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What Is VLIW?
� VLIW hardware is simple and straightforward, 
� VLIW separately directs each functional unit

add r1,r2,r3

FU FU FU FU

load r4,r5+4 mov r6,r2 mul r7,r8,r9
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Historical Perspective: 
Microcoding, nanocoding (and RISC)
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Horizontal Microcode and VLIW

� A generation of high-performance, application-specific 
computers relied on horizontally microprogrammed 
computing engines.

� Aggressive (but tedious) hand programming at the 
microcode level provided performance well above 
sequential processors.
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Principles of VLIW Operation
� Statically scheduled ILP architecture.
� Wide instructions specify several independent simple operations.

� Multiple functional units execute all of the operations in an 
instruction concurrently, providing fine-grain parallelism within 
each instruction

� Instructions directly control the hardware with no interpretation 
and minimal decoding.

� A powerful optimizing compiler is responsible for locating and 
extracting ILP from the program and for scheduling operations to 
exploit the available parallel resources

The processor does not make any run-time control decisions 
below the program level

VLIW Instruction
100 - 1000 bits
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Formal VLIW Models

� Josh Fisher proposed the first VLIW machine at Yale (1983)
� Fisher’s Trace Scheduling algorithm for microcode 

compaction could exploit more ILP than any existing 
processor could provide.

� The ELI-512 was to provide massive resources to a single 
instruction stream
- 16 processing clusters- multiple functional units/cluster.
- partial crossbar interconnect.
- multiple memory banks.
- attached processor – no I/O, no operating system.

� Later VLIW models became increasingly more regular
- Compiler complexity was a greater issue than originally envisioned
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Ideal Models for VLIW Machines

� Almost all VLIW research has been based upon an 
ideal processor model.

� This is primarily motivated by compiler algorithm 
developers to simplify scheduling algorithms and 
compiler data structures.
- This model includes:

• Multiple universal functional units
• Single-cycle global register file

and often:
• Single-cycle execution
• Unrestricted, Multi-ported memory
• Multi-way branching

and sometimes:
• Unlimited resources (Functional units, registers, etc.)
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VLIW Execution Characteristics

Basic VLIW architectures are a generalized form of horizontally 
microprogrammed machines
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VLIW Design Issues

� Unresolved design issues 
- The best functional unit mix
- Register file and interconnect topology
- Memory system design
- Best instruction format

� Many questions could be answered through 
experimental research
- Difficult - needs effective retargetable compilers

� Compatibility issues still limit interest in general-purpose 
VLIW technology

However, VLIW may be the only way to build 8-16 
operation/cycle machines.
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Realistic VLIW Datapath
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Scheduling for Fine-Grain Parallelism

� The program is translated into primitive RISC-style 
(three address) operations

� Dataflow analysis is used to derive an operation 
precedence graph from a portion of the original 
program

� Operations which are independent can be scheduled 
to execute concurrently contingent upon the 
availability of resources

� The compiler manipulates the precedence graph 
through a variety of semantic-preserving 
transformations to expose additional parallelism
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Example

Original Program 3-Address Code

Dependency Graph

VLIW Instructions

e = (a + b) * (c + d)
b++;

A: r1 = a + b
B: r2 = c + d
C: e = r1 * r2
D: b = b + 1

B

C

A

D

00: add a,b,r1 add c,d,r2 add b,1,b

01: mul r1,r2,e nop nop
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VLIW List Scheduling

� Assign Priorities
� Compute Data Ready List - all operations whose predecessors 

have been scheduled.
� Select from DRL in priority order while checking resource 

constraints
� Add newly ready operations to DRL and repeat for next instruction
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4-wide VLIW Data Ready List

1 {1}

6 3 4 5 {2,3,4,5,6}

9 2 7 8 {2,7,8,9}

12 10 11 {10,11,12}

13 {13}
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Enabling Technologies for VLIW

� VLIW Architectures attempt to achieve high 
performance through the combination of a number of 
key enabling hardware and software technologies.
- Optimizing Schedulers (compilers)
- Static Branch Prediction
- Symbolic Memory Disambiguation
- Predicated Execution
- (Software) Speculative Execution
- Program Compression
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Strengths of VLIW Technology

� Parallelism can be exploited at the instruction level
- Available in both vectorizable and sequential programs.

� Hardware is regular and straightforward
- Most hardware is in the datapath performing useful 

computations.
- Instruction issue costs scale approximately linearly

Potentially very high clock rate

� Architecture is “Compiler Friendly”
- Implementation is completely exposed - 0 layer of interpretation
- Compile time information is easily propagated to run time.

� Exceptions and interrupts are easily managed
� Run-time behavior is highly predictable

- Allows real-time applications.
- Greater potential for code optimization.
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Weaknesses of VLIW Technology

� No object code compatibility between generations
� Program size is large (explicit NOPs)

Multiflow machines predated “dynamic memory 
compression” by encoding NOPs in the instruction memory

� Compilers are extremely complex
- Assembly code is almost impossible

� Difficulties with variable memory latencies (caching)
� VLIW memory systems can be very complex

- Simple memory systems may provide very low performance
- Program controlled multi-layer, multi-banked memory

� Parallelism is underutilized for some algorithms.
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VLIW vs. Superscalar 

Attributes Superscalar VLIW
Multiple instructions/cycle yes yes

Multiple operations/instruction no yes

Instruction stream parsing yes no

Run-time analysis of register 
dependencies

yes no

Run-time analysis of memory 
dependencies

maybe occasionally

Runtime instruction reordering yes

(Resv. Stations)

no

Runtime register allocation yes

(renaming)

maybe

(iteration frames)
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Real VLIW Machines
� VLIW Minisupercomputers/Superminicomputers:

- Multiflow TRACE 7/300, 14/300, 28/300 [Josh Fisher]
- Multiflow TRACE /500 [Bob Colwell]
- Cydrome Cydra 5 [Bob Rau]
- IBM Yorktown VLIW Computer (research machine)

� Single-Chip VLIW Processors:
- Intel iWarp, Philip’s LIFE Chips (research)

� Single-Chip VLIW Media (through-put) Processors:
- Trimedia, Chromatic, Micro-Unity 

� DSP Processors (TI TMS320C6x )
� Intel/HP  EPIC  IA-64 (Explicitly Parallel Instruction 

Comp.)
� Transmeta Crusoe (x86 on VLIW??)
� Sun MAJC (Microarchitecture for Java Computing)


