
INTEGRATION AND LINEAR OPERATIONS*

BY

NELSON DUNFORD

1. Notation and introduction. By LP (1 ^ p < oo ) will be understood

the class of real valued measurable functions c/>(P), O^P^l, for which

f \<t>iP) \pdP< oo, by SPiX) the class of measurablef functions/(P) on (0,1)

to the space X of type B [seej 1, p. 53] for which /J|/(P)||pdP< oo. With

||/||= {/J|/(P)||pdP}1/",5P(Ar) is a Banach space. In case p > 1, Lp. is defined

by the equality p,=1p/ip—i) and if p = 1 the symbol LP> = L„ = M will stand

for the space of real, essentially bounded and measurable functions with

||c/>|| = ess. sup. |c/>(P)|. Similarly for Sp-iX) and S«,(X), and for brevity we

write Spq in place of SPiLq). By Lpq we mean the class of real valued meas-

urable functions KiP, Q) that belong to 7, for each P and for which

[f0\KiP, Q)\qdQ]il" belongs to Lp. Finally the term linear operation is

used in the sense of Banach, i.e., for an additive continuous function. In

terms of this notation our results are described in the following paragraph.

It is easily shown that a kernel KiP, Q) in LP'q defines a linear operation

(1) Td, =  f KiP, Q)(t>iP)dP
J 0

on Lp to Lq. In case p = \, Kq<<x>, this is the expression for the most gen-

eral linear transformation and its norm is

| 7 | = ess. sup.  <   f   | KiP, Q)\"dQ

In case Kp^<x>, 1 :£ç< oo the operation (1) is completely continuous and

the general linear operation is expressible as the limit of a sequence of opera-

tions of type (1). The general completely continuous linear operation on

L=Li to Lq (1 <g< oo) is given by (1), where the kernel KiP, Q) is in L„q,

vanishes outside the square 0 gP, Q ̂  1, and satisfies the condition

lim ess. sup.    \    \ KiP, Q + h) - KiP, Q) ¡"dQ = 0.

* Presented to the Society, October 26, 1935, and February 29, 1936; received by the editors,

September 1, 1935, and, in revised form, February 11, 1936.

t This concept is defined in §2 of this paper,

t References in brackets refer to the bibliography at the end of the paper.
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INTEGRATION AND LINEAR OPERATIONS 475

Other representation theorems are given for operations on L to lp (the space

of sequences {a¿} of real numbers with E"=1lö'|P convergent), and opera-

tions on the space of absolutely continuous functions to Lp, lP, or Hubert

space. The abstract function f(P) = K(P, Q) may be in Spq without the real

function K(P, Q) being in Lpq but every function in Spq has a unique repre-

sentation in Lpq and conversely every function K(P, Q) in Lpq defines

uniquely a function f(P) = K(P, Q) in Spg.

2. Preliminary remarks. A function/(P) on 0iSP = l to a Banach space

X is said to be finitely valued* in case there exists a decomposition of the in-

terval (0,1) into a finite number of disjoint measurable sets on each of which

f(P) is constant, and it is said to be measurable in case there exists a sequence

fn(P) of finitely valued functions for which/(P) = lim„/n(P) almost every-

where. This definition of measurability which was used by Bochner is equiva-

lent to saying that/(P) satisfies the condition of Lusin, i.e.,/(P) is continu-

ous on a closed set with measure arbitrarily near one. This fact is proved al-

most as in the case of real functions [13, p. 44].

S. Bochner has defined [3] a class of functions called summable on (0, 1)

to X and an integral on this class. We [6] have done likewise and in both

cases the space of summable functions is complete and has the set of finitely

valued functions everywhere dense. This shows that the two notions of sum-

mable functions as well as the integrals coincide. Accordingly results from

both papers will be used. The reader will find no difficulty in establishing the

following theorems (the proofs are merely sketched) which are stated here

and numbered for future reference.

2.1. If f(P) is measurable and <j>(P) is a real finite valued measurable func-

tion then the functions ||/(P)|| and <p(P)f(P) are measurable. f(P)/<p(P) is meas-

urable if an arbitrary constant value is assigned to it on the set where <p(P) = 0.

Also if a sequence of measurable functions /„(P) converges almost everywhere

then lim„/n(P) is measurable.

2.2. The function f(P) is summable if and only if f(P) is measurable and

||/(P)|| is summable.

This is Bochner's definition of a summable function.

2.3. Let X and Y be two spaces of type B, Tx linear on X to Y and /(P)

summable on (0, 1) to X, then Tf(P) is summable and Tfef(P)dP = feTf(P)dP

for every measurable subset e of (0, 1).

That Tf(P) is summable follows from 2.2. For Tf(P) is continuous on

* The reader should be careful to distinguish between finitely valued and finite valued, the

latter term being used in the usual sense for real functions.
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476 NELSON DUNFORD [November

any set upon which f(P) is continuous so that Tf(P) is measurable. The

norm ||7/(P)|| is summable since it is bounded by | T\ -||/(P)||. The equality

in the theorem is proved by using a sequence of finitely valued functions con-

verging to/(P) in the mean. This theorem has been given by G. Birkhoff [2].

2.4. If f(P) is in Sp>iX) then the transformation

T<P=  f fiP)4>iP)dP
J o

is a linear operation on Lp to X, with \ T\ ^ {f0\\fiP)\\P'dP}X1"' if Kp^co

and | T\ ^ess. sup. ||/(P)|| if p=l.

The operation is defined on7,,,,for by2.1,/(P)(/>(P) is measurable and since

1|/(P)<p(P)|| = ||/(P)|| • | <t>(P) | is summable it follows from 2.2 that/(P)<p(P) is

summable. T<j> is linear since \\T<p\\ êf0\\f(P)\\ ■ |c¿(P)|dP^||/|| -\\<t>\\.
3. The representation of summable and of measurable functions. A few

preliminary remarks are in order. It is easily seen that if the abstract func-

tion /(P) = K (P, Q) is in Spq, l^p,q<°o, then

fdP^l\K(P,Q)\qdQYq=f\\f(P)\\PdP< »,

but this does not mean that K(P, Q) is in Lpq for K(P, Q) may not be meas-

urable. In fact it may be that/(P) = 0 for all P and that K(P, Q) is a non-

measurable function. This is the case if K(P, Q) is the characteristic function

of a Sierpiñski set [15 ]. Such a set is bounded and has positive exterior meas-

ure and has no more than two points in common with any straight line. Also

one might ask if every function K(P, Q) for which

J^7>jJo \K(P,Q)\qdQ^PQ< »

•defines a function f(P) = K(P, Q) in Spg. That such is not the case is seen by

the example K(P, Q) = 4>(P)^(Q), where ip(Q) is any function in Lq and $(P)

is a non-measurable function with |<¿>(P)| in Lp. However, as will be seen,

■every K(P, Q) in Lpq defines a function in Spq and conversely every f(P) in

Spq has a representation in Lvq and two such representations must (by the

theorem of Fubini) be equal for all P, Q except for a set of two-dimensional

measure zero. In fact for a large class of Banach spaces F a measurable func-

tion/(P) on (0,1) to Y has a measurable representation. For L2, this fact as

well as 3.2 has been established by S. Bochner and J. von Neumann [4]. Let

F be a Banach space composed of real almost everywhere finite measurable
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functions *p = PiQ) defined for O^Q^l. Let it be supposed that F satisfies

the following conditions:

(a) If ||^n||-K) then ^»(Q)-H) in measure.

(b) If ^(Q) = 0 almost everywhere then^ = 0.

Then we have

3.1. If the function f(P) on (0,1) to Y is measurable, there exists a function

K(P, Q) measurable on the square O^P, Qui such thatf(P) = K(P', Q). Any

two measurable representations of f(P) differ only on a set of two-dimensional

measure zero.

First suppose that f(P) = K*(P, Q) is finitely valued, and let &, e2, ■ ■ ■ , en

be the sets upon which/(P) is constant. Let P, be a point of e,- and define

K(P, Q) = K*iPi, Q) for P in e<       (* = 1, 2, • • • , ra).

So that KiP, Q) is a measurable representation of /(P). Now suppose

f(P) = K*(P, Q) is an arbitrary measurable function, and let/B(P) be a se-

quence of finitely valued functions approaching/(P) almost everywhere. Let

KniP, Q) be a measurable representation of /„(P), then

lim \\KK(P,Q) - KmiP,Q)\\r = Hm ||/„(P) - /„(P)|| = 0 for almost all P.
n,m n,m

Thus by (a), K„iP, Q) converges in measure for almost all P in (0,1) and so

we have

f1        \KniP,Q)   -   KmiP,Q)\
lim -1-.dQ = 0 for almost all P,
n.n,   Jo    l+\KniP,Q)~   KmiP,Q)\

and hence (using the theorem of Fubini)

"f1       \KniP,Q)-KmiP,Q)lim   f     f  -
n. «   «/ n     •/ o    1 + \KniP,Q)-KmiP,Q)

dPdQ = 0.

There is therefore a function K'iP, Q) measurable on the square O^P, QSl

such that

KmiP, Q) -* K'iP, Q) in measure on 0 ^ P, Q ^ 1.

Hence there is a subsequence Km,iP, Q) and a set Ex in (0, 1) with miEi) =1

such that

lim   f   -
»=oo    J o     1

7rmi(7>,0-iC(P,Q)|
c/Q = 0 for P in £i,

+ \KmiiP,Q)-K'iP,Q)

that is, for P in Pi
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KmiiP, Q) -* K'iP, Q) in measure.

Now since ||/„(P) -/(P)||^0 for almost allP, say for P in E2 where miE2) = I,

we have (by (a)) for P in E2

KmiP, Q) -» K*iP, Q) in measure.

Thus for P in ExE2

K'iP, Q) = K*iP, Q) for almost all Q,

and so by (b) /(P) = K'iP, Q) for P in ExE2. By denning

Ä-(7>,<2) = iC(P,0 forPin£i7i2,

= K*iP, Q) elsewhere,

we have/(P) =KiP, Q) for 0 ^P^ 1. Hence since K differs from 7C' on a set

of two-dimensional measure zero it is a measurable representation of/(P).

Now suppose KiP, Q) and K'iP, Q) are two different measurable repre-

sentations of /(P). From (a) it follows that ^ = 0 implies ^(0=0 almost

everywhere and hence for all P

KiP, Q) = K'iP, Q) for almost all Q,

so that by the theorem of Fubini KiP, Q) =K'iP, Q) almost everywhere on

o^p, e_u.
The converse of the theorem is not true in general; i.e., if KiP, Q) is a

measurable function of the two variables P and Q, and if for each P, KiP, Q)

is in F then it does not follow that the abstract function /(P) = KiP, Q) on

(0, 1) to F is measurable. For take F = A7 the space of real, essentially

bounded and measurable functions defined on (0, 1), and define

KiP, 0 = 0, P^Q,

= 1, P>Q.

Then the abstract function/(P) = ÜT(P, Q) has the property that for P<P',

||/(P) — /(P')|| = 1 and consequently does not satisfy the condition of Lusin.

As we shall see in 3.2 this phenomenon does not occur if M is replaced by Lp.

Hereafter when we speak of a function/(P) in Spq and write/(P) = KiP, Q)

it will be understood, without explicit mention of the fact that KiP, Q) is

measurable. It should be noted that if KiP, Q) is in Lpq then for every finite

valued <£(P) in Lp>, KiP, 0c/>(P) is in Lxq and is a measurable representation

of/(P)<p(P).

3.2. The function /(P) is in Spq, l^p, q < oo , if and only if there exists a

function KiP, Q) in Lpq such that /(P) =7T(P, 0. 7//(P) is in Spq then
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j f(P)dP = j K(P, Q)dP

for every measurable subset e of (0, 1).

First suppose that K(P, Q) is in Lpq, then

H/(p)ir= {£W,e)f¿e}P/í

is summable and it only remains to show that/(P) is measurable. Let »//„(Q)

be the orthonormal set of Haar [8]. Then for each P

K(P,Q)   =  f(P)   =   J2<t>n(P)4>n(Q),
n-l

where

4>n(P) =   f K(P,Q)MQ)dQ.
J 0

This means that ^^.(P)^^) converges in the norm of Lq to K(P, Q) [14].

Since KiP, Q) is measurable so is <p„(F) and thus by 2.1 the abstract function

/»(F)   =   £ <finiP)4>n
1

is measurable. Since/»(P)->/(P) it follows again by 2.1 that/(P) is measura-

ble and thus/(P) is in Spq.

Now conversely suppose/(P) is in SPQ. By 3.1 there is a measurable func-

tion KiP, Q) such that/(P) = K(P, Q) and K(P, Q) is obviously in Lpq. To

establish the equality stated in the theorem we again use the Haar base and

recall [l, p. Ill] that for each x in Lq

x = £ tiTiX,
i

where 7\- is a linear function on Lq. If we write

<PiiP) = TlfiP), | UP) | á | ̂ 1-11/(^)11

it is seen that </>,(P) is a finite valued function in L„ and

K(P,Q) =f(P) = t,<t>i(P)UQ).
i

From 2.3 it follows that
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f fiP)dP = J2PiTi f fiP)dP = f>, j'TifiP)dP = ¿Pif PiiP)dP,
S Í € 16 Le

which means that

ÁQ) » ¿ UQ) f <t>i(P)dP
1 *   «

approaches fef(P)dP in LQ as n—><*>. To complete the proof it is only neces-

sary to show that this same sequence approaches feK(P, Q)dP in Lq. Since

¿„(0 converges in Lq it is sufficient to show that £„(0—>feK(P, Q)dP in

measure. Now writing K„(P, Q) =XI10>(P)'/'<((?)> we have for each P [14]

| j  | Kn(P, 0 - KiP, 0 I'dQj   '-» 0

and

ÍJl\ Kn(P, Q) - KiP, Q) l'dçV * á j J I K*(P> Q) ̂dQ\

+ {f\KiP,Q)\qdQy

S 2Íj I KiP, Q) \9do\

Thus the sequence on the left side of this inequality is bounded by a function

in Lp, and so

f dQ f | Kn(P, 0 - 7C(P, 0 | dP
J 0 ^ 0

al t   pi \ p/«\ Up
¿p| J   | /rB(P, 0 - 7T(P, 01'deJ    J    -, 0,

from which the desired conclusion is easily deduced. This completes the proof

of 3.2.

3.3. The function f(P) on (0, 1) to Lq, l?iq<<x> ,is measurable and essen-

tially bounded if and only if there exists a measurable function K(P, Q) in Lq

for each P and satisfying the conditions

ess. sup.    I    \ K(P,Q)\qdQ < oo ,
d 0

f(P) = K(P,Q),
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and in case the conditions are satisfied

J f(P)dP = j K(P, Q)dP

for every measurable subset e of (0, 1).

This is an immediate corollary of 3.2.

3.4. The function f(P) = {ki(P)} is in Sp(lq) (1 ̂  p g oo, 1 ̂  q < oo ) if and

only if

(i) ki(P) is measurable (i = 1, 2, 3, ■ • • );

(ii) | ¿| HP) I'}   " isinLp.

For functions f(P) = {ki(P)} in Sp(lq) we have

j f(P)dP =  j J ki(P)dp}

for every measurable subset e of (0, 1).

This theorem can be established by a method quite analogous but much

simpler than the method used in the proof of 3.2. In fact if we take ypi = {Sk}

(the Kronecker delta) as the base for lq, then

(hi) f(P) = ¿ TifiP)^ = ¿ kiiPWi,
i i

which shows that &,(P) is measurable providing /(P) is. Condition (ii) is

merely a statement of the fact that ||/(P)|| is in Lp. Conversely if (i) and (ii)

are satisfied, (iii) combined with 2.1 shows that/(P) is measurable and (ii)

shows that ||/(P)|| is in Lp. The equality fefiP)dP= \f,kiiP)dP\ is merely

an application of 2.3, for we have

/i 00 /% 00 /»

fiP)dP = ¿2+iTi     fiP)dP = 5>4 I   TifiP)dP
e 1 "  e 1 •' e

= !>*/ HP)dP = | j kiiP)dp\ .

4. Applications of the preceding results. In view of 3.2 each theorem re-

garding functions in Spq may be translated into a theorem concerning func-

tions in Lpq. Since it is merely a translation of symbols, we shall, content

ourselves here with one illustration. For example, Theorem 9 of reference 6

reads as follows :
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4.1. If the functions KiP, Q), Km(P, Q), m = l, 2, 3, ■ ■ ■ , are in Lpq

(lúp, q< °°), and if J01KmiP, Q) —KiP, Q) | qdQ approaches zero in measure,

then the following assertions are equivalent:

(1) lim j dQ\f   ^Km(P,Q)-K(P,Q)\dP '=0

for every measurable set e in (0, 1).

(2) lim    \    dQ\  \   <Km(P,Q) - K(P,Q)\dP\  = 0 uniformly for ein (0,1).

(3) lim   |    dQ\ f |KmiP, (?) ~ Kn(P,Q)\dp\   = 0 for each e in (0, 1).

(4) lim    lim sup   f  <i<2   \   Km(P,Q)dP = o.

(5)     lim      f  ¿(2   f 7<:m(P, (2)¿P
m(e) = 0   J o I «7 e

= 0 uniformly with respect to m.

5. The representation of linear operations. We have

5.1. If X is of type B with a base, then T<f> is a linear operation on Lp

(l^p^00) to X if and only if there exists a sequence of functions /n(P) in

Sp>iX) such that /o/n(P)rp(P)¿P converges for each </>(P) in Lp and

T4> = lim   I   fniP)d>iP)dP for </>(P)  in Lp.
»    »7 o

Let T be a linear operation on Lp to X, and let ¡x¿} be a base for X, then

oo

T<t> = X ai(t)xi,
i

where ai(p) = TiT<p is a linear functional on Lp. Thus there is a finite valued

function «¡(P) in Lp. such that [1, p. 64]

aii4>) =   f ai(P)4>(P)dP.

Since ai(P)xi is in SP>(X), fn(P) =£1«¿(P)x¿ is likewise and the sequence

f fn(P)4>(P)dP = ¿ ai(4>)xi
J 0 1

converges for each </> in 7,p to Tcp. The converse statement follows from 2.4

and a well known result [l, p. 23, Theorem 4].
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5.2. The function Tcp isalinear operation on Lp(l ^p^ oo) to T,„(l ^q< °°)

if and only if there exists a sequence of measurable functions K„iP, Q) belonging

to L„for each P, and satisfying the conditions

I   I    | KniP, 0 \9dQ>      is in LP' for each n,

and

Tp = lim   I   KniP, Q)PiP)dP for d> in Lp.
n      Jo

This follows immediately from 5.1, 3.2, and 3.3.

In the case of transformations T(j> on L to X, where X is a Banach space

satisfying one of the conditions :

(A) X has a uniformly convex norm [5 ] ;

(B) X has a base {x,} such that XI"0»*« converges whenever [a^ is a

sequence of constants for which ||2ü,ö»#i|| is bounded,

further results may be given. The spaces satisfying one or the other of

these conditions include Hubert space, /p(l Hp< °°), and LPil<p< oo). The

fundamental fact [5, 7] in this connection is that a function FiP) on (0, 1) to

such a space, which satisfies aLipschitz condition 1|P(P) —P(P')|| HkM\P —P'\

(or even a more general condition) has a derivative F'(P) almost every-

where which is summable and such that

FiP) =   f  F'iP)dP + P(0).
d 0

We shall first give a generalization of this result which is embodied in 5.3.

The corresponding theorem for real functions has been given for special cases

by J. Radon and P. J. Daniell and in the general case by 0. Nikodym [13,

pp. 255-257]. We shall use the terminology of Saks [13, pp. 247-257] and
denote by w(e) a completely additive non-negative function defined on an

additive family A of sets of abstract elements P belonging to a space E. The

sets of A are called measurable sets and the number mie) is called the measure

of the set e. It is assumed that all subsets of a set of measure zero are measura-

ble. An additive set function P(e) on A to a Banach space is said to be of

bounded variation in case XIt=JI^(e¡)|| is bounded with respect to all choices

of a finite number of disjoint measurable sets ex, e2, ■ ■ ■ , en. The l.u.b. of

XIt._J|P(e¡)||, where ei,e2, ■ • , en are disjoint measurable subsets of a measura-

ble set e is called the total variation of F on e and is denoted by P(P, e).

5.3. Every completely additive set function Fie) defined on A, which is of

bounded variation and vanishes on sets of measure zero and whose values lie in a

Banach space X which satisfies condition (B) is representable in the form
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Fie) = j fiP)dm.

The function /(P) is uniquely determined except for a set of measure zero.

It is no loss of generality to assume [7 ]

(C)

Now suppose

XI a<xi
n+l

XI CtiXi
i=X

OO 00 /»

Fie) = XI *<(«)*. = XI*» I  OiiP)dm,
i-X i-X        J e

where in the last equality we have used the theorem of Nikodym. Set

n n

FÁe)   =  XI <*»(«)*»> fn(P)   =   XI ai(P)Xi.
t=l i—1

By a well known computation and the inequality (C) we get

T(Fn, e)= j \\fn(P)\\dm è T(F, E)

\\fn(P)\\   ^||/n+l(P)||.

Thus if è(P)=lim„||/„(P)|| it is seen that b(P) is summable. Hence by (B)

f(P) = ¿«i(P)^i
t=i

is convergent for almost all P and ||/(P)|| =b(P), so that the function/(P) is

summable and

/i oc /* oo

f(P)dm = XI x» I   ai(P)dm = XI a¡(e) *» = T'(e).
e t—1        •» < t=l

Suppose we have also F(e)=fef*(P)dm, where f*(P) =^<°=la*(P)xi. Then

fea*(P)dm=feai(P)dm for each e and so af(P) =a{(P) almost everywhere

and thus the same is true of f*(P) and f(P).

In the case of an absolutely continuous additive function F(R) of bounded

variation on elementary figures in a fundamental interval of Euclidean ra-

space to a Banach space with a uniformly convex norm Clarkson [5] has

shown that

F(R) =  f F'(P)dP,
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where R is an elementary figure. Hence in case the Banach space X satisfies

either condition (A) or (B) we can say that an additive function F(e) on

Lebesgue measurable sets in (0, 1) to X which satisfies the Lipschitz condition

||F(e)|| gAf |e| also satisfies the conditions

Fie) =  j F'iP)dP,        \\F'iP)\\ ^ M.

Such a function F(e) is defined by a linear operator T on L to X by placing

F(e) = T<p(e), where (pie) is the characteristic function of the set e. Here

M=|r|. Thus for all finitely valued functions 4>(P)

•» o
7> =   I   F'iP)4>iP)dP.

•7 o

By taking a sequence of finitely valued functions converging in the mean to

an arbitrary summable function it is readily seen that the above equality

holds for all <j> in L and that

|T| g sup||F'(PJ|| ^M = \T\.

Thus we have

5.4. The function T<p is a linear operation on L to X (where X satisfies (A)

or (B)) if and only if there exists an essentially bounded and measurable func-

tion /(P) on (0, 1) to X such that

U =  f f(P)<t>(P)dP.
J n

The norm of T is \ T\ =ess. sup. ||/(P)||.

As a corollary we have (using 3.2)

5.5. The function T<j> is a linear operation on L to Lq (l<q<<x>) if and

only if there exists a measurable function K(P, Q) in Lqfor each P and satisfy-

ing the conditions

ess. sup.    f  | K(P, Q) fdQ <

Td> =   f  K(P, Q)d>(P)dP for d> inL.
J o

The norm of T is \T\ =ess. sup. {f0\K(P, Q) | 'dQ}1':

As would be expected, the method of constructing the absolutely con-
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tinuous function F(P) = T(j>(0, P) from the operation T does not work in case

the domain of T is Lp, p>l, instead of L. In this case

t\\F(bi) - F(ai)\\ ^\T\±\ bi - a^".
i i

But now it is not in general true that

n n

XI I bi - ail1'"—>0   as    XII 6< ~ «« I -* °>
i i

for suppose e is any positive number, then for n>i2pe)1,a~p) and |¿>< — a,|

= e/ra we haveXIJ &. —0<| =< andXIJ h—a,| 1/p>l/2.
Using 3.4 we have

5.6. The function T(j> is a linear operation on L to lq (1 ^ g < oo ) ¿^ ara¿ ora/y

if there exists a sequence k¡iP) of measurable functions such that

oo

ess. sup. 2-, I kiiP) |   < oo ,
i

Td> =  If   kiiP)PiP)dP

The norm of T is \T\ =ess. sup. {XI" | k,iP) \ "}llg.

The space ^4.C. of real functions absolutely continuous on (0, 1) which

vanish at the origin, with the norming operation \\<p\\ = F(<p) = total variation

of c/>(P) on (0, 1) is a space of type B. Furthermore the linear operation

a\p/dP=(p' establishes the fact that ^4.C. and L are isometric, isomorphic,

and thus equivalent in the sense of Banach [1, p. 180]. The following theo-

rems are therefore corollaries of 5.4, 5.5, and 5.6.

5.7. The function Tip is a linear operation on A.C. to the space X iX satis-

fying (A) or (B)) if and only if there exists an essentially bounded and measura-

ble function /(P) on (0, 1) to X such that

TP =   f fiP)p'iP)dP.
J 0

If T is linear then \ T\ =ess. sup. [|/(P)||.

5.8. The function T(p is a linear operation on A.C. to Lq (1 <<?< oo) if and

only if there exists a measurable function KiP, Q) in Lqfor each P and satisfy-

ing the conditions

Y
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ess. sup.    Í   | K(P, Q)\qdQ < oo ,
•* o

T4> =   \    K(P, Q)4>'iP)dP for <p in A.C.
J o

If T is linear then \T\ = ess. sup. [f9\ KiP, Q) \ "dQ} » ».

5.9. The function T<p is a linear operation on A.C. to lq (1 ^q< <*) if and

only if there exists a sequence ¿,(P) of measurable functions such that

oo

ess. sup. £ | kiiP) |    < so ,
i

70 =   J    kiiP)cb'iP)dP for 4> in A .C.

The norm of T is \T\ =ess. sup. {£" | &i(P) | *}1/5.

6. Completely continuous transformations and further properties of the

general integral. In the last part of the proof of 3.2, put

Tn4> =  f Kn(P,Q)<p(P)dP,        T<t>=  f K(P,Q)4>(P)dP.
J 0 " 0

It is seen that

dP I J    I K„(P. Ö) - tf(P, 0 I VÇ|     J     -> 0,

and thus since Tn is a completely continuous linear operation on 7,,,, to 7,,,

it follows from a well known result [1, p. 96, Theorem 2] that T is also. This

fact has been established by E. Hille and J. D. Tamarkin [10] and by T. H.

Hildebrandt.* Writing p' in place of p we may state

6.1. For 1 </>Sj oo, 1 Sq< oo the transformation on Lt to Lq defined by

U =  f KiP, Q)4>(P)dP
•J 0

with KiP, Q) in LP'q is completely continuous.

Combined with 3.1 this gives

6.2. For 1</>^oo; l^c7<oo the function /(P) in S„>q defines a completely

continuous transformation

* The proof given here is due to Hildebrandt.
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70 =  f f(P)4>(P)dP
•7 n

on L„ to La

i

| 0tt(P) \"dP S M,       n = 0, 1, 2, • • • , for some M,
o

• p

This result gives the integral that we are using more properties in com-

mon with the Lebesgue integral of numerical functions. The ones we have in

mind center around the fact that a completely continuous linear transforma-

tion takes weakly convergent sequences into convergent sequences* [1, p.

143].

6.3. Let 0„(P), n = 0, 1, 2, • ■ • , be real functions and l</><oo,l<:<7<oo,

then for every /(P) in SP'qthe integrals fJiP)(pniP)dP are defined and approach

JJiP)4>oiP)dP if and only if<j>„iP), n = 0, 1, 2, ■ ■ ■ , is in Lp and

r 0„(p)cip -+ f 0o(p)<7p,  o=p ^ i.
•7 o *7 o

That the last conditions imply the convergence of the integrals follows

from the statement preceding Theorem 6.2 and a theorem of F. Riesz

[1, p. 135]. Conversely, if/(P)<p„(P) is summable for every/(P) in Sp-q it

is seen first, by taking f(P) =k(P, Q) = l (OgP, Q^l) and using 3.2, that

there is a summable function Kn(P, Q) such that for every P

Kn(P, (?) = 0»(P) for almost all Q.

It follows from the theorem of Fubini that <pn(P) is measurable. Now let

i/>(P) be an arbitrary finite valued function in Lp-, and define f(P) to be

the function on (0, 1) to Lq that takes each point P into the function in

Lq which is constant and equal to ^(P), i.e., /(P) = i//(P). Then by 3.1,

i/y(P)0„(P) is summable and

f f(P)<t>n(P)dP =    (   tiP)<t>niP)dP.
J 0 •'0

From the summability of i//(P)0„(P) it follows that the function <pn(P) is in

Lp, and the remaining conditions on the sequence follow from the con-

vergence of the sequence /o/(P)0„(P)¿P and the theorem of Riesz. In case

p= oo we have

* It is easily seen that this property characterizes completely continuous linear transformations

between arbitrary Banach spaces X and Y in case the domain X is weakly complete and the conju-

gate space X is separable, or in case every bounded set in X is weakly compact.
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6.4. Let (p„(P) (ra = 0,1, ■ • ■ ) be real functions and 1 ¿=q < °°, then for every

summable function f(P) on (0, 1) to Lq the integrals fJ(P)(pn(P)dP are defined

and approach J'J(P)4>o(P)dP if and only if <pB(P) are measurable,

f  4>n(P)dP-+ f   Po(P)dP,        0 ^ P g 1,
•'O J 0

ess. sup. | pn(P) | S -Ä7,        ra = 0, 1, • • • , for some M.
p

Suppose the last conditions are satisfied and /0(P) is finitely valued with

f)\MP)-f(P)\\dP<e.
•f 0

Then by 6.3

f    fo(P)Pn(P)dP -*    f   fo(P)Po(P)dP,
Jo J 0

and since

II    f   fiP)iPniP)   -  PoiP))dP      Slf    (/(P)   - foiP))iPniP)   - PoiP))dP
II •/ 0 I II » 0

+  I    f   fo(P)iPniP)   -   PoiP))dP
II «J 0

it follows that

_ m   •» i /» i II

< 2il7e.lim 1  f fiP)PniP)dP -   f fiP)PoiP)dP
n    II •/ o " o

Now conversely if the integrals f0f(P)(pn(P)dP are defined for every sum-

mable/(P) it follows as before that the functions (j>n(P) are measurable and

that each c/>B(P) is essentially bounded. Also as in 6.3 if we let ^(P) be an

arbitrary finite valued summable function and define f(P) = 4/(P) and con-

sider/(P) as a function on (0, 1) to Lq then

f f(P)pn(P)dP =  f p(P)PniP)dP.
J 0 " 0

Now the boundedness of the sequence f$iP)(pn(P)dP for every function

p(P) in L insures the uniform boundedness of ess. sup.p |c/>„(P)|, and the

convergence of the sequence f0p(P)<pn(P)dP insures by the theorem of Riesz

the condition

f   Pn(P)dP -» f   Po(P)dP.
^o J 0
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Theorem 6.4 may be regarded as a generalization of the Riemann-

Lebesgue theorem.

6.5. The function T<p is a completely continuous linear operation on L to

Lq (l<q<co) if and only if there exists a measurable kernel K(P, Q) which

vanishes outside the unit square and satisfies the conditions

ess. sup.    I    | K(P,Q) \QdQ < » ,
•J 0

lim    ess. sup.    f  | K(P, Q + h) - K(P, Q) \"dQ = 0,
A = 0 J o

70 =   |   K(P, Q)<j>(P)dP for 0(P) in L.

ThenormofTis |P|=ess. sup. \f\\K(P, Q) | QdQ\Xl".

If the conditions are satisfied, 5.5. shows that T<p is linear. Now let S

be the unit sphere in 7, and

HQ) =  [ K(P, Q)<t>(P)dP.

It is only necessary to show that

lim   f | xPiQ + k) - HQ)\qdQ = 0
A=0   J o

uniformly with respect to \f/ in TS [see 10, p. 445, or 12]. We have for 0 in 5

(f\HQ+h)-^(Q)\qdQSj   '

K(P,Q+ h) - K(P,Q)}4>(P)dP

è fdP\ 0(P) | j J*  | KiP, Q+h)- KiP, Q) | Vö|

^ ess. sup.jj'l K(P,Q+h)- K(P,Q)\"dQ^

"(/I/\ " 0    I " 0

111

1/3

1/«

(The first of the above inequalities is a generalization of Minkowski's inequal-

ity [9, p. 148, §202].) Thus the conditions are sufficient to insure the com-

plete continuity of T<p. Now conversely if T<p is a completely continuous

linear operation on L to Lq, it follows from 5.5 that the first and third condi-
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tions are satisfied by some measurable kernel K(P, Q). If K(P, Q) is defined

to be zero outside the square, then

f | K(P,Q + h)\"dQ^  f ) K(P,Q) \qdQ,
J o J o

and it follows again from 5.5 that

Thd> =  f  [KiP, Q+h)- KiP, Q)]piP)dP
J 0

is a linear operation on L to Lq with

| Th\ = ess. sup. (f | KiP,Q + h) - K(P,Q) ¡«doX   \

Since T(p is completely continuous, there is a ¿5e>0 depending only upon an

arbitrary positive number e such that

\ f  \HQ+ h) - HQ) \qdo\    " < e  for \ h\ < o«, P in TS.

Fix h with \h\ <b„ then there is a 0 in 5 such that

| 7*1 =2 [|2\0|| +e;
that is,

ess. sup. if  \ KiP,Q+h) - KiP,Q)\qdo\

^  | f '| HQ + h) - P(Q) \qdQÏ    q+t<2e

which completes the proof of 6.5.

In view of the equivalence of ^4.C. and L, 6.5 translates into

6.6. The function Tcp is a completely continuous linear operation on A.C.

to Lq (l<q<<x>) if and only if there is a measurable kernel K(P, Q) which

vanishes outside the unit square and satisfies the conditions

ess. sup.    |    | K(P, Q)\"dQ < oo ,
do

lim    ess. sup.    f  | K(P, Q + h) - K(P, Q) \qdQ = 0,
*-0 J o

rp =   J   KiP, Q)p'iP)dP for p in A .C.
d 0

The norm of T is |P|=ess. sup. \f\\ KiP, Q) \ "dQ}1'".
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For a linear operation on I to I, (1 <q < oo ) the adjoint 7 on ¿g to 7

may be regarded as a linear operation on Lq< to M (since L q and L are equiva-

lent to Lq' and M respectively). Recalling [l, p. 100, Theorems 3 and 4] that

| T\ = | T\ and that T is completely continuous providing T is, the following

theorem then follows from 5.5 and 6.5.

6.7. Let l<q<oo and suppose the measurable kernel KiP, Q) satisfies the

condition

ess. sup.    f  | K(P, 0 \Q'dQ < oc ,
do

then the operation

Tp=  f KiP, Q)P(Q)dQ
J o

is a linear operation on Lq to M with \ T\ =ess. sup. [fQ\K(P, Q)\ q'dQ}llq'.

The operation T is completely continuous provided

A = 0
f I KiP, Q

J o
lim    ess. sup.    I    | K(P, Q + h) - K(P, Q) \q dQ = 0.

7. Conclusion. The problem of representation of operations on X to C (the

space of continuous functions) where X is a Banach space for which the form

of the general linear functional (numerically valued operator) is known, is

much more easily handled than that of operations on L to Lq. This has been

discussed in the case of C to C by J. Radon [l 1 ]. The fact that gives the hold

on the problem is that for \p(Q) in C, $(Q) = 0 for each Q provided \\p\\ =0.

This shows that by fixing Q the operator yp = T<p on X to C can be interpreted

as a functional. Thus, for example, in the case of Lp (1 <p < <x> ) to C

(i) HQ) - fiK(P,Q)p(P)dP,
J 0

where for each Q, K(P, Q) is in Lpl and thus

Ui -\ up'
\K(P,Q)\p'dPJ       .

But now for each <f> in Lp, and each Q in (0, 1)

lim    f K(P,Q)p(P)dP =   f K(P,Q)p(P)dP,
Q'^Q J 0 Jo

which is equivalent to saying that
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(2) lim    f K(P,Q)dP =  f K(P,Q)dP,        0 Ú t S 1,
Q'-*Q J o J o

and

(3) sup I   f   I 7C(P, Q) \v'dp\       m M < oo .

Now fix Q so that

ij   \K(P,Q)\'''dp}    '  £ Af-e,

then there is a 0 in 7,p with (Uli = 1 such that

W) I = I f # (P, Q)*(P)dP> Af -

which shows that \\p\\ ^ M. Hence the norm of T is given by

Up'

(4) sup jj I K(P,Q) | v'dp\

To summarize : The function \p = F0 is a linear operation onL„(l</><oo)

to C if and only if there exists a function KiP, Q) in ¿p» for each Q and satis-

fying (1), (2), and (3). The norm of T is given by (4). Similar results can be

obtained for other Banach spaces.
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