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Abstract

This paper considers the problem of illuminant estimation: how, given an image of a scene,

recorded under an unknown light, we can recover an estimate of that light. Obtaining such an

estimate is a central part of solving the colour constancy problem - that is of recovering an

illuminant independent representation of the re
ectances in a scene. Thus the work presented

here will have applications in �elds such as colour based object recognition and digital photography,

where solving the colour constancy problem is important.

The work in this paper di�ers from much previous work in that, rather than attempting to

recover a single estimate of the illuminant as many previous authors have done, we instead set

out to recover a measure of the likelihood that each of a set of possible illuminants was the scene

illuminant. We begin by determining which image colours can occur (and how these colours are

distributed) under each of a set of possible lights. We discuss in the paper, how for a given

camera, we can obtain this knowledge. We then correlate this information with the colours in a

particular image to obtain a measure of the likelihood that each of the possible lights was the scene

illuminant. Finally we use this likelihood information to choose a single light as an estimate of

the scene illuminant.

Computation is expressed and performed in a generic correlation framework which we develop

in this paper. We propose a new probabilistic instantiation of this correlation framework and we

show that it delivers very good colour constancy on both synthetic and real images. We show

further that the proposed framework is rich enough to allow many existing algorithms to be ex-

pressed within it: the grey-world and gamut mapping algorithms are presented in this framework

and we explore too the relationship of these algorithms to other probabilistic and neural network

approaches to colour constancy.
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1 Introduction

An image of a three-dimensional scene depends on a number of factors. First it depends on the

physical properties of the imaged objects, that is on their re
ectance properties. But it depends

too, on the shape and orientation of these objects and on the position, intensity and colour of

the light sources. Finally it depends on the spectral sampling properties of the imaging device.

Various applications require that we be able to disambiguate these di�erent factors to recover the

surface re
ectance properties of the imaged objects, or the spectral power distribution (SPD) of

the incident illumination. For example, in a number of applications ranging from machine vision

tasks such as object recognition, to digital photography, it is important that the colours recorded

by a device are constant across a change in the scene illumination. As an illustration, consider

using the colour of an object as a cue in a recognition task. Clearly, if such an approach is to

be successful, then this colour must be stable across illumination change [28]. Of course it is not

stable, since changing the colour of the illumination changes the colour of the light re
ected from

an object. Hence a preliminary step in using colour for object recognition must be to remove

the e�ect of illumination colour from the object to be recognised. Accounting for the prevailing

illumination is important too in photography; it is known [1, 3] that the human visual system

corrects, at least partially, for the prevailing scene illumination, therefore, if a photograph is to

be an accurate representation of what the photographer saw, the photograph must be similarly

corrected.

Central to solving the colour constancy problem is recovering an estimate of the scene illu-

mination and it is that problem which is the focus of this paper. Speci�cally we consider how,

given an image of a scene taken under an unknown illuminant, we can recover an estimate of that

light. We present in this paper a simple new approach to solving this problem, which requires

only that we have some knowledge about the range and distribution of image colours which can

be recorded by a camera under a set of possible lights. We discuss later in the paper how such

knowledge can be obtained.

The work presented here builds on a range of computational theories previously proposed by

other authors [21, 23, 8, 9, 4, 5, 27, 29, 14, 10]. The large number of such theories illustrates

that the problem is di�cult to solve. Part of the di�culty is due to the fact that the problem

is inextricably tied up with other confounding phenomena: we have to account for changes in

image intensity and colour which are due to the shape of the objects, viewing and illumination

geometry, as well as those due to changes in the spectral power distribution of the illuminant

and the spectral re
ectance properties of the imaged objects. Thus, to simplify the problem,

many researchers [21, 23, 14, 8] have considered a simpli�ed two-dimensional world, in which all

objects are 
at, matte, Lambertian surfaces, uniformly illuminated. In this idealised scenario

image formation can be described by the following simple equation:

p
x

k =

Z
!

E(�)Sx(�)Rk(�)d� (1)

In this equation, Sx(�) represents the surface re
ectance at a point x in the scene: it de�nes

what fraction of the incident light is re
ected on a per wavelength basis. E(�) is the spectral

power distribution of the incident illuminant which de�nes how much power is emitted by the

illuminant at each wavelength. Rk(�) is the relative spectral response of the imaging device's

k
th sensor, which speci�es what proportion of the light incident at the sensor is absorbed at each

wavelength. These three terms when multiplied together and the product integrated over the

interval ! (the range of wavelengths to which the sensor is sensitive) gives px
k
: the response of

the imaging device's kth sensor at pixel x. It is clear from Equation (1) that changing either the

surface re
ectance function or the spectral power distribution of the illuminant will change the

values recorded by the imaging device. The task for a colour constancy algorithm is to transform

the px
k
so that they become independent of E(�), and hence correlate with S(�). Equivalently,
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the problem can be posed as that of recovering an estimate of E(�), since with this knowledge,

it is relatively straightforward [19] to recover an image which is independent of the prevailing

illumination.

Even with the simpli�ed model of image formation in Equation (1), the problem remains

di�cult to solve. To see why, consider a typical imaging device with three classes of sensors:

k = 3 (it is common to refer to the triplet of sensor responses (px
1
; p

x

2
; p

x

3
) as R, G, and B,

or simply RGB - because typically sensors measure the long (red), medium (green), and short

(blue) wavelengths respectively. These expressions are used interchangeably throughout this

paper). Now, if there are n di�erent surfaces in an image, then we have 3n knowns, from

Equation (1). From these equations we must estimate parameters for the n surfaces, and a

single illuminant. Surface re
ectance functions and illuminant SPDs, as well as sensor response

functions, are typically speci�ed by their value at a number (m) of discrete sample points within

the visible spectrum. In this case the image formation equation (Equation 1) can be re-written

as:

p
x

k =
i=mX
i=1

E(�i)S
x(�i)Rk(�i)�� (2)

where the �i are the sample points and �� is the width between them. If surfaces and illuminants

are each described by m parameters in this way, then we have a total of m(n + 1) parameters

to solve for. It is clear that the number of knowns 3n can never be bigger than the number of

unknowns m(n+ 1) regardless of how many distinct surfaces appear in a scene.

Fortunately, it is often unnecessary to recover the full spectra of lights and surfaces, rather it

is su�cient to represent a light by the response of a device to a perfect di�user viewed under

it and similarly, to represent a surface by the response it induces under some canonical light.

Continuing with the case of an imaging device with three classes of sensor, this implies that lights

and surfaces are described by three parameters each, so that the total number of parameters to

be solved for is 3n+3 and the problem is thus further constrained. Nevertheless, the problem is

still under-constrained; there are 3 more unknowns than knowns to solve for.

In this paper we make one further simpli�cation of the problem: rather than representing

lights and surfaces by a 3-vector of sensor responses { (p1; p2; p3)
t, we instead represent them in

terms of their 2-d chromaticity vectors { (c1; c2)
t, calculated from the original sensor response

by discarding intensity information. There are many ways in which we might discard intensity

information: one common way is to divide two of the sensor responses by the response of the

third:

c
x

1 =
p
x

1

px
3

c
x

2 =
p
x

2

px
3

(3)

Ignoring intensity information means that changes in surface colour due to geometry or viewing

angle, which change only intensity, will not a�ect our computation and in addition we have

reduced the problem from a 3-d one to a 2-d one. Furthermore, we point out that under the

model of image formation described by Equation (1) illumination can only be recovered up to a

multiplicative constant1. However, even with this simpli�cation we still have 2(n+1) unknowns

and 2n knowns, so that the problem remains under-constrained.

Many authors [21, 5, 18, 23, 8] have tried to deal with the under-constrained nature of the colour

constancy problem by making additional assumptions about the world. For example Land [21]

assumes that every image contains a white patch, hence there are now only 3n unknowns and 3n

equations. Another assumption [5, 18] is that the average re
ectance of all surfaces in a scene is

achromatic. In this case the average colour of the light leaving the surface will be the colour of

the incident illumination. Yet another approach [23, 8] has been to model lights and surfaces

1Within our model of image formation the light incident at the imaging device is the product of illuminant

spectral power and surface re
ectance; E(�)S(�). Clearly the product, sE(�)
S(�)

s
, will result in the same incident

light for any value of s. Hence E(�) can only be recovered up to a multiplicative constant.
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using low-dimensional linear models and to develop recovery schemes which exploit the algebraic

features of these models. Other authors have tried to exploit features not present in the idealised

Mondrian world, such as specularities [22, 27, 29], shadows [11] or mutual illumination [15], to

recover information about the scene illuminant. Unfortunately, the assumptions made by all

these algorithms are quite often violated in real images so that many of the algorithms work only

inside the lab [15, 22, 29] and while others can work on real images, their performance is still

short of good enough colour constancy [16].

The fact that the problem is under-constrained implies that in general the combination of

surfaces and illuminant giving rise to a particular image is not unique. So setting out to solve

for a unique answer (the goal of most algorithms) is perhaps not the best way to proceed. This

point of view has only been considered in more recent algorithms. For example, the gamut

mapping algorithms developed by Forsyth [14] and later by Finlayson [10] and others [12], do

not, in the �rst instance, attempt to �nd a unique solution to the problem, rather, the set of all

possible solutions are found and from this set the best solution is chosen. Other authors [4, 26, 9],

recognising that the problem does not have a unique solution, have tried to exploit information

in the image to recover the most likely solution. Several authors [4, 9] have posed the problem in

a probabilistic framework, and more recently Sapiro [26, 25] has developed an algorithm based

on the Probabilistic Hough Transform. The neural network approach [17] to colour constancy

can similarly be seen as a method of dealing with the inherent uncertainty in the problem. While

these algorithms which model and work with uncertainty represent an improvement over earlier

attempts at solving the colour constancy problem, none of them can be considered the de�nitive

solution. They are neither good enough to explain our own colour constancy [3] nor are they

good enough to support other visual tasks such as object recognition [16].

In Section 2 of this paper we address the limitations of existing algorithms by presenting a new

illuminant estimation algorithm [20] within a general correlation framework. In this framework

illuminant estimation is posed as a correlation of the colours in an image and our prior knowledge

about which colours can appear under which lights. The light that is most correlated with the

image data is the most likely illuminant. Intuitively, this idea has merit. If the colours in an image

\look" more yellow than they ought to, then one might assume that this yellowness correlated

with a yellow illuminant. The correlation framework implements this idea in a three step process.

First, in a pre-processing step, we code information about the interaction between image colours

and illuminants. Second, we correlate this prior information with the information present in a

particular image. That is, the colours in an image are used to derive a measure of the likelihood

that each of the possible illuminants was the scene illuminant. Finally, these likelihoods are used

to recover an estimate of the scene illuminant. We develop a particular instantiation of this

framework | a new correlation algorithm | which has a number of attractive properties. It

enforces the physical realisability of lights and surfaces, it is insensitive to spurious image colours,

it is fast to compute, and it calculates the most likely answer. Signi�cantly, we can also calculate

the likelihood of all possible illuminants; e�ectively we can return the best answer together with

the error bars.

We further show (in Section 3) that the correlation framework we have developed is general

and can be used to describe many existing algorithms. We will see how algorithms ranging

from Grey-World [5], to Gamut Mapping [14, 10] to the Neural Network approach [17], relate

to di�erent de�nitions of colour, likelihood, and correlation, yet in all cases the same correlation

calculation results. Moreover, by examining these algorithms in the same framework we will come

to understand how our new simple algorithm builds on and more importantly, improves upon

other algorithms. Furthermore we will show that algorithms such as gamut mapping, previously

criticised for their complexity, are in fact no more complex than the simplest type of colour

constancy computation.

Finally, in Section 4 we present experimental evidence to show that our new algorithm formu-

lated in this framework does provide very good colour constancy: it performs better than the
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other algorithms we tested.

2 Colour by Correlation

We pose the colour constancy problem as that of recovering an estimate of the scene illumination

from an image of a scene taken under an unknown illuminant since, from this estimate, it is

relatively straightforward to transform image colours to illuminant independent descriptors [19].

We restrict attention here to the case of an imaging system with three classes of sensor. In such a

case it is not possible to recover the full spectral power distribution of the illuminant, so instead

an illuminant with spectral power distribution E(�) is characterised by p
E : the response of the

imaging device to an achromatic surface viewed under E(�). An estimate of the illuminant will

accordingly be a 3-vector sensor response, p̂E . However, as pointed out earlier, since we cannot

recover the overall intensity of the illuminant, but only its chromaticity, we instead represent an

illuminant by its 2-d chromaticity vector cE , derived from the 3-vector of sensor responses by

discarding intensity information (for example, using Equation (3)). We represent surfaces in a

similar fashion { speci�cally we de�ne surface colour by the chromaticity of the response which

the surface induces in a device when viewed under some canonical illuminant.

The chromaticity co-ordinates de�ne a 2-dimensional space of in�nite extent however, to help

us formulate our solution to the illuminant estimation problem we make two further assumptions.

First we assume that a given device will produce responses only within a �nite region of this

space - for a device such as a digital camera giving 8-bit data this is clearly valid since sensor

responses will be integers in the range 0 to 255 and using Equation (3), calculable chromaticity

co-ordinates will be in the range 1=255 to 1. Second, we assume that we can partition this space

into N � N uniform regions. This assumption is justi�ed on two grounds. First, all devices

have some measurement error, which implies that all chromaticities within a region de�ned by

this error must be considered equal. Second, for many applications, lights and surfaces with

chromaticities within a certain distance of one another can e�ectively be considered to have the

same colour. Exactly how �nely we need partition this space | how big N should be | will

depend on the application. We consider this issue later in the paper.

Partitioning the chromaticity space in this way implies that there are at most N2 distinct

illuminants and N
2 distinct surfaces - so that there can be at most N2 distinct chromaticities

in an image. In practice the range of illuminants which we encounter in the world is much more

restricted than this, so that the number (Nill) of possible illuminants will be much smaller than

N
2. For convenience we de�ne an Nill�2 matrix Cill whose i

th row is the chromaticity of the ith

illuminant. And we use the notation Cim to represent the Npix�2 matrix of image chromaticities.

We now solve for colour constancy in three stages. First, we build a correlation matrix to cor-

relate possible image colours with each of the set of Nill possible scene illuminants (see Figure 1).

For each illuminant we characterise the range of possible image colours (chromaticities) that can

be observed under that light (Figure 1a). More details on how this can be done are given later

in the paper. This information is used to build a probability distribution (Figure 1b) which tells

us the likelihood of observing an image colour under a given light. The probability distributions

for each light form the columns of a correlation matrix M (Figure 1c) (each row of the matrix

corresponds to one of the N � N discrete cells of the partitioned chromaticity space). Given a

correlation matrix and an image whose illuminant we wish to estimate, we perform the following

two steps (illustrated in Figure 2). First we determine which image colours are present in the

image (Figure 2a). This information is coded in a vector v of ones and zeros corresponding to

whether or not a given chromaticity is present in the image. To this end we de�ne two operations
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    reference illuminant 1

Figure 1: Three steps in building a correlation matrix. (a) We �rst characterise which im-

age colours (chromaticities) are possible under each of our reference illuminants. (b) We use

this information to build a probability distribution for each light. (c) Finally we encode these

distributions in the columns of our matrix.

chist() and thresh(). The operation chist() returns an N
2 � 1 vector h:

h(xi � yi) = counti=Npix

counti =
PNpix

j=1
cj ; cj =

(
1 if Cim(j) = (xi; yi)

0 otherwise

(4)

that is, the ith element of h holds the number of times a chromaticity corresponding to (xi; yi),

occurs in the image, normalised by Npix, the total number of pixels in the image. For example,

if chromaticity (xi; yi)
t occurs 10 times in the image, then h(xi � yi) = 10=Npix. The second

operation, thresh(h), ensures that each image chromaticity is counted only once, regardless of

the number of times it occurs in the image. Formally,

thresh(x) =

(
1; if x > 0

0; otherwise
(5a)

thresh([h1; h2; � � � ; hN ]
t) = [thresh(h1); thresh(h2); � � � ; thresh(hN )]

t (5b)

With these de�nitions v can be expressed:

v = thresh(chist(Cim)) (6)

We then determine a measure of the correlation between this image data v, and each of the

possible illuminants. The usual expression of a correlation is as a vector dot-product. For example

if a and b are vectors then they are strongly correlated if a:b is large. We use a similar dot-product

de�nition of correlation here. Each column of the correlation matrixM corresponds to a possible

illuminant so that the elements of the vector returned by the product vtM are a measure of how

6



a) Make image vector from
     image chromaticities

x

y
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

xn, yn

1

0

1

0

1

0

1

ill 4 ill 5 ill 6 ill 7 ill 8ill 1 ill 2 ill 3

0.7 0.1 0.0 0.0 0.0 0.90.00.1

0.1 0.5 0.4 0.0 0.4 0.10.2

0.3 0.1 0.9 0.4 0.7 0.1 0.00.9

0.6 0.2 0.0 0.4

t

0.1 0.90.10.2

0.2 0.6 0.1 0.00.3 0.3 0.90.6

0.3 0.1 0.7 0.2 0.5 0.2 0.00.4

0.1 0.0 0.1 0.5 0.1 0.6 0.00.0

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

x2, y2
x2, y1
x1, yn

x1, y3
x1, y2
x1, y1

1.2 0.5 1.3 1.5 0.9 1.2 1.60.8

c) Choose most likely illuminant

b) Correlate image data with possible illuminants

0.7

Matrix M

v
Mv

Figure 2: Solving for colour constancy in 3 stages. (a) Histogram the chromaticities in the

image. (b) Correlate this image vector v with each column of the correlation matrix. (c) This

information is used to �nd an estimate of the unknown illuminant, for example the illuminant

which is most correlated with the image data.

strongly the image data correlates with each of the possible illuminants. Figure 2 is a graphical

representation of this process. The highlighted rows of the correlation matrix correspond to

chromaticities present in the image (entries of v which are one). To obtain a correlation measure

for an illuminant we simply sum the highlighted elements of the corresponding column. The

result of this is a vector, (Figure 2b) l, whose elements express the degree of correlation of each

illuminant - the bigger an element of this vector, the greater the correlation between the image

data and the corresponding illuminant:

l = v
t
M = thresh(chist(Cim))

t
M (7)

The �nal stage in solving for colour constancy is to recover an estimate of the scene illuminant

based on the correlation information (Figure 2c). For example we could choose the illuminant

which is most highly correlated with the image data:

ĉ
E = thresh2(thresh(chist(Cim))

t
M)Cill (8)

where thresh2() returns a vector with entries corresponding to:

thresh2(h) = h
0
h
0

i
=

(
1; if hi = max(h)

0; otherwise
(9)

Equation (8) represents our framework for solving colour constancy. To completely specify the

solution however, we must de�ne the entries of the correlation matrix M . Given a set of image

data Cim we would like to recover Pr(EjCim) - the probability that E was the scene illuminant

given Cim. If we know the probability of observing a certain chromaticity c, under illuminant

E: Pr(cjE), then Bayes' rule [7] tells us how to calculate the corresponding probability Pr(Ejc):

the probability that the illuminant was E, given that we observe chromaticity c:

Pr(Ejc) =
Pr(cjE)Pr(E)

Pr(c)
(10)

Here Pr(E) is the probability that the scene illuminant is E, and Pr(c) is the probability of

observing the chromaticity c, and the set of possible illuminants is de�ned by the Nill� 2 matrix

7



Cill and the range of possible chromaticities is de�ned by the N�N partitions of the chromaticity

space. From Equation (10) it follows that the probability that the illuminant was E given the

image data Cim is given by:

Pr(EjCim) =
Pr(CimjE)Pr(E)

Pr(Cim)
(11)

Now, noting that for a given image Pr(Cim) is constant, and if we assume that image chromatic-

ities are independent then we can re-write Equation (11) as:

Pr(EjCim) =

2
4 Y
8c2Cim

Pr(cjE)

3
5Pr(E) (12)

Furthermore, if we assume that all illuminants are equally likely, then we have:

Pr(EjCim) = k

Y
8c2Cim

Pr(cjE) (13)

where k is some constant. Of course, in general it is not clear that all illuminants will occur with

the same frequency, however in the absence of information about the frequency of occurrence

individual lights it makes sense to assume that all are equally likely. For some applications it

may be possible to provide such prior information and in this case with a slight modi�cation to

the framework, such information can be incorporated into the algorithm. For now we simply

assume that all lights are equally likely, but we also remind the reader that we are not considering

all possible chromaticities as the set of potential illuminants, but rather we use a restricted set

corresponding to \reasonable" lights.

Now, we de�ne a likelihood function:

l(EjCim) =
X

8c2Cim

log(Pr(cjE)) (14)

and note that the illuminant which maximises l(EjCim) will also maximise Pr(EjCim). The

log-probabilities measure the correlation between a particular chromaticity and a particular il-

lumination. We can then de�ne a correlation matrix MBayes whose ij
th entry is:

log(Pr(image chromaticity ijilluminant j)).

It follows that the correlation vector l de�ned in Equation (7) becomes the log likelihood l(EjCim):

l(EjCim) = thresh(chist(Cim))
t
MBayes (15)

and our estimate of the scene illuminant can be written:

ĉ
E = thresh2(thresh(chist(Cim))

t
MBayes)Cill (16)

Equation (16) de�nes a well founded maximum likelihood solution to the illuminant estimation

problem. It is important to note that since we have computed likelihoods for all illuminants we

can augment the illuminant calculated in (16) with error bars. We could do this by returning

the maximum-likelihood answer de�ned in Equation (16) together with the likelihoods for each

possible illuminant, de�ned in Equation (15). These likelihoods tell us how much con�dence

we should have in the maximum-likelihood answer. Alternatively, rather than just returning

the most-likely answer, we could return this answer together with other illuminants which had

similar likelihoods. That is we could return a set of plausible illuminants Cplausible which we

de�ne:

Cplausible = diag(thresh3(thresh(chist(Cim))
t
MBayes))Cill (17)
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where we replace the thresholding function thresh2() used in Equation (16) with a new function

thresh3(), such that:

thresh3(x) = 1; if x � m;

thresh3(x) = 0; otherwise
(18)

and m is chosen in an adaptive fashion such that m � max(h). The function diag(a) returns

a diagonal matrix whose non-zero entries are the elements of a so that Cplausible is an Nill � 2

matrix whose non-zero rows correspond to possible lights. This enables us to inform the user that

the illuminant was, for example either yellow Tungsten or cool white 
uorescent but that it was

de�nitely not blue sky daylight. Once more we can return Cplausible together with the likelihoods

of all the illuminants. We believe that this is a major strength inherent in our method and will

be of signi�cant value in other computer vision applications. For example, face tracking based

on colour can fail if the colour of the skin (de�ned in terms of image colours) varies too much.

In the context of the current paper this is not a problem so long as the variation is explained by

the colour constancy computation.

3 Other Algorithms in the framework

Equation (8) encapsulates our solution to the illuminant estimation problem. At the heart of this

framework is a correlation matrix which encodes our knowledge about the interaction between

lights and image colours. We show in this section that many existing algorithms can be re-

formulated in this same framework simply by changing the entries of the correlation matrix

so as to re
ect the assumptions about the interactions between lights and image colours made

(implicitly) by these algorithms.

3.1 Grey-World

We begin with the so called Grey-World algorithm which as well as being one of the oldest and

simplest is still widely used. This algorithm has been proposed in a variety of forms by a number

of di�erent authors [5, 18, 21] and is based on the assumption that the spatial average of surface

re
ectances in a scene is achromatic. Since the light re
ected from an achromatic surface is

changed equally at all wavelengths it follows that the spatial average of the light leaving the

scene will be the colour of the incident illumination. Buchsbaum [5] who was one of the �rst

to explicitly make the grey-world assumption, used it, together with a description of lights and

surfaces as low-dimensional linear models [6] to derive an algorithm to recover the spectral power

distribution of the scene illuminant E(�) and the surface re
ectance functions S(�). To recover

an estimate of the scene illuminant in the form we require, that is, in terms of the sensor response

of a device to the illuminant, is trivial, we simply need to take the average of all sensor responses

in the image. That is:

p
E = mean(RGBim): (19)

Equation (19) can equivalently be written as:

p
E = hist(RGBim)

t
IRGBill (20)

where RGBill and RGBim respectively characterise the set of all possible illuminants and the

set of image pixels, in camera RGB space (they are the 3-d correlates of Cill and Cim de�ned

earlier. The operation hist() is chist() modi�ed to work on RGBs rather than chromaticities,

and the matrix I is the identity matrix. In this formulation I replaces the correlation matrix

MBayes and, as before, can be interpreted as representing our knowledge about the interaction

between image colours and surfaces. In this interpretation the columns and rows of I represent

possible illuminants and possible image colours respectively. Hence, I tells us that given a sensor
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response p in an image, the only illuminant consistent with it is the illuminant characterised by

the same sensor response. Correspondingly the vector

l = hist(RGBim)
t
I (21)

whose elements contain the number of image colours consistent with each illuminant, can be

interpreted as a measure of the likelihood that each illuminant (each distinct RGB present in

the image) is the scene illuminant. Based on these likelihoods we calculate an estimate of the

scene illuminant by taking the weighted average of all illuminants. For example, if (200; 10; 200)t

appears in an image then (200; 10; 200)t could be the illuminant colour. Equally, if (100; 50; 20)t

appears in the image, it too is a candidate illuminant. If both image colours appear in the image,

then according to I they are both possible candidates for the illuminant. The mean estimate of

the two provides a well founded statistical estimate of the illuminant relative to the priors we

have used (the diagonal matrix I). In fact, this example highlights one of the problems with

using these priors, since according to our model of image formation (Equation (1)), if either of

these RGBs is considered the RGB of the illuminant, then the other cannot possibly be so.

While it is often used for colour constancy, the Grey-World algorithm has a number of limi-

tations. First Gershon et al [18] have pointed out that the spatial average computed in Equa-

tion (19) is biased towards surfaces of large spatial extent. They proposed a modi�ed algorithm

which alleviates this problem by segmenting the image into patches of uniform colour prior to

estimating the illuminant. The sensor response from each segmented surface is then counted

only once in the spatial average, so that surfaces of di�erent size are given equal weight in the

illuminant estimation stage. It is trivial to add this feature in our framework; we simply need to

apply the thresholding operation thresh(), de�ned in Equation (5), to the output from hist():

p
E = thresh(hist(RGBim)

t)IRGBill (22)

A second limitation of the Grey-World algorithm is highlighted by Equation (20) - the identity

matrix I does not accurately represent our knowledge about the interaction of lights and surfaces.

Improving colour constancy then, amounts to �nding matrices such as MBayes de�ned above

which more accurately encode that knowledge.

3.2 3-d Gamut Mapping

The matrix I tells us that a reddish RGB observed in an image is only consistent with an

illuminant of that colour. In fact, such an RGB is consistent with both a red surface under a

white light and a white surface under a red light, and with many other combinations of surface

and illuminant. Forsyth [14] developed an algorithm, called CRULE to exploit this fact. CRULE

is founded on the idea of colour gamuts: the set of all possible sensor responses observable under

di�erent illuminants. Forsyth showed that colour gamuts are closed, convex, bounded, and

that most importantly, each is a strict subset of the set of possible image colours. The gamut

of possible image colours for a light can be determined by imaging all possible surfaces (or a

representative subset thereof) under that light. We can similarly determine gamuts for each

of our possible illuminants, i.e. for each row of RGBill and can code them in a correlation

matrix. That is, we de�ne a matrix MFor, such that if image colour i can be observed under

illuminant j then we put a one in the ijth entry of MFor, otherwise we put a zero. The matrix

MFor more accurately represents our knowledge about the world and can be used to replace I

in Equation (20).

From the colours present in an image CRULE determined a set of feasible illuminants. An

illuminant is feasible if all image colours fall within the gamut de�ned by that illuminant. In our

framework, the number of image colours consistent with each illuminant can be calculated:

l = thresh(hist(RGBim)
t)MFor (23)
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where thresh() and hist are as de�ned previously and used together ensure that each distinct

image colour is counted only once. If there are Nsurf distinct surfaces in an image, then any

illuminant corresponding to entries of l which are equal to Nsurf are consistent with all image

colours and are therefore feasible illuminants.

Once the set of feasible illuminants has been determined, the �nal step in CRULE is to select

a single illuminant from this set as an estimate of the unknown illuminant. Previous work has

shown [2] that the best way to do this is to take the mean of the feasible illuminants. In our

framework this can be achieved by:

p̂
E = thresh2(thresh(hist(RGBim))

t
MFor)RGBill (24)

where thresh2() is de�ned as before. Equation (24), though equivalent to CRULE (with mean

selection) is a much simpler implementation of it. In Forsyth's CRULE the notion of which

image colours can appear under which lights was modelled analytically as closed continuous

convex regions of RGB space. Also, the illuminants themselves were not represented explicitly.

Rather, an illuminant po is de�ned by the mapping (actually a 3 � 3 diagonal matrix) that

takes responses observed under po to reference or canonical lighting conditions pc. In CRULE

computation involves calculating mapping sets for each image colour and then intersecting these

sets to arrive at the overall plausible set (which contains those mappings that take all image

colours to canonical counterparts).

Computation aside, our new formulation has another signi�cant advantage over CRULE. Since

rather than saying that an illuminant is possible if and only if it is consistent with all image

colours we can instead look for illuminants that are consistent with most image colours. This

subtle change cannot be incorporated easily into the CRULE algorithm yet it is important

that it is, since in CRULE, if no illuminant is globally consistent there is no solution to colour

constancy. To implement majority consistency in our framework is straightforward. We simply

replace thresh2() with the thresholding function thresh3() de�ned in Equation (18) above. Thus,

the improved CRULE algorithm, can be written as:

p̂
E = thresh3(thresh(hist(RGBim))

t
MFor)RGBill (25)

3.3 Colour In Perspective (2-d Gamut Mapping)

While the formulation of Forsyth's CRULE algorithm given above addresses some of its lim-

itations there are other problems with CRULE which this formulation doesn't resolve. First,

Finlayson [10] recognised that features such as shape and shading a�ect the magnitude of the

recovered light, but signi�cantly, not its colour. To avoid calculating the intensity of the illumi-

nant (which cannot be recovered [23]) Finlayson carried out computation in a 2-d chromaticity

space. If we once again characterise image colours and illuminants by their chromaticities we

can de�ne a new matrix, MFin whose ijth element will be set to one when chromaticity i can be

seen under illuminant j and to zero otherwise. We can then substitute MFin in Equation (8):

ĉE = thresh2(thresh(chist(Cim))
t
MFin)Cill (26)

Assuming the thresholding operations, thresh() and thresh2() are chosen as for Forsyth's algo-

rithm (we could of course use thresh3() instead of thresh2() if we wished to implement majority

consistency) then the illuminant estimate ĉ
E is the averaged chromaticity of all illuminants

consistent with all image colours. Previous work [12] has shown however, that the mean chro-

maticity is not the best estimate of the illuminant and that the chromaticity transform should

be reversed before the averaging operation is performed. This can be achieved here by de�ning a

matrix RGBN

ill
, whose ith row is the ith row of RGBill normalised to unit length. The illuminant

estimate is now calculated:

p
E = thresh2(thresh(chist(Cim))

t
MFin)RGB

N

ill
(27)
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Another problem with gamut mapping is that not all chromaticities correspond to plausible

illuminants (for example purple lights do not occur in practice). This observation is also simple

to implement since we can simply restrict the columns ofMFin to those corresponding to plausible

lights.

3.4 Illuminant Color by Voting

Sapiro [26, 25] has recently proposed an algorithm for estimating the scene illuminant which is

based on the Probabilistic Hough Transform. In this work Sapiro represents lights and surfaces

as low-dimensional linear models and de�nes, according to this model, a probability distribution

from which surfaces are drawn. Given a sensor response from an image, a surface is selected

according to the de�ned distribution. This surface, together with the sensor response, is used

to recover an illuminant. If the recovered illuminant is a feasible illuminant (in Sapiro's case an

illuminant on the daylight locus) a vote is cast for that illuminant. For each sensor response

many surfaces are selected and so many votes are cast. To get an estimate of the illuminant

the cumulative votes for each illuminant are calculated by summing the votes from all sensor

responses in the image. The illuminant with maximum votes is selected as the scene illuminant.

The votes for all illuminants for a single sensor response, p, represent an approximation to

the probability distribution: Pr(Ejp) - the conditional probability of the illuminant given the

observed sensor response. Sapiro chooses the illuminant which maximises the function:X
p2RGBim

Pr(Ejp) (28)

Since we know the range of possible image colours, rather than compute the probability distri-

butions Pr(Ejp) on a per image basis, we could instead, using Bayes rule, compute them once

for all combinations of sensor responses and illuminants. We can then de�ne a matrix MSapiro

whose ijth entry is Pr(illuminant jjimage colour i), which by Bayes rule, is proportional to the

probability of observing image colour i under illuminant j. It then follows that Sapiro's estimate

of the illuminant can be found in our framework by:

p̂
E = thresh3(hist(RGBim)

t
MSapiro)RGBill (29)

where the matrix MSapiro is equal to ke
MBayes. We note that in Equation (29) the image

histogram is not thresholded so that Sapiro's algorithm, as Grey-World, will be sensitive to large

areas of uniform colour.

3.5 Probabilistic Algorithms

Brainard et al [4] have recently given a Bayesian formulation of the colour constancy problem.

Their approach is again founded on a linear models representation of lights and surfaces. That

is, each light and surface is represented by a weighted sum of a small number of basis functions

so that these weights are su�cient to de�ne a light or surface. Principal component analyses

of collections of surfaces and illuminants was used to determine suitable basis functions and

the corresponding weights for each light and surface. The authors then de�ned probability

distributions for these weights and used Bayesian decision theory to recover estimates of the

weights for the surfaces and illuminant in an image. So, if x represents the combined vector of

weights for all the surfaces and the light in an image, the problem is to estimate x.

If there are Nsurf surfaces in the image then the vector to be recovered is (3Nsurf + 3)-

dimensional. Estimating x is therefore computationally extremely complex. The authors have

implemented the algorithm as a numerical search problem, and shown results for the case Nsurf =

8. However, since typical images contain many more surfaces than eight, as a practical solution

for colour constancy this approach is far too complex. A precise formulation of their algorithm is
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not possible within our framework, however we can use their prior distributions on surfaces and

illuminants when constructing our correlation matrix. If we then restrict the problem to that

of recovering an estimate of the unknown illuminant, then our approach should produce similar

results.

An approach which is much closer to the algorithm we have presented was proposed by

D'Zmura et al [9]. They also adopted a linear models representation of surfaces, but they used

these models to derive a likelihood distribution Pr((x; y)jE(�)). That is the probability of ob-

serving a given CIE-xy chromaticity [31] co-ordinate, under an illuminant E(�). This is done by

�rst de�ning distribution functions for the weights of their linear model of surfaces. They then

generated a large number of surfaces by selecting weights according to these distributions and

calculated the corresponding chromaticity co-ordinates for these surfaces. By selecting a large

number of surfaces, a good approximation to Pr((x; y)jE(�)) can be found. If we put likelihoods

corresponding to these probabilities in a correlation matrix, then this algorithm can be formu-

lated in the framework we have developed. We point out that this algorithm like Grey-World

takes no account of the relative frequency of individual chromaticities: the function thresh() is

not used. As such, the algorithm is again highly sensitive to large image areas of uniform colour

and so can su�er serious failures.

3.6 Neural Networks

The �nal algorithm we consider is the Neural Network approach of Funt et al [17]. Computation

proceeds in three stages and is summarised below:

output1 = thresh4(thresh(hist(Cim)
t)MFunt)

output2 = thresh4(outputt
1
MFunt;1)

output3 = output
t

2
MFunt;2

(30)

where thresh4 is similar to thresh3 but its exact de�nition has not been speci�ed [17]. In the

parlance of Neural Networks output1 is the �rst stage in a 3 layer perceptron calculation. The 2
nd,

hidden layer computation, is modelled by the second equation and the �nal output of the Neural

Net is output3. The correlation matrix MFunt;1 typically has many fewer columns than MFunt.

Moreover, MFunt;2 only has two columns and so the whole network only outputs two numbers.

These two numbers are trained to be the chromaticity of the actual scene illuminant. As such

we can replace MFunt;2 by Cill (though it is important to realise that here Cill is discovered as

a result of training and does not bear a one to one correspondence with actual illuminants).

In the context of this paper output1 is very similar to Equation (8) albeit with a di�erent

correlation matrix and slightly di�erent threshold functions. The other two stages address the

question of how a range of possible illuminants is translated into a single illuminant chromaticity

estimate. As one might imagine the Neural Net approach, which basically �ts a parametric

equation to model image data, has been shown to deliver reasonably good estimates. However,

unlike the approach advocated here, it is not possible to give certainty measures with the estimate

nor is it possible to really understand the nature of the computation that is taking place.

4 Results

We conducted two experiments to assess the performance of our new correlation algorithm and

to compare it to existing algorithms. First, to get some idea of the algorithm's performance over

a large data set we tested it on synthetically generated images. In a second experiment we tested

the algorithm on a number of real images captured with a digital camera. We show exemplar

results of these tests for a small number of images.

In the experiments on synthetic images we tested 5 algorithms: Grey-World, Modi�ed Grey-

World, 2-d Gamut Mapping (with mean selection), Sapiro's algorithm, and the new Color by
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Correlation algorithm, described in this paper. Grey-World simply uses the average of all the

sensor responses in the image as an estimate of the unknown illuminant. Modi�ed Grey-World is

similar, except that each distinct sensor response is counted only once when forming the average,

regardless of how many times it occurs in the image. More sophisticated segmentation algorithms

could be used, as Gershon et al [18] suggest, however, the question of how best to segment is still

open and so we adopt the simplest approach here. 2-d Gamut Mapping is Finlayson's Colour

In Perspective algorithm, formulated in the correlation framework and Sapiro's algorithm is also

re-formulated in this same framework.

Before running the correlation based algorithms we must make the correlation matrices them-

selves. In the case of the 2-d Gamut Mapping ( matrix MFin) we want to determine the range

of image chromaticities that are possible under each of the illuminants between which we wish

to distinguish. One way to obtain this information would be to take the camera and capture

a wide range of surface re
ectances under each of the lights between which we wish to distin-

guish. In this way we can de�ne the gamut of colours which the camera records under each

light. However this approach is somewhat cumbersome especially if the number of possible lights

is large. Fortunately, given some knowledge about our camera, we can instead generate these

gamuts using synthetic data. Speci�cally, if we know the spectral response characteristics of

the camera, then we need only measure the surface re
ectances of a range of objects and the

spectral power distribution of each illuminant between which we wish to distinguish. We can

then use Equation (2) to generate the set of possible sensor responses under each illuminant and

from these we can calculate the corresponding chromaticities. We then take the convex hull of

these chromaticities and consider that any chromaticity within the hull is part of the gamut (it's

corresponding entry in the correlation matrix is one) and that all other chromaticities are outside

it (their corresponding entries are zero [14]).

We point out that in using Equation (2) to generate the sensor responses we are assuming that

the camera has a linear response whereas in practice this is often not the case. In such cases

we must account for any non-linearity in the camera's response when calculating the responses

- that is we must characterise the nature of the camera's non-linearity and modify Equation (2)

to take account of it. Alternatively we could calculate the matrices using the assumption of

linear data, and then linearise the data recorded by the camera before applying the illuminant

estimation algorithm.

The entries of the matrix MBayes can also be found using synthetic responses generated using

Equation (2). However now, rather than recording only whether a chromaticity is possible or

not, we want to record the relative frequency with which it occurs. To do this we can use the

same set of surface re
ectances to calculate chromaticity co-ordinates as before, then, to estimate

the probability of a given image colour, we simply count the number of surfaces falling in each

bin of the discretised chromaticity space. The entries of MBayes are the log of these raw counts

normalised by the total number of chromaticities. The matrix MSapiro is created in the same

way except that we put actual probabilities rather than log probabilities in the matrix.

When calculating the correlation matrices we must decide how to partition the chromaticity

space. This partitioning will depend both on the characteristics of the camera's sensors and also

on which chromaticity space is being used. There are many chromaticity spaces which could

potentially be employed; for the experiments reported here we used the co-ordinates:

c1 =

�
p1

p2

� 1
3

; c2 =

�
p3

p2

� 1
3

(31)

since this leads to chromaticities which are reasonably uniformly distributed. This has the

advantage that a simple uniform discretisation of the space can be employed. The method is

quite insensitive to the level of discretisation of the space { we have achieved good results using

discretisations ranging from 16� 16 to 64� 64. The results reported here are based on a 24� 24

discretisation of the space which we have found to work well for a range of cameras.
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We tested the algorithms' performance using images synthesised using Equation (2). For

sensor response curves we used monochromator measurements of a HP Photosmart C500 digital

camera. These curves were then used to generate the correlation matrices. Key to the success

of the method is the choice of lights and surfaces used to build the correlation matrices. For

the experiments reported here we wanted to generate a matrix which would give good results

for a wide range of illuminants so we chose a set of 37 lights, representing a range of commonly

occurring indoor and outdoor illumination. The set includes daylights with correlated colour

temperatures ranging from D75 to D40, Planckian blackbody radiators, ranging from 3500K

to 2400K, and a variety of 
uorescent sources. The set of surface re
ectances we use is most

important when we come to test the algorithm on real images since how well the distribution of

these surfaces matches the distribution of re
ectances in the real world will have a large e�ect

on the success of the algorithm. For the synthetic experiments, it is enough to choose a wide

range of re
ectance functions: we used two sets: a set of 462 Munsell chips [31] and a collection

of object surface re
ectances measured by Vrhel et al [30].

To create the synthetic images on which we tested the algorithms we randomly selected between

2 and 64 surfaces from a set of surface re
ectances, and a single illuminant, drawn from the

set of 37. To make the test more realistic we used re
ectances from a set of natural surface

re
ectances measured by Parkkinen et al [24] rather than using the same re
ectances on which

the correlation matrices were built. We calculated the sensor response for a surface and then

weighted each surface by a random factor chosen to ensure that the number of pixels in each

image was 512�512. Since many real images consist of large areas of uniform colour (for example,

outdoor scenes often contain large regions of blue sky), to make the images more realistic, the

factors were chosen such that one surface always occupied at least 40% of the image.

To determine an algorithm's estimate of the illuminant, we simply calculate an image his-

togram, and then the likelihood for each illuminant according to Equation (7). These likelihoods

are then used to select a single illuminant from the set as an estimate of the scene illuminant.

For the 2-d Gamut Mapping algorithm we used the mean selection method [12], whereas for

Sapiro's algorithm and the new Color by Correlation approach we chose the illuminant with

maximum likelihood. To assess the relative performance of the algorithms we chose a root mean
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and Colour by Correlation (solid line).

15



square error (RMSE) measure - speci�cally the chromaticity error between the image under D65

illumination, and an estimate (calculated using each algorithm's estimate of the illumination)

of the image under D65. RMSE is commonly used in the computational colour constancy liter-

ature [2, 17]. and while it is not the most intuitive error measure - it is not easy to interpret

what a given RMS error means in terms of visual di�erence between images, it at least allows the

relative performance of the algorithms to be assessed. To help give some idea of what a certain

RMS error corresponds to in terms of visual di�erence, in the second experiment, on real images,

we give RMS errors for a number of corrected images, together with a print of those images.

RMS error is calculated as follows. Each of the algorithms was used to generate an estimate of

the unknown scene illuminant in terms of a 2-d chromaticity co-ordinate. We used this estimate

to re-render the image as it would have appeared under standard daylight D65 illumination. Re-

rendering was performed by �nding the diagonal mapping which takes the algorithm's estimate

of the scene illuminant to the chromaticity of D65 illumination. We then applied this mapping

to all RGBs in the image to obtain an estimate of the scene as it would have appeared under

D65 illumination. We also performed a similar correction using a mapping from the chromaticity

of the actual scene illuminant to D65 illumination. We then calculated the root mean square

error in chromaticity space between these two images. Since algorithm performance is measured

in a 2-d chromaticity space, and since the Grey-World algorithms work in 3-d sensor space, it

might be thought that the algorithms which set out to recover a 2-d estimate would have an

unfair advantage over the 3-d algorithms. We tested this theory by modifying the Grey-World

algorithms to work in 2-d chromaticity space and found that this in fact led to worse performance

than in the 3-d case. For this reason only the 3-d results are reported here.

Figure 3 shows the relative performance of the �ve algorithms in terms of the average RMS

chromaticity error against the number of surfaces in the image. Results were calculated for images

with 2, 4, 8, 16, 32, and 64 surfaces and in each case the average was taken over 500 images.

We can draw a number of conclusions from these results. First, accurately encoding information

about the world leads to improved colour constancy performance; the gamut mapping algorithm,

and the two algorithms exploiting probability information all perform considerably better than

the grey-world algorithms. Further, we can see that adding information about the probabilities of

image colours under di�erent illuminants further improves performance. It is important though,

that this information is encoded correctly. Our new algorithm, which correctly employs Bayes's

rule, gives a lower average RMSE than the second best algorithm. However, Sapiro's algorithm

which does not correctly encode probability information performs slightly worse than the 2-d

gamut mapping algorithm.

Previous work [12] has demonstrated that 2-d gamut mapping produces better results than

most other algorithms [13, 12]. So, it is signi�cant that our new approach delivers much better

constancy. Moreover, the Neural Net approach (for which there insu�cient information for us

to implement) has also been shown [17] to perform similarly to 2-d gamut mapping. Thus on

the basis of the results presented here, it is fair to say that to our knowledge the new algorithm

outperforms all other algorithms. The second experiment we ran was to test the performance

of the algorithm on real images. We used images from two di�erent digital cameras: a HP-

Photosmart C500 and a prototype digital still camera based on a Sony ICX085 CCD. Both

cameras were modi�ed so that they gave raw sensor data and were calibrated to ensure that this

data was linearly related to incident light. Thus Equation (2) is an accurate model of image

formation. We measured the spectral sensitivity curves of both devices using a monochromator

and used these measurements when building the correlation matrices for the various algorithms.

The raw data from the camera was averaged down by a factor of 5 (in width and height)

and this averaged image was used as input to the illuminant estimation algorithms. Using each

algorithm's estimate of the scene illuminant we re-rendered the full-size captured image to D65

illumination, following the procedure described above. Figures (4) and (5), and Table (1) show

typical examples of the algorithm's performance for the two cameras. Figure (4) shows results for
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Figure 4: Left to right: raw camera image, correction based on; measured illuminant, Grey-

World, and Color by Correlation. Images were taken under daylight D50 (top) and simulated

D65(bottom).

Figure 5: Left to right: raw camera image, correction based on; measured illuminant, 2-d Gamut

Mapping and Color by Correlation. Images were taken under illuminant A (top), and cool white


uorescent (bottom).

two scenes captured with the �rst camera. For each scene we show four images; the raw data as

captured by the camera, the image re-rendered to D65 illumination using a spectral measurement

of the scene illuminant (obtained by placing a white tile in the scene and measuring the spectrum

of the re
ected light), the image re-rendered using the illuminant estimate recovered by our new

algorithm, and the image re-rendered using the Grey-World estimate. It is clear that the image
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No CC G-W C by C 2-d G-M

Average 0.580 0.49 0.11 0.21

Table 1: Average Root Mean Square Error between images corrected to the D65 illumination

using an estimate of the scene light and images corrected using a measurement of the scene light.

re-rendered using the new algorithm's estimate of the illuminant is a very close match to that

obtained using the measured illuminant. In contrast, the performance of Grey-World is worse

and while in terms of RMSE (see Table 1) it is better than doing no correction the images are

visually, a very poor match to the properly corrected image.. Figure 5 shows results for the

second camera. Here, rather than comparing performance with the Grey-World algorithm, we

show how well the 2-d Gamut Mapping algorithm performs (the second best algorithm in the

experiments with synthetic images). The 2-d Gamut Mapping algorithm does perform better

than the Grey-World approach, however, performance is still some way behind that which can

be obtained using the new algorithm. Table (1) summarises the algorithm performance for the

four images in terms of the RMS error measure used in the synthetic experiments. Again, using

this measure, the new algorithm performs very well, and better than the other algorithms tested.

Four images do not represent an exhaustive test of the algorithm's performance and the results

presented here are intended only to give an idea of the kind of the performance that can be

obtained with the various algorithms. The results are though typical of the performance we have

achieved with the new algorithm and we are currently in the process of compiling a database of

images on which to more thoroughly test performance.

5 Conclusions

In this paper we have considered the colour constancy problem; that is how we can �nd an

estimate of the unknown illuminant in a captured scene. We have seen that existing constancy

algorithms are inadequate for a variety of reasons. For example, many of them make unrealistic

assumptions about images, or their computational complexity is such that they are unsuitable

as practical solutions to the problem. We have presented here a correlation framework in which

to solve for colour constancy. The simplicity, 
exibility and robustness of this framework makes

solving for colour constancy easy (in a complexity sense). Moreover, we have shown how a

particular Bayesian instantiation of the framework leads to excellent colour constancy (better

than other algorithms tested). A number of other previously proposed algorithms were also placed

within the correlation framework, and others which while they cannot be precisely formulated

within the framework, were shown to be closely related to it.
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