
Very Long Instruction Word (VLIW)
Architectures

55:132/22C:160
High Performance Computer Architecture

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

What Is VLIW?
� VLIW hardware is simple and straightforward,
� VLIW separately directs each functional unit

add r1,r2,r3

FU FU FU FU

load r4,r5+4 mov r6,r2 mul r7,r8,r9

VLIW
Instruction
Execution

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Historical Perspective:
Microcoding, nanocoding (and RISC)

micro
sequencer

microcode
store

datapath control

Macro
Instructions

nanocode
store

datapath control

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Horizontal Microcode and VLIW

� A generation of high-performance, application-specific
computers relied on horizontally microprogrammed
computing engines.

� Aggressive (but tedious) hand programming at the
microcode level provided performance well above
sequential processors.

Microsequencer
(2910) Microcode Memory

Bit
Slice
ALU

Bit
Slice
ALU

Bit
Slice
ALU

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Principles of VLIW Operation
� Statically scheduled ILP architecture.
� Wide instructions specify several independent simple operations.

� Multiple functional units execute all of the operations in an
instruction concurrently, providing fine-grain parallelism within
each instruction

� Instructions directly control the hardware with no interpretation
and minimal decoding.

� A powerful optimizing compiler is responsible for locating and
extracting ILP from the program and for scheduling operations to
exploit the available parallel resources

The processor does not make any run-time control decisions
below the program level

VLIW Instruction
100 - 1000 bits

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Formal VLIW Models

� Josh Fisher proposed the first VLIW machine at Yale (1983)
� Fisher’s Trace Scheduling algorithm for microcode

compaction could exploit more ILP than any existing
processor could provide.

� The ELI-512 was to provide massive resources to a single
instruction stream
- 16 processing clusters- multiple functional units/cluster.
- partial crossbar interconnect.
- multiple memory banks.
- attached processor – no I/O, no operating system.

� Later VLIW models became increasingly more regular
- Compiler complexity was a greater issue than originally envisioned

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Ideal Models for VLIW Machines

� Almost all VLIW research has been based upon an
ideal processor model.

� This is primarily motivated by compiler algorithm
developers to simplify scheduling algorithms and
compiler data structures.
- This model includes:

• Multiple universal functional units
• Single-cycle global register file

and often:
• Single-cycle execution
• Unrestricted, Multi-ported memory
• Multi-way branching

and sometimes:
• Unlimited resources (Functional units, registers, etc.)

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

VLIW Execution Characteristics

Basic VLIW architectures are a generalized form of horizontally
microprogrammed machines

Functional
Unit

Global Multi-Ported Register File

Instruction
Memory

Functional
Unit

Functional
Unit

Functional
Unit

Sequencer
Condition Codes

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

VLIW Design Issues

� Unresolved design issues
- The best functional unit mix
- Register file and interconnect topology
- Memory system design
- Best instruction format

� Many questions could be answered through
experimental research
- Difficult - needs effective retargetable compilers

� Compatibility issues still limit interest in general-purpose
VLIW technology

However, VLIW may be the only way to build 8-16
operation/cycle machines.

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Realistic VLIW Datapath

FAdd
(1 cycle)

Multi-Ported Register File

Instruction
Memory

FMul
4 cyc pipe

FMul
4 cyc unpipe

FDiv
16 cycle

Sequencer
Condition Codes

Multi-Ported Register File

No Bypass!!
No Stall!!

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Scheduling for Fine-Grain Parallelism

� The program is translated into primitive RISC-style
(three address) operations

� Dataflow analysis is used to derive an operation
precedence graph from a portion of the original
program

� Operations which are independent can be scheduled
to execute concurrently contingent upon the
availability of resources

� The compiler manipulates the precedence graph
through a variety of semantic-preserving
transformations to expose additional parallelism

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Example

Original Program 3-Address Code

Dependency Graph

VLIW Instructions

e = (a + b) * (c + d)
b++;

A: r1 = a + b
B: r2 = c + d
C: e = r1 * r2
D: b = b + 1

B

C

A

D

00: add a,b,r1 add c,d,r2 add b,1,b

01: mul r1,r2,e nop nop

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

VLIW List Scheduling

� Assign Priorities
� Compute Data Ready List - all operations whose predecessors

have been scheduled.
� Select from DRL in priority order while checking resource

constraints
� Add newly ready operations to DRL and repeat for next instruction

1
5

4
3

2
2

5
3

7
2

3
3

8
2

12
2

9
3

13
1

10
1

11
1

6
4

4-wide VLIW Data Ready List

1 {1}

6 3 4 5 {2,3,4,5,6}

9 2 7 8 {2,7,8,9}

12 10 11 {10,11,12}

13 {13}

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Enabling Technologies for VLIW

� VLIW Architectures attempt to achieve high
performance through the combination of a number of
key enabling hardware and software technologies.
- Optimizing Schedulers (compilers)
- Static Branch Prediction
- Symbolic Memory Disambiguation
- Predicated Execution
- (Software) Speculative Execution
- Program Compression

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Strengths of VLIW Technology

� Parallelism can be exploited at the instruction level
- Available in both vectorizable and sequential programs.

� Hardware is regular and straightforward
- Most hardware is in the datapath performing useful

computations.
- Instruction issue costs scale approximately linearly

Potentially very high clock rate

� Architecture is “Compiler Friendly”
- Implementation is completely exposed - 0 layer of interpretation
- Compile time information is easily propagated to run time.

� Exceptions and interrupts are easily managed
� Run-time behavior is highly predictable

- Allows real-time applications.
- Greater potential for code optimization.

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Weaknesses of VLIW Technology

� No object code compatibility between generations
� Program size is large (explicit NOPs)

Multiflow machines predated “dynamic memory
compression” by encoding NOPs in the instruction memory

� Compilers are extremely complex
- Assembly code is almost impossible

� Difficulties with variable memory latencies (caching)
� VLIW memory systems can be very complex

- Simple memory systems may provide very low performance
- Program controlled multi-layer, multi-banked memory

� Parallelism is underutilized for some algorithms.

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

VLIW vs. Superscalar

Attributes Superscalar VLIW
Multiple instructions/cycle yes yes

Multiple operations/instruction no yes

Instruction stream parsing yes no

Run-time analysis of register
dependencies

yes no

Run-time analysis of memory
dependencies

maybe occasionally

Runtime instruction reordering yes

(Resv. Stations)

no

Runtime register allocation yes

(renaming)

maybe

(iteration frames)

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Real VLIW Machines
� VLIW Minisupercomputers/Superminicomputers:

- Multiflow TRACE 7/300, 14/300, 28/300 [Josh Fisher]
- Multiflow TRACE /500 [Bob Colwell]
- Cydrome Cydra 5 [Bob Rau]
- IBM Yorktown VLIW Computer (research machine)

� Single-Chip VLIW Processors:
- Intel iWarp, Philip’s LIFE Chips (research)

� Single-Chip VLIW Media (through-put) Processors:
- Trimedia, Chromatic, Micro-Unity

� DSP Processors (TI TMS320C6x)
� Intel/HP EPIC IA-64 (Explicitly Parallel Instruction

Comp.)
� Transmeta Crusoe (x86 on VLIW??)
� Sun MAJC (Microarchitecture for Java Computing)

