
Interprocess Communication

5

CHAPTER 3,“PROCESSES,” DISCUSSED THE CREATION OF PROCESSES and showed
how one process can obtain the exit status of a child process.That’s the simplest form
of communication between two processes, but it’s by no means the most powerful.The
mechanisms of Chapter 3 don’t provide any way for the parent to communicate with
the child except via command-line arguments and environment variables, nor any way
for the child to communicate with the parent except via the child’s exit status. None
of these mechanisms provides any means for communicating with the child process
while it is actually running, nor do these mechanisms allow communication with a
process outside the parent-child relationship.

This chapter describes means for interprocess communication that circumvent these
limitations.We will present various ways for communicating between parents and chil-
dren, between “unrelated” processes, and even between processes on different
machines.

Interprocess communication (IPC) is the transfer of data among processes. For example,
a Web browser may request a Web page from a Web server, which then sends HTML
data.This transfer of data usually uses sockets in a telephone-like connection. In
another example, you may want to print the filenames in a directory using a command
such as ls | lpr.The shell creates an ls process and a separate lpr process, connecting

06 0430 CH05 5/22/01 10:22 AM Page 95

96 Chapter 5 Interprocess Communication

the two with a pipe, represented by the “|” symbol.A pipe permits one-way commu-
nication between two related processes.The ls process writes data into the pipe, and
the lpr process reads data from the pipe.

In this chapter, we discuss five types of interprocess communication:
n Shared memory permits processes to communicate by simply reading and

writing to a specified memory location.
n Mapped memory is similar to shared memory, except that it is associated with a

file in the filesystem.
n Pipes permit sequential communication from one process to a related process.
n FIFOs are similar to pipes, except that unrelated processes can communicate

because the pipe is given a name in the filesystem.
n Sockets support communication between unrelated processes even on different

computers.

These types of IPC differ by the following criteria:
n Whether they restrict communication to related processes (processes with a

common ancestor), to unrelated processes sharing the same filesystem, or to any
computer connected to a network

n Whether a communicating process is limited to only write data or only
read data

n The number of processes permitted to communicate
n Whether the communicating processes are synchronized by the IPC—for

example, a reading process halts until data is available to read

In this chapter, we omit discussion of IPC permitting communication only a limited
number of times, such as communicating via a child’s exit value.

5.1 Shared Memory
One of the simplest interprocess communication methods is using shared memory.
Shared memory allows two or more processes to access the same memory as if they all
called malloc and were returned pointers to the same actual memory.When one
process changes the memory, all the other processes see the modification.

5.1.1 Fast Local Communication
Shared memory is the fastest form of interprocess communication because all
processes share the same piece of memory.Access to this shared memory is as fast as
accessing a process’s nonshared memory, and it does not require a system call or entry
to the kernel. It also avoids copying data unnecessarily.

06 0430 CH05 5/22/01 10:22 AM Page 96

975.1 Shared Memory

Because the kernel does not synchronize accesses to shared memory, you must pro-
vide your own synchronization. For example, a process should not read from the
memory until after data is written there, and two processes must not write to the same
memory location at the same time.A common strategy to avoid these race conditions
is to use semaphores, which are discussed in the next section. Our illustrative pro-
grams, though, show just a single process accessing the memory, to focus on the shared
memory mechanism and to avoid cluttering the sample code with synchronization
logic.

5.1.2 The Memory Model
To use a shared memory segment, one process must allocate the segment.Then each
process desiring to access the segment must attach the segment.After finishing its use
of the segment, each process detaches the segment.At some point, one process must
deallocate the segment.

Understanding the Linux memory model helps explain the allocation and attach-
ment process. Under Linux, each process’s virtual memory is split into pages. Each
process maintains a mapping from its memory addresses to these virtual memory pages,
which contain the actual data. Even though each process has its own addresses, multiple
processes’ mappings can point to the same page, permitting sharing of memory.
Memory pages are discussed further in Section 8.8,“The mlock Family: Locking
Physical Memory,” of Chapter 8,“Linux System Calls.”

Allocating a new shared memory segment causes virtual memory pages to be cre-
ated. Because all processes desire to access the same shared segment, only one process
should allocate a new shared segment.Allocating an existing segment does not create
new pages, but it does return an identifier for the existing pages.To permit a process
to use the shared memory segment, a process attaches it, which adds entries mapping
from its virtual memory to the segment’s shared pages.When finished with the seg-
ment, these mapping entries are removed.When no more processes want to access
these shared memory segments, exactly one process must deallocate the virtual
memory pages.

All shared memory segments are allocated as integral multiples of the system’s page
size, which is the number of bytes in a page of memory. On Linux systems, the page
size is 4KB, but you should obtain this value by calling the getpagesize function.

5.1.3 Allocation
A process allocates a shared memory segment using shmget (“SHared Memory
GET”). Its first parameter is an integer key that specifies which segment to create.
Unrelated processes can access the same shared segment by specifying the same key
value. Unfortunately, other processes may have also chosen the same fixed key, which
could lead to conflict. Using the special constant IPC_PRIVATE as the key value guaran-
tees that a brand new memory segment is created.

06 0430 CH05 5/22/01 10:22 AM Page 97

98 Chapter 5 Interprocess Communication

Its second parameter specifies the number of bytes in the segment. Because seg-
ments are allocated using pages, the number of actually allocated bytes is rounded up
to an integral multiple of the page size.

The third parameter is the bitwise or of flag values that specify options to shmget.
The flag values include these:

n IPC_CREAT—This flag indicates that a new segment should be created.This per-
mits creating a new segment while specifying a key value.

n IPC_EXCL—This flag, which is always used with IPC_CREAT, causes shmget to fail
if a segment key is specified that already exists.Therefore, it arranges for the call-
ing process to have an “exclusive” segment. If this flag is not given and the key
of an existing segment is used, shmget returns the existing segment instead of
creating a new one.

n Mode flags—This value is made of 9 bits indicating permissions granted to
owner, group, and world to control access to the segment. Execution bits are
ignored.An easy way to specify permissions is to use the constants defined in
<sys/stat.h> and documented in the section 2 stat man page.1 For example,
S_IRUSR and S_IWUSR specify read and write permissions for the owner of the
shared memory segment, and S_IROTH and S_IWOTH specify read and write per-
missions for others.

For example, this invocation of shmget creates a new shared memory segment (or
access to an existing one, if shm_key is already used) that’s readable and writeable to
the owner but not other users.

int segment_id = shmget (shm_key, getpagesize (),
IPC_CREAT | S_IRUSR | S_IWUSER);

If the call succeeds, shmget returns a segment identifier. If the shared memory segment
already exists, the access permissions are verified and a check is made to ensure that
the segment is not marked for destruction.

5.1.4 Attachment and Detachment
To make the shared memory segment available, a process must use shmat,“SHared
Memory ATtach.” Pass it the shared memory segment identifier SHMID returned by
shmget.The second argument is a pointer that specifies where in your process’s address
space you want to map the shared memory; if you specify NULL, Linux will choose
an available address.The third argument is a flag, which can include the following:

n SHM_RND indicates that the address specified for the second parameter should be
rounded down to a multiple of the page size. If you don’t specify this flag, you
must page-align the second argument to shmat yourself.

n SHM_RDONLY indicates that the segment will be only read, not written.

1.These permission bits are the same as those used for files.They are described in Section
10.3,“File System Permissions.”

06 0430 CH05 5/22/01 10:22 AM Page 98

995.1 Shared Memory

If the call succeeds, it returns the address of the attached shared segment. Children cre-
ated by calls to fork inherit attached shared segments; they can detach the shared
memory segments, if desired.

When you’re finished with a shared memory segment, the segment should be
detached using shmdt (“SHared Memory DeTach”). Pass it the address returned by
shmat. If the segment has been deallocated and this was the last process using it, it is
removed. Calls to exit and any of the exec family automatically detach segments.

5.1.5 Controlling and Deallocating Shared Memory
The shmctl (“SHared Memory ConTroL”) call returns information about a shared
memory segment and can modify it.The first parameter is a shared memory segment
identifier.

To obtain information about a shared memory segment, pass IPC_STAT as the
second argument and a pointer to a struct shmid_ds.

To remove a segment, pass IPC_RMID as the second argument, and pass NULL as the
third argument.The segment is removed when the last process that has attached it
finally detaches it.

Each shared memory segment should be explicitly deallocated using shmctl when
you’re finished with it, to avoid violating the systemwide limit on the total number of
shared memory segments. Invoking exit and exec detaches memory segments but
does not deallocate them.

See the shmctl man page for a description of other operations you can perform on
shared memory segments.

5.1.6 An Example Program
The program in Listing 5.1 illustrates the use of shared memory.

Listing 5.1 (shm.c) Exercise Shared Memory

#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main ()
{
int segment_id;
char* shared_memory;
struct shmid_ds shmbuffer;
int segment_size;
const int shared_segment_size = 0x6400;

/* Allocate a shared memory segment. */
segment_id = shmget (IPC_PRIVATE, shared_segment_size,

IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);

continues

06 0430 CH05 5/22/01 10:22 AM Page 99

100 Chapter 5 Interprocess Communication

/* Attach the shared memory segment. */
shared_memory = (char*) shmat (segment_id, 0, 0);
printf (“shared memory attached at address %p\n”, shared_memory);
/* Determine the segment’s size. */
shmctl (segment_id, IPC_STAT, &shmbuffer);
segment_size = shmbuffer.shm_segsz;
printf (“segment size: %d\n”, segment_size);
/* Write a string to the shared memory segment. */
sprintf (shared_memory, “Hello, world.”);
/* Detach the shared memory segment. */
shmdt (shared_memory);

/* Reattach the shared memory segment, at a different address. */
shared_memory = (char*) shmat (segment_id, (void*) 0x5000000, 0);
printf (“shared memory reattached at address %p\n”, shared_memory);
/* Print out the string from shared memory. */
printf (“%s\n”, shared_memory);
/* Detach the shared memory segment. */
shmdt (shared_memory);

/* Deallocate the shared memory segment. */
shmctl (segment_id, IPC_RMID, 0);

return 0;
}

5.1.7 Debugging
The ipcs command provides information on interprocess communication facilities,
including shared segments. Use the -m flag to obtain information about shared
memory. For example, this code illustrates that one shared memory segment,
numbered 1627649, is in use:

% ipcs -m

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 1627649 user 640 25600 0

If this memory segment was erroneously left behind by a program, you can use the
ipcrm command to remove it.

% ipcrm shm 1627649

Listing 5.1 Continued

06 0430 CH05 5/22/01 10:22 AM Page 100

1015.2 Processes Semaphores

5.1.8 Pros and Cons
Shared memory segments permit fast bidirectional communication among any number
of processes. Each user can both read and write, but a program must establish and fol-
low some protocol for preventing race conditions such as overwriting information
before it is read. Unfortunately, Linux does not strictly guarantee exclusive access even
if you create a new shared segment with IPC_PRIVATE.

Also, for multiple processes to use a shared segment, they must make arrangements
to use the same key.

5.2 Processes Semaphores
As noted in the previous section, processes must coordinate access to shared memory.
As we discussed in Section 4.4.5,“Semaphores for Threads,” in Chapter 4,“Threads,”
semaphores are counters that permit synchronizing multiple threads. Linux provides a
distinct alternate implementation of semaphores that can be used for synchronizing
processes (called process semaphores or sometimes System V semaphores). Process sem-
aphores are allocated, used, and deallocated like shared memory segments.Although a
single semaphore is sufficient for almost all uses, process semaphores come in sets.
Throughout this section, we present system calls for process semaphores, showing how
to implement single binary semaphores using them.

5.2.1 Allocation and Deallocation
The calls semget and semctl allocate and deallocate semaphores, which is analogous to
shmget and shmctl for shared memory. Invoke semget with a key specifying a sema-
phore set, the number of semaphores in the set, and permission flags as for shmget; the
return value is a semaphore set identifier.You can obtain the identifier of an existing
semaphore set by specifying the right key value; in this case, the number of sema-
phores can be zero.

Semaphores continue to exist even after all processes using them have terminated.
The last process to use a semaphore set must explicitly remove it to ensure that the
operating system does not run out of semaphores.To do so, invoke semctl with the
semaphore identifier, the number of semaphores in the set, IPC_RMID as the third argu-
ment, and any union semun value as the fourth argument (which is ignored).The
effective user ID of the calling process must match that of the semaphore’s allocator
(or the caller must be root). Unlike shared memory segments, removing a semaphore
set causes Linux to deallocate immediately.

Listing 5.2 presents functions to allocate and deallocate a binary semaphore.

06 0430 CH05 5/22/01 10:22 AM Page 101

102 Chapter 5 Interprocess Communication

Listing 5.2 (sem_all_deall.c) Allocating and Deallocating a Binary Semaphore

#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/types.h>

/* We must define union semun ourselves. */

union semun {
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;

};

/* Obtain a binary semaphore’s ID, allocating if necessary. */

int binary_semaphore_allocation (key_t key, int sem_flags)
{
return semget (key, 1, sem_flags);

}

/* Deallocate a binary semaphore. All users must have finished their
use. Returns -1 on failure. */

int binary_semaphore_deallocate (int semid)
{
union semun ignored_argument;
return semctl (semid, 1, IPC_RMID, ignored_argument);

}

5.2.2 Initializing Semaphores
Allocating and initializing semaphores are two separate operations.To initialize a sema-
phore, use semctl with zero as the second argument and SETALL as the third argument.
For the fourth argument, you must create a union semun object and point its array
field at an array of unsigned short values. Each value is used to initialize one sema-
phore in the set.

Listing 5.3 presents a function that initializes a binary semaphore.

Listing 5.3 (sem_init.c) Initializing a Binary Semaphore

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

06 0430 CH05 5/22/01 10:22 AM Page 102

1035.2 Processes Semaphores

/* We must define union semun ourselves. */

union semun {
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;

};

/* Initialize a binary semaphore with a value of 1. */

int binary_semaphore_initialize (int semid)
{
union semun argument;
unsigned short values[1];
values[0] = 1;
argument.array = values;
return semctl (semid, 0, SETALL, argument);

}

5.2.3 Wait and Post Operations
Each semaphore has a non-negative value and supports wait and post operations.The
semop system call implements both operations. Its first parameter specifies a semaphore
set identifier. Its second parameter is an array of struct sembuf elements, which specify
the operations you want to perform.The third parameter is the length of this array.

The fields of struct sembuf are listed here:
n sem_num is the semaphore number in the semaphore set on which the operation

is performed.
n sem_op is an integer that specifies the semaphore operation.

If sem_op is a positive number, that number is added to the semaphore value
immediately.

If sem_op is a negative number, the absolute value of that number is subtracted
from the semaphore value. If this would make the semaphore value negative, the
call blocks until the semaphore value becomes as large as the absolute value of
sem_op (because some other process increments it).

If sem_op is zero, the operation blocks until the semaphore value becomes zero.
n sem_flg is a flag value. Specify IPC_NOWAIT to prevent the operation from

blocking; if the operation would have blocked, the call to semop fails instead.
If you specify SEM_UNDO, Linux automatically undoes the operation on the
semaphore when the process exits.

06 0430 CH05 5/22/01 10:22 AM Page 103

104 Chapter 5 Interprocess Communication

Listing 5.4 illustrates wait and post operations for a binary semaphore.

Listing 5.4 (sem_pv.c) Wait and Post Operations for a Binary Semaphore

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

/* Wait on a binary semaphore. Block until the semaphore value is positive, then
decrement it by 1. */

int binary_semaphore_wait (int semid)
{
struct sembuf operations[1];
/* Use the first (and only) semaphore. */
operations[0].sem_num = 0;
/* Decrement by 1. */
operations[0].sem_op = -1;
/* Permit undo’ing. */
operations[0].sem_flg = SEM_UNDO;

return semop (semid, operations, 1);
}

/* Post to a binary semaphore: increment its value by 1.
This returns immediately. */

int binary_semaphore_post (int semid)
{
struct sembuf operations[1];
/* Use the first (and only) semaphore. */
operations[0].sem_num = 0;
/* Increment by 1. */
operations[0].sem_op = 1;
/* Permit undo’ing. */
operations[0].sem_flg = SEM_UNDO;

return semop (semid, operations, 1);
}

Specifying the SEM_UNDO flag permits dealing with the problem of terminating a
process while it has resources allocated through a semaphore.When a process termi-
nates, either voluntarily or involuntarily, the semaphore’s values are automatically
adjusted to “undo” the process’s effects on the semaphore. For example, if a process
that has decremented a semaphore is killed, the semaphore’s value is incremented.

06 0430 CH05 5/22/01 10:22 AM Page 104

1055.3 Mapped Memory

5.2.4 Debugging Semaphores
Use the command ipcs -s to display information about existing semaphore sets. Use
the ipcrm sem command to remove a semaphore set from the command line. For
example, to remove the semaphore set with identifier 5790517, use this line:

% ipcrm sem 5790517

5.3 Mapped Memory
Mapped memory permits different processes to communicate via a shared file.
Although you can think of mapped memory as using a shared memory segment
with a name, you should be aware that there are technical differences. Mapped
memory can be used for interprocess communication or as an easy way to access
the contents of a file.

Mapped memory forms an association between a file and a process’s memory.
Linux splits the file into page-sized chunks and then copies them into virtual memory
pages so that they can be made available in a process’s address space.Thus, the process
can read the file’s contents with ordinary memory access. It can also modify the file’s
contents by writing to memory.This permits fast access to files.

You can think of mapped memory as allocating a buffer to hold a file’s entire con-
tents, and then reading the file into the buffer and (if the buffer is modified) writing
the buffer back out to the file afterward. Linux handles the file reading and writing
operations for you.

There are uses for memory-mapped files other than interprocess communication.
Some of these are discussed in Section 5.3.5,“Other Uses for mmap.”

5.3.1 Mapping an Ordinary File
To map an ordinary file to a process’s memory, use the mmap (“Memory MAPped,”
pronounced “em-map”) call.The first argument is the address at which you would like
Linux to map the file into your process’s address space; the value NULL allows Linux
to choose an available start address.The second argument is the length of the map in
bytes.The third argument specifies the protection on the mapped address range.The
protection consists of a bitwise “or” of PROT_READ, PROT_WRITE, and PROT_EXEC, corre-
sponding to read, write, and execution permission, respectively.The fourth argument is
a flag value that specifies additional options.The fifth argument is a file descriptor
opened to the file to be mapped.The last argument is the offset from the beginning of
the file from which to start the map.You can map all or part of the file into memory
by choosing the starting offset and length appropriately.

The flag value is a bitwise “or” of these constraints:
n MAP_FIXED—If you specify this flag, Linux uses the address you request to map

the file rather than treating it as a hint.This address must be page-aligned.
n MAP_PRIVATE—Writes to the memory range should not be written back to the

attached file, but to a private copy of the file. No other process sees these writes.
This mode may not be used with MAP_SHARED.

06 0430 CH05 5/22/01 10:22 AM Page 105

106 Chapter 5 Interprocess Communication

n MAP_SHARED—Writes are immediately reflected in the underlying file rather than
buffering writes. Use this mode when using mapped memory for IPC.This
mode may not be used with MAP_PRIVATE.

If the call succeeds, it returns a pointer to the beginning of the memory. On failure, it
returns MAP_FAILED.

When you’re finished with a memory mapping, release it by using munmap. Pass it
the start address and length of the mapped memory region. Linux automatically
unmaps mapped regions when a process terminates.

5.3.2 Example Programs
Let’s look at two programs to illustrate using memory-mapped regions to read and
write to files.The first program, Listing 5.5, generates a random number and writes it
to a memory-mapped file.The second program, Listing 5.6, reads the number, prints
it, and replaces it in the memory-mapped file with double the value. Both take a
command-line argument of the file to map.

Listing 5.5 (mmap-write.c) Write a Random Number to a Memory-Mapped File

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <time.h>
#include <unistd.h>
#define FILE_LENGTH 0x100

/* Return a uniformly random number in the range [low,high]. */

int random_range (unsigned const low, unsigned const high)
{
unsigned const range = high - low + 1;
return low + (int) (((double) range) * rand () / (RAND_MAX + 1.0));

}

int main (int argc, char* const argv[])
{
int fd;
void* file_memory;

/* Seed the random number generator. */
srand (time (NULL));

/* Prepare a file large enough to hold an unsigned integer. */
fd = open (argv[1], O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
lseek (fd, FILE_LENGTH+1, SEEK_SET);

06 0430 CH05 5/22/01 10:22 AM Page 106

1075.3 Mapped Memory

write (fd, “”, 1);
lseek (fd, 0, SEEK_SET);

/* Create the memory mapping. */
file_memory = mmap (0, FILE_LENGTH, PROT_WRITE, MAP_SHARED, fd, 0);
close (fd);
/* Write a random integer to memory-mapped area. */
sprintf((char*) file_memory, “%d\n”, random_range (-100, 100));
/* Release the memory (unnecessary because the program exits). */
munmap (file_memory, FILE_LENGTH);

return 0;
}

The mmap-write program opens the file, creating it if it did not previously exist.The
third argument to open specifies that the file is opened for reading and writing.
Because we do not know the file’s length, we use lseek to ensure that the file is large
enough to store an integer and then move back the file position to its beginning.

The program maps the file and then closes the file descriptor because it’s no longer
needed.The program then writes a random integer to the mapped memory, and thus
the file, and unmaps the memory.The munmap call is unnecessary because Linux would
automatically unmap the file when the program terminates.

Listing 5.6 (mmap-read.c) Read an Integer from a Memory-Mapped File, and
Double It

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#define FILE_LENGTH 0x100

int main (int argc, char* const argv[])
{
int fd;
void* file_memory;
int integer;

/* Open the file. */
fd = open (argv[1], O_RDWR, S_IRUSR | S_IWUSR);
/* Create the memory mapping. */
file_memory = mmap (0, FILE_LENGTH, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);
close (fd);

continues

06 0430 CH05 5/22/01 10:22 AM Page 107

108 Chapter 5 Interprocess Communication

/* Read the integer, print it out, and double it. */
scanf (file_memory, “%d”, &integer);
printf (“value: %d\n”, integer);
sprintf ((char*) file_memory, “%d\n”, 2 * integer);
/* Release the memory (unnecessary because the program exits). */
munmap (file_memory, FILE_LENGTH);

return 0;
}

The mmap-read program reads the number out of the file and then writes the doubled
value to the file. First, it opens the file and maps it for reading and writing. Because
we can assume that the file is large enough to store an unsigned integer, we need not
use lseek, as in the previous program.The program reads and parses the value out
of memory using sscanf and then formats and writes the double value using sprintf.

Here’s an example of running these example programs. It maps the file
/tmp/integer-file.

% ./mmap-write /tmp/integer-file
% cat /tmp/integer-file
42
% ./mmap-read /tmp/integer-file
value: 42
% cat /tmp/integer-file
84

Observe that the text 42 was written to the disk file without ever calling write, and
was read back in again without calling read. Note that these sample programs write
and read the integer as a string (using sprintf and sscanf) for demonstration purposes
only—there’s no need for the contents of a memory-mapped file to be text.You can
store and retrieve arbitrary binary in a memory-mapped file.

5.3.3 Shared Access to a File
Different processes can communicate using memory-mapped regions associated with
the same file. Specify the MAP_SHARED flag so that any writes to these regions are
immediately transferred to the underlying file and made visible to other processes.
If you don’t specify this flag, Linux may buffer writes before transferring them to
the file.

Alternatively, you can force Linux to incorporate buffered writes into the disk file
by calling msync. Its first two parameters specify a memory-mapped region, as for
munmap.The third parameter can take these flag values:

n MS_ASYNC—The update is scheduled but not necessarily run before the call
returns.

n MS_SYNC—The update is immediate; the call to msync blocks until it’s done.
MS_SYNC and MS_ASYNC may not both be used.

Listing 5.6 Continued

06 0430 CH05 5/22/01 10:22 AM Page 108

1095.3 Mapped Memory

n MS_INVALIDATE—All other file mappings are invalidated so that they can see the
updated values.

For example, to flush a shared file mapped at address mem_addr of length mem_length
bytes, call this:

msync (mem_addr, mem_length, MS_SYNC | MS_INVALIDATE);

As with shared memory segments, users of memory-mapped regions must establish
and follow a protocol to avoid race conditions. For example, a semaphore can be used
to prevent more than one process from accessing the mapped memory at one time.
Alternatively, you can use fcntl to place a read or write lock on the file, as described
in Section 8.3,“fcntl: Locks and Other File Operations,” in Chapter 8.

5.3.4 Private Mappings
Specifying MAP_PRIVATE to mmap creates a copy-on-write region.Any write to the
region is reflected only in this process’s memory; other processes that map the same
file won’t see the changes. Instead of writing directly to a page shared by all processes,
the process writes to a private copy of this page.All subsequent reading and writing by
the process use this page.

5.3.5 Other Uses for mmap
The mmap call can be used for purposes other than interprocess communications. One
common use is as a replacement for read and write. For example, rather than explic-
itly reading a file’s contents into memory, a program might map the file into memory
and scan it using memory reads. For some programs, this is more convenient and may
also run faster than explicit file I/O operations.

One advanced and powerful technique used by some programs is to build data
structures (ordinary struct instances, for example) in a memory-mapped file. On a
subsequent invocation, the program maps that file back into memory, and the data
structures are restored to their previous state. Note, though, that pointers in these data
structures will be invalid unless they all point within the same mapped region of
memory and unless care is taken to map the file back into the same address region
that it occupied originally.

Another handy technique is to map the special /dev/zero file into memory.That
file, which is described in Section 6.5.2,“/dev/zero,” of Chapter 6,“Devices,” behaves
as if it were an infinitely long file filled with 0 bytes.A program that needs a source of
0 bytes can mmap the file /dev/zero.Writes to /dev/zero are discarded, so the mapped
memory may be used for any purpose. Custom memory allocators often map
/dev/zero to obtain chunks of preinitialized memory.

06 0430 CH05 5/22/01 10:22 AM Page 109

110 Chapter 5 Interprocess Communication

5.4 Pipes
A pipe is a communication device that permits unidirectional communication. Data
written to the “write end” of the pipe is read back from the “read end.” Pipes are
serial devices; the data is always read from the pipe in the same order it was written.
Typically, a pipe is used to communicate between two threads in a single process or
between parent and child processes.

In a shell, the symbol | creates a pipe. For example, this shell command causes the
shell to produce two child processes, one for ls and one for less:

% ls | less

The shell also creates a pipe connecting the standard output of the ls subprocess with
the standard input of the less process.The filenames listed by ls are sent to less in
exactly the same order as if they were sent directly to the terminal.

A pipe’s data capacity is limited. If the writer process writes faster than the reader
process consumes the data, and if the pipe cannot store more data, the writer process
blocks until more capacity becomes available. If the reader tries to read but no data is
available, it blocks until data becomes available.Thus, the pipe automatically synchro-
nizes the two processes.

5.4.1 Creating Pipes
To create a pipe, invoke the pipe command. Supply an integer array of size 2.The call
to pipe stores the reading file descriptor in array position 0 and the writing file
descriptor in position 1. For example, consider this code:

int pipe_fds[2];
int read_fd;
int write_fd;

pipe (pipe_fds);
read_fd = pipe_fds[0];
write_fd = pipe_fds[1];

Data written to the file descriptor read_fd can be read back from write_fd.

5.4.2 Communication Between Parent and Child Processes
A call to pipe creates file descriptors, which are valid only within that process and its
children.A process’s file descriptors cannot be passed to unrelated processes; however,
when the process calls fork, file descriptors are copied to the new child process.Thus,
pipes can connect only related processes.

In the program in Listing 5.7, a fork spawns a child process.The child inherits the
pipe file descriptors.The parent writes a string to the pipe, and the child reads it out.
The sample program converts these file descriptors into FILE* streams using fdopen.
Because we use streams rather than file descriptors, we can use the higher-level
standard C library I/O functions such as printf and fgets.

06 0430 CH05 5/22/01 10:23 AM Page 110

1115.4 Pipes

Listing 5.7 (pipe.c) Using a Pipe to Communicate with a Child Process

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

/* Write COUNT copies of MESSAGE to STREAM, pausing for a second
between each. */

void writer (const char* message, int count, FILE* stream)
{
for (; count > 0; --count) {
/* Write the message to the stream, and send it off immediately. */
fprintf (stream, “%s\n”, message);
fflush (stream);
/* Snooze a while. */
sleep (1);

}
}

/* Read random strings from the stream as long as possible. */

void reader (FILE* stream)
{
char buffer[1024];
/* Read until we hit the end of the stream. fgets reads until

either a newline or the end-of-file. */
while (!feof (stream)

&& !ferror (stream)
&& fgets (buffer, sizeof (buffer), stream) != NULL)

fputs (buffer, stdout);
}

int main ()
{
int fds[2];
pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are
placed in fds. */

pipe (fds);
/* Fork a child process. */
pid = fork ();
if (pid == (pid_t) 0) {
FILE* stream;
/* This is the child process. Close our copy of the write end of

the file descriptor. */
close (fds[1]);
/* Convert the read file descriptor to a FILE object, and read

from it. */
stream = fdopen (fds[0], “r”);
reader (stream);

continues

06 0430 CH05 5/22/01 10:23 AM Page 111

112 Chapter 5 Interprocess Communication

close (fds[0]);
}
else {
/* This is the parent process. */
FILE* stream;
/* Close our copy of the read end of the file descriptor. */
close (fds[0]);
/* Convert the write file descriptor to a FILE object, and write

to it. */
stream = fdopen (fds[1], “w”);
writer (“Hello, world.”, 5, stream);
close (fds[1]);

}

return 0;
}

At the beginning of main, fds is declared to be an integer array with size 2.The pipe
call creates a pipe and places the read and write file descriptors in that array.The pro-
gram then forks a child process.After closing the read end of the pipe, the parent
process starts writing strings to the pipe.After closing the write end of the pipe, the
child reads strings from the pipe.

Note that after writing in the writer function, the parent flushes the pipe by
calling fflush. Otherwise, the string may not be sent through the pipe immediately.

When you invoke the command ls | less, two forks occur: one for the ls child
process and one for the less child process. Both of these processes inherit the pipe file
descriptors so they can communicate using a pipe.To have unrelated processes com-
municate, use a FIFO instead, as discussed in Section 5.4.5,“FIFOs.”

5.4.3 Redirecting the Standard Input, Output, and Error
Streams
Frequently, you’ll want to create a child process and set up one end of a pipe as its
standard input or standard output. Using the dup2 call, you can equate one file
descriptor with another. For example, to redirect a process’s standard input to a file
descriptor fd, use this line:

dup2 (fd, STDIN_FILENO);

The symbolic constant STDIN_FILENO represents the file descriptor for the standard
input, which has the value 0.The call closes standard input and then reopens it as a
duplicate of fd so that the two may be used interchangeably. Equated file descriptors
share the same file position and the same set of file status flags.Thus, characters read
from fd are not reread from standard input.

Listing 5.7 Continued

06 0430 CH05 5/22/01 10:23 AM Page 112

1135.4 Pipes

The program in Listing 5.8 uses dup2 to send the output from a pipe to the sort
command.2 After creating a pipe, the program forks.The parent process prints some
strings to the pipe.The child process attaches the read file descriptor of the pipe to its
standard input using dup2. It then executes the sort program.

Listing 5.8 (dup2.c) Redirect Output from a Pipe with dup2

#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int main ()
{
int fds[2];
pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are
placed in fds. */

pipe (fds);
/* Fork a child process. */
pid = fork ();
if (pid == (pid_t) 0) {
/* This is the child process. Close our copy of the write end of

the file descriptor. */
close (fds[1]);
/* Connect the read end of the pipe to standard input. */
dup2 (fds[0], STDIN_FILENO);
/* Replace the child process with the “sort” program. */
execlp (“sort”, “sort”, 0);

}
else {
/* This is the parent process. */
FILE* stream;
/* Close our copy of the read end of the file descriptor. */
close (fds[0]);
/* Convert the write file descriptor to a FILE object, and write

to it. */
stream = fdopen (fds[1], “w”);
fprintf (stream, “This is a test.\n”);
fprintf (stream, “Hello, world.\n”);
fprintf (stream, “My dog has fleas.\n”);
fprintf (stream, “This program is great.\n”);
fprintf (stream, “One fish, two fish.\n”);
fflush (stream);
close (fds[1]);
/* Wait for the child process to finish. */
waitpid (pid, NULL, 0);

}

return 0;
}

2. sort reads lines of text from standard input, sorts them into alphabetical order, and prints
them to standard output.

06 0430 CH05 5/22/01 10:23 AM Page 113

114 Chapter 5 Interprocess Communication

5.4.4 popen and pclose
A common use of pipes is to send data to or receive data from a program being run in
a subprocess.The popen and pclose functions ease this paradigm by eliminating the
need to invoke pipe, fork, dup2, exec, and fdopen.

Compare Listing 5.9, which uses popen and pclose, to the previous example
(Listing 5.8).

Listing 5.9 (popen.c) Example Using popen

#include <stdio.h>
#include <unistd.h>

int main ()
{
FILE* stream = popen (“sort”, “w”);
fprintf (stream, “This is a test.\n”);
fprintf (stream, “Hello, world.\n”);
fprintf (stream, “My dog has fleas.\n”);
fprintf (stream, “This program is great.\n”);
fprintf (stream, “One fish, two fish.\n”);
return pclose (stream);

}

The call to popen creates a child process executing the sort command, replacing calls
to pipe, fork, dup2, and execlp.The second argument, “w”, indicates that this process
wants to write to the child process.The return value from popen is one end of a pipe;
the other end is connected to the child process’s standard input.After the writing fin-
ishes, pclose closes the child process’s stream, waits for the process to terminate, and
returns its status value.

The first argument to popen is executed as a shell command in a subprocess run-
ning /bin/sh.The shell searches the PATH environment variable in the usual way to
find programs to execute. If the second argument is “r”, the function returns the child
process’s standard output stream so that the parent can read the output. If the second
argument is “w”, the function returns the child process’s standard input stream so that
the parent can send data. If an error occurs, popen returns a null pointer.

Call pclose to close a stream returned by popen.After closing the specified stream,
pclose waits for the child process to terminate.

5.4.5 FIFOs
A first-in, first-out (FIFO) file is a pipe that has a name in the filesystem.Any process
can open or close the FIFO; the processes on either end of the pipe need not be
related to each other. FIFOs are also called named pipes.

06 0430 CH05 5/22/01 10:23 AM Page 114

1155.4 Pipes

You can make a FIFO using the mkfifo command. Specify the path to the FIFO
on the command line. For example, create a FIFO in /tmp/fifo by invoking this:

% mkfifo /tmp/fifo
% ls -l /tmp/fifo
prw-rw-rw- 1 samuel users 0 Jan 16 14:04 /tmp/fifo

The first character of the output from ls is p, indicating that this file is actually a
FIFO (named pipe). In one window, read from the FIFO by invoking the following:

% cat < /tmp/fifo

In a second window, write to the FIFO by invoking this:
% cat > /tmp/fifo

Then type in some lines of text. Each time you press Enter, the line of text is sent
through the FIFO and appears in the first window. Close the FIFO by pressing
Ctrl+D in the second window. Remove the FIFO with this line:

% rm /tmp/fifo

Creating a FIFO

Create a FIFO programmatically using the mkfifo function.The first argument is the
path at which to create the FIFO; the second parameter specifies the pipe’s owner,
group, and world permissions, as discussed in Chapter 10,“Security,” Section 10.3,
“File System Permissions.” Because a pipe must have a reader and a writer, the permis-
sions must include both read and write permissions. If the pipe cannot be created
(for instance, if a file with that name already exists), mkfifo returns –1. Include
<sys/types.h> and <sys/stat.h> if you call mkfifo.

Accessing a FIFO

Access a FIFO just like an ordinary file.To communicate through a FIFO, one pro-
gram must open it for writing, and another program must open it for reading. Either
low-level I/O functions (open, write, read, close, and so on, as listed in Appendix B,
“Low-Level I/O”) or C library I/O functions (fopen, fprintf, fscanf, fclose, and so
on) may be used.

For example, to write a buffer of data to a FIFO using low-level I/O routines, you
could use this code:

int fd = open (fifo_path, O_WRONLY);
write (fd, data, data_length);
close (fd);

To read a string from the FIFO using C library I/O functions, you could use
this code:

FILE* fifo = fopen (fifo_path, “r”);
fscanf (fifo, “%s”, buffer);
fclose (fifo);

06 0430 CH05 5/22/01 10:23 AM Page 115

116 Chapter 5 Interprocess Communication

A FIFO can have multiple readers or multiple writers. Bytes from each writer are
written atomically up to a maximum size of PIPE_BUF (4KB on Linux). Chunks from
simultaneous writers can be interleaved. Similar rules apply to simultaneous reads.

Differences from Windows Named Pipes

Pipes in the Win32 operating systems are very similar to Linux pipes. (Refer to the
Win32 library documentation for technical details about these.) The main differences
concern named pipes, which, for Win32, function more like sockets.Win32 named
pipes can connect processes on separate computers connected via a network. On
Linux, sockets are used for this purpose.Also,Win32 allows multiple reader-writer
connections on a named pipe without interleaving data, and pipes can be used for
two-way communication.3

5.5 Sockets
A socket is a bidirectional communication device that can be used to communicate with
another process on the same machine or with a process running on other machines.
Sockets are the only interprocess communication we’ll discuss in this chapter that
permit communication between processes on different computers. Internet programs
such as Telnet, rlogin, FTP, talk, and the World Wide Web use sockets.

For example, you can obtain the WWW page from a Web server using the
Telnet program because they both use sockets for network communications.4

To open a connection to a WWW server at www.codesourcery.com, use
telnet www.codesourcery.com 80.The magic constant 80 specifies a connection to
the Web server programming running www.codesourcery.com instead of some other
process.Try typing GET / after the connection is established.This sends a message
through the socket to the Web server, which replies by sending the home page’s
HTML source and then closing the connection—for example:

% telnet www.codesourcery.com 80
Trying 206.168.99.1...
Connected to merlin.codesourcery.com (206.168.99.1).
Escape character is ‘^]’.
GET /
<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>

...

3. Note that only Windows NT can create a named pipe;Windows 9x programs can form
only client connections.

4. Usually, you’d use telnet to connect a Telnet server for remote logins. But you can also use
telnet to connect to a server of a different kind and then type comments directly at it.

06 0430 CH05 5/22/01 10:23 AM Page 116

1175.5 Sockets

5.5.1 Socket Concepts
When you create a socket, you must specify three parameters: communication style,
namespace, and protocol.

A communication style controls how the socket treats transmitted data and specifies
the number of communication partners.When data is sent through a socket, it is pack-
aged into chunks called packets.The communication style determines how these
packets are handled and how they are addressed from the sender to the receiver.

n Connection styles guarantee delivery of all packets in the order they were sent. If
packets are lost or reordered by problems in the network, the receiver automati-
cally requests their retransmission from the sender.

A connection-style socket is like a telephone call:The addresses of the sender
and receiver are fixed at the beginning of the communication when the connec-
tion is established.

n Datagram styles do not guarantee delivery or arrival order. Packets may be lost or
reordered in transit due to network errors or other conditions. Each packet must
be labeled with its destination and is not guaranteed to be delivered.The system
guarantees only “best effort,” so packets may disappear or arrive in a different
order than shipping.

A datagram-style socket behaves more like postal mail.The sender specifies the
receiver’s address for each individual message.

A socket namespace specifies how socket addresses are written.A socket address identi-
fies one end of a socket connection. For example, socket addresses in the “local name-
space” are ordinary filenames. In “Internet namespace,” a socket address is composed of
the Internet address (also known as an Internet Protocol address or IP address) of a host
attached to the network and a port number.The port number distinguishes among
multiple sockets on the same host.

A protocol specifies how data is transmitted. Some protocols are TCP/IP, the pri-
mary networking protocols used by the Internet; the AppleTalk network protocol; and
the UNIX local communication protocol. Not all combinations of styles, namespaces,
and protocols are supported.

5.5.2 System Calls
Sockets are more flexible than previously discussed communication techniques.These
are the system calls involving sockets:

socket—Creates a socket

closes—Destroys a socket

connect—Creates a connection between two sockets

bind—Labels a server socket with an address

listen—Configures a socket to accept conditions

accept—Accepts a connection and creates a new socket for the connection

Sockets are represented by file descriptors.

06 0430 CH05 5/22/01 10:23 AM Page 117

118 Chapter 5 Interprocess Communication

Creating and Destroying Sockets

The socket and close functions create and destroy sockets, respectively.When you
create a socket, specify the three socket choices: namespace, communication style, and
protocol. For the namespace parameter, use constants beginning with PF_ (abbreviating
“protocol families”). For example, PF_LOCAL or PF_UNIX specifies the local namespace,
and PF_INET specifies Internet namespaces. For the communication style parameter, use
constants beginning with SOCK_. Use SOCK_STREAM for a connection-style socket, or use
SOCK_DGRAM for a datagram-style socket.

The third parameter, the protocol, specifies the low-level mechanism to transmit
and receive data. Each protocol is valid for a particular namespace-style combination.
Because there is usually one best protocol for each such pair, specifying 0 is usually the
correct protocol. If socket succeeds, it returns a file descriptor for the socket.You can
read from or write to the socket using read, write, and so on, as with other file
descriptors.When you are finished with a socket, call close to remove it.

Calling connect

To create a connection between two sockets, the client calls connect, specifying the
address of a server socket to connect to.A client is the process initiating the connec-
tion, and a server is the process waiting to accept connections.The client calls connect
to initiate a connection from a local socket to the server socket specified by the
second argument.The third argument is the length, in bytes, of the address structure
pointed to by the second argument. Socket address formats differ according to the
socket namespace.

Sending Information

Any technique to write to a file descriptor can be used to write to a socket. See
Appendix B for a discussion of Linux’s low-level I/O functions and some of the issues
surrounding their use.The send function, which is specific to the socket file descrip-
tors, provides an alternative to write with a few additional choices; see the man page
for information.

5.5.3 Servers
A server’s life cycle consists of the creation of a connection-style socket, binding an
address to its socket, placing a call to listen that enables connections to the socket,
placing calls to accept incoming connections, and then closing the socket. Data isn’t
read and written directly via the server socket; instead, each time a program accepts a
new connection, Linux creates a separate socket to use in transferring data over that
connection. In this section, we introduce bind, listen, and accept.

06 0430 CH05 5/22/01 10:23 AM Page 118

1195.5 Sockets

An address must be bound to the server’s socket using bind if a client is to find it.
Its first argument is the socket file descriptor.The second argument is a pointer to a
socket address structure; the format of this depends on the socket’s address family.The
third argument is the length of the address structure, in bytes.When an address is
bound to a connection-style socket, it must invoke listen to indicate that it is a
server. Its first argument is the socket file descriptor.The second argument specifies
how many pending connections are queued. If the queue is full, additional connec-
tions will be rejected.This does not limit the total number of connections that a server
can handle; it limits just the number of clients attempting to connect that have not yet
been accepted.

A server accepts a connection request from a client by invoking accept. The first
argument is the socket file descriptor.The second argument points to a socket address
structure, which is filled with the client socket’s address.The third argument is the
length, in bytes, of the socket address structure.The server can use the client address to
determine whether it really wants to communicate with the client.The call to accept
creates a new socket for communicating with the client and returns the corresponding
file descriptor.The original server socket continues to accept new client connections.
To read data from a socket without removing it from the input queue, use recv. It
takes the same arguments as read, plus an additional FLAGS argument.A flag of
MSG_PEEK causes data to be read but not removed from the input queue.

5.5.4 Local Sockets
Sockets connecting processes on the same computer can use the local namespace
represented by the synonyms PF_LOCAL and PF_UNIX.These are called local sockets or
UNIX-domain sockets.Their socket addresses, specified by filenames, are used only when
creating connections.

The socket’s name is specified in struct sockaddr_un.You must set the sun_family
field to AF_LOCAL, indicating that this is a local namespace.The sun_path field specifies
the filename to use and may be, at most, 108 bytes long.The actual length of
struct sockaddr_un should be computed using the SUN_LEN macro.Any filename can
be used, but the process must have directory write permissions, which permit adding
files to the directory.To connect to a socket, a process must have read permission for
the file. Even though different computers may share the same filesystem, only processes
running on the same computer can communicate with local namespace sockets.

The only permissible protocol for the local namespace is 0.
Because it resides in a file system, a local socket is listed as a file. For example,

notice the initial s:
% ls -l /tmp/socket
srwxrwx--x 1 user group 0 Nov 13 19:18 /tmp/socket

Call unlink to remove a local socket when you’re done with it.

06 0430 CH05 5/22/01 10:23 AM Page 119

120 Chapter 5 Interprocess Communication

5.5.5 An Example Using Local Namespace Sockets
We illustrate sockets with two programs.The server program, in Listing 5.10, creates a
local namespace socket and listens for connections on it.When it receives a connec-
tion, it reads text messages from the connection and prints them until the connection
closes. If one of these messages is “quit,” the server program removes the socket and
ends.The socket-server program takes the path to the socket as its command-line
argument.

Listing 5.10 (socket-server.c) Local Namespace Socket Server

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

/* Read text from the socket and print it out. Continue until the
socket closes. Return nonzero if the client sent a “quit”
message, zero otherwise. */

int server (int client_socket)
{
while (1) {
int length;
char* text;

/* First, read the length of the text message from the socket. If
read returns zero, the client closed the connection. */

if (read (client_socket, &length, sizeof (length)) == 0)
return 0;

/* Allocate a buffer to hold the text. */
text = (char*) malloc (length);
/* Read the text itself, and print it. */

read (client_socket, text, length);
printf (“%s\n”, text);
/* Free the buffer. */
free (text);
/* If the client sent the message “quit,” we’re all done. */
if (!strcmp (text, “quit”))
return 1;

}
}

int main (int argc, char* const argv[])
{
const char* const socket_name = argv[1];

06 0430 CH05 5/22/01 10:23 AM Page 120

1215.5 Sockets

int socket_fd;
struct sockaddr_un name;
int client_sent_quit_message;

/* Create the socket. */
socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);
/* Indicate that this is a server. */
name.sun_family = AF_LOCAL;
strcpy (name.sun_path, socket_name);
bind (socket_fd, &name, SUN_LEN (&name));
/* Listen for connections. */
listen (socket_fd, 5);

/* Repeatedly accept connections, spinning off one server() to deal
with each client. Continue until a client sends a “quit” message. */

do {
struct sockaddr_un client_name;
socklen_t client_name_len;
int client_socket_fd;

/* Accept a connection. */
client_socket_fd = accept (socket_fd, &client_name, &client_name_len);
/* Handle the connection. */
client_sent_quit_message = server (client_socket_fd);
/* Close our end of the connection. */
close (client_socket_fd);

}
while (!client_sent_quit_message);

/* Remove the socket file. */
close (socket_fd);
unlink (socket_name);

return 0;
}

The client program, in Listing 5.11, connects to a local namespace socket and sends
a message.The name path to the socket and the message are specified on the
command line.

Listing 5.11 (socket-client.c) Local Namespace Socket Client

#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

continues

06 0430 CH05 5/22/01 10:23 AM Page 121

122 Chapter 5 Interprocess Communication

/* Write TEXT to the socket given by file descriptor SOCKET_FD. */

void write_text (int socket_fd, const char* text)
{
/* Write the number of bytes in the string, including

NUL-termination. */
int length = strlen (text) + 1;
write (socket_fd, &length, sizeof (length));
/* Write the string. */
write (socket_fd, text, length);

}

int main (int argc, char* const argv[])
{
const char* const socket_name = argv[1];
const char* const message = argv[2];
int socket_fd;
struct sockaddr_un name;

/* Create the socket. */
socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);
/* Store the server’s name in the socket address. */
name.sun_family = AF_LOCAL;
strcpy (name.sun_path, socket_name);
/* Connect the socket. */
connect (socket_fd, &name, SUN_LEN (&name));
/* Write the text on the command line to the socket. */
write_text (socket_fd, message);
close (socket_fd);
return 0;

}

Before the client sends the message text, it sends the length of that text by sending the
bytes of the integer variable length. Likewise, the server reads the length of the text by
reading from the socket into an integer variable.This allows the server to allocate an
appropriately sized buffer to hold the message text before reading it from the socket.

To try this example, start the server program in one window. Specify a path to a
socket—for example, /tmp/socket.

% ./socket-server /tmp/socket

In another window, run the client a few times, specifying the same socket path plus
messages to send to the client:

% ./socket-client /tmp/socket “Hello, world.”
% ./socket-client /tmp/socket “This is a test.”

Listing 5.11 Continued

06 0430 CH05 5/22/01 10:23 AM Page 122

1235.5 Sockets

The server program receives and prints these messages.To close the server, send the
message “quit” from a client:

% ./socket-client /tmp/socket “quit”

The server program terminates.

5.5.6 Internet-Domain Sockets
UNIX-domain sockets can be used only for communication between two processes
on the same computer. Internet-domain sockets, on the other hand, may be used to con-
nect processes on different machines connected by a network.

Sockets connecting processes through the Internet use the Internet namespace rep-
resented by PF_INET.The most common protocols are TCP/IP.The Internet Protocol
(IP), a low-level protocol, moves packets through the Internet, splitting and rejoining
the packets, if necessary. It guarantees only “best-effort” delivery, so packets may vanish
or be reordered during transport. Every participating computer is specified using a
unique IP number.The Transmission Control Protocol (TCP), layered on top of IP, pro-
vides reliable connection-ordered transport. It permits telephone-like connections to
be established between computers and ensures that data is delivered reliably and in
order.

DNS Names
Because it is easier to remember names than numbers, the Domain Name Service (DNS) associates names

such as www.codesourcery.com with computers’ unique IP numbers. DNS is implemented by a world-

wide hierarchy of name servers, but you don’t need to understand DNS protocols to use Internet host

names in your programs.

Internet socket addresses contain two parts: a machine and a port number.This infor-
mation is stored in a struct sockaddr_in variable. Set the sin_family field to AF_INET
to indicate that this is an Internet namespace address.The sin_addr field stores the
Internet address of the desired machine as a 32-bit integer IP number.A port number
distinguishes a given machine’s different sockets. Because different machines store
multibyte values in different byte orders, use htons to convert the port number to
network byte order. See the man page for ip for more information.

To convert human-readable hostnames, either numbers in standard dot notation
(such as 10.0.0.1) or DNS names (such as www.codesourcery.com) into 32-bit IP
numbers, you can use gethostbyname.This returns a pointer to the struct hostent
structure; the h_addr field contains the host’s IP number. See the sample program in
Listing 5.12.

Listing 5.12 illustrates the use of Internet-domain sockets.The program obtains the
home page from the Web server whose hostname is specified on the command line.

06 0430 CH05 5/22/01 10:23 AM Page 123

124 Chapter 5 Interprocess Communication

Listing 5.12 (socket-inet.c) Read from a WWW Server

#include <stdlib.h>
#include <stdio.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/socket.h>
#include <unistd.h>
#include <string.h>

/* Print the contents of the home page for the server’s socket.
Return an indication of success. */

void get_home_page (int socket_fd)
{
char buffer[10000];
ssize_t number_characters_read;

/* Send the HTTP GET command for the home page. */
sprintf (buffer, “GET /\n”);
write (socket_fd, buffer, strlen (buffer));
/* Read from the socket. The call to read may not
return all the data at one time, so keep
trying until we run out. */
while (1) {
number_characters_read = read (socket_fd, buffer, 10000);
if (number_characters_read == 0)
return;

/* Write the data to standard output. */
fwrite (buffer, sizeof (char), number_characters_read, stdout);

}
}

int main (int argc, char* const argv[])
{
int socket_fd;
struct sockaddr_in name;
struct hostent* hostinfo;

/* Create the socket. */
socket_fd = socket (PF_INET, SOCK_STREAM, 0);
/* Store the server’s name in the socket address. */
name.sin_family = AF_INET;
/* Convert from strings to numbers. */
hostinfo = gethostbyname (argv[1]);
if (hostinfo == NULL)
return 1;

else
name.sin_addr = *((struct in_addr *) hostinfo->h_addr);

/* Web servers use port 80. */
name.sin_port = htons (80);

06 0430 CH05 5/22/01 10:23 AM Page 124

1255.5 Sockets

/* Connect to the Web server */
if (connect (socket_fd, &name, sizeof (struct sockaddr_in)) == -1) {
perror (“connect”);
return 1;

}
/* Retrieve the server’s home page. */
get_home_page (socket_fd);

return 0;
}

This program takes the hostname of the Web server on the command line (not a
URL—that is, without the “http://”). It calls gethostbyname to translate the hostname
into a numerical IP address and then connects a stream (TCP) socket to port 80 on
that host.Web servers speak the Hypertext Transport Protocol (HTTP), so the program
issues the HTTP GET command and the server responds by sending the text of the
home page.

Standard Port Numbers
By convention, Web servers listen for connections on port 80. Most Internet network services are associ-

ated with a standard port number. For example, secure Web servers that use SSL listen for connections

on port 443, and mail servers (which speak SMTP) use port 25.

On GNU/Linux systems, the associations between protocol/service names and standard port numbers are

listed in the file /etc/services. The first column is the protocol or service name. The second column

lists the port number and the connection type: tcp for connection-oriented, or udp for datagram.

If you implement custom network services using Internet-domain sockets, use port numbers greater

than 1024.

For example, to retrieve the home page from the Web site www.codesourcery.com,
invoke this:

% ./socket-inet www.codesourcery.com
<html>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>

...

5.5.7 Socket Pairs
As we saw previously, the pipe function creates two file descriptors for the beginning
and end of a pipe. Pipes are limited because the file descriptors must be used by
related processes and because communication is unidirectional.The socketpair func-
tion creates two file descriptors for two connected sockets on the same computer.
These file descriptors permit two-way communication between related processes.

06 0430 CH05 5/22/01 10:23 AM Page 125

126 Chapter 5 Interprocess Communication

Its first three parameters are the same as those of the socket call:They specify the
domain, connection style, and protocol.The last parameter is a two-integer array,
which is filled with the file descriptions of the two sockets, similar to pipe.When you
call socketpair, you must specify PF_LOCAL as the domain.

06 0430 CH05 5/22/01 10:23 AM Page 126

