
Improved Bounds for Computing Kemeny Rankings∗

Vincent Conitzer
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

conitzer@cs.cmu.edu

Andrew Davenport
Mathematical Sciences Department
IBM T.J. Watson Research Center

Yorktown Heights, New York, 10598
davenport@us.ibm.com

Jayant Kalagnanam
Mathematical Sciences Department
IBM T.J. Watson Research Center

Yorktown Heights, New York, 10598
jayant@us.ibm.com

Abstract

Voting (or rank aggregation) is a general method for aggre-
gating the preferences of multiple agents. One voting rule
of particular interest is theKemeny rule, which minimizes
the number of cases where the final ranking disagrees with a
vote on the order of two alternatives. Unfortunately, Kemeny
rankings are NP-hard to compute. Recent work on computing
Kemeny rankings has focused on producing good bounds to
use in search-based methods. In this paper, we extend on this
work by providing various improved bounding techniques.
Some of these are based on cycles in the pairwise majority
graph, others are based on linear programs. We completely
characterize the relative strength of all of these bounds and
provide some experimental results.

Introduction
A voting (or rank aggregation) rule takes as input multi-
ple rankings of (orvotesover) a fixed set of alternatives
(or candidates), and aggregates them into a single concen-
sus ranking of the candidates. Rank aggregation is a key
problem for preference aggregation in multiagent settings,
where agents must make joint decisions on joint plans, al-
locations of resources,etc., in spite of conflicting prefer-
ences over the possible decisions. However, there are many
other applications as well; for example, different search en-
gines may rank pages differently, and we may wish to ag-
gregate these rankings into a single ranking. Other ap-
plications include collaborative filtering [20] and planning
among automated agents [15; 16]. Recent work in artifi-
cial intelligence and related areas has studied the complex-
ity of executing voting rules [18; 5; 12; 10; 1]; the com-
plexity of manipulating elections [7; 14; 13]; eliciting the
votes efficiently [6]; and adapting voting theory to the set-
ting where the candidates vote over each other by linking to
each other (as in the context of the World Wide Web) [3;
2].

Many different voting rules have been proposed. Proba-
bly the best known rule is theplurality rule, which simply
ranks candidates by how often they are ranked first in the

∗This material is based on work done while the first author was
visiting IBM’s T.J. Watson Research Center in the context of an
IBM Ph.D. Fellowship.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

votes. Of course, this ignores a lot of the information. The
Kemeny rule[19] is another voting rule. The Kemeny rule
is defined as follows: it produces a ranking that maximizes
the number ofpairwise agreementswith the votes, where we
have a pairwise agreement whenever the ranking agrees with
one of the votes on which of a pair of candidates is ranked
higher.

The Kemeny rule has an important interpretation as a
maximum likelihood estimator of the “correct” ranking.
Condorcet, an early social choice theorist, modeled elections
as follows: there is a correct ranking of the candidates, but
every voter only has a noisy perception of this correct rank-
ing. (We note that such a model makes sense especially in
settings such as the one in which the “voters” are search en-
gines that rank pages.) Specifically, for every pair of candi-
dates, any voter ranks the better candidate higher with prob-
ability p > 1/2, independently.1 Given this noise model,
the problem of finding the maximum likelihood estimate of
the correct outcome, given the votes, is well-defined. Con-
dorcet solved this problem for the cases of2 and3 candi-
dates [11]. Over two centuries later, Young observed that the
Kemeny rule is in fact the solution to Condorcet’s problem
for arbitrary numbers of candidates [22]. Because of this, the
Kemeny rule is sometimes also referred to as the Kemeny-
Young rule. Recently, Conitzer and Sandholm showed that
some, but not all, of the other well-known voting rules can
also be interpreted as maximum likelihood estimators, under
different (more complex) noise models [8].

Unfortunately, it is NP-hard to compute Kemeny rank-
ings [4], even with only four votes [12]. The problem of
computing Kemeny rankings is receiving increasing atten-
tion. Some work has focused on finding rankings with a
Kemeny score that isapproximatelyoptimal, in polynomial
time [1]. Although this approach has produced some inter-
esting results, it also suffers from a few fundamental draw-
backs. An approximation algorithm for a voting rule is, in
effect, a different voting rule; and in real-world elections,
voters may feel deceived if a different voting rule is used
than the one that was promised to them. To illustrate this

1Of course, the rankings of pairs of candidates cannot actually
be completely independent, because ifa is preferred tob, andb to
c, thena must be preferred toc. Nevertheless, all rankings receive
some probability under this model, which is all that is necessary
for the maximum likelihood approach.

point, the well-known Borda voting rule actually provides a
good approximation of the optimal Kemeny score [9]. More-
over, some of the suggested approximation schemes do not
seem very sensible as a voting rule. For example, choosing
one of the votes at random as the ranking is a good approxi-
mation [1]. Yet another issue is that voters who are aware
of which approximation scheme is being used may have
an incentive to vote differently than they would if an opti-
mal ranking were computed. (Of course, by the Gibbard-
Satterthwaite impossibility result [17; 21], no reasonable
voting rule is strategy-proof.)

Because of these issues, in this paper, we focus on com-
putingoptimalKemeny rankings. Specifically, we will look
at search-based methods. A key factor that determines the
runtime of such methods is the availability of good bounds
on the Kemeny score, and providing such bounds is the topic
of this paper. Recently, Davenport and Kalagnanam pro-
vided a bounding technique for computing Kemeny rank-
ings based on finding edge-disjoint cycles in a graph whose
vertices are the candidates [10]. In this paper, we extend
upon this technique. Specifically, we show how one can ob-
tain bounds fromoverlappingcycles. We also provide var-
ious bounds based on linear programs, and show how these
bounds relate to the cycle-based bounds.

Definitions
The Kemeny rule
For any two candidatesa andb, given a rankingr and a vote
v, let δa,b(r, v) = 1 if r andv agree on the relative ranking
of a and b (they either both ranka higher, or both rankb
higher), and0 if they disagree. Let theagreementof a rank-
ing r with a votev be given by

∑

a,b

δa,b(r, v), the total number

of pairwise agreements. AKemeny rankingr maximizes the
sum of the agreements with the votes,

∑

v

∑

a,b

δa,b(r, v).

Reinterpretation of the Kemeny rule
We will now reinterpret the Kemeny rule as aminimization
problem on a weighted directed graph. (Hence, the lower
bounds that we provide in the paper correspond to upper
bounds on the Kemeny score.) The vertices on this graph
correspond to the candidates. The edges and their weights
are given as follows. For every pair of candidatesa, b, there
is a number of votesh(a,b) preferringa to b, and a num-
ber of votesh(b,a) preferring b to a. If h(a,b) > h(b,a),
then draw a directed edge froma to b with weightw(a,b) =
h(a,b)−h(b,a); conversely, ifh(b,a) > h(a,b), then draw a di-
rected edge fromb to a with weightw(b,a) = h(b,a)−h(a,b).
If h(a,b) = h(b,a), draw no edge at all.

Given an edge froma to b, if the final ranking ranks
a aboveb, this corresponds toh(a,b) pairwise agreements;
whereas if the final ranking ranksb abovea, this corresponds
to onlyh(b,a) pairwise agreements, that is,h(a,b) − h(b,a) =
w(a,b) fewer agreements. In other words, every time that the
final ranking does not agree with the direction of an edge,
we lose a number of pairwise agreements that is equal to the
weight of that edge. Therefore, the Kemeny problem can be

restated as follows: find the ranking which minimizes the
total weight of the edges that it disagrees with.

Lower bounds based on
cycles in the graph

In this section, we describe various classes of lower bounds
that are based on cycles in the graph described above. We
start with the class of bounds given by Davenport and
Kalagnanam. In this class of bounds, we take a set of
edge-disjoint cycles, and add together the cycles’ minimum
weights (i.e. the weight of each cycle’s lightest edge.)

Theorem 1 For any set of edge-disjoint cyclesC,∑

c∈C

mine∈c we is a valid lower bound.

Proof: For each cycle, the final ranking must be inconsistent
with at least one of the edges in the cycle, and thereby lose
the weight on that edge.

The lower bounding technique in Theorem 1 has the prop-
erty that once we use an edgee in a cyclec, we cannot use
any of its weightwe again in another cycle. This is wasteful
becausec’s lightest edgee′ may have a much smaller weight
we′ , and we will only be able to increase the bound bywe′ .
It turns out that we do not need to use all ofe’s weight, but
rather onlywe′ of it: for, if we set apartwe′ weight from
each edge in the cycle, we know that in the final ranking,
for at least one edge in the cycle, thewe′ weight that we set
apart from it will be lost. Hence we retainwe − we′ of e’s
weight to use in other cycles throughe.

This leads to the following class of lower bounds:

Theorem 2 For any sequence of cyclesc1, c2, . . . , cl, let
δ(c, e) be an indicator variable that is1 if e ∈ c, and 0
otherwise; and for1 ≤ i ≤ l, let vi = mine∈ci

(we −
i−1∑

j=1

δ(cj , e)vj). Then,
l∑

i=1

vi is a valid lower bound.

This class of bounds is no weaker than the previous class:

Theorem 3 For any bound derived using Theorem 1, the
same bound can be derived using Theorem 2.

Proof: Given the set ofl cyclesC used according to The-
orem 1, give these cycles an arbitrary orderc1, c2, . . . , cl.
Because the cycles are edge-disjoint, we have, for any
ci, e ∈ ci, and j < i, that δ(cj , e) = 0. Therefore,

vi = mine∈ci
(we −

i−1∑

j=1

δ(cj , e)vj) = mine∈ci
we. Hence

this sequence of cycles used according to Theorem 2 gives
the same bound.

In fact, the new class is strictly stronger:

Theorem 4 On some instances, strictly stronger bounds
can be derived using Theorem 2 than using Theorem 1.

Proof: Consider the following instance:

Every cycle has a minimum weight of1; once one cycle
is removed entirely, no more cycles remain, and hence
Theorem 1 cannot give us a better lower bound than1.
However, using Theorem 2, if we remove weight1 from
cycle (a, b, c) first, then we can still remove weight1 from
cycle (a, b, d), improving the lower bound to2 (matching
the cost of the optimal solution).

Rather than always choosing the minimum weight of any
edge in the cycle as the amount to take from each edge in the
cycle, we could also choose a smaller amount, without af-
fecting the argument for why this constitutes a lower bound.
This leads to the following class of lower bounds:

Theorem 5 For any set of cyclesC and functionv : C →
R

+, letδ(c, e) be an indicator variable that is1 if e ∈ c, and
0 otherwise. Then, if for everye ∈ E,

∑

c∈C

δ(c, e)v(c) ≤ we,

then
∑

c∈C

v(c) is a valid lower bound.

Again, this class of bounds is no weaker than the previous
class:

Theorem 6 For any bound derived using Theorem 2, the
same bound can be derived using Theorem 5.

Proof: Given the sequence of cyclesc1, c2, . . . , cl used
according to Theorem 2, letC be the set of all of these

cycles, and letv(ci) = vi = mine∈ci
(we −

i−1∑

j=1

δ(cj , e)vj).

It is perhaps not immediately clear that this slightly gen-
eralized technique can give us better bounds, but it turns out
that it can:

Theorem 7 On some instances, strictly stronger bounds
can be derived using Theorem 5 than using Theorem 2.

Proof: Consider the following instance:

Because the weight on all edges is1, removing the minimum
weight from a cycle according to Theorem 2 will remove
the entire cycle. That is, Theorem 2 can do no better than

Theorem 1 on this instance. It is easy to verify that remov-
ing any cycle in this graph makes the graph acyclic; hence
the best lower bound that can be obtained using Theorem 2
is 1. However, using Theorem 5, we can subtract weight0.5
from each of the cycles(a, b, c, d), (a, b, e, f), (c, d, e, f) to
obtain a lower bound of1.5, which can be rounded up to
2 since we know the solution cost must be integral. (This
matches the cost of the optimal solution.)

In the next section, we will compare this section’s bounds
to bounds based on linear programs.

Lower bounds based on
linear programs

In this section, we study bounds that are based on linear pro-
grams, and we compare them theoretically to the bounds
based on cycles described in the previous section. In fact,
the first linear program that we present corresponds to find-
ing the optimal bound that can be obtained using Theorem 5.
To find this optimal lower bound, we can use the following
linear program (in whichC is the set of all cycles in the
graph):

Linear Program 1
maximize

∑

c∈C

yc

subject to for all e ∈ E,
∑

c3e
yc ≤ we

Let us consider the dual of this program, which is the fol-
lowing:

Linear Program 2
minimize

∑

e∈E

wexe

subject to for all c ∈ C,
∑

e∈c
xe ≥ 1

This is in fact a linear program relaxation of an inte-
ger program formulation of theminimum-edge feedback set
problem, which asks for the smallest set of edges to be re-
moved from a given directed graph to make it acyclic. By
the strong duality property of linear programs, its solution
value must be the same as that of Linear Program 1. Thus,
we obtain the following result:

Theorem 8 The strongest lower bound that can be obtained
using Theorem 5 is equal to the optimal solution to Linear
Program 2.

Unfortunately, Linear Programs 1 and 2 can have expo-
nential size, because a directed graph can have exponentially
many cycles. This is illustrated by the following example
with 2(m−2)/2 cycles:

To remedy this, we now present a linear program that has
polynomial size. This program is similar to the previous pro-
gram, but it has a variable foreveryordered pair of vertices,
in contrast to the previous program which only has variables
for the edges of the graph. On the other hand, it only has
constraints for cycles of length 3.

Linear Program 3
minimize

∑

e∈E

wexe

subject to
for all distincta, b ∈ V , x(a,b) + x(b,a) = 1
for all distincta, b, c ∈ V , x(a,b) + x(b,c) + x(c,a) ≥ 1

If we add to this program the constraints that the vari-
ablesx(a,b) must take integral values, then this in fact gives
a mixed-integer program formulation for the Kemeny prob-
lem, in which the variablex(a,b) is set to1 if a is ranked
lower thanb, and to0 otherwise. The first set of constraints
ensures that exactly one of the two candidates is ranked
lower, and the second set of constraints enforces transitiv-
ity.

The objectives of Linear Programs 2 and 3 are the same;
the spaces of feasible solutions, however, are not. First, Lin-
ear Program 3 also has variables for pairs of candidates with
no edge between them, so if we wish to compare the fea-
sible spaces of the linear programs we should restrict our
attention to the variables that the programs have in com-
mon. More significantly, in Linear Program 2, we can set
(for example)xe = 1 for all the edges in a 3-cycle(a, b, c),
whereas in Linear Program 3 this would not be feasible, be-
cause it would implyx(a,c) + x(c,b) + x(b,a) = 0. Con-
versely, it turns out that the constraints in Linear Program 3
are (strictly) stronger:

Theorem 9 Any feasible solution to Linear Program 3 is
also feasible for Linear Program 2 (disregarding the vari-
ables that do not occur in the latter).

Proof: Every constraint for a cycle of length3 is
clearly met (even for cycles that are not inC). We
now prove that constraints for longer cycles are also
met by induction on the length of the cycle. For a cy-
cle (v1, v2, . . . , vk) of length k, Linear Program 3 must
satisfy x(vk−1,vk) + x(vk,v1) + x(v1,vk−1) ≥ 1 More-
over, by the induction assumption we must also have
x(v1,v2) + x(v2,v3) + . . . + x(vk−2,vk−1) + x(vk−1,v1) ≥ 1
Adding up these two inequalities, and using the
fact that x(v1,vk−1) + x(vk−1,v1) = 1, we have
x(v1,v2) + x(v2,v3) + . . . + x(vk,v1) ≥ 1 as required.

It follows that the optimal solution value for Linear Pro-
gram 3 is always at least as great as that for Linear Program
2. In fact, it turns out that the optimal solution values of both
linear programs always coincide.

Theorem 10 The optimal solution value for Linear Pro-
grams 2 and 3 is always identical.

Proof: By the observations above, all that remains to show
is that the optimal solution value for Linear Program 2 is
never smaller than that for Linear Program 3. To show
this, we transform an optimal solution to Linear Program
2 into a solution to Linear Program 3 without increasing its
value. To do so, we must show how to set the additional
variables in the latter program (we will keep the shared
variables the same). For every variablex(a,b) in the for-
mer program, we must setx(b,a) = 1 − x(a,b). We first
show that doing so does not violate any cycle constraints
(even for cycles of size larger than 3). Consider a con-
straint of the formx(v1,v2) + x(v2,v3) + . . . + x(vk,v1) ≥
1 and suppose that all of the variablesx(vi,vi+1(mod k)) in
it have had their value set by the above, either because
(vi, vi+1(mod k)) ∈ E or because(vi+1(mod k), vi) ∈ E. In
the latter case ((vi+1(mod k), vi) ∈ E), x(vi,vi+1(mod k)) =
1 − x(vi+1(mod k),vi). If x(vi+1(mod k),vi) = 0, the con-
straint is immediately satisfied. Otherwise, there must
be some cycle(vi+1(mod k), vi, wi,1, wi,2, . . . , wi,l) in the
original graph such thatx(vi+1(mod k),vi) +x(vi,wi,1) + . . .+
x(wi,l,vi+1(mod k)) = 1 (for otherwise we could have re-
duced the value ofx(vi+1(mod k),vi) in the solution to Lin-
ear Program 2 without violating any constraints, which, be-
cause all weights on edges are positive, would have im-
proved the solution). Hence, we havex(vi,vi+1(mod k)) =
1 − x(vi+1(mod k),vi) = x(vi,wi,1) + . . . + x(wi,l,vi+1(mod k)).
We can substitute this into the original constraintx(v1,v2) +
x(v2,v3) + . . . + x(vk,v1) ≥ 1 for everyx(vi,vi+1(mod k)) with
(vi+1(mod k), vi) ∈ E, at which point the constraint corre-
sponds to a cycle in the original graph, and must therefore
hold.

Next, we show that we can assign values to the additional
variables, one at a time, so that no constraints are violated.
Consider a pair of variablesx(v1,v2), x(v2,v1) such that
(v1, v2) /∈ E and(v2, v1) /∈ E. For all constraints of the
form x(v1,v2) + x(v2,v3) + . . . + x(vk,v1) ≥ 1 for which all
variables except forx(v1,v2) have been set already, consider
the one that is furthest from being satisfied, that is, the one
with the smallest quantityx(v2,v3) + . . . + x(vk,v1). Then,
setx(v1,v2) = 1 − (x(v2,v3) + . . . + x(vk,v1)). (If there are
no such constraints, simply setx(v1,v2) = 0.) Now, we must
setx(v2,v1) = 1 − x(v1,v2) = x(v2,v3) + . . . + x(vk,v1). All
that remains to be proven is that this does not violate any
constraints that includex(v2,v1), that is, constraints of the
form x(v2,v1) + x(v1,w1) + x(w1,w2) + . . . + x(wl,v2) ≥ 1
for which all variables except forx(v2,v1) have been set
already. But if we substitutex(v2,v3) + . . . + x(vk,v1) for
x(v2,v1), this becomes a constraint for which all variables
have already been set and which is therefore satisfied.

Denoting byopt the best lower bound that can be ob-
tained using a particular family of bounds, or the optimal
solution to a linear program, we haveopt(Theorem 1) ≤
opt(Theorem 2) ≤ opt(Theorem 5) = opt(Linear Program
1) = opt(Linear Program 2) = opt(Linear Program 3),
where all of the inequalities are strict for some examples.

Experimental results
We performed an evaluation to compare the linear program-
ming lower bound (Linear Program 3, or LP3) to the edge-
disjoint 3-cycle lower bound [10] on randomly generated
rank aggregation problems. For each problem, we first gen-
erated a total order representing a consensus ordering of
m alternatives. We then generated the voting preferences,
where each one ofn voters agrees with the consensus order-
ing regarding the ranking of every pair of alternatives with
some consensus probabilityp. We generated problems with
20, 30 and 40 alternatives and 5 voters. Each voter ranks
all alternatives with no ties. We vary the consensus proba-
bility from 0.5 (no consensus at all) to 1.0 (full consensus
with the consensus ordering). We generated 100 problems
at each data point. We computed the edge-disjoint 3-cycle
lower bound and the linear programming (LP3) lower bound
for each problem. We also computed the optimal Kemeny
distance for each problem, by formulating the problem as
an integer programming problem using an integer formula-
tion of the model LP3. We used CPLEX 9.1 to solve the
linear and integer programming problems.2 All experiments
were performed on a 3GHz Pentium 4 machine. We present
results showing the mean deviation of the edge-disjoint 3-
cycle lower bound from the optimal Kemeny distance in Fig-
ure 1, the mean deviation of the linear programming lower
bound in Figure 2, and the CPU times used to compute these
bounds in Figures 3 and 4.

For most of the problems studied, the linear programming
lower bound was equal to the optimal Kemeny distance. The
linear programming lower bound was usually within 0.4%
of the optimal Kemeny distance. The edge-disjoint 3-cycle
lower bound performed relatively poorly in contrast. The
CPU time required by the linear programming formulation
appears to not scale as well as that for the edge-disjoint 3-
cycle formulation. This is not surprising: for the linear pro-
gramming lower bound, the size of the formulation is cubic
in the number of alternatives in the problem, whereas the
edge-disjoint 3-cycle formulation has size linear in the num-
ber of alternatives.

We also compared the CPU time used to find optimal
Kemeny rankings by the branch-and-bound procedure of
Davenport and Kalagnanam [10] to the CPU time used by
CPLEX to solve the integer programming formulation de-
rived from LP3. We present a comparison for problems with
25 alternatives and 5 voters in Table 1. At each consensus
probability we solved 25 problems with a 300-second CPU
time cutoff. We were able to solve all the problems using
the integer programming approach. The branch-and-bound
procedure was unable to solve many of the problems at low
consensus probabilities.

2For problems with 40 alternatives we were unable to solve all
problems to optimality using CPLEX within a reasonable time at
consensus probabilities less than 0.58. We omit results for these
data points.

 0

 2

 4

 6

 8

 10

 12

 0.5 0.6 0.7 0.8 0.9 1

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
al

consensus probability

20 alternatives
30 alternatives
40 alternatives

Figure 1: Mean deviation of edge-disjoint 3-cycle lower
bound from optimal Kemeny distance for problems with 5
voters

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.5 0.6 0.7 0.8 0.9 1

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
al

consensus probability

20 alternatives
30 alternatives
40 alternatives

Figure 2: Mean deviation of linear programming relaxation
(LP3) lower bound from optimal Kemeny distance for prob-
lems with 5 voters

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

consensus probability

20 alternatives
30 alternatives
40 alternatives

Figure 3: CPU time to compute edge-disjoint 3-cycle lower
bound for problems with 5 voters

 0

 1

 2

 3

 4

 5

 6

 7

 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

consensus probability

20 alternatives
30 alternatives
40 alternatives

Figure 4: CPU time to compute linear programming relax-
ation (LP3) lower bound for problems with 5 voters

consensus % mean % mean
probability solved CPU solved CPU

B&B B&B (sec) IP IP (sec)
0.50 0 - 100 3.47
0.55 0 - 100 1.76
0.60 0 - 100 0.19
0.65 8 226 100 0.10
0.70 80 99.6 100 0.09
0.75 100 15.8 100 0.09
0.80 100 2.08 100 0.09
0.85 100 0.37 100 0.09
0.90 100 0.07 100 0.09
0.95 100 0.02 100 0.09
1.00 100 0.01 100 0.09

Table 1: A comparison of the CPU time required to solve
to optimality Kemeny ranking problems with 25 alternatives
and 5 voters. The branch-and-bound procedure of Daven-
port and Kalagnanam [10] (B&B) is compared to CPLEX
solving the integer programming formulation corresponding
to LP3 (IP).

Greedy cycle-based lower bounds
In spite of the fact that the lower bound obtained by solving
one of the linear programs will always be at least as good
as any of the cycle-based lower bounds, solving these lin-
ear programs will require more time at each search node
than greedy methods for finding cycles in the graph. Be-
cause of this, search methods based on greedy techniques
for finding cycles may in fact be faster. The greediest possi-
ble method is to find any cycle, remove its minimum weight
from all of its edges, and repeat. However, longer cycles
require us to subtract the weight from more edges without
a corresponding improvement in the bound, hence it makes
more sense to look for shorter cycles—specifically, cycles
of length 3—first. Davenport and Kalagnanam give an algo-
rithm for computing a good set of 3-cycles, but, as explained
before, their method does not make use of overlapping cy-
cles. We will give a somewhat similar method for finding
3-cycles that does make use of overlapping cycles. (In fact,

being able to use overlapping cycles simplifies the method
considerably.) In this method, we find weights to place on all
the 3-cycles that run through a fixed vertexa1 (in the sense
of Theorem 5), in a way that maximizes the sum of these
weights. Then we remove these weights from the edges, re-
peat for the next vertexa2, etc.To find the weights for (say)
a1 we solve a MaxFlow instance over the following graph:

The capacity on each edge is the weight on that same edge in
the pairwise majority graph if it exists, and0 otherwise. Any
path from the source to the sink corresponds to a 3-cycle
througha1, hence we can subtract the weight running over a
path from the edges in that path. This procedure will never
remove more than an edge’s weight, because the edge capac-
ities in the MaxFlow instance are equal to the weights in the
pairwise majority graph (and an edge in the pairwise major-
ity graph occurs at most once in the MaxFlow instance).

It is possible that, when there are no more 3-cycles re-
maining, there are still larger cycles remaining. Such cycles
can still be exploited with a greedier method (the MaxFlow
method described above does not work for cycles of length
greater than 3, because in that case edges will occur more
than once in the MaxFlow instance).

While this method will, in general, not produce optimal
lower bounds, it can still avoid pitfalls of even greedier tech-
niques. Consider, for example, the instance defined by the
graph below.

(One Kemeny ranking for this instance isb Â c Â d Â
e Â a, with a cost of5.) An extremely greedy algo-
rithm may first subtract weight3 from the cycle(a, b, e) (the
heaviest cycle), after which no cycles remain. However, if
the MaxFlow approach described above starts by trying to
maximize the weight on cycles througha, it will discover
that placing weight2 on (a, c, e), weight1 on (a, b, e), and
weight2 on (a, b, d) gives a total lower bound of5 (which
is the cost of the optimal solution). (By contrast, if it starts
on b, there are multiple ways of maximizing the weight on
cycles throughb, including placing weight3 on (a, b, e) but
also including placing weight1 on (a, b, e), and weight2 on
(a, b, d), as in the optimal lower bound described above.)

Conclusions
Voting (or rank aggregation) is a key method for aggregating
the preferences of multiple agents. One voting rule of partic-

ular interest is theKemeny rule, which maximizes the num-
ber of pairwise agreements between the final ranking and
the votes, and has an important interpretation as a maximum
likelihood estimator. Unfortunately, Kemeny rankings are
NP-hard to compute. This has resulted in the development
of search-based algorithms for computing Kemeny rankings.
A key factor in the runtime of such algorithms is the avail-
ability of strong admissible bounds.

In this paper, we first provided two new bounding tech-
niques based on cycles in the pairwise majority graph. Both
of these techniques are generalizations of Davenport and
Kalagnanam’s earlier edge-disjoint cycle bounding tech-
nique. In the first technique, we find a cycle, take the min-
imum weight of any of its edges and subtract it from all of
its edges, and repeat. In the second (more general) tech-
nique, we subtract any nonnegative amount of weight from
the edges of the cycle (as long as this does not produce an
edge with negative weight). The first new technique is al-
ways at least as good as, and in some cases better than,
the edge-disjoint cycle bounding technique; the second new
technique is always at least as good as, and in some cases
better than, the first new technique.

We then studied bounds based on linear programs. The
first linear program computes the optimal bound that can
be found using the second new cycle-based technique; its
dual is in fact a linear program relaxation of an integer pro-
gram formulation of the minimum-edge feedback set prob-
lem. Unfortunately, both of these programs require the enu-
meration of all the cycles in the graph, and there can be ex-
ponentially many cycles. To remedy this, we introduced an-
other, polynomial-sized linear program that considered only
triplets of candidates (rather than cycles of arbitrary length).
We showed that the optimal solution values of all of these
linear programs coincide.

Experimental results showed that the linear program
bounds are significantly tighter than the edge-disjoint cycle
bounds (and that running CPLEX on the integer program-
ming formulation corresponding to one of these linear pro-
grams significantly outperforms the branch-and-bound pro-
cedure of Davenport and Kalagnanam [10] for computing
Kemeny rankings). However, the linear program bounds
take longer to compute. Thus, we introduced a greedy ap-
proach for computing bounds according to the second new
cycle-based technique. This greedy approach maximizes the
weight subtracted from 3-cycles involving a single candi-
date, and then continues on to the next candidate. Future
research includes evaluating this approach experimentally.

References
[1] Nir Ailon, Moses Charikar, and Alantha Newman. Ag-

gregating inconsistent information: Ranking and clus-
tering. STOC, 2005.

[2] Alon Altman and Moshe Tennenholtz. On the ax-
iomatic foundations of ranking systems.IJCAI, 2005.

[3] Alon Altman and Moshe Tennenholtz. Ranking sys-
tems: The PageRank axioms.ACM-EC, 2005.

[4] John Bartholdi, III, Craig Tovey, andMichael Trick.
Voting schemes for which it can be difficult to tell who

won the election.Social Choice and Welfare, 6:157–
165, 1989.

[5] William Cohen, Robert Schapire, and Yoram Singer.
Learning to order things.JAIR, 10:213–270, 1999.

[6] Vincent Conitzer and Tuomas Sandholm. Vote elicita-
tion: Complexity and strategy-proofness.AAAI, pages
392–397, 2002.

[7] Vincent Conitzer and Tuomas Sandholm. Universal
voting protocol tweaks to make manipulation hard.IJ-
CAI, pages 781–788, 2003.

[8] Vincent Conitzer and Tuomas Sandholm. Common
voting rules as maximum likelihood estimators.UAI,
pages 145–152, 2005.

[9] Don Coppersmith, Lisa Fleischer, and Atri Rudra. Or-
dering by weighted number of wins gives a good rank-
ing for weighted tournaments.SODA, 2006.

[10] Andrew Davenport and Jayant Kalagnanam. A com-
putational study of the Kemeny rule for preference ag-
gregation.AAAI, pages 697–702, USA, 2004.

[11] Marie Jean Antoine Nicolas de Caritat (Marquis de
Condorcet). Essai sur l’application de l’analyseà la
probabilit́e des d́ecisions rendues̀a la pluralit́e des
voix. 1785. Paris: L’Imprimerie Royale.

[12] Cynthia Dwork, Ravi Kumar, Moni Naor, and
D. Sivakumar. Rank aggregation methods for the web.
WWW, pages 613–622, 2001.

[13] Edith Elkind and Helger Lipmaa. Hybrid voting proto-
cols and hardness of manipulation.ISAAC, 2005.

[14] Edith Elkind and Helger Lipmaa. Small coalitions can-
not manipulate voting.FC, 2005.

[15] Eithan Ephrati and Jeffrey S Rosenschein. The
Clarke tax as a consensus mechanism among auto-
mated agents.AAAI, pages 173–178, 1991.

[16] Eithan Ephrati and Jeffrey S Rosenschein. Multi-agent
planning as a dynamic search for social consensus.IJ-
CAI, pages 423–429, 1993.

[17] Allan Gibbard. Manipulation of voting schemes.
Econometrica, 41:587–602, 1973.

[18] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.
Exact analysis of Dodgson elections: Lewis Carroll’s
1876 voting system is complete for parallel access to
NP. JACM, 44(6):806–825, 1997.

[19] John Kemeny. Mathematics without numbers. In
Daedalus, volume 88, pages 571–591. 1959.

[20] David M Pennock, Eric Horvitz, and C. Lee Giles. So-
cial choice theory and recommender systems: Analysis
of the axiomatic foundations of collaborative filtering.
AAAI, pages 729–734, 2000.

[21] Mark Satterthwaite. Strategy-proofness and Arrow’s
conditions: existence and correspondence theorems for
voting procedures and social welfare functions.J.
Econ. Theory, 10:187–217, 1975.

[22] Peyton Young. Optimal voting rules.J. Econ. Persp.,
9(1):51–64, 1995.

