
 International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-3, Issue-5, June 2014

131
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Artificial Neural Network Implementation in
Microchip PIC 18F45J10 8-Bit Microcontroller

Jnana Ranjan Tripathy, Hrudaya Kumar Tripathy, S.S.Nayak

Abstract-Implementing neural networks on an 8-bit
microcontroller with limited computing power presents several
programming challenges. In order for the network to perform as
quickly as possible, creating the software at the assembly level
was chosen. Writing the software in assembly allows a level of
customization that cannot be achieved with C. However, the need
for hardware portability was also a motivating factor and a more
generic C implementation was also created. It was also very
important to manually manage the very limited amount of data
memory. Several assembly routines were created with this
purpose in mind. A pseudo floating point arithmetic protocol was
created exclusively for neural network calculations along with a
multiplication routine for multiplying large numbers. A tanh
compatible activation function was also needed. The final
procedure is capable of implementing any neural network
architecture on a single operating platform.

Keywords: Neural Architecture (NA), Microcontroller,
Embedded C, Pseudo Floating Point, Activation Function

I. INTRODUCTION

The first method was to use 16 bits to represent the weights,
nodes, and inputs for the neural network. These 16-bits are
all significant digits in this pseudo floating point protocol.
The 16 bits consist of an 8-bit signed integer and an 8-bit
fraction fractional part. The nonconventional part of this
floating point routine is the way the exponent and mantissa
are stored. Essentially all sixteen bits are the mantissa and
the exponent for the neuron is stored elsewhere. This has
several advantages. It allows more significant digits for
every weight using less memory.

II. HARDWARE IMPLEMENTATIONS

The tools created to build the neural network on the
microcontroller resulted in an equally challenging project as
the embedded network. However, creating and debugging
the assembly version of the neural network would never
have been possible without the tools. Now with the
automated system almost any trained network can be
implemented on the microcontroller in a matter of seconds.
A pseudo floating point arithmetic protocol was created
exclusively for neural network calculations along with a
multiplication routine for multiplying large numbers. A tanh
compatible activation function was also needed. The final
procedure is capable of implementing any neural network
architecture on a single operating platform. This robust base
removes the need to modify the structure of the software to
make network architecture changes.

Manuscript Received on June 2014.

Er. Jnana Ranjan Tripathy, Department of Computer Science &
Engineering, Biju Pattnaik University of Technology, Orissa Engineering
College Bhubaneswar, Odisha-752050, India.

Dr.Hrudaya Kumar Tripathy, Department of Computer Science &
Engineering, KIIT University,Bhubaneswar, Odisha, India.

Dr. S.S.Nayak,, Centurion University of Technology & Management
Paralakhemundi, Odisha, India.

2.1. PSEUDO FLOATING POINT
The first method was to use 16 bits to represent the weights,
nodes, and inputs for the neural network. These 16-bits are
all significant digits in this pseudo floating point protocol.
The 16 bits consist of an 8-bit signed integer and an 8-bit
fraction fractional part. The nonconventional part of this
floating point routine is the way the exponent and mantissa
are stored. Essentially all sixteen bits are the mantissa and
the exponent for the neuron is stored elsewhere. This has
several advantages. It allows more significant digits for
every weight using less memory. This pseudo floating point
protocol is tailored directly to the needs of the neural
network forward calculations. This solution requiresthe
analysis of the weights of each neuron and scales them
accordingly and assigns an exponent for the entire neuron. A
similar process is used for the inputs so the entire range will
share a single scale factor. This scaling is done off chip
before programming in order to save valuable processing
time on each and every forward calculation. Scaling does
two things, first it prevents overflow by keeping the
numbers within operating regions, and secondly
automatically filters out inactive weights. For example, if a
neuron has weights that are several orders of magnitudes
larger than others it will automatically round the smallest
weights to zero. These weights being zero allow the
calculations to be optimized, unlike using traditional
floating point arithmetic. However, if all of the weights are
the same magnitude they are all scaled to values that
preserve maximum precision and significant digits. In other
words, the weights are stored in a manner that minimizes
error on a system with limited accuracy. Thus far, all of
thesedecisions for scaling the weights are made before the
network is programmed on the microcontroller. This process
has been automated for ease of use. The Neural Network
Trainer was modified to automatically scale the weights and
inputs after it trains the network. This is done in Matlab and
an example of the scaling process can be seen below.

2.2. MULTIPLICATION
The Pic18F45J10 microcontroller has an 8-bit by 8-bit
unsigned hardwaremultiplier. Considering that the hardware
multiplier cannot handle floating point values or negative
numbers, a routine was needed to allow fast multiplication
of fractional values. The multiply routine is passed two
sixteen bit numbers, consisting of an eight-bit integer and an
eight bit fraction portion. The routine returns a 32-bit
product. The result of the multiplication routine is a 32-bit
fixed point result shown in Figure 1.

 Artificial Neural Network Implementation in Microchip PIC 18F45J10 8-Bit Microcontroller

132
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Figure 1: Implementation of 16-bit fixed point
multiplication using 8-bit hardware
multiplier. Steps 1-4 are summed with place holders to
give the final product on the
result line. Abbreviations: Integer (I) Fractional (F)
Product (P) Lower-Byte (L) Higher-
Byte (H).

2.3. ACTIVATION FUNCTION
A soft activation function was needed for the neural
network. The most common activation function is tanh and
the definition is shown back in Equation 1. The pure
definition tanh was not a reasonable solution for several
reasons. Specifically, the exponents would be very difficult
to calculate accurately with the limited hardware in a timely
fashion. A second order approximation of tanh was chosen
for its accuracy as well as its simple arithmetic calculations.
Several features were added to the activation function
besides simply calculating a second order approximation of
tanh. One of these features analyses the inputs to the
activation function and converts negative numbers to
positive numbers to make the internal calculations faster and
reduce the number of values that must be stored in the
lookup table. The sign is restored at the end of the activation
function. Another feature is a check to see if the neuron is in
saturation. In other words, make sure the net value is within
a given range. In this case the second order approximation is
skipped and the neuron is put into saturation. These features
of the second order approximation can be seen in better
detail in Figure 2. The routine requires that 30 values be
stored in program memory. This is not simply a lookup table
for tanh because a much more precise value is required. The
tanh equivalent of 25 numbers between zero and four are
stored. These numbers, which are the end points of the
linear approximation, are rounded off to 16-bits of accuracy.
Then a point between each pair from the linear
approximation is stored. These points are the peaks of a
second-order polynomial that crosses at the same points as
the linear approximations. Based on the four most
significant bits that are input into the activation function, a
linear approximation of tangent hyperbolic is selected. The
remaining bits of the number are used in the second-order
polynomial. The coefficients for this polynomial were
previously indexed by the integer value in the first step.The
approximation of tanh is calculated by reading the values of

yA, yB and ∆y from memory and then the first linear
approximation is calculated using yA andyB.

x
xyyyxy AB

A

2

).()(1

(1)

The next step is the second-order function that corrects most
of the error that was introduced by the linearization of the
tangent hyperbolic function.

))(()(22
22 xxx

x
yxy

 (2)

Or

22
)2()(

x
xxxyxy

 (3)

In order to utilize 8-bit hardware multiplication, the size of
∆x was selected as128. This way the division operation in
both equations can be replaced by the right shift operation.
Calculation of y1 requires one subtraction, one 8-bit
multiplication, one shift right by 7 bits, and one addition.
Calculation of y2 requires one 8-bit subtraction, two 8- bit
multiplications and shift right by 14-bits. Ideally this
activation function would work without any modification,
but when the neurons are operating in the linear region
(when the net values are between -1 and 1) the activation
function is not making full use of the available.

Figure 2: Example of linear approximations (red) and
parabolas between 0 and 4(magenta). Tanh (green) and
the approximation (blue) are also shown on the graph.
Only 4 divisions were used for demonstration purposes.

The activation function is tested in hardware by sending a
set of numbers from -5 to +5 and comparing them to the
output of the tanh function. The difference between the sets
of numbers can be seen in Figure 3.

Figure 3. Error from tanh approximation using 6
divisions from -5 to +5.

 International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-3, Issue-5, June 2014

133
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

2.4. MEMORY STRUCTURES
The Microchip PIC 18F45J10 microcontroller was used to
implement the neuralnetwork. The microcontroller has only
one true register that can be used for holding data, passing
data, and ALU calculations. It has 1 Kbyte of ram memory
and when the neural network has 255 .This memory is
divided into four 256 byte banks. Only one of these banks
can be accessed directly without the use of extra addressing
instructions. This one bank has 128 bytes of general purpose
memory and 128 bytes of processor configuration memory.
This general purpose memory is used as global and
temporary variables for calculations. The other three banks
are used for the weights and the individual nodes of the
neural network. The weights are stored as 16-bit numbers,
which consist of an 8-bit integer and an 8-bit fractional part.
Two banks are used to store the high and low byte of each
weight. This allows for 255 weights to be stored. The zero
location is not used for indexing reasons. Figure 13 shows
the memory mapping. As the output of the neural network is
calculated the output of each neuron and the inputs need to

be stored throughout the entire calculation to allow multi-
layer connections. These node values are also 16-bit values.
This poses a problem because there is only one ram bank
left and two banks are needed. This problem is solved by
splitting this bank into two separate banks; the low bank and
high bank hold the low byte and high byte respectively.
Notice this adds an additional limitation to the neural
network size. The network may only have 127 total inputs
and nodes. This limitation will most likely not be the
dominant factor in many cases. Typically the weight
limitation would be met prior to approaching the node limit.
This memory limitation is only relevant to this
microcontroller. This concept could be extended to other
microcontrollers or systems with extended ram. More ram
could easily allow for even larger networks with greater
numbers of neurons and weights. The C version of the
software stores all weights and architecture values in
program memory not in RAM. There simply is not enough
ram for the C version to function if these values are in ram.

 Bank 0 Bank 1 Bank 2 Bank 0

0*00

0*80

0*FF

Figure 4. Memory Allocation Table for Pic18F45J10

III. NEURON BY NEURON COMPUTATION PROCESS

3.1. FORWARD CALCULATIONS
This process of forward calculations is a unique method
compared to most neural network implementations because
it uses the Neuron By Neuron method. This method requires
special modifications due to the fact that assembly language
is used with very limited memory resources. The process is
written so that each neuron is calculated individually in a
series of nested loops; see Figure 14. The number of
calculations for each loop and values for each node are all
stored in two simple arrays in memory. The assembly
language code does not require any modification to change
the network’s architecture. The only change that is required
is to update these two arrays that are loaded into program
memory. These arrays contain the architecture and the
weights of the network and are generated by NNT. The
weights are stored in ROM or off chip and are loaded into
RAM for faster calculations. Finally there are numerous
constants that are configured such as scale values and
saturated neuron values. After the initialization block, the
Main Loop begins. This is an infinite loop that keeps the
network sampling new inputs and then starting the forward

calculations. With the next input sampled the network resets
pointers and index values and enters the Network Loop.

3.2. INDIVIDUAL NEURON CALCULATIONS
The Neuron calculations go through several steps in order to
process the pseudofloating point arithmetic. The first step is
the net value calculation which is shown in Figure 5.

General
Purpose
Memory

Processor
Setup
Memory

Weights
High Bytes

Weights
Low Bytes

High Byte
Network
Nodes

Low Byte
Network
Nodes

A
dd

re
ss

 Artificial Neural Network Implementation in Microchip PIC 18F45J10 8-Bit Microcontroller

134
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

The inputs are multiplied by the corresponding weights and
the result is stored in the 32-bit Net register. This is
essentially a multiply and accumulate register designed for
this particular stage. It is very important to keep all 32 bits
in this stage for adding and subtracting. Without the 32 bits
of precision at this step itwould be very easy for an overflow
to occur during the summing process that would not be
reflected in the final net value.The next stage is to turn the
pseudo floating point number into a fixed pointnumber.
This process can be seen in Figure 6

//Weights
Number of inputs; Number of outputs; (8-Bit)
Number of Weights; (8-bit)
Weight(1), Weight(2), Weight(3)....Weight(N);
Number of Neurons;
//Neuron 1
Neuron Scale, Number of Inputs, Output Node,
Inputs(1-N)
//Neuron 2
Neuron Scale, Number of Inputs, Output Node,
Inputs(1-N)
.
.
.
//Neuron N
Neuron Scale, Number of Inputs, Output Node,
Inputs(1-N)
[Forward Calculations of Neurons]

IV. APPLICATION

In order to demonstrate that the microcontroller neural
network is performingcorrectly several example control
problems were tested. Neural networks have the unique
ability to solve multi-dimensional problems with many
inputs and many outputs, however these types of problems
are not easy to test and verify visually. For this reason the
network was tested mainly with two input and one output
problems in order to plot the output as a function of the
input on a three dimensional surface. This is not the only
type of problem that can be solved, it is just to demonstrate.
A two input and two output system is also shown by
graphing the outputs separately to demonstrate that other
types of networks will work as well.The process is tested
with the microcontroller hardware in the loop. In

otherwords, the sensor data is transmitted via the serial port
from Mat lab to the microcontroller. The microcontroller
then calculates the results and transmits this data via the
serial port back to Matlab. The reason for this simulation is
to isolate the errors in the system to those produced by the
microcontroller calculations. The following examples will
have some or all of the images that are described:
Training Data --- The training data is the data used to train
the neural network.The number of points will vary with the
application.
Ideal Neural Network -- This refers to a neural network
running on a computeror a system using the IEEE floating
point standard. The word ideal refers tomost practical
applications where there is no significant data loss due to
theprecision of the calculations. However, this is still a
neural networkapproximation of the training data and not an
identical representation.
PIC Based Neural Network -- This is the output of the
neural network runningon the PIC hardware. This
approximation will not be identical to the ideal neural
network because of the approximations that are made on the
microcontroller.
Error Surfaces -- The error surfaces are differences
between two of thepreviously shown surfaces. The surfaces
will give a visual description ofdifferences between surfaces
shown on the same scale as the original surface.This
comparison separates the error of using an ideal neural
network and using a neural network with on the PIC.
Error Surfaces Tight -- These surfaces are the same as the
error surfaces except on a much narrower scale to show
what shape the errors have taken. This allows the user to
identify problem areas or to confirm the error is evenly
distributed.
Histograms -- The histograms show the errors of different
surfaces in a numerical manner. This shows the distributions
of the errors, in order to identify the distribution of the
errors. The X-axis is the errors and the Y-axis is the number
of data points within the corresponding error range.

V. CONCLUSION

The software offers the user the option of installing the
network on a Microchip's 18Fxxxx series microcontroller
using custom made neural network software written in
assembly language and optimized for both the
microcontroller and the neural network application. This
version offers a very fast and accurate solution on a very
inexpensive microcontroller. If the user prefers to use a
different platform then the C code generated can be used to
implement the trained network on any C capable platform.
This can be used on other microcontrollers as well as PC
based neural networks. This accomplishment demonstrates
that neural networks can be used to solve problems that in
the past would require custom software programs to be
written for each problem. In other words, if three separate
microcontrollers were needed to control three different
processes for a single project then three unique programs
would need to be written. This solution offers one standard
solution for controlling all three. The user simply needs to
train three separate networks, which is an automated
process. Then the user has the solutions for unique problems
without having to write code for the mathematics.

 International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-3, Issue-5, June 2014

135
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

REFERENCES
[1] A. M. Zin, M. Rukonuzzaman, H. Shaibon, and K. I. Lo, "Neural

network approach of harmonics detection," in Proc. Int. Conf. Energy
Management and Power Delivery EMPD '98, 1998, pp. 467-472.

[2] H. C. Lin, "Dynamic power system harmonic detection using neural
network," in Proc. IEEE Conf. Cybernetics and Intelligent Systems,
2004, pp. 757-762.

[3] S. Osowski, "Neural network for estimation of harmonic components in
a power system," IEE Proceedings C Generation, Transmission and
Distribution, vol. 139, pp. 129-135, 1992.

[4] Z. Jin and B. K. Bose, "Neural-network-based waveform Processing
andDelayless filtering in power electronics and AC drives," Industrial
Electronics, IEEE Transactions on, vol. 51, pp. 981-991, 2004.

[5] M. J. Embrechts and S. Benedek, "Hybrid identification of nuclear
power plant transients with artificial neural networks," Industrial
Electronics, IEEE Transactions on, vol. 51, pp. 686-693, 2004.

[6] L. Hsiung Cheng, "Intelligent Neural Network-Based Fast Power
SystemHarmonic Detection," Industrial Electronics, IEEE Transactions
on, vol. 54, pp. 43-52, 2007.

[7] H. C. Lin, "Intelligent Neural Network-Based Fast Power System
Harmonic Detection," IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS, vol. 54, pp. 43-52, 2007.

[8] W. Qiao and R. G. Harley, "Indirect Adaptive External Neuro-Control
for a Series Capacitive Reactance Compensator Based on a Voltage
Source PWM Converter in Damping Power Oscillations," IEEE
Transactions on Industrial Electronics, vol. 54, pp. 77-85, 2007.

[9] B. Singh, V. Verma, and J. Solanki, "Neural Network-Based
SelectiveCompensation of Current Quality Problems in Distribution
System," IEEE Transactions on Industrial Electronics, vol. 54, pp. 53-
60, 2007.

[10] S. S. Ge and W. Cong, "Adaptive neural control of uncertain MIMO
nonlinear systems," Neural Networks, IEEE Transactions on, vol. 15,
pp. 674-692, 2004.

[11] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and P.
A.Ioannou, "High-order neural network structures for identification of
dynamical systems," Neural Networks, IEEE Transactions on, vol. 6,
pp. 422-431, 1995.

Er. Jnana Ranjan Tripathy, Pusruing PhD in Centurion University of
Technology and Management in “ANN Implementation in Embedded
Systems” M.Tech in Computer Science,Berhampur University
B.Tech in Information Technology, BPUT, Currently working in Orissa
Engineering College, Odisha, Worked at Centurion University
previously. Member of IACSIT

Dr.Hrudaya Kumar Tripathy, Ph.D in Computer Science from
Berhampur University. M.Tech in CSE from IIT, Guwahati, B.Tech
(Ceramic Technology) from IIC (CG&CRI), Kolkatta, KIIT University
Chandrasekhpur, Bhubaneswar, Odisha. Published around 20 No.(s) of
research papers in reputedinternational referred journals & IEEE
conferences. Technicalreviewer and member of technical committee of
manyInternational conferences.

Dr. S.S.Nayak, Dean, R & D, Centurion University of Technology &
Management Published around 30 No.(s) of research papers in reputed
international referred journals & IEEE conferences.

