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A CONSISTENT EXTENSION OF CONDORCET’S ELECTION
PRINCIPLE*

H. P. YOUNGt anp A. LEVENGLICK?

Abstract. Condorcet's principle of choosing the majority alternative whenever one exists is violated
not only by Borda's rule but by any scoring method; nevertheless the essential property of scoring
functions—‘consistency” of the outcome under aggregation of subgroups—is shown to be compatible with
Condorcet’s principle. Moreover these two properties, suitably interpreted, together with neutrality,
determine a unique rule known as Kemeny’s rule. ’

1. Introduction. In France during the latter half of the eighteenth century, the
problem of designing voting rules for an assembly began to be studied systematically
for the first time. Two of the major contributors were Jean-Charles de Borda and
Marie J. A. N. Caritat, Marquis de Condorcet, both members of ’Académie Royale
des Sciences. From these two men sprang two streams of thought on the problem of
collective decision making that persist to the present day. In 1770, Borda [4] read a
paper before the Academy in which he proposed the following method, which he .
called “election by order of merit”: for each voter’s announced (linear) preference
order on the alternatives, a score of 0 is assigned to the least preferred alternative, 1to
the next-to-least preferred, and so forth; then the total score of each alternative 1s
computed and the one with the highest score is declared the winner. Condorcet [6]
proposed instead that if there is some alternative (the Condorcet alternative) that
defeats every other in pairwise simple majority voting, then that alternative should be
selected. A difficulty with Borda’s rule is that it may not result in the choice of the
Condorcet alternative (as in Example 1 where ay is the Condorcet alternative and aa,
the Borda choice); but a difficulty with Condorcet’s principle is that, if a Condorcet
alternative does not exist, it is unclear which alternative should be chosen. ‘

Example 1. Number of voters

© @ @)
ay daz 4as
a, as 4a;
as  ap 4a

The challenge of combining the regularity of Borda’s approach with Condorcet’s
principle into a unified method is a long-standing problem in the theory of elections. A
variety of proposals have been made over the years; many of which are surveyed and
compared in a recent paper by Fishburn [8]. One of the earliest is due to Black [3],
who proposed that the Condorcet alternative be chosen when one exists, and other-
wise that the Borda method be reverted to. This somewhat ad hoc proposal avoids the
fundamental issue of choosing properties that are natural in the context of election,
and then asking what (if any) methods have these properties.
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In this paper we shall identify certain basic properties suggested by the Borda and
the Condorcet approaches, respectively, and show that these properties uniquely
determine a method first proposed by John Kemeny [10], [11].

Let A={a;, as, - *,am} be a set of m alternatives under consideration, N=
{0,1,2,- -} the names of the possible voters. A preference order on A is simply a
linear order. We will denote such an order by the sequence o =(a;, i, * " * » a;,,)
where a;, is most preferred, and so forth. L(A) will denote the set of all m! linear
orders on A.

For any (finite electorare Mg N, a profile on M is a specification of the preferences
of the voters in M, i.e. a function ¢ : M- L(A). Let ® be the set of all possible profiles
for the given A. For any o € L(A) and ¢ € ®, n,(¢) will denote the number of voters
in ¢ having preference order o.

A preference function (PF)is a function f that associates with each profile ¢ e ® a
nonempty set of preference orders f(¢)< L(A) representing the consensus preference
orders for the given electorate. (Normally, if there are no ties, f(¢) will be a unique
- preference order.) A choice function (CF) is a function g from @ to the nonempty
subsets of A; g(d)) represents the “winning” (i.e. the most preferred) alternatlve(s) for
the given electorate. To each PF f there corresponds in a natural way a CF f defined
by

(1) Ff(¢)={a;c A : a; is most preferred for some o € f(¢)}.

If f(¢) depends only on the numbers n,(¢) for each ¢, then f is said to be
anonymous. Similarly, if f is symmetric in its treatment of alternatives, then f is
neutral. Both of these are standard assumptions since the work of May [14] and Arrow
[1]. A PF (or a CF) satisfying both is said to be symmetric [15].

b (13

2. Consistency and a generalization of Borda. Borda’s “order of merit” method
may be generalized to the situation where the scores awarded to alternatives are not
necessarily evenly spaced. In general; given s =(s1, 52, * *, Sm)€R™ and profile ¢ we
may assign a score of s,, to each voter’s least-preferred alternative, a score of s,—1 to
each next-to-the-least preferred alternative, and so forth. If the total score of alter-
native a; is denoted by s;(¢), then we may define a PF f° by

(2) @iy Qigy * + > @i YEF (@) I sy (@)Zsiu(d)= - - =s:,(d)

Moreover, if ties occur relative to s (i.e., if several distinct preference orderings
- result from (2)) then we might use another scoring vector te R™ to resolve these ties; -
thus we define the composition f* f*(¢) by

(al'u Aip, " " 7 aim)eftofs((ﬁ) iff si;(‘ﬁ)gsiz((ﬁ)g' . éSi,,,(qb)
andforall k <[, s, (¢)=s;(¢) implies 1, (¢)Zt,().

Any PF f° (or composed series of such functions) and the corresponding CF is called a
scoring function [15], [17]. Borda’s method is a particular scoring function in which no
provision is made for resolving ties; another example is the method of plurality voting
(take s=(1,0,---,0)). :

A natural property of voting rules, which in particular is enjoyed by scoring rules,
is the following. If two committees meeting separately arrive at the same consensus
ordering (using some f), then meeting together this should still be their consensus. -
- More precisely, we say that a PF (or a CF) f is consistent [15], [16], [17] if whenever ¢
and ¢’ are profiles on disjoint electorates such that f(¢)N f(¢')# ¢; then f(p +¢')=
()N f(@'). (Here ¢ +¢' is the profile defined by the union of the two electorates.)

®3)
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Thus, if ties occur in the separate committees, then consensus rankings consist pre-
cisely of the ties common to both. It can be shown that any scoring PF f is consistent, as
is the corresponding CF f In fact, consistency turns out to be the fundamental
property characterizing scoring functions when regarded as choice functions.

(4) THEOREM 1 [17]. A choice function is a scoring function if and only if it is
symmetric and consistent.

Notice, however, that if f is a consistent preference function, then f is not
necessarily a consistent choice function. For example, with three alternatives a;, as,
as, it is possible that two committees agree on their first choice (say a,) but differ on
their ranking of the remaining two; in this situation consistency for a preference
function makes no requirements on the consensus preference order for the two
committees together, while a consistent choice function requires that the first choice
for the merged committees be a;.

Intuitively, consistency for preference functions seems to be a less stringent
requirement than consistency for choice functions. However it should also be noticed
that this is not, strictly speaking, a weaker concept, since it is possible that 7 is
consistent while f is not. For example, define the PF f on three alternatives such that

(a,‘,a,z, a,a)ef(qﬁ) iff a; has the highest Borda score, and ny(d) +n,(qb)
ne (qS) +n.(¢) where o' = (a;,, ai,, ai,), 7= (Ai» @iy, ai,), and 7' = (ai,, as,, ai,).

3. The Condorcet property. Given a profile ¢, let n;;(¢) be the number of voters
preferring a; to a; minus the number preferring a; to a;. Condorcet’s proposal was that
any alternative a; such that n;;(¢)>0 for all j#i (i.e., that would defeat any other
alternative in pairwise simple majority voting) should be the choice of the group. or. in
the case of a preference function, the most-preferred alternative. A parallel concept is
that if a; is an alternative such that n;(¢) <0 for all j # i (i.e., it would be defeated by
every other alternative), then a; should be the least-preferred alternative. Suppose
now that g; is an alternative such that n;(¢)=0 for all j#i We call a; a quasi-
Condorcet alternative for ¢. (Fishburn [8] uses this term somewhat differently.) By a
natural extension of Condorcet’s principle, a quasi-Condorcet alternative is evidently
no better than, and also no worse than, any other alternative.

Formally, we say that a PF f is quasi-Condorcet if for any ¢ €® and any
quasi-Condorcet alternative a; for ¢

) (-rapai--)ef(@) ifft (--asa, - )ef(@)forallji

In other words, if a; is a quasi-Condorcet alternative, then any consensus order-
ing in which a; is just above an alternative a; is just as plausible as the same ordering
but with a; just below a;.

In general we define a Condorcet alternative to be any alternative a; such that
ni,'((ﬁ)io for all ] # 0.

If all of the alternatives are to be ordered in terms of their desirability (i.e. if a
preference function is to be used), then the logic of ranking an alternative that
achieves a strict majority over every other in first place is simply this: if it were ranked
in any other position, then the alternative immediately preceding it (say a;) would be
ranked superior (and inferior) to exactly the same alternatives as a;, while on the other
hand a; is surely better when compared just to a;; hence a; must be absolutely better
than a; and should be ranked before it. By this process we conclude that a; must be
ranked first. An extension of the same logic shows indeed that no alternative should
enjoy a strict majority over its immediate predecessor in the consensus ranking. Thus
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a preference function f is said to be Condorcet if
(6) ' ni(¢)>0 implies not(---aj a; - )ef(P).
In the case of ties we have
ni(¢)=0 implies (---a,a;--")ef(p) iff
¢ -aya-)ef(@)

Note that (6) and (7) speak only about relations between immediate successors a;
and g, since in this case their proper relative order can be determined without
reference to the other alternatives.

We say that a choice function g is Condorcet if g(¢) is precisely the set of
Condorcet alternatives whenever such exist. (This definition corresponds to what
Fishburn [7] calls a “strongly Condorcet” CF.) Further, it should be noted that the
Condorcet property defined above for preference functions is somewhat stronger than
that used in [12].

Example 2. Consider the following profile on two voters and three alternatives.

(7)

(a1, az, as),
(a29 as, a1)7

where a; is a quasi-Condorcet alternative. If f is any PF such that a is always
preferred to as in a collective preference, then for f to be Condorcet we must have

fl@)=1{(ai, a2, as), (az, ay, as), (az, as, al)},

that is, a; is as good—and as bad—as any other alternative.

A very special case of the Condorcet situation occurs whenever all voters have |
the same preference order, say o. Then o is a Pareto ordering and a PF is said to be
Pareto if it always chooses the Pareto ordering when one exists. (A still weaker
condition, which implies the Pareto property in the presence of consistency, is the
following: a PF is faithful if the consensus order is the same as the individual order
when society consists of a single individual. This concept was first introduced in [16])

We say that a PF (or a CF) f is consistent on a subdomain ®' < @ if whenever
¢', ¢"ed', and ¢'+¢" is defined and contained in ®'; then

(8) fl@YNf(@")#¢ implies f(¢'+d")=Ff(d)Nf(S").

Let ' be the subdomain of profiles for which a Condorcet alternative exists, that
is
) I'={ped:n;(¢)=0forsomeandallj#i}.

It is easy to see that any Condorcet choice function is consistent on the domain I'.
One of the difficulties in trying to find a natural way to extend Condorcet’s principle to
the domain ®—T (which is nonempty if m = 3) is that it is impossible to find such an
extension which is consistent as a choice function.

THEOREM 2. There is no Condorcet choice function g and domain A1 such that
gis conszstent on A.

Proof.' Let m be the number of alternatwes For m=1 or 2, I'=® and there is
nothing to prove.

! The authors wish to thank Bengt Hansson for suggesting this weakened version of consistency and
simple way of proving Theorem 2.
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Consider then the case m =3, and let AT, ¢*€A—T. Suppose, by way of
contradiction, that there exists a Condorcet, consistent choice function g defined on A.
Without loss of generality, let a; € g(¢™). Since ¢* 2T, a; is not a Condorcet alter-
native, and there is a j # 1 such that n;;(¢*)>0; say without loss of generality j =2.
Let n be the number of voters in ¢*. Define a new profile ¢ on 2n +n,;(¢™) voters
such that n +n,,(¢p™) voters have preference order (ai, a», as, " * - ,.an) and n voters
have preference order (as, a1, as, " * * , an). Evidently a, is a Condorcet alternative for
&, so ¢ €T and g(¢)={a,}. On the other hand, (¢*+¢)el and g(¢*+¢)={ai, as}.
But consistency implies that g(¢™*+¢)={a,}, a contradiction. Notice, moreover, that
if A is homogeneous (i.e. ¢*+¢* =2¢* € A), then

areg2¢*)=g(e™),

whereas 2¢*+ ¢ el and g(2¢™ + @) ={a>}, contradicting the following even weaker
version of consistency: g(¢)NgW')c gl +¢') forall 4, ¢': O
(10) CororLARY. For m =3, no scoring CF is Condorcet.

Theorem 2 does not imply, however, that consistency for preference functions is
incompatible with Condorcet’s principle. We shall in fact show that there is a pref-
erence function with these two properties, and that subject to neutrality, it is unique.

4. The Kemeny function. As an example of axiomatic techniques applied to the
social sciences Kemeny [10] introduced a PF (described in greater detail in Kemeny
and Snell [11]) that turns out to play a special role here. The problem defined in [10] is.
that of finding a consensus preference order for alternatives being considered by a
group of “experts”. The approach is to reduce the problem “to one which is analogous
to those of classical statistics’” [11, p. 9] by introducing the idea of a distance measure
between any two preference orders. The object then is to axiomatize some measure of
distance uniquely. This is achieved by the usual sort of geometric conditions (including
the triangle inequality), a certain notion of “betweenness,” a kind of independence of
irrelevant alternatives condition, and by a normalization assumption. The result of
these axioms is the distance measure, which can be described as follows.

With each preference order o € L(A) associate an m X m skew symmetric matrix
X?, whose rows and columns are labeled by the alternatives, such that the (a; a;)
entry, xj, is 1 if a; is preferred to g; in o, — 1 if g; is preferred to a;, and 0 if i = . X7 is
called the election matrix for o. Similarly, if ¢ is any nonnull profile, the election matrix
for ¢ is defined to be

X* =Y n.($)X°.

If ¢ is null then set X ® =0. Notice that the (a;, g;) entry of X? is precisely n;;(¢).
The Kemeny distance between any two permutations o and 7 is given by

1
(11) d(¢7)=5 3 |5 ~xil.

The difficulty with this approach is: having achieved the distance measure, it is
not clear how to use it to find a consensus. In other words, given a profile ¢, what is the
ordering that can be said to be ‘“‘least-distant”” from the individuals’ orderings in ¢?
Kemeny proposes two alternate solutions from statistics: the median and the mean.

Given ¢, a median ranking is defined to be any 7 such that

(12)

7 minimizes ). n,(¢) d(o, 7).
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A mean ranking is any 7 such that

(13) r minimizes ¥, n.(¢) d*(o, 7).

The reader may verify that in Example 1 the mean is (a,, a,, a3) (the same as the
Borda result), whereas the median is (a;, a2, as).

Kemeny left the problem of which solution to choose unresolved. But from the
standpoint of collective decision making there is ample reason to prefer the median,
since it turns out that the median consensus leads to a Condorcet method, while the
mean does not. The latter statement follows from Example 1. To see the former, we
re-express the Kemeny function in the following way. For any preference orders o
and 7,

(14) y d(o, 7)=3(X° - X°-X"-X"),

where, in general, X - X' is defined by X - X'=Y,;x,xi;; hence, since X7 - X7 =
m(m — 1) for any o, minimizing d(o, 7) with respect to 7 is equivalent to maximizing
- X? - X". Thus for any profile ¢, 7 is a median if and only if

(15) + maximizes ¥ no ($)X° - X =X X".

Kemeny’s rule is the PF defined by
(16) : K(¢)={r: X?®+ X" =max}.

If for some i and ¢, n;(¢)>0, then we could not have 7= (- - a;, a; - - ")e K(P)
because T =(---a;a; ) satisfies X® - X">X%- X" so X7 did not maximize
X? - X". On the other hand, if n;(¢)=0 and 7€ K (¢) then clearly 7'€ K (¢). Hence
K is a Condorcet PF and, in particular, a quasi-Condorcet PF. Notice that a; is a
Condorcet alternative for ¢ if and only if the a;th row of X ® is nonnegative. If a; is the
unique Condorcet alternative (i.e., the a;th row of X® is positive except for position
(ai, a;)) then a; is necessarily most-preferred in any preference order in K(¢). The fact
that Kemeny’s median rule is Condorcet was not mentioned by Kemeny, though it
provides an excellent reason to prefer the median over the mean. This fact was first
pointed out in [12], where a characterization of Kemeny’s rule for two and three
alternatives was given in terms of six properties. In this paper we shall extend and
generalize these results by showing that, for any number of alternatives, the Kemeny
rule is the unique preference function that is neutral, consistent and Condorcet, thus
reconciling the consistency aspect of Borda’s rule with Condorcet’s principle.

We have already noted above that K is Condorcet; it is also immediate that it is
symmetric. We claim that K is consistent (as a PF). Indeed, if ¢'+ ¢" is defined and if
there is a 7 that maximizes both X® - X™ and X® - X”, then any such 7 maximizes
X X" =(X*+X*)- X" as well. Moreover, for any other 7' such that (X* +
X*) X" =(X?*+X*)- X", we must have X* - X"=X%.X" and X* X" =
X?®". X7, proving that

(17) K(¢'+¢")=K(¢)NK(2")

whenever the latter is nonempty. ‘

Before proving that these conditions uniquely characterize K, we turn to a
consideration of the polytope whose extreme points are the electron matrices X°, o €
L(A). This polytope turns out to have important applications to a variety of combina-
torial optimization problems [18].
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5. Permutation polytopes. Let

(18) P={TAX": T A=1A20}
o ael(A)

To compute K(¢) for any @, it suffices to consider the linear programming
problem: maximize X*. X over all X eP. The optimum extreme points X ° give the
consensus ranking(s) o€ K(¢). This means in particular that the Kemeny rule is
considerably more difficult to compute, and is less “intuitively obvious”, than some of
the other more widely known methods. Nevertheless in terms of its properties it may
actually be fairer.

The polytopes of form (18) are linear transformations of so-called permutation
polytopes [5], [18]: if J is the m X m matrix of all 1's, and I is the m Xm identity
matrix, then the transformation

(19) XY X+T-1)

defines the permutation polytope P' associated with P. The set of inequalities defining
P’ (and hence P) are not explicitly known (Bowman having proposed an insufficient set
in [5]; a counterexample is due to A. J. Hoffman). However, various characterizations
of neighbors on these polytopes are known that give some computational assistance in
finding optimal extreme points [18].

For any permutation o let S(o) be the set of all unordered pairs of symbols {a;. a;}
such that o reverses the order of a; and a; (relative to the natural order):

(20) - S(o)={{a:. a;}: i<jand a; precedes a; in o},

(21) Let I', be the graph whose vertex set is $(o) such that {a;, a;}€ S(o) is adjacent
to {a;, ax}e S(o), k #j, if and only if {a;, ar} € S(o). '

The following characterization of neighbors is due to Hoffman. (For a proof of
this and other facts about permutation polytopes, see [18].)

(22) X* and X are neighbors on P if and only if I'; is connected.

6. The principal theorem:
(23) THEOREM 3. Kemeny’s rule is the unique preference function that is neutral,
consistent, and Condorcet.

We shall in fact prove a stronger result.

Define, for any PF f, the dual of f, —f, to be the PF that inverts the orders of f:

24) (@, @iy~ + 5 @i, )Ef(B) & (i BT ai,) e f(¢).
The trivial PF, T(¢), is the PF defined by
(25) T(p)=L(A), forallped.

We shall show that

(26) the only PF’s that are neutral, consistent,
and quasi-Condorcet are T, K, and — K.

Theorem 3 follows from this since of the three only K is Condorcet—in fact, only K is
faithful—when m =2 (they are all equal when m =1).

To prove (26), we begin by establishing two lemmas.

Let X denote the vector space of all m X m, real skew-symmetric matrices whose
rows and columns are labeled by the alternatives. The (a;, a;) entry of X eX is
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interpreted as the net majority (possibly fractional or irrational) that a; has over a;.
Clearly, the notions of consistent, neutral, quasi-Condorcet, etc. all have their natural
extensions to functions defined on the domain X. The subset of X whose entries are all
rational will be denoted by X©.

LemMMA 1. Let f be a neutral, consistent, quasi-Condorcet PF. Then for every
¢ e®, f(¢) depends only on the election matrix X°. Moreover, there exists a unique
extension of f to X that is neutral, consistent, and quasi-Condorcet.

Proof. The proof of Lemma 1 is similar to results in [16] and [17]. With f as
given, suppose ¢, ¢’ are two profiles on disjoint voter sets such that X* = X*'. Choose.
a profile ¢ on a voter set disjoint from those of ¢ and ¢’ such that X**¥ = x*** =,
f quasi-Condorcet implies f(¢ +¢)= f(¢'+ )= L(A); hence by consistency

A@)=f@INLA)=f(¢p+W+dN=f(¢+¥)+¢)=LA)Nf(d")= ().

From this it follows that whenever X® = X* then f(¢)=f(¢') (since we can always
find ¢" disjoint from ¢ and ¢’ such that X* = X* = X*). We may therefore view f as
defined on the domain of election matrices. Notice that any matrix in X< can be
expressed as a rational linear combination of election matrices. Indeed, for any [ #;
the profile with two voters having preference orders (a, aj ai, dz, ", a,) and
(@m, Gm-1," "+, Ay, G, a;) has n; = —n; =2, and npe =0 for all other A, k, and any
matrix in X can be expressed as a rational linear combination of these. For any
positive integer n >0 and election matrix X define f((1/n)X)=f(X). This is well-
defined, because if (1/n)X =(1/n")X' then by consistency f(nX")=f(X") and
f(r'X)=f(X); so f((1/n)X)=f({(1/n")X"). It is easy to verify that this extended f is
neutral, consistent, and quasi-Condorcet, and this is clearly the only extension of f to
X that has these properties. [J

A particular consequence of the hypotheses of Lemma 1 is that f is anonymous,
hence symmetric. In the sequel, any f satisfying the three hypotheses (in particular, K')
will be considered as acting in the domain X<.

For the next lemma we need to introduce the notion of derived PF’s. For any
subset B€ A, |[B|=k>0, and o€ L(B), let 0(A—B) denote the set of all m!/k!
linear orderings of A that agree with o when restricted to B. Further, let X§ denote
the set of all rational k Xk skew-symmetric matrices whose rows and columns are
indexed by the elements of B, and for any YeX§ let X =Y(A—B) denote the
matrix in X obtained from Y by adjoining a zero row and a zero column for every
acA—B.

For any quasi-Condorcet PF f defined on X, let f?, the derived PF on alternative
- set B, be defined as follows:

(27) Forevery.YeXgs, oef®(Y) iff o(A-B)cf(Y(A-B)).

LEMMA 2. If f is a neutral, consistent, quasi-Condorcet PF for alternative set A,
then
(i) for any B < A, |B|>0, f® is neutral, consistent, and quasi-Condorcet;
(ii) either {2 is Pareto for all|B|=2,
or —f2isPareto forall|B|=2,
or  fPistrivial for all |B|=2.
Proof. The verification of (i) is left to the reader; it may also be found in [13]. (ii)
proceeds by showing that it holds for all B, 2 =|B|=k, inducting on k.
Let B ={a,, a,}, and let X be the 2x2 election matrix corresponding to the
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preference order (a,, a;). Then there are three possibilities:

(28) fleve (xy={(ai, ax)h,
29) flare (Xy={(az ar)},
(30) Fered(x)={(ay, a), (a2, a:)}.

If (28) holds then by neutrality f‘“"”z) is Pareto; if (29) holds, then by neutrality
— flere2 s Pareto; if (30) holds, then by neutrality £ (= X)) = f“»* (X) and since
all elements in Xg are expressible as nonnegative linear combinations of X and — X it
follows by consistency that in this case Fer) is trivial. Thus (ii) holds for the
particular B ={a, a,}; hence by neutrality it holds whenever |B|=2.
Suppose now that (ii) has been shown to hold whenever 2=|B|=k for some
k < m; we will show it holds whenever 2=|B|=k +1.
Let B={ayj, as,- ", ai+1}, and for each h,1=h=k+1 let Y T= (yf}) be the
(k +1)x (k +1) skew-symmetric matrix such that the Ath row and column are zero and
,,__{ 1 ifi<y, I,j#h,
Yi=\ 1 ifi>j, ij#h
(Here the ith row and column are associated with alternative a,, etc.)
Y" with the hth row and column deleted, is the election matrix Z"GXS_(,,,,;
corresponding to the preference order (ai, a2, ", dn " * *, Ak+1) = o In the above
notation

Yh = Zh<a/1>.
Case 1. Suppose (28) holds. Then by induction et is Pareto, so
Al z"y={0,} forallh, 1=h=k+1,

and
FAY") = on(an).

By consistency of f7,

k+1
AT Y)= 0 owan={o}
h=1 1=hsk+1
‘But
. k+1 h
Y Y =kX",
h=1
where X is the (k +1)x (k + 1) election matrix corresponding to o; hence by consis-

tency -
fAX7)={o}.

Thus by neutrality fB is Pareto for B={a,, as -, ar+}; hence fB is Pareto
‘whenever |B|=k+1. Therefore (28) implies that f° is Pareto whenever 2=|B|=
k+1.

~ Case 2. If (29) holds, we can apply the same argument as above to show that —f?
is Pareto for 2= |B|=k +1.

Case 3. If (30) holds, applying a similar argument to that of Case 1 shows that

F2(X?)= L(B) for all permutations o of B ={a,, ax, - - -, ax+1}; hence by consistency
£2 is trivial. Therefore, in fact, f? is trivial whenever 2=|B|=k+1. O
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A subset C < Q" (Q is the set of rationals) is said to be Q-convex if forallx,ye C
and rational A,0=A=1,Ax+(1-A)ye C.

One of the peculiar difficulties in providing results about consistent preference
functions (and CF’s) is that, while under various natural conditions it is easy to extend
their domain uniquely to the rationals (i.e. to include ‘‘fractional” voters) in such a
way that consistency and the other conditions are still satisfied, there is in general no
immediate way to obtain such an extension to the reals, even though in certain cases a
unique extension may exist. (See for example [16], [17].) As a practical matter errors
can develop if, during the proofs, one is not careful to restrict the analysis to Q-convex
sets and rational-valued vectors. Once the desired characterization is obtained then
the extension to the reals is usually obvious. (On this point a difficulty is encountered
in certain results in [12], where for example Theorem 2 asserts incorrectly that a
certain class of functions may be uniquely extended to the reals.)

To be able to work with Q-convex sets conveniently in the present context, we
need the following results. (Proofs may be found in [17].) The following abbreviations
will be used: “‘cvx” for convex hull “int” for interior, ‘‘ri”’ for relative interior “*aff”’ for
affine hull, and *‘cl” for closure. Sometimes it will also be notationally convenient to
write S rather than cl (S) for the closure of S.

LemMMA 3 [17]. C< Q" is Q-convex if and only if C=Q" Ncvx C.

Lemma 4 [17). If C < Q" is Q-convex then cl C is convex.

Lemma 5 [17]. If C=U _, S;, where C =R" is convex and k is finite, then for
some i, dim C =dim S,

A particular consequence of Lemma 4 is that Cccevx C<clC, hence ¢l C e
cl(cvx C)ccl(cl C)so

cl(cvx C)=cl C.

From this we deduce ri(cl C)=ri(cvx C), so by Lemma 3, Q" Nri{cl C)< C, and
Q" Nri(cl C) is dense in ri (cl (C)).

Proof of (26). Let f be a neutral, consistent, quasi-Condorcet SPF. To show that f
is K; —K, or T, it suffices, by Lemma 2, to assume that f is Pareto and to show that
f=K. (If f is not Pareto then either —f is Pareto or else f= T.)

The proof that f = K is by induction on the number of alternatives, m.

If m = 1 there is nothing to prove.

Suppose that m = 2. Then, by Lemma 1, f is symmetric and consistent; hence (for
two alternatives) the associated choice function f is also symmetric and consistent, so
Theorem 1 implies that f is a scoring function. But clearly the only distinct scoring
functions on two alternatives are f(l‘o), f“"”, and f(o'o), which are the same as K, — K,
and T respectively for two alternatives.

Suppose that m = 3. For any X € X?, X = (x;), such that e = (a,, a», as)e K (X).
It is easy to see that the following inequalities must hold:

X12+x2320,
(31) X13+x2320,
X12+X13§0.

Now any 3 %3 rational skew-symmetric X satisfying (31) must be a positive,
rational, linear combination of the five skew-symmetric 3 X3 matrices X', x°
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determined by
(0,0,0): X'
‘ (1,0,0): X~
(x12, x13, X23) = (0,1,0): X°
0,0,1): x*
(1, —-1,1): x°
(32) We claim that f(X)=K (X )for 1 =i <5.

Indeed f(X")=K(X")=L(a,, a, as) by neutrality; also, f(X*)=(ai, a-Xas)=
{(a\, az, a3), (a1, as, ay), (as. a1, a2)} = K (X?), by the fact that f? is Pareto for all
|B|=2 and f is quasi-Condorcet. Similarly f(X*)= K (X*), f/(X*)=K(X"). Finally,
note that X° is symmetric under any 3-cycle permutation of a,, a,, and as; hence
(since f(X°)# ¢-and f is neutral) either

(33) f(X5)= {(a1, as, as), (a2, as, ay), (a3, a,, as)},
or
(34) f(XS): {(as, a2, a1), (a2, ay, as), (ay, as, az)},
or
(35) f(XS).-:L({ah a,, as}).
Now let
| 0 -1 1
Y=Xxlaad=| 1 g 1/,
-1 -1 0

Because f is Pareto, f(Y)={(as, a;, a3)}. But Y +X°=2X"* 5o if either (34) or (35)
were true consistency would imply f(X*) =f(Y)YNF(X°)={(as, a,, as)}, a contradic-
tion. Therefore f(X°) is as in (33), so f(X*)= K (X*) and (32) holds.

Now for any X such that K(X)={e} we have X =Y,A,X" for some rational
A; >0; so by consistency and the fact that e € f(X')= K (X") for all i,

fX)=NfXD)= NKXH=K(X).

Thus f(X)=K(X) whenever e € K(X); hence by symmetry f(X)= K (X) for all
X, proving the theorem for m = 3.

Suppose that m z 4. The domain of f and of K is X° < X, and, by consistency, the
sets

(36) fo' ={xeX?: oef(X)}

are Q-convex for each o€ L(A).

In outline, the idea of the proof is now as follows. We first show that the
Q-convex sets f,' and f;' can be separated in the space X by a nonzero vector. This
involves showing that the interiors of the convex sets cl (f,') and cl (f-') are disjoint
(40). Next we consider the case where o and 7 are neighbors, it being sutficient (by
neutrality) to consider the case where 7 is the identity e. The structure of the
separating vector is then analyzed by constructing a collection of vectors that must all
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be orthogonal to it (43)-(45). The conclusion of the analysis is that the separating
vector is identical to the corresponding separating vector for the Kemeny function.
From this it follows that f must be a refinement of K in the sense that f(X)< K (X) for
every X (see (51)). Finally, it is shown in the following manner that f must Be equal to
K : if not, then there is a pair of neighbors o and 7 such that o, 7€ K(X) and 7€ f(X)
but o€ f(X) (see (52)); but this is shown to lead to a contradiction by again using the
convex separation theorem.
The set

(37) K;'={XeX?: ceK(X)}

is Q-convex for each o€ L(A).

Note that f;'2f '(0)={XeX?:fX)={c}} and K, 2K '(o)=Xe
X2 K(X)={o} - o

By Lemma 4, cl(f,')=f," is convex for each o. Since_Lit,f;1 =X, Lemma 5 .
implies that int f,' # ¢ for some o; hence by neutrality int f,' # ¢ for all . Now
int f;l < cvx f;l = f,', so by Lemma 3,
(38) X°Nint £, < f,

We claim that
(39) X Nint £ < f (o),

—1

that is, f(X)={o} for any X eX®nintf;'. Indeed, X°ef;', and for any Xe
Xoﬂintf;_1 and sufficiently small rational € >0 we have Y=(1+e)X—-eX ¢

X?Nint £, and
: £ 1
= 7+ Y;
X (1+5)X <1+£> ’

fX)=fXHNF(Y)={a},

so0 by consistency

proving (39). L
Since X< is dense in int fo! for all o, it follows from (39) that

(40) intf; Nintf, =¢ forallo#r

Therefore by the separation theorem for convex sets there exists, for every o # 7,
a nonzero matrix U € X such that

U™ -X=z0 forall Xef,,

(41) o =
U -X=0 forall Xef, .
Here ““ - ”” denotes the inner product of U’ and X, regarded as vectors.
Lete =(ay, as, - -, am)€ L(A) denote the identity permutation, and let o be any

neighbor of e (i.e., X7 is a neighbor of X° on the polytope P). Let U* = (u;) and
recall from § 5 that S(o) is the set of pairs p ={a;, a;} such that i <j and a; precedes q;
in 0. We claim that for some A >0 and for all 1 <j,

u;=—u;=A whenever{a, a;}e S(o),
(42)
u;=—u; =0 whenever{a, a;} £ S(c).
First, given any pair {a;, a;}¢ S(o), let i<j and define a matrix Xe X9 by
x; = —x; =1, and 0 elsewhere. Since /' is Pareto, the quasi-Condorcet property of
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f implies that e, o € f(X); hence U*” - X =0 and
43) u; =0 whenever{a, a;} £ S(o).

Now let p ={a; a;}, q ={ai, ax}e S(o) be any adjacent pairs in the graph I,
where, without loss of generality, j < k. Then {a;, ax} € S(o) and either

e=(—a;,—aj—ar—) and o=(—a;,—ax—a;—),
or
e=(—a—ar—a—) and o=(—a;—a;—ar—).

Define a matrix X = (x;)€ X such that

xij=—x; =1,

Xjke = — Xk = 1,
(44)

Xie = — X = — 1,

xm =0 forall other A, L.

Letting B ={a; a;, ar} we know by Lemma 2 that f2 satisfies our hypotheses, so if
X is X restricted to the rows and the columns corresponding to a, aj, ax, then
(ai, aj, ak)efB(X') and (a;, ay, a;)efB(X), by the preceding analysis for m =3 (i.e. (33)
above). Since f is quasi-Condorcet, we therefore have e, o € f(X); whence U - X =0
and

2ui+2uy —2uy = 0.
By (43), uj = 0; whence
uij=uy  whenever {a;, a;} € S(o) is adjacent

(45)
in T, to (a;, ar)e S(o).

(46) Notice, moreover, that if {a;, a;} € S(o) is adjacent in ', to {a;, ar} € S(o), then
i <j implies i <k (because if not then we have e =(—ay —a; —a;—) so o =(—
a; — a; — a, — ) and {a;, ar} € S(o), a contradiction).

Since o is a neighbor of e, T, is connected (22); hence (45) and (46) imply that
for some A

(47) u;=—u;=A wheneveri<jand{a, a;j}eS(o),
: u=u; =0 whenever i <j and {a,, a;} & S(o).

Since f is Pareto, X° ef.", and we must have U*” - X“ =0, that is, A 20, and in
fact A >0 because U # 0, proving (42). Without loss of generality, let A = 1; then
(48) U =3(X"~X").

For any given Y € X©, if e e f(Y) then ‘
U - Y=z0,thatis,
(49) : X¢-Y=X"-Y forall neighbors v of e.

It follows that
(50) X -YzX"-Y forallTelL(A),
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implying that e K(Y). Thus e e f(Y) implies e K(Y), so by neutrality f is a
refinement of K:
(51) fX)eK(X) forallXeX?cX.
We claim that
(52) whenever o is a neighbor of 7, if both o, 7€ K (X) and 7 € f(X) then o € f(X).

Suppose (52) is false for some neighbors o and 7. Say without loss of generality
that 7 =e. Then for some X"eXC,

(53) o ec KXY, eef(X"), o£f(X")
Since 0e Ko ={XeX? e, ceK(X)}, Y =aff Koy is a sub-space of X. Let
Y. =f'NKe,
Y,=f,'NKe.

Further, let Y. =cl (Y.)< Y, Y,=c(Y,)< Y. Since e and o are neighbors, there
is an X € X such that '

X - X=X -X°>X-X" forallm#e, 0.
Hence there is a rational X* X© with this property, and
| K(X*)={e, o}.

Let W =ri (cvx K., ). Since X* € cvx K. it follows that for every rational X e W
and sufficiently small rational A >0,

X'=(1+A)X -AX*eW.

Since X is rational, we have X' e Ko, (see the remarks after Lemma 5). Hence
{e, o} K(X)NK (X*)=K(X). But K(X*)={e, o}; s0

(54) K(X)={e,o} forallrational X eW.

For any rational X e W, (51) combined with (54) shows that e € f(X) or o € f(X),
hence X €Y. UY,. If X €W is not rational, then X is a limit point of a sequence of
rational X'e K:!. Hence there is a subsequence in Y. converging to X, or a
subsequence in Y, converging to X. In any case ’ '

(55) Y. UY,2W.

By Lemma 5, at least one of the subspaces aff Y., aff ¥, is equal to Y: let the
otherbe Y Y. ' :
We claim that

(56) rnY.NriY,=da¢.
Suppose (56) is false. Then ri Y.NriY,=S#¢ is open with respect to the

subspace Y'. Since every point in Y. is a limit pointof Y. & X©, and similarly for Y., S
contains a rational X' e X, and by the remarks after Lemma S,

57 C Xe¥Y. NY,
The X° of (53)is in Y.. so for sufficiently small rational A >0,
X'=(1+A)X'—2X"eri Y.,
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whence e € f(X"). Since
X'=X"/(1+)+AX°/(1+1),
f consistent implies
eef(X")=fX")NFXT),
while '
o¢ f(X°) implies o2 f(X").

Thus X' ¢Y,, contradicting (57). This shows that (56) is true.
The separation theorem for convex sets implies that there is a nonzero skew-
symmetric real matrix U, U €'Y, such that

U-Xz0 forallXeY.,
U-X=0 forallXeY..

Then, just as in the derivation of (47), we conclude that for some real number A,
u;=—u; =A wheneveri<jand{a;, a;}e S(o),
U= —Uj = 0 whenever i <] and {ai, a,—}é S(U‘)

But UeY =aff K, implies

U'(XE~XG):4 Z Llii:";O.
(ﬂi.a:;lS(U)
Thus A =0, so U =0, contradicting the choice of U. This proves (52).
Now suppose f # K, that is, by (51) there is an X* such that f(X*)g K(X™). Say

o, re K(X*), oef(X*), t£f(X%).

Let P* be the polytope {X e P : X* - X = max}.

Smce IK(X*)1>2 dim P*z 1, so by a theorem of Balinski [2] there is a path
o=, 7% -+, 7 =1 such that for 1=i<k,X™ 1s a neighbor of X™™' on P and
T eK(X*)for 1<z<k Now 7', w2 e K(X*) and mte f(X*), so by (52), w e f(X*).
Continuing in this manner, we conclude that 7% = 7 € f(X™*), a contradiction. Thus f is
identical to K.

7. Conclusion. In the social choice literature two divergent streams of thought
are apparent. One, which stems from Borda’s work, emphasizes scoring methods; the
‘fundamental property enjoyed by these methods is that they are consistent, which
amounts to saying that they satisfy a kind of Pareto principle for subgroups. This
condition seems very natural and desirable in the context of collective decision
making, and it is difficult to see how a preference function not satisfying this property
would be able to find general acceptance. The other, which grows out of Condorcet’s
proposal that an alternative able to get a majority over any other should be the
most-preferred alternative, is the problem of extending this idea in a natural way to
cases when a Condorcet alternative does not exist. '

As we have shown, these two ideas, suitably interpreted for preference functions,
~ are resolved in the method known as Kemeny’s rule; moreover subject to the basic
requirement that all alternatives be treated in an unbiased manner, Kemeny’s rule is
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the only preference function satisfying the three properties.”

The present development, compared to Kemeny’s, also provides an interesting
example of the use of axioms in the social sciences. Kemeny axiomatized a distance
measure by invoking certain mathematically appealing properties. But by concentrat-
ing on the distance minimizing aspect of the problem, the point was missed that it is
the decision function itself, rather than the distance, that possesses the 1mportant
properties.
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