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Abstract-Implementing neural networks on an 8-bit 
microcontroller with limited computing power presents several 
programming challenges. In order for the network to perform as 
quickly as possible, creating the software at the assembly level 
was chosen. Writing the software in assembly allows a level of 
customization that cannot be achieved with C. However, the need 
for hardware portability was also a motivating factor and a more 
generic C implementation was also created. It was also very 
important to manually manage the very limited amount of data 
memory. Several assembly routines were created with this 
purpose in mind. A pseudo floating point arithmetic protocol was 
created exclusively for neural network calculations along with a 
multiplication routine for multiplying large numbers. A tanh 
compatible activation function was also needed. The final 
procedure is capable of implementing any neural network 
architecture on a single operating platform. 

Keywords: Neural   Architecture (NA), Microcontroller, 
Embedded C, Pseudo Floating Point, Activation Function 

I. INTRODUCTION 

The first method was to use 16 bits to represent the weights, 
nodes, and inputs for the neural network. These 16-bits are 
all significant digits in this pseudo floating point protocol. 
The 16 bits consist of an 8-bit signed integer and an 8-bit 
fraction fractional part. The nonconventional part of this 
floating point routine is the way the exponent and mantissa 
are stored. Essentially all sixteen bits are the mantissa and 
the exponent for the neuron is stored elsewhere. This has 
several advantages. It allows more significant digits for 
every weight using less memory. 

II. HARDWARE IMPLEMENTATIONS 

The tools created to build the neural network on the 
microcontroller resulted in an equally challenging project as 
the embedded network. However, creating and debugging 
the assembly version of the neural network would never 
have been possible without the tools. Now with the 
automated system almost any trained network can be 
implemented on the microcontroller in a matter of seconds. 
A pseudo floating point arithmetic protocol was created 
exclusively for neural network calculations along with a 
multiplication routine for multiplying large numbers. A tanh 
compatible activation function was also needed. The final 
procedure is capable of implementing any neural network 
architecture on a single operating platform. This robust base 
removes the need to modify the structure of the software to 
make network architecture changes. 
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2.1. PSEUDO FLOATING POINT 
The first method was to use 16 bits to represent the weights, 
nodes, and inputs for the neural network. These 16-bits are 
all significant digits in this pseudo floating point protocol. 
The 16 bits consist of an 8-bit signed integer and an 8-bit 
fraction fractional part. The nonconventional part of this 
floating point routine is the way the exponent and mantissa 
are stored. Essentially all sixteen bits are the mantissa and 
the exponent for the neuron is stored elsewhere. This has 
several advantages. It allows more significant digits for 
every weight using less memory. This pseudo floating point 
protocol is tailored directly to the needs of the neural 
network forward calculations. This solution requiresthe 
analysis of the weights of each neuron and scales them 
accordingly and assigns an exponent for the entire neuron. A 
similar process is used for the inputs so the entire range will 
share a single scale factor. This scaling is done off chip 
before programming in order to save valuable processing 
time on each and every forward calculation. Scaling does 
two things, first it prevents overflow by keeping the 
numbers within operating regions, and secondly 
automatically filters out inactive weights. For example, if a 
neuron has weights that are several orders of magnitudes 
larger than others it will automatically round the smallest 
weights to zero. These weights being zero allow the 
calculations to be optimized, unlike using traditional 
floating point arithmetic. However, if all of the weights are 
the same magnitude they are all scaled to values that 
preserve maximum precision and significant digits. In other 
words, the weights are stored in a manner that minimizes 
error on a system with limited accuracy. Thus far, all of 
thesedecisions for scaling the weights are made before the 
network is programmed on the microcontroller. This process 
has been automated for ease of use. The Neural Network 
Trainer was modified to automatically scale the weights and 
inputs after it trains the network. This is done in Matlab and 
an example of the scaling process can be seen below. 

2.2. MULTIPLICATION 
The Pic18F45J10 microcontroller has an 8-bit by 8-bit 
unsigned hardwaremultiplier. Considering that the hardware 
multiplier cannot handle floating point values or negative 
numbers, a routine was needed to allow fast multiplication 
of fractional values. The multiply routine is passed two 
sixteen bit numbers, consisting of an eight-bit integer and an 
eight bit fraction portion. The routine returns a 32-bit 
product. The result of the multiplication routine is a 32-bit 
fixed point result shown in Figure 1. 
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Figure 1: Implementation of 16-bit fixed point 
multiplication using 8-bit hardware 
multiplier. Steps 1-4 are summed with place holders to 
give the final product on the 
result line. Abbreviations: Integer (I) Fractional (F) 
Product (P) Lower-Byte (L) Higher- 
Byte  (H). 

2.3. ACTIVATION FUNCTION 
A soft activation function was needed for the neural 
network. The most common activation function is tanh and 
the definition is shown back in Equation 1. The pure 
definition tanh was not a reasonable solution for several 
reasons. Specifically, the exponents would be very difficult 
to calculate accurately with the limited hardware in a timely 
fashion. A second order approximation of tanh was chosen 
for its accuracy as well as its simple arithmetic calculations. 
Several features were added to the activation function 
besides simply calculating a second order approximation of 
tanh. One of these features analyses the inputs to the 
activation function and converts negative numbers to 
positive numbers to make the internal calculations faster and 
reduce the number of values that must be stored in the 
lookup table. The sign is restored at the end of the activation 
function. Another feature is a check to see if the neuron is in 
saturation. In other words, make sure the net value is within 
a given range. In this case the second order approximation is 
skipped and the neuron is put into saturation. These features 
of the second order approximation can be seen in better 
detail in Figure 2. The routine requires that 30 values be 
stored in program memory. This is not simply a lookup table 
for tanh because a much more precise value is required. The 
tanh equivalent of 25 numbers between zero and four are 
stored. These numbers, which are the end points of the 
linear approximation, are rounded off to 16-bits of accuracy. 
Then a point between each pair from the linear 
approximation is stored. These points are the peaks of a 
second-order polynomial that crosses at the same points as 
the linear approximations. Based on the four most 
significant bits that are input into the activation function, a 
linear approximation of tangent hyperbolic is selected. The 
remaining bits of the number are used in the second-order 
polynomial. The coefficients for this polynomial were 
previously indexed by the integer value in the first step.The 
approximation of tanh is calculated by reading the values of 

yA, yB and ∆y from memory and then the first linear 
approximation is calculated using yA andyB. 
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The next step is the second-order function that corrects most 
of the error that was introduced by the linearization of the 
tangent hyperbolic function. 
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In order to utilize 8-bit hardware multiplication, the size of 
∆x was selected as128. This way the division operation in 
both equations can be replaced by the right shift operation. 
Calculation of y1 requires one subtraction, one 8-bit 
multiplication, one shift right by 7 bits, and one addition. 
Calculation of y2 requires one 8-bit subtraction, two 8- bit 
multiplications and shift right by 14-bits. Ideally this 
activation function would work without any modification, 
but when the neurons are operating in the linear region 
(when the net values are between -1 and 1) the activation 
function is not making full use of the available. 
 
 
 
 
 
 
 
 
 
 

Figure 2: Example of linear approximations (red) and 
parabolas between 0 and 4(magenta). Tanh (green) and 
the approximation (blue) are also shown on the graph. 
Only 4 divisions were used for demonstration purposes. 

The activation function is tested in hardware by sending a 
set of numbers from -5 to +5 and comparing them to the 
output of the tanh function. The difference between the sets 
of numbers can be seen in Figure 3. 

 
 

 

 

 

 

 

 

 
Figure 3. Error from tanh approximation using 6 
divisions from -5 to +5. 
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2.4. MEMORY STRUCTURES 
The Microchip PIC 18F45J10 microcontroller was used to 
implement the neuralnetwork. The microcontroller has only 
one true register that can be used for holding data, passing 
data, and ALU calculations. It has 1 Kbyte of ram memory 
and when the neural network has 255 .This memory is 
divided into four 256 byte banks. Only one of these banks 
can be accessed directly without the use of extra addressing 
instructions. This one bank has 128 bytes of general purpose 
memory and 128 bytes of processor configuration memory. 
This general purpose memory is used as global and 
temporary variables for calculations. The other three banks 
are used for the weights and the individual nodes of the 
neural network. The weights are stored as 16-bit numbers, 
which consist of an 8-bit integer and an 8-bit fractional part. 
Two banks are used to store the high and low byte of each 
weight. This allows for 255 weights to be stored. The zero 
location is not used for indexing reasons. Figure 13 shows 
the memory mapping. As the output of the neural network is 
calculated the output of each neuron and the inputs need to 

be stored throughout the entire calculation to allow multi-
layer connections. These node values are also 16-bit values. 
This poses a problem because there is only one ram bank 
left and two banks are needed. This problem is solved by 
splitting this bank into two separate banks; the low bank and 
high bank hold the low byte and high byte respectively. 
Notice this adds an additional limitation to the neural 
network size. The network may only have 127 total inputs 
and nodes. This limitation will most likely not be the 
dominant factor in many cases. Typically the weight 
limitation would be met prior to approaching the node limit. 
This memory limitation is only relevant to this 
microcontroller. This concept could be extended to other 
microcontrollers or systems with extended ram. More ram 
could easily allow for even larger networks with greater 
numbers of neurons and weights. The C version of the 
software stores all weights and architecture values in 
program memory not in RAM. There simply is not enough 
ram for the C version to function if these values are in ram. 
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Figure 4. Memory Allocation Table for Pic18F45J10 
 

III. NEURON BY NEURON COMPUTATION PROCESS 

3.1. FORWARD CALCULATIONS 
This process of forward calculations is a unique method 
compared to most neural network implementations because 
it uses the Neuron By Neuron method. This method requires 
special modifications due to the fact that assembly language 
is used with very limited memory resources. The process is 
written so that each neuron is calculated individually in a 
series of nested loops; see Figure 14. The number of 
calculations for each loop and values for each node are all 
stored in two simple arrays in memory. The assembly 
language code does not require any modification to change 
the network’s architecture. The only change that is required 
is to update these two arrays that are loaded into program 
memory. These arrays contain the architecture and the 
weights of the network and are generated by NNT. The 
weights are stored in ROM or off chip and are loaded into 
RAM for faster calculations. Finally there are numerous 
constants that are configured such as scale values and 
saturated neuron values. After the initialization block, the 
Main Loop begins. This is an infinite loop that keeps the 
network sampling new inputs and then starting the forward 

calculations. With the next input sampled the network resets 
pointers and index values and enters the Network Loop. 
 

3.2. INDIVIDUAL NEURON CALCULATIONS 
The Neuron calculations go through several steps in order to 
process the pseudofloating point arithmetic. The first step is 
the net value calculation which is shown in Figure 5. 
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The inputs are multiplied by the corresponding weights and 
the result is stored in the 32-bit Net register. This is 
essentially a multiply and accumulate register designed for 
this particular stage. It is very important to keep all 32 bits 
in this stage for adding and subtracting. Without the 32 bits 
of precision at this step itwould be very easy for an overflow 
to occur during the summing process that would not be 
reflected in the final net value.The next stage is to turn the 
pseudo floating point number into a fixed pointnumber.  
This process can be seen in Figure 6 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
//Weights  
Number of inputs; Number of outputs; (8-Bit) 
Number of Weights; (8-bit) 
Weight(1), Weight(2), Weight(3)....Weight(N);  
Number of Neurons; 
//Neuron 1 
Neuron Scale, Number of Inputs, Output Node, 
Inputs(1-N) 
//Neuron 2 
Neuron Scale, Number of Inputs, Output Node, 
Inputs(1-N) 
. 
. 
. 
//Neuron N 
Neuron Scale, Number of Inputs, Output Node, 
Inputs(1-N) 
[Forward Calculations of Neurons] 

IV. APPLICATION 

In order to demonstrate that the microcontroller neural 
network is performingcorrectly several example control 
problems were tested. Neural networks have the unique 
ability to solve multi-dimensional problems with many 
inputs and many outputs, however these types of problems 
are not easy to test and verify visually. For this reason the 
network was tested mainly with two input and one output 
problems in order to plot the output as a function of the 
input on a three dimensional surface. This is not the only 
type of problem that can be solved, it is just to demonstrate. 
A two input and two output system is also shown by 
graphing the outputs separately to demonstrate that other 
types of networks will work as well.The process is tested 
with the microcontroller hardware in the loop. In 

otherwords, the sensor data is transmitted via the serial port 
from Mat lab to the microcontroller. The microcontroller 
then calculates the results and transmits this data via the 
serial port back to Matlab. The reason for this simulation is 
to isolate the errors in the system to those produced by the 
microcontroller calculations. The following examples will 
have some or all of the images that are described: 
Training Data --- The training data is the data used to train 
the neural network.The number of points will vary with the 
application. 
Ideal Neural Network -- This refers to a neural network 
running on a computeror a system using the IEEE floating 
point standard. The word ideal refers tomost practical 
applications where there is no significant data loss due to 
theprecision of the calculations. However, this is still a 
neural networkapproximation of the training data and not an 
identical representation. 
PIC Based Neural Network -- This is the output of the 
neural network runningon the PIC hardware. This 
approximation will not be identical to the ideal neural 
network because of the approximations that are made on the 
microcontroller. 
Error Surfaces -- The error surfaces are differences 
between two of thepreviously shown surfaces. The surfaces 
will give a visual description ofdifferences between surfaces 
shown on the same scale as the original surface.This 
comparison separates the error of using an ideal neural 
network and using a neural network with on the PIC. 
Error Surfaces Tight -- These surfaces are the same as the 
error surfaces except on a much narrower scale to show 
what shape the errors have taken. This allows the user to 
identify problem areas or to confirm the error is evenly 
distributed. 
Histograms -- The histograms show the errors of different 
surfaces in a numerical manner. This shows the distributions 
of the errors, in order to identify the distribution of the 
errors. The X-axis is the errors and the Y-axis is the number 
of data points within the corresponding error range. 

V. CONCLUSION 

The software offers the user the option of installing the 
network on a Microchip's 18Fxxxx series microcontroller 
using custom made neural network software written in 
assembly language and optimized for both the 
microcontroller and the neural network application. This 
version offers a very fast and accurate solution on a very 
inexpensive microcontroller. If the user prefers to use a 
different platform then the C code generated can be used to 
implement the trained network on any C capable platform. 
This can be used on other microcontrollers as well as PC 
based neural networks. This accomplishment demonstrates 
that neural networks can be used to solve problems that in 
the past would require custom software programs to be 
written for each problem. In other words, if three separate 
microcontrollers were needed to control three different 
processes for a single project then three unique programs 
would need to be written. This solution offers one standard 
solution for controlling all three. The user simply needs to 
train three separate networks, which is an automated 
process. Then the user has the solutions for unique problems 
without having to write code for the mathematics.  
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