
April 1971

MONITORED EXECUTION OF ROBOT PLANS PRODUCED BY STRIPS

Richard E. Fikes

Paper accepted for presentation at IFIP Congress ' 71,
Lj ublj ana, Yugoslavia, August 23-28, 1971

Artificial Intelligence Group

Technical Note 55

SRI Project 8973

The research reported herein was sponsored by the
Advanced Research Projects Agency and the National
Aeronautics and Space Administration under Contract
NASW-2164.



MONITORED EXECUTION OF ROBOT PLANS PRODUCED BY STRIPS

Richard E. Fikes
Stanford Research Institute

Menlo Park, California

We describe PLANEXl, a plan executor for the Stanford Research Institute robot system. The
problem-solving program STRIPS creates a plan consisting of a sequence of actions, and the PLANEXI
program carries out the plan by executing the actions. PLANEXI is designed so that it executes only
that portion of the plan necessary for completing the task, reexecutes any portion of the plan that
has failed to achieve the desired results, and initiates replanning in situations where the plan can
no longer be effective in completing the task. The scenario for an example plan execution is given.

INTRODUCTION

In this paper we describe PLANEXl, a program
that functions as. the plan executor for a robot
system being developed at Stanford Research Insti-
tute. The particular robot device with which we
work is a battery-powered wheeled vehicle connected
to a PDP-IO computer via a radio link. Its capa-
bili ties include moving in rooms and hallways,
manipulating objects with a push bar, and taking
television pictures (all under computer control) 

An appropriate task for this system might be
push. the box to the next room. When given such

a task, the system .uses a planning program called
STRIPS (1) to determine an appropriate sequence of
executable actions (i.e., a plan). If STRIPS suc-
ceeds in producing a plan, PLANEXI is called to
accomplish the task. Since the plan must be exe-
cuted in the real world by a mechanical device as
opposed to being carried out in a mathematical
space or by a simulator, consideration must be
given by the executor to the possibility that
operations in the plan may not accomplish what
they were intended to, that data obtained from
sensory devices may be inaccurate, and that mechan-
ical tolerances may introduce errors as the plan
is executed.

We are therefore interested in a plan execu-
tion scheme with the following properties: (1)
When new information obtained during plan execu-
tion implies that some remaining portion of the
plan need not be executed , the executor should
recognize such information and omit the unneeded
plan steps. (2) When execution of some portion
of the plan fails to achieve the intended results,
the executor should recognize the failure and
ei ther direct reexecution of some portion of the
plan or call for a replanning activity.

STRIPS PLAS

Before describing PLANEXI we must first re-
view some of the design features of our robot sys-
tem and the planning program, STRIPS. The system
maintains a collection of statements in the first-
order predicate calculus to model the robot'
real world environment. This model includes a
large number of facts and relations describing the
state of the robot and the attributes of various
objects, rooms, doors, and walls. For example,
the model might contain statements like the follow-
ing:

AT(ROBOT, 5) ;
0fW, Xl,Yl, X2, Y2) (AT(W, Xl, Yl) I\""((Xl=X2) 1\ (Yl=Y2))::

..AT (W ,X2, Y2) )

The first statement indicates the x-y coordinates
(in feet) of the robot' s location, and the second
statement indicates that an object can be at only
one location in any given model.

A task is also represented in the system as
a statement in the first-order predicate calculus.
For example, the task "collect together boxl, box2,
and box3 " might be represented as NEXTTO (BOXl,
BOX2) 1\ NEXTTO (BOX2 , BOX3). The goal of the planner
is to find a sequence of executable actions that
will produce a state of the world in which the task
statement can be shown to be true.

The executable actions from which plans are
constructed are parameterized programs that cause
the robot to perform some specific activity. For
example, we might have actions that cause the robot
to turn k degrees, move forward n feet, go to
adjacent room rx, or find and follow an unobstructed
path to location (x,y). In general, any capability
that we expect will be frequently needed by the
robot is a candidate for being programmed and
included in its repertoire of actions.

STRIPS requires a description (or model) of
each available executable action indicating under
what conditions the action can be executed and
what its expected effects are on the world model.
In particular, each action description consists
of the following components: (1) Action name and
parameters (2) Preconditions (A list of predi-
catecalculus statements that must be true in the
world before the action can be executed). (3)
Deletions (A list of predicate calculus atoms
indicating the statements that execution of the
action is expected to remove from the world model) 
(4) Additions (A list of predicate calculus state-
ments that execution of the action is expected to
add to the world model). The information in the
action descriptions provides STRIPS wi th the capa-
bili ty of computing the anticipated model that
would result from executing a given action in the
situation described by a given model.

STRIPS proceeds by conducting a heuristic
search in a space whose objects are world models
and whose operators are defined by the action de-
scriptions. The QA3. 5 theorem prover (2) is used



by STRIPS to answer questions about individual
models; for example, QA3. 5 is used to determine
whether an action s preconditions are true in a
model or whether the task statement is true in a
model. When STRIPS finds an acceptable plan, it
has computed the world model anticipated before
and after each action in the plan, has proven that
the preconditions of each action in the plan are
true in the model anticipated at the time of the
action s execution, and has proven that the task
statement is satisfied in the model anticipated
after completion of the plan s execution. The
information obtained by PLAEXI from STRIPS when
an acceptable plan has been found includes the
sequence of actions that form the plan, the state-
ments added to the world model by each action in
the plan, and the world model statements used in
proving each action s precondi tions and the task
statement.

III KERNEL MODELS

PLAEXI extracts from STRIPS' output a
kernel model for before and after each action in
the plan. Each kernel model contains exactly
those statements STRIPS anticipated would be true
at that point in the plan s execution and that
were used in the proof of some action s precon-
di tions or in the proof of the task statement.
These kernel models are the basic information
needed for monitoring plan execution, since they
indicate at each step in the plan a minimal set
of requirements for ensuring a successful execu-
tion of the entire plan. Figure 1 shows a sample
output from STRIPS and the sequence of kernel
models computed by PLAEXI.

The kernel models are computed in the follow-
ing manner: Given an n-step plan, let Ki for
1:S i :S n denote the kernel model preceding the i 
action in the plan; let Kn+l denote the kernel
model following the plan s nth action. Then:
(1) Kn+l consists of the statements used in the

Action 1 
(Model statements used in preconditions proof:
AOl, A02)
(Statements added to model: All ,AI2, . . . , AlS)

Action 2
(Model statements used in preconditions proof:
A03, A04, All, A12)
(Statements added to model: A21 , A22, . . . , A26)

Action 3
(Model statements used in preconditions proof:
A05 , A06, A13 , Al4, A2l,A22)
(Statements added to model: A3l,A32 , A33 , A34)

(Model statements used in task statement proof:
A07, AOS, A15,A16, A23,A24, A31,A32)

Fig. la. Sample STRIPS Output

The kernel models are similar in spirit to the
assertions used in Floyd' s program verification
scheme (3) in that they both define at a given
point in a program the necessary and sufficient
condi tions for successful execution.

Kl: AOl,A02
A03 , A04
A05, A06
A07 , AOS

Act ion 1

K2: A03 , A04,
A05 , A06,
A07 , AOS,

Action 2
K3: A05 , A06,

A07 , AOS,
Action 3
K4: A07 , AOS,

All , A12
A13, A14
A15, A16

Al3, A14, A2l,A22
A15 ,A16, A23,A24

Al5 ,A16, A23 ,A24, A31,A32

Fig. lb. Sample Kernel Models

proof of the task statement. (2) For 1:S i :S n, K
consists of the statements used to prove the pre-
condi tions of the i action in the plan plus those
statements in Ki+l not added to the model by theaction. 

The design of STRIPS and the algori thm used
to compute kernel models ensures that the kernels
for a given n-step plan have the following property 
If the axioms in a kernel model K

i are true in therobot' s current environment and if the effects of
action executions are as indicated in the action
descriptions, then the sequence of plan steps 
i+l, ..., n is executable and its execution will
complete the task.

EXECUTION STRATEGY OVERVIEW

We can now describe our basic strategy for
plan execution. At each execution step we
want PLANEXI to find a kernel model whose state-
ments can be proven in the system s current ' world
model. Furthermore, we want this search to begin
wi th the final kernel and proceed toward the initial
kernel (i. e., in the order Kn+l' Kn' ..., Kl

)' 

kernel Kn+l is found to be satisfied, then the
task is completed, and a success exit can be taken.
If any other kernel Ki is satisfied, then a s.tep
can be taken toward completing the task by execut-
ing the plan s i action. If none of the kernels
are satisfied, then a replanning acti vi ty is re-
quired to determine the next execution step.

This execution strategy has the desired prop-
erties mentioned in Sec. I above in that it will
execute only that portion of the plan that is
necessary for completing the task, it is free to
reexecute any portion of the plan that has failed
to achieve the desired results, and it can recog-
nize situations in which the plan can no longer be
effective in completing the task.

When replanning is necessary, PLANEXl calls
STRIPS with each of the kernel models as a separate
task statement. STRIPS can then search for a plan
whose execution will produce a state in which one
of the kernels is true. I f such a plan is found,
PLANEXI executes it and then continues execution
of the original plan. This replanning scheme allows
the system to react swiftly and intelligently in
the frequently occurring situation where creation
and execution of a new one- or two-step plan can



get the robot "back onto the track " of the original
plan.

TESTING THE KERNEL MODELS

PLAXl begins each step in the execution
process by searching for a satisfied kernel model.
Since the testing of each kernel model requires a
search by QA3. 5 (our theorem prover) for a proof,
this process can require a significant amount of
computing time and therefore introduce a major
inefficiency into the system. We have responded
to this difficulty by transforming the set of
kernel models for a plan into a single triangular
execution table , and by defining a search algo-
ri thm on the execution table that minimizes the
theorem-proving requirements. 

The basic observation that motivates the
execution table and its associated search algo-
ri thm is that some statements appear in more than
one of a plan s kernel models and therefore the
theorem prover should not be called upon to prove
these statements more than once. For example,
note in the kernel models shown in Fig. lb that
statements A07 and AOa appear in all four kernels,
and statements Al5 and A16 appear in kernels 2-4.
Our search algorithm takes maximal advantage of
these redundancies. In the Fig. 1 example, . if
statement A15 is found to be unprovable during the
test of kernel 4, then the tests for kernels 2 and
3 are omitted since those kernels also contain
statement A15 and therefore cannot be satisfied.

The structure of the execution table for an
step plan is determined by decomposing the plan

kernel models as shown in Fig. 2. In this decom-
pos tion, each P ij is a set of statements definedas follows: If we consider the statements in Kl

, have been added to the model by a fictitious
ini tializing program, action 0, and if we consider
the task statement to be the precondi tions of a
ficti tious success program, action n+ 1; then P. 
is the set of statements that were added to th
model by action j and that were used in the proof
of the precondi tions of action i. Given this de-
composition, an execution table of the form shown
in Fig. 3 is constructed. Figure 4 shows the table
that would be constructed for the example plan from
Fig. 1.

i+1 i+1 i+1

...

Fig. 2. Decomposition of kernel model

i. for an n-step plan

Note the following properties of the execu-
tion table for a plan: (1) The entries in the row
of the table that ends with action i are exactly
those axioms used in the proof of the preconditions

fail

action 1

action 2

action 3

I P
0 I P

I P
2 r

...

'"00'"

Fig. 3. Execution table for an n-step plan

fail

AO 1 ,A02 action

A03 A04 A11,A12 action 2

A05.A06 A 13,A 14 A21 ,A22 1 action 3

A07 Aoa A15,A16 A23,A24 I A31 A32 I su ccess

Fig. 4. Execution table for the plan shown in Fig. 1

for action i. (2) The entries in the column of
the table headed by action i are exactly those
axioms that were added to the model by action i
and that were used in some later precondition
proof or in the . task statement proof. (3) The
kernel model preceding action i in the plan is the
rectangular portion of the table consisting of
colums 0 through i-l of rows i through n+l.

Once the execution table has been constructed
for a plan, the algorithm shown in Fig. . 5 is
employed to execute the plan. The algorithm pro-
ceeds by searching from left-to-right and bottom-
to-top that portion of the execution table that is
the kth kernel. The value of k is initialized to
n+l at the beginning of each search, and when a
table entry is found that cannot be proven, the
value of k is set to the highest numbered kernel
that does not contain that entry. The search is
designed so that no table entry is tested more

lO.

base"" n+ I; k .. n+ I .
j .. O.

i .. base.
Test Pij; if not true, then go to step 9.
i"" i-l; if i k, then go to step 4.
j .. j+l; if j k, then go to step 3.
If k = n+ l, then return success.
Execute action k; go to step I.
If j = 0, then replan.
base"" k-l; k"" j; go to step 2.

Fig. 5. Execution Algori thm for an n-Step Pla

than once, the kernels are tested in the desired
order (i. e., Kn+l' ..., K )' and no test is ever
made on a table entry that occurs only in kernels
already shown to be unsatisfiable. When all of

kernel n+l has been proven, the algorithm returns
success. When all of any other kernel has been



proven, an action is executed and the search is
begun again. When a proof attempt fai Is and the
value of k is to be set to 0, the replanning proc-
ess described in Sec. I V above is initiated.

AN EXAPLE PLA EXECUTION

We will now trace through an anticipated
scenario of the solution to a task by our robot
system to indicate the characteristics of the plan
execution scheme we have described. Assume we
want the system to push three boxes together and
that we give it the task statement NEXTTO(Bl, B2)A
NETTO(B2,B3). Assume that the system s world
model of the robot' s environment is as diagrammed
in Fig. 6b, but that the environment is actually
as diagramed in Fig. 6a. Note that the model has
incorrectly located box Bl so that the system does
not know that Bl is already next to box B2, the
model does not indicate the existence of box B5,
and the model incorrectly indicates that door Dl
is open.

a. Actual environment

b. System s model

8oxes: 81 83,
Rooms: R1

Doors: D1

Robot: R08

Fig. 6. Environment for example task

STRIPS creates a plan with the following
action steps: GOTO (Bl), PUSHT (Bl , B2), GOADJRM (R2) 
GOT(B3), PUSHADJRM(B3,Rl), PUSHT(B3, B2). The
descriptions used by STRIPS for the actions in
this plan can be translated as follows:

GOTO (BX)

Precondi tions : BX is an object in the same
room as the robot. Determine a

route to move the robot next to BX and then
move the robot along that route.

PUSHT (BX , BY)
Preconditions : BX is a pushable object, BY
is an object in the same room as BX, and the
robot is next to BX. Effects Determine a
route to push BX next to BY and then push BX
along that route.

GOADJRM (RX)

Precondi tions : RX is a room and there is an
open door connecting RX wi th , the room in
which the robot is located. Deter-
mine a route to move the robot to the open
door, move the robot alo g that route, and
move the robot through the door.

PUSHADJRM (BX, RX)
Precondi tions : BX is a pushable obj ect, the
robot is next to BX, RX is a room, and there
is an open door connecting RX with the room
in which the robot is located. Effects De-
termine a route to push BX to the open door,
push BX along that route, and push BX throughthe door. 

The execution table for the plan is constructed as
shown in Fig. 7.

When plan execution begins, the values of
both k and base are set to 7. The first statement
to be proved is NEXTTO (Bl, B2), and no proof is
found for it. This implies that only kernels 1
and 2 can possibly be satisfied; hence, the value
of k is set to 2. The value of base is set to 6
to indicate that the rows below row 6 in the table
have already been tested. The next unprovable
statement encountered is NEXTTO(ROBOT, Bl) in row
2 of the table. This failure causes both base
and k to be set to 1. The proof attempt for the
row 1 entry succeeds and the action GOTO (Bl) is
executed. ' The GOTO program determines a route for
the robot to where it believes box Bl to be, and
attempts to move the robot through that route,
The route causes the robot to unexpectedly bump
into box B5. The GOTO program responds by moving
the robot a short distance backwards, taking a
picture of the bumped object, entering a descrip-
tion of the object into the model, and returning
control to PLANEXI.

The second search through the execution table
leads again to the execution of the GOTO (Bl) action,
since the truth values of the statements in the
table were not changed by the first execution step.
Hence, PLANEXI responds to the failure of an action
by noting that the appropriate conditions exist for
trying the action again and by reexecuting the
action. The GOTO program determines a route that
avoids both boxes B4 and B5, moves the robot to
where it believes box Bl to be, and notes that no
contact was made with the box. This failure causes
the GOTO program to take a picture of the area
where box Bl was modeled to be and to correct the
location of the box in the model. Control is then
returned to PLANEXI.

During the next iteration through the execu-
tion table a proof is found for NEXTT (Bl, B2), and



Replan

Type(B 1 0bject!;
Inroom(BI R1); GOTO(BII
Inroom(ROBOT R 11'

Inroom(BI RII;
Inroom(B2, RII; NexttoIROBOT PUSHTO(B I B2)
Pushable(B1); B1)
TypeIB2 object)'

Inroom(ROBOT RII;
Connectsrooms

(OI R2); GOAOJRM(R2)
Ooorstatus

IDI open)'

Inroom(B3, R2); Inroom(ROBOT GOTO(B31
Type(B3,object) R21'

Connectsrooms
(01 RI);

Inroom(ROBOT NexttoIROBOT PUSHAOJRMDoorstatus
IOI,open); R2) B31 (B3,RII

PushableIB3"

Type(B2,objectl; Inroom(B3, R1); PUSHTO(B3.B2)Pushable(B3); Nextto
Inroom(B2, R 1)

(ROBOT B3)

Nextto(BI B2) Nextto(B2 B3) J

These axioms can be deleted from the table by an editing routine since they occur previously in the same column of the table.

Task
Completed.

Fig. 7. Execution table for example plan

the first nonprovable statement encountered is
NEXT (B2 ,B3). The unsatisfied statements en-
countered as the search continues include
NEXT(ROBOT, B3) and INRM(B3,RI) in the last
colum of row 6 and INROM(ROBOT, R2) in row 5.
These unsatisfied entries leave k set to 3 and
base set to 4. The search successfully completes
kernel 3, and the action GOADJRM(R2) is executed.
Note that PLAXI has made use of the new informa-
tion in the model that box Bl is next to B2 and
has omitted execution of the PUSHT(BI,B2) action.
The GOADJRM program moves the robot to door DI,
discovers that the door is closed, corrects the
model, and returns control to PLANEl.

The unsatisfied statements encountered dur-
ing the next search of the execution table includeNE (B2 , B3) in row 7, I NRM (B3 ,Rl) and
NEXTO(ROBOT,B3) in row 6, and DOORSTATUS(Dl,OPEN)
in row 5. The row 5 unsatisfied entry would cause
k to be set to 0 and therefore demands a replanning
effort. STRIPS is given each of the kernel models
as a separate planning goal and constructs the
following plan to achieve the kernel that precedes
the final step ' in the original plan: GOADJRM (R3) ,
GOADJRM(R2), GOTO(B3), PUSHADJRM(B3,R3),
PUSHADJRM(B3, RI). This new plan uses doors D2
and D3 to get the robot to box B3 and to push B3
into room Rl.

PLANEXI creates an execution table for the
new plan and continues execution with the new table.
Assume that execution of the new plan proceeds
normally so that the robot and boxB3 end up next
to each other in room Rl. Then PLAEXl returns 
the execution table for the original plan and pro-
ceeds as before. The only unsatisfied statement
found during the next search through the table is
NEXTTO(B2, B3) in the bottom row. All the state-

ments in row 6 are satisfied and therefore the
action PUSHT (B3 , B2) is executed. If the PUSHTO
program succeeds in pushing box B3 to box B2, then
in the next search of the execution table the
statements in the bottom row will be satisfied,
and PLAEXI will therefore return "success.

We have seen in this example how PLAXI can
reexecute a portion of a plan that has failed, can
omi t execution of a portion of the plan whose effects
have already been realized, and can use replanning
to respond to si tuations unaccounted for in the
original plan.
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