
of the measured dip in the normalized homodyne
signal is equal to that of the coupling-induced
transmission window GOMIT ≈ Gm (1 + C), where
C ≡ W2

c /Gmk is an equivalent optomechanical
cooperativity parameter (14). From the model
(Eq. 5), the expected probe transmission on reso-
nance is simply given by t′p (D′ = 0) = C/(C + 1).
Our datamatch these expectationswell if we allow
for a linear correction factor in the optomechanical
coupling frequency Wc due to modal coupling
(SOM Sec. 7) and losses in the fiber taper. We
have reached probe power transmission jt′pj

2 up
to 81%, indicating the high contrast achievable
in OMIT.

In fact, any optomechanical system reaching
C ≳ 1 can realize an appreciable control-induced
probe transmission, as desired, for example, in
all-optical switches. Interestingly, the systems cur-
rently available reach C ≈ 1 with only thousands
(26) or even hundreds (27) of control photons in
the cavity, and recently emerging integrated nano-
optomechanical structures (28) may be able to
further reduce this number. The resulting extreme
optical nonlinearities could be of interest for both
fundamental and applied studies.

The tunable probe transmission window also
modifies the propagation of a probe pulse due to
the variation of the complex phase picked by its
different frequency components. Indeed, a reso-
nant probe pulse experiences a group delay of
tg ≈ 2/GOMIT in the regime C ≳ 1 of interest
(SOM Sec. 6), a value exceeding several seconds
in some available optomechanical systems (29).
However, undistorted pulse propagation only oc-
curs if the full probe-pulse spectrum is contained
within the transparency window of the system.
This restricts the effectiveness of such a delay
due to the fixed delay-bandwidth product of
tg GOMIT ≈ 2. A cascade of systems may alleviate

this shortcoming—the most interesting scenario
being a large array of concatenated optomechan-
ical systems, as suggested in the context of OMIT
(16, 17, 30), and radio frequency/microwave pho-
tonics (15). The group delay could then be dynam-
ically tuned while the probe pulse is propagating
through the array. Such systems could be prac-
tically implemented in lithographically designed
optomechanical systems both in the microwave
(27) and optical (31) domain.

Note added in proof: After online publica-
tion of this work, OMIT has also been reported
in microwave optomechanical systems by
Teufel et al. (32).
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A Determination of the Cloud
Feedback from Climate Variations
over the Past Decade
A. E. Dessler

Estimates of Earth's climate sensitivity are uncertain, largely because of uncertainty in the
long-term cloud feedback. I estimated the magnitude of the cloud feedback in response to short-term
climate variations by analyzing the top-of-atmosphere radiation budget from March 2000 to February
2010. Over this period, the short-term cloud feedback had a magnitude of 0.54 T 0.74 (2s) watts
per square meter per kelvin, meaning that it is likely positive. A small negative feedback is possible,
but one large enough to cancel the climate’s positive feedbacks is not supported by these observations.
Both long- and short-wave components of short-term cloud feedback are also likely positive.
Calculations of short-term cloud feedback in climate models yield a similar feedback. I find no
correlation in the models between the short- and long-term cloud feedbacks.

Muchof the global warming expected over
the next century comes from feedbacks
rather than direct warming from CO2

and other greenhouse agents. Of these feedbacks,

the most complex and least understood is the
cloud feedback (1, 2). Clouds affect the climate by
reflecting incoming solar radiation back to space,
which tends to cool the climate, and by trapping

outgoing infrared radiation, which tends to warm
the climate. In our present climate, the reflection
of solar energy back to space dominates, and the
net effect of clouds is to reduce the net flux of
incoming energy at the top of the atmosphere
(TOA) by ~20W/m2, as compared to an otherwise
identical planet without clouds. The cloud feed-
back refers to changes in this net effect of clouds as
the planet warms. If, as the climate warms, cloud
changes further reduce net incoming energy,
this will offset some of the warming, resulting in
a negative cloud feedback. If, on the other hand,
cloud changes lead to increases in net incoming
energy, then the change will amplify the initial
warming, resulting in a positive cloud feedback.

Climate models disagree on the magnitude of
the cloud feedback, simulating a range of cloud
feedbacks in response to long-term global warming
from near zero to a positive feedback of 1 W/m2/K
(3, 4). This spread is the single most impor-
tant reason for the large spread in the climate
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sensitivities among climate models (5, 6). Despite
the importance of the cloud feedback, there have
been few estimates of its magnitude from obser-
vations. Previous work has generally focused on
just part of the problem [for example, the tropics
(7, 8) or low clouds (9)], and these analyses differ
even on the sign of the cloud feedback.

In this paper, I present an estimate of the
global cloud feedback in response to short-
term climate fluctuations over the past decade
and compare these results to those from climate
models. The primary source of climate variations
over this time period is the El Niño–Southern Os-
cillation (ENSO), which is a self-sustained coupled
atmosphere-ocean mode of variability (10). During
the El Niño phase, monthly and global-average
surface temperature are several tenths of a degree
Celsius warmer than during the La Niña phase,
and these climate variations have previously been
used to quantify thewater vapor feedback (11, 12).

Figure 1A shows a time series of monthly
and global-average anomalies of TOA net flux
(DRall-sky) between March 2000 and February 2010
measured by the Clouds and the Earth’s Radiant
Energy System (CERES) (13) instruments onboard
NASA’s Terra satellite. This time series (14) is

stable to better than 0.5 W/m2/decade [the stability
of the short-wave component is 0.3 W/m2/decade
(15) and that of the long-wave component is
0.2 W/m2/decade, from comparisons to Atmo-
spheric Infrared Sounder measurements].

From these data, I extracted the part of
DRall-sky caused by changing clouds, hereafter
referred to as DRcloud. To do this, I took cloud
radiative-forcing anomalies (DCRF) and adjusted
those to account for the impact of changing tem-

Fig. 1. (A) Global and monthly averaged DRall-sky, measured
by CERES. (B) Global and monthly averaged DRcloud calculated
from CERES measurements and reanalyses (solid lines) and
DCRF (dotted line) from the CERES and ECMWF interim reanalysis.
(C) Global andmonthly averagedDTs from reanalyses (solid lines),
along with an ENSO index (23) (dotted line). In (B) and (C), cal-
culations using CERES data with the ECMWF interim reanalysis
and MERRA are the solid black and gray lines, respectively. The
sign convention used in this paper is that downward fluxes are
positive.

A

B

C

Table 1. Cloud feedback values. All uncertainties are 2s. Feedbacks are calculated from a 100-year
segment of a control run, except for CCSM3, which is based on 80 years. N/A, not available.

Model Total
Short-term cloud feedback Long-term

cloud
feedback*

Equilibrium
climate

sensitivity†
Long-wave
component

Short-wave
component

NCAR PCM1 1.11 T 0.20 0.52 T 0.11 0.60 T 0.21 0.18 2.1
IPSL-CM4 1.05 T 0.16 1.17 T 0.13 –0.12 T 0.14 1.06 4.4
INM-CM3.0 0.98 T 0.18 0.77 T 0.10 0.21 T 0.19 0.35 2.1
UKMO-HadCM3 0.88 T 0.31 0.57 T 0.15 0.31 T 0.35 1.08 3.3
ECHAM/MPI-OM 0.74 T 0.20 0.97 T 0.09 –0.23 T 0.20 1.18 3.4
NCAR CCSM3 0.62 T 0.26 0.17 T 0.12 0.45 T 0.25 0.14 2.7
GFDL-CM2.0 0.41 T 0.22 –0.03 T 0.11 0.43 T 0.26 0.67 2.9
GFDL-CM2.1 0.34 T 0.20 0.40 T 0.08 –0.06 T 0.23 0.81 3.4

ECMWF-CERES 0.54 T 0.74 0.43 T 0.45 0.12 T 0.78 N/A N/A
MERRA-CERES 0.46 T 0.77 0.27 T 0.47 0.19 T 0.76 N/A N/A
*From table 1 of Soden and Held (3). †Equilibrium climate change (in degrees kelvin) in response to a doubling of CO2 [from
table 8.2 of Randall et al. (1)].
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perature, water vapor, surface albedo, and radia-
tive forcing, ultimately yielding DRcloud (16, 17).
DCRF is the change in TOA net flux anomaly
if clouds were instantaneously removed, with
everything else held fixed, and it is determined
by subtracting DRall-sky, obtained from CERES
measurements, from the clear-sky flux anoma-
lies DRclear-sky, obtained from a reanalysis sys-
tem. The DCRF time series is plotted in Fig. 1B.

In a reanalysis system, conventional and satellite-
based meteorological observations are combined
within a weather forecast assimilation system in
order to produce a global and physically consist-
ent picture of the state of the atmosphere. I used
both the ECMWF (European Centre for Medium-
Range Weather Forecasts) interim reanalysis (18)
and NASA’s Modern Era Retrospective analysis
for Research and Applications (MERRA) (19)
in the calculations. The fields being used here
(mainly water vapor and temperature) are con-
strained in the reanalysis by high-density satellite
measurements. Previous work has shown that
DRclear-sky can be calculated accurately givenwater
vapor and temperature distributions (20, 21). And,
given suggestions of biases in measured clear-sky
fluxes (22), I chose to use the reanalysis fluxes here.

The water vapor, temperature, and surface
albedo anomalies used to convert DCRF into
DRcloud also come from the reanalyses. Addition-
ally, the all-sky radiative forcing change caused
primarily by changes in long-lived greenhouse
gases over the March 2000–February 2010 pe-
riod is estimated to be +0.25 W/m2. Following
Soden et al. (16), I multiply the all-sky radiative
forcing by 0.16 to estimate the difference
between clear-sky and all-sky radiative forcing.
Anomalies of all quantities are calculated by sub-
tracting from each month’s value the average for
that month over the entire time series. Figure 1B

shows time series of DRcloud, and it shows that
the differences between DCRF and DRcloud are
small for these data. For compactness, I will
refer to the calculated values of DRcloud as “the
observations.”

Figure 1C shows the accompanying time se-
ries of global-average and monthly mean surface
temperature anomalies (DTs) from the reanalyses.
Also plotted is an ENSO index (23), and the close
association between that and DTs verifies that
ENSO is the primary source of variations in DTs.

The cloud feedback is conventionally defined
as the change inDRcloud per unit of change inDTs.
Figure 2A is a scatter plot of monthly values of
DRcloud versus DTs, calculated using ECMWF
interim meteorological fields. The slope of this
scatter plot is the strength of the cloud feedback,
and it is estimated by a traditional least-squares fit
to be 0.54 T 0.72 (2s)W/m2/K (the slope using the
MERRA is 0.46 T 0.75W/m2/K). Because I have
defined downward flux as positive, the positive
slope here means that, as the surface warms,
clouds trap additional energy; in other words, the
cloud feedback here is positive.

The uncertainty quoted above is the statistical
uncertainty of the fit. The impact of a spurious
long-term trend in either DRall-sky or DRclear-sky is
estimated by adding in a trend of T0.5 W/m2/
decade into the CERES data. This changes the
calculated feedback by T0.18 W/m2/K. Adding
these errors in quadrature yields a total uncertainty
of 0.74 and 0.77W/m2/K in the calculations, using
the ECMWF andMERRA reanalyses, respective-
ly. Other sources of uncertainty are negligible.

Given the uncertainty, the possibility of a small
negative feedback cannot be excluded. There have
been inferences (7, 8) of a large negative cloud
feedback in response to short-term climate
variations that can substantially cancel the other

feedbacks operating in our climate system. This
would require the cloud feedback to be in the range
of –1.0 to –1.5 W/m2/K or larger, and I see no
evidence to support such a large negative cloud
feedback [these inferences of large negative feed-
backs have also been criticized onmethodological
grounds (24, 25)].

I have not explicitly considered the direct
effect of aerosols on TOA flux in this analysis.
The effects of aerosols are obviously included in
the DRall-sky measurements, but the DRclear-sky cal-
culations include only an annual-cycle climatology.
As a result, the radiative impact of interannual
variations in aerosols will be included in DRcloud.
But aerosols’ radiative impact is not expected to
correlate with DTs, so the effect of aerosols is to
add uncertainty to the cloud feedback calculation
but should not introduce a bias.

This definition of the cloud feedback is a stan-
dard approach for quantifying feedbacks (26).
It only requires an association between Ts and
DRcloud but does not imply any specific physical
mechanism connecting them. The recent sugges-
tion that feedback analyses suffer from a cause-
and-effect problem (27) does not apply here: The
climate variations being analyzed here are pri-
marily driven by ENSO, and there has been no
suggestion that ENSO is caused by cloud varia-
tions (10).

Obviously, the correlation between DRcloud
and DTs is weak (r2 = 2%), meaning that factors
other than Ts are important in regulating DRcloud.
An example is the Madden-Julian Oscillation (7),
which has a strong impact onDRcloud but no effect
on DTs. This does not mean that DTs exerts no
control on DRcloud, but rather that the influence is
hard to quantify because of the influence of other
factors. As a result, it may require several more
decades of data to significantly reduce the
uncertainty in the inferred relationship.

In this way, the cloud feedback is quite dif-
ferent from the water vapor feedback. The water
vapor feedback is primarily controlled by tropical
upper-tropospheric water vapor (28), which in
turn is strongly controlled by tropical surface tem-
peratures (11, 29). Because of this, the relation-
ship between surface temperature and the radiative
impact of water vapor is tight and completely clear
in just a few years of data. This is one of the main
reasons why our confidence in the water vapor
feedback is so strong (30).

One obvious question is whether climate
models also reproduce this cloud feedback in
response to short-term climate variations. To test
this, I analyzed control runs from fully coupled
climate models, in which atmospheric greenhouse
gas abundances and other forcings are held con-
stant at either their preindustrial or present-day
concentrations; thus, there are no long-term trends
in the models’ climate, and the climate variations
in the model runs are entirely due to internal var-
iability. The control runs were obtained from the
World Climate Research Programme’s (WCRP’s)
Coupled Model Intercomparison Project phase 3
(CMIP3) multimodel data set (31).

Fig. 2. (A) Scatter plot
of monthly average val-
ues of DRcloud versus DTs
using CERES and ECMWF
interim data. (B) Scatter
plot of monthly averages
of the same quantities
from100yearsofa control
run of the ECHAM/MPI-
OM model. In all plots,
the solid line is a linear
least-squares fit and the
dotted lines are the 2s
confidence interval of
the fit.

A

B
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Figure 2B shows a scatter plot of DRcloud
versus DTs from 100 years of a control run of the
ECHAM/MPI-OMclimatemodel, obtained using
exactly the same method as was used to analyze
the observations. The cloud feedback in themodel
in response to short-term climate variations is 0.74 T
0.20 W/m2/K, which is in reasonable agreement
with the observations. r2 for the fit is about 4%,
showing that the models also reproduce the rela-
tively weak control exerted by DTs on DRcloud.
Table 1 lists the cloud feedback in response to
short-term climate variations for eight climate
models; these values are also plotted in Fig. 3A.

Themodels’ cloud feedbacks range from 0.34 T
0.20 to 1.11 T 0.20 W/m2/K. Thus, the models
paint a consistent picture of positive cloud feed-
backs in response to short-term climate variations.

The observations fall within the range of models,
and taken as a group, there is substantial agree-
ment between the observations and the models’
cloud feedback. However, given the large uncer-
tainties, the observations are currently of no obvious
help in determining which models most accu-
rately simulate the cloud feedback.

Table 1 and Fig. 3A also show the cloud feed-
back in response to long-term (centennial-scale)
climate change, and there is no correlation between
the short-term and long-term cloud feedbacks.
This means that even if some models could be
excluded on the basis of their short-term climate
feedback, it would not necessarily get us any closer to
reducing the range of equilibrium climate sensitivity
because of the apparent time-scale dependence of
the cloud feedback. It should be noted that, be-

cause of correlations between the feedbacks (32),
this analysis does not preclude the possibility that
short-term radiative damping rates might still cor-
relate with equilibrium climate sensitivity (33).

The long- and short-wave components of the
cloud feedbacks are also listed in Table 1 and
plotted in Fig. 3, B and C. The observations show
that 60 to 80% of the total cloud feedback comes
from a positive long-wave feedback, with the rest
coming from a weaker and highly uncertain pos-
itive short-wave feedback. With the exception of
onemodel, themodels also produce positive long-
wave cloud feedbacks, a result also in accord with
simple theoretical arguments (34).

The sign of the short-wave feedback shows
more variation among models; it is positive in
five of the models and negative in three. There is
also a clear tendency for models to compensate
for the strength of one feedback with weakness
in another. The models with the strongest short-
wave feedbacks tend to have the weakest long-
wave feedbacks, whereasmodels with theweakest
short-wave feedbacks have the strongest long-
wave feedbacks.

Finally, both observations and models have
smaller uncertainties in the long-wave feedback
than in the short-wave feedback. Thismeans that the
long-wave component of DRcloud correlates more
closely with DTs than the short-wave component.

For the problem of long-term climate change,
what we really want to determine is the cloud
feedback in response to long-term climate change.
Unfortunately, it may be decades before a direct
measurement is possible. In the meantime, observ-
ing shorter-term climate variations and comparing
those observations to climate models may be the
best we can do. This is what I have done in this
paper. My analysis suggests that the short-term
cloud feedback is likely positive and that climate
models as a group are doing a reasonable job of
simulating this feedback, providing some indica-
tion that models successfully simulate the
response of clouds to climate variations. However,
owing to the apparent time-scale dependence of
the cloud feedback and the uncertainty in the ob-
served short-term cloud feedback, we cannot use
this analysis to reduce the present range of equi-
librium climate sensitivity of 2.0 to 4.5 K.
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Stochastic Late Accretion to Earth,
the Moon, and Mars
William F. Bottke,1* Richard J. Walker,2 James M. D. Day,2,3

David Nesvorny,1 Linda Elkins-Tanton4

Core formation should have stripped the terrestrial, lunar, and martian mantles of highly
siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances.
Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic
planetesimals reach Earth’s mantle and that ~10 and ~1200 times less mass goes to Mars and
the Moon, respectively. We show that leftover planetesimal populations dominated by massive
projectiles can explain these additions, with our inferred size distribution matching those
derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion
models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially
modified Earth’s obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may
have delivered water to its mantle.

Highly siderophile elements (HSEs: Re, Os,
Ir, Ru, Pt, Rh, Pd, Au) have low-pressure
metal-silicate partition coefficients that

are extremely high (>104) (1). Hence, a common
assumption has been that the silicate portions of
rocky planetary bodies with metallic cores are
effectively stripped of HSEs immediately after
primary accretion and final core segregation
(2). Accordingly, the “giant impact” on Earth that
formed the Moon 60+90−10 million years (My) after
formation of the earliest solids should have
cleansed HSEs from the mantles of both worlds
(3–5).

However, studies of mantle-derived terres-
trial peridotites (olivine-rich rocks that dominate
Earth’s upper mantle) have shown that, not only
are HSE abundances in Earth’s mantle much
higher than expected (at ~ 0.008 × CI-chondrite

meteorites), but their HSE proportions are also
approximately the same as chondritic meteorites
(Fig. 1) (6). Although we have no direct samples
of martian or lunar mantle rocks, studies of HSE
and Os isotopes in derivative mantle melts sug-

gest roughly equivalent absolute abundances in the
martian mantle (7, 8), but much lower abundances
in the lunarmantle (≤0.0004×CI-chondrite) (9–11),
with HSEs in chondritic relative proportions for
both bodies (Fig. 1) (7, 10).

Although different scenarios have been pro-
posed to produce the relatively high absolute
and chondritic relative abundances of HSEs in
planetary mantles (12), perhaps the most straight-
forward process is delivery from continued plan-
etesimal accretion after the last core-formation
event, with the materials mixed into the mantle
by convection (13). Such events would represent
a natural continuum from a planet-formation per-
spective, with the Mars-sized projectile that pro-
duced the giant impact representing the largest
component of the leftover planetesimal popula-
tion that continued to bombard the planets until
surviving projectiles were depleted by collision-
al and dynamical processes (14).

We used the estimated collective distribu-
tion of HSEs in the terrestrial, martian, and lunar
mantles to test whether their abundances were
set by late accretion. For Earth, late accretion of
~2.0 × 1022 kg of material with bulk chondritic
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Fig. 1. (A) Estimated mar-
tian and lunar mantle HSE
abundances and patterns
versus terrestrial orogenic
peridotites and relative to
CI-chondrites. Earth, Mars,
and the Moon are shown in
green, red, and blue, respec-
tively. Estimates for mantle
compositions were made by
regressing Os, Ir, Ru, Pt, Pd,
and Re versus MgO data
(10). The flat patterns indi-
cate that all three mantles
have approximately chondrit-
ic relative abundances of the
HSEs, although the Moon’s
mantle abundances are >20
times less than those of Earth. (B) Minimum number and sizes of late accretion chondritic projectiles
needed to deliver the estimated abundances of HSEs to the mantles of the Moon, Mars, and Earth,
assuming 100% accretion efficiency. These values are lower limits in terms of delivered mass because
the process is unlikely to be 100% efficient.
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