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1 Introduction

In his “A course of pure mathematics”, G. H. Hardy considers the following limit (Example
XXIV.14 in [1]):

lim
n→∞

sin (n!πx)

He remarks that when x is rational, this limit is 0. Let G be the set of reals where this
limit is 0. It is easily verified that G is an additive subgroup of R. It is also not hard to see
that Euler’s constant e is also in G. Going a little further, one can show the following.

Lemma 1.1. Suppose x ∈ [0, 1]. Then x has a unique representation of the form

x =
∑
n≥2

xn
n!

where xn ∈ {0, 1, . . . , n− 1}. Under this representation, x ∈ G iff lim
n→∞

xn
n

is either 0 or 1.

Proof: Let d(x,Z) denote the distance of x from the set of integers. First notice that for
any sequence of reals 〈xn : n ≥ 1〉, lim

n→∞
sin (πxn) = 0 iff lim

n→∞
d(xn,Z) = 0. For any x ∈ [0, 1)

with xn’s as above, d(n!x,Z) = d(bn,Z), where bn =
xn+1

n+ 1
+ εn where 0 ≤ εn < 1/n.

Hence if
xn
n
→ 0 or 1, then d(bn,Z) → 0. Conversely suppose, along some subsequence nk,

lim
k→∞

xnk

nk
= a where 0 < a < 1. Then for all large enough k, d((nk − 1)!x,Z) is arbitrarily

close to a so that sin (n!πx) is bounded away from zero on this subsequence.

2 A true Π0
3 group

As we remarked above, G can also be described as follows:

G = {x ∈ R : lim
n→∞

d(n!x,Z) = 0}

In this section, we’ll show that G is a true Π0
3 additive subgroup of R. Recall the definition

of the pointclasses Σ0
α, Π0

α:
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• Σ0
1 is the family of open subsets of R, Π0

1 is the family of closed sets.

• for each 1 < α < ω1, a set X is in Σ0
α (resp. Π0

α) iff it is the union (resp. intersection)
of a countable subfamily of

⋃
β<α Π0

β (resp.
⋃
β<α Σ0

β).

Remark: We never use effective versions of these pointclasses hence all our pointclasses are
boldface even if they don’t look bold.

One can also consider these pointclasses over other Polish spaces (separable completely
metrizable spaces) like 2ω (Cantor space), ωω (Baire space). A set in Π0

α is a true Π0
α set if

it is not in Σ0
α. A true Σ0

α set is defined similarly. We begin by recalling some basic facts
about Wadge reductions. In what follows, all Polish spaces are uncountable and therefore
the Borel hierarchies on such spaces do not terminate at any countable level.

Let f : X → Y be a continuous map between Polish spaces and let A ⊆ X and B ⊆ Y .

We write f : (X,A)
Wadge−−−→ (Y,B) (read “f Wadge reduces A to B”) if f−1[B] = A. The

following are easily proved.

Lemma 2.1. If f : (X,A)
Wadge−−−→ (Y,B) where B is Σ0

α (resp. Π0
α) in Y then A is Σ0

α (resp.
Π0
α) in X.

Lemma 2.2. If f : (X,A)
Wadge−−−→ (Y,B) and A is true Σ0

α (resp. Π0
α) in X, and if B is Σ0

α

(resp. Π0
α) in Y then B is true Σ0

α (resp. Π0
α) in Y .

Let A be a Σ0
α (resp. Π0

α) set in X. We say A is Σ0
α-complete (resp. Π0

α-complete) if for

every Σ0
α (resp. Π0

α) set B in any Polish space Y there is a Wadge reduction f : (Y,B)
Wadge−−−→

(X,A). The following result in Wadge’s thesis shows that any two true Σ0
α (resp. Π0

α) sets
in Cantor space Wadge reduce to each other.

Theorem 2.3 (Wadge). A subset A of 2ω is Σ0
α-complete if A is true Σ0

α in 2ω.

Some examples follow.

• Any countable dense subset D of an uncountable Polish space X is Σ0
2-complete. E.g.,

Q = {x ∈ 2ω : lim
n→∞

x(n) = 0}. The trueness of D follows by Baire category theorem.

Hence by Wadge’s theorem, D is Σ0
2-complete.

• Let 〈, 〉 : ω2 → ω be a pairing function; for example, 〈m,n〉 = 1
2
(m+n+ 1)(m+n) +n.

Let P = {x ∈ 2ω : ∀m( lim
n→∞

x(〈m,n〉) = 0}. Then P is Π0
3-complete.

Proof: It is clear that P is Π0
3. To show that P is Π0

3-complete, fix an arbitrary Π0
3 set

A in a Polish space X. Let A =
⋂
n∈ω An, where An’s are Σ0

2. Since Q is Σ0
2-complete, there

are Wadge reductions fm : (X,An)
Wadge−−−→ (2ω, Q). Let F : (X,A)

Wadge−−−→ (2ω, P ) be given by
F (x)(〈m,n〉) = fm(n).

Theorem 2.4. The set G = {x ∈ R : lim
n→∞

d(n!x,Z)) = 0} is a true Π0
3 additive subgroup of

reals.
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Proof: It is clear that G is an additive subgroup of reals and that it is Π0
3:

x ∈ G⇔ ∀ε > 0(∃n0(∀n ≥ n0(d(n!x,Z) ≤ ε)))

It suffices to construct a Wadge reduction from P = {x ∈ 2ω : ∀m( lim
n→∞

x(〈m,n〉) = 0} to

G. Let f : 2ω → R be defined as follows. Given x ∈ 2ω, let yx : ω → ω be defined by letting
yx(n) to be the least index m < n such that x(〈m,n〉) = 1. In case no such m < n exists,
we let yx(n) = n. It is clear that the function x 7→ yx is continuous and for every x ∈ 2ω,

x ∈ P ⇔ lim
n→∞

yx(n) =∞. Set f(x) =
∑
n≥2

an
n!

, where an = b
(

n

2 + yx(n)

)
c, and bxc denotes

the greatest integer not greater than x. Now if lim
n→∞

yx(n) = ∞, then lim
n→∞

an
n

= 0, hence

f(x) ∈ G. On the other hand, if x /∈ P , then along some subsequence 〈nk : k ∈ ω〉, yx(nk)
is constant so that

ank

nk
does not go to either 0 or 1.

3 A few more groups

Let G0 = G, Gk+1 = {x ∈ R : lim
n→∞

d(n!x,Z) ∈ Gk}. Then one can easily check that, for

each k ∈ ω, Gk is an additive subgroup of R. Next we show that

Lemma 3.1. Gk is Π0
k+3.

Proof: Let W = {x ∈ R : lim
n→∞

d(n!x,Z) exists}. Then W is Π0
3 since

x ∈ W ⇔ ∀ε > 0(∃n0(∀m,n ≥ n0(|d(m!x,Z)− d(n!x,Z)| ≤ ε)))

Let h : W → R be defined by h(x) = lim
n→∞

d(n!x,Z). For every open interval (a, b), and for

every x ∈ W ,

h(x) ∈ (a, b)⇔ ∃n0∀n ≥ n0(d(n!x,Z) ∈ [a+ 1/n, b− 1/n])

This implies that for every open set U , h−1[U ] is the intersection of a Σ0
2 set with W . This

implies that, if Gk ∈ Π0
k+3, then Gk+1 = h−1[Gk] is the intersection of a Π0

k+4 set with W
hence is also Π0

k+4.
In the remaining part of this section we will show that Gk is a true Π0

k+3 set. First we
need a nice family of Π0

k-complete sets for k ≥ 3. The following construction appears in [?].
Let φ : 2ω → 2ω be defined by φ(x)(m) = 1 iff ∀n(x(〈m,n〉)) = 0. Extend φ to 2≤ω

by defining φ(σ) = φ(σ0), where σ ∈ 2<ω and σ0 is σ followed by 0’s. Note that although
φ is not continuous, (e.g., 0n1 converges to 0, φ(0n1) = 0 does not converge to φ(0) = 1),
φ(x � n) does converge to φ(x). Let H1 = {0}, Hk+1 = φ−1[Hk]. Then Hk is Π0

k-complete.

Theorem 3.2. For every k ∈ ω, Gk is a true Π0
k+3 additive subgroup of reals.

Proof: When k = 0, this was proved above. Suppose f : (2ω, Hk+3)
Wadge−−−→ (R, Gk),

where Hk+3 is the Π0
k+3-complete set defined above. For x ∈ 2ω, let an = f(φ(x � n)) and
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a = lim
n→∞

an = lim
n→∞

f(φ(x � n)) = f( lim
n→∞

φ(x � n)) = f(φ(x)). Put bn = bn(d(an,Z))c

and define g : 2ω → R by g(x) =
∑
n≥2

bn
n!

. Then g is continuous. Also g(x) ∈ Gk+1 iff

lim
n→∞

bn
n

= lim
n→∞

d(an,Z) = d(a,Z) ∈ Gk. Hence x ∈ Hk+4 ⇔ φ(x) ∈ Hk+3 ⇔ f(φ(x)) ∈
Gk ⇔ a ∈ Gk ⇔ d(a,Z) ∈ Gk ⇔ g(x) ∈ Gk+1.

As a corollary, Gω =
⋃
{Gk : k ∈ ω} is in Σ0

ω but not in Σ0
k for any k ∈ ω since

Gω = {x ∈ R : lim
n→∞

d(n!x,Z) ∈ Gω}.
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