted of McCulloch—Pitts-style neural
elements, like the one shown in Fig. 4.4. Each element had inputs (coming in
from the left in the figure), “weights” (shown by bulges on the input lines),
and one output (going out to the right). The inputs had values of either 1 or
0, and each input was multiplied by its associated weight value. The neural
element computed the sum of these weighted values. So, for example, if all of
the inputs to the neural element in Fig. 4.4 were equal to 1, the sum would be
13. If the sum were greater than (or just equal to) a “threshold value,” say 7,
associated with the element, then the output of the neural element would be 1,
which it would be in this example. Otherwise the output would be 0.

A perceptron consists of a network of these neural elements, in which the

92

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.2 Neural Networks

Figure 4.3: Frank Rosenblatt (left) working (with Charles Wrightman) on a
prototype A-unit. (Courtesy of the Division of Rare and Manuscript Collections,
Cornell University Library.)

&3O
inputs C0 D output

&P
%

Figure 4.4: Rosenblatt’s neural element with weights.

outputs of one element are inputs to others. (There is an analogy here with
Selfridge’s Pandemonium in which mid-level demons receive “shouts” from
lower level demons. The weights on a neural element’s input lines can be
thought of as analogous to the strength-enhancing or strength-diminishing
“volume controls” in Pandemonium.) A sample perceptron is illustrated in
Fig. 4.5. [Rosenblatt drew his perceptron diagrams in a horizontal format (the
electrical engineering style), with inputs to the left and output to the right.
Here I use the vertical style generally preferred by computer scientists for

93

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

hierarchies, with the lowest level at the bottom and the highest at the top. To
simplify the diagram, weight bulges are not shown.] Although the perceptron

illustrated, with only one output unit, is capable of only two different outputs
(1 or 0), multiple outputs (sets of 1’s and 0’s) could be achieved by arranging

for several output units.

Output

Output Layer

Third Layer

Second Layer

Inputs

Figure 4.5: A perceptron.

The input layer, shown at the bottom of Fig. 4.5, was typically a
rectangular array of 1’s and 0’s corresponding to cells called “pixels” of a
black-and-white image. One of the applications Rosenblatt was interested in
was, like Selfridge, character recognition.

I’ll use some simple algebra and geometry to show how the neural
elements in perceptron networks can be “trained” to produce desired outputs.

94

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.2 Neural Networks

Let’s consider, for example, a single neural element whose inputs are the
values 1, T2, and x3 and whose associated weight values are wy, ws, and ws.
When the sum computed by this element is exactly equal to its threshold
value, say t, we have the equation

w11 + woxg + wyxrz = t.

In algebra, such an equation is called a “linear equation.” It defines a linear
boundary, that is, a plane, in a three-dimensional space. The plane separates
those input values that would cause the neural element to have an output of 1
from those that would cause it to have an output of 0. I show a typical planar
boundary in Fig. 4.6.

X1

Figure 4.6: A separating plane in a three-dimensional space.

An input to the neural element can be depicted as a point (that is, a
vector) in this three-dimensional space. Its coordinates are the values of x1,
9, and x3, each of which can be either 1 or 0. The figure shows six such
points, three of them (the small circles, say) causing the element to have an
output of 1 and three (the small squares, say) causing it to have an output of
0. Changing the value of the threshold causes the plane to move sideways in a

95

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

direction parallel to itself. Changing the values of the weights causes the plane
to rotate. Thus, by changing the weight values, points that used to be on one
side of the plane might end up on the other side. “Training” takes place by
performing such changes. I’ll have more to say about training procedures
presently.

In dimensions higher than three (which is usually the case), a linear
boundary is called a “hyperplane.” Although it is not possible to visualize
what is going on in spaces of high dimensions, mathematicians still speak of
input points in these spaces and rotations and movements of hyperplanes in
response to changes in the values of weights and thresholds.

Rosenblatt defined several types of perceptrons. He called the one shown
in the diagram a “series-coupled, four-layer perceptron.” (Rosenblatt counted
the inputs as the first layer.) It was termed “series-coupled” because the
output of each neural element fed forward to neural elements in a subsequent
layer. In more recent terminology, the phrase “feed-forward” is used instead of
“series-coupled.” In contrast, a “cross-coupled” perceptron could have the
outputs of neural elements in one layer be inputs to neural elements in the
same layer. A “back-coupled” perceptron could have the outputs of neural
elements in one layer be inputs to neural elements in lower numbered layers.

Rosenblatt thought of his perceptrons as being models of the wiring of
parts of the brain. For this reason, he called the neural elements in all layers
but the output layer “association units” (“A-units”) because he intended them
to model associations performed by networks of neurons in the brain.

Of particular interest in Rosenblatt’s research was what he called an
“alpha-perceptron.” It consisted of a three-layer, feed-forward network with an
input layer, an association layer, and one or more output units. In most of his
experiments, the inputs had values of 0 or 1, corresponding to black or white
pixels in a visual image presented on what he called a “retina.” Each A-unit
received inputs (which were not multiplied by weight values) from some
randomly selected subset of the pixels and sent its output, through sets of
adjustable weights, to the final output units, whose binary values could be
interpreted as a code for the category of the input image.

Various “training procedures” were tried for adjusting the weights of the
output units of an alpha-perceptron. In the most successful of these (for
pattern-recognition purposes), the weights leading in to the output units were
adjusted only when those units made an error in classifying an input. The
adjustments were such as to force the output to make the correct classification
for that particular input. This technique, which soon became a standard, was
called the “error-correction procedure.” Rosenblatt used it successfully in a
number of experiments for training perceptrons to classify visual inputs, such
as alphanumeric characters, or acoustic inputs, such as speech sounds.
Professor H. David Block, a Cornell mathematician working with Rosenblatt,
was able to prove that the error-correction procedure was guaranteed to find a

96

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.2 Neural Networks

hyperplane that perfectly separated a set of training inputs when such a
hyperplane existed.® (Other mathematicians, such as Albert B. Novikoff at
SRI, later developed more elegant proofs.’ I give a version of this proof in my
book Learning Machines.'")

Although some feasibility and design work was done using computer
simulations, Rosenblatt preferred building hardware versions of his
perceptrons. (Simulations were slow on early computers, thus explaining the
interest in building special-purpose perceptron hardware.) The MARK I was
an alpha-perceptron built at the Cornell Aeronautical Laboratory under the
sponsorship of the Information Systems Branch of the Office of Naval
Research and the Rome Air Development Center. It was first publicly
demonstrated on 23 June 1960. The MARK I used volume controls (called
“potentiometers” by electrical engineers) for weights. These had small motors
attached to them for making adjustments to increase or decrease the weight
values.

In 1959, Frank Rosenblatt moved his perceptron work from the Cornell
Aeronautical Laboratory in Buffalo, New York, to Cornell University, where he
became a professor of psychology. Together with Block and several students,
Rosenblatt continued experimental and theoretical work on perceptrons. His
book Principles of Neurodynamics provides a detailed treatment of his
theoretical ideas and experimental results.'' Rosenblatt’s last system, called
Tobermory, was built as a speech-recognition device.!? [Tobermory was the
name of a cat that learned to speak in The Chronicles of Clovis, a group of
short stories by Saki (H. H. Munro).] Several Ph.D. students, including George
Nagy, Carl Kessler, R. D. Joseph, and others, completed perceptron projects
under Rosenblatt at Cornell.

In his last years at Cornell, Rosenblatt moved on to study chemical
memory transfer in flatworms and other animals — a topic quite removed from
his perceptron work. Tragically, Rosenblatt perished in a sailing accident in
Chesapeake Bay in 1969.

Around the same time as Rosenblatt’s alpha-perceptron, Woodrow W.
(Woody) Bledsoe (1921-1995) and Iben Browning (1918-1991), two
mathematicians at Sandia Laboratories in Albuquerque, New Mexico, were
also pursuing research on character recognition that used random samplings of
input images. They experimented with a system that projected images of
alphanumeric characters on a 10 x 15 mosaic of photocells and sampled the
states of 75 randomly chosen pairs of photocells. Pointing out that the idea
could be extended to sampling larger groups of pixels, say N of them, they
called their method the “N-tuple” method. They used the results of this
sampling to make a decision about the category of an input letter.!?

97

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

4.2.2 ADALINES and MADALINES

Independently of Rosenblatt, a group headed by Stanford Electrical
Engineering Professor Bernard Widrow (1929-) was also working on
neural-network systems during the late 1950s and early 1960s. Widrow had
recently joined Stanford after completing a Ph.D. in control theory at MIT.
He wanted to use neural-net systems for what he called “adaptive control.”
One of the devices Widrow built was called an “ADALINE” (for adaptive
linear network). It was a single neural element whose adjustable weights were
implemented by switchable (thus adjustable) circuits of resistors. Widrow and
one of his students, Marcian E. “Ted” Hoff Jr. (who later invented the first
microprocessor at Intel), developed an adjustable weight they called a
“memistor.” It consisted of a graphite rod on which a layer of copper could be
plated and unplated — thus varying its electrical resistance. Widrow and Hoff
developed a training procedure for their ADALINE neural element that came
to be called the Widrow—Hoff least-mean-squares adaptive algorithm. Most of
Widrow’s experimental work was done using simulations on an IBM1620
computer. Their most complex network design was called a “MADALINE”
(for many ADALINESs). A training procedure was developed for it by Stanford
Ph.D. student William Ridgway.'*

4.2.3 The MINOS Systems at SRI

Rosenblatt’s success with perceptrons on pattern-recognition problems led to a
flurry of research efforts by others to duplicate and extend his results. During
the 1960s, perhaps the most significant pattern-recognition work using neural
networks was done at the Stanford Research Institute in Menlo Park,
California. There, Charles A. Rosen (1917-2002) headed a laboratory that was
attempting to etch microscopic vacuum tubes onto a solid-state substrate.
Rosen speculated that circuits containing these tubes might ultimately be
“wired-up” to perform useful tasks using some of the training procedures
being explored by Frank Rosenblatt. SRI employed Rosenblatt as a consultant
to help in the design of an exploratory neural network.

When I interviewed for a position at SRI in 1960, a team in Rosen’s lab,
under the leadership of Alfred E. (Ted) Brain (1923-2004), had just about
completed the construction of a small neural network called MINOS (Fig.
4.7). (In Greek mythology, Minos was a king of Crete and the son of Zeus and
Europa. After his death, Minos was one of the three judges in the underworld.)
Brain felt that computer simulations of neural networks were too slow for
practical applications, thus leading to his decision to build rather than to
program. (The IBM 1620 computer being used at the same time by Widrow’s
group at Stanford for simulating neural networks had a basic machine cycle of
21 microseconds and a maximum of 60,000 “digits” of random-access memory.)
For adjustable weights, MINOS used magnetic devices designed by Brain.

98

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.2 Neural Networks

Rosenblatt stayed in close contact with SRI because he was interested in using
these magnetic devices as replacements for his motor-driven potentiometers.

e

YRR R
Lt 13

e B e
N e e
e

Ty

Figure 4.7: MINOS. Note the input switches and corresponding indicator lights
in the second-from-the-left rack of equipment. The magnetic weights are at the
top of the third rack. (Photograph used with permission of SRI International.)

Rosen’s enthusiasm and optimism about the potential for neural networks
helped convince me to join SRI. Upon my arrival in July 1961, I was given a
draft of Rosenblatt’s book to read. Brain’s team was just beginning work on
the construction of a large neural network, called MINOS II, a follow-on
system to the smaller MINOS. (See Fig. 4.8.)

Work on the MINOS systems was supported primarily by the U.S. Army
Signal Corps during the period 1958 to 1967. The objective of the MINOS
work was “to conduct a research study and experimental investigation of
techniques and equipment characteristics suitable for practical application to
graphical data processing for military requirements.” The main focus of the
project was the automatic recognition of symbols on military maps. Other
applications — such as the recognition of military vehicles, such as tanks, on
aerial photographs and the recognition of hand-printed characters — were also

99

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

attempted.'?

In the first stage of processing by MINOS II, the input image was
replicated 100 times by a 10 x 10 array of plastic lenses. Each of these
identical images was then sent through its own optical feature-detecting mask,
and the light through the mask was detected by a photocell and compared
with a threshold. The result was a set of 100 binary (off-on) values. These
values were the inputs to a set of 63 neural elements (“A-units” in
Rosenblatt’s terminology), each with 100 variable magnetic weights. The 63
binary outputs from these neural elements were then translated into one of 64
decisions about the category of the original input image. (We constructed 64
equally distant “points” in the sixty-three-dimensional space and trained the
neural network so that each input image produced a point closer to its own
prototype point than to any other. Each of these prototype points was one of
the 64 “maximal-length shift-register sequences” of 63 dimensions.)!¢

Figure 4.8: MINOS II: operator’s display board (left), an individual weight
frame (middle), and weight frames with logic circuitry (right). (Photographs
used with permission of SRI International.)

During the 1960s, the SRI neural network group, by then called the
Learning Machines Group, explored many different network organizations and
training procedures. As computers became both more available and more
powerful, we increasingly used simulations (at various computer centers) on
the Burroughs 220 and 5000 and on the IBM 709 and 7090. In the mid-1960s,
we obtained our own dedicated computer, an SDS 910. (The SDS 910,
developed at Scientific Data Systems, was the first computer to use silicon
transistors.) We used that computer in conjunction with the latest version of
our neural network hardware (now using an array of 1,024 preprocessing
lenses), a combination we called MINOS III.

100

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.2 Neural Networks

One of the most successful results with the MINOS III system was the
automatic recognition of hand-printed characters on FORTRAN coding sheets.
(In the 1960s, computer programs were typically written by hand and then
converted to punched cards by key-punch operators.) This work was led by
John Munson (1939-1972; Fig. 4.9), Peter Hart (1941- ; Fig. 4.9), and
Richard Duda (1936— ; Fig. 4.9). The neural net part of MINOS III was used
to produce a ranking of the possible classifications for each character with a
confidence measure for each. For example, the first character encountered in a
string of characters might be recognized by the neural net as a “D” with a
confidence of 90 and as an “O” with a confidence of 10. But accepting the
most confident decision for each character might not result in a string that is a
legal statement in the FORTRAN language — indicating that one or more of the
decisions was erroneous (where it is assumed that whoever wrote statements
on the coding sheet wrote legal statements). Accepting the second or third
most confident choices for some of the characters might be required to produce
a legal string.

Figure 4.9: John Munson (left), Peter Hart (middle), and Richard Duda (right).
(Photographs courtesy of Faith Munson, of Peter Hart, and of Richard Duda.)

The overall confidence of a complete string of characters was calculated
by adding the confidences of the individual characters in the string. Then,
what was needed was a way of ranking these overall confidence numbers for
each of the possible strings resulting from all of the different choices for each
character. Among this ranking of all possible strings, the system then selected
the most confident legal string.

As Richard Duda wrote, however, “The problem of finding the 1st, 2nd,
3rd,. .. most confident string of characters is by no means a trivial problem.”
The key to computing the ranking in an efficient manner was to use a method
called dynamic programming.'”™ (In a later chapter, we’ll see dynamic
programming used again in speech recognition systems.)

An illustration of a sample of the original source and the final output is

101

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

shown in Fig. 4.10.

7Y e, T S A
2. o 1 BACCEPT BT S by e
= I W Va7 o] P it 0 W) L9108 PP PR SRS SN I
i1 1 4 l IIIFIEIIqut‘?I\IqI?lul+l®l 1. L Lol I Lok
4¢ 1 LEeLT-TIMA0HLSH, 56,60,
SO 4, 1 ITHASETD = 3 0
A T BT i) ST - BT AT B
TN L RETWRMN 1y eyl
DIMENSION IMACM[2]
20 ACCEPT 31,I,J
31 FORMAT[215]
IF[I]79,99,40
40 IF[I-IMACHL]50,50,60
50 IMACH[I]=J
60 GO TO 20
99 RETURN

Figure 4.10: Recognition of FORTRAN characters. Input is above and output
(with only two errors) is below. (Illustration used with permission of SRI Inter-
national.)

After the neural net part of the system was trained, the overall system
(which decided on the most confident legal string) was able to achieve a
recognition accuracy of just over 98% on a large sample of material that was
not part of what the system was trained on. Recognizing handwritten
characters with this level of accuracy was a significant achievement in the
1960s.'8

Expanding its interests beyond neural networks, the Learning Machines
Group ultimately became the SRI Artificial Intelligence Center, which
continues today as a leading Al research enterprise.

4.3 Statistical Methods

During the 1950s and 1960s there were several applications of statistical
methods to pattern-recognition problems. Many of these methods bore a close
resemblance to some of the neural network techniques. Recall that earlier I
explained how to decide which of two tones was present in a noisy radio signal.
A similar technique could be used for pattern recognition. For classifying
images (or other perceptual inputs), it was usual to represent the input by a

102

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.3 Statistical Methods

list of distinguishing “features” such as those used by Selfridge and his
colleagues. In alphanumeric character recognition for example, one first
extracted features from the image of the character to be classified. Usually the
features had numerical values, such as the number of times lines of different
angles intersected the character or the length of the perimeter of the smallest
circle that completely enclosed the character. Selecting appropriate features
was often more art than science, but it was critical to good performance.

We'll need a bit of elementary mathematical notation to help describe
these statistically oriented pattern-recognition methods. Suppose the list of
features extracted from a character is {f1, fo,..., fi,..., fn}. I'll abbreviate
this list by the bold-face symbol X. Suppose there are k categories,
C1,Cs,...,C;, ..., Ck to which the character described by X might belong.
Using Bayes’s rule in a manner similar to that described earlier, the decision
rule is the following:

Decide in favor of that category for which p(X | C;)p(C;) is largest,
where p(C;) is the a priori probability of category C; and p(X | C;)
is the likelihood of X given C;. These likelihoods can be inferred
by collecting statistical data from a large sample of characters.

As T mentioned earlier, researchers in pattern recognition often describe the
decision process in terms of geometry. They imagine that the values of the
features obtained from an image sample can be represented as a point in a
multidimensional space. If we have several samples for each of, say, two known
categories of data, we can represent these samples as scatterings of points in
the space. In character recognition, scattering can occur not only because the
image of the character might be noisy but also because characters in the same
category might be drawn slightly differently. I show a two-dimensional
example, with features fi and fo, in Fig. 4.11. From the scattering of points
in each category we can compute an estimate of the probabilities needed for
computing likelihoods. Then, we can use the likelihoods and the prior
probabilities to make decisions.

I show in this figure the boundary, computed from the likelihoods and the
prior probabilities, that divides the space into two regions. In one region, we
decide in favor of category 1; in the other, we decide in favor of category 2. I
also show a new feature point, X, to be classified. In this case, the position of
X relative to the boundary dictates that we classify X as a member of
category 1.

There are other methods also for classifying feature points. An interesting
example is the “nearest-neighbor” method. In that scheme, invented by E.
Fix and J. L. Hodges in 1951,' a new feature point is assigned to the same
category as that sample feature point to which it is closest. In Fig. 4.11, the
new point X would be classified as belonging to category 2 using the
nearest-neighbor method.

103

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

] Sample feature points known to belong to category 1 =
“

Sample feature points known to belong to category 2 e

4« A separating boundary

/ .
/N

A new feature point to be classified

Figure 4.11: A two-dimensional space of feature points and a separating bound-
ary.

An important elaboration of the nearest-neighbor method assigns a new
point to the same category as the majority of the k closest points. Such a
decision rule seems plausible (in the case in which there are many, many
sample points of each category) because there being more sample points of
category C; closer to an unknown point, X, than sample points of category C;
is evidence that p(X | C;)p(C;) is greater than p(X | C;)p(C;). Expanding on
that general observation, Thomas Cover and Peter Hart rigorously analyzed
the performance of nearest-neighbor methods.?"

Any technique for pattern recognition, even those using neural networks
or nearest neighbors, can be thought of as constructing separating boundaries
in a multidimensional space of features. Another method for constructing
boundaries using “potential functions” was suggested by the Russian scientists
M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer in the 1960s.2!

Some important early books on the use of statistical methods in pattern
recognition are ones by George Sebestyen,?? myself,?? and Richard Duda and
Peter Hart.2* My book also describes some of the relationships between
statistical methods and those based on neural networks. The technology of
pattern recognition as of the late 1960s is nicely reviewed by George Nagy
(who had earlier been one of Frank Rosenblatt’s graduate students).?>

104
Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.4 Applications of Pattern Recognition to Aerial Reconnaissance

4.4 Applications of Pattern Recognition to
Aerial Reconnaissance

The neural network and statistical methods for pattern recognition attracted
much attention in many aerospace and avionics companies during the late
1950s and early 1960s. These companies had ample research and development
budgets stemming from their contracts with the U.S. Department of Defense.
Many of them were particularly interested in the problem of aerial
reconnaissance, that is, locating and identifying “targets” in aerial
photographs. Among the companies having substantial research programs
devoted to this and related problems were the Aeronutronic Division of the
Ford Motor Co.,?% Douglas Aircraft Company (as it was known at that time),
General Dynamics, Lockheed Missiles and Space Division, and the Philco
Corporation. (Philco was later acquired by Ford in late 1961.)

I’ll mention some of the work at Philco as representative. There, Laveen
N. Kanal (1931-), Neil C. Randall (1930-), and Thomas Harley (1929-)
worked on both the theory and applications of statistical pattern-recognition
methods. The systems they developed were for screening aerial photographs
for interesting military targets such as tanks. A schematic illustration of one
of their systems is shown in Fig. 4.12.27

Philco’s apparatus scanned material from 9-inch film negatives gathered
by a U2 reconnaissance airplane during U.S. Army tank maneuvers at Fort
Drum, New York. A small section of the scanned photograph, possibly
containing an M-48 tank (in standard position and size), was first processed to
enhance edges, and the result was presented to the target detection system as
an array of 1’s and 0’s. The first of their systems used a 22 x 12 array; later
ones used a 32 x 32 array as shown in Fig. 4.12. The array was then
segmented into 24 overlapping 8 x 8 “feature blocks.” The data in each feature
block were then subjected to a statistical test to decide whether or not the
small area of the picture represented by this block contained part of a tank.

The statistical tests were based on a “training sample” of 50 images
containing tanks and 50 samples of terrain not containing tanks. For each
8 x 8 feature block, statistical parameters were compiled from these samples to
determine a (linear) boundary in the sixty-four-dimensional space that best
discriminated the tank samples from the nontank samples.

Using these boundaries, the system was then tested on a different set of
50 images containing tanks and 50 images not containing tanks. For each test
image, the number of feature blocks deciding “tank present” was tallied to
produce a final numerical “score” (such as 21 out of the 24 blocks decided a
tank was present). This score could then be used to decide whether or not the
image contained a tank.

The authors stated that “the experimental performance of the statistical
classification procedure exceeded all expectations.” Almost half of the test

105

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

24 statistical tests, one for each
8 x 8 block

Feature 1

Feature i s Score Talley —>

Feature 24

32 x 32 array of picture elements
segmented into 24 overlapping
8 x 8 blocks

Figure 4.12: A Philco tank-recognition system. (Adapted from Laveen N. Kanal
and Neal C. Randall, “Target Detection in Aerial Photography,” paper 8.3, Pro-
ceedings of the 1964 Western Electronics Show and Convention (WESCON), Los
Angeles, CA, Institute of Radio Engineers (now IEEE), August 25-28, 1964.)

samples had perfect scores (that is, all 24 feature blocks correctly
discriminated between tank and nontank). Furthermore, all of the test
samples containing tanks had a score greater than or equal to 11, and all of
the test samples not containing tanks had a score less than or equal to 7.

An early tank-detecting system at Philco was built with analog circuitry —
not programmed on a computer. As Thomas Harley, the project leader for this
system, later elaborated,?®

It is important to remember the technological context of the era in
which this work was done. The system we implemented had no
built-in computational capabilities. The weights in the linear
discriminant function were resistors that controlled the current
coming from the (binary) voltage source in the shift register
elements. Those currents were added together, and each feature
was recognized or not depending whether on the sum of those

106
Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.

Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4.4 Applications of Pattern Recognition to Aerial Reconnaissance

currents exceeded a threshold value. Those binary feature decisions
were then summed, again in an analog electrical circuit, not in a
computer, and again a decision [tank or no tank] was made
depending on whether the sum exceeded a threshold value.

In another system, the statistical classification was implemented by a
program, called MULTINORM, running on the Philco 2000 computer.?? In
other experiments Philco used additional statistical tests to weight some of the
feature blocks more heavily than others in computing the final score. Kanal
told me that these experiments with weighting the outputs of the feature
blocks “anticipated the support vector machine (SVM) classification
idea. . . [by] using the first layer to identify the training samples close to the
boundary between tanks and non-tanks.”3? (I'll describe the important SVM
method in a later chapter.)

Of course, these systems had a rather easy task. All of the tanks were in
standard position and were already isolated in the photograph. (The authors
mention, however, how the system could be adapted to deal with tanks
occurring in any position or orientation in the image.) The photograph in Fig.
4.13 shows a typical tank image. (The nontank images are similar, except
without the tank.)

I find the system interesting not only because of its performance but also
because it is a layered system (similar to Pandemonium and to the
alpha-perceptron) and because it is an example in which the original image is
divided into overlapping subimages, each of which is independently processed.
As T'll mention later, overlapping subimages play a prominent role in some
computational models of the neocortex.

Unfortunately, the Philco reports giving details of this work aren’t readily
available.?! Furthermore, Philco and some of the other groups engaged in this
work have disappeared. Here is what Tom Harley wrote me about the Philco
reports and about Philco itself:3?

Most of the pattern recognition work done at Philco in the 1960s
was sponsored by the DoD [Department of Defense], and the
reports were not available for public distribution. Since then, the
company itself has really vanished into thin air. Philco was bought
by Ford Motor Company in 1961, and by 1966, they had
eliminated the Philco research labs where Laveen [Kanal] and I
were working. Ford tried to move our small pattern recognition
group to Newport Beach, CA [the location of Ford’s Aeronutronic
Division, whose pattern recognition group folded later also], and
when we all decided not to go, they transferred us to their
Communications Division, and told us to close out our pattern
recognition projects. Laveen eventually went off to the University
of Maryland, and in 1975, I transferred to the Ford Aerospace

107

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 Pattern Recognition

Figure 4.13: A typical tank image. (Photograph courtesy of Thomas Harley.)

Western Development Labs (WDL) in Palo Alto, where I worked
on large systems for the intelligence community. In later years,
what had been Philco was sold to Loral, and most of that was later
sold to Lockheed Martin. I retired from Lockheed in 2001.

Approaches to Al problems involving neural networks and statistical
techniques came to be called “nonsymbolic” to contrast them with the
“symbol-processing” work being pursued by those interested in proving
theorems, playing games, and problem solving. These nonsymbolic approaches
found application mainly in pattern recognition, speech processing, and
computer vision. Workshops and conferences devoted especially to those topics
began to be held in the 1960s. A subgroup of the IEEE Computer Society (the
Pattern Recognition Subcommittee of the Data Acquisition and

108

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

44 NOTES

Transformation Committee) organized the first “Pattern Recognition
Workshop,” which was held in Puerto Rico in October 1966.33 A second one
(which T attended) was held in Delft, The Netherlands, in August 1968. In
1966, this subgroup became the IEEE Computer Society Pattern Analysis and
Machine Intelligence (PAMI) Technical Committee, which continued to
organize conferences and workshops.3*

Meanwhile, during the late 1950s and early 1960s, the symbol-processing
people did their work mainly at MIT, at Carnegie Mellon University, at IBM,
and at Stanford University. I'll turn next to describing some of what they did.

Notes

1. See http://www.nist.gov/public_affairs/techbeat /tb2007_0524.htm. [89]

2. Russell A. Kirsch et al., “Experiments in Processing Pictorial Information with a Digital
Computer,” Proceedings of the Eastern Joint Computer Conference, pp. 221-229, Institute
of Radio Engineering and Association for Computing Machinery, December 1957. [89]

3. The proceedings of the conference were published in George L. Fischer Jr. et al., Optical
Character Recognition, Washington, DC: Spartan Books, 1962. [90]

4. From J. Rabinow, “Developments in Character Recognition Machines at Rabinow
Engineering Company,” in George L. Fischer Jr. et al., op. cit., p. 27. [90]

5. From http://www.sri.com/about/timeline/erma-micr.html. [90]

6. Oliver G. Selfridge and Ulrich Neisser, “Pattern Recognition by Machine,” Scientific
American, Vol. 203, pp. 60-68, 1960. (Reprinted in Edward A. Feigenbaum and Julian
Feldman (eds.), Computers and Thought, pp. 237ff, New York: McGraw Hill, 1963.) [91]

7. An early reference is Frank Rosenblatt, “The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain,” Psychological Review, Vol. 65, pp.
386f, 1958. [92]

8. H. David Block, “The Perceptron: A Model for Brain Functioning,” Reviews of Modern
Physics, Vol. 34, No. 1, pp. 123-135, January 1962. [97]

)

9. Albert B. J. Novikoff, “On Convergence Proofs for Perceptrons,” in Proceedings of the
Symposium on Mathematical Theory of Automata, pp. 615-622, Brooklyn, NY: Polytechnic
Press of Polytechnic Inst. of Brooklyn, 1963. [97]

10. Nils J. Nilsson, Learning Machines: Foundations of Trainable Pattern-Classifying
Systems, New York: McGraw-Hill Book Co., 1965; republished as The Mathematical
Foundations of Learning Machines, San Francisco: Morgan Kaufmann Publishers, 1990. [97]

11. Frank Rosenblatt, Principles of Neurodynamics, Washington, DC: Spartan Books, 1962.
[97]

12. Frank Rosenblatt, “A Description of the Tobermory Perceptron,” Collected Technical
Papers, Vol. 2, Cognitive Systems Research Program, Cornell University, 1963. [97]

13. Woodrow W. Bledsoe and Iben Browning, “Pattern Recognition and Reading by
Machine,” Proceedings of the Eastern Joint Computer Conference, pp. 225-232, New York:
Association for Computing Machinery, 1959. [97]

14. William C. Ridgway, “An Adaptive Logic System with Generalizing Properties,”
Stanford Electronics Laboratories Technical Report 1556-1, Stanford University, Stanford,
CA, 1962. [98]

109

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.nist.gov/public_affairs/techbeat/tb2007_0524.htm
http://www.sri.com/about/timeline/erma-micr.html
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 NOTES

15. For a description of MINOS II, see Alfred E. Brain, George Forsen, David Hall, and
Charles Rosen, “A Large, Self-Contained Learning Machine,” Proceedings of the Western
Electronic Show and Convention, 1963. The paper was reprinted as Appendix C of an SRI
proposal and is available online at
http://www.ai.sri.com/pubs/files/rosen65-esu65-1tech.pdf. [100]

16. For a discussion of shift-register codes and other codes, see W. Peterson,
Error-Correcting Codes, New York: John Wiley & Sons, 1961. Our technique was reported
in A. E. Brain and N. J. Nilsson, “Graphical Data Processing Research Study and
Experimental Investigation,” Quarterly Progress Report No. 8, p. 11, SRI Report, June
1962; available online at http://www.ai.sri.com/pubs/files/1329.pdf. [100]

17. Robert E. Larsen of SRI suggested using this method. The online encyclopedia
Wikipedia has a clear description of dynamic programming. See
http://en.wikipedia.org/wiki/Dynamic_programming.

[101]

18. The technical details of the complete system are described in two papers: John Munson,
“Experiments in the Recognition of Hand-Printed Text: Part I — Character Recognition,”
and Richard O. Duda and Peter E. Hart, “Experiments in the Recognition of Hand-Printed
Text: Part IT — Context Analysis,” AFIPS Conference Proceedings, (of the 1968 Fall Joint
Computer Conference), Vol. 33, pp. 1125-1149, Washington, DC: Thompson Book Co.,
1968. Additional information can be found in SRI AI Center Technical reports, available
online at http://www.ai.sri.com/pubs/files/1343.pdf and
http://www.ai.sri.com/pubs/files/1344.pdf. [102]

19. E. Fix and J. L. Hodges Jr., “Discriminatory analysis, nonparametric discrimination,”
USAF School of Aviation Medicine, Randolph Field, Texas, Project 21-49-004, Report 4,

Contract AF41(128)-31, February 1951. See also B. V. Dasarathy (ed.), Nearest Neighbor
(NN) Norms: NN Pattern Classtfication Techniques, Los Alamitos, CA: IEEE Computer
Society Press, which is a reprint of 1951 unpublished work of Fix and Hodges. [103]

20. Thomas M. Cover and Peter E. Hart, “Nearest Neighbor Pattern Classification,” IEEE
Transactions on Information Theory, pp. 21-27, January 1967. Available online at
http://ieeexplore.ieee.org/iel5/18/22633/01053964.pdf. [104]

21. See M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Theoretical Foundations of
the Potential Function Method in Pattern Recognition Learning,” Automation and Remote
Control, Vol. 25, pp. 917-936, 1964, and A. G. Arkadev and E. M. Braverman, Computers
and Pattern Recognition, (translated from the Russian by W. Turski and J. D. Cowan),
Washington, DC: Thompson Book Co., Inc., 1967. [104]

22. George S. Sebestyen, Decision-Making Processes in Pattern Recognition, Indianapolis,
IN: Macmillan Publishing Co., Inc., 1962. [104]

23. Nils J. Nilsson, op. cit. [104]

24. Richard O. Duda and Peter E. Hart, Pattern Classification and Scene Analysis, New
York: John Wiley & Sons, 1973; updated version: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification, 2nd Edition, New York: John Wiley & Sons, 2000.
[104]

25. George Nagy, “State of the Art in Pattern Recognition,” Proceedings of the IEEE, Vol.
56, No. 5, pp. 836-857, May 1968. [104]

26. See, for example, Joseph K. Hawkins and C. J. Munsey, “An Adaptive System with
Direct Optical Input,” Proceedings of the IEEE, Vol. 55, No. 6, pp. 1084—1085, June 1967.
Available online for IEEE members at http://ieeexplore.ieee.org/iel5/5/31078/01446273.
pdf?tp=~&arnumber=1446273&isnumber=31078. [105]

27. Laveen N. Kanal and Neal C. Randall, “Target Detection in Aerial Photography,” paper
8.3, Proceedings of the 1964 Western Electronics Show and Convention (WESCON), Los
Angeles, CA, Institute of Radio Engineers (now IEEE), August 25-28, 1964. (Several other

110

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.ai.sri.com/pubs/files/rosen65-esu65-1tech.pdf
http://www.ai.sri.com/pubs/files/1329.pdf
http://en.wikipedia.org/wiki/Dynamic_programming
http://www.ai.sri.com/pubs/files/1343.pdf
http://www.ai.sri.com/pubs/files/1344.pdf
http://ieeexplore.ieee.org/iel5/18/22633/01053964.pdf
http://ieeexplore.ieee.org/iel5/5/31078/01446273.pdf?tp=&arnumber=1446273&isnumber=31078
http://ieeexplore.ieee.org/iel5/5/31078/01446273.pdf?tp=&arnumber=1446273&isnumber=31078
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

44 NOTES

papers on pattern recognition were presented at this conference and are contained in the
proceedings.) [105]

28. Thomas Harley, personal e-mail communication, July 15, 2007. [106]
29. Laveen N. Kanal and Neal C. Randall, op. cit.. [107]
30. Laveen Kanal, personal e-mail communication, July 13, 2007. [107]

31. Laveen N. Kanal, “Statistical Methods for Pattern Classification,” Philco Report, 1963;
originally appeared in T. Harley et al., “Semi-Automatic Imagery Screening Research Study
and Experimental Investigation,” Philco Reports VO43-2 and VO43-3, Vol. I, Sec. 6, and
Appendix H, prepared for U.S. Army Electronics Research and Development Laboratory
under Contract DA-36-039-SC- 90742, March 29, 1963. [107]

32. Thomas Harley, personal e-mail communication, July 11, 2007. [107]

33. Laveen N. Kanal (ed.), Pattern Recognition, Proceedings of the IEEE Workshop on
Pattern Recognition, held at Dorado, Puerto Rico, Washington, DC: Thompson Book Co.,
1968. [109]

34. See the Web page at http://tab.computer.org/pamitc/. [109]

111

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://tab.computer.org/pamitc/
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

4 NOTES

112

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5.1

Chapter 5

Early Heuristic Programs

5.1 The Logic Theorist and Heuristic Search

Just prior to the Dartmouth workshop, Newell, Shaw, and Simon had
programmed a version of LT on a computer at the RAND Corporation called
the JOHNNIAC (named in honor of John von Neumann). Later papers!
described how it proved some of the theorems in symbolic logic that were
proved by Russell and Whitehead in Volume I of their classic work, Principia
Mathematica.? LT worked by performing transformations on Russell and
Whitehead’s five axioms of propositional logic, represented for the computer
by “symbol structures,” until a structure was produced that corresponded to
the theorem to be proved. Because there are so many different transformations
that could be performed, finding the appropriate ones for proving the given
theorem involves what computer science people call a “search process.”

To describe how LT and other symbolic Al programs work, I need to
explain first what is meant by a “symbol structure” and what is meant by
“transforming” them. In a computer, symbols can be combined in lists, such
as (A,7,Q). Symbols and lists of symbols are the simplest kinds of symbol
structures. More complex structures are composed of lists of lists of symbols,
such as ((B,3), (A, 7,Q)), and lists of lists of lists of symbols, and so on.
Because such lists of lists, etc. can be quite complex, they are called
“structures.” Computer programs can be written that transform symbol
structures into other symbol structures. For example, with a suitable program
the structure “(the sum of seven and five)” could be transformed into the
structure “(7 4+ 5),” which could further be transformed into the symbol “12.”

Transforming structures of symbols and searching for an appropriate
problem-solving sequence of transformations lies at the heart of Newell and
Simon’s ideas about mechanizing intelligence. In a later paper (the one they
gave on the occasion of their receiving the prestigious Turing Award), they

113

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5 Early Heuristic Programs

summarized the process as follows:3

The solutions to problems are represented as symbol structures. A
physical symbol system exercises its intelligence in problem solving
by search — that is, by generating and progressively modifying
symbol structures until it produces a solution structure.

To state a problem is to designate (1) a test for a class of symbol
structures (solutions of the problem), and (2) a generator of
symbol structures (potential solutions). To solve a problem is to
generate a structure, using (2), that satisfies the test of (1).

Understanding in detail how LT itself used symbol structures and their
transformations to prove theorems would require some mathematical and
logical background. The process is easier to explain by using one of Al’s
favorite “toy problems” — the “fifteen-puzzle.” (See Fig. 5.1.) The
fifteen-puzzle is one of several types of sliding-block puzzles. The problem is to
transform an array of tiles from an initial configuration into a “goal”
configuration by a succession of moves of a tile into an adjacent empty cell.

Figure 5.1: Start (left) and goal (right) configurations of a fifteen-puzzle prob-
lem.

T’ll use a simpler version of the puzzle — one that uses a 3 x 3 array of
eight sliding tiles instead of the 4 x 4 array. (Al researchers have
experimented with programs for solving larger versions of the puzzle also, such
as b x 5 and 6 x 6.)

Suppose we wanted to move the tiles from their configuration on the left
to the one on the right as illustrated in Fig. 5.2.

Following the Newell and Simon approach, we must first represent tile
positions for the computer by symbol structures that the computer can deal

114

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.
http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5.1 The Logic Theorist and Heuristic Search

| |W

Figure 5.2: The eight-puzzle.

with. I will represent the starting position by the following structure, which is
a list of three sublists:

((2,8,3),(1,6,4),(7,B,5)).

The first sublist, namely, (2,8, 3), names the occupants of the first row of the
puzzle array, and so on. B stands for the empty cell in the middle of the third
row.

In the same fashion, the goal configuration is represented by the following
structure:
((1,2,3),(8,B,4),(7,6,5)).

Next, we have to show how a computer can transform structures of the
kind we have set up in a way that corresponds to the allowed moves of the
puzzle. Note that when a tile is moved, it swaps places with the blank cell;
that is, the blank cell moves too. The blank cell can either move within its row
or can change rows.

Corresponding to these moves of the blank cell, when a tile moves within
its row, B swaps places with the number either to its left in its list (if there is
one) or to its right (if there is one). A computer can easily make either of
these transformations. When the blank cell moves up or down, B swaps places
with the number in the corresponding position in the list to the left (if there is
one) or in the list to the right (if there is one). These transformations can also
be made quite easily by a computer program.

Using the Newell and Simon approach, we start with the symbol structure
representing the starting configuration of the eight-puzzle and apply allowed
transformations until a goal is reached. There are three transformations of the
starting symbol structure. These produce the following structures:

((2,8,3),(1,6,4),(B,7,5)),

((2,8,3),(1,6,4),(7,5,B)),

and
((2, 8, 3), (1, B, 4), (7, 6, 5))

115

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5 Early Heuristic Programs

None of these represents the goal configuration, so we continue to apply
transformations to each of these and so on until a structure representing the
goal is reached. We (and the computer) can keep track of the transformations
made by arranging them in a treelike structure such as shown in Fig. 5.3.
(The arrowheads on both ends of the lines representing the transformations
indicate that each transformation is reversible.)

((2,8,3),(1,6,4),(7,B,5))
A

((2,8,3),(1,6,4),(B,7,5)) ((2,8,3),(1,B,4),(7,6,5))

v X

((2,8,3),(1,6,4),(7,5,B))

((2,8,3),(B,6,4),(1,7,5))

/\ ((2,8,3),(1,6,B),(7,5,4))

Figure 5.3: A search tree.

g

This version of the eight-puzzle is relatively simple, so not many
transformations have to be tried before the goal is reached. Typically though
(especially in larger versions of the puzzle), the computer would be swamped
by all of the possible transformations — so much so that it would never
generate a goal expression. To constrain what was later called “the
combinatorial explosion” of transformations, Newell and Simon suggested
using “heuristics” to generate only those transformations guessed as likely to
be on the path to a solution.

In one of their papers about LT, they wrote “A process that may solve a
problem, but offers no guarantees of doing so, is called a heuristic for that
problem.” Rather than blindly striking out in all directions in a search for a

116

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5.1 The Logic Theorist and Heuristic Search

proof, LT used search guided by heuristics, or “heuristic search.” Usually, as
was the case with LT, there is no guarantee that heuristic search will be
successful, but when it is successful (and that is quite often) it eliminates
much otherwise fruitless search effort.

The search for a solution to an eight-puzzle problem involves growing the
tree of symbol structures by applying transformations to the “leaves” of the
tree and thus extending it. To limit the growth of the tree, we should use
heuristics to apply transformations only to those leaves thought to be on the
way to a solution. One such heuristic might be to apply a transformation to
that leaf with the smallest number of tiles out of position compared to the goal
configuration. Because sliding tile problems have been thoroughly studied,
there are a number of heuristics that have proved useful — ones much better
than the simple number-of-tiles-out-of-position one I have just suggested.

Using heuristics keyed to the problem being solved became a major theme
in artificial intelligence, giving rise to what is called “heuristic programming.”
Perhaps the idea of heuristic search was already “in the air” around the time
of the Dartmouth workshop. It was implicit in earlier work by Claude
Shannon. In March 1950, Shannon, an avid chess player, published a paper
proposing ideas for programming a computer to play chess.* In his paper,
Shannon distinguished between what he called “type A” and “type B”
strategies. Type A strategies examine every possible combination of moves,
whereas type B strategies use specialized knowledge of chess to focus on lines
of play thought to be the most productive. The type B strategies depended on
what Newell and Simon later called heuristics. And Minsky is quoted as
saying “...I had already considered the idea of heuristic search obvious and
natural, so that the Logic Theorist was not impressive to me.”?

It was recognized quite early in Al that the way a problem is set up, its
“representation,” is critical to its solution. One example of how a
representation affects problem solving is due to John McCarthy and is called
the “mutilated checkerboard” problem.® Here’s the problem: “T'wo diagonally
opposite corner squares are removed from a checkerboard. Is it possible to
cover the remaining squares with dominoes?” (A domino is a rectangular tile
that covers two adjacent squares.) A naive way of searching for a solution
would be to try to place dominoes in all possible ways over the checkerboard.
But, if one uses the information that a checkerboard consists of 32 squares of
one color and 32 of another color, and that the opposite corner squares are of
the same color, then one realizes that the mutilated board consists of 30
squares of one color and 32 of another. Because a domino covers two squares
of opposite colors, there is no way that a set of them can cover the remaining
colors. McCarthy was interested in whether or not people could come up with
“creative” ways to formulate the puzzle so that it could be solved by
computers using methods based on logical deduction.

Another classic puzzle that has been used to study the effects of different
representations is the “missionary and cannibals” problem: Three cannibals

117

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5 Early Heuristic Programs

and three missionaries must cross a river. Their boat can only hold two
people. If the cannibals outnumber the missionaries, on either side of the river,
the missionaries on that side perish. Each missionary and each cannibal can
row the boat. How can all six get across the river safely? Most people have no
trouble formulating this puzzle as a search problem, and the solution is
relatively easy. But it does require making one rather nonintuitive step. The
computer scientist and AT researcher Saul Amarel (1928-2002) wrote a
much-referenced paper analyzing this puzzle and various extended versions of
it in which there can be various numbers of missionaries and cannibals.” (The
extended versions don’t appear to be so easy.) After moving from one
representation to another, Amarel finally developed a representation for a
generalized version of the problem whose solution required virtually no search.
AT researchers are still studying how best to represent problems and, most
importantly, how to get Al systems to come up with their own representations.

5.2 Proving Theorems in Geometry

Nathan Rochester returned to IBM after the Dartmouth workshop excited
about discussions he had had with Marvin Minsky about Minsky’s ideas for a
possible computer program for proving theorems in geometry. He described
these ideas to a new IBM employee, Herb Gelernter (1929-). Gelernter soon
began a research project to develop a geometry-theorem-proving machine. He
presented a paper on the first version of his program at a conference in Paris
in June 1959,% acknowledging that

[t]he research project itself is a consequence of the Dartmouth
Summer Research Project on Artificial Intelligence held in 1956,
during which M. L. Minsky pointed out the potential utility of the
diagram to a geometry theorem-proving machine.

Gelernter’s program exploited two important ideas. One was the explicit
use of subgoals (sometimes called “reasoning backward” or “divide and
conquer”), and the other was the use of a diagram to close off futile search
paths.

The strategy taught in high school for proving a theorem in geometry
involves finding some subsidiary geometric facts from which, if true, the
theorem would follow immediately. For example, to prove that two angles are
equal, it suffices to show that they are corresponding angles of two
“congruent” triangles. (A triangle is congruent to another if it can be
translated and rotated, possibly even flipped over, in such a way that it
matches the other exactly.) So now, the original problem is transformed into
the problem of showing that two triangles are congruent. One way (among
others) to show that two triangles are congruent is to show that two
corresponding sides and the enclosed angle of the two triangles all have the

118

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5.2 Proving Theorems in Geometry

same sizes. This backward reasoning process ends when what remains to be
shown is among the premises of the theorem.

Readers familiar with geometry will be able to follow the illustrative
example shown in Fig. 5.4. There, on the left-hand side, we are given triangle
ABC with side AB equal to side AC and must prove that angle ABC is equal to
angle ACB. The triangle on the right side is a flipped-over version of triangle

ABC.
A A

B C O g

Figure 5.4: A triangle with two equal sides (left) and its flipped-over version
(right).

Here is how the proof goes: If we could prove that triangle ABC is
congruent to triangle AJ8, then the theorem would follow because the two
angles are corresponding angles of the two triangles. These two triangles can
be proved congruent if we could establish that side AB (of triangle ABC) is
equal to side AD (of triangle AD8) and that side AC (of triangle ABC) is equal
to side A8 (of triangle AD8) and that angle A (of triangle ABC) is equal to
angle A (of triangle AD8). But the premises state that side AB is equal to side
AC, and these lengths don’t change in the flipped-over triangle. Similarly,
angle A is equal to its flipped-over version — so we have our proof.

Before continuing my description of Gelernter’s program, a short historical
digression is in order. The geometry theorem just proved is famous — being the
fifth proposition in Book I of Euclid’s Elements. Because Euclid’s proof of the
proposition was a difficult problem for beginners it became known as the pons
asinorum or “fools bridge.” The proof given here is simpler than Euclid’s — a
version of it was given by Pappus of Alexandria (circa 290-350 CE).

Minsky’s “hand simulation” of a program for proving theorems in
geometry, discussed at Dartmouth, came up with this very proof (omitting
what I think is the helpful step of flipping the triangle over). Minsky wrote’

119

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5 Early Heuristic Programs

In 1956 I wrote two memos about a hand-simulated program for
proving theorems in geometry. In the first memo, the procedure
found the simple proof that if a triangle has two equal sides then
the corresponding angles are equal. It did this by noticing that
triangle ABC was congruent to triangle CBA because of
“side-angle-side.” What was interesting is that this was found after
a very short search — because, after all, there weren’t many things
to do. You might say the program was too stupid to do what a
person might do, that is, think, “Oh, those are both the same
triangle. Surely no good could come from giving it two different
names.” (The program has a collection of heuristic methods for
proving Euclid-Like theorems, and one was that “if you want to
prove two angles are equal, show that they’re corresponding parts
of congruent triangles.” Then it also had several ways to
demonstrate congruence. There wasn’t much more in that first
simulation.) But I can’t find that memo anywhere.

As Minsky said, this is a very easy problem for a computer. Gelernter’s
program proved much more difficult theorems, and for these his use of a
diagram was essential. The program did not literally draw and look at a
diagram. Instead, as Gelernter wrote,

[The program is] supplied with the diagram in the form of a list of
possible coordinates for the points named in the theorem. This
point list is accompanied by another list specifying the points
joined by segments. Coordinates are chosen to reflect the greatest
possible generality in the figures.

So, for example, the points named in the problem about proving two
angles equal are the vertices of the triangle ABC, namely, points A and B and
C. Coordinates for each of these points are chosen, and care is taken to make
sure that these coordinates do not happen to satisfy any special unnamed
properties.

Gelernter’s program worked by setting up subgoals and subsubgoals such
as those I used in the example just given. It then searched for a chain of these
ending in subgoals that could be established directly from the premises.
Before any subgoal was selected by the program to be worked on however, it
was first tested to see whether it held in the diagram. If it did hold, it might
possibly be provable and could therefore be considered as a possible route to a
proof. But, if it did not hold in the diagram, it could not possibly be true.
Thus, it could be eliminated from further consideration, thereby “pruning” the
search tree and saving what would certainly be fruitless effort. Later work in
AT would also exploit “semantic” information of this sort.

We can see similarities between the strategies used in the geometry
program and those used by humans when we solve problems. It is common for

120

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5.3 The General Problem Solver

us to work backward — transforming a hard problem into subproblems and
those into subsubproblems and so on until finally the problems are trivial.
When a subproblem has many parts, we know that we must solve all of them.
We also recognize when a proposed subproblem is patently impossible and
thus can reject it. The next program I describe was based explicitly on what
its authors thought were human problem-solving strategies.

5.3 The General Problem Solver

At the same 1959 Paris conference where Gelernter presented his program,
Allen Newell, J. C. Shaw, and Herb Simon gave a paper describing their recent
work on mechanizing problem solving.!? Their program, which they called the
“General Problem Solver (GPS),” was an embodiment of their ideas about how
humans solve problems. Indeed, they claimed that the program itself was a
theory of human problem-solving behavior. Newell and Simon were among
those who were just as interested (perhaps even more interested) in explaining
the intelligent behavior of humans as they were in building intelligent
machines. They wrote “It is often argued that a careful line must be drawn
between the attempt to accomplish with machines the same tasks that humans
perform, and the attempt to simulate the processes humans actually use to
accomplish these tasks. ...GPS maximally confuses the two approaches — with
mutual benefit.”!!

GPS was an outgrowth of their earlier work on the Logic Theorist in that
it was based on manipulating symbol structures (which they believed humans
did also). But GPS had an important additional mechanism among its
symbol-manipulating strategies. Like Gelernter’s geometry program, GPS
transformed problems into subproblems, and so on. GPS’s innovation was to
compute a “difference” between a problem to be solved (represented as a
symbol structure) and what was already known or given (also represented as a
symbol structure). The program then attempted to reduce this difference by
applying some symbol-manipulating “operator” (known to be relevant to this
difference) to the initial symbol structure. Newell and Simon called this
strategy “means—ends analysis.” (Note the similarity to feedback control
systems, which continuously attempt to reduce the difference between a
current setting and a desired setting.) To do so, it would have to show that
the operator’s applicability condition was satisfied — a subproblem. The
program then started up another version of itself to work on this subproblem,
looking for a difference and so on.

For example, suppose the goal is to have Sammy at school when Sammy is
known to be at home.'? GPS computes a “difference,” namely, Sammy is in
the wrong place, and it finds an operator relevant to reducing this difference,
namely, driving Sammy to school. To drive Sammy to school requires that the
car be in working order. To make the problem interesting, we’ll suppose that

121

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5 Early Heuristic Programs

the car’s battery is dead, so GPS can’t apply the drive-car operator because
that operator requires a working battery. Getting a working battery is a
subproblem to which GPS can apply a version of itself. This “lower” version of
GPS computes a difference, namely, the need for a working battery, and it finds
an operator, namely, calling a mechanic to come and install a new battery. To
call a mechanic requires having a phone number (and let us suppose we have
it), so GPS applies the call-mechanic operator, resulting in the mechanic
coming to install a new battery. The lower version of GPS has successfully
solved its problem, so the superordinate GPS can now resume — noting that the
condition for drive-car, namely, having a working battery, is satisfied. So GPS
applies this operator, Sammy gets to school, and the original problem is
solved. (This example illustrates the general workings of GPS. A real one using
actual symbol structures, differences, and operators with their conditions and
so on would be cumbersome but not more revealing.)

When GPS works on subproblems by starting up a new version of itself, it
uses a very important idea in computer science (and in mathematics) called
“recursion.” You might be familiar with the idea that computer programmers
organize complex programs hierarchically. That is, main programs fire up
subprograms, which might fire-up subsubprograms, and so on. When a main
program “calls” a subprogram, the main program suspends itself until the
subprogram completes what it is supposed to do (possibly handing back data
to the main program), and then the main program resumes work. In AT (and
in other applications also), it is common to have a main program call a version
of itself — taking care that the new version works on a simpler problem so as to
avoid endless repetition and “looping.” Having a program call itself is called
“recursion.”

Do people use subprograms and recursion in their own thinking? Quite
possibly, but their ability to recall how to resume what some higher level
thought process was doing when that process starts up a chain of lower level
processes is certainly limited. I don’t believe that GPS attempted to mimic
this limitation of human thinking.

Newell and Simon believed that the methods used by GPS could be used
to solve a wide variety of different problems, thus giving rise to the term
“general.” To apply it to a specific problem, a “table of differences” for that
problem would have to be supplied. The table would list all the possible
differences that might arise and match them to operators, which, for that
problem, would reduce the corresponding differences. GPS was, in fact, applied
to a number of different logical problems and puzzles'® and inspired later work
in both artificial intelligence and in cognitive science. Its longevity as a
problem-solving program itself and as a theory of human problem solving was
short, however, and lives on only through its various descendants (about which
more will be discussed later).

Heuristic search procedures were used in a number of Al programs
developed in the early 1960s. For example, another one of Minsky’s Ph.D.

122

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5.4 Game-Playing Programs

students, James Slagle, programmed a system called SAINT that could solve
calculus problems, suitably represented as symbol structures. It solved 52 of
54 problems taken from MIT freshman calculus final examinations. Much
use of heuristics was used in programs that could play board games, a subject
to which I now turn.

5.4 Game-Playing Programs

I have already mentioned some of the early work of Shannon and of Newell,
Shaw, and Simon on programs for playing chess. Playing excellent chess
requires intelligence. In fact, Newell, Shaw, and Simon wrote that if “one
could devise a successful chess machine, one would seem to have penetrated to
the core of human intellectual endeavor.” 3

Thinking about programs to play chess goes back at least to Babbage.
According to Murray Campbell, an IBM researcher who helped design a
world-champion chess-playing program (which I’ll mention later), Babbage’s
1845 book, The Life of a Philosopher, contains the first documented discussion
of programming a computer to play chess.'® Konrad Zuse, the German
designer and builder of the Z1 and Z3 computers, used his programming
language called Plankalkiil to design a chess-playing program in the early
1940s.

In 1946 Turing mentioned the idea of a computer showing “intelligence,”
with chess-playing as a paradigm.!” In 1948, Turing and his former
undergraduate colleague, D. G. Champernowne, began writing a chess
program. In 1952, lacking a computer powerful enough to execute the
program, Turing played a game in which he simulated the computer, taking
about half an hour per move. (The game was recorded. You can see it at
http://www.chessgames.com/perl/chessgame?gid=1356927.) The program lost
to a colleague of Turing, Alick Glennie; however, it is said that the program
won a game against Champernowne’s wife.'8

After these early programs, work on computer chess programs continued,
with off-again—on-again effort, throughout the next several decades. According
to John McCarthy, Alexander Kronrod, a Russian Al researcher, said “Chess
is the Drosophila of AI” — meaning that it serves, better than more
open-ended intellectual tasks do, as a useful laboratory specimen for research.
As Minsky said, “It is not that the games and mathematical problems are
chosen because they are clear and simple; rather it is that they give us, for the
smallest initial structures, the greatest complexity, so that one can engage
some really formidable situations after a relatively minimal diversion into
programming.”!? Chess presents very difficult problems for Al, and it was not
until the mid-1960s that the first competent chess programs appeared. I'll
return to discuss these in a subsequent chapter.

123

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://www.chessgames.com/perl/chessgame?gid=1356927
http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5 Early Heuristic Programs

More dramatic early success, however, was achieved on the simpler game
of checkers (or draughts as the game is known in British English). Arthur
Samuel (Fig. 5.5) began thinking about programming a computer to play
checkers in the late 1940s at the University of Illinois where he was a Professor
of Electrical Engineering. In 1949, he joined IBM’s Poughkeepsie Laboratory
and completed his first operating checkers program in 1952 on IBM’s 701
computer. The program was recoded for the IBM 704 in 1954. According to
John McCarthy,?° “Thomas J. Watson Sr., the founder and President of IBM,
remarked that the demonstration [of Samuel’s program| would raise the price
of IBM stock 15 points. It did.”

[Apparently, Samuel was not the first to write a checkers-playing program.
According to the Encyclopedia Brittanica, Online, “The earliest successful Al
program was written in 1951 by Christopher Strachey, later director of the
Programming Research Group at the University of Oxford. Strachey’s
checkers (draughts) program ran on the Ferranti Mark I computer at the
University of Manchester, England. By the summer of 1952 this program
could play a complete game of checkers at a reasonable speed.”]?!

Samuel’s main interest in programming a computer to play checkers was
to explore how to get a computer to learn. Recognizing the “time consuming
and costly procedure[s]” involved in programming, Samuel wrote
“Programming computers to learn from experience should eventually eliminate
the need for much of this detailed programming effort.”?? Samuel’s efforts
were among the first in what was to become a very important part of artificial
intelligence, namely, “machine learning.” His first program that incorporated
learning was completed in 1955 and demonstrated on television on February
24, 1956.

Before describing his learning methods, I'll describe in general how
Samuel’s program chose moves. The technique is quite similar to how moves
were chosen in the eight-puzzle I described earlier. Except now, provision must
be made for the fact that the opponent chooses moves also. Again, a tree of
symbolic expressions, representing board positions, is constructed. Starting
with the initial configuration, all possible moves by the program (under the
assumption that the program moves first) are considered. The result is all the
possible resulting board configurations branching out from the starting
configuration. Then, from each of these, all possible moves of the opponent are
considered — resulting in more branches, and so on.

If such a tree could be constructed for an entire game, a winning move
could be computed by examination of the tree. Unfortunately, it has been
estimated that there are about 5 x 102° possible checkers positions. A leading
expert in programming computers to play games, Jonathan Schaeffer, was able
to “solve” checkers (showing that optimal play by both players results in a
draw) by time-consuming analysis of around 10'* positions. He wrote me that
“This was the result of numerous enhancements aimed at focussing the search
at the parts of the search space where we were most likely to find what we

124

Copyright (©2010 Nils J. Nilsson
http://ai.stanford.edu/~nilsson/
All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

http://ai.stanford.edu/~nilsson/
http://www.cambridge.org/us/0521122937

5.4 Game-Playing Programs

Figure 5.5: Arthur Samuel. (Photograph courtesy of Donna Hussain, Samuel’s
daughter.)

needed.”?? T’ll describe his work in more detail later.

Samuel’s program then could necessarily construct only a part of the tree
— that is, it could look only a few moves ahead. How far ahead it looked, along
various of its branches, depended on a number of factors that need not concern
us here. (They involved such matters as whether or not an immediate capture
was possible.) Looking ahead about three moves was typical, although some
branches might be explored (sparsely) to a depth of as many as ten moves. A
diagram from Samuel’s paper, shown in Fig. 5.6, gives the general idea.
Samuel said that the “actual branchings are much more numerous.”

So, how is the program to choose a move from suc