
ELEMENTARY DIVISORS AND MODULES

BY

IRVING KAPLANSKY

1. Introduction. Let A be a matrix over a given ring 7?. Is it possible to

find unimodular matrices P, Q such that PAQ is diagonal? This question,

and the application to modules, constitutes the main theme of the present

paper. An affirmative answer is classical when 7? is the ring of integers, or

polynomials in one variable, and Jacobson and Teichmüller extended this to

any principal ideal ring without divisors of 0. Such rings of course satisfy the

ascending chain condition. Our chief purpose has been to expel chain condi-

tions from the subject, to as great an extent as possible, but lesser skirmishes

are also fought on the battle-fields of non-commutativity and divisors of 0.

In compensation, virtually all rings considered will satisfy at least the condi-

tion that finitely generated ideals are principal. Thus the investigations for

algebraic number rings in [28](J) are not included, nor of course the still more

general theory in [27] and the references given there. Suitable extension of

these results to rings without chain condition remains a task for the future,

although in this connection the work of Fitting [9] should be mentioned, and

also our Theorem 10.5 covers some of the work just cited.

We now summarize the contents of the paper. In §3 we study rings in

which the reduction of 1 by 2 matrices is possible; we have called these

Hermite rings since in them the Hermite triangular form can be achieved

(Theorem 3.5). In §5 we turn to diagonal reduction. In Theorem 5.1 it is

shown that all new difficulties are already embodied in the 2 by 2 case.

Theorem 5.2 gives a necessary and sufficient condition for diagonal reduction

for commutative rings whose divisors of 0 are in the radical. An immediate

corollary is a generalization (Theorem 5.3) of Helmer's theorem [12]. The

standard reduction of alternate matrices under congruence is possible in an

Hermite ring (Theorem 6.1). In §9 we study the uniqueness of the decomposi-

tion of a module into cyclic modules—this carries with it the uniqueness of

the invariant factors of a matrix. This is applied in §10 to valuation rings,

which are allowed to be non-commutative and have divisors of 0. A device due

to Krull makes it possible to extend the results in part to an arbitrary

integrally closed integral domain (Theorem 10.5). As explained in §9, the

ability to reduce finite matrices does not carry with it results on all finitely

generated modules, but only those whose "relations" are also finitely gen-

erated. In §11 we undertake the study of finitely generated modules without

such a restriction, but only over valuation rings. We obtain a complete result
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(Theorem 11.1) which seems somewhat surprising; and the attendant com-

plications presumably give an indication of what a general theory would be

like. In §12 we investigate principal ideal rings, and in §13 we turn to infinite

matrices and modules, where in compensation we allow ourselves the descend-

ing chain condition on the ring.

2. Definitions. R will always denote a ring (associative but not neces-

sarily commutative). Except in §8, it will be assumed that 7? has a unit

element. We shall write Rn for the ring of » by w matrices with elements in 7?.

By a unit of a ring we shall mean an element with a two-sided inverse. Units

of 7?n will be said to be unimodular. If b = ca we say that a is a right divisor

of b; equivalent conditions are &£7?a and Rb^Ra. We say that a is a total

divisor of b if RbRCRai^aR, or in words: everything in the two-sided ideal

generated by b is right and left divisible by a. It is be observed that an ele-

ment is not necessarily a total divisor of itself. If 7? is commutative then right,

left, and total divisibility all coincide.

We shall write diag (dx, d2, • ■ ■ ) for a matrix (it may be rectangular)

having dx, d2, ■ • • down the main diagonal and zeros elsewhere. (By the main

diagonal we mean the one beginning at the upper left corner.) We say that

the matrix A admits diagonal reduction if there exist unimodular matrices P,

Q such that

(1) PAQ = diag (dx, d2,---)

where á¿ is a total divisor of di+x. If every matrix over 72 admits diagonal re-

duction, we call 7? an elementary divisor ring.

Particularly attention will be devoted to the diagonal reduction of a

matrix consisting of   single row or column. In that case either P or Q in

(1) is a 1 by 1 matrix, and may be deleted. Thus the diagonal reducibility of

(a b) hinges on the existence of a unimodular 2 by 2 matrix Q such that

(2) (a b)Q = (d 0).

If every 1 by 2 matrix admits diagonal reduction, we shall call 7? a right

Hermite ring; if 2 by 1 matrices admit diagonal reduction, 7? is a left Hermite

ring, and if both, 7? is an Hermite ring. It is to be noted that (2) entails

aR + bR = dR, so that in a right Hermite ring all finitely generated right

ideals are necessarily principal.

We shall now discuss the question of the uniqueness of the generators of

principal right ideals. If a = bu where » is a unit, we say that a and b are

right associates. Clearly right associates are right multiples of each other, or

(which comes to the same thing) they generate the same principal right ideals

aR and bR. We raise the converse question : If aR = bR, are a and b necessarily

right associates? It is well known that the answer is affirmative if there are

no divisors of 0, and this may be extended to a slightly more general case.

(We are using the term "radical" in the sense of Perlis-Jacobson [14].)
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Lemma 2.1. Let R be a ring in which all right divisors of 0 are in the radical.

Then aR = bR implies that a, b are right associates.

Proof. We have a = by, b = ax, so a=axy. Ha, b = 0 there is nothing to

prove. Otherwise a(l— xy)=0 shows that 1—xy is in the radical, whence x

and y are units.

The answer is also affirmative for commutative principal ideal rings, in

the light of the structure theorem of §12. In [lO] an affirmative answer is

given for another special class of commutative rings. Finally it is not difficult

to see that the answer is affirmative for commutative rings with the descend-

ing chain condition. But in general the answer is negative: a celebrated

counter-example is the ring of all linear transformations in an infinite-dimen-

sional vector space. However the literature does not seem to record any

counter-examples in the commutative case, and so it is perhaps worth while

to mention the following two.

(a) The ring of all continuous real functions on (0, 3). Define both a(t)

and b(t) to be 1—/ on (0, 1) and 0 on (1, 2) and set a(t)= —b(t)=t — 2 on

(2, 3). Then a(t) and b(t) are mutual multiples but not associates.

(b) This example satisfies the ascending chain condition. Take the set of

all pairs (n,f(x)), where » is an integer, f(x) a polynomial with coefficients in

GF(5), and the constant term of/ is congruent to » mod 5. Addition and

multiplication are componentwise. Then (0, x) and (0, 2x) are mutual multi-

ples but not associates.

It is appropriate to point out the intimate connection between this ques-

tion of the generation of principal ideals and the main theme of our investiga-

tion. Suppose that in a ring 7? we have aR + bR = dR; then (a b) and (d 0) are

right multiples of each other. Thus in seeking a diagonal reduction of

(a b) to (d 0) we are asking precisely whether this implies that they are

right associates. (If desired, one can add a row of zeros to both (a b) and

(d 0) and thereby have all matrices under discussion in R2.) This remark

points to the relevance of the following question: if principal ideals are

uniquely generated (up to associates) in 7?, is this property inherited by 7?n? A

partial affirmative answer is given in Theorem 3.8 below.

The following special case deserves mention: if a has a right inverse, is it

a unit? (This is indeed a special case, for if a has a right inverse, then a and 1

are right multiples of each other.) This milder question at least has an un-

reservedly affirmative answer in the commutative case. The answer is also

affirmative for any ring which can be embedded in a ring with either chain

condition, or under sundry weaker hypotheses [3J. Moreover in both these

cases the property is inherited by Rn. It would be of interest to know whether

it is always inherited by R„. With the additional hypothesis that R is a right

Hermite ring, it is in fact inherited by 7?n (Theorem 3.9 below).

3. Triangular reduction. We begin our discussion with a set of sufficient

conditions for a ring to be a right Hermite ring.
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Theorem 3.1. Let R be a ring satisfying the following conditions: (1) all

divisors of 0 are in the radical, (2) the union and intersection of any two principal

right ideals is a principal right ideal, (3) the union of any two principal left

ideals is a principal left ideal, (4) in R2 a matrix with a one-sided inverse is

unimodular. Then Ris a right Hermite ring.

Proof. For a, b in R write aR+bR = dR, d = ap + bq, a=dalt b = dbx,

axRr\bxR = cR, c=axr= —bxs, Rr+Rs = Rt, r = xt, s = yt. If d = 0, then a = b = 0

and there is nothing to prove. So we assume henceforth that d^O. The equa-

tion d(axp+bxq — 1) =0 then shows that axp + bxq — 1 is in the radical, whence

(3) axp + bxq = a unit ».

Since we may replace p, q by pu~l, qu-1, there is no loss of generality in assum-

ing w = l. Write z = axpbx = bx(l—qbx). Then z^axRi^bxR = cR, say z = cw =

— bxsw. If bx is in the radical, then (3) shows that ax is a unit. It follows that b

is a right multiple of a, a trivial case that need not detain us. We therefore

assume that bx is not in the radical. Then the equation bx(l —qbx+sw) =0 leads

to

(4) 1 — qbx + sw = 0.

If 5 is in the radical, (4) tells us that bx is a unit, which we again dismiss. We

are thus entitled to assume that / is not in the radical, and from a:xt= —bxyt

we deduce axx = — bxy = say ch=axxth. If aix = 0 we have c = 0, whence

z = bx(u — qbx) =0 and we are led to bx being either 0 or a unit, possibilities

already ruled out. So from axx(l—th) =0 we may conclude that t is a unit.

Hence finally Rr+Rs = R (this desired conclusion was the sole object of all

this maneuvering). Write er+fs = l, g = ep+fq. Then

(5) (    * h    )(Pr) = C°).
\e- gax f- gbxJKq sj      \0 l)

From hypothesis (4) it follows that the matrices in (5) are unimodular. The

proof of the theorem is completed by observing

(6) (a b)(* ') = (d 0).

Theorem 3.1 becomes perceptibly simpler in the commutative case:

hypothesis (4) is superfluous, and (3) gets absorbed in (2). But even more:

no assumption need be made about the intersection of principal ideals, this

being in fact a consequence of the other hypotheses.

Theorem 3.2. Let R be a commutative ring in which divisors of 0 are in the

radical, and the union of any two principal ideals is principal (that is, all

finitely generated ideals are principal). Then R is an Hermite ring.
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Proof. Write aR+bR = dR, ap+bq = d, a = sd, b= -rd. Then d(ps-qr-l)

= 0. We dismiss the cased = 0, and thus have that ps — qr is a unit. The ob-

servation (6) completes the proof.

It was remarked in §2 that diagonal reducibility of (a b) is possible only

if aR + bR is principal. In certain cases we can also conclude that aRi~\bR is

principal. The argument is substantially due to Stewart [29].

Lemma 3.3. Suppose that (a b) is diagonally reducible to (d 0) where either

(1) dis in the center or (2) d is not a left divisor of 0. Then aRC\bR is principal.

Proof. Suppose that the reduction is given by (6) and write m=ar= —bs.

We contend aRC\bR = mR. To prove this, let z be an element in aRC\bR,

z = ax= — by, and write

H'o- -a -co-
Then (a b)V=(d 0), (d 0)U~lV=(d 0), whence df = 0. Under either of our

hypotheses we can deduce that apf = 0. Since x = pf+rh, we have z = ax = arh

(E.mR. Hence aRC\bRCLmR. The inclusion the other way is trivial.

If we go so far as to assume no divisors of 0, we can obtain necessary and

sufficient conditions for a ring to be an Hermite ring.

Theorem 3.4. Let R be a ring without divisors of 0. Then a necessary and

sufficient condition for R to be an Hermite ring is that the union and intersection

of any two principal right or left ideals be principal.

Proof. The necessity follows from Lemma 3.3. The sufficiency will follow

from Theorem 3.1 as soon as we verify hypothesis (4) of that theorem. This

verification is made by observing that 7? satisfies the condition of Ore for

embeddability in a division ring—cf.   [13, p. 31].

The main theorem on reduction of matrices in an Hermite ring asserts

the possibility of reduction to triangular form.

Theorem 3.5. For any matrix A with elements in a right Hermite ring, we

can find a unimodular matrix U such that AU is triangular (that is, has zeros

above the main diagonal).

Remark 1. It is clear by symmetry that we can equally well arrange to

get zeros below the diagonal which begins at the lower right corner. Thus if

A is a square matrix we can achieve either of the two possible triangular

forms.

Remark 2. Further normalizations are possible until a canonical form (the

Hermite form) is reached [23, pp. 32-33].

Proof. Let A be an m by « matrix. First we treat the case m = 1 (A is a

single row). Write A = (a 73), B being a row of length w — 1. By induction we

can find a unimodular matrix F such that BV=(b 0 • • -0). Then we find a
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unimodular 2 by 2 matrix IF such that (a b)W=(d 0). Set

andAU=(d 0 • • • 0).

We now proceed to the general case. Right-multiply A by a unimodular

matrix F which reduces the first row. Then

AV U
where C is an m — 1 by « —1 matrix. By induction there is a unimodular

matrix IF such that CW is triangular. Then

AV
\o w)

is triangular.

As an immediate corollary we have the following result.

Theorem 3.6. If R is a right Ilermite ring, so is Rn.

Proof. For A, B in Rn we can find a unimodular 2» by 2» matrix U such

that (A B) U is triangular and hence has the form (D 0).

In commutative rings there is a well known variant of the 1 by « case of

Theorem 3.5, which we now prove for completeness.

Theorem 3.7. Let ax, • ■ ■ , an be elements in a commutative Hermite ring R.

Then we can find annby » matrix with first row (ax ■ ■ ■ a„) and a determinant d

satisfying dR=axR+ ■ ■ ■ +anR.

Proof. To facilitate the induction, let us prove a little more, namely that

we can choose the additional » — 1 rows in such a fashion that they can be

completed to a unimodular matrix by adjunction of a suitable wth row. Let

then B be an » — 2 by » — 1 matrix which when adjoined to (ax ■ • • an-x)

yields a determinant e with eR=axR+ • ■ • +an-xR; and let C denote the

extra row which makes B unimodular. Effect the reduction of (e a„):

(e

<>

(d 0).

Then we have

ax ■ ■ ■ an-x   an

B 0

(-)n-iqc     p

= d,
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and we successfully continue the induction by observing that

B 0

(-)^qC   p

(_)n-lsC       f

is unimodular.

The reduction to triangular form enables us to prove the following two

results, which show to some extent that properties of 7? are inherited by Rn.

Theorem 3.8. Let R be a right IIermite ring with no divisors of 0, and let

Ax, Aibe (possibly rectangular) matrices over R which are right multiples of each

other. Then Ax, Ai are right associates.

Proof. There is no harm in right-multiplying Ai by unimodular matrices,

and so we may assume that Ai are in triangular form:

\Bi Cj

Then we have that ax and ö2 are mutual right multiples, whence ai = axu, u a

unit. If a, = 0 we can simply ignore the first row and apply induction. So we

suppose a.-^O. Then from the equation

<"        Gc)g*h;'c)\7Ji Ci/ \(J   ¿/       \o2 L2/

we find axR = 0, whence 7? = 0, C2 = CxS. Thus Cx, Ci are mutual right multiples

and by induction Ci=CxU where U is unimodular. If we replace S by U in

(7), it will do no harm, and we shall have achieved a unimodular matrix.

Theorem 3.9. Let R be a right Her mite ring in which ab = l implies ba = l.

Then the same is true in Rn.

Proof. Suppose ,473 = 7 in Rn. Then (AU)(U~1B)=I where A U is tri-

angular. Write

Then ap = l, whence pa = l; and aQ = 0 whence Q = paQ = 0. So CS is the

identity matrix and by induction C is unimodular, as is A.

4. A weaker triangular reduction. Something can be done in rings which

merely satisfy the condition that finitely generated ideals are principal. The

idea is based on the following remark, valid in any ring(2) : if a and b are right

multiples of each other, then (a 0) and (b 0) are right associates. In fact if

(*) This remark is similar to, but not the same as the fundamental device in [8J.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1949] ELEMENTARY DIVISORS AND MODULES 471

b = ax, a = by, then

/x   1 — xy\
(a 0) ^       _      ) = (b 0).

x   1 — xy\-1      /y   1 — ya;\

1      - y / \1      - as /

The device extends as follows. Suppose atR+ • • ■ +a„R = dR, so that

d= 2~2aixi< ai = dyi. Write X, F for the column and row vectors (xlt ■ ■ • , xn),

(yx, ■ • • , yn) respectively. Then

(XI- XY\
(ax---an0)( _ y    ) = (d 0 ■ ■ ■ 0).

Thus at the expense of adjoining a single zero we can effect the reduction

of a row matrix. By induction it follows readily that the addition of m colunms

of zeros will permit the reduction of an m-rowed matrix. The precise result is

stated in the following theorem.

Theorem 4.1. Let Rbe a ring in which every finitely generated right ideal is

principal. Let A be an m-rowed matrix over R, and Ax the matrix obtained by

adjoining m columns of zeros to A. Then we can find a unimodular matrix U

such that AxU is triangular (that is, has zeros above the main diagonal).

A further consequence of some interest may be noted: if (a b) admits

reduction to (d 0), then it admits reduction to any (dx 0) with dxR = dR,

and similarly in Theorem 3.7 any determinant d may be obtained with

dR=axR+ ■ ■ ■ +anR.

5. Diagonal reduction. We recall the definition: a matrix A admits

diagonal reduction if there exist unimodular matrices P, Q such that (1) holds

with di a total divisor of di+x. For row or column matrices, diagonal reduction

of course coincides with the triangular reduction already discussed. The

following theorem shows that the new difficulties are essentially already

embodied in the 2 by 2 case.

Theorem 5.1. If all 1 by 2, 2 by 1, and 2 by 2 matrices over R admit diagonal

reduction, then all matrices admit diagonal reduction and R is an elementary

divisor ring.

Remark. If 7? has no divisors of 0, we need only assume the possibility of

reduction for 2 by 2 matrices. For we can readily infer the reducibility of

(a b) from that of the same with a row of zeros added.

Proof. Let A be an m by » matrix. Choose notation so that »î = ». We may

suppose by induction that we know diagonal reduction to be possible for

smaller m, and for the given m if » is smaller. It is to be observed that m is at

least 3. Write ^li for the first row of A and A2 for the remaining m — 1 rows.

(
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We can find unimodular matrices Pi, Qisuch that73 =PxA2Qx = diag (x, ■ • • ).

Then also

c-CX)<-05
Now write D for the first two rows of C and E for the remainder. Applying

induction again we have 7 = P27>(22 = diag (y, ■ ■ • ) and then

-(MJO-Q-
Now y is a total divisor of all the elements of F and also of all the elements of

D, as appears from D = P2~1FQ2~l; in particular y is a total divisor of x, the

latter being one of the elements of D. The elements of G are linear combina-

tions of those of E, and hence they are totally divisible by x and a fortiori by y.

Thus y is a total divisor of every element of 77. We may now use elementary

transformations to sweep out the first column of 77 and we reach

\0   K)

where y is still a total divisor of every element of K. Applying induction to

K, we complete the reduction.

Under rather restrictive assumptions we are able to state necessary and

sufficient conditions for a ring to be an elementary divisor ring.

Theorem 5.2. Let R be a commutative ring whose divisors of 0 are in the

radical. Then necessary and sufficient conditions for R to be an elementary di-

visor ring are (1) all finitely generated ideals are principal, (2) if (a, b, c)=l,

there exist p and q such that (pa, pb+qc) = 1(3).

Proof. We know that (1) is necessary even for 7? to be an Hermite ring. To

prove the necessity of (2), let

<8> A - G !)•
and suppose PA Q effects the diagonal reduction of A. It is clear that PA Q has

a unit » in its upper left corner. Suppose the first row of P consists of p, q

and the first column of Q consists of *, y. Then pax+pby+qcy — u, whence

(pa, pb+qc) = 1.

To prove the sufficiency we first observe (Theorem 3.2) that 7? is an

Hermite ring. Given a 2 by 2 matrix, we may thus arrange to get a zero,

(3) The parentheses here denote greatest common divisor (unique up to a unit under the

hypothesis).
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say in the lower left corner. We thus reach the matrix A of (8). Write

(a, b,c) =d,d=xa+yb+zc,a=axd, b = bxd, c = Cxd. We dismiss the case d = 0 and

thus find that xax +ybx +zcx is a unit ; without loss of generality we may change

notation and assume (a, b, c) = 1. We now take the p and q offered us in hy-

pothesis (2), observe that necessarily (p, q) = l, complete the row p, q to a

unimodular matrix, and use it to left-multiply A. The result is a matrix with

pa, pb+qc for its first row. Right multiplication by a suitable unimodular

matrix converts this to 1, 0. We sweep out the element in the lower left corner

and thus complete the reduction.

Helmer [12] has defined an adequate^) ring 7? to be a commutative ring

in which every finitely generated ideal is principal, and which further satisfies

the following condition: for any a, c£7? with a^O we can write a = rs with

(r, c) = l and (s', c)^! for any non-unit divisor s' of s. The ring of entire

functions forms an excellent example of such a ring. The following generalizes

Helmer's theorem.

Theorem 5.3. An adequate ring whose divisors of 0 are in the radical is an

elementary divisor ring.

Proof. We are given (a, b, c) = 1, and we seek to verify hypothesis (2) of

Theorem 5.2. The case a = 0 presents no trouble, so we assume a^O and

shall then actually produce q with (a, b+qc) = l, thus doing more than

needed. Write a=rs with the property asserted above. Since (r, c) = l, the

congruence

b + qc = 1 (mod r)

can be solved for q. Write d = (a, b+qc). Then (d, r) = l, and it follows from

a=rs that d divides 5. If d is not a unit then by hypothesis (d, c)¿¿l. This

contradicts (a, b, c) =1.

We shall conclude this section by observing what can be accomplished

with chain conditions. We pose the question as follows: granted that 7? is

an Hermite ring, what chain condition will suffice to assure us that 7? is an

elementary divisor ring? It appears that the ordinary ascending chain condi-

tion is not strong enough and must be reinforced to what we shall call the

mixed ascending chain condition: no infinite sequence {a,} can exist, where for

each i either a,7?Co¿+i7? or 7?a,C7?a,+i (proper inclusion). It is to be observed

that this implies the ascending chain condition for principal right ideals and

that for principal left ideals, and in a ring whose finitely generated ideals are

principal, it implies these chain conditions unrestricted to principal ideals.

In a commutative ring it is simply the ordinary ascending chain condition

on principal ideals.

Theorem 5.4. An Hermite ring which satisfies the mixed ascending chain

(4) Helmer's adequate rings have no divisors of 0.
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condition is an elementary divisor ring.

Proof. We are given a 2 by 2 matrix A. Consider the totality of equivalent

matrices (matrices of the form PA Q with P, Q unimodular). On the authority

of the mixed ascending chain condition we can find one, say

/w  x\
W = ( )

\y   z/

whose upper left element w satisfies the following condition : if 73 is any equiva-

lent matrix and b its upper left element, then wR is not properly contained

in bR, and Rw is not properly contained in Rb. It follows that w must left-

divide x, for we can pass to an equivalent matrix whose upper left element

generates wR+xR. Similarly w right-divides y. We may sweep away x and y

and reach a matrix of the form

/w  0\

\0     t)'

Now we argue further that w must be a left divisor of any left multiple of t,

for

/l a\/w   0\       /w at\

\0 1/VO     //      \0     if'

Likewise w right-divides any right multiple of t. In short, w is a total divisor

oit.

From Theorems 3.1 and 5.4 we can deduce the theorem of Jacobson-

Teichmüller that any principal ideal ring without divisors of 0 is an ele-

mentary divisor ring, as soon as we verify the mixed ascending chain condi-

tion. This is done by showing that for a^O, composition series from 7? to Ra

and from 7? to aR are finite and have the same length; we refer to [13, p. 34]

for details. A more general result on principal ideal rings will be proved in §12.

The theorems proved in this section, and those in some later sections, do

not exhaust the class of elementary divisor rings. One particular fact worth

mentioning is that a Boolean ring (with unit) is an elementary divisor ring.

This is perhaps proved most readily by the observation that a finitely gen-

erated Boolean ring is the direct sum of a finite number of fields of two ele-

ments. There are two generalizations that can be proved by exploiting the

methods and results in [2]: (1) the ring of continuous functions from a com-

pact zero-dimensional space to a (discrete) elementary divisor ring is an ele-

mentary divisor ring, (2) any strongly regular ring (in the sense of [2]) is an

elementary divisor ring.

6. Congruence of alternate matrices. Following Albert [l], we define a

square matrix to be alternate if a,,= — a¿¿, a{i = 0. If la = 0 implies a = 0, the
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second condition is of course redundant. If P is unimodular, we say that P'AP

is congruent to A (P' is the transpose of P). In a commutative ring it may be

verified by computation that a matrix congruent to an alternate matrix is

alternate; or we may observe that A being alternate is equivalent to an

invariant property of a scalar product in an »-dimensional vector space

over 7?.

In the following theorem the notation + is used to denote the direct sum

of matrices [23, p. 47].

Theorem 6.1. Let Rbea commutative Hermite ring and A annbyn alternate

matrix over R. Then A is congruent to a matrix of the form

(9)
/    0    oA   .   /    0    o,\   .

\-ax   0/      \-a2   0/

where ai divides a¡+x. In case » is odd a final 1 by 1 matrix 0 is to be adjoined.

Proof. We follow in outline the proof of Cahen [23, p. 52], with a modi-

fication to avoid the use of chain conditions. No essential change is needed

in the first part of the proof; by reduction of rows (using the 1 by »—1 case

of Theorem 3.5) we pass from A to a congruent matrix 73 having zeros every-

where except for elements bx, • ■ • , in-i on the diagonal next above the main

diagonal, and of course their negatives on the symmetrically opposite

diagonal. Now effect the reduction

(h bn-x)U  =   (d      0 0)

with U unimodular. To the ith row of U (2_'¿='» —2) add the sum of the

first i — 1 rows; the first and last rows of U are to be left unchanged. The

resulting matrix F is still unimodular. Now we enlarge F to an » by » matrix

as follows : place a row of » — 1 zeros above F, and then place to the left a

column consisting of w —1 ones followed by a zero. If Q is the resulting

matrix, computation shows that C=Q'BQ begins with 0, d, • • •. The element

d divides every element in C, and we may proceed to sweep out the first and

second rows and columns, reaching a matrix

0 d-/    0 d\  .

where d still divides every element of D. Induction completes the proof.

We add a few words on necessary conditions for a reduction to (9). It is

easy to see that congruence of

0 a il

-a 0 0

-i 0 0

and

0 i 01
■¿0 0

0 0 0
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is possible only if aR+bR=dR. Thus it is necessary that finitely generated

ideals be principal. I have not determined whether it is necessary, for 7? to

be an Her mite ring. However, if divisors of 0 are in the radical, then we can

assert that a necessary and sufficient condition for congruence to (9) is that all

finitely generated ideals be principal.

7. Elementary matrices. We refer to [13, p. 42] for the definition of ele-

mentary matrices and the elementary transformations they induce. We raise

the following question: to what extent can the reductions of §§3-6 be effected

by elementary transformations? The following is a more or less satisfactory

answer.

Theorem 7.1. Let R be a right Hermite ring in which the reduction (a b)U

= (d 0) can be effected with U a product of elementary matrices. Then every

unimodular matrix over R is a product of elementary matrices.

Proof. Following the first part of the proof of Theorem 3.5 virtually

verbatim, we show that any 1 by « matrix admits reduction by a product of

elementary matrices. Let then i be a unimodular matrix, and U a product

of elementary matrices reducing the first row of A, say to (a 0 • • • 0). Then

a is necessarily a unit. Elementary transformations on the left will convert

A U to the form

C ")■\0   73/

By induction 73 is a product of elementary matrices and so is A.

Examples satisfying the hypothesis of Theorem 7.1 are furnished by rings

admitting a right Euclidean algorithm [32 ] ; such rings are necessarily right

principal ideal rings. If a ring 7? admits both a right and a left Euclidean

algorithm, then the standard proof shows that 7? is an elementary divisor

ring, divisors of 0 being irrelevant.

8. You can do it without a unit. We have assumed up to this point that

all rings under discussion have a unit element. This restriction was however

not necessary. One could adjoin a unit in the usual way, prove a given

theorem, and then translate it back to the original ring; but this is both in-

elegant and technically awkward. If rings without unit are to be investigated,

it is possible and preferable to do so directly. As a sample, we formulate the

definition of equivalence: two matrices A, B are equivalent if there exist

quasi-regular matrices P, Q such that B=PAQ+PA+AQ+A (P is quasi-

regular if there exists Px with P+Pi+PPi = P+Pi+PiP = 0). Then the

theorems on diagonal reduction in §5 go through, with certain slight modifica-

tions in handling principal ideals. It did not seem worth while to grapple

with these added complications, and so we have relegated the discussion of

rings without unit to these brief remarks.

When we come to the treatment of P-modules, however, it is not so easy
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to dispense with a unit element, and we shall constantly assume one which

moreover acts as unit operator. It is well known that if R does in fact have a

unit element 1, then it is a spurious generalization to omit the assumption

that it acts as unit operator, for an P-module decomposes into the direct sum

of a trivial module and a module having 1 as unit operator. It would be

interesting to work out a successful theory of modules over rings having

"approximate" unit elements in some sense, a good example being Boolean

rings. However, one must not expect too much of such a theory, as the follow-

ing theorem shows.

Theorem 8.1. Let R be a ring having the property that for every right R-

module M, MR is a direct summand of M. Then R has a left unit element.

Proof. Let 5 be the ring obtained from R by the usual formal adjunction

of a unit; S consists of pairs (a, n) where aÇ^R and w is an integer, and is a

right P-module in a natural way. Write S = SR®T. The elements of SR all

have second component 0. Hence in the direct sum, the element (0, 1) has

components (e, 0) and ( — e, 1). Then for any x in R, ( — e, l)x = (x — ex, 0)

CzTC\SR = 0. Hence e is a left unit element.

Theorem 8.1 provides a short proof for a theorem of Goldman [ll,

Theorem III].

9. Modules. We shall always be speaking of right P-modules, and R is

assumed to have a unit element which acts as unit operator.

Let us note the connection between modules and matrices. Any P-module

can be represented as a difference module F—G, where F is a free module.

Let [u,] be a basis for F and [vj\ a set spanning G. Write »/ = ^»,a,y. We

arrange the elements a¿,- in a matrix, for convenience well-ordering the rows

and columns; there will be only a finite number of nonzero elements in each

column. In this fashion we attach a matrix to any P-module, and conversely

any column-finite matrix names a module. It is clear that equivalent matrices

name isomorphic modules; for in setting B=PAQ (with P, Q column-finite

matrices with two-sided inverses), we are merely changing bases in F and G.

We observe that a diagonal matrix names a direct sum of cyclic modules; more

generally, any matrix with at most one nonzero entry in each row and

column names a direct sum of cyclic modules. We may then state the follow-

ing theorem.

Theorem 9.1. Let R be an elementary divisor ring, F a free R-module with

finite basis, and G a finitely generated submodule of F. Then F—G is isomorphic

to a direct sum of cyclic modules R—aiR where ai is a total divisor of ai+x.

A word of warning is in order. Theorem 9.1 does not give us the structure

of an arbitrary finitely generated module 717 over an elementary divisor ring

P, for though we may represent M as F—G with F a free module with a finite

basis, there is no assurance that G is finitely generated (in other words, we
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may have a matrix with a finite number of rows but an infinite number of

columns). If R further satisfies the ascending chain condition on right ideals,

then G will be finitely generated, and in this case Theorem 9.1 does give us the

structure of any finitely generated P-module. Further remarks on this

point are made in §11.

We have remarked that equivalent matrices give rise to isomorphic

modules. It is not true conversely that matrices which name isomorphic

modules are necessarily equivalent, for among other things they may not

even have the same size. However the following more modest converse has

been proved by Fitting [8]: if A and B name isomorphic modules, then

(A   °   °)   and   (B  °   °)
\0   I   0/ \0   7'   0/

are equivalent, where the adjoined identity and zero matrices are of suitable

sizes.

We shall now consider questions of uniqueness. We remark first on the

essential equivalence of uniqueness theorems for matrices and modules. It is

clear that a suitable uniqueness theorem, on the expression of a module as a

direct sum of cyclic modules, implies the same uniqueness for the invariant

factors of matrices (we follow customary terminology in referring to the

diagonal elements of a reduced matrix as its invariant factors). Conversely,

suppose we have some uniqueness result for the invariant factors of matrices,

and let us make the modest supposition that in particular the uniqueness

asserts that units correspond only to units. Then Fitting's result readily

enables us to translate the uniqueness over to modules. From this remark,

and the well known uniqueness of invariant factors of matrices over an

integral domain, we can derive a uniqueness theorem for modules over integral

domains. However the stronger Theorem 9.3 yields to direct module argu-

ments.

Lemma 9.2. Let M be the direct sum of cyclic modules R — Si (i = l, •••,»),

where Si is a right ideal. Suppose further that Sx+ • • • +Sn is contained in a

proper two-sided ideal W with the property that matrices over R—W are uni-

modular if they have one-sided inverses. Then M cannot be spanned by fewer

than » elements.

Remark. In the case Sx= ■ ■ ■ =5„ = 0, the conclusion gives us the in-

variance of the number of basis elements of a free P-module. In the light of

[3, Theorem 5], this lemma includes the results to be found in [6] and [7].

Proof. The proof is virtually the same as that in [13, p. 32], but we give

it for completeness. Suppose M is spanned by yi, ■ • • , ym (m<n), and let xf

be the generator of R — Si (that is, the coset l+5¿). Writing (xt) and (y,) as

row vectors, we have (y¡) = (x/)A, (x,) = (y,)B, where A is » by m and B is
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m by ». From (xí)AB = (xi) we deduce that .473 must be congruent mod W to

the » by » identity matrix. Let A', 73' denote the result of appending n — m

columns and rows respectively to A, B. Then also A'B' = I (mod IF). By hy-

pothesis B'A' = I (mod IF), a manifest absurdity.

Theorem 9.3. Let R be a ring in which every one-sided ideal is two-sided.

In particular, R may be any commutative ring. Suppose the R-module M is

isomorphic to the direct sum of cyclic modules R — Sx, • • -, R — Sm, and also

to the direct sum of R—Tx, • ■ • , R — Tn, where Si, T¡are ideals each containing

its successor, S\, Txt^R. Then: m = n and 5, = 7,.

Proof. We begin with some simple remarks on the effect of multiplying

modules by scalars. It is to be noted that, by our hypothesis, any right

multiple of an element c in R can be written as a left multiple of c. It fol-

lows that for any P-module M, Mc is again an P-module. Also: (1)

(Mi© • • • ®MT)c is isomorphic to MxC® ■ ■ • ffiil7rc. (2) If 717 is cyclic, so is

Mc. In fact, if M is generated by x, then 717c is generated by xc. (3) If further

7 is the annihilating ideal of x (or of M—they are identical in this context),

then Mc = 0 if and only if c is in 7. More generally, the annihilating ideal of

Mc is precisely the ideal of all a in P with ca£7. From this we deduce our

final remark. (4) Suppose we have the cyclic modules M = R — 7 and N = R — J

with 7 containing J; then the annihilating ideal of Mc contains that of TVc.

The hypothesis that all ideals in R are two-sided can be seen to imply

that matrices over R are unimodular if they have one-sided inverses. Since

any homomorphic image of P inherits the property that all ideals are two-

sided, it follows that Lemma 9.2 is applicable.

We turn now to the proof of Theorem 9.3. That m = n is a consequence of

Lemma 9.2. Suppose Si^Ti and select an element c which is, say, in S¡ but

not in Ti. Then (by the remarks above) 717c is on the one hand the direct sum

of fewer than n—i + 1 nonzero cyclic modules, and on the other hand the

direct sum of at least that many. Moreover in each decomposition the

annihilating ideals still contain their successors. By induction (say on m+n)

we have a contradiction.

10. Valuation rings. We generalize Krull's definition of valuation rings

[20] by admitting divisors of 0 and non-commutativity. If we were to restrict

ourselves to the case of no divisors of 0, we could use Schilling's formula-

tion [25].

Definition. A ring P is said to be a valuation ring if for any a, è£P,

either a is a total divisor of i or i is a total divisor of a.

In particular a is a total divisor of itself. Hence any left multiple of a is a

right multiple; every ideal is two-sided. Left and right divisibility coincide

and we may use the term "divide" unambiguously. It is easy to see that the

sum of any two non-units is a non-unit. Thus the non-units form the unique

maximal ideal which is the radical, and modulo the radical we have a division
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ring. In particular, all divisors of 0 are in the radical, and we may use any-

thing we have proved under that hypothesis. For example (Theorem 2.1)

generators of principal ideals are unique. It follows also that left and right

associates coincide, and we use "associate" unambiguously. The elements

group themselves into equivalence classes of associates; these classes are pre-

served under multiplication and are naturally ordered by divisibility. In

short, we have a valuation on an ordered semi-group (the reader may invent

his own postulates for an ordered semi-group).

We may take it as obvious that a valuation ring is an elementary divisor

ring: place an element dividing everything in the upper left corner, sweep out

the first row and column, and so on. Theorem 9.3 is applicable to any valua-

tion ring. It follows that over a valuation ring the invariant factors of matrices

are unique up to associates, and we shall use this fact in the sequel.

For valuation rings a stronger result than Theorem 9.3 can be proved : as

Theorem 10.1 shows, we can do something with infinite direct sums. It would

be of interest to know if Theorem 10.1 can be extended to a wider class of

rings, but one must formulate it carefully: observe that the direct sum of a

countable number of replicas of a cyclic group of order 6 is isomorphic to the

direct sum of itself and a cyclic group of order 2. However Theorem 10.1 is

strong enough to yield a conclusive result for commutative principal ideal

rings, as follows from §12 and standard considerations on the decomposition

of a module into its primary parts: we get a uniqueness theorem for the ex-

pression of a module as a direct sum of (any number of) indecomposable

cyclic modules.

Theorem 10.1. Let ax, a2, ■ ■ ■ be a sequence of non-units in a valuation

ring R, each properly dividing its successor. Write Mi for the R-module R — aiR.

Suppose the module M is the direct sum of modules Mi in two ways, having re-

spectively ai and ßi summands Mi. Then: ai=ß,for each i.

Proof. If a divides b, b^0, let us write b/a for any element c with b=ac;

it is readily seen that b/a is determined up to a unit, and that much am-

biguity need not concern us. This "division" has the following desirable prop-

erties: (1) b/a is a unit if and only if a and b are associates, (2) (c/b)(b/a)

and c/a are associates, (3) the module (R — bR)a is isomorphic to R — (b/a)R.

We need some remarks on annihilators of scalars. If 717 is a module and c

any element in P, then the subset of M annihilating c is evidently a sub-

module of M; also the submodule of a direct sum thus obtained is the direct

sum of the corresponding submodules. Finally, if a divides b (b?*0), then

the annihilator of a in the module R — bR is precisely the submodule

(R-bR)(b/a).
Consider the following two operations on an P-module: (1) taking the

submodule annihilating ax, (2) taking the submodule annihilating a2 and then

multiplying by a2/ax. By suitably combining the observations above, we see

that these two operations yield precisely the same result when applied to
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the module Mi (i>l), to wit, they both yield Mi(ai/ax). When applied to the

module 17i, the first operation does nothing, while the second passes us to the

submodule N=Mx(a2/ax). Since a2/ax is not a unit, N^Mx- If we let P and Q

respectively denote the results of applying the two operations to the module

717, we see that P — Qis isomorphic to ax and also to ßx replicas of Mx — TV. If ax

and ßx are both finite, Theorem 9.3 tells us they are equal. If either is infinite,

a theorem valid under very general conditions asserts that they are both

infinite and equal [4, p. 20, Ex. 13].

Next consider the module Ma,_x- This multiplication wipes out 717r for

r<i, and for r^i it converts Mr into a module isomorphic to R — (or/a¿_i)P.

The elements ar/a¿_i still have the property that each properly divides its

successor. Our set-up is thus unaltered, and hence the argument that proved

ax = ßx is applicable to prove that ai=ßi. This concludes the proof of Theorem

10.1.
We return now to the consideration of finite matrices, and we pass from

the question of the uniqueness of the invariant factors to that of their be-

haviour under multiplication.

Lemma 10.2. Let C=(A B) be matrices over a valuation ring, with

A =diag (dx, ■ ■ • , dr), di a divisor of di+x- Then the ith invariant factor of C

divides di (i = l, ■ ■ • , r).

Proof. Let * be an element of C dividing all others, and use elementary

transformations to sweep out its row and column. This will leave A unchanged

if x is dx or if it falls below dr. If x is in the same row as d¡, the operations

will place sundry elements on the column of d¡ and otherwise will not affect A.

Of course x is the first invariant factor of C. The remaining ones are the in-

variant factors oi (A' B') where A = diag (dx, • ■ ■ , ij-t, dj+x, ■ • • , dr) and

73' collects what is left after the deletion of the row and column of x. The

lemma now follows by induction.

Theorem 10.3. Over a valuation ring, the invariant factors of C = AB are

multiples of those of A. To be more precise, if C has fewer invariant factors than

A, they are multiples as long as they last ; if C has more invariant factors than A,

the extra ones are 0.

Proof. The columns of C are linear combinations of those of A. Thus (A C)

is equivalent to (A 0) and its invariant factors are evidently those of A with

perhaps some extra zeros. On the other hand, we may pass to (A ' C) where C

has its invariant factors down its main diagonal. The result now follows from

Lemma 10.2.

We may pass from valuation rings to more general rings by a device due

to Krull, which is embodied in the following lemma.

Lemma 10.4. Let R be a ring which is an intersection of valuation rings Si,

and suppose that for a, b in R, a is a total divisor of b if it divides b in every 5,-.
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Let A =diag (dx, • • ■ ) and 73=diag (ex, • • • ) be matrices of the same size

over P(6), with B a multiple of A, B=PAQ. Then di is a total divisor of e¡.

The hypothesis of Lemma 10.4 is notably fulfilled in the case of any

integrally closed integral domain [21, p. 552], and the conclusion is accord-

ingly valid. Actually the commutativity permits us to do something more

general: we may form the determinantal ideals (the ith determinantal ideal

is generated by the i by i subdeterminants). Following Krull, there is no

difficulty in proving the following statements, which constitute a generaliza-

tion of results of Steinitz [28].

Theorem 10.5. Let R be an integrally closed integral domain and A, A'

matrices of the same size(6) over R with A'=PAQ. Let Di, D¡ denote the

determinantal ideals of A, A'. Then any principal ideal containing Di+xD'

also contains DiD't+l. If R is further a multiplication ring (that is if every

finitely generated ideal is invertible) we form ,the invariant factor ideals

Ei = DiD^x and Ei divides E[ (6).

Another generalization of known results can be proved.

Theorem 10.6. Let R be an elementary divisor integral domain, and A, B

matrices of the same size over R which are multiples of each other. Then A, B are

equivalent.

Proof. By Theorem 10.5 the invariant factors are multiples of each other

and hence associates (7). The theorem then becomes evident on passage to

the diagonal form.

We conclude this discussion of divisibility with a theorem on one-sided

divisibility. Systems of linear equations correspond to the case where B is a

single column.

Theorem 10.7. Let R be an elementary divisor ring in which all ideals are

two-sided and the invariant factors of a matrix are unique up to associates. Let

A, B be matrices over R with the same number of rows. Then a necessary and

sufficient condition for B to be a right multiple of A is that A and (A B) have the

same nonzero invariant factors.

Proof. We may suppose A in the form diag (di, • • • )• Then dx must divide

every element of B and in particular its first row. It follows that d2, d3, ■ • ■ are

the invariant factors of (A' 73') where ^4' = diag (d2, d3, ■ • ■ ) and 73' is B

with its first row deleted. By induction 73' is a right multiple of A' and conse-

quently B is a right multiple of A.

(6) This can be generalized, with the same precautions as in Theorem 10.3.

(•) In the same way we can prove that E¿ divides E¡+i.

(r) It is necessary to observe that R is integrally closed; this is true for any integral domain

whose finitely generated ideals are principal.
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It is perhaps worth mentioning that if R is merely an Hermite ring, we

can base a systematic discussion of one-sided divisibility on the triangular

reduction, and we can even fall further back on Theorem 4.1. The results

are comparable with von Neumann's theory of linear equations in regular

rings [24, pp. 15-17].
11. Modules over valuation rings. The fact that a valuation ring P is an

elementary divisor ring does not suffice to determine the structure of a

finitely generated P-module, as we have remarked earlier. Nevertheless we

might still ask whether such a module is a direct sum of cyclic modules, al-

though we of course abandon the idea that the annihilating ideals are prin-

cipal. It turns out that this will be so if and only if a certain strong condition

is imposed on P. This condition is of a technical nature, and we refer the

reader to [16] for the definitions relevant for the following theorem. To

avoid excessive complications, we have taken R to be an integral domain and

confined ourselves to modules with two generators.

Theorem 11.1. For a valuation integral domain R the following two state-

ments are equivalent: (1) every R-module with two generators is a direct sum of

cyclic modules, (2) every pseudo-convergent set of nonzero breadth in R has a

limit in R.

Remark. By [16, Theorem 4] condition (2) is implied by maximality.

As is fitting and proper, it imposes no restriction on P in case P has the

ascending chain condition (that is, when the value group is the group of

integers).

Proof. We first prove that (2) implies (1). Represent the given module

717 as F—G where F is the free module with basis x, y. It will be convenient

to agree that the letters a, b always stand for the coefficients of an element

xa+yb in G. If it is always true that xa, yb are separately in G, then it is

evident that F—G is a direct sum of cyclic modules. So we suppose we have

an element xai+y&i in G with neither xax nor yii in G. Let us suppose for

definiteness that ax divides ii, or as we shall henceforth write, Fai ^ Fii, F

denoting the valuation attached to P. If all elements of G are proportional to

this element xax+ybx, we again see that the conclusion is obvious. So let

there be a second linearly independent element xa2+yb2 in G. Then yf(EG

wheref=axb2—a2bx?iO.

We define Cx = bx/ax, Zx = x+ycx, and we suppose that for every ordinal p

less than X we have defined c„ and zp=x+ycp with the following properties:

(a) ZiflEiG implies z^aÇiG for p<cr,

(b) z„a, z,a'<£G imply V(c„-b/a)<V(b'/a'-b/a),

(c) For p<a and z,a(£.G we have

(10) V(c. - b/a) > V(c, - b/a),

(d) Je,} is pseudo-convergent. We write yp for V(ca — cß) (p<a).
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(e) 7p < Vf.
Case I. X not a limit ordinal. If for every a, zx-ioGG, the process stops (see

below). If not, suppose zx_ia*v£G and define c\ = b*/a*, z\ = x+yc\. (a) If

2x-iöGG, then necessarily Va* < Va, and z\a = (z\a*)(a/a*)£zG. (b) To prove

this for X, suppose for definiteness that Va'^ Fa. Then

(xa + yb) - (xa' + yb')a/a' = y[(c - b'/a') - (cx - b/a)]a G G.

This equation shows that the difference between c\ — b[a and c\ — b'/a' must

have higher value than either, for otherwise

xa + yb = z\a + y(b — C\a)

leads to the contradiction z\a(E_G. (c) Apply (b) with p=X —1, a' = a* and

we have F(cx_i — b/a) < V(c\ — b/a). For any p <X— 1 we have F(cx-i — b/a)

> V(cp — b/a) by induction. We deduce (10) for o-=X. (d) From (c) with a, b

replaced by a*, b* we have V(c\ — ca)>V(c\ — cp). It follows that V(c\ — c„)

> V(c,-cP). (e) If F(cx-cx-i) = Vf, then

y(i* — Cx_i«*) = y(cx — Cx-t) a* Ç^G

since yfÇzG, and this contradicts z\-xa*(£G.

Case II. X a limit ordinal. We define cx to be a limit of [cp] ; note that the

induction hypothesis (e) is used here. The perseverance of conditions (d) and

(e) is evident-, and the proof of (b) above is valid. To prove (a), suppose

z„aÇ:G. Then also zp+iaGG and

zp+xa — z„a = y(c„+x — cp)a G G.

Now V(c\ — Cp) = V(c„+x — cp) so we have y(c\ — cp)a in G. It follows that z\a is

in G. Finally to verify (c) we note that by (10), V(cp — b/a) =y„ and then

F(cx - b/a) = V(cx - cp + cp- b/a) = yp.

The conclusion of this transfinite induction must be the appearance of an

element z=x+yc such that zaÇ^G for all a. We now claim that 717 is indeed

the direct sum of two cyclic modules, namely those with basis elements y and

2 (or more precisely, their images mod G). To see this we merely have to

observe

xa + yb = za + y(b — ac).

We now turn to the reverse implication (1)—K2); we give the proof with-

out full details. Suppose that on the contrary there is a pseudo-convergent set

{up} in P with no limit in P but with nonzero breadth. Write V(up+x — up)

=yP, let a be an element of the value group exceeding all 7's, and let vp be

any element of value a— yp. Take F to be the free module with basis x, y

and G the submodule spanned by \xVp+yupvp\. It can be seen that the ele-

ments of the form yi in G are precisely those with Vb^a. Now let it be alleged
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that F — G is the direct sum of cyclic modules. It is out of the question that

there be more than two of these modules, and we may take their generators

to be y and x+yc. Then for every p there must exist a relation

(x + yup)vp = ydp + (x + yc)ep.

Necessarily ep = vp and up = c+dp/vp. Since Vdp^a, we have V(c — up)^yp.

This makes c a limit of {mp}, a contradiction.

12. Principal ideal rings. In this section we shall discuss principal ideal

rings (rings in which every left or right ideal is principal). Although our main

concern is with the commutative case, we obtain some subsidiary results with-

out this restriction.

Theorem 12.1. Let Rbe a principal ideal ring for which divisors of 0 are in

the radical. Then R either has no divisors of 0 or is a valuation ring with

descending chain condition.

Proof. Any two-sided ideal 7 of P is of the form aR = Ra'. Then a=ua',

a' = av, ua=aw, a = uav = awv. If a^O, then l—wv is in the radical, v is a unit.

Similarly » is a unit and we see that a is both a left and right generator of 7.

This applies in particular to the radical S = sR = Rs and to T = SC\S2r\S3

H ■ • • =tR = Rt. Write t = stx. We claim ¿iG7\ For if not, tx could be written

tx = snt2 with fe not in S. Also t = sn+%, so that sn+1(t2-st3) =0. Either sn+1 = 0

which means t = 0 or t2Ç_S, a contradiction. So ¿iGP, say tx = ht, t(l—stt) =0,

t = 0. It follows that any nonzero element can be written as a power of s times

an element not in the radical.

Let us now assume that divisors of 0 really are present and show that some

power of s is 0. Let ab = 0 where a, b are different from 0. Write a = smax,

b = imii, with ax, bx not in 5. If axsH = 0 we conclude sn = 0. Otherwise axsn = sna2

where a2 is not 0. We have sm+na2bx = 0 and a2ii^0. Write a2bx = spa3, a3 not in

S, and we have finally sm+H+pa3 = 0, sm+n+p = 0. Let sk be the lowest power of s

that vanishes.

Let us note that any divisor of 5 is either a unit or in the radical. For if

s=ab, then absk~1 = 0. If a is not in the radical, is*-l = 0, iGS, b = cs and

s = acs shows that a is a unit.

Let a be any element not in the radical and write aR+sR = bR. Then b

is a divisor of 5. We cannot have b in the radical, hence i is a unit, and

ax+sy = 1 shows that a is a unit. It is now clear that the only (right or left)

ideals in R are the powers of S, and P is a valuation ring with descending

chain condition.

Theorem 12.1 shows that principal ideal rings with divisors of 0 in the

radical either fall under the Jacobson-Teichmiiller theory or under the theory

of §10. In either event they are elementary divisor rings, and the structure of

finitely generated modules over them may be considered as known.

Lemma 12.2. Let I, J be two-sided ideals in a ring R such that neither contains
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the other, and R — I, R — J are principal ideal rings with divisors of 0 in the

radical. Then R is the only principal left ideal containing I+J.

Proof. Suppose 7+7 is contained in Re. We first treat the case where P — 7

has no divisors of 0. In the ring R — J the ideal (I+J)—J has a two-sided

generator. Let aG7 be an element mapping on this generator. We can write

a = bc, and either b or c must be in 7. The possibility cG7 leads to JC.I,

and so we have &G7. Let us denote images mod J by asterisks. Then a* = b*c*,

b*=a*d* (since b is in 7), hence a*=a*d*c*. Either a* = 0 which means IC.J,

or c* is a unit which means Rc = R.

There remains the case where both R — I, R — J are valuation rings with

descending chain condition. Let 717, TV be the inverse images of the radicals

of P-7, R-J. If Mj±N, then 7I7+7V = P. Since suitable powers of 717, TV lie
in 7, J respectively, we deduce I+J = R. So we assume 717= TV. We may

without loss of generality suppose If~s\J = 0, and we then have a nilpotent

radical 717 with P — M a division ring. In particular all non-units are in 717.

Let 5 be in 717 but not 7172. Then 5 generates 717 mod 7, that is, MQRs+I.

Now if c is not a unit, c = xs+i (t'GT). Since IQRc, we have i = yc where y

cannot be a unit since that would mean I^RcZ^J. So y is a non-unit, 1 —y is

a unit, cElRs, IGRs, whence M = Rs. From this we find that every element of

717 is expressible as a unit times a power of s. It follows that P is a valuation

ring with descending chain condition. But in such a ring any two ideals are

comparable. This contradiction shows that c is a unit, Rc = R.

The two preceding results are admirably adapted to yield a structure

theorem on commutative principal ideal rings. Conceivably they might also

work in "mildly" non-commutative cases. But at any rate we can derive the

theorem of Krull [19] and even a slightly more general theorem(8).

Theorem 12.3. Let R be a commutative ring with the ascending chain

condition, and suppose that every maximal ideal in R is principal. Then R is a

principal ideal ring and moreover it is the direct sum of a finite number of

integral domains and valuation rings with descending chain condition.

Proof. First suppose that divisors of 0 are in the radical. We shall show

that P is a principal ideal ring. For this purpose it will suffice to show that

for any a, b, aR+bR is principal. If aR+bR = R there is nothing to prove.

Otherwise aR+bR is contained in a maximal ideal cR. Write a=axC, b = bxC

We note that aR is properly contained in axR, for otherwise (since divisors of

0 are in the radical) c would be a unit. If axR+bxR = R, then aR+bR = cR.

If not, we repeat the operation. After a finite number of steps we shall find

(8) Krull's theorem asserts that any commutative principal ideal ring has the structure

described in Theorem 12.3. His later papers contain more general results. Another theorem that

can be stated is the following: if every prime ideal in R is principal, then R is a principal ideal

ring. For I. S. Cohen has shown (unpublished) that if every prime ideal is finitely generated,

then the ascending chain condition holds.
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that aR+bR is principal.

Now let R be any ring satisfying the hypothesis of our theorem. Write 0

as an irredundant intersection of primary ideals: 0 = Qxi~\Q2r} ■ • • C\Qn.

Each R — Qi has divisors of 0 in the radical (they are even nilpotent). The

preceding paragraph shows that R — Qi is a principal ideal ring. Theorem 12.1

shows that it is either an integral domain or a valuation ring with descending

chain condition. Lemma 12.2 shows that Qi + Q¡ = R. Hence P is the direct

sum of the rings R — Qi.

With this structure theorem at hand, commutative principal ideal rings

may be considered to be fully under control. In particular, they are ele-

mentary divisor rings. A useful application is to the case of a ring with the

classical Noether ideal theory, modulo a nonzero ideal.

13. Infinite matrices and modules. We recall that with every module we

have associated a matrix with only a finite number of nonzero elements in

each column. We now consider the reduction theory for such matrices, and we

begin with the case of matrices which are infinite only one way.

If there are only a finite number of columns, then there are only a finite

number of nonzero elements in all, and it is evident that this case is essen-

tially identical with that of finite matrices. It corresponds to the case of a

free module reduced by only a finite number of relations; cf. [26].

Matrices with only a finite number of rows correspond to a finite free

module reduced by any set of relations. As may be expected, it requires the

ascending chain condition to accomplish matrix reduction here.

Theorem 13.1. The following two statements are equivalent for a ring R:

(a) P is a right Hermite ring satisfying the ascending chain condition on right

ideals, (b) for any row matrix A over R there exists a unimodular matrix U

such that A U has at most one nonzero element.

Proof. The ability to reduce a 1 by 2 matrix shows that R is a right

Hermite ring. Further, if .4 = (cíi ö2 • • • ), the reduction shows that the

right ideal generated by the a's is principal. Conversely, given the row

(fli 02 • • • )i we know that the a's generate a principal right ideal dR.

In fact a finite number of the a's suffice to generate dR. A unimodular reduc-

tion of them will introduce d, which may then be used to sweep out the row.

Theorem 13.1 extends in evident fashion to the case of a finite number of

rows. Under the stated conditions we can get a triangular reduction, and if R

is further an elementary divisor ring we can reach diagonal form.

We turn now to the consideration of matrices which are infinite both

ways. Here even the ascending chain condition will not suffice; we need the

descending chain condition. Moreover simple examples show that we cannot

hope in general to put a matrix in diagonal form, and that the business of

having elements divide their successors has to be dropped. We shall content

ourselves with achieving matrices with a most one nonzero element in each
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row and column; for the module interpretation this is adequate. However

even this modest program does not admit fulfilment in the presence of direct

sums.

Lemma 13.2. Let R be a ring in which left and right inverses coincide, and

suppose it is a direct sum of rings S, T with unit elements u, v. Then the matrix

A =

u

v      u
0

0

is not equivalent to a matrix with at most one nonzero element in each row and

column.

Proof. Suppose on the contrary that PAQ does effect such a reduction.

We first look at this in the component 5. There A is the identity matrix, so

PAQ is unimodular. Thus a nonzero element must actually appear in each

row and column of PAQ. By applying a permutation matrix we may suppose

that PAQ is in diagonal form. Now let us look at the P-component: there A

has a left inverse but no right inverse. The same is true for PAQ, but (under

our assumptions) this is impossible for a diagonal matrix.

We thus see that direct sums cause difficulties in manipulating infinite

matrices; but on the other hand, they are no trouble at all in discussing

modules. This remark is relevant as we proceed to the study of principal ideal

rings with descending chain condition. Asano has shown [13, pp. 75-76]

that they are direct sums of primary rings, and for the purpose of modules we

reduce at once to that case. In the primary case we establish a matrix reduc-

tion.

Theorem 13.3(9). Let R be a primary principal ideal ring with descending

chain condition. Then any matrix over R is equivalent to one having at most one

nonzero element in each row and column.

Corollary. If Ris a principal ideal ring with descending chain condition,

any R-module is a direct sum of cyclic modules.

Proof. We consider first the case where P is a division ring; the theorem is

then known (cf. [18] and the references given there), but for completeness we

(9) Theorem 13.3 is believed to be new. Its module corollary was proved by Köthe in [17],

and special cases can be found elsewhere in the literature—[15, Theorem 5.1 ], [5], and the refer-

ences given in the latter. In the countable case, Theorem 13.3 is a special case of results of Ulm

[30]—or rather, it would be a special case if Ulm's work were suitably extended to more general

rings. The non-countable case is however definitely not included in Ulm's work, for the theorem

he is proving is then false [31 ].
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give a brief proof. Use letters v{ for the columns and write

(11) Vi =  2~2 Ujüij,

where it¡ index the rows. We introduce new variables »', v' as follows. Set

u'i =vl =Vi if Vi is linearly independent of the preceding v's; but if »,• is a

linear combination of preceding v's, set vi = (vi minus that linear combina-

tion). Note that we can solve backward for the vt in terms of the v[. The «/

are linearly independent elements of the linear space spanned by the »,-;

complete them (changing notation) to a basis having the same ordinal type

as the »,-. In terms of the new bases, the equation (11) becomes v[ =either

u'i or 0. Hence the matrix has been converted into one having at most one

nonzero element in each row and column.

We now return to the general case. The primary ring P is a matrix ring (of

finite order) over a completely primary ring 5. We can blow up our given

matrix to a larger one over S, and it is thus sufficient to prove our theorem for

matrices over 5. The ring S has a radical generated by an element r with

r»+i = fj, and S—(r) is a division ring; 5 is in fact a valuation ring. We assume

by induction that the theorem is known for smaller ».

At this point we pause to make two simple remarks on "convergence."

(It is a matter of taste whether one takes the convergence purely formally,

or actually introduces a suitable weak topology.) (1) If U is a square matrix

(one whose rows and columns have .the same ordinal type) mapping modulo r

onto a unimodular matrix, then U is unimodular. One proves this by taking

the (finite) power series expansion. A more general theorem is proved in

[22]. (2) Let Ei be a well ordered array of square matrices, each having only

one nonzero element and that divisible by r, and such that for any fixed

column, only a finite number of the P's have a nonzero entry. Then the

products (7+£i)(7+P2) • • • and • • • (7+£2)(7+£i) are well defined and

unimodular, for we shall have to deal only with products of at most » ele-

ments, and the sums involved are readily seen to converge. The limit is

unimodular by remark (1).

We return now to the business of reducing our matrix A. Let us pass to

the ring T = S—(rn), and write A* for the image of A. By induction we can

find in T unimodular matrices P*, Q* such that P*A*Q* has at most one

nonzero element in each row and column. Choose matrices P, Q mapping on

P*, Q*, and choose them column-finite, of course. By remark (1) above, P

and Q are unimodular. Our remaining task is to remove from PAQ the sundry

terms in r" that spoil it. First we sweep out the rows, that is, if a row contains

both terms in rn and a (unique) term properly dividing it, we sweep out

the former with the latter. Excision of an element in the jth column means

right-multiplication by a matrix of the form

(12) 7 + arkeii.
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Since there are only a finite number of elements to be swept out of any

column, these multiplications satisfy the conditions of remark (2) above. We

similarly sweep out the columns; here we use (12) on the left if we are sweep-

ing with an element in the jth row, and there is at most one such element.

Having accomplished all this, we still have on our hands some rows and

columns decorated solely by terms in rn. We treat these by the division ring

case of the theorem, leaving the other rows and columns unchanged. This

completes the proof of Theorem 13.3.

In the commutative case we can prove a converse to Theorem 13.3.

Theorem 13.4. Let R be a commutative ring with the property that every

matrix over R is equivalent to one with at most one nonzero element in each row

and column. Then R is a valuation ring with descending chain condition^).

Proof. By Theorem 13.1, P is a principal ideal ring. Then Theorem 12.3

and Lemma 13.2 show that we have only to exclude the case where P is an

integral domain. Now the hypothesis of our theorem assures us that any

P-module is a direct sum of cyclic modules. This applies in particular to the

quotient field of P, and is possible only if P is that quotient field.

Extension of Theorem 13.4 to the non-commutative case must await

further information on non-commutative principal ideal rings.

We conclude with a remark on matrices vs. modules. The study by matrix

methods of modules, over rings not satisfying the descending chain condition,

leads to normal forms that are comparatively complicated and to correspond-

ingly complex convergence questions. The investigators who followed Ulm

have consequently preferred direct group-theoretic methods. However we

have considered Theorem 13.3 worth proving because the normal form in-

volved is simple, and because the proof is comparatively transparent.
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