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Single Beam Element
Stiffness Matrix Formulation

Consider a prismatic beam of length L loaded by shear forces and
moments at its two ends as shown in Fig. 1. Distance along the beam is
measured with a coordinate z, starting at the left end. Deflection, v(z),

is measured positive down following the convention in Timoshenko and
Gere.

L
M1 - >1
C 1 2
K )
V1 v Vz M2

Fig. 1 — Forces and Moments on a Single Beam Element

The shear force and moment at the left end (end 1) are V; and M;,

respectively. Corresponding quantities at the right end (end 2) are V5 and
Mg. '
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Assuming zero transverse distributed load, the load-deflection differen-
tial equation can be integrated sequentially to yield expressions for shear
force, bending moment, slope, and deflection.

d*v
EI i 0

d3v
EI _(E:—?’- = C = —V(CC)

d’v
EId—mz- = cix +c = —M(z)

dv z?
EI% = 01-5-+CQ$+63
z3 z2
Elv = C.1€ + 62—2- + C3T + ¢4

The displacement and rotation at end 1 are denoted by v; and 6,
respectively. Corresponding quantities at end 2 are vy and 6,. These four
kinematic variables may then be expressed in terms of the constants ci,
cs, c3, and ¢, using the equations above, as follows

1

v = v(0) = Vol C4
dv 1
91 = E;(O) = EC;}
1 L3 L?
vy = v(L) = *E—I' [01? + 02—2— +c3L + 04}
dv 1 L?
0y = EE(L) = %7 [Cl 5 +C‘2L+63}
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These equations can be written in matrix form as

1

(0 0 0 &
1 18] U1
C2 | _ 1
I3 12 L 1 €3 V2
6EI 2EI EI EI C4 6

\ 36T EI EI

Solving this system of linear algebraic equations for c¢;, co, c3 and ¢4 gives'

(the reader should verify)

(12EI 6EI —12EI 6FEI
L3 L® L3 L

Ci —6g231 —AET 6E2I —2E] V1
e | L L L L 0,
C3 V2

0 EI O 0
C4 02

\EI 0 0 0 |

The shear forces and bending moments at the two ends of the beam
can be expressed in terms of the constants c;, ¢y, ¢3 and ¢4. Then, using
the result above, the shear forces and bending moments on the ends can
be written in terms of the end displacements and rotations.
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V(O) = —Vi = —Ci

12EI GEIQ 12ET 6E1
i = 73V 2~ 13 vo + T2 0o

M(O) = M1 = —C

6ET 4E1 6ET 2ET

My = ottt
V(L) 2‘/2 = —C
19E]  6EI, 12EI  6EI
“W=mus it st

M(L) = -—M2 = —ClL — C9

6EI  2EI, 6EI  4EI
Mo = ot =t 0
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These equations can be expressed in matrix form, as follows

(12 6L -—12 6L )

2 2
E] 6L 4L 6L 2L 8, Y

3
L —12 —6L 12 —6L

\ 6L 2L* —6L 4L*

The vector on the left hand side of the equation is called the “element
displacement vector,” while the vector on the right hand side is called the
“element force vector.” The 4 x 4 matrix is often referred to as the “finite
element stiffness matrix.” This particular way of arranging the force and
displacement quantities proves very useful in solving beam problems, i.e.,
for finding both displacements and reactions.
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EXAMPLES

(i.) Cantilever with a Tip Load

. l
§ '
§ j
2\

- .
Fig. 2 - Cantilever with a Tip Load

It is common to refer to end 1 and end 2 as nodes. To solve for deflec-
tions and reactions, it is first necessary to consider any known kinematic
boundary conditions and then any known external forces/moments.

BC’s
The appropriate kinematic boundary conditions for the fixed end are

'Ul=01=0

Thus, for this problem the 4 X 4 system of equations reduces to

_E'_J'_I_ 12 —6L () Va
I3\ —6L 4L? 0, M,
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External Force and Moment

The external force and moment at node 2 are
Vo=P
M, =0

Thus, the following 2 X 2 system of equations must be solved for vs

and 92,
EI_ 12 —-6L V9 _ P
L3 \ —6L 4L? 6,) — \O

The solution is (the reader should verify)

o PIL3
27 3EI
PL?

% = 3BT

Reaction Force and Moment

The reaction force and moment at node 1 may be calculated using the
original 4 X 4 system of equations,

ET
ET
M, = F[—-6L’Ug + 2L292] =—PL

These results may be verified immediately by consideration of elementary
statics.
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(ii.) Cantilever with a Tip Moment

N j M,
»

L

Fig. 3 - Cantilever with a Tip Moment

BC’s
The appropriate kinematic boundary conditions for the fixed end are

'Ul==91=0

The 4 x 4 system of equations then reduces to
E[_ 12 —6L V2
L3\ —6L 4L? 05

External Force and Moment

The external force and moment at node 2 are
Voa=0
M, = M,
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Thus, the following 2 x 2 system of equations must be solved for vy and

)
E 12 —6L () _ 0
L3\ —6L 4L? 0, - M,

The solution is (the reader should verify)

. M,L?
2T 9oFT

M,L
% =F1

Reaction Force and Moment

The reaction force and moment at node 1 are calculated by using the
original 4 X 4 system of equations,

ET
i = I3 [—12’02 + 6L92] =0

EI
My = —5 [-6Lv, +2L*0) = — M,
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(ili.) Propped Cantilever with an End Moment
(statically indeterminate)

QLR

M

o]

1 1)
4

Fig. 4 - Propped Cantilever with End Moment

BC’s

The appropriate kinematic boundary conditions for the fixed end and
roller support are
V1 = 01 = V92 = 0

The 4 x 4 system of equations then reduces to

4E1
=0 =M
L ?
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External Force and Moment

The external moment at node 2 is

M2=M0

11

The only unknown kinematic variable is 62, and it may be solved for easily

_ ML

% =1ET

Reaction Force and Moment

Exercise

Determine the reaction force and moment at node 1 and the reaction force

at node 2.
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Assembly Procedures

The real power of the method being developed here is when two or more
beam “elements” are used together to solve more complex problems where:
concentrated forces occur in midspan, discontinuities occur in EI, or where
supports exist within the span. For example, consider the problem of a
simply supported beam with a concentrated mid-span force, as shown in
Fig. 5.

1
&
R -

Fig. 5 - Simply Supported Beam - Two Elements

This problem can be solved by “assembling” two elements. The two
elements and the forces/moments that act on them are shown in Fig. 6.
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The equations relating forces/moments to displacements/rotations for
each of the elements are

Element 1:
(V'll\ ( 12 6L1 —12 6L1 \ /’U%\
M} g7 | 6L 41> —6L; 2L? 01
7]
14 Y1 -12 —6L, 12 —6L; | | v
\ M3 ) \ 6L, 2L? —6L; 4L? 03
Element 2:
(V2 ) (12 6L, —12 6L, \ (v?)
M? g7 | 6L 4L%2 —6L, 2L2 62
7]
V2 21 =12 —6Ly 12 —6Ly | | v?
\ M3 ) \ 6Ly 2L3 —6L, 4L5 ) \ 63)

The superscripts 1 and 2 on the force/moment quantities and the displace-
ment /rotation quantities refer to the element number, as do the subscripts
on L.
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It is clear that three nodal points will figure in this analysis. Now
define

The subscripts 1,2,3 refer to node number.

=
2
1 2 2 M
V2 v1 M1 1
| 11) (Ti . |T> Cll 1
2
AT 2
Vo My My L—-—J vy

£

Fig. 6 - Static equilibrium at node 2

Fig. 6 shows a free-body diagram of an infinitesimal segment of the
beam surrounding node 2. As the length of this segment ¢ — 0, the
following equilibrium conditions must hold,

Vi +VP =P
M; + M} =0
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These two equations can be written in matrix form as follows,

(
Va V2 gr(—12 —6L, 12 -6L
+ = 73
My M? U\ 6L, 2L} —-6L; 4L?
\
(v}
gr( 12 6Ly —12 6L 6?
7]
2\ 6Ly 4L —6Ly 2L V3
\ 03
or
V21 + Vlg 12[‘?1 611:321 12EI + 12E'I 6EI +6EI
M21 + M12 5%3%[ '2L£11' _6TE¥L+6EI 4EI+4EI

)

12E1
L2

_8EI
L2

15

U3

\ 05 /
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The next step is to combine these equilibrium equations with the ele-
ment equations, as follows

/| 1281 6EI __12EI 6EL 0 0 )
Ly pza Ly L3 ['Ul
6EI  4EI 6EI 9ET
L —r L, 0 0 0,
_12BI _6EI \12BI \ 12E1 _SEI i 6EI | _12EI 6EI
L3 7 3 L3 ¥ 7L L3 pi U2
6E1 28I | 6EI | 6EI 4EL . 4EI | _6EI 2EI P
T L LT T L Lz | Nz 2 2
12E1 6EI 12E1 6EI v
o 0 — T - B 3
2 2 2 2
6EI 2EI _6EI  4EI 9
\ 0 0 N I3 Ly Nz L, ) \ 3/
nd
1
(Vi)
M}
P
0
2
Vy
2
\ M3
BC’s

The appropriate kinematic boundary conditions for the simple sup-
ports are
M = V3 = 0




MATRIX ANALYSIS OF BEAMS  NCSU  J. W. EISCHEN - 1991 17

External Force and moment

The bending moments at the ends are zero for simple supports, i.e.,

M} =M; =0

The system of equations from which the unknown (6,,vs,0s,03)
kinematic variables are determined is then,

In practice, this assembly procedure can be carried out very systemat-

( 4EI _SEI 2EI 0 )
Ly Ly Ly (91 \ (0 )
_GLE%I 12LE:{I + 12LI§'I _Gf'%f_{_ 6[%1 Gf'%I . p
glj%g _65%1 + 6%] 411?11 + 45;[ 2521 92 0

ically on the computer. To understand this, define the following,

(Vi)
M,

Va

\ M )

(continued)

( m
6,

V2

\ 02 )




MATRIX ANALYSIS OF BEAMS  NCSU  J. W. EISCHEN - 1991 18

and
(12 6L —-12 6L )

2 2
Bl 6L 4L 6L 2L

—-12 —6L 12 -6L

\ 6L 2L? —6L 4L? )

where the superscript e stands for the element number.

The assembly procedure for the simply supported beam discussed
above begins by forming the “unconstrained system equations,”

Mo,k By, K, |0 0)(w) (P
kyy k3 ki ky |0 0 [|6 ' M,
By Ky Mo+ kh Ktk (W R3]l | | P
kg kip (ks + k3 ki4+k222 k33 k3|l | 02 ) M,
0 O k'%l kgz k§3 k§4 V3 P

\ 00 | k3 kiy ki ]‘2%4_/ \03) \ Ms)

(continued)
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where
v;, 81 = displacement and slope at node 1

P,, M, = extemnal transverse load and moment at node 1
v, 0o = displacement and slope at node 2

P,, M, = external transverse load and moment at node 2
v, O3 = displacement and slope at node 3

P3, M3 = external transverse load and moment at node 3

Notice that the unconstrained system stiffness matrix is formed by “nest-
ing” the two element stiffness matrices. This is due to the fact that ele-
ments 1 and 2 share a common nodal point, node 2.

The next step is to impose the boundary conditions, and then impose
any specified external forces and moments.

BC’s
vy=v3 =0

External force and moment

My =My, =M;=0
P=P
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Imposing the boundary conditions has the effect of crossing out those
rows and columns of the unconstrained system equations that correspond
to the nodal displacements/rotations that are zero, i.e.,

el 400 (R
kb KL KL K, 0 0 || 0
Ky ko kis+ k% ki + ki kfy ki || v P
Ky kip kiy + k3 kig+ k3, ki K3, || 02 i 0
——O———k — -kl kg K| -0 By
L0 0 K K kg k4 )\6s) \ 0

The four equations for the remaining four unknowns are
klp ks + kY ks +kfy iy || v

ki, kis+ k3, kiy+ k3 k3, 02

o o Ny o

\ 0 ki k3 ki, ) \ 03 )

This matrix equation is called the “constrained system equation.” The
entries in it are exactly the same as the matrix equation that was derived
earlier by considering equilibrium at the common node.
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Example

(iv.) Simply Supported Beam with Concentrated Load
at Midspan

a A
. X

L L

2 2

Fig. 7. Simply Supported Beam with Concentrated Load at
Midspan

The matrix equation presented above may be used to solve this problem.
To fix ideas, consider the case when L; = L = L/2. Then take as data:
ElI=1,L=1,and P=1.
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The system of linear algebraic equations that must be solved is

8 =24 4 0Y[6:) (0)
—24 192 0 24 || v 1

4 0 16 4 62 0

0 24 4 8 /\0; \ 0 /
The solution is (obtained on HP-15¢ calculator)

[ 6, [ 0.0625
Vo 0.02083

6o 0.0

\ O3 ) \ —0.0625

The theoretical solution for this problem is (the reader should verify)

PI3
vy = o= = 0.02083
- pI?
— —f, = = 0.0625
2 2T 16EI
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Accounting for Distributed Loading

Many beam deflection problems involve not only concentrated forces and
moments, but distributed loads. The following development extends the
results presented above to account for uniform distributed loads.
M
1

C}%u¢¢¢¢¢¢¢u¢¢u}§%x
! | W,

Fig. 8. Forces, Moments, and Distributed Load on Beam

The shear force and moment at the left end (end 1) are V; and M,
respectively. Corresponding quantities at the right end (end 2) are V5 and
M,. The load-deflection differential equation can be integrated sequen-
tially to yield expressions for shear force, bending moment, slope, and
deflection.

d*v
Bl = 1
d3
Eld—a:; = gz +c; = —V(z)
d*v qz?
EId_$2 = 7‘+Cl$+02=—'M(m)
dv gz’ 2
EIEQ_: = —'6—+C;1?+CQIL‘+63
4 3 2
Elv = g:v_+61_:z_:_+02m_+63x+c4

24 6 2
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As before, the displacement and rotation at end 1 are denoted v;
and 6, respectively. Corresponding quantities at end 2 are vy and 65.
These four kinematic variables may be expressed in terms of the constants

c1, €2, C3, and ¢, using the equations above, as follows

1

vy = v(0) = T

o = %(0) = —es

v = v(L) = El_f [‘qg+C1'.l';6—3'+C2‘-l;_2+C3L+C4
Gy = (di—z(L) = Elf [gg—s + cl-g—z +coL + Cg}

These equations cn be written in matrix form as

(0 0 0 7)(a) ( =

2 3
&7 2 a1 0/ \a) G-

1

0 0 -E_I 0 Co 91
L3 12 L 1 __ gl
6EI 2EI EI EI C3 V2 = 24ET

|
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Solving this system of linear algebraic equations for c;, c9, c3 and ¢4 gives
(the reader should verify)

1281 6EI _ 12FET1 6EI
—6FE] —4FEI 6F1 —2F1T
C2 12 L L2 I 01
B gLt
C3 0 El 0 0 V2 24ET
L3
) \ EI 0 0 0 J\ 60— &5 )

The shear forces and bending moments at the two ends of the beam
can be expressed in terms of the constants ¢y, ¢9, c3, ¢4, and the distributed
load q. Then, using the result above, the shear forces and bending mo-
ments on the ends can be written in terms of the end displacements and
rotations.

V(O) =-V = —a
v +% _ 1?}11_31,01 6113321 o 12L]_~:;’I 6521 5
M0O)=M; = —c,
Ml'*‘gl—L; = 652["01+4§I91 652[7)2_!__2_%{92

(continued)
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V(ILy=V, = —qL — ¢
L 12EI 6EI, 12EI  6EI
B+ = st e
L2
M(L)=-M, = — £ —ciL— o
12
gl?> 6EI  2EI_  6EI  4EI
M-"g =putTh "
These equations can be expressed in matrix form,
[ Vi)
(12 6L -12 6L \(w) | (6 )
M
2 2 1
ﬂGL 4I? —6L 2L 91_ Lol L
3 — gL
Ll Z12 61 12 —6L || Vool 12]
\ 6L 2L? —6L 4L% )\ ;) M, \ —L

This matrix equation contains one additional term as compared with the
corresponding equation developed earlier. The term accounting for the
distributed load q is called the vector of “equivalent nodal loads.”
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Examples — continued

(v.) Propped Cantilever with a Uniform Load

\
§HH¢HHHHH

¢
§1 3
!

Fig. 9. Propped Cantilever with a Uniform Load.

L

BC’s

The appropriate boundary conditions for the fixed and propped ends
are

’l)1=91=’02=0

The 4 x 4 system of equations reduces to

4FET qu
I =M Ty

External force and moment

The external moment at node 2 is

M, =90
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Thus, the solution is simply

qL?

b2 = —RET

Reaction force and moment

'The reaction force and moment at the nodes may be calculated using
the original 4 x 4 system of equations,

S

_
M, = 3
3

Vo = —'8'qL

(vi.) Cantilever with a Uniform Load

Pdrdvivevvevvevy

! J

L

Fig. 10. Cantilever with a Uniform Load
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BC’s

The appropriate boundary conditions for the fixed end are

’Ul=01=0

The 4 x 4 system of equations reduces to

EI 12 —6L V2 sz

— —
L —6L 4L? 62 M, —L

External force and moment

The external force and moment at node 2 are

Vo= M, =0

For the following data: ¢ = 0.1, L = 100, £I = 100,000, the linear system
of algebraic equations that must be solved is

1.2 —60 V9 5.0
—60 4000 0 —83.333
The solution is
(%) 12.5

) 0.16667
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The theoretical solution for this problem is

qL*
= _ 19
SET 2:5

3

_ 9L”
0, = 6E,I—O.16667

U2

Reaction force and moment

30

The reader is encouraged to calculate the reaction force and moment

and compare with simple statics.

(vii.) Cantilever with a Concentrated
Partial Uniform Load

oment a

: FYSFTEYY

Fig. 11. Cantilever with a Concentrated Moment

and Partial Uniform Load
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The unconstrained system equations for this case are

—~—

The appropriate boundary conditions for the fixed end are

v1=01=0

External force and moment

The external forces and moments are

Po=P3=M;=0

Ry ok, KL, K, Jo 0\ (w) (B
ky ky ki k3 |0 0 |6 M,

B Ry [kl k8 K+ kR (k] K[ [ | | B

Z“il kiy |kis + k3 ki + k3, (k33 k34| | 62 ) M, !
0 0 k% k32 k3s K3y U3 P

\ 0 0 | ki ki, ki3 kZﬂ/ \03 ) \ M

(

0

)

31
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The constrained system equations are then

(’Ug\ ( g%z \

(ki + k3 k3, + ki ki3 K%,

9 _ al3
kis + k3, ki, + k3, k33 k3, ? Mo+
k3 k3 k33 k3 v qLo

3 2
\ k% kfy kz:; kis )

T2
\6s) | &

For a given set of data, these equations can be solved for vy, 85, v3 and
03.

Reaction force and moment

Reaction forces and moments could be calculated after the displace-
ments and rotations are computed for a given set of data.




