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1.  Introduction 
There is no general theory of geomorphology.  We cannot cast the subject in a single 
equation, or set of equations.  As with geology, geomorphology is a tangle of physics, 
chemistry, biology and history.  It is also geometry, as the geomorphology plays out in a 
complex geographic, topographic setting in which both the tectonic and climate processes 
responsible for driving evolution of the topography change in style and intensity.  There 
is no grand quest for a Universal Law of Geomorphology.  Our subject is often 
subdivided according to the geographic elements of the geomorphic system: hillslopes, 
rivers, eolian dunes, glaciers, coasts, karst, and so on.  You can see this in the chapters of 
most textbooks on geomorphology. 
 
That said, there is indeed order to the natural system on and near the earth’s surface that 
in turn serves to connect these subdisciplines.  Features in common among many 
geomorphic realms include:   
•  Surface materials most often move in one direction: downhill, downstream, downdrift, 
or downwind.  (Note that prior to emergence on the surface, the motion is effectively 
vertical, in the reference frame of the surface, during near-surface exhumation.) 
•  Materials are transformed as they move through the system.  Some of this is again 
unidirectional, this time meaning irreversible: large grains can be broken into small 
grains, but not the reverse; chemical reactions are for the most part permanent, resulting 
in solutional loss and change in mineralogy toward low temperature hydrous phases.  
Exceptions to this general statement do exist: duricrusts form by cementation of soils, and 
carbonate deposits accumulate. 
•  Motion is concentrative.  Material gathers itself into more efficient streams (Shreve’s 
dichotomy of hillslopes and streams (Shreve, 1979)) resulting in spatially-branching 
networks.  This is one of several instances in which the surface processes lead to self-
organization. 
•  If given enough time, the system evolves toward a state in which the material flow is 
adjusted to transport that supplied to it. 
 
These features argue for some degree of universality in our subject, some degree of 
connection between the elements of landscape and our treatment of those elements.  The 
most useful scientific principle that we will employ here is that of conservation:  
conservation of mass, of energy, and momentum.  As Richard Feynman reminded us, 
keep track of the stuff in little boxes, and you can’t go wrong.  The principles I refer to 
here, and on which I dwell almost exclusively in this Little Book, are really derivatives of 
the statements that “mass is conserved” or “energy is conserved”.  These are indeed 
fundamental laws of physics.  And physicists lean on them heavily.  So also is 
momentum conserved, and angular momentum.  So also is baryon number, strangeness, 
and so on.  The fact that on the earth’s surface the speeds involved are far less than the 
speed of light allows us to dodge the complexity introduced by Einstein; we can go right 
back to Newton.  As we do not need to worry about the conversion of mass to energy, 
mass is conserved perfectly.   
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Here is a general word statement capturing the essence of conservation: 
Rate of change of something = rate of input – rate of loss +/- sources or sinks of that 
something 
 
Of course, it is not always obvious what that “something” is in a particular problem.  Our 
first task is therefore to decide what to balance.  For example, we must decide whether to 
craft the balance for sediment mass or sediment volume, whether to balance the number 
of radionuclides, or their concentration per unit volume.  In addition, we must decide 
what region of the world we choose to craft this balance.  Is it just a little 2D box?  Is it 
whole hillslope, is it a vertical pillar, or is it a 3D box across which this something might 
be transported across all sides?  Formally, we are choosing the “control volume” for the 
problem.  We will see that these choices will depend on the system, and on the questions 
we are asking of it.   
 
Our next task is to transform this word statement into a mathematical one.  For the most 
part this follows easily if (and only if) we have been careful about setting up the word 
problem.  The mathematical equations we derive will look quite similar, at least at some 
level.  That this is the case allows us to make progress in solving them.  While this is not 
a book about solving the problems in their most general form, I will work a few of the 
simplest cases. 
 
The art comes in just how to set up the problems… and as always with art, it is practice 
that allows you to get better.  This little book is aimed at providing that practice by 
showing many examples of how to set up problems in quantitative geomorphology.  By 
assembling many examples between two covers not too widely spaced, I hope that you 
will see the connections between the problems, and by seeing the connections be able to 
approach new problems that are in one or another sense analogous to those I introduce on 
these pages.  We will see that the mathematics provides the bridge not only between the 
geomorphic systems I discuss, but between our science and others – physics, from which 
we unabashedly borrow, but also chemistry and biology.   
 
The principle of conservation that I exercise here should serve the same purpose that the 
more fundamental laws of physics serve for the physicist.  By being able to lean so 
heavily, or confidently, on these principles, we can cast our problems formally so that we 
can then focus on what we do not know, and what we must know about the system in 
order to make progress on it.  My hope is that it will promote the formulation of better 
geomorphic experiments, and exploration of the world in search of the natural 
experiments.  
 
I realize that this all sounds fuzzy at the moment.  Let me be more concrete.  The 
mathematical statement that most frequently arises from writing down the statement of 
conservation carefully sounds something like these words: 
 
The rate of change of some quantity at a site = the spatial gradient in the rate of transport 
of that quantity + the rate of birth of this quantity at the site - the rate of destruction at the 
site. 
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Any progress beyond this point in the analysis of our system will then require that we 
come to grips with what sets the transport rate (we need that before we can evaluate its 
spatial gradient), and what sets the birth rate or rate of destruction (or death) of the 
quantity.  As this still sounds a little fuzzy, let me illustrate with a biological example.  
Say our system is a band of sheep on a hillside in a mountain pasture (Figure 1).  For 
economic reasons we are interested only in live sheep.  The sheep are wandering from 
left to right.  The change of the number of sheep on the hillside, which we might measure 
by repeatedly photographing the hillside, will depend largely on the difference between 
the number of sheep that leave the hillside to the right between times of measurement and 
those that drift into the hillside from the left; any difference in these numbers will result 
in accumulation or loss of sheep form the hillslope.  But to this we must add any newly 
born lambs, and subtract any sheep that die (by whatever means – old age, coyotes, 
shepherds getting hungry).  To make more progress than this, we would need more 
knowledge about the biology of sheep.  The rate of births, for example, should be 
dependent upon the concentration of ewes in the band (the rams are usually separated 
from the ewes except in the breeding season).  Prediction of the death rate would require 
knowledge of the age structure of the band and some actuarial statistics for sheep.  It 
would also involve the concentration of predators at the site, the number of coyotes or 
bears or wolves or eagles per unit area of landscape.  So you see that by writing down the 
conservation equation we are automatically forced to focus on the other issues of 
transport and of sources and sinks, in this case involving specific biological processes.   
 
I will take the ovine example one step further to ask a different question.  Can we predict, 
instead of the number of sheep, the distribution of the ages of the sheep?  In this case we 
might alter the conservation equation to one in which we conserve sheep of each of many 
age brackets.  One would then have to account for the number of sheep that leave each 
age class, by aging a year, the number of sheep that enter the age bracket by promotion 
from the next lower age bracket, and the number of sheep that die in each age bracket 
(the actuarial table again).  We would end up with a set of equations that need to be 
solved, with explicit links between them.  If we knew enough about sheep biology, we 
might be able to predict the age structure of the band of sheep.  Or, once we had carefully 
formulated the set of equations, we could turn the question around and, given the age 
structure of the band of sheep, determine some of these fundamental biological processes.   
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This is neither as far-fetched, nor as irrelevant to our quest as geomorphologists, as it 
might sound.  Biologists perform such an analysis all the time in order to understand and 
to model the demography of a population.  To bring it back to geomorphology, this 
method is being exploited to modernize lichenometry (e.g., Loso et al., 2007).  These 
authors document the age distribution of a lichen population, from which they deduce the 
rule set that controls the demography, really the population evolution, of lichen, which in 
turn is required before we make use of the distribution of lichen to deduce the age of the 
surface on which they are growing.   
 
I have strayed into biological examples.  But I hope you can see that the same strategy 
can be employed to organize our thoughts about what sets the size distribution of grains 
in a river or along a coast, for example.  Big grains can become little grains by 
comminution (or breaking down), while little grains cannot stick themselves back 
together.  Speaking mathematically, the big grains become a source for small grains and 
show up as a source term in the conservation equation of little grains.  Once small 
enough, small grains may be lost from the system, as they get wafted out onto the shelf 
from the beach system, or go into suspension and no longer participate in the shape or 
grain size make-up of a river bed or a beach.  We can organize these ideas and the 
processes they represent into conservation equations, again a linked set of equations, that 
must be simultaneously solved to predict the grainsize evolution of a system.  
 
Let me provide one more concrete example.  Imagine that you are asked to assess the 
efficiency of a wood stove.  You design a special room in which to place the wood stove, 
you load in some wood, and you light the fire.  The room must be very well insulated, so 
that the only way heat can enter or leave the room is through one inlet and one outlet.  
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Then you install measurement devices to monitor the heat that comes into the room 
through the air inlet, the heat that leaves through the one outlet, the stovepipe, and the 
change in the heat in the room itself.  I think you would agree that the change in the heat 
in the room must be equivalent to the input of heat from the outside (through the inlet), 
minus the heat that leaves the room through the stovepipe, plus the heat produced by the 
stove (Figure 2).  This is a statement of conservation of heat. 
   
The word picture is simply: 
Change of heat in the room = input of heat from the outside – outlet of heat from the 
room + heat generated in the room 

 
 

The experiment I have described mirrors the manner in which the efficiency of various 
wood stoves is actually measured.  My first brush with the principle of conservation came 
as an undergraduate student employed to help run such experiments designed by Jay 
Shelton, then a physics professor at Williams College (see Shelton and Shapiro (1976) for 
descriptions of wood burning stoves and their proper operation).  He simply turned the 
equation around to solve for the heat produced by the stove, placing all the measurable 
quantities on the right hand side of the equation: 
Heat generated in the room = change of heat in the room – input of heat + outlet of heat 
Knowing how much wood was placed in the stove (we weighed it), and its energy content 
per unit mass (which depended upon its water content), we could then divide the heat 
produced in the stove by the energy consumed to determine what fraction of the energy 
went into warming up the room.   
Efficiency = heat generated in the room (by the stove) / heat content of the wood 
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As an aside, one could place any heat source in the room.  The most interesting examples 
were human beings, of which the college had many.  It was through such experiments 
that Jay was able to determine that a typical college student, at rest, puts out energy at a 
rate of about 100 Joules per second, or 100 watts.  So if you ever need to know what you 
are worth as a producer of energy, think about a 100-watt light bulb. 
 
I have organized the book to move from general to geomorphic.  I start with problems 
that are not purely geomorphic, but that are both pertinent and parallel in their 
development.  Two involve heat, and one introduces a dating method.  I start with a heat 
problem in which the conduction of heat dominates, a problem relevant to understanding 
the temperature profile in the earth’s crust, which in turn is directly pertinent to the 
thickness of permafrost.  But while I stop there with applications of the equations we 
derive (this is after all a Little Book), the same equation is the backbone to thinking 
quantitatively about the variations in temperature to which near-surface rock and soil is 
subjected, which in turn influences the rates of chemical and mechanical breakdown of 
rock.  I then turn to another heat problem, the global climate system, in which the uneven 
distribution of radiation forces the world’s oceans and atmosphere to redistribute heat 
from the equatorial latitudes toward the poles.  Next, the dating problem provides an 
example of local sources and sinks, here the production of new nuclides from cosmic 
rays, and the decay of these nuclides to daughter products.  This is the essence of many 
atomic dating methods.  The example provided is but a brief introduction to a blossoming 
field of cosmogenic nuclide applications in the earth sciences.  I introduce other 
applications in the weathering problem and in the coastal system. 
 
I then turn to geomorphic systems that will sound more familiar.  I start with lakes, and 
ask what combination of precipitation and evaporation sets a particular lake level.  The 
section on glaciers deals with the expected pattern of ice discharge in a valley, and allows 
us to predict the expected glacier length given a prescribed climate (by which here we 
mean the spatial pattern of local mass balance).  I treat then the simplest case of in situ 
weathering to predict the pattern of degree of weathering in a column of accumulating 
sediment (e.g., loess or a floodplain).  Here I take one baby step toward linking equations 
for different minerals: as the feldspars are the source of the clays, we must track the 
concentrations of both.  We then allow transport of the sediment by addressing the 
expected shapes of a hillslope.  Here we revisit the problem first worked by G. K. Gilbert 
to explain why hilltops are typically convex up.  They are rounded, not spiky.  I then pour 
water (rain) on a hillside and ask what sets the spatial pattern of overland flow of water 
on the slope.  This is a prerequisite to answering how such an overland flow of water 
might modify the landscape.  Finally, I address two problems involving sediment 
transport.  The first addresses what might form and allow the translation of bedforms like 
dunes and ripples.  In the second, I go to the beach, and ask what sets the spatial pattern 
of sediment transport (longshore drift) in the coastal or littoral zone.   
 
I summarize briefly by wrapping back to find the common thread among the problems 
treated.  While I do not solve all of the equations derived, I hint how one might go about 
exploring their behavior.  Again, I emphasize that one can proceed in an organized 
manner, starting with steady solutions, 1D solutions, and proceeding to transient cases of 
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interest.  Given that the thread I pull is a mathematical one, and that mathematics is a 
highly evolved discipline with a long history of solving equations of the sort we derive, 
we can then borrow heavily on past experience in math and other fields that have already 
accessed this deep history. 
 
Finally, let me conclude this introduction with a caveat.  This is not an encyclopedic book 
on geomorphology.  It cannot be so and remain small.  It is meant as a tutorial on how to 
approach geomorphic problems.  There is not room to embellish by showing many real-
world examples.  We cannot even treat all of the geomorphic processes.  I have left out, 
for example, the incision of bedrock by rivers, the formation of caves, the tectonic 
processes responsible for raising rock above sealevel, and so on.  I am indeed working on 
a larger book to be published by Cambridge Press that will address all of these processes, 
titled Geomorphology: the Mechanics and Chemistry of Landscapes, co-authored with 
Suzanne Anderson.  As this will be out soon, I needn’t apologize for the incompleteness 
of the little book you have before you.  Think of it as an extended abstract in which I try 
to capture the essence of our subject. 

Further reading 
For examples of how analogous problems are set up in other fields, I recommend the 
following textbooks. 

Turcotte and Schubert’s Geodynamics has for 20 years been a source of inspiration 
for earth scientists.  While they focus on geophysics, this has broadened in the most 
recent edition to include some geomorphic topics.  But it is the geophysics, and 
particularly the accessible treatment of heat and elastic problems that I most treasure. 

Carslaw and Jaeger’s Conduction of Heat in Solids is the bible on the topic of heat 
transport. It is something we all ought to have on our shelves for reference whenever a 
heat problem or something analogous to one (for example any diffusion problem) is 
approached. 

Bird, Stewart, and Lightfoot’s Transport Phenomena, while targeted at engineers, is a 
classic treatise on how to approach problems of heat and mass transport.  The authors 
provide as well excellent atomic-level treatments of the origin of viscosity in fluids.  

Geoff Davies’s Dynamic Earth provides an avenue into thinking about the whole 
earth as a system.  As his aim is to explore the modes of motion in the earth’s mantle, he 
must treat both thermal and fluid flow problems.  These are intricately connected in the 
convection process, either driven from the bottom, giving rise to plumes, or from the top 
from the sinking of cool slabs.  He treats each of these problems at several levels, from 
beginner to advanced. 

David Furbish, in his Fluid Physics in Geology: An Introduction to Fluid Motions on 
Earth's Surface and Within its Crust provides a formal introduction to many earth science 
problems involving fluid flow.  Many of these are geomorphic in character, but the book 
is more general than that. 

Hornberger, Raffensperger, Wiberg and Eshelman, in their Elements of Physical 
Hydrology, provide a well-illustrated, organized view of the hydrologic system.  They 
begin many problems with a simple approach meant to develop the intuition of the 
reader. 
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John Harte’s Consider a Spherical Cow is a favorite for entrance into formal 
treatment of environmental problems.  The approach emphasizes scaling, and box models 
in which the principles of concern in this book are employed.  I also have it on my shelf 
for its appendices, which like those in Turcotte and Schubert provide excellent 
summaries of important physical constants and other “useful numbers”. 

I have also taken inspiration from Kerry Emanuel’s Divine Wind, a book about the 
science and history of hurricanes.  I appreciate the manner in which he has not shied 
away from talking about the science in some detail, and about how the science is 
accomplished, in a book that is clearly targeted at a broad audience.  He has also paid 
homage to the art such events have inspired, through photography, poetry and prose.  I 
find it a wonderful introduction to how the atmosphere works, as illuminated through the 
window of the most terrible storms.  We need more such books. 



2.  The geotherm, permafrost and the lithosphere 

 
Sorted circles, Spitzbergen.  Naturally occurring self-organization of the beach sediment in the active layer 
above permafrost.  Coarse grains are sorted to the rims, leaving interior of the circles fine-grained. Scale of 
circles: roughly 2 m diameter. 
 
In this first chapter I ask what dictates the temperature profile within the earth’s crust.  
While this is not strictly geomorphology, it is an appropriate place to start because heat 
problems serve as analogs for many other geomorphic problems, as we will see.  In 
addition, knowledge of the temperature profile within the near-surface earth is 
fundamental to the interpretation of exhumation histories from thermochronology, for the 
prediction of the depth of permafrost, and may be used to deduce the temperature history 
of the earth’s surface.  Indeed, many near-surface processes are driven by changes in 
temperature, or have rates that are modulated by temperature.  The rates of chemical 
reactions, for example, are strongly dependent on temperature.  This section is designed 
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to serve as an introduction to the basic physics of heat conduction in this region of the 
earth.  It will serve as well as an introduction to diffusion problems. 
 
Consider the box depicted in Figure 1.  This is called the control volume for the problem.  
While I have chosen a parallelepiped for its shape, with faces perpendicular to the 
Cartesian coordinates x, y and z, I could have chosen any shape as long as it is a closed 
surface.  Our goal is to craft an equation for the evolution of temperature in the volume.   

 
 

We begin by writing an equation for the conservation of heat within this parcel of the 
earth.  Here we take the material to be a solid, and do not allow it to be in motion 
(although this assumption could be relaxed later).  The word picture for this statement of 
conservation is: 
Rate of change of heat = rate of heat input – rate of heat loss +/- sources or sinks of heat 
 
Each term will have units of energy per unit time.  The heat in the box is simply the 
temperature of the box (which we can think of as the concentration of heat per unit mass), 
times the volume of the box, times the mass per unit volume (the density), times the 
thermal heat capacity (energy per unit mass per degree of temperature): 

� 

H = !cTdxdydz .  
The rate of change of this quantity with time is therefore the left hand side of this 
equation.  We use the partial derivative of the quantity with respect to time to represent 

the rate of change: 

� 

!("cTdxdydz)

!t
, all other variables fixed, in other words, at a fixed 

point in space (x,y,z).  Now we need an expression for the rate at which heat is coming 
across the left hand side of the box.  The heat moving across a boundary or wall of the 
box can be written as the product of a heat flux, here denoted Q, with the area of the wall.  
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Throughout the book I will reserve the use of the term “flux” to mean the rate at which 
some quantity (here heat) moves per unit area per unit time.  The inputs and losses of 
heat across left and right walls will therefore look like Qxdxdz.  The transport of heat 
across the left wall is the product of Qx(x) (which reads “heat flux in the x-direction, 
evaluated at the location x”) with the area of the left wall, dy dz, while that crossing the 
right hand wall is the product of Qx(x+dx), or the heat flux in the x direction evaluated at 
x+dx with the area of the right wall, dy dz.  Terms relating to the fluxes of heat across the 
other sides of the box are analogous.  Our equation then becomes: 

 
!("cTdxdydz)

!t
= Qx (x)dydz #Qx (x + dx)dydz +Qy (y)dxdz #Qy (y + dy)dxdz

+Qz (z)dxdy #Qz (z + dz)dxdy

 (2.1) 

Up to this point we have made very few assumptions.  The only item missing is any heat 
that is produced within the box, which could happen by radioactive decay of elements, or 
strain heating of a fluid, or the change of phase of the material.  We will ignore all of 
these for the present.  Now let's simplify this a little.  We can hold the volume of material 
in this solid constant through time, allowing us to pull the dx, dy and dz out of the partial 
derivative with respect to time.  For now I also assume that the density and the heat 
capacity of the material do not change over the temperature range of interest.  We may 
then divide both sides by ρ c dx dy dz, and the equation simplifies to one of temperature 
change: 

 !T
!t

= "
1

#c
$
%&

'
()

Qx (x + dx) "Qx (x)*+ ,-
dx

+

Qy (y + dy) "Qy (y)*+ ,-
dy

+
Qz (z + dz) "Qz (z)*+ ,-
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.
/
0
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2
3
0

40
(2.2) 

The last step involves the simple recognition that if we were to shrink the size of our box 
so that dx tends toward zero, the terms in brackets on the right hand side are the spatial 
derivatives of the heat flux, 

� 

!Qx /!x,!Qy /!y,!Qz /!z , and the final equation for the 
conservation of heat becomes 

 !T
!t

= "
1

#c
$
%&

'
()

!Qx

!x
+
!Qy

!y
+
!Qz

!z
*
+
,

-
.
/

 (2.3) 

In doing this we are effectively using the definition of a derivative.  This equation says 
that the temperature in a region will rise if there is a negative gradient in the flux of heat 
across it, and vice versa (Figure 2).  For example, if there is a positive gradient in the x 
direction, then more heat is leaving out the right hand side of the box than is arriving 
through the left hand side of the box, and the heat content and hence the temperature in 
the box ought to decline.  
 
An alternative derivation using the Taylor series expansion.  Before moving on, I want to 
show you that we could have arrived at this equation by taking a slightly different 
mathematical route.  Back up to equation 3.1.  We need expressions for the fluxes of heat, 
Q, at positions x+dx, y+dy and z+dz.  This time we will use a method of estimating these 
values that employs what is known as a Taylor series expansion.  As seen in Figure 3.2, 
the first estimate of Qx at x+dx would be simply that at x, in other words Qx(x+dx) = 
Qx(x).  A second, better estimate would entail projecting the slope of the function Q over 
the distance dx.  This would yield Qx(x+dx) = Qx (x) + (dQx/dx * dx).  You can see from 
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the figure that this ought to yield a better estimate.  Better yet, you might take into 
account the curvature of the function.  A Taylor series expansion formalizes this process 
of estimation: 

 Q(x + dx)= Q(x) +
!Q

!x
dx +

1

2

!
2
Q

!x
2
dx( )

2
+ ...

1

n!

!
n
Q

!x
n
dx( )

n  (2.4) 

Note that as we take smaller and smaller elements, as we shrink our control volume, the 
terms with dx2, dx3 and so on, will become very small.  These are called “higher order 
terms”, and they may be neglected in the limit as dx->0.   

 
Neglecting these higher order terms, when this estimate and the comparable ones for 
Qy(y+dy) and Qz(z+dz) are inserted into equation 3.1, it becomes 
 
!("cTdxdydz)

!t
= Qx (x)dydz # Qx (x) +

!Qx

!x
dx

$
%&

'
()
dydz +Qy (y)dxdz # Qy (y) +

!Qy

!y
dy

$
%&

'
()
dxdz

+Qz (z)dxdy # Qz (z) +
!Qz

!z
dz

$
%&

'
()
dxdy

 (2.5) 
 
Performing the subtractions yields 

 
!("cTdxdydz)

!t
= #

!Qx

!x
dxdydz #

!Qy

!y
dydxdz #

!Qz

!z
dzdxdy  (2.6) 

Dividing by ρcdxdydz, we arrive again at equation 3.3.  The two mathematical routes 
have converged at the same equation for conservation of heat. 
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We will from this point on assume that the heat problem is one-dimensional, and vertical.  
This will allow us to ignore gradients in heat flux in the horizontal dimensions.  As we 
see below, this situation arises when the gradients in temperature are small in the 
horizontal relative to those in the vertical.   
 
As yet, we have not identified the specific process by which heat is transported in the 
medium.  There are three means of heat transport: conduction, advection, and radiation.  
Radiation requires that the medium of concern is transparent in the proper wavelengths, 
which rock and soil certainly are not. Advection requires that the medium, or another 
fluid passing through it, be in motion.  For now we are assuming that this is not the case. 
 
The principal means by which the near-surface rock is cooled is by conduction.  
Vibrational energy is traded off between adjacent atoms in such a way as to even out the 
energy, meaning that it flows from regions of high energy (temperature) to regions of low 
temperature.  The result is a relationship that has become known as Fourier's law, where 
the flux of heat in a particular direction, say along the x-axis, is proportional to the local 
gradient of temperature in that direction, through a constant called the thermal 
conductivity, k. 

 Qz = !kz
"T

"z
 (2.7) 

This heat flux has units of energy per unit area per unit time.  The minus sign assures that 
the heat travels down thermal gradients, from hot toward cold.  When we combine this 
expression for the heat flux with the 1-D equation for conservation of heat, we obtain  
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This may be simplified to 

 !T

!t
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!
2
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!z
2

 (2.9) 

where we have defined 

� 

! = k /"c  as the thermal diffusivity.  This is the diffusion 
equation, in which the rate of change of temperature is tied to the local curvature of the 
temperature profile. 
 
Now we need to give this equation some exercise: we seek solutions for specific 
situations.  We start with the simplest case: the steady geotherm.  This is the expected 
steady temperature profile in the earth’s crust.  In steady cases, we assume that any 
partial derivatives with respect to time are zero.  In this case, the left hand side is 
therefore zero, leaving 

 d
2
T

dz
2
= 0  (2.10) 

Note that this step has reduced the partial differential equation (PDE) to an ordinary 
differential equation (ODE); the partial symbol 

� 

! /!z  has become d/dz. This equation says 
that the curvature is zero.  A function that does not curve is a straight line.  Our only task 
now is to assess which of all possible straight lines to choose.   In order to solve for T(z), 
we must integrate this equation twice.  Each integration will require appeal to a boundary 
condition to solve for the constant of integration.  The first integration results in an 
equation for the slope of the temperature profile, the gradient 

 !T

!z
= c

1
 (2.11) 

where c1 is the constant of integration.  Here we appeal to Fourier’s Law to assess the 
gradient, c1.  Equation 3.4 suggests that the gradient is set by the ratio of the heat flux and 
the conductivity 

 !T

!z
= "

Q

k
 (2.12) 

As it is customary to define the near-surface heat flux as positive upward, despite having 
defined depth as positive downward, we use Qm= -Q to alter this equation to: 

 !T

!z
=
Qm

k
 (2.13) 

where here Qm is the mantle-derived heat flux.  The second integration results in  

 T =
Qm

k
z +c

2
 (2.14) 

One can see that this second constant of integration has units of temperature.  We use 
again a boundary condition, a place at the edge of the space of concern at which we know 
something about the system.  Here it is the temperature.  The most obvious choice is to 
take the mean annual ground surface temperature, 

� 

T 
s
, which we might know from the 

local climatology.  That temperature is being set by completely different physics than the 
temperatures at depth.  It is set by the energy balance at the earth’s surface (We deal with 
this in the next chapter).   Substituting T(0)=

� 

T 
s
  suggests that c2=

� 

T 
s
, resulting in the final 

equation for the temperature profile: 
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 T = Ts +
Qm

k
z  (2.15) 

This is the linear geotherm we expect in the steady state situation we have described. 
Combinations of thermal conductivity and mantle heat flux result in typical geothermal 
gradients on the order of 25-30°C/km.   

Permafrost 
Let’s make use of this equation in cold regions.  Consider what sets the base of the 
permafrost. By definition, permafrost is permanently frozen ground, in which the 
temperature does not rise above 0°C over several years.  We can solve the above equation 
for the depth of the base of the permafrost by solving the equation for z, and setting the 
temperature to be T = 0°C.  The solution is: 

 zb = !Ts
k

Qm

= !
Ts

dT / dz
 (2.16) 

For example, if the temperature gradient is 25°C/km, and the mean annual temperature is 
-30°C, the base of the permafrost is 30/25 = 1.2 km.  Everything between about 1 or 2 m 
(the base of the active layer that annually freezes and thaws) and 1200 m depths is frozen 
stiff, “permanently”.  Note that this material does not have to contain water; the 
temperature simply has to be such that any water that does exist is in the form of ice.  In 
Figure 4 the temperature profiles for several mean annual surface temperatures are 
shown, along with the resulting relationship between mean annual temperature and the 
depth to the base of the permafrost. 
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While this theory works well to predict the steady state thermal profiles in permafrost 
terrain, the current state of the arctic is not steady.  It is the departures of such measured 
profiles from steady state that have been used to document the history of warming of the 
ground surface temperatures through the last 150 years (e.g., Lachenbruch and Marshall, 
1986; see Figure 5).  These departures are the canaries in the coalmine of global 
warming. 

 
This warming has apparently accelerated in the recent decades, as depicted by repeated 
measurements of the temperature profiles on the North Slope made by Gary Clow of the 
USGS (Figure 6).  The importance of these records is that they are not proxies for some 
climate variable, as for example pollen is, or an isotope.  They record temperature itself, 
and we know how heat moves about within permafrost.  They are very direct measures, 
then, of the ground surface temperature that serves as the top boundary condition for the 
permafrost below. 
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While significant ongoing research is designed to assess just how the near-surface air 
temperature translates into the temperatures at the base of the active layer, it is clear 
enough now that the air temperature must be rising significantly in many places around 
the globe. 

Lithosphere 
The alarmingly rapid warming of the permafrost is an example of an end-member case of 
instantaneous change in temperature of a surface bounding a half-space that was in steady 
state prior to the disturbance.  The shorthand for this problem is “instantaneous warming 
or cooling of a half-space”.  In general, the surface could be either warmed or cooled 
relative to the interior; the mathematical solution for the resulting wave of thermal 
disturbance progressing into the interior is the same.  You can imagine that because this 
disturbance propagates into the interior, there must be some region near the boundary 
within which the temperature has changes “significantly” from its prior state.  We call 
this region a “thermal boundary layer”.  As we will see, the definition of “significant’ 
change is somewhat arbitrary, but once we have defined it, the behavior of the boundary 
layer is quite understandable.  Here I employ this notion to address a key element of the 
Earth – its lithosphere.  We will see that the lithosphere is best thought of as a thermal 
boundary layer. 
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At a mid-ocean spreading ridge, two lithospheric plates slide away in opposite directions 
at speeds of several cm/year.  Mantle beneath the ridge rises to replace that lost, and in so 
doing experiences decompression melting.  The basaltic melt rises to produce oceanic 
crust, solidifying in either the surface or the subsurface.  But the plate is not the crust.  
The plate includes the crust, but is largely that portion of the upper mantle that is cool 
enough to behave as an elastic solid on geologic timescales.  In other words, the plate is a 
rheological boundary layer.  The rheology of a substance is its response to forces (or 
more formally, to stresses, which are forces per unit area).  An elastic rheology (the 
simplest solid) is one in which a finite strain of the material is produced by an imposed 
stress; the strain is recovered when the stress is released.  In contrast a viscous rheology 
(the simplest fluid) is one in which the longer the stress is applied, the higher the strain.  
There is no single relationship between stress and strain.  Instead, we find that the rate of 
strain is proportional to stress.  In rocks, and for that matter in ice, we find that the 
rheology is critically dependent upon temperature.  When either rock or ice is anywhere 
near its melting point, it behaves as a viscous material, while at much colder temperatures 
it behaves like an elastic solid.  The cross-over temperature is sort of fuzzy, but call it 
1200 to 1300°C.  That part of the upper mantle that is cooler than 1200°C will therefore 
behave as a solid on geologic timescales – this is the lithospheric “plate”.  In assigning a 
thickness to the lithosphere, our task is now converted into determining the depth of the 
1200°C isotherm.  We have transformed the problem into a thermal problem. 
 
Beyond the region very close to the ridge, where groundwater circulation of fluids can 
extract heat efficiently from the thin cooling plate, the main means by which heat is 
transported in the lithosphere is conduction.  The equations developed above therefore 
capture the physics.  The system is by no means steady, however, meaning that we cannot 
make the simplifying assumptions that allowed us to develop the equation for the 
geotherm.  The problem is however much like that involved in the warming of permafrost 
– only this time the temperature at the boundary has dropped rather than risen.  Consider 
a column of crust and underlying upper mantle.  This column is moving at half the 
spreading rate, but the entire column is moving.  It is a solid.  We can therefore think of 
the problem as being a 1D problem, in depth.  At just before the clock starts, at time = 0-, 
the column is at the spreading ridge and is uniform in temperature.  At time = 0, the top 
of the column is exposed to the base of the ocean, and thereafter this top surface is 
maintained at the temperature of the ocean floor.  It IS the ocean floor.  The column cools 
through time, and the distance to the 1200°C isotherm deepens.  This is an instantaneous 
cooling problem.  While the temperature structure within the lithosphere is somewhat 
daunting (it is something we call an error function, erf), the solution for the evolution of 
the depth to a specific isotherm (e.g. 1200°C) is surprisingly simple: 
 d = ! " t  (2.17) 
where η is a non-dimensional constant of order 1, κ is the thermal diffusivity, and t is the 
time since the parcel of lithosphere left the spreading age (the plate age).  Given that plate 
speeds are pretty steady, we can transform time into distance from the spreading ridge 
through x = u1/2t, where u1/2 is the half spreading rate.  We therefore predict that the 
profile of lithospheric thickness across a spreading basin is  
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 d = !
" x

u
1/2

 (2.18) 

The lithosphere should thicken as the square root of distance from the spreading ridge.  
How would we check this?  The figure below shows the bathymetry of two major ocean 
basins with distance from the mid-ocean spreading ridges. 

 
This bathymetric profile reflects the thickening of lithosphere.  The argument goes like 
this: the lithosphere thickens with time and distance as we have just discussed.  By 
definition, the lithosphere is cooler than the mantle immediately below it (its mean 
temperature is about (1300-4)/2 ~ 650°C, which is therefore about 650°C cooler than the 
1300°C mantle immediately beneath it).  Cooler material is denser than hotter material.  
Isostatic compensation of this cooler denser lithosphere dictates that the thickness of low-
density ocean be greater where the thickness of high-density lithosphere is greater.  
Hence the bathymetry should mimic the thickness profile of the lithosphere.  The analysis 
of Parsons and Sclater (1977) has been updated by Stein and Stein (1992), but the essence 
remains: we can explain straight-forwardly the gross topography of 70% of the planet’s 
surface.  
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3.  Gooshing of the mantle 
 
Changes in topography over large distances can be caused by flow of the underlying 
mantle or lower crust.  This reflects the mobility of these deep materials, and their 
behavior as viscous fluids over long timescales.  They are driven from place to place by 
pressure gradients, driving transport from high toward low pressure.  As the pressures at 
these depths are dictated by the thickness of the overlying crust and any other load (ice 
sheet, lake, ocean), the gradients in pressure are established by the gradients in the 
thickness of these overlying materials.  If we can assess how fast the resulting changes in 
topography occur, we can deduce the viscosity of the material in motion.  These 
phenomena intimately connect geomorphology to geophysics. 

Glacial Isostatic Rebound 
First let’s take a crack at a classic problem in geomorphology, in which the surface of the 
earth is first pushed down by emplacement of a major load, and then rebounds when that 
load is taken off.  The loads can be either a lake or an icesheet.  I will use an ice sheet for 
now (Figure 1).   
 

 
 

Our goal is to develop an equation for the evolution of the deflection w through time after 
the load is removed.  We can test any rebound theory against data from regions once 
loaded by Last Glacial Maximum icesheets, such as that occupying the Fennoscandian 
shield, or the Laurentide icesheet over Hudson Bay (e.g., Andrews, 1968; Walcott, 1972; 
Peltier and Andrews, 1976).   
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The relevant conservation statement is simply: 
The rate of change of mantle volume in the cylinder = inputs – losses 
 
It is safe to assume that the mantle is incompressible, that it does not change in density 
with time.  The problem then reduces to determining the rate of movement of mantle 
across the boundary; in the case of rebound, this will be inputs of mantle, while in the 
case of increasing ice load it will be loss of mantle.  If we dictate that the cylinder not 
change in circumference over time, then the only way to accommodate changes in 
volume of the cylinder is by changing how thick it is.  In other words, 
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where R is the radius of the cylinder, h the thickness of the mantle channel in the absence 
of deflection, w the vertical deflection in the center of the loaded region, and Q is the 
volumetric discharge of the mantle either outward (during glacial loading) or inward 
(during rebound) across the edge of the cylinder.  The term in brackets on the left side is 
the volume of mantle in the cylinder.  The first term in square brackets is the volume of a 
filled cylinder; the second term in square brackets is the missing conical volume due to 
the depression of magnitude w.  As neither R nor h changes in time, the leftmost term 
drops out when we take a time derivative.  Q must have units of volume per unit length 
around the perimeter per unit time – or L2/T.  
 
What remains is to develop an equation for the discharge of mantle, Q, across the 
imaginary walls of our cylinder.  For this we will appeal to the solution for viscous flow 
between two rigid plates.  The velocity profile in such a flow is parabolic, the horizontal 
speed being 

 U(z) = !
1

2µ

dp

dx
zh ! z

2( )  (3.2) 

where z is the depth into the viscous channel, h its thickness, and dp/dx is the pressure 
gradient pushing the flow.  Note that because zh is always greater than z2, the flow is in 
the positive x direction only when the pressure gradient is negative.  This acknowledges 
that fluid is pushed from high pressure toward low pressure.  Our mantle discharge is the 
integral of this velocity profile 

 Q = U(z)dz = !
1

12µ
0

h
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dp
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h
3  (3.3) 

We can now see the strong dependence on the thickness of the channel, but we have yet 
to come to grips with the pressure gradient.  The pressure gradient arises from the 
difference in the thickness of the channel inside and outside the cylinder.  In the rebound 
case, the thickness outside the channel is greater, and this extra thickness serves to push 
the mantle toward the thinner inner cylinder.  We should use for the pressure the mean 
pressure in the viscous channel.  Subtracting off the pressure associated with the 
overlying crust, and employing the mean value theorem, the mean pressure in the viscous 
channel becomes 
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This pressure difference occurs over a length scale set by the radius of the cylinder.  An 
estimate of the pressure gradient is therefore  
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where the thickness change is represented by the maximum deflection w, and the length 
scale over which it changes is R (Figure 1).  Insertion of this expression into the 
discharge equation, and insertion of the discharge equation into the conservation of 
volume equation yields 
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Simplifying this by dividing through by πR2/3, none of which changes in time, results in 
an evolution equation for the deflection of the surface, w: 
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The solution to this equation is an exponential decay function 
 w = w

0
e
! t /"  (3.8) 

in which the characteristic time scale, τ, is the inverse of the expression in brackets in 
equation 1.7: 

 ! =
4µR2

"mgh
3

 (3.9) 

The time scale is strongly controlled by the viscosity of the material being gooshed across 
the cylinder walls, by the size of the depressed area, and by the thickness of the viscous 
channel.  Assuming that the viscosity of the channel is 1018 Pa-s, the radius of the load 
500 km, the thickness of the channel 100 km, the density of the mantle is 3000 kg/m3 and 
g = 10 m/s2, results in an expected e-folding timescale for rebound of about 1000 years.  
This is of the right order of magnitude, as dating of raised marine terraces in 
Fennoscandia suggest that timescales for rebound are about 4000 years (Figure 2).   
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In this figure I have plotted not the deflection from the equilibrium elevation, but the 
uplift relative to modern sealevel.  The least well known of the variables in the rebound 
time scale are the viscosity and the thickness of the viscous channel.  There are obviously 
tradeoffs in choosing these, but that we are in the ballpark is encouraging, given this 
simple formulation of the problem.  I could easily find the missing factor of 4 by 
increasing the viscosity to 4x1018 Pa-s, or by changing the channel thickness to 63 km. 
 

Hurricane storm surge 
I note that there is an oceanic analog in the storm surge associated with a hurricane.  The 
ocean surface is mounded up in a dome centered on the eye of the storm for two reasons 
(see Kerry Emanuel’s wonderful book on hurricanes).  First, the low pressure of the 
atmosphere in the storm center, which itself generates the winds of the storm, creates a 
pressure gradient in the ocean that drives water toward the storm center.  Second, the 
winds generate a current that piles water up as the storm encounters shallow water.  The 
latter effect generates the majority of the storm surge and produces the asymmetry of the 
surge (to the right of where the eye hits the land in the northern hemisphere).  These 
surges can be up to 20 meters!  We can estimate the magnitude of the pure pressure effect 
(Figure 3).   
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The mean atmospheric pressure is 1013 millibars, or 1.013x105 Pa.  Given that the 
formula for pressure beneath a fluid of a given uniform density, ρ, is P = !gH , we can 
estimate the thickness of this layer, H.  For atmosphere at surface density of ρ=1.22 
kg/m3, this corresponds to a layer 8464 m thick.  To generate the same pressure, water at 
ρ=1000 kg/m3 would have to be H = 10.3 m thick.  It is pure coincidence that the 
pressure exerted by the atmosphere is worth about a 10 m column of water.  But it sure is 
convenient.  Given that the lowest pressures associated with category 5 hurricanes are 
about 900 millibars, or about 9/10 of an atmosphere, the pressure drop corresponds to 
1/10 of the column.  This translates into 1/10th of 10 m, or about 1 m of water.  So to 
balance the pressures in the column of water beneath the eye vs those in a comparable 
column exterior to a large storm, the water must dome up by about a meter.  That this is 
only a small fraction of the 10 m typical of a storm surge associated with such monster 
storms implies that the remainder of the storm surge must come form the wind-driven 
currents. 

Topographic oozing of the Tibetan Plateau 
In a nifty article Marin Clark and Wicki Royden proposed that the smooth topographic 
ramp leading from SE China up to the Tibetan Plateau resulted from the oozing of hot 
lower crustal material from beneath the plateau (Clark and Royden, 2000).  This ramp 
contrasts sharply with the abrupt topographic front of the Himalayas that bounds the 
plateau to the south.  The physics of the problem is identical to that I have just introduced 
in the glacial rebound problem.   
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The analysis of Clark and Royden follows and simplifies an earlier model of the 
deformation of the Tibetan plateau as a whole (Shen et al., 2001).  Viscous lower crust 
(in this case) is being driven down a channel by a pressure gradient.  The chief difference 
is that the channel through which the lower crust is being driven is unbounded – material 
is not being gooshed into or out of a cylinder but into a slot of effectively infinite length.  
I emphasize that whether the hypothesis is right or wrong (and there is indeed some 
support for it in river incision along this ramp (Schoenbohm et al., 2006)), their treatment 
can be understood using the same physics we are exploring in this section.   
 

 
 
I show their proposed system in Figure 4.  The rate of change in thickness of the lower 
crustal channel is determined by the gradient in the discharge of lower crustal material 
down the channel.  In other words, 
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where h is the thickness of the channel, Q the discharge of viscous material along it.  
Again, the discharge, Q, is the volume of material per unit time per unit width of channel 
[=]L3/LT or L2/T.  Since the thickness of upper crust above the viscous channel, ho, does 
not change with time, the rate of change of elevation of the surface, z, simply follows the 
rate of change of thickness in the channel.  It is, however, important that the thickness of 
crust ho does vary in space.  It is the thickened crust beneath the Tibetan plateau that 
leads ultimately to its heating, which in turn leads to its reduction in viscosity and hence 
tendency to flow. 
 
As in the rebound case, the discharge in the viscous channel is calculated from the 
integral of the velocity profile 
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While at first the pressure gradient is set by the gradient in thickness of upper crust, 
gradients in lower crustal thickness will begin to play a role as it evolves: 
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Inserting this expression into the statement of conservation of volume in the channel 
results in 
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For now let’s assume that the viscosity of the lower crust is uniform, so that we may pull 
it out of the derivative.  Taking the derivative of the remaining product results in two 
terms 
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Taking the leading term in this expression, dominated by h3, leaves us with the simpler 
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The first term corresponds to a couplet of source-sink associated with the non-changing 
but non-uniform thickness distribution of upper crust.  The second term then acts to 
smear out this constant source, leading to thickening of lower crust (and associated 
inflation of topography) on the lengthening ramp, and simultaneous deflation of the lower 
crust below the edge of the plateau.  This is a diffusion equation, analogous to the one 
derived in our treatment of thermal problems except for this spatially distributed source 
term.  I have made the analogy explicit by assigning an effective diffusivity, κ, to the 
collection of terms in front of the curvature.  This constant reflects the efficiency with 
which changes in thickness occur.  As expected, this efficiency is low when the viscosity 
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is high, and is greatly enhanced when the channel is thick; the collection h3/µ is difficult 
to disentangle. 
 

 
 
Clark and Royden present results from calculations (Figure 5) assuming a channel 
thickness h of 15 km.  Given this choice of channel thickness, the best-fitting viscosity of 
the lower crustal material is 1018 Pa-s.   

Gooshing of mantle across the continental edge 
I should probably stop right here but I have to put out there another idea.  We have talked 
about gooshing the mantle about by ice loads, and gooshing the lower crust by 
topographic loads.  There is at least one other case worthy of our attention.  When a huge 
ice sheet is constructed on a continent, that water comes from somewhere and that 
somewhere is the ocean. It gets there circuitously, delivered as snow by storms, but its 
ultimate source is evaporation from the ocean.  So when the ice sheet volume is large the 
ocean volume is small.  To give this a scale, at the Last Glacial Maximum some 20 
thousand years ago, sealevel was drawn down about 120 m relative to today.  Just when 
the land is pushed down by the giant plunger of an ice sheet or two in the northern 
hemisphere, forcing mantle to flow outward away from the load, the ocean basins of the 
world are being unloaded.  The converse is also true: when the ice sheets dwindle, mantle 
rushes back in, while at the same time the ocean basins are being loaded up, and mantle 
should be pushed away from them.  Consider then a continental margin well away from 
any ice load.  The variations in the ocean load adjacent to the continental margin should 
drive a gooshing of the mantle back and forth across the continental margin.  Let’s marry 
the two examples we have discussed so far, the ice load and the topographic ooze, and 
sprinkle in a periodic variation in the system to construct a model of this situation.  Our 
goal is to assess the amplitude of the effect on the topography of the edge of the 
continent, and the distance inland over which this signal declines.   
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Assume a viscous channel in the upper mantle, beneath a uniform crust.  Consider the 
simplest case of a very steep continental margin, in which the full 120 m swing of 
sealevel does not cause significant lateral migration of a coastline (Figure 6).  Now allow 
sealevel to vary sinusoidally with a fixed amplitude, Δhsea and period, P: 
 h

sea
= h

sea
+ !h

sea
(sin(2"t / P)  (3.16) 

This variation in sealevel translates into a variable pressure at the depth of the mantle 
channel, which in turn drives variation in the pressure gradient in the channel that causes 
transport of mantle.  In addition, the thickness variation in the mantle then can drive flow 
as well, as the mean pressure in the thicker channel is greater than that in the thinner 
portion of the channel.   
 
The conservation of fluid in the mantle channel is identical to that we wrote for the 
Tibetan lower crustal ooze (equation 10), as is the equation for lateral discharge of 
mantle.  What differs is the pressure field driving flow, which now includes that of the 
dynamic oceanic load.  The pressure is therefore 
 P = !wghsea + !cghc + !mg(h / 2)  (3.17) 
 
When we acknowledge these contributions from all components of the load, the 
discharge becomes: 
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Because the thickness of the crust does not vary in time, and it is largely uniform in space 
in this problem, I will drop this middle term.  The statement for conservation of volume 
in the mantle channel then becomes: 
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This formulation explicitly acknowledges that the thickness of the channel, h, varies, 
which in turn causes variations in the discharge through the strong nonlinear h3 
dependence. 
 

 
 
I have used a numerical model to explore the behavior of the system when forced with a 
120 m oscillation in sealevel (Figure 7).  You can see that the system displays a diffusive 
behavior.  It displays both an exponential decay of amplitude with distance from the 
margin, and a phase lag, much like the solution for temperature within a half space when 
forced by oscillation of the surface temperature (e.g., Gold and Lachenbruch, 1973; 
Turcotte and Schubert, 2002).  In the thermal case, the length scale that dictates both the 
decay rate and the time lag is set by the square root of the thermal diffusivity and the 
period of the oscillation: 

 L =
!P

"
 (3.20) 
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The same appears to be the case in this system.  Numerical experiments show that the 
penetration of the effect into the continent indeed depends upon both the period of the 
oscillation and those variables that take the place of the diffusivity: 

 ! =
"gh3

12µ
 (3.21) 

While this problem has yet to be fully exploited, I challenge the reader to look for hints 
that this gooshing of the mantle across the continental edge occurs.  It seems to me that 
the geomorphic signal of this phenomenon will be best displayed where large rivers 
approach the coastline.  Large rivers have small slopes.  For example, the slope of the 
Amazon is around 1 cm/km, or 10-5, while that of the Mississippi is perhaps a few times 
this (2x10-5 on the delta itself; see Syvitski and Saito (2007)).  The smaller the slope, the 
more likely it will be tweaked by the small tilts of the continental edge imposed by the 
movement of mantle across the margin.  The maximum tilts in the case I have illustrated 
are about 15 m/300km, or 5x10-5; given the slopes of major rivers as they approach the 
coast, this tilt is worthy of discussion.  Note also that a topographic sag comes and goes 
well inland of the margin – 500 km inland in the case I have illustrated – and that the 
sagging is out of phase with adverse tilt at the margin.   
 
In working this problem (more or less as a teaser) I have not accounted for the rigidity of 
the lithosphere above the channel, which will serve to smooth any sharp gradients in the 
predicted thickness of the mantle channel.  These occur at the continental margin.  I also 
admit that the larger effect on a river draining the continent is the more obvious and 
dramatic oscillation of baselevel.  During glacial times these major rivers seek to join an 
ocean (baselevel) that is 120 m below present, and should incise their margins as they 
seek that level.  The greater hope to find the effect I have illustrated comes instead from 
its effects well away from the margin, and in any temporal lag of the signal.  After all, 
sealevel reached its present highstand roughly 6000 years ago, while the high viscosity of 
the mantle channel should result in continued, ongoing warping of the margin. 
 
In this section I have explored a few impacts of mantle physics on the overlying 
topography.  These examples serve not only to illustrate another application of the 
principles of conservation, but to alert the geomorphologist that what happens deep in the 
Earth does indeed matter to its surface.  These deep gooshings constitute the largest 
length scale processes to which the Earth’s surface is subjected.   
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4.  The climate system 

 
 
We have seen that heat is moved about within rocks and soil near the surface of the earth 
largely by conduction.  Any heat that arrives at the Earth’s surface from below reflects 
very slow cooling of the Earth. In contrast, heat arrives at the Earth’s surface by radiation 
from the Sun, at a rate (flux) that is greater by 5 orders of magnitude (roughly 1000 W/m2 
from the sun vs 0.04 W/m2 from below).  Once deposited on the earth’s atmosphere, 
oceans and terrestrial surface through radiation, heat is moved about within the ocean and 
atmosphere by bulk motion of those fluids.  In the first part of this section I address what 
controls the surface temperature of the Earth.  In the second section I ask what pattern of 
poleward energy transport is required to allow the earth’s climate system to remain 
steady.   

What controls the surface temperature of the Earth? 
Ice, clouds and oceans make the Earth seen from space largely blue and white.  The Earth 
is unique in the solar system in that the water on or near the Earth’s surface exists in 
solid, liquid, and vapor states.  But why is Earth the “water planet”?  Liquid water is 
stable in only a narrow range of pressure and temperature conditions.  That the Earth’s 
surface and atmosphere is found near this magic triple point of water requires 
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understanding what sets the surface temperature of the Earth.  This can be cast first as a 
problem in conservation of energy, and then as a radiation problem.   
 
Consider for now the Earth’s surface and atmosphere as a simple box.  This is our 
system, and we will quantify the energy that moves across the boundaries of this system.  
Later we will ask what drives energy about within the box, but that is later.  It is safe then 
to make the statement of conservation of energy: 
 
The rate of change of energy in the surface-atmosphere system = rate of energy delivered 
into it – rate of energy loss from it 
 
In this section I will ask the simplest question of this system.  I will dodge rates of change 
of the energy content in the system, and skip to the equilibrium or steady state situation.  
In this case, the left hand side of this word equation will be zero, and the rates of energy 
crossing the boundaries of the system must be equal: inputs must equal outputs. 
 
Energy enters the box by two means: heat is gained by the system by both conduction of 
heat from the earth’s interior, and radiation from the sun.  Heat is lost from the system by 
radiation of the Earth’s surface and atmosphere.  I state this for completeness.  In reality, 
the contribution from conductive cooling of the Earth (a heat flux of 41 milliwatts/m2 is a 
rough global average) is trivial compared to that received from the Sun (as we will see 
this exceeds 1 kilowatt/m2).  Given this discrepancy of more than 5 orders of magnitude, I 
will ignore the conductive contribution, which converts the problem to a pure radiative 
balance.  The incoming radiation from the very hot sun a long way away is balanced by 
the outgoing radiation of the much cooler Earth. 
 
The inputs and outputs are illustrated in Figure 4.1.  The radiative inputs are 
 E

in
= Q

o
(1!" )#R

e

2  (4.1) 
where Re is the radius of the Earth, Qo is the radiative energy flux from the sun at the 
distance equal to the radius of the Earth’s orbit, otherwise known as the solar constant, 
and α is the average albedo of the Earth.  Note that the solar beam is intercepted only by 
an area equal to the area presented to the sun: that of a circle the radius of the Earth.  The 
units of an energy flux, Q, are energy per unit area per unit time.  As written in equation 
1, the energy term therefore has units of energy per time – we should be calling it power.  
The term (1-α) represents the fact that not all energy arriving from the Sun is accepted 
into the atmosphere-surface system, but is instead rejected at the boundary; it is reflected 
away.  
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The radiative loss of energy to space takes on a similar form, modified only by the fact 
that the entire surface area of the Earth (=4πRe

2) participates in the loss: 
 E

out
= Q

e
4!R

e

2  (4.2) 
where Qe is the radiative energy flux to space from Earth.  With no further ado, we may 
now calculate this outgoing radiative flux: 

 Q
e
=
Q
o
(1!" )

4
 (4.3) 

The outgoing flux is tied directly to the incoming solar flux and to the albedo of the 
Earth.  The 4 in the equation represents the difference between the area accepting energy 
from the Sun and that across which energy leaks back to space. 
 
But how do we calculate the energy fluxes, and how do we get to temperature from an 
energy flux?  It is after all the temperature of the Earth’s surface that we wish to 
determine.  Radiative flux from a black body obeys the following formula: 
 Q

s
= !T

s

4  (4.4) 
where σ is the Stefan-Boltzman constant (5.67x10-8 watts-m-2K-4), and T is the surface 
temperature of the body emitting the radiation.  Here I have written this general 
expression for the specific case of energy flux from the sun, Qs, and the surface 
temperature of the sun, Ts.  In a transparent (non-absorbing) medium, such as outer space, 
the same total energy must pass through spherical shells of increasing radius.  The energy 
is conserved.  This requires that 
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 QA = Q
s
A
s
 (4.5) 

where A is the surface area of the shell and Q is the heat flux through the shell at some 
distance centered around the Sun.  At increasing distances from the Sun, the radiative 
energy flux Q must decline as the area of the sphere through which it is transmitted 
increases.  Solving this for the energy flux at a specific distance from the radiating object 
(here the Sun, with radius Rs), we get 
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The energy flux falls off with the inverse of the square of the distance from the object 
(Figure 4.1).  This is known as the inverse square law.  If the arbitrary R in the above 
equation is replaced with Ro, the radius of the Earth’s orbit around the Sun, then we can 
calculate the energy flux arriving at the top of the Earth’s atmosphere responsible for 
warming up the atmosphere-surface system of the Earth.  The distance Ro is roughly 150 
million km (or 93 million miles, as you may have memorized in elementary school).  The 
radius of the sun, Rs, is a little less than ¾ of a million km.  We can now assemble the bits 
of the problem into one final equation.  Equation 4.3 for the energy flux at the Earth’s 
orbit may now be transformed to 
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Cancelling the σ and taking the fourth root results in the formula for the temperature of 
the atmosphere-surface system of the Earth: 
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We must also estimate α, the albedo of the planet.  The albedo is a measure of the 
reflectivity of the planet, 1 being perfectly reflective, 0 being perfectly absorbing.  Only 
that portion of the sun’s beam that is not reflected contributes to heating the atmosphere-
surface system.  The global average albedo of the Earth is roughly 0.35.  (While outside 
the scope of this Little Book, I note that the early estimates of this number come from 
measurement of the brightness of the new Moon, which is illuminated not directly from 
the Sun but from the light reflected from the Earth.) 
 
We can now see that the mean temperature of any planet is set by the temperature of the 
Sun, by the radius of its orbit around the Sun, and by the average albedo of the planet 
when seen from space.  Before leaving this simple equation, inspect it.  This is always a 
good practice, as you want to assure yourself that you have not made any serious errors in 
the math, and you want to milk the equation for as much insight into the system behavior 
as possible.  You may wish to know how sensitive the temperature is to the variables 
contained in the equation.  The temperature of the planet goes linearly with the 
temperature of the sun’s surface; if the temperature of the Sun goes up 1%, so does the 
planetary surface temperature.  The planetary surface temperature declines as the radius 
of the orbit increases; the dependence is as a square root rather than linear.  The 
sensitivity of the planet surface temperature to the albedo is even smaller, going as the 
fourth root. 
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Let’s now plug in numbers.  The temperature of the sun is roughly 5770K.  How do we 
know this?  No one has been up there to measure it.  We know it from measurement of 
the peak wavelength, λmax, of the light emitted, and the relationship between this and the 
surface temperate, T, known as Wein’s Law:  λmax = a/T.  The constant a = 2898 if the 
temperature is in Kelvins, and the wavelength is in microns (10-6 m).  As the temperature 
of the radiating body increases, the peak wavelength of the radiation emitted declines.  
Given these numbers, we calculate first that the energy flux at the top of the Earth’s 
atmosphere is 1372 W/m2.  This is the solar constant, which you can see is more than five 
orders of magnitude greater than the conductive heat flux from the Earth’s interior.  
Finally, we can also calculate that the mean temperature of the Earth’s surface should be 
about 255K, or about –18°C.  Clearly this is not the case.  If it were, the Earth’s surface 
would be frozen solid, and water would not exist in either liquid or vaporous forms.  We 
can see from the plot of expected blackbody surface temperatures of the terrestrial planets 
(Figure 4.2) that except for Venus the actual and theoretical temperatures are not really 
too far off.  But being as little off in the case of Earth has huge consequences.  What have 
we done wrong in the calculation, or what is missing?   

 
 
First of all, we must admit to the sloppiness of this statement.  The surface temperature of 
the Earth is measured at the base of the system we have been considering.  While this is 
indeed what most interests human and most other biological occupants of the Earth, it is 
not what outer space “sees”.  As measured from outer space, the radiative temperature or 
black body temperature of the earth would indeed be about 255K; it would see radiation 
coming from mid-atmospheric levels, which are much cooler than those on the surface of 
the Earth.  In other words, we must begin to acknowledge that the “system” we are 



The little book of geomorphology 40 1/7/08 

assessing has a vertical dimension and that the temperature in it is not uniform.  We will 
see in a subsequent section that this energy lacks lateral uniformity as well, and that this 
lack of uniformity drives the entire climate system. 
 
Second, we have not taken into account the chemistry of the Earth’s atmosphere, which 
contains gases, some of them in trace amounts, that are excitable by particular slices of 
the spectrum of radiation emitted by the Sun and the Earth.  The excitation of the gases 
leads to absorption of some of the energy and alters the simple radiation balance we have 
just calculated.  Many of the gases of concern are molecules consisting of two or more 
atoms bound by bonds of particular lengths and strengths.  It is the vibrations and 
rotations of atoms in these molecules that are excited at specific wavelengths, which 
effectively consume some fraction of the energy in that wavelength band of the radiation.  
One can see from Figure 2.3 how gases like H2O, CO2, CH4, O2 and O3 absorb energy in 
specific wavelength bands.  Many of these wavelengths are around 10 microns, in what 
we call the infrared band.  Note also that light of wavelengths around 0.5 microns, the 
visible spectrum, is not absorbed by these same gases.  Radiation in most of the visible 
spectrum is not affected by the atmosphere.   

 
Now recall Wein’s Law, which implies that a body with a temperature of around 0°C will 
radiate at about 10 microns, while a body with the Sun’s temperature will radiate at about 
0.5 microns.  First, it is not a coincidence that wavelengths around 0.5 microns are called 
visible light – humans and most other animals have evolved to utilize this portion of the 
spectrum.  Second, it is in the longer (infrared) wavelength band, that being emitted by an 
Earth with a surface temperature around 15°C, that is most efficiently absorbed by the 
molecules listed above.  It is therefore this outgoing radiation that is intercepted by the 
atmosphere and used to excite atmospheric gases.  The higher the concentration of these 
gases, the more of this wavelength radiation will be absorbed, and prevented from getting 
to outer space to balance the incoming radiation.  Therefore, the Earth’s surface will have 
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to be yet hotter to produce enough outgoing radiation to balance the incoming solar 
radiation.  Hence the surface of the Earth is warmer than we calculated when we ignored 
the atmosphere.  These so-called greenhouse gases are therefore very important for 
allowing the surface temperature of the Earth to be a b it above 0°C, rather than a bit 
below it.  And it is presently the human alteration of the concentrations of these same 
gases that is forcing the global change of climate in the last hundred years.   

Redistribution of heat by the climate system 
We now embrace the non-uniform distribution of energy input to the atmosphere-surface 
system of the earth, and ask what pattern of poleward energy transport is required to 
allow the earth’s climate system to remain steady.  The basic problem is that much more 
heat arrives at low latitudes than at high latitudes due to the curvature of the earth.  In the 
absence of any transport, this would heat up the equator and cool off the poles to 
temperatures that are locally in radiative balance.  This is certainly not the case (the 
equator would be much hotter than it is, the poles much colder than they are).  Again, we 
can start from a conservation equation, this time one for energy.  The word picture is: 
 

The rate of change of energy  = incoming energy – outgoing energy 
 
There are two flavors of energy transport, one by radiation (both incoming shortwave and 
outgoing longwave), and advection of heat in either the ocean or the atmosphere (Figure 
1).  If the annual mean temperature at any given location on the earth is to remain steady 
over long time scales, then there must be a balance between all of the inputs and outputs.  
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The sum of incoming shortwave solar radiation and outgoing longwave infrared radiation 
sets the pattern of net radiation on the earth.  The incoming radiation, or more formally, 
the flux at a given latitude, depends upon the inclination of the earth’s surface relative to 
the sun averaged over a year.  The instantaneous solar radiation is set by the latitude and 
the tilt of the Earth’s axis of rotation: 
 Q

in
= (1!" )Q

o
cos(# +$)  (4.9) 

where Qo is the solar constant, or roughly 1372 W/m2, α the albedo of the Earth (about 
0.35), and θ is the tilt of the earth’s axis relative to the plane of the ecliptic.  This must be 
summed over the year, meaning that the effective tilt rotates through from -23 to 23° over 
365 days.  Another element of reality is that the albedo of the Earth is not uniform.  The 
albedo is affected by the differing albedos of clouds, land, and ice, none of which are 
uniformly distributed on the globe.  A net positive radiation input occurs in low latitudes 
(Figure 4.4), and a net negative radiative loss occurs in high latitudes.  If this were all that 
were happening, the poles would cool due to this continued net loss of heat by radiation, 
while the equatorial zone would warm.  That the Earth’s mean annual temperature is 
roughly steady (yes, the earth is warming, but it is warming slowly and due to other 
processes we are ignoring here) implies that the misbalance in radiative heat must be 
offset by other heat transport processes.  This is indeed the role of (the duty of) the 
climate system: the oceans and atmosphere must accomplish the transport of heat by 
advection, the transport of heat by a fluid in motion (see a later chapter on Advection).  
Before exploring in detail the means by which the heat is transported, i.e. how these 
duties are partitioned between atmosphere and oceans, we can calculate just how much 
heat must be transported by the climate system for a heat balance to be assured.   
 
The basic equation is one of conservation of heat.  We will see this in several other 
contexts, but for now consider a system in which both radiative and advective transport 
occurs.  The basic statement of conservation of heat is:  the rate of change of heat at a 
point on the Earth is equal to the inputs of heat from all sides of that parcel and the losses 
of heat from that parcel.  Put mathematically, this is: 

 dE

dt
= qin ! qout = QgeoA(") +QradnetA(") +Qo+a (") !Qo+a (" + d")  (4.10) 

where the 1st term on the right hand side represents the input from geothermal heat flux, 
the 2nd term represents the net radiative input or output from a latitudinal band with area 
A, and the other terms represent the meridional (N-S) poleward transport of heat by ocean 
and atmosphere across latitude φ  and across φ+dφ.  We can then evaluate the steady case 
in which dE/dt = 0.  Setting the left hand side of the equation to zero reveals that the 
gradient of the oceanic and atmospheric heat flux must be equal to the net radiation input 
plus any geothermal input.  As the latter is indeed trivial relative to the flux from the sun 
(tens of milliwatts/m2, vs hundreds of watts/m2), we will ignore it hereafter.  The balance 
is illustrated in Figure 4.5 for examples in both equatorial and polar latitudinal bands.   
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We can therefore visualize, before we actually perform the calculation, what the shape of 
the transport profile must look like: it must increase with latitude in the equatorial zone; it 
will reach its maximum where the net balance is zero, and will then decline toward the 
poles. Formally, the transport of heat required of the climate system (the oceans and 
atmosphere) is therefore the integral of the net radiation balance.  The integration requires 
that we take into account the area in each latitudinal band, which varies with latitude 
(Figure 4.6).  An increment of area in the integration, dA=2πrdφ, involves the changing 
local radius of the Earth, r = Rcosφ, where R is the true radius of the Earth.   

 
 

The integral is therefore 

 Qtransport = Qradnet 2!Rcos"d"
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This integration is shown in Figure 4.7.  Indeed, it shows the features we expected.   In 
addition, the measured transport by the oceans and the atmosphere is plotted.  The most 
recent summaries of these transport terms suggest that the oceans dominate in 
transporting heat poleward at low latitudes, but become minor players at higher latitudes, 
where the atmosphere reigns. 

 
I have shown only the pattern in the northern hemisphere.  That in the southern 
hemisphere would be similar, although not quite as simple given the nonlinear 
distribution of the net radiation shown in Figure 4.5. 
 
In these first two chapters we have explored heat transport and its relevance to broader 
Earth system issues.  In both cases we made substantial progress by appeal to the 
conservation of heat, and then worried through the formulation of the specific transport 
processes involved.  We have seen examples of heat transport by conduction, radiation 
and advection.  In this last problem, dealing with the climate system, we were also forced 
to work in a spherical geometry, which altered the details of the integration of the 
conservation equation to arrive at that for the fluxes.  



5.  Dating using cosmogenic radionuclides 

 
Sampling of bedrock in Sam Ford Fjord, Baffin Island, for cosmogenic 10Be in order to quantify the timing 
of last glacial ice retreat from the fjord.   
 
In geomorphology we often obtain rates of various surface processes by dating 
geomorphic features in the landscape.  For example, the rate of river incision into 
bedrock can be obtained by dating bedrock (so-called strath) terraces at a measured 
height above the modern stream.  In certain special settings, river incision can also be 
constrained by dating caves in the valley walls that were once occupied by the river as it 
sliced through the rock.  Recently, dating of both of these features has been achieved by 
using the concentrations of cosmogenic radionuclides. These are born of cosmic ray 
interactions with atoms in minerals in surficial rock and soil, and they decay by 
radioactive fission.  It is the concentration of these rare nuclides in soil and rock at the 
earth’s surface that we use to deduce timing in the landscape.  Given that nuclides are 
both produced and decay, we must take both processes into account in crafting an 
equation that governs the evolution of their concentration through time.  The word picture 
for the system is (Figure 1): 
Rate of change of number of atoms in the box = production of atoms in the box – decay of 
atoms in the box 
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If we know the volume of our box, the control volume, we can transform the number of 
atoms in the box to the concentration of atoms in the box, C.  This can be cast as: 

 dC!dxdydz

dt
= P!dxdydz " #C!dxdydz  (5.1) 

where C is the number of atoms per unit mass of quartz (atoms/gm qtz), ρ the density of 
the rock (kg/m3), P the production rate of new nuclides per unit mass of quartz (atoms/gm 
qtz – yr), λ the decay constant for the nuclide (1/yr), and dxdydz the volume of the box.  
This can be converted to an equation for the rate of change of nuclide concentration per 
unit mass of material (say atoms 10Be per gram of quartz, something we measure) by 
dividing by the mass, ρdxdydz, leaving 

 dC

dt
= P ! "C  (5.2) 

We can anticipate the shape of the solution by inspecting this equation.  At early times, 
low concentrations of nuclides will result in only small contributions from the second 
term, and the rate of growth of the concentration should be steady, set by the production 
rate P.  As concentration increases, however, the decay term will grow, forcing the rate of 
change of concentration to decline.  Ultimately, the concentration should become high 
enough that the production and decay terms balance, and a steady concentration should 
then be achieved.  This would occur when C = P/λ. Indeed, the solution to this equation 
shown in Figure 2 reveals just this behavior: 

 C =
P

!
1" e"!t#$ %&  (5.3) 
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The early growth rate (slope on the plot) is set by the production rate, P.  The asymptotic 
concentration is P/λ, at which point the system is said to be in “secular equilibrium”.  
This plot also reveals the time scale over which the concentration of a radionuclide will 
be useful as a clock.  Once the concentration gets so close to this asymptotic value 
(P/λ  )  that it is no longer changing significantly with time, the concentration can no 
longer be used to measure time.  The real limiting time for the method is dictated both by 
the characteristic time of decay, (or the “mean life”, 1/λ), and by our ability to measure 
concentrations (see Figure 2, with error bars).   

Examples 
Now let’s turn to a few examples of the use of this method.  This will force us to 
acknowledge several important features of the system.  I urge the interested student to 
explore this system further in extensive recent reviews by Granger and Muzikar (2001), 
by Cerling and Craig (1994) and by Phillips and Gosse).  We are just scratching the 
surface here.  First consider the history of radionuclide concentration a rock as it is 
exhumed.  We will ultimately sample this rock and convert the measured concentration in 
the surface sample to deduce the rate at which it was exhumed. We again employ the 
master equation (2) for the rate of change of concentration but now take into account that 
the production rate P will evolve as the rock parcel moves closer to the surface.  
Measured production rate profiles show that the production rate falls off exponentially 
with distance into any material, the length scale that scales the decline being dependent 
on the density of the material: 
 P = P

o
e
! z /z*  (5.4) 

where Po is the production rate at the surface, and z* is the length scale characterizing the 
rate of decline of production rate with depth.  The length scale z* = ! / " , where Λ is the 
mass interaction scale, and characterizes the interaction rate of the cosmic rays with any 
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material [=] M/L2, and ρ is the density of the material [=] M/L3, here rock.  If we assume 
that the exhumation rate is steady, at a rate e, then the conservation equation becomes 

 !C

!t
= P

o
e
"("#t )/z*

" $C  (5.5) 

where I have taken time, t, to be negative in the past, and 0 at the present.  We can work a 
simple end-member case.  Assuming that the exhumation rate is high enough that the 
newly created nuclides do not have much time to decay before the rock reaches the 
surface, we may ignore decay.  The ordinary differential equation becomes 

 C = P
o
e
!(!"t )/z*

dz

!#

0

$  (5.6) 

This may then be integrated to yield  

 C =
P
o
z *

!
 (5.7) 

Let us inspect the solution to assure that it behaves as we expect it.  First, is it 
dimensionally correct?  Yes.  The concentration is the product of a production rate with a 
time scale.  Here the relevant time scale is z*/ε.  As the exhumation rate increases, the 
rock spends less time in the production zone (within a few z* of the surface), and the 
resulting concentration at the surface declines. 
 
The fuller expression for the surface concentration, taking decay of nuclides into account, 
is 

 C =
P
o

! / z *( ) " #
 (5.8) 

Inspection of this equation reveals that in the limiting case of very low λ (long half life), 
or very rapid erosion, high ε, it becomes equation 5.7.  In other words, as long as decay is 
minor over the relevant time it takes to erode through the region in which production 
occurs, we are safe with equation 5.7. This method has been used to determine bedrock 
erosion rates at many sites around the world (e.g., see an early summary in Bierman, 
1994).  Examples of bedrock lowering rates in the alpine and desert areas of western 
North America reveal very slow rates of exhumation that are all only a few microns per 
year, or a few meters per million years. 
 
Armed with this knowledge, now consider the two cases I mentioned at the outset in 
which CRNs are used to date river terraces and caves.  In both cases we measure the 
concentration of radionuclides in sediment.   
 
Depositional surfaces 
More common than bedrock surfaces are sediment-capped surfaces, some simply 
mantling bedrock surfaces with several meters of sediment (marine terraces, fluvial 
terraces, pediments), others filling the landscape more deeply (alluvial fans, fill terraces, 
moraines).  These too, if sampled well away from edges of the surface that might be 
experiencing significant modification by either erosion or deposition, can be dated using 
cosmogenic radionuclides.  There is, however, a problem.  All of the sediment that 
accumulated to form the deposit came from elsewhere, therefore spent some time within 
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a few meters of the earth surface, and therefore had the chance to accumulate cosmogenic 
radionuclides.  This “inherited” component can be large compared to that obtained while 
sitting on or in the surface we wish to date. In addition, it will inevitably vary from one 
grain to another.  Each has its own history of exposure, and hence will arrive on the 
surface with its own inheritance.  This gives rise to considerable scatter if one dates 
single cobbles on a surface.  How do we see through this problem of inheritance?  The 
solution is expensive.  A method has evolved in which one measures the concentrations 
of several samples (hence the expense) in a vertical profile into the surface, each sample 
being an amalgamation of equal mass from many clasts.  The amalgamation process 
effectively averages out the inheritance, the stochastic component in the concentration, to 
which has been added a deterministic component that varies systematically with depth 
due to the decline in production with depth.  The expected profile is a shifted exponential 
(Figure 3) 
 C = C

in
+ P

o
T e

!(z /z*)  (5.9) 
The shift being is the mean inheritance of the sample, Cin, and the exponential portion of 
the profile represents the post-depositional accumulation of nuclides.  Once the shift is 
constrained, which is best accomplished with one or more samples from several meters 
depth, the remaining exponential can be solved for the time since deposition, T. 

 
This method has been used to date both marine terraces and fluvial terraces.  In a fluvial 
example, the terraces that bound both the Wind River in Wyoming and the Fremont River 
in Utah show this shifted exponential well (Figure 3).  As you might imagine, the 
inheritance itself can be used to constrain rates of exhumation in the landscape 
contributing sediment to the river.  If we have gone through the expensive exercise of 
documenting the inheritance, we might as well use it! 
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Caves 
We can even date cave deposits using cosmogenic radionuclides.  The method is based 
upon the fact that both 10Be and 26Al are produced in the same materials (quartz), and that 
26Al decays roughly twice as fast as 10Be.  If quartz-rich sediment is washed into the cave 
by the river responsible for the dissolution of the rock, and is then sequestered far enough 
underground to prevent further production of radionuclides within the sediment, then the 
differential decay of the nuclides results in decay in the ratio of their concentrations.  This 
ratio can then be used as a clock.  Mathematically, the ratio may be expressed as 

 R =
N

oBe
e
! t /"Be

N
oAl
e
! t /"Al

= R
o
e
! t /"R  (5.10) 

where 

 !
R
=

!
Be
!
Al

!
Be
" !

Al

 (5.11) 

Here Ro is the initial ratio (most often likely the production ratio, 6.1), and the mean life 
of the ratio, τR, is 1.9 Ma.  In principal, the ratio can therefore be used to date sediment as 
old as several of these time scales, or roughly 5 Ma.  This is the essence of what has 
become known as the burial age method (Granger et al., 1997).  As with most methods, it 
has several advantages, but a few drawbacks.  One principal advantage is that the method 
is immune to any temporal variations in the production rate, as it is simply decay that is 
being measured.  The necessary depth of burial is a couple tens of meters, deep enough to 
prevent production by both spallogenic and muogenic processes; most caves are at least 
this deep.  The cave sediment must be quartz-rich, meaning that somewhere in the 
headwaters of the cave there must be a quartz-rich source of sediment.  As it is only the 
inherited nuclides that we are counting with this method, the concentrations of 
cosmogenic radionuclides starts out small, and decays from there, halving every 2 Ma.  
Finally, we must know well the initial ratio of the nuclides, Ro.  That we know this to 
only roughly 10% (6.1 being the presently accepted value of the ratio of production rates, 
Ro), the ratio can only be known to that level.  This places a lower limit on the utility of 
the method.  Enough decay must have occurred to lower the ratio by more than 10% in 
order to have any confidence in the age.  Practically, this means that caves less than 300 
ka cannot be dated reliably at the moment.  Nonetheless, that we can date these voids 
beneath the earth’s surface at all is remarkable, and opens up their use as a means of 
documenting the rates of incision of the streams responsible for them. 
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The examples shown are but the tip of the cosmogenic iceberg.  Many other applications 
can be found in a growing literature on the topic.  These include documentation of the 
basin-averaged rate of exhumation, dating of stratigraphy, and use as a tracer in mixing 
models of sediment in littoral settings. 



6.  Lakes 

 
Small lake in Gore Range, central Colorado. 
 
Lakes reflect geological accidents.  Many lakes require that some obstacle pond up a 
river en route to the sea.  This obstacle could be a moraine, a landslide, or a body of ice 
(ignoring for the moment both human and beaver activities).  Such damming could reflect 
tectonic emplacement of a barrier by faulting, creating a closed basin with no outlet to the 
ocean.  We would like to know what sets the level of a lake.  We expect the lake level 
will reflect some aspect of the climate, making ancient lake levels proxies or records of 
climate in the past.  But in order to be more quantitative, to turn an ancient lake shoreline 
elevation into a quantitative proxy of past climate, or to predict how changes in climate 
might affect future lake levels, we must be rigorous about what determines the lake level.  
The failure of natural dams that hold back lakes can also play an important role in the 
geomorphology of the rivers downstream by producing floods far larger than those that 
the weather can produce.  In this section we will ask two questions: how climate sets lake 
level in a specific lake basin, and what sets the peak discharge from a lake when its 
natural dam breaks. 
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Consider the lake basin illustrated in Figure 1.  The lake with area Alake occupies some 
fraction of the basin whose total area is Abasin.  We begin with the relevant statement of 
conservation, here of lake volume. 
 
Rate of change in storage of water  = Rate of inputs of water – rate of outputs of water 
 
This change in storage will be reflected in the change in lake level, which is our most 
easily measured quantity, and the most important quantity for those living on the edge of 
the lake.  Let’s look at each of the terms in this equation one at a time. 
 
Rate of change of storage  Rate of change of something means the partial derivative of 
that quantity.  Here the quantity is the storage of water, by which we mean the volume of 

water in the lake, V.  Therefore, the left hand side of the equation for conservation is 
dV

dt
. 

 
Inputs  Water arrives at the lake either as direct precipitation onto the lake surface, or as 
runoff from the basin contributing to it.  As each term in the expression must have units 
of volume per time, we write that the direct precipitation adds water to the lake at a rate 
of PAlake.  Runoff from the landscape we can write as the sum over all rivers discharging 
into the lake, Q, where Q is reported in m3/second, or its equivalent over a year.  
Therefore, the inputs are 

� 

PAlake + Q. 
 
Outputs  A lake can lose water in several ways.  These include leakage in groundwater, 
spill over the top of the dam out of the basin, and evaporation (again ignoring human 
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withdrawals).  The major output from a closed basin is through evaporation, which can be 
written as

� 

EA
lake

. 
 
We now assemble these terms into our final expression for conservation of lake volume: 

 dV

dt
= PAlake +Q ! EAlake  (6.1) 

Following the strategy of doing the simplest exercises first, we ask what is the level of 
the lake when it is in steady state.  This allows us to ignore any rates of change, in which 
case the left hand side of the equation vanishes.  At steady state, the inputs must equal the 
outputs, meaning that the sum of the two must be zero.  It sounds quite simple.  But 
imagine that I look up values of P and E from the climatology of a region, and Q from a 
water resources report, or USGS web site.  I can isolate Alake on one side of the equation, 
and solve for it.  But I am not interested in the area of the lake.  Instead I wish to know 
the level of the lake, zlake.  I need more information.  I must know how to translate lake 
area into lake level.  This translation comes from the topography of the basin.  More 
specifically, it requires we know the “hypsometry” of the basin, its area as a function of 
elevation, A(z).   

A steady conical lake 
Imagine first a geometrically simple basin in which the topography is an inverted cone 
with a spreading angle α.  The area of the base of the cone is that of a circle whose radius 
is R=z/tan(α).  The area of the lake is then related to the lake level through 
 A

lake
= !R

2
= ! (z

lake
/ tan" )

2  (6.2) 
We may now isolate zlake on the left hand side and solve for the lake level as a function of 
the local climatic variables, P and E.  In order to simplify the exercise by one more step, 
consider that we can cast the expected discharge of a river as the product of the effective 
precipitation with the basin area.  Here the relevant basin area contributing runoff would 
be that not covered by the lake, or Abasin-Alake.  The resulting formula for inputs would 
then be 
 PAlake + Peff (Aba sin ! Alake ) = PAlake + "P(Aba sin ! Alake )  (6.3) 
where β is a runoff coefficient, the fraction of precipitation that participates in runoff.  
The full water balance for the basin is now 
 EA

lake
= PA

lake
+ !P(A

ba sin
" A

lake
)  (6.4) 

Using the approximation that the lake area is small relative to the basin area (this is the 
case in most basins), this reduces to 
 EA

lake
= PA

lake
+ !PA

ba sin
 (6.5) 

Solving for the area of the steady state lake, this becomes: 

 A
lake

=
!P

E " P
A
ba sin

 (6.6) 

Note that before we proceed, the expected lake area is indeed small relative ot the basin.  
In the arid western North America, for example, a common annual evaporation might be 
several m (call it 2 m), while the annual precipitation might be a few tens of cm (call it 20 
cm).  Even if the efficiency of converting precipitation to runoff is 100% (β=1.0), the 
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lake area becomes 0.2/(2-0.2) = 0.11 of the basin area.  Finally, converting the lake area 
to lake level through the hypsometry, we have a formula worth working with: 

 ! (z
lake
/ tan" )2 =

#P

E $ P
A
ba sin

 (6.7) 

Solving for the lake level, this becomes: 

 z
lake

=
tan!( )

2

"P

# E $ P( )
A
ba sin

 (6.8) 

Given all these steps, it is worth checking the solution to make sure it makes sense.  First, 
the final formula had better have the correct dimensions – here, a length scale.  The right 
hand side is indeed a length scale, because π, α and β are dimensionless, P and E have 
the same units (hence their dimensions cancel out), and we are therefore taking the square 
root of an area.  Does it have the right sign (we expect zlake>0)?  As E-P is always > 0, 
and all other variables are positive, we are ok there as well.  Now does it behave as we 
expect it to as the basin changes?  As the basin area increases, the contributing area 
increases and we ought to have more water delivered to the lake.  As the basin slope, α, 
increases, the basin becomes a narrower cone, and the same lake area is not achieved 
until the lake is deeper.  So this makes sense as well.  It appears then that for a given 
basin the lake level goes as  

 
 

z
lake
!

!P

E " P( )
 (6.9) 

Another way to formalize this relationship is to non-dimensionalize the equation, 
isolating those variables that control the basin geometry on the left and those that control 
the climate on the right: 

 z
lake

tan! A
ba sin

/"
=

#P

E $ P( )
 (6.10) 

Real basin geometries 
Of course, real basins are not simple cones.  Digital topographic maps, however, ease the 
construction of hypsometries, so that our assumption of a conical lake may be relaxed. 
Figure 2 displays the hypsometric curve for Mono Lake basin in eastern California.  
Shown in log-log space, the A(z) data reveal a straight line whose slope is about 1.4.  This 
means that the area goes as the 1.4 power of the lake level (as opposed to the 2nd power as 
in our conical lake).  In other words,  
 A = a(z ! z

base
)
1.4  (6.11) 

where zbase is the elevation of the base of the lake basin, and a is a constant we can 
evaluate by the intercept on the plot.  The same analysis can be performed on this real 
basin.  One can still derive the relationship between lake level and climate variables using 
the A(z) function in equation 13 in place of equation 2. 
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In addition, one might want to drive the components of the climate with real time series 
of climate, or projected time series of future climate.  Here one would want to drive 
evaporation with more fundamental climate variables such as temperature, wind and 
humidity.  For examples of this sort of modeling effort, see Hostetler and others (1994), 
or Menking et al. (2004). 

Big floods 
The largest floods by far are those generated by the failure of dams.  In non-dammed 
landscapes water moves relatively rapidly off the landscape.  It passes at cm/second over 
hillslopes (overland flow) or more slowly through the shallow groundwater system to the 
edge of a stream, and then down the tributary network to the ocean.  Typical rates of flow 
in the fluvial system are 1 m/s.  Even in very long river systems (the longest reach 6000 
km, or 6x106 m) this speed translates into a travel time of 0.2 years [here I used a very 
handy shorthand that there are π times 107 seconds, or about 30 million seconds]).  This 
means that outside of the deeper groundwater systems, surface water spends less far than 
a year moving across the landscape.  In contrast, dams serve to store water on the 
landscape for years to decades, even centuries.  Their failure releases this water over a 
very short period of time.  These events can punctuate the riverine flood record, and 
wreak such havoc on the river that it retains the record of these largest floods.  The Snake 
River corridor in Idaho faithfully records the one-time passage of the great Bonneville 
Flood released from Lake Bonneville in the great Basin about 14500 years ago. This 
flood was first proposed by Gilbert (1890).  Its effects on the Snake River corridor were 
described by Malde (1968), and more recently addressed by O’Connor (1993).  The 
channeled scablands of Columbia record the repeated floods from failure of glacially 
dammed Lake Missoula during the last glacial maximum (e.g., Baker (1978); Waitt 
(1985).  While the alluvial dam of lake Bonneville could not rebuild, the ice dam of the 
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Okanogan Lobe of the Cordilleran ice sheet was capable of healing.  These floods, called 
the Spokane Floods, occurred about every 60 years!   
 
Here our task is to estimate how large the peak discharge might be from failure of such 
dams.  I have turned to papers by Walder and Costa (1996) and Walder and O’Connor 
(1997) for guidance.   

 
 

That the release of water is so rapid compared to the inputs allows us to simplify the 
water balance equation by ignoring all inputs and all losses other than discharge through 
the breach: 

 dV

dt
= !Qout

 (6.12) 

Climate becomes irrelevant, and we focus on what sets the discharge out of the lake, 
through the breach in the dam (Figure 3).  This outlet discharge will depend on both the 
area of the breach, and the speed of the flow.  In other words, Qout = WHU, where W is 
the width of the breach, H the height of the water surface above the base of the breach, 
and U the mean speed of the water.  We have a few pieces to put in place before we can 
proceed.  We need to specify the initial breach size and perhaps its evolution.  We need 
an equation for what sets the average speed of flow through the breach.  And on the left 
hand side of the equation we need to relate the lake volume to the lake level.  The worst-
case scenario would be that the breach is instantaneously as large as it will get.  It fails so 
rapidly that the detailed evolution of the breach is irrelevant.  This results in the worst 
case because the cross sectional area of the water flowing through the breach is its 
maximum value.  If we are trying to estimate the largest flood a lake could produce, 
which one might want to know if living in a town on the floodplain downstream, this is 
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the calculation to make.  Here we make use of an observation that the flow through a 
notch goes “critical” somewhere within its passage through the notch.  By critical here I 
mean that its Froude number goes to 1.  The Froude number is one of those 

dimensionless numbers in fluid mechanics, and is defined by Fr =
U

gH
, where H is the 

flow depth and g the acceleration due to gravity.  This number reflects the relative 
importance of inertia and gravity in the problem, and discriminates between tranquil flow 
(Fr<1) and supercritical or shooting flow (Fr>1).  In the breach, then, we can say that 
 U = g!(H " zbreach )  (6.13) 
where β is a factor between 0 and 1 reflecting this “somewhere” factor.  It is taken to be 
about 2/3 by Walder.  The water balance equation now reads 

 dV

dt
= !W"(H ! zbreach ) g"(H ! zbreach ) = !Wg1/2" 3/2

(H ! zbreach )
3/2  (6.14) 

The rate at which water leaves the lake is set by the 3/2 power of the flow depth.  Now 
we need to modify the left hand side.  We need a relationship between lake volume and 
lake level.  In the simple conical lake we saw that this relationship was a power law, and 
in Mono Basin we again saw a different power law.  For convenience, then, let’s simply 
assert that lake volumes will depend upon the lake level taken to a power, p, that we can 
determine from maps or DEMs of real basins.  The simplest expression is therefore 
 V = !(H " zbreach )

p  (6.15) 
If we want on the left hand side of equation 14 an expression for rate of change of lake 
level, rather than rate of change of lake volume we must use the chain rule: 

 dV

dt
=
dV

dh

dh

dt
= ! ph

p"1 dh

dt
= ! p(H " zbreach )

p"1 d(H " zbreach )

dt
 (6.16) 

where I have used the flow depth h=H-zbreach.  Inserting this in equation 14, and dividing 
by the factor in front of the derivative, we arrive at a final equation for the evolution of 
the flow depth: 

 !(H " zbreach )

!t
= "

Wg
1/2# 3/2

(H " zbreach )
3/2

$ p(H " zbreach )
p"1
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(H " zbreach )

3/2" p+1  (6.17) 

This is still a little intimidating.  Using instead our definition of flow depth above the 
breach, h, and recognizing that all variables besides this may be collected into a single 
constant, this becomes more simply 

 dh

dt
= !" h3/2! p+1  (6.18) 

Let’s dissect this a bit.  I usually turn to the simplest possible case.  Here this would 
where p=3/2.  The power on h then becomes 1, the equation becomes the 1st order linear 
ODE that we encounter in the first pages of a textbook on ODEs, and the solution of the 
equation is an exponential 
 h = h

o
e
! t /"  (6.19) 

where ho is the initial height of the lake above the breach, and τ is a characteristic 
timescale for the decay of lake level (and hence discharge of water from the lake).  
Noting that in this case, the constant γ has units of 1/time, the characteristic time scale 
τ=1/γ, or 
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1/2# 3/2

 (6.20) 

Does this make sense?  The main variables here are W, the width of the breach, and α, 
which scales the lake volume.  We expect that a wider breach will release water more 
rapidly, meaning that the flood would decline more rapidly.  This is indeed the case; the 
time scale τ is shortened as W increases.  On the other hand, the larger α is, the greater 
the lake volume for a given lake depth.  It will therefore take longer for the lake to draw 
down, all other things being constant.  It therefore makes sense that α is in the numerator. 

 
 

There is no reason that real lake basins should have this magic geometry in which p=3/2.  
I present in Figure 4 an example of numerical integration of these equations for discharge 
and lake level using p = 1.25.  The equation governing evolution of the lake level will 
therefore not reduce to the simple linear form whose solution we know to be an 
exponential.  But most lake basins display p>1, and we don’t expect wildly different 
behaviors of the resulting lake level evolution equation.  Before moving on, we should 
make sure we understand why the lake level behaves at least roughly as an exponential.  
Given the assumptions we have made (most crucially, instantaneous insertion of the full 
breach), we expect that the maximum discharge will occur immediately after the breach 
opens.  It is then that the cross sectional area of the flow passing through the breach is 
greatest, and it is then that the flow speed should be greatest.  As the lake level drops, 
both the cross section of the flow and the mean speed drop.  And they do so consistently 
until there is no more water to extract. 
 
I note in closing this section that we are in a position to estimate the peak discharge.  As I 
have just said, this occurs when h = ho.  Hence 
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 Qpeak =Wg
1/2! 3/2

ho
3/2  (6.21) 

For example, if a dam fails, whose height is 50 m, and the breach widens rapidly to 100 
m, the peak discharge would be Qpeak = 100*101/2*(2/3)3/2*503/2, or 60,300 m3/s.  Note 
that because the thickness of water above the breach base falls off roughly exponentially, 
the discharge will decline even more rapidly than an exponential, as is seen in Figure 4. 
While these equations serve as a first order predictor of time scales and discharges, I note 
that a far more comprehensive treatment is available in Walder and Costa (1996) for ice 
dams and in Walder and O’Connor (1997) for earthen dams.  Because these authors treat 
the evolution of a breach, they can relax the assumption of the instantaneous insertion of 
the breach, which in turn reduces the magnitude of the peak discharge.  The longer it 
takes to reach the maximum width and depth of the breach, the more water will have 
been pulled out of the lake before the leak is most efficient. 
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7.  Continuity or the Conservation of Mass 
 

 
 
One of the most general and most powerful statements one can make in the earth sciences 
is that mass must be conserved.  In this section we will formalize this statement to arrive 
at a compact form that we can then manipulate for special cases.  The case we will focus 
on is that in which the material is incompressible, as this is indeed the case in most 
geological and certainly most geomorphic problems.  As a point of terminology, when 
you hear someone say “by appeal to continuity”, they typically mean that “when mass is 
conserved”. 
 
Consider a fixed volume with sides dx, dy and dz.  We call this the control volume in the 
problem, and can dictate that it not change in size.  The word statement for conservation 
of mass in this control volume is simply: 
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The rate of change of mass within a control volume = the sum of the masses leaving or 
entering through its edges 
 

 !("dxdydz)

!t
= inputs # outputs  (7.1) 

The left hand side represents the rate of change of mass within the control volume of 
fixed volume dxdydz (Figure 1).  Note that we have not allowed any sources or sinks of 
mass within the volume; it can neither be created nor destroyed. 
 

 
 
We now need expressions for the inputs or outputs of mass through the walls of the 
control volume.  These will be the products of mass fluxes with the areas of the walls.  
For example, the transport of mass across the left wall is the mass flux ρu evaluated at 
that wall, i.e. at the position x.  Let’s make sure we agree that the product ρu is a mass 
flux.  The units of this product are M/L3*L/T = M/L2T.  According to the definition I am 
using throughout this text, this is indeed a mass flux: a mass per unit area per unit time.  
To determine the total mass transported across the wall per unit time is then the product 
of this mass flux with the area of the wall.  Taking each term in succession, representing 
total transport of mass across each wall, we now have 
!("dxdydz)

!t
= "u( )

x
dydz # "u( )

x+dx
dydz + "v( )

y
dxdz # "v( )

y+dy
dxdz + "w( )

z
dxdy # "w( )

z+dz
dxdy  (7.2) 

This is a very general statement for conservation of mass, or continuity. We may divide 
through by the volume of the parcel to simplify this, collecting terms on the right hand 
side so that they are recognizable as derivatives: 
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Acknowledging that each of the terms in square brackets is a derivative (by definition, as 
the element shrinks, in the limit as dx, dy, dz->0), this simplifies to 
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 (7.4) 

Each of the terms on the right side represents accumulation or loss of mass due to 
gradients in transport in a particular direction.  Make sure you understand why the minus 
signs are there.  Consider the first term as an example.  The derivative is positive when 
more mass leaves across the right hand wall than arrives through the left hand wall.  This 
should reduce the mass in the box, and the negative sign assures that this is the case: 
positive gradients lead to negative rate of change of mass in the box.   
 
We have assumed nothing at all about the substance being conserved.  It could for all we 
know be the mass of ice in a glacier or the mass of fish over a shoal or the mass of peas 
on your plate.  What is the next step?  The next step is to recognize that the quantities on 
the right hand side are products of density and speed, both of which, in general, are 
variables.  We must therefore use the product rule to expand each of these derivatives.  
While this action will double the number of terms on the right, it will allow us to recollect 
them in two groups with different meanings.  
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Moving them to the left hand side those terms with density derivatives, and factoring out 
the density from the remaining terms on the right leaves 
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We can now recognize the left hand side as the total derivative (or substantial derivative, 
or derivative following the material; see the chapter on substantial derivative).  When the 
derivative of some quantity following the fluid is zero, it means that that quantity is not 
changing as the material moves.  In this case, the quantity is density; when it does not 
change while following the parcel means that the material is incompressible. In other 
words, 

 D!

Dt
= 0  (7.7) 

is shorthand for an incompressible material. Under such conditions, then, the left hand 
side goes to zero, we can divide by (-ρ), and the continuity equation reduces to 

 
!u

dx
+
!v

dy
+
!w

dz
= 0  (7.8) 

The shorthand for this equation, in vector notation, is 
 ! "U = 0  (7.9) 
where both the del operator and the velocity U are vectors.  Whether in the component 
notation or vector notation, this incompressible form of the continuity equation is very 
commonly the first equation in a paper on fluid mechanics.  Because it is so common, it 
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is worth absorbing deeply.  Each of the terms in equation 1.8 is a strain rate.  They are 
equally well called gradients in velocity or strain rates.  Their units are (L/T)/L, or T-1.  
Since strain is dimensionless, a change in length divided by an original length, this is a 
rate of strain.  If the material is incompressible, then a positive strain rate in one 
dimension must be compensated for by a strain rate in one or the other or both other 
dimensions.  Say there is a positive gradient in speed in the x direction, meaning that 
!u / !x > 0 .  This means that the material is stretching in the x direction.  If the material 
is incompressible, it must simultaneously be thinning in at least one of the other 
dimensions.  This thinning, in which particles of material are coming closer together, 
requires negative velocity gradients. 

The Variegated Glacier surge 
We can straight-forwardly apply this concept to explain the pattern of thickening 
associated with the propagation of a glacier surge down the Variegated Glacier in Alaska 
in 1982-1983 (Kamb et al., 1985).  While most glaciers are well-behaved, and dutifully 
transport the excess ice arriving in the accumulation zone toward the ablation zone year 
after year, some small fraction of glaciers are not.  These ill-behaved glaciers are called 
surging glaciers.  They wait for many years to decades before performing this principal 
task of a glacier, and then do so in dramatic fashion.  Glacier surges require rapid motion 
of the glacier, which is accomplished by rapid basal motion rather than rapid internal 
deformation.  The surge is typically initiated in the upper reaches of the glacier, and 
propagates downvalley, bringing with it huge amounts of ice.  The pattern of strain 
experienced by a parcel of ice as it is transported during a surge results in a highly 
crevassed surface on which one should not even imagine traveling. 
 

 
 
Seen at a point, say through the lens of a fixed camera pointed at the ablation zone, the 
glacier is at first relatively thin because so little ice has been delivered to the ablation 
zone for years, then thickens rapidly as the bulge of the surge arrives.  Our task is to 
understand why this thickening occurs, and at what rate it should occur if we know 
something about the down-valley pattern of horizontal motion.  In other words, for a 
measured pattern of u(x), what is the expected pattern of thickening, dH/dt(x)?  The 
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pattern of ice speeds, as documented from repeated surveys of stakes on the glacier 
surface, is shown in Figure 3. 
 

 
 

The propagation of the surge front into the reach of glacier between km 12 and 18 is 
clear, as ice speed at a point increases from <1 m/d to > 40 m/d.  The spatial pattern of 
horizontal speed at any time shows a very strong negative gradient of order -20 m/d per 
km.  The pre-surge ice thickness in this reach of the glacier is roughly 150 m (dashed line 
in (b)).  Let’s see if we can get in the ballpark with an estimate of the pattern of  
thickening using our concept of continuity.  Our goal is an expression for the expected 
pattern of vertical velocities at the ice surface, i.e. for w(H), where H is the thickness of 
the ice.  From equation 1.8, we have  

 
!w

dz
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 (7.10) 

The rate of change of vertical velocity, w, with height above the bed, z, must equal the 
sum of the velocity gradients in x and y speeds.  But the glacier is well-confined within its 
walls, and not much of the crunch associated with the huge gradient in horizontal down-
valley speed is taken up by gradients in the lateral direction.  So to first order we may 
ignore dv/dy, resulting in 

 !w

dz
= "

!u

dx
 (7.11) 

We need to integrate this equation in the vertical dimension in order to estimate w at a 
given height above the bed, z.  In doing so we can make use of another simplification: as 
the horizontal speeds of a surge are entirely accomplished by basal motion or sliding of 
the glacier against its bed, they are independent of height above the bed.  The glacier is 
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moving like a plug; u(z) = Uslide = Usurface.  Therefore both u and du/dx are independent of 
height above the bed.  This means that 
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We wish to know the vertical speed at the ice surface, i.e. at z=H.  The final expression 
for the expected vertical (uplift) speed is 

 w(H ) = !
"u

dx
H  (7.13) 

The uplift speed or thickening rate of the glacier should be the product of the ice 
thickness with the local gradient in the horizontal ice speed.  The greater the rate at which 
the column of ice is being squeezed by the horizontal strain rate, and the greater the 
original height of the column being squeezed, the greater the thickening rate. We can see 
qualitatively from Figure 3 that this is the case during the Variegated Glacier surge.  But 
let’s get quantitative.  On May 17th the gradient at km 15, in the middle of the strong 
speed gradient, is about -20m/d-km (or, stated another way, a horizontal strain rate of 
0.02 d-1), and the pre-surge ice thickness is 175 m.  From equation 1.13 we predict a 
vertical speed of the ice surface of about 3.5 m/d.  In the 6 days between May 17th and 
23rd, the ice thickened by about 28 m at km 15.  Our calculated total uplift is 6 d*3.5m/d 
= 21 m.  We are indeed in the ballpark. 
 
Now inspect the lead photograph to this section.  Seen immediately after the surge of 
1982-83, the surface of the Variegated is diced into a city of ziggurats.  These 
intersecting sets of crevasses, some of them many tens of m deep, reflect the strain 
history to which the surface has been subjected.  The first set was longitudinal: it went up 
and down the glacier.  The insertion of these crevasses occurred at a time when the 
glacier was thickening.  It thickened most where the original thickness was greatest: in 
the centerline.  This led to steepening and stretching of the ice surface in the lateral 
dimension.  At the surface, the strain rates must have exceeded the strength of the ice, 
and it broke elastically to create this crevasse set.  At this point the ice is thick, and 
broken into longitudinal slices.  The second set of crevasses occurred after the surge front 
passed.  Note in Figure 3a that the spatial pattern of horizontal speed at any time reaches 
a peak and then falls off upglacier. Upglacier of the peak in surge speed, a positive 
gradient exists in the glacier speed.  For example, on 6/13, the speed increases 
downglacier from 41-53 m/d over about 1 km.  The +0.012 d-1 positive horizontal strain 
rate would lead to stretching in the downglacier direction.  Indeed, the second set of 
crevasses is normal to this stretching direction; the ice at the surface again fractured when 
subjected to such great rates of horizontal strain.   
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8.  Glaciers 

 
Palisades Glaciers, eastern Sierras, California, shown in September 1990.   Little Ice Age moraines show 
ice extent roughly 100 years ago, and ELA separates accumulation above from ablation zone below. 
 
Glaciers grace the tips of our highest mountain ranges.  They are responsible for 
erosional modification of the mountains.  And as they are sensitive to climate, they are in 
some sense the canaries in the coal mine of global climate change.  We would like to be 
able to predict the position of the terminus of a glacier, and just how this reflects the 
climate.  Once again, the problem comes down to a balance, this time of mass of ice.  
One may find in the bible of the glaciologists, Paterson's The Physics of Glaciers, now in 
its 3rd edition, at least one chapter on mass balance alone.   
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The word picture describing the volume balance set up in Figure 1 is: 
 
Rate of change of ice volume = rate of ice input – rate of ice output 
 
 One may formalize the illustration of the mass balance shown in Figure 1 with the 
following equation: 

 !h

!t
= b "

1

W

!Q

!x
 (8.1) 

where W is the local width of the glacier.  Let's talk about each of the terms.  Mass can be 
lost or gained through all edges of the block we have depicted (the top, the base, and the 
up- and down-ice sides).  Here the b represents the "local mass balance" on the glacier 
surface, the mass lost or gained over an annual cycle.  It is usually expressed as a change 
in height of the ice surface, i.e., meters of ice equivalent.  This quantity is positive where 
there is a net gain of ice mass over an annual cycle, and negative where there is a net loss.  
Where the mass balance is zero defines the "equilibrium line altitude", or the ELA, of the 
glacier (see Figure 2).  The mass balance reflects all of the meteorological forcing of the 
glacier, both the snow added over the course of the year, and the losses dealt by the 
combined blows of ablation (melt) and sublimation.  Where the annual mass balance is 
positive, it has snowed more than it melts in a year, and vice versa.  To first order, 
because it snows more at higher altitudes, and melts more at lower altitudes, the mass 
balance always has a positive gradient with elevation.  
 
One may measure the health of a glacier by the total mass balance, reflecting whether in a 
given year there has been a net loss or gain of ice from the entire glacier.  This is simply 
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the spatial integral of the product of the local mass balance with the hypsometry of the 
valley:  

 B = W (z)b(z)dz

0

zmax

!  (8.2) 

This exercise is carried out on at least a dozen Norwegian glaciers on an annual basis.   
The Norwegians are interested in the health of their glaciers in large part because a 
significant portion of their electrical power comes from subglacially tapped hydropower 
sources.   
 
It is a common misconception that a considerable amount of melting takes place at the 
base of a glacier, because after all the earth is hot.  Note the scales on the mass balance 
profiles.  In places, many meters can be lost by melting associated with solar radiation.  
The heat flux through the earth's crust is about 41 mW/m

2
 (defined as one heat flow unit).  

This is sufficient to melt about 5 cm of ice per year, a trivial amount when contrasted 
with the high heat fluxes powered in one or another way by the sun.  As far as the mass 
balance of a glacier is concerned, then, there is little melt at the base of the glacier. 
  
If nothing else were happening but the local mass gain or loss from the ice surface, a new 
wedge of snow would accumulate, which would be tapered off by melt to a tip at the 
ELA (or snowline) each year.  Each successive wedge would thicken the entire wedge of 
snow above the snowline, and would increase the slope everywhere.  But something else 
must happen, because we find glaciers poking their snouts well below the ELA, below the 
snowline.  How does this happen?  Ice is in motion.  This is an essential ingredient in the 
definition of a glacier.  Otherwise we are dealing with a snowfield.  The Q terms in the 
mass balance expression reflect the fact that ice can move downhill, powered by its own 
weight.  Ice has two technologies for moving, one by basal sliding, in which the entire 
glacier moves at a rate dictated by the slip at the bed, the other by internal deformation, 
like any other fluid (see Figure 7).  We will return to a more detailed treatment of these 
processes in a bit.  Know for now that the ice discharge per unit width of glacier, Q, may 
be defined as the product of the mean velocity of the ice column, <u>, with the thickness 
of the glacier, h.   
 
Given only this knowledge, we can construct for ourselves a model of a glacier in steady 
state, one in which none of the variables of concern in the mass balance expression are 
changing with time.  Setting the left hand side (lhs) to zero, then, we see that there must 
be a balance between the local mass balance of ice dictated by the meteorological forcing 
(the climate) and the local gradient in the ice discharge.   

 Q(x) = W (x)b(z(x)) dx
0

x

!  (8.3) 

Here we have taken x = 0 at the up-valley end of the glacier.  Ignoring for the moment the 
width function W(x), reflecting the geometry (or really the hypsometry) of the valley, we 
see that for small x, high up in the valley, since the local mass balance is positive there 
the ice discharge must increase with distance downvalley; conversely, it must decrease 
for distances below that associated with the ELA.  The ice discharge must therefore go 
through a maximum at the ELA.  In addition, since the discharge Q must increase at least 
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as fast as the ice thickness (Q has H in the expression already, and if <u> increases with 
H it will be even more sensitive to H), we might expect that the ice thickness is also a 
maximum at the ELA.   
 

 
Many mass balance profiles show an essentially linear increase in the local mass balance, 
b, with elevation, z, defined by the gradient of balance with elevation, γ, and the elevation 
at which the balance crosses zero, the equilibrium line altitude, denoted here by zela: 
 b = ! (z " z

ela
)  (8.4) 

Conservation of ice in a representative valley-spanning column of width W requires that 
the rate of change of ice cross-section, HW, include meteorologically driven loss or gain 
of ice through the top of the column, bW, and the divergence of ice flux through the up-
glacier and down-glacier sides of the column.  In 1D, this becomes 

 
! HW( )

!t
= bW "

!Q

!x
 (8.5) 

For a steady state glacier the left hand side equals zero, and the divergence of ice flux 
must equal the volume of ice gained or lost through the top of the column: 

 dQ

dx
= bW  (8.6) 

The steady-state pattern of ice discharge, Q(x) becomes: 

 Q(x) = Wbdx
0

x

!  (8.7) 

The location of the glacial terminus lies at the x-position where the ice discharge down-
valley of the ELA vanishes.  Using analytical and numerical solutions of this equation, 
we explore the effects of the climate through b(x) and of valley geometry through W(x). 
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To illustrate this, we show in Figure x a simulation of the evolution of a small alpine 
glacier in its valley, starting with no ice and evolving to steady state.  We impose a 
simple capped linear mass balance profile, and hold it steady throughout the model run.  
Similar modeling exercises have been used recently to explore the sensitivity of alpine 
glaciers to climate changes in the past and in the future (e.g., Oerlemans, 2005). 

 
 

This exercise also yields another interesting result.  In steady state, we find that within 
the accumulation area, the ice discharge must be increasing down-valley in order to 
accommodate the new snow (ultimately ice) arriving on its top.  Conversely, the ice 
discharge must be decreasing with down-valley distance in the ablation region.  This has 
several important glaciological and glacial geological consequences.  First, the vertical 
component of the trajectories of the ice parcels must be downward in the accumulation 
and upward in the ablation zone, as shown in all elementary figures of glaciers, including 
Figure x.  As a corollary, debris embedded in the ice is taken toward the bed in the 
accumulation zone and away from it in the ablation zone.  Glaciers tend to have concave 
up-valley contours above the ELA, and convex contours below.  Debris therefore moves 
away from the valley walls in the accumulation zone and toward them in the ablation 
zone.  This is reflected in the fact that lateral moraines begin at roughly the ELA.  This 
observation is useful if one is trying to reconstruct past positions of glaciers in a valley, 
or more particularly to locate the past position of the ELA.  As the ELA is often taken as 
a proxy for the 0°C isotherm, it is a strong measure of climate, and hence a strong target 
for paleoclimate studies. 
 
This straight-forward exercise should serve as a motivation for understanding the 
mechanics of ice motion.  This is at the core of all such simulations.  It is what separates 
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one type of glacier from another.  And whether a glacier can slide on its bed or not 
dictates whether it can erode the bed or not -- and hence whether the glacier can be an 
effective means of modifying the landscape. 
 

9.  Weathering alteration of deposits 
Consider the case of an accumulating deposit, in which proximity to the surface promotes 
chemical alteration of the accumulating sediment.  This ought to produce a signature of 
the sediment having spent time near the surface, and one might expect that the signal 
would be stronger the more time the material spends in this zone.  The depositional 
setting might be eolian, say at a site of loess accumulation, or it might be slow 
accumulation in a floodplain by occasional fluvial overbank deposition.  We can again 
formalize the problem by employing the principle of conservation.  One of the chief 
differences between this case and the others we have dealt with is that we will follow the 
parcel of sediment as it gets buried.  The reference frame, in other words, follows the 
parcel, rather than being fixed in space.  The word picture might be: 
 
Rate of change of weathering product in the parcel = rate of addition of weathering 
product in the sediment + rate of production of weathering product in the parcel – rate 
decay of weathering product in the parcel 
 
This statement allows for the real possibility that the sediment being added to the deposit 
has some original concentration of the mineral of concern (Figure 1).  To be specific, let 
us say that our weathering product is a clay, although the set-up should be generic enough 
to accommodate the evolution of magnetically susceptible grains, the concentration of 
cosmically produced radionuclides, and so on.  Call the concentration of clay in the 
incoming sediment Co, while that in the deposit is C.  We must acknowledge that the 
deposit is thickening, let us say at a rate 

� 

˙ D .  The translation of the word picture then 
becomes 

 D(Cdxdydz)

Dt
= Pdxdydz ! Rdxdydz  (9.1) 

where here I have used P to represent production rate of new clay, and R the removal rate 
of clay, taken per unit volume of sediment. Note that since we are following a parcel of 
sediment once it is deposited, there are no terms reflecting loss or gain of sediment across 
the edges of the box.  I have used the D/Dt notation to acknowledge that we are following 
a parcel of material; this is called the total derivative, or substantial derivative (see fuller 
discussion of advection in the Advection chapter).  We will argue about the more general 
case in a moment, but let’s address the easiest first.  The addition of sediment in the top 
of the box occurs only when it is at the surface, a fact that we will take care of in the 
boundary conditions to the problem.   
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A simple case: radionuclide concentration profiles 
Here we ask what is the expected profile of concentration of a radionuclide, say 10Be.  
The production rate will be due to cosmic ray bombardment, which declines with depth at 
a rate that is dictated solely by the density of the material through which the particles are 
passing.  The production of radionuclides does in fact follow an exponential decay with 
depth, the length scale z* being about 0.8 m in typical soils.  In this case we must also 
acknowledge the potential for decay.  This will come in on the negative side of the 
ledger, represented by R in the above equation.  The concentration we seek is the number 
of atoms of 10Be per gram of quartz.  So the concentration of quartz, which might vary 
with depth, is taken out of the problem - it only becomes an operational problem, as one 
needs a certain number of nuclides (say a few million) to be able to measure the 
concentration of 10Be.  The concentration of quartz therefore becomes important in 
setting the size of sample one collects in the field.  The equation for production becomes 
 P = P

o
e
! z /z*  (9.2) 

while that for decay is simply 
 R = !C  (9.3) 
Assembling these into a single governing equation  

 DC

Dt
= P

o
e
! z /z*

! "C  (9.4) 
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Let us first inspect the equation.  In the simplest case let us ignore decay (or, 
equivalently, use a stable nuclide).  The 2nd term becomes unimportant, and we simply 
watch the accumulation of nuclides as the parcel is slowly buried at a rate D. 

 C = C
o
+ P

o
e
!Dt /z*

o

T

" dt  (9.5) 

Here the 1st term represents the concentration of nuclides in the incoming quartz (in other 
words, "inheritance" of nuclides), while the 2nd term represents the newly produced 
nuclides.  In this case we know how to relate time to depth through the steady deposition 
rate, giving us 

 C(z) = C
o
+ P

o
e
!Dt /z*

o

z /D

" dt = C
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or 
 C = C

o
+ P

o
(z * /D)[1! e

! z /z*
]  (9.7) 

Note that the concentration asymptotically approaches a maximum that is dictated by the 
time the parcel spends within the production zone, which in turn is set by the combination 
z*/D.  The faster the deposition rate, the more rapidly the parcel transits the production 
zone (Fig. x), and the lower the asymptotic concentration. 

 
 
If we allow decay of radionuclides, we can imagine that the profiles will droop back 
toward zero concentration at a rate dictated by the decay timescale.  Here I have 
constructed a simple numerical model in which I organize the code to track both the 
production and the decay in each parcel of sediment.  In other words, I employ exactly 
these conservation principles to organize the code.  The top of the profile looks the same, 
appearing to approach an asymptotic value (Figure x), but this time the decay takes over 
once the parcel is deep enough for decay to outpace new production.  This will be the 
case forevermore, as the parcel gets deeper and deeper, further reducing the production 
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rate.  The profile eventually settles into an exponential decline as we expect from 
radioactive decay, this time depth replacing time through the relation z=Dt. 

 
The case we have just presented is analogous to one discussed in Anderson and Hallet 
(1996), in which the system was a loess deposit in which the concentration being 
calculated was that of magnetically susceptible grains (e.g. magnetite).  There, the 
magnetic grains could arrive on the airstream from the wind, setting the inheritance, and 
they could be produced in the accumulating soil (i.e. pedogenic).  The measurement of 
magnetic susceptibility of a soil is then the easily measured proxy for the concentration of 
such minerals. We treated this steady state case as an end-member case, and went on to 
discuss the roles of variation in deposition rate (D), of pedogenic production rate (Po), 
and of collapse of the soil, all of which should vary with climate.   

Weathering in soils 
In the cosmogenic problem worked above we did not allow the minerals in the soil to 
evolve.  But of course it is exactly this evolution that determines the texture, structure and 
the mineralogy of a soil.  In particular, the clay content of a soil is all-important.  While 
some of these clays may be original clays in the deposit, much of the clay is derived from 
in situ weathering.  Here I approach the more general case in which clays are produced 
from weathering of feldspars.  Let us assume that the clay can no longer change once it is 
produced: it is an end-member clay.  In this case, the removal rate R is zero (we will not 
allow it to elutriate either, or leak downward out of our parcel). The complexity, and the 
interesting twist to the problem, comes in the fact that the production rate of new clay 
ought to depend upon the concentration of feldspar in the parcel, Cf. This requires that we 
track the concentrations of both minerals. Certainly we would all agree that if the entire 
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deposit were quartz, say, there would be no production of clay.  The resulting equations 
for rate of change of mass of clay and of feldspar in the parcel are: 

 Clay: 
D !bCcdxdydz( )

Dt
= (1" f )R#Cf dxdydz  (9.8) 

 Feldspar: 
D !bC f dxdydz( )

Dt
= "R#Cf dxdydz  (9.9) 

I have written the equations such that:  
• Cf, and Cc are concentrations of feldspar and clay, respectively, in mass per unit 
mass [M/M] 
· ρb corresponds to bulk density of regolith [M/L3] 
• R is the rate of loss of feldspar, in mass per unit area per time [M/L2T] 
· γ is the reactive surface area of mineral per unit volume [L2/L3] 
and 
• f is the fraction of the feldspar loss that goes directly to solution, while (1-f) goes to 
the solid phase, clay. In other words, we acknowledge that the system is not perfectly 
conservative in that we allow solute leakage from the system. 

 
To simplify a little, we may divide both sides by the volume of the parcel, dxdydz.  All 
that remains is to be more specific about the production rate, R.  For the moment, I will 
dodge the detailed chemistry of the problem, and posit that the reaction involved is such 
that the production rate falls off with distance from the surface.  Here I can lean on the 
fact that the solution accomplishing the weathering is furthest from equilibrium where the 
water is most dilute, which is nearest the surface.  In addition, this is where the 
temperatures are greatest in the deposit, within the thermal boundary layer associated 
with both annual and daily fluctuations of temperature.  For simplicity, I therefore 
propose that we take the production rate of clays per unit surface area of feldspar to go 
something like: 
 R = R

o
e
! z /L  (9.10) 

where Ro is the reaction rate at the surface (z=0), and L is a length scale over which the 
reaction rate falls off by 1/e.  We can argue later about what might set this length scale, L, 
but I anticipate that it ought to involve climatic features such as mean annual temperature 
and total precipitation.  Re-writing the evolution equations now yields: 

 Clay: 
D !bCc( )
Dt

= (1" f )Roe
" z /L#Cf  (9.11) 

 Feldspar: 
D !bC f( )

Dt
= "Roe

" z /L#Cf  (9.12) 

I have again embedded this pair of equations in a numerical model.  One can see the 
expected symbiotic relationship, with clay increasing with depth, and feldspar declining 
with depth in the steady deposition case (Figure x).  I show as well the result when the 
deposition rate is allowed to vary with time, with an amplitude of one half of the mean 
rate.  In the case shown, the incoming sediment is 90% feldspar and 10% clay.  Times of 
low deposition rate result in more residence time in the soil "reactor zone" and result in 
commensurately higher degrees of weathering of feldspar to clay. 
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One might imagine a stack of paleosols in a floodplain deposit, or in a loess sequence, 
recording a signal of variation in climate. 
 



 

10.  Hillslopes 

 
Badland slopes and buttes near Goblin State Park, Utah.  Layered shale bedrock shows through thin mantle 
of regolith. 
 
Hills comprise the majority of landscapes.  In fact, on the Moon there is nothing else: no 
channels, just hills.  Consider now the shape of a hillcrest.  Whether on the Moon or on 
Earth, most hilltops are convex up.  They are rounded, not sharp.  G. K. Gilbert 
recognized this generality in the early 1900s, and crafted a wonderful word picture of the 
problem, accompanied by the classic diagram I have reproduced in Figure 1 (Gilbert, 
1909).  I present here both his word picture, and the generalization of it into a 
mathematical statement.   
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Let us recast the problem in its most general form. We start by defining the relevant 
conservation equation.  Consider the mass of regolith within a box on the hillslope, 
shown in 1D in Figure 2. 

 
 
The word statement representing conservation of regolith is: 
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Treating both sides of the box, this statement may be translated into mathematics: 

 

! "bRdxdy( )
!t

= "r !Wdxdy +Qx (x)dy #Qx (x + dx)dy +Qy (y)dx #Qy (y + dy)dx + Edxdy # Sdxdy

 (10.1) 
where R is regolith thickness, W is the weathering rate [L/T], or the rate of production of 
regolith, ρr is the density of rock, ρb is the bulk density of the regolith, E is the rate of 
addition of mass through the top of the box by eolian processes, and S is the rate of loss 
of mass through solutes.  For our purposes, let us assume that E and S are negligible, 
although we fully recognize that in some situations this is not the case [see for example 
Mudd and Furbish, 2006)].  In addition, if we align the x direction of our box with local 
slope, and assume that the slope has no curvature across-slope (more formally, 
cylindrically symmetrical), it is safe to ignore fluxes across the sides of the box (Qy) and 
equation 9.1 becomes: 

 
 

! "bRdxdy( )
!t

= "r !Wdxdy +Qx (x)dy #Qx (x + dx)dy  (10.2) 

Noting that we may hold the length of the sides of the box to be unchanging with time, 
we may remove them from the derivative on the left hand side and divide through by 
dxdy.  If we assume that the bulk density, ρb is also unchanging, we may extract it from 
the derivative as well, and the left hand side becomes simply the rate of change of 
regolith thickness with time.  On the right hand side the dy vanishes entirely.  The 
equation can then be arranged to become: 
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 (10.3) 

From our introduction to calculus, we recognize the term in brackets on the right hand 
side is the spatial derivative of the regolith discharge, !Q

x
/ !x . 
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"b

!Qx

!x
 (10.4) 

We have, in equation 9.4, a general statement of conservation of mass on a hillslope in 
one dimension.  It is a partial differential equation, in that it contains derivatives of both 
space and time.  The first term on the right hand side represents the source of regolith, 
modified by a bulking factor to accommodate how much the regolith is puffed up due to 
the insertion of porosity in the transformation from bedrock to regolith.  The second term 
is formally the divergence of the regolith discharge, which simply represents the 
difference in the mass moving across the left of the box vs the right of the box.  The 
steady state case that Gilbert addressed is captured by taking the time derivative to be 
zero.  In this case, 

 
 

dQx

dx
= !r

!W  (10.5) 

In words, equation 9.5 requires that the local production rate of regolith by weathering of 
the bedrock beneath (the right hand side) must exactly be balanced by the spatial change 
in the discharge of regolith with distance down slope (the left hand side).  Otherwise, 
regolith will pile up in the box, or be slowly drained from the box. In Gilbert’s word 
picture, the right hand side is one of the vertical arrows in the figure, which must be 
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accommodated by the downslope increase in discharge.  Note as well that because the 
time derivative is taken to be zero, we have transformed the problem into an ordinary 
differential equation (ODE).  In general, these are easier to solve than partial differential 
equations (PDEs). 
 
This equation can of course be integrated once we know how the regolith production rate 
is distributed downslope, in x.  In the Gilbert steady state form, this transformation rate 
must be uniform in x, so that the entire regolith-bedrock interface comes down at the 
same rate.  In this steady form case, then,  
 

 
Q

x
= !

r
!Wx + c

1
= !

r
!Wx  (10.6) 

where we have taken the constant of integration, c1, to be zero by asserting that at the top 
of the hill, at x=0, there is no discharge.  The steady hillcrest requires that the regolith 
discharge linearly increase with distance downslope.  Another way of putting it is that at 
each position on the hill, the discharge of regolith equals all of the regolith that is 
produced uphill of that spot.  Since it was arbitrary in Figure 2 how long we made the 
first box, this statement reflects the need to transport out all regolith that was produced 
within the box. 
 
That is about as far as we can go in the problem without getting more specific about just 
how the regolith moves, what rule governs how regolith transport is accomplished.  This 
is an analogous place in the problem to that we achieved after casting the conservation of 
heat problem.  All we had at that point was a statement that in which the steady case 
demanded that the heat transport took on a particular spatial pattern.  We could not get all 
the way to a measurable quantity like temperature until we became more specific about 
how the heat was transported.  In the problem presented in the 1st chapter, recall that we 
called upon conduction of heat as the specific transport process, and then could appeal to 
Fourier’s Law to connect heat transport to temperature, in particular to temperature 
gradients.  This is called closing the problem.   
 
In order to make progress on the shape of a hillslope, we must now close the conservation 
of regolith equation we have just developed by appeal to a specific transport process.  
More concretely, we must address what dictates the regolith discharge, Q.  A very 
general regolith flux or discharge rule might look something like: 

 Q = !kx
m dz

dx

n

 (10.7) 

where m and n are constants setting the relative importance of distance from the divide, x, 
and of slope, dz/dx, respectively, and k sets the efficiency of the process.  That the 
topographic slope is involved is not a surprise, as it is gravity that drives most hillslope 
and for that matter most geomorphic processes. In the diffusive case, m=0 and n=1, in 
other words the regolith discharge depends solely, and linearly, on the local slope, dz/dx, 
and the distance from the divide is irrelevant.  In this case, our general statement for 
conservation of regolith, equation 10.4, becomes 
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If we make the further simplifying assumption that the hillslope efficiency, k, is spatially 
uniform, i.e., does not depend on x, then we can remove the k from the derivative to 
obtain: 

 
 

!R
!t

=
"
r

"
b

#

$%
&

'(
!W +)

! 2z
!x2

 (10.9) 

This is classified as a diffusion equation with a source term.  We have bundled κ = k/ρb, 
which has been called the landscape diffusivity in analogy with the thermal diffusivity, 

� 

! = k /("c).  The coupling of this to the bedrock topography comes through  

 
 

!z
b

!t
= " !W  (10.10) 

This acknowledges that as the bedrock is transformed into regolith, the bedrock interface, 
zb, is lowered.  The topography itself is simply 
 z = z

b
+ R  (10.11) 

In general, these diffusion equations can be solved analytically only under very simple 
conditions.  Because the diffusion equation is so common, solutions for many particular 
conditions are available.  One useful compendium is Carslaw and Jaeger’s Conduction of 
Heat in Solids, which has much broader application than its title implies.  These solutions 
were appealed to in the pioneering work of Culling (e.g., Culling 1960, 1965).  
 
Returning to the Gilbert steady state case, we require the solution for the case in which 
the left hand side is set to zero.  This transforms the equation into an ordinary differential 
equation, one in which the dependent variable, z, depends upon only one variable, x.  If 
the regolith production rate is uniform (not a function of x), and the slope efficiency k is 
also uniform, then:  
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This says that the curvature, the left hand side, is a constant.  Note that the curvature is 
negative, meaning the topography is convex up.  We wish to know not the curvature but 
the topography itself, z(x).  This will require two integrations, each requiring evaluation 
of a constant of integration, for which we appeal to known boundary conditions.   
 
Equation 10.12 can be integrated once to obtain the slope as a function of position:  
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As we argued above, the constant of integration, c1, is 0 because at x=0 (the hillcrest) the 
slope is zero.  A second integration yields the topographic profile across the hilltop, z(x): 
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 (10.14) 

where c2 is another constant of integration.  Note that c2 is an elevation.  We may choose 
it by dictating the elevation at some location.  One choice, the easiest, is the hillcrest, 
where x=0, where we can dictate that the elevation = zmax.  Then c2= zmax, and the 
equation becomes 
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This describes an inverted parabola, a simple geometrical shape with the characteristic 
that the slope is zero at the crest and linearly increases with distance from the crest.  This 
is the essence of a steady state diffusive landscape: hilltops are convex, and in fact are 
parabolic.   
 
Alternatively, we could specify the elevation of the edges of the hillslope, at the channel 
that bounds the hillslope, at x = L.  Asserting that the channel is incising at a steady rate 
e, the boundary condition becomes 
 

 
z(L) = z

o
! !et  (10.16) 

and we use this to solve for the constant of integration, c2: 
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When inserted into equation 10.14, we see that the topography can be described with 
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where we have employed k=κρb.  The first two terms represent the channel incision (the 
boundary conditions for the hillslopes), while the third term represents the parabolic 
shape of the interfluve.  The expression in square brackets is the local relief of the 
landscape, the difference between z(0) and z(L).  Let us see if this makes any sense.  
Recall that the regolith discharge must increase linearly with distance from the crest.  
Inspection of equation 10.18 reveals that for a given hillslope length L and channel 
incision rate e, the relief goes up as the rate of regolith production goes up, and the relief 
goes down as the landscape efficiency increases.  For a given k, a higher rate of regolith 
production requires greater slopes everywhere, which in turn requires higher local relief.  
On the other hand, for a given W, the more efficient the hillslope transport is, the lower 
the slopes required for the required transport, and hence the lower the relief.   
 
One can also model the evolution of hillslopes using a numerical model.  In the 
simulation shown in Figure 3, I depict the evolution of a single interfluve over 5 million 
years. Embedded in the code are rules for the generation of regolith from bedrock, W, 
and for the transportation of regolith once it is generated, Q.  While these rules are more 
fully discussed in Anderson (2002), suffice it to say here that the transport rule is one in 
which Q increases linearly with slope.  As this should result in a parabolic steady state 
profile, we start out with that expectation.  You can see that this is indeed the shape the 
hilltop finally takes on, but here we can see just how long it takes to get to that shape (the 
“transient response”, and the kinds of regolith thickness profiles that might occur during 
this transition to the steady form. 
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Although we will not progress deeply down this line, we can also expect certain behavior 
of the system in transient cases.  Inspection of the original diffusion equation reveals that 
places of any high initial curvature (another name for sharp corners) will be smoothed 
most rapidly.  This is another case in which nature is shown to abhor sharp corners.  
Sharp corners in topography, in temperature, in concentration of ink in water… all of 
these are smoothed by diffusive processes. 
 
Clearly, the next steps involve opening up the black box that is Q.  What sets the 
efficiency of hillslopes in passing regolith downslope?  How does climate come into the 
act?  How does the nature of the regolith, its grainsize distribution, its cohesion, etc., play 
into the efficiency of the transport process.  While this is beyond the scope of this little 
book, we point you toward recent work on these problems.  For rainsplash, see Furbish et 
al. (2007).  For biological agents, see Gabet et al. (2003) and see Furbish et al. (in prep.).  
For frost heave, see Anderson (2002), as used in the simulation shown.  For the general 
case of nonlinear creep, see Roering et al. (2001).  For discussion of influence of 
dissolution on hillslope form, see Mudd and Furbish (2006). 
 



 

11.  Groundwater 
The least visible portion of the water cycle involves water traveling through the 
subsurface.  This transport and storage system is fed by infiltration from the surface, and 
delivers water to streams and oceans.  As the speed of water through the pores of soil and 
rock is very small, and the volume of water involved is large, the time water spends in the 
subsurface can be quite long.  The slow speeds serve to establish a long timescale filter to 
the inputs, allowing the outputs from the subsurface water system to be lagged 
significantly relative to the inputs.  This lag is important in that the return of groundwater 
to the surface at the edges of our streams supports their baseflow long after the snowmelt 
or rainfall inputs have ended.   
 
Geomorphologists are also interested in groundwater as a common trigger for landslides.  
The water table height, and the dynamic pressures associated with flow of water in the 
subsurface can support a fraction of the weight of the overlying sediment or rock, 
reducing the effective normal stress, promoting its failure. Large landslides can occur 
well after water is delivered to the surface as either rain or snowmelt.  The lag reflects the 
long timescale of water movement within the subsurface – the deeper the path, the longer 
the timescale.  
 
Water from either rain or snowmelt must first move through the unsaturated zone near the 
surface before it reaches the saturated zone.  The unsaturated zone is called the vadose 
zone, the saturated zone is the phreatic zone or groundwater, and the interface between 
the two is the groundwater table.  Movement of water in the vadose zone is very 
complicated, as the efficiency with which water moves is highly dependent upon the 
water content of the soil – i.e. the degree to which the pores are filled.  This is 
comparable to heat problem in which the thermal conductivity depends upon the 
temperature.  This was codified early in the 1900s first by Gardner (1919) and then by 
Richards (1931), in what is now known as the Richards equation (see review in Raats and 
van Genuchten, 2006).  We will dodge this zone entirely and focus on flow within the 
saturated zone, fed by infiltration rates through the vadose zone that we will simply 
prescribe.  We will see that this is complicated enough, and serves the present purpose of 
demonstrating the relevance of the conservation principle in setting up the problem. 
 
As usual, we approach the problem by combining a statement for conservation with one 
for flux.  Consider an element of the subsurface with a characteristic porosity and 
hydraulic permeability.  As we are limiting the discussion to the groundwater system, 
which by definition is saturated, we may assume that all pores are filled with water.  We 
seek a mathematical statement that captures this word statement: 
 
The rate of change of water in the element = the rate of inputs of water – the outputs of 
water + rate of local gain or loss of water 
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The last term reflects the possibility that water can be either captured or freed from its 
fluid form by mineral reactions.  For example, in accretionary wedges at subduction 
zones, where water pressures are all-important in setting the material strength of the 
wedge, transformation of smectite to illite represents such a source of water (e.g. Saffer 
and Bekins, 1998, 1999).  We will ignore this complexity in the treatment below.  So 
also, we will ignore the reality that the porosity and hence permeability of a rock or soil 
can be dynamic due to compaction and/or to cementation; we will assume that porosity 
and permeability are constant.   
 
We are looking for an equation that describes the evolution of the groundwater table in 
both space and time.  The control volume is a vertical column extending down from the 
surface with horizontal dimensions dx and dy, within which the water table exists at a 
height h above some arbitrary datum (Figure 1). 
 
We seek the simplest statements.  The conservation statement then becomes: 

 !(Shdxdy)

!t
= qx x " qx x+dx + qy y " qy y+dy + Idxdy  (11.1) 

where S is the storativity of the aquifer.  Also called the effective porosity, this is fraction 
of the sediment or rock that can be occupied by water that can freely come and go, the 
remainder being held firmly at mineral interfaces; it is smaller than the porosity.  The 
lefthand side represents the rate of change of volume of water within the groundwater in 
the control volume, where h is the top of the saturated zone.  Dividing both sides by the 
planview area of the element, dxdy, and assuming that the storativity does not change in 
time, in the limit as dx and dy approach zero, we have: 
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This is a general evolution equation for the height of the groundwater table.  It should 
look familiar, as it contains terms for a source, and for gradients in the fluxes.  Without 
further analysis, we can already anticipate behavior of the system in some simple 
situations.  For example, consider the 1-D case, for groundwater flow only in the x 
direction (all derivatives in y therefore vanish), when fed by a uniform input of water by 
infiltration from the vadose zone above.  In other words, let I be uniform at Io.  Once the 
system has become steady (all time derivates vanish), the groundwater discharge in the x-
direction must be 
 q

x
= I

o
x  (11.3) 

Groundwater discharge should increase linearly with distance form the groundwater 
drainage divide.  The reason for this behavior in the steady state directly mirrors other 
cases we have seen, for example the linear increase in either overland flow of water, or of 
regolith discharge on a hillslope.  The discharge must increase downslope from the divide 
in order to transport the added increment of water or regolith. 
 
To proceed further toward a prediction of the distribution of heights of the water table, 
we must assume some transport rule for the water.  At this point in the development, we 
have not specified the physics of transport, but have simply exercised the principle of 
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conservation.  We need something analogous to Fourier’s law to “close” the equation, to 
transform it from one in fluxes to one in water table heights.  Here we appeal to Darcy’s 
Law, in which the transport in a given direction (here x) is given by 

 q
x
= !K

"H

"x
 (11.4) 

where H is the total head, and K is the hydraulic conductivity of the material.  Let’s 
inspect each of these components.  The conductivity must depend not only upon the 
permeability of the material, κ, but upon the viscosity of the fluid being pushed through 
it, µ:   

 K =
!

µ
 (11.5) 

In our problems this fluid will be water, and any variability in its viscosity will be due to 
the temperature dependence of viscosity.  The permeability is set by the sizes of the pores 
and their degree of connectivity; it varies by many orders of magnitude.  Many models 
exist of permeability in porous media, most of them consisting of flow through pipes of 
varying size, set by the effective pore diameters (see for examples the treatments in 
Furbish (1997) and in Turcotte and Schubert (2002)).  The total head is defined as the 
head associated with elevation of the parcel of water (the elevation head) and that 
associated with the pressure (the pressure head).   
 

 
 
In the case of a phreatic aquifer, as illustrated in Figure 1, the discharge Q through the 
side of the control volume is the product of this Darcian flux (q, with units of 
volume/area/time) with the height of the water table, h: 
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 Qx = !kh
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 (11.6) 

Here the combination kh is often called the transitivity of the aquifer.  Combining this 
with the equation for continuity of groundwater (equation 2), we obtain 
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This had better make sense in the simplest cases.  For example, if the water table were 
flat and there were no flow, all terms on the right hand side except the source term, I, 
disappear, and we are left with 

 !h

!t
=
I

S
 (11.8) 

The rate of water table rise depends linearly on the rate of infiltration and inversely as the 
storativity.  For low storativity (effective porosity), the rate of water table rise is 
magnified, simply because there aren’t as many pores into which to stick the water.  This 
makes sense. 

The Dupuit case 
Now consider a steady case in which infiltration is spatially uniform, and flow is in one 
direction, call it x.  If the lower boundary is in fact impermeable, and the length scale of 
the hillslope is much greater than the height of the water table, the flow in the majority of 
the aquifer will be roughly horizontal.  Under these conditions, dubbed the Dupuit 
approximations after Jules Dupuit (1804-1866, a French economist and civil engineer 
responsible for supervision of construction of the Paris sewer system), the equation above 
reduces to 
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This is at least now an ODE rather than a PDE.  We have made progress.  Further 
assuming that the hydraulic conductivity, k, is uniform, we may remove it from the 
derivative, yielding 
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This looks messy, as it is nonlinear (the product of a variable and its derivative), but we 
may employ a trick.  Recognizing that d(h2)/dx = 2h dh/dx, this ordinary differential 
equation becomes 
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This is a second order ODE for h2.  We may now proceed to integrate both sides of the 
equation twice in order to solve for h2, and then take the square root: 
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where c1 is a constant of integration.  We will evaluate this after a second integration.  
This yields 
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 (11.13) 

We now impose boundary conditions, knowledge of the system at its boundaries.  Here 
we will assert that the groundwater table intersect the top of the streams that bound the 
interfluve, here taken to be ho at x=0 and hL at x=L.  In general these could be at different 
elevations.  The condition at x=0 requires that c2=ho

2.    The condition at x=L then results 
in 
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The final formula for the shape of the water table is therefore 
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 (11.15) 

 
This is an equation for an ellipse, and is depicted in Figure 2 for several ratios of Io/k.  
The height of the water table is scaled by the ratio Io/k.  The stronger the source term, Io, 
the higher the arch of the water table, and the more efficient the flow of water within the 
groundwater system, scaled by k, the lower the water table arch. 

 

 
 

I note that this form is perfectly analogous to the expected shape of the topography in the 
face of a source strength (weathering rate) and efficiency of regolith transport, as 



The little book of geomorphology 90 1/7/08 

discussed in the hillslope section.  In that system we expect parabolas; in this system we 
expect ellipses. 
 
Obviously, pumping from a well into a water table will result in a transient lowering of 
the phreatic surface while the pump is on, and a rebound of the cone of depression after 
the pump is turned off.  Transient cases of more geomorphic interest include the response 
of the groundwater table to oscillations in the stage of the adjacent river.  We can 
anticipate that as the river stage rises, the water table may tip back toward the interfluve, 
while as it drops, the groundwater table gradient will increase toward the river.  The 
former represents recharge of the groundwater table, the latter leakage from it. 
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12.  Overland flow of water 

 
Sunset supercell thunderstorm above South Park, Colorado. 
 
The movement of water across and within the landscape accomplishes most of the 
geomorphic work in molding the landscape.  Now that we have set up the balance for 
regolith conservation, and have determined that it is the spatial pattern of regolith 
discharge that “counts” in thickening or thinning the regolith, one might imagine that the 
next step in addressing the evolution of landscapes would entail treating how sediment or 
regolith is transported by motion of water across it.  
 
Under certain circumstances, water flows across the landscape as a sheet.  In particular 
when rainfall rates are very much higher than infiltration rates, and the surface is not 
deeply crinkled into little gullies and rills, this process will occur.  As it was first studied 
by Robert Horton in the 1930s and 1940s (e.g., Horton, 1945), this runoff process has 
become known as Horton overland flow.  The sediment transport accomplished by 
overland flow is called sheetwash.  Once again, we can formalize this problem by setting 
up a conservation of something in a control volume.  Here the “something” is water atop 
the land surface. 
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Consider a simple case of a planar slope at an angle θ onto which rain is falling at a rate 
R (mm/hr, say) (Figure 1).   Rainwater is infiltrating at a rate I.  The box is dx long along 
the slope, and again I ask you to imagine that the box in 2D has a length into the page of 
dy.  In order to assess what the spatial pattern of sediment transport is, we must know the 
pattern of shear stress on the land, which in turn requires that we know the thickness of 
the overland flow, h, as a function of distance from the divide, x.  The word picture that 
captures this sketch is 
 
Rate of change of volume of water in the box = rate of gain of water in the box – rate of 
loss of water from the box 
 
Note that since the density of the material in transport does not evolve in any way, we can 
choose to treat its volume, rather than its mass.  The volume balance may be written 

 
! hdxdy( )

!t
= Rdxdy " Idxdy +Qx (x)dy "Qx (x + dx)dy  (12.1) 

where here the discharge is that of water on the slope.  Dividing by the area of the box, 
dxdy, we obtain the evolution equation for the water thickness: 

 !h

!t
= R " I( ) "

dQx

dx
 (12.2) 

By now this should look pretty familiar.  The rate of change is due to two processes: 
sources and sinks (here R-I), and divergence of the flux or discharge of the medium.  We 
see immediately that it is the excess rainfall (R-I) that counts in setting the effective 
source of water on the hillslope.  We now ask what must the discharge of water look like 
in steady state, after which we can ask what the pattern of thickness must be to achieve 
this.   
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Downpour in Blue Hills badlands near Caineville, Utah.  Raingage in the foreground records rainfall 
intensity, R, while PVC supports center sonic rangers over channel to record stage of resulting flashfloods. 
 
At steady state, the left hand side can be set to zero, leaving us with the equation for the 
gradient in water discharge: 

 dQx

dx
= R ! I( )  (12.3) 

As the rainfall rate and the infiltration rate are assumed to be uniform in space and 
unchanging in time in the steady case, this may be simply integrated: 
 Q = R ! I( )x  (12.4) 
As in the case of regolith on a hillslope, the steady discharge of water linearly increases 
with distance from the divide, at a rate dictated by the source strength.  This is such a 
common finding in working these problems that it deserves a pause to think about its 
implications.  The discharge must increase if continuity is to be obeyed.  The system must 
figure out how to accomplish this.  In general, the discharge (per unit contour length) is 
the product of the thickness of the material and its mean speed.  The system then has two 
choices.  Either the material (regolith, water) must thicken, or it must speed up, or some 
combination of the two. 
 
In order to proceed, we need to relate the water discharge to the water thickness.  In this 
simple case, the slope is uniform, and the only adjustable variable is flow thickness, h.  
The water discharge per unit contour width, Q, is equivalent to the product of the mean 
speed of the water and the flow depth: Q=Uh.   We now need a formula for the mean 
speed.  While there are several well-known formulas, we choose here the Darcy-
Weisbach formula, in which  



The little book of geomorphology 94 1/7/08 

 U =
1

f
ghS  (12.5) 

where f is the Darcy-Weisbach friction factor.  The specific discharge of water is then 

 Q =Uh =
1

f
gS( )

1/2

h
3/2  (12.6) 

Equating equations 11.6 and 11.4, we can now solve for the dependence of the flow 
thickness on position, h(x): 

 h =
f (R ! I )

gSo( )
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2 /3

x
2 /3  (12.7) 

The flow thickens with distance from the divide at a rate that is slightly less than linear, 
as can be seen by the 2/3 power of x (Figure 3).  The constant out in front sets the 
thickness scale.  Again, it is worth inspecting the solution to see if we can make sense of 
what is in the denominator and what in the numerator.  It makes sense that the flow ought 
to be thicker at a given distance x if the excess rainfall is greater.  If the slope is steeper, it 
also makes sense that the flow requires less thickness to accomplish the needed 
discharge, so that as So increases, h declines.  The slope So should therefore be in the 
denominator, as it is.   
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While this process of overland flow, and the sediment transport that it can accomplish, 
called sheetwash, are now thought to occur on a small fraction of the Earth’s surface, it is 
nonetheless instructive to have a solution for the end-member case against which to view 
all other processes.  The analysis still pertains to parking lots, which cover a growing 
fraction of the Earth’s surface. 

 



 

13.  Settling and Unsettling Problems 
 

 
 
The motion of objects through fluids is important in many corners of earth sciences.  
Raindrops and snowflakes and sand and dust all interact with air, mineral grains move in 
the water column.  Mantle plumes move through the mantle, blobs of magma move 
through the crust, and bubbles of gas rise through the magma.  Animals move through the 
ocean, and their fecal pellets do too.  And many sports involve moving objects through 
fluids: cricket, baseball, soccer, tennis and even badminton.  In track and swimming 
events it is not a ball but the athlete moving through the fluid.  These problems are 
connected through the physics of motion of an object through a fluid.  In this section we 
will set up the problem in its simplest form, by treating the simple vertical motion of 
these objects.  In other words, we will work a 1D problem.  But the physics we set up is 
relevant and perfectly transportable into the more generic case of motion in any direction, 
of any object in any fluid.  We will find that there are very specific attributes of the fluid 
and of the object being transported through it that dictate the speed of the object. 
 
In contrast to the other problems we have set up in this book, we begin here by 
conserving something that we cannot see or touch: momentum.  You are no doubt 
familiar with Newton’s 2nd law, the shorthand for which we have all memorized as 
F=ma, where F is a force, m the mass of the object and a its acceleration.  The more 
robust and more useful way to cast this is by turning it around to become ma = F, which 
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is of course legal, and then recalling that acceleration is just the rate of change of 
velocity.  The left hand side then becomes m(dv/dt).  But as long as the mass is not 
changing we can place it inside the derivative, and then recognize that mv is momentum.  
Given this, we can then recast Newton’s second law as: 
 
The rate of change of momentum of an object = the sum of the forces acting upon it 
 

 !(ma
i
)

!t
= F

i"  (13.1) 

where i represents the direction.  We need expressions for the mass of the object and for 
the forces acting on it.  In the case of a spherical object, and many of the objects listed 
above can be assumed to be spherical at some level, the mass is then the volume of a 
sphere times its density. 

 m = !V = !
p
"
D
3

6
 (13.2) 

where the subscript p indicates a property of the particle.  The forces acting on the sphere 
come in two flavors: one associated with the pull of gravity, the other with any motion of 
the object through the fluid.  The first we call the weight, or more formally the buoyant 
weight of the object; the latter we call the drag force. 
 
Many of the problems mentioned in the introduction involve only vertical motion of the 
particle or object.  These are settling problems, and let’s take the settling of a raindrop in 
the atmosphere as an illustrative case.  Our goal will be to estimate the speed at which a 
raindrop falls within the atmosphere.  We can imagine that this depends upon the size of 
the drop.  The force balance on a raindrop is illustrated in Figure 1.2.  The vertical 
coordinate is z, taken to be positive upward, and, as is common in fluid mechanics, we 
call the vertical velocity w.  The only acceleration in this case is in the vertical, meaning 
that we can write the acceleration of the drop to be the rate of change of the vertical 
speed, or dw/dt.  The weight acts downward, in the negative z direction, and may be 
written as Fw = mg.  But the buoyant weight of an object results from its immersion in a 
fluid of finite density.  The buoyant weight is therefore 

 Fb = mpg ! mf g = "p ! " f( )#
D
3

6
g  (13.3) 

This is the object’s weight less that of the fluid it displaces.  Note that if the density of the 
object and the fluid are the same, the buoyant force vanishes, and the object should be 
perfectly happy to sit still in the fluid; it is neutrally buoyant. 
 
The opposing force acting to retard the fall, the drag force, is a little more complicated, as 
it depends strongly upon the speed of the object relative to the fluid.  It is this feedback 
that allows there to be a finite, specific settling speed, or terminal velocity, or fall 
velocity, for an object.  A general formula for the drag force is: 

 Fdrag = Cd
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where ρf is density of the fluid through which the particle is moving (air in this case), and 
Cd is a non-dimensional parameter called the drag coefficient.  While this looks 
complicated and might be difficult to commit to memory, it really has just three pieces.  
The piece I have put in [square] brackets is a dynamic pressure, which as all stresses do 
has units of a force per unit area.  It represents the pressure difference between the 
upstream and downstream faces of the object.  We see terms that look like this whenever 
we see dynamic pressures, those associated with motion of a fluid, represented in the 
equations for fluid motion.  This is the pressure that is necessary to bring the fluid to rest 
at the edge of the object (which must be the case, as the fluid does not flow through the 
object, but around it).  
  
As an aside, it is this relationship between pressure and local flow speed that is used to 
assess the airspeed of an airplane in what we call pitot tubes (named after Henri Pitot 
(1695-1771) a French hydraulic engineer who invented them in 1732 while exploring the 
flow speeds in the river Seine).  These are the little L-shaped hook-like probes attached to 
the nose that you can see whenever you board a plane.  The dynamic pressure, Pdynamic, is 
measured, and local airspeed is deduced from the formula U = 2(Pdynamic ! Pstatic ) / "a .  
Here the static pressure is measured by air inlets along the side of the tube, while the 
dynamic pressure is measured at the stagnation point at the forward tip of the tube.  The 
difference in pressures is measured using a differential pressure gauge.  This yields the 
relative speed of the plane and the air.  Simultaneous measurement using GPS documents 
the plane’s motion relative to the ground.  The difference between the speeds is due to the 
wind speed of the air through which the plane is pushing, something the pilots like to 
know. 
 
The second piece, in (round) brackets, is the surface area of the object presented to the 
flow.  In the case of a spherical object, this is a circle with diameter D.  The drag force, 
then, is the product of a pressure (force per unit area) and an area.  What remains, the 
third piece, is a dimensionless efficiency factor, the drag coefficient.  It turns out that the 
drag coefficient is also, under some circumstances, dependent upon the speed of the 
object.  The value of the drag coefficient depends upon whether the flow around the 
object (here our raindrop) is laminar or turbulent.  In fluid mechanics, we rely upon a 
quantity called the Reynolds number, Re, to determine whether the flow field is laminar 
or turbulent.  It honors the contributions of Osborne Reynolds (1842-1912), a 19th century 
British professor of engineering specializing in fluid mechanics.  This is only one of the 
many non-dimensional numbers encountered in fluid mechanics problems, all of them 
named for famous fluid mechanicians.  The Reynolds number represents the relative 
importance of inertial forces and viscous forces in the problem.  The formula for the 
Reynolds number is 

 Re =
wD! f

µ
=
wD

"
 (13.5) 

where µ is the dynamic viscosity of the fluid, and ν the kinematic viscosity = µ/ρa.  In 
this generic formula, the D represents a “relevant length scale” in the problem, while w is 
a “relevant speed” in the problem.  Here the relevant length scale is the diameter of the 
object, while the relevant speed is the relative speed of the object and the fluid.  Given 
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that we are assuming in the settling problem that the fluid is at rest, this speed becomes 
simply the vertical speed of the object.  In channel flows, in contrast, the relevant length 
scale is taken to be the depth of the fluid in the channel, and the relevant speed is taken to 
be the mean speed of the fluid.  But note that there is a bit of arbitrariness in these 
choices.  Why for example choose the diameter and not the radius of the object, or the 
mean speed as opposed to the maximum or surface speed?  This arbitrariness is solved by 
appeal to tradition; while it is an important tenet of science to be skeptical of past work, 
we must also respect our scientific predecessors.  In this case we acknowledge that 
scientists studying the interaction of spheres with a fluid have settled upon the use of 
diameter and not radius in the construction of the Reynolds number for such problems, 
and we faithfully follow their convention. 
 
The dependence of the drag coefficient upon the Reynolds number is shown in Figure 1.  
Ignoring the little dip out there at very high Re (a feature dubbed the drag crisis, at Re of 
10

5
 or so), there are essentially two asymptotic expressions, one at very high Re, the other 

at low Re.  At high Re, the drag coefficient becomes a constant, at about 0.4.  And at low 
Re, the drag coefficient is inversely dependent upon Re, following the relationship Cd = 
24/Re.  Note that the low Re asymptote displays a negative slope of -1: one factor of ten 
(or 1 log unit) over for one factor of ten (or 1 log unit) down.  As straight lines on log-log 
plots represent power laws, with the slope indicating the power, we see that Cd ~ Re-1, or 
1/Re.  The factor of 24 merely sets the vertical position of the line.  A piecewise function 
that spans the transition region between low (<1) and high (>100) Reynolds numbers is 
nicely tabulated by Morsi and Alexander (1972), and was used to plot the remainder of 
Figure 1.   
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Now we have all the pieces to the problem.  The force balance now reads:  
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We can now divide through by the mass of the object to isolate an equation for the 
acceleration of the object in the vertical: 
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To determine the settling velocity, which by definition occurs when the buoyant weight 
(represented by 1st term on the right hand side) is exactly balanced by the drag force 
(represented by second term on the right hand side), we simply set the left hand side of 
equation 13.7 to zero, plug in the relevant formula for the drag coefficient, and solve the 
equation.  This results in two expressions for settling speed, one for low and the other for 
high Reynolds numbers.  For low Re, the full equation becomes: 
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Setting the left hand side to zero to obtain the settling speed results in 

 low Re :  wsett =
gD

2
(!p " ! f )

18µ
 (13.9) 

You may have heard of this as Stokes’ Law, named for George Gabriel Stokes (1819-
1903) the Cambridge professor of mathematics who derived the solution for dilute 
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suspensions of grains in viscous fluids.  This is the same Stokes for whom the Navier-
Stokes equation is named, the governing equation for fluid motion.   
 
For high Re, the full acceleration equation becomes: 
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And the solution for a settling speed is: 

 high Re :  wsett =
gD !p " ! f( )

0.3! f

 (13.11) 

But there is a problem.  How do you know which formula to use?  Here is one strategy.  
If you are doing such a calculation, you can and should check to make sure you have 
chosen the correct formulation of the drag coefficient, by assessing the Re associated 
with the calculated settling velocity.  If you used the low Re formulation, and find Re>>1 
for the calculated settling velocity, or vice versa, you used the wrong formulation.   
 
In Figure 2 we show the fall velocities for objects in both water and air, calculated using 
a numerical integration of the equation of motion of the particles, using the full tabulation 
of Cd(Re) given by Morsi and Alexander (1972). 
 

 
 
Now inspect this plot of settling speed vs diameter in log-log space.  It has two straight 
limbs connected by a smooth curve.  The straight limbs correspond to the two end-
member cases of low and high Re.  The low Re solution predicts that settling speed goes 
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as D2, while the high Re case predicts that it goes as D1/2.  The slope of the plot for small 
diameters (hence small Re) indeed shows a slope of 2: two factors of 10 up for one factor 
of 10 over.  And the slope for high diameters shows a slope of ½, also as expected. 
 
As a part of his Ph.D. dissertation, Bill Dietrich assembled all the settling data for natural 
grains at that time, and produced a curve fit in which all this data was collapsed (Dietrich, 
1982).  He presents a fit for spherical particles using a 4th order polynomial: 

 
log(W*) = !3.76715 +1.92944(log(D*) ! 0.09815(log(D*)2

!0.00575(log(D*)3 + 0.00056(log(D*)4
 (13.12) 

where the settling speed has been non-dimensionalized using 

 W* =
! f wsett

3

!p " ! f( )g#
 (13.13) 

and the grain diameter is non-dimensionalized using  

 D* =
!p " ! f( )gD3

! f#
2

 (13.14) 

He went on to show how the effects of grain shape may also be incorporated.  This 
conveniently provides a single formula that may be used if you need to calculate a 
settling speed without the trauma of a numerical integration.  I note in conclusion that 
given the kinematic viscosities of water and air, the Reynolds numbers for sand-sized 
grains will be in the transition region.  This means that neither the high nor low Reynolds 
number formulae for settling speed will work.  These formulae will both overestimate the 
settling speed, while Dietrich’s formula captures this zone faithfully. 
 
These results have several implications for earth science problems.   

Raindrop transport 
The efficiency of ejection of grains from a bare soil surface by raindrops depends upon 
the kinetic energy of the drop, ½ mw2.  The cubic dependence of  mass, and hence 
volume on diameter suggests that KE will at least as the 3rd power of drop diameter.  For 
small drops, the dependence of settling speed on D2 adds another factor of D4, suggesting 
KE~D7, while for larger drops at the high Re end of the spectrum, the added dependence 
on speed is (D1/2)2, suggesting KE~D4.  The largest drops will therefore do the lion’s share 
of the work in moving sediment about.  This highlights the importance of storms capable 
of producing the largest raindrops.  These are the storms with tall convecting towers in 
which drops have sufficient time to grow to large sizes by coalescence with other drops. 
 

Saltation vs suspension and the role of response time 
The trajectories of grains in either air or water are dictated by how efficiently the 
particles respond to the turbulence in the fluid.  Those that respond rapidly will become 
“suspended” in the flow, while those that respond sluggishly will either slide or hop short 
distances in what we call saltation trajectories.  Formally, the difference results from 
differing response times of the particles.  One estimator of the response times can be seen 
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from equation 12.8.  To be dimensionally consistent with the other terms in the equation, 
the collection of constants in front of the last term on the right hand side must have units 
of 1/time.  Its inverse is therefore a time scale, 

 T =
18!

p
D
2

µ
 (13.15) 

What does this time scale represent?  Let’s see by solving the full equation 1.8 for the 
temporal evolution of the particle speed.  The equation may be reduced to the simpler-
looking 

 dw

dt
= a ! bw  (13.16) 

This is a first order linear ordinary differential equation one finds in the first couple 
chapters of a book on ODEs.  It looks a lot like the equation we solved for the evolution 
of cosmogenic radionuclide concentrations in Chapter 5.  The a term represents a source, 
and the -bw term represents decay, or a feedback in the system.  The solution to the 
equation is: 

 w =
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The ratio a/b is the settling speed we derived from setting the left hand side to zero to 
arrive at equation 1.9.  Now we can see what this response time represents.  If a particle 
is dropped from rest at time = 0, at a specific time T later, the particle will have achieved 
(1-e-1) or roughly 2/3 of its final or terminal speed (Figure 3).  By several times T, it will 
have reached its terminal or settling speed.   
 

 
 
Let’s get back to our saltation problem (Have you heard Dylan Thomas reading his 
wonderful poem, “A Child’s Christmas in Wales”?  After a rousing monologue by the 
narrator, including descriptions of throwing snowballs at cats lined up in a row on the 
wall, the child whispers “Let’s get back to the presents…”.)  A large particle (high D) with a 
long response time is less likely to respond to the turbulent fluctuations in air or water 
speed, and will carry out a smooth trajectory, while smaller particles with short response 
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times will perform more wiggly trajectories as they are embedded more deeply in the 
turbulence of the flow.  The cases shown in Figure 4 illustrate how dramatic these 
differences can be.  In each simulation, ten trajectories are shown, each with identical 
launch speed and angle.  Each experiences turbulence in the flow near the bed that has 
the proper statistical description.  In the saltation case, the trajectories are effectively 
deterministic: one can predict quite well the length of the trajectory and its speed and 
angle of impact knowing its initial conditions.  This is not the case as smaller grains are 
launched.  The process becomes stochastic as it reflects more and more strongly the 
stochastic nature of the turbulence, and we lose the ability to predict the outcome of a 
trajectory given only its initial conditions. 

 
 

Fecal pellets   
Given the strong dependence of settling speed on particle diameter, imagine how much 
longer it would take organic matter to settle to the ocean floor before the ‘invention’ or 
evolution of fecal pellets – the packaging of poop.  It has been suggested (Logan et al., 
1995) that the evolution of fecal pellets allowed much more efficient delivery of organic 
material to the ocean floor, which in turn changed radically the cycling of elements in the 
ocean.  The essence is that in order to reach the ocean floor any excreted organic material 
must be able to survive its transport through the oxygenated top layer of the ocean, and it 
is more likely to do so if packaged as pellets with high settling speed.   

Explosivity of magmas   
One of the main determinants of volcanic eruption style is how much gas the magma 
contains upon eruption.  As the magma approaches the surface during emplacement 
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within the volcanic edifice, the pressure drops, allowing dissolved gases to be released.  
These gases then amalgamate into bubbles that are significantly less dense than the 
surrounding magma, and should rise toward the surface just as the air bubble rises within 
the honeybear on the breakfast table.  This is settling upside down (shall we call it 
unsettling?).  The moving object is the bubble and the fluid is the magma.  The buoyant 
force is directed upwards, and the resistance due to drag, which always acts in the 
direction opposite to the relative motion of the fluid and object, is therefore directed 
downwards.  We can therefore use the same formula to predict the rate of rise of a 
bubble.  In particular, in the case of magmas, with viscosities of order 104-1016 Pa-s, the 
Reynolds numbers should be very small and we can use the low Re formula.  As the rise 
speed has viscosity in the denominator, highly silicic magmas impede the rise of bubbles, 
and the gas will therefore be retained in the magma.  It is these gas-charged magmas that 
upon eruption are driven to supersonic speeds in the momentum jet of a plinian eruption, 
propelled by the explosive expansion of the gas bubbles upon depressurization (see work 
of Steven Sparks (1997), and the extensive publications of George Walker and Lionel 
Wilson on explosive volcanism).  The final expansion of the bubbles disaggregates the 
magma into very small shards, the old bubble walls, which then lose heat efficiently to 
the entrained air, allowing transformation of the momentum jet to a buoyant plume that 
can reach more than 10 km into the atmosphere. 

Mantle plumes   
At a larger scale, we can also think of rising mantle plumes using the same basic physics.  
The tops of these plumes are predicted to have a plume head that is roughly spherical, at 
least until they interact strongly with the rigid lithospheric lid (see Geoff Davies, 1999 
book and simulations on his web site).  Again, we can use the formula for the low Re 
case.  Let’s estimate how long it would take for a plume to rise to the base of the 
lithosphere from the core mantle boundary, roughly 3000 km below the surface.  Taking 
the viscosity to be 1022 Pa-s, the diameter of the plume to be 200 km, and the density 
difference between the melt and the surrounding mantle to be 200 kg/m3, the rise speed is 
24 mm/yr, and the time to traverse the mantle is about 100 million years.  These are long 
time scale earth events. 
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14.  Sediment transport and bedforms 

 
Arm of star dunes, northern Panamint Valley, California.  Ripples in foreground record most recent winds 
from right to left. 
 
The transport of sediment by a fluid, either water or air, inevitably results in the 
formation of waves or ridges on the bed, called bedforms.  A flat bed is unstable to 
perturbations when subjected to an overlying fluid in motion.  The backdrop for the study 
of these interesting examples of self-organization in geomorphology is conservation of 
sediment volume.  The situation we choose to treat is one in which there is unidirectional 
flow of the fluid over the granular substrate, which in turn entrains grains from the 
substrate.  Those grains traveling short hops before re-encountering the bed are called 
bedload and travel by saltation trajectories, while those that travel higher, more wiggly 
trajectories affected by the turbulence of the flow comprise the suspended load.  The 
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control volume in this case is a box with a footprint dx dy (shown in Figure 1 in 1-D) and 
a top to which grains can either be gained or removed.  The remainder of the bed does not 
participate, and merely serves to store grains that could be removed if significant erosion 
occurs.  The quantity we wish to conserve is the volume of grains above some arbitrary 
level in the bed, the height of the bed being zb.  In other words, in this case the elevation 
of the top of the box is the variable in our problem. 
 

 
 

The word picture for the system is 

Rate of change of elevation of the sediment bed = rate of transport into left side of the 
column – rate of loss of sediment from the right side +/- rate of deposition or entrainment 
of suspended grains from the bed 
 
Ignoring for the moment the suspended sediment, this may be cast formally as a 
continuity equation for the sediment 

 !zb
!t

= "
1

#b

!Qb

!x
 (14.1) 

where Qb is the mass transport rate of bedload sediment.  This is commonly referred to as 
the Exner equation (Exner, 1920), representing conservation of sediment in a mobile bed.  
As usual, this forces us to address the spatial pattern of a flux, here the flux of bedload.  
Before entangling ourselves in the details of sediment transport mechanics, it should 
already be clear that erosion of the bed, where dh/dt<0, occurs where dQb/dx>0, in other 
words at sites of a down-flow increase in sediment transport.  The opposite is also true: 
deposition occurs where dQb/dx<0.  Put to words, sand accumulates in spots where more 
sand arrives from upstream than is lost downstream, and vice versa.   
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Now consider a bedform, as depicted in Figure 2.  This could be either a dune or a ripple, 
and could be either eolian or fluvial. 
 

 
 
If this form is to translate downstream with no net change in shape, we can already 
deduce what the pattern of sediment transport across the form must be.  It must increase 
monotonically up the stoss face, reach a peak at the crest of the form, and then decline, as 
shown in the bottom panel of the figure. 



 

15.  Fluvial sediment balance 
The problem of sediment transport in a fluvial system, viewed at a scale larger than that 
involved in bedforms, requires that we acknowledge the sources of sediment from 
hillslopes on the one hand, and from tributaries on the other.  The former represent a 
continuous source, while the latter are a point source.  The word picture of the system is 
 
Rate of change of mass of sand in the alluvial reach = rate of sediment discharge into the 
upstream end of the reach – rate of loss of sediment from the downstream end of the 
reach + rate of inputs of sand from hillslopes on either side 
 

 
 
Translating this word picture to math, the balance may be written: 

 !("bHWdx)

!t
= Qx #Qx+dx + 2qhillslopedx  (15.1) 

where the term in brackets on the left hand side is the mass of sediment in a reach of 
length dx, channel width W, alluvial sediment thickness H, and bulk density ρb.  The last 
term on the right represents the inputs of sediment from the hillslopes, the 2 reminding us 
that it comes form both sides.  I have ignored contributions from tributaries for the 
moment; they can be taken into account at tributary junctions.  Dividing by the width of 
the channel, which we do not expect to change on short timescales, by the bulk density of 
sediment, and by the length of the reach, dx, this becomes 

 !H

!t
= "

1

W #b

!Qx

!x
+

2

W #b
qhillslope  (15.2) 
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It looks similar to the Exner equation except that there is now a source term associated 
with sediment delivered from the hillslopes.  A more apt comparison is therefore with the 
hillslope regolith problem, and any other in which a source is expected.  The steady state 
problem may now be addressed, by setting the left hand side of the equation to zero, and 
integrating with respect to x.  In the simple case in which the contributions from the 
adjacent hillslopes are spatially uniform, this leave us 

 Q =
2

W !b
qhillslopex  (15.3) 

In this simplest case, the alluvial discharge must increase linearly with distance 
downstream, x.  As the hillslope flux will depend upon the erosion rate of the hillslopes, 
the rate of increase in sediment discharge will depend upon the erosion rate of the 
landscape.  This is perfectly analogous to the expected pattern of regolith discharge on a 
steady hillslope, and as we will see, to the expected pattern of coastal sediment transport 
in the face of a uniformly receding seacliff. 
 
We can extend this analysis to a situation that is a little more complex and therefore a 
little more real.  Let us imagine that the drainage basin is underlain by two lithologies 
that differ markedly in their erodibility and in their susceptibility to subsequent 
breakdown during fluvial transport (Figure 2).   

 
 
We may craft a sediment budget (balance) for not only the total sediment in transport, as 
given by the above equation, but for each lithology.  This is straight-forward.  From such 
a budget one could deduce the relative contributions from each portion of the catchment, 
and hence the relative erosion rates of basins underlain by each of the two lithologies.  
One can go even further, however, and balance each grainsize of each lithology.  In this 
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case, the problem begins to take on elements of the demography problem of the 
biologists.  Grains can erode, comminute, to become smaller (much like an animal can 
age), but cannot recombine to become larger (much as, sadly, animals cannot get 
younger).  It is a one-way process.  That this process takes place more rapidly in some 
lithologies than in others has long been known.  Experiments designed to document the 
erodibility of clasts have been performed for many decades, with more and more realistic 
methods. 
 
You can see from the histograms of grainsizes shown that the brown lithology breaks 
down much more slowly than the gray.  Its grainsize distribution shifts much less with 
downstream distance.  This means that by the last sample site the large grainsize classes 
are populated by the brown lithology almost exclusively.  Think quartzite.  Attal and 
Lave (2006) have nicely shown that this effect dominates the spatial pattern of grainsizes 
in the Marsyandi River, draining the Annapurna region of the Himalayas.   
 



 

16.  Coastal littoral sand budget 
The same principles may be applied to problems involving coastal sediment.  A littoral 
(from Latin litus for shore) cell is defined as being a self-contained unit of coastline 
within which the sand sources and sinks are contained (Figure 1).  The top or up-coast 
boundary of a cell is defined as a line across the coast across which sand is not 
transported.  The bottom of a cell is commonly a site where sand is lost from the littoral 
system down a submarine canyon.  In other words, again sand does not cross the line 
normal to the coastline, but its instead lost from the coastal system.  Sand moves along 
the beach or littoral system by longshore drift, being pushed by waves one little hop at a 
time.  We may formalize the sediment balance in a portion of the cell just as on a 
segment of hillslope.  We must consider both the sources and sinks of sediment, and the 
rate at which it is passed from one point to another within the system (the fluxes).   

 
 
As usual, the art lies in choosing what to balance or conserve: we will balance the volume 
of sand-sized sediment, that large enough to be retained within the beach or littoral 
system.  Grains finer than a particular “cut off diameter”, which may depend upon the 
wave energy available to cause significant suspension, will be lost to the shelf and will no 
longer count in the littoral sediment balance.  For simplicity of discussion, let us call the 
grains large enough to be retained “sand”, although in for example the Santa Cruz 
coastline of California, the cutoff diameter is about 0.2 mm.  The sources of sediment 
include both rivers and sand from cliff retreat.  Sinks include any loss to the shelf (we 
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could call this leakage), or to eolian dunes onshore, and the ultimate sink is submarine 
canyons that intercept the littoral drift.   
 
In words, we may write the balance as 
 
Rate of change of mass of sand in the beach wedge = rate of inputs of sand to the beach 
wedge – rate of loss of sand from the beach wedge 
 
Translation into mathematics yields: 

 !M

!t
= Qlittoral x

"Qlittoral x+dx
+ qcliff dx " qshelf dx " qeoliandx +Qriver  (16.1) 

where M is the mass of sand in a reach of coastline of length dx, Q represents mass 
discharge (M/T), and q is specific discharge (M/LT).  The mass of sand in an element of 
beach (Figure 1) is 

� 

M = !
b
Adx = !

b
Wh dx , where A is the cross-sectional area of beach 

sand and ρb is its bulk density. This serves to organize our thoughts about what we must 
know about a specific field example.  A river contributes sand to the littoral cell at a 
point, at a rate that reflects the basin area, Ab, the mean erosion rate in the basin, 

� 

˙ e 
b
, and 

the fraction of the products that are sand, fr.: 
 

 
Qr = !r fr !ebAb  (16.2) 

where ρr is the density of rock.  Cliffs contribute sand at a rate dictated by the cliff 
recession rate, the height of the cliff, and the proportion of that cliff material that is above 
the grain size threshold (Figure 1).  
 

 
qcliff = !ecliff! r

fcliff Hcliff  (16.3) 
All of these terms can now be inserted into a final equation for the sediment budget in an 
element of the littoral cell.  Doing so, and dividing by both the distance dx and the bulk 
density of littoral sand, 
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where we sum the river inputs over i rivers.  Note that this is an evolution equation for 
the cross-sectional area of sand in a segment of beach, A, and that I have ignored for the 
moment the potential loss to eolian dunes.  The equation is complicated, but explicitly 
accounts for all of the processes involved, and the relevant erosion rates of cliffs and river 
basins.  The 1st term on the right corresponds to our now familiar gradient of flux, here 
the gradient of longshore drift of sand.  The 2nd term represents the contribution from cliff 
retreat, the 3rd from rivers, and the 4th corresponds to losses of sand to the shelf.   
 
Let us ask the question of what the pattern of sediment must be in order for the system to 
be steady.  As in our treatments of hillslopes and glaciers, for example, if we assume that 
the system is steady, we may ignore the time-varying term on the left hand side, and 
integrate the remaining expression to obtain the expected spatial pattern of beach sand 
discharge.  Between point inputs of sand from the rivers, the discharge of sand down-cell 
must simply be the integral of the contributions for the cliff back-wearing and losses to 
the shelf.  If the back-wearing and shelf loss are uniform over this interval, this leads to 
linear increase in discharge:  
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Q = ( !ecliff fcliff Hcliff ! qshelf )x  (16.5) 

At the rivers, the discharge must experience a jump or step comparable to the fluvial 
input, Qr.  The resulting steady state pattern of downcell discharge is a linear increase 
punctuated by steps at the rivers (Figure 2).  This kind of pattern has been observed in the 
Santa Cruz coastline, as documented by Perg et al. (2003) who combined a mixing model 
and concentrations of cosmogenic radionuclides in the littoral sand and its sources to 
document the rates involved. 

 
 

While to our knowledge this has never been done, one could write a similar balance for 
each of several grain sizes, and for each of several minerals.  This would allow a formal 
way to address the issues of grain size and mineralogical evolution in a littoral system.  
As these characteristics of the beach are commonly and easily documented, they would 
provide strong constraints on models of provenance, and strong tests of our 
understanding of grain size evolution in coastal systems.  It would become clear from 
writing the necessary equations that one must have terms for the rate of change of 
grainsize due to comminution during longshore transport.  A large grainsize therefore 
becomes a source for smaller grainsizes.  On the other hand, the opposite cannot happen, 
as small grains cannot reverse the process and become larger.  One might imagine that 
the rate of comminution will depend upon mineralogy, with more susceptible grains 
becoming smaller more rapidly. 
 



17.  Momentum 
In the other examples in this book, we have conserved quantities that can be seen or at 
least imagined.  Ice, water, sediment, regolith -- all of these are tangible quantities.  In 
this example we add momentum to our list of quantities to be conserved.  Like 
conservation of energy, conservation of momentum is one of the great organizing 
principles in physics.  Isaac Newton stated in his 2nd law that: 
 
Rate of change of momentum of an object = sum of the forces acting upon it 
 
As in this case we are considering the momentum of an object, there is no flow of 
momentum across the edges of the box.  This simplification must be abandoned when we 
address the momentum of an arbitrary blob of fluid.  While we have stamped in our 
memories from highschool physics the simple formula F=ma, where m is the mass of the 
object, a its acceleration and F the force causing its acceleration, the more general form 
of this is as written in the box.  Our first task is to show that these are equivalent 
statements.  Recall that acceleration is the rate of change of velocity: a = !v / !t , and that 
momentum is the product of an object’s mass with its velocity, mv.  Since in this case the 
mass of the object is unchanging in time, we may rewrite the right hand side of F=ma : 

 F = ma = m
!v

!t
=
!mv

!t
 (17.1) 

Turning this around and acknowledging that it is really the sum of all the forces acting on 
the object, this becomes 

 !mv

!t
= F"  (17.2) 

or the rate of change of momentum equals the sum of the forces acting on the object.  In 
Newton’s honor, the unit of force in the mks system is called the Newton = 1 kg m s-2. 
 
I will first use this equation to work a problem in sediment transport before introducing 
the more general statement relevant to fluids. 
 
Imagine the sandy upwind side of a desert dune.  The wind is blowing hard enough to 
entrain grains from the sand surface and accelerate them downwind.  The sand on the 
surface is said to be saltating, a word derived from Latin saltare meaning to jump or to 
leap.  The physics of this process is now known to include not only the aerodynamic drag 
that accelerates the grains downwind, but the energetic impact of grains with the surface.  
The impact of a sand grain that has been accelerated by the wind results in a “granular 
splash” in which numerous grains are ejected from the sand surface from nearby the 
impact site.  We can employ Newton’s 2nd law to predict the height to which these 
ejected grains will fly as they traverse their downwind-canted trajectories. 
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Because the density of sand is roughly 2000 times that of the air into which it is ejected 
(ρa=1.22 kg/m3; ρg=2700 kg/m3), the height to which the grain is ejected can be estimated 
well by assuming that the drag force exerted by the air in the vertical direction is 
negligible.  This is not the case in water, in which the density contrast is only about 2-
fold; this is in fact a chief difference between sediment transport in air and water.  The 
only force remaining in the problem is therefore the weight of the sand grain, Fw, or the 
force due to the acceleration of gravity, Fw = mg.  Equating this with the rate of change of 
the grain’s momentum in the vertical direction yields: 

 
d mw( )

dt
= !mg  (17.3) 

where w is the vertical component of the grain’s velocity (Figure 1).  The minus sign on 
the right hand side acknowledges that while the vertical speed is taken positive upward, 
the acceleration due to gravity, g, is directed downward.  Given that the mass of the grain 
is not changing, we can remove the mass from the partial derivative on the left hand side, 
and divide through by it.  This results in the simple formula for the evolution of the 
vertical speed: 

 dw

dt
= !g  (17.4) 

We must now integrate this equation to obtain the history of vertical speed: 
 w = !gt + c

1
 (17.5) 

where c1 is a constant of integration.  We can see that this constant must have units of a 
speed. Taking t=0, we can see that the constant is equal to the speed at time = 0, or the 
initial vertical speed, wo.   
 w = w

o
! gt  (17.6) 

This vertical ejection speed is set by the physics of the granular impact process.  Armed 
with this simple equation, we can now evaluate two properties of the grain trajectory: 
how long it is airborne, and how high it will hop.  At the top of the hop, its vertical speed 
should go to zero.  Setting the left hand side to zero suggests that the time to the top of 
the hop is simply ttop = wo/g.  Given that there are no other forces acting, the time to 
return to the sand surface should be the same, suggesting that the time to accomplish the 
entire hop is 

 thop = 2
wo

g
 (17.7) 
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Typical ejection speeds are fractions of 1 m/s, while a few rare grains are ejected from 
the bed with several m/s speeds.  For example, for wo=0.1 m/s, the hop duration is 
2*(0.1)/9.81 ~ 0.02 s.   
 
The height to which the grain hops requires that we know its vertical position, not its 
vertical speed.  Recognizing that the vertical speed is the rate of change of vertical 
position, or w=dz/dt, we can calculate the history of its vertical position by integrating its 
vertical speed: 
 z = wdt = wo ! gt( )dt""  (17.8) 
Breaking this into two integrals, and integrating, this becomes 

 z = w
o
t !
1

2
gt

2
+ z

o
 (17.9) 

where for the 2nd constant of integration I have substituted the initial vertical position of 
the particle, zo.  This is the equation for a parabola (Figure 2).  We can now ask what the 
particle height it at the time of the top of the hop, t=ttop: 
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Relative to its original position, the particle reaches a height of wo

2/2g.  For our particle 
ejected at 0.1 m/s, this results in a hop height of 0.5 mm, or a few grain diameters for a 
typical fine sand particle of 0.1 mm diameter.  Most of the grains in saltation, then, are 
traveling with hops that take them only a few diameters away from the sand surface.  
Those few grains ejected with speeds of 1 to 5 m/s, on the other hand, will hop to heights 
of 5 – 100 cm.  These rare grains are the ones that will accumulate in the cuffs and the 
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pockets of your pants while you stand there admiring the beauty of the sand ripples as 
they translate downwind. 

 

 



18.  Advection and the substantial derivative 
Although this phenomenon was introduced earlier, in our discussion of the climate, it is 
worth devoting some space to clarify it and to give you a couple more examples.  I find 
that many students find the concept of advection confusing.  We have already talked 
about how heat can conduct in a solid, moving from hot to cold.  And we have talked 
about radiation, transporting heat through transparent media.  There is a third mechanism, 
called advection, that plays a major role in transporting heat in moving media, like water 
and air.  Advection is the main means of transport of momentum and heat (and many 
other quantities) in the atmosphere and in rivers.  Advection of heat also provides an 
important analog for transport of any quantity in a moving medium. 
 
When the medium is in motion, there is a possibility that the concentration of heat at a 
point, or the temperature, can change due to that motion.  Whether this happens or not 
depends upon whether there is a gradient of the temperature as well, and in particular a 
gradient of temperature in the direction of motion.  I will define advection as follows: 
 
Advection  The rate of change of some quantity due to material motion in the direction in 
which there is a gradient in the concentration of that quantity. 
 
Advection can be very efficient because the transport is accomplished by the bulk motion 
of the fluid rather than by the exchange between individual atoms or molecules.  The 
quantity is embedded in the fluid and moves with it.  The process does not depend upon 
the passage of heat (or any other quantity) through random molecular motion, as in 
conduction of heat, but involves the bulk motion of the fluid. 
 
I use this discussion of advection as an excuse to introduce two other topics.  The role of 
advection can be illuminated by comparing the same phenomenon from two points of 
view.  This in turn will lead to the introduction of the substantial derivative.  But let us 
begin. 
 
Consider again our herd of sheep, introduced at the beginning of the book.  The herd of 
sheep is being watched by two shepherds.  Shepherd 1, call him Elmer, is riding his horse 
along with the herd, while the other, shepherd 2, call him Clovis, is taking a break on a 
hillside across the stream, and is watching as the herd moves left to right across the 
opposite hillside (Figure 1).  Sheep always move left to right.  Let us say that the quantity 
of concern is the concentration of sheep, the number of sheep per unit area, say a hectare 
(100m x 100m).  The sheep have arranged themselves into a band with a sharply defined 
leading edge, defined by a couple bellwethers and the sheep who follow closely on their 
heels, and a more diffuse strung-out back end with the slowpokes, the injured, and the 
renegades, who if it were not for the trusty sheepdog would be lost entirely.  What does 
this look like to Elmer, the shepherd traveling with the band?  It looks like a steady 
pattern with not much change as he slowly rides along with the band.  Looking ahead he 
sees the strongly defined front, and behind he sees the diffuse trailing edge to the band.  It 
looks the same another half an hour later, on a different hillslide, the entire herd having 
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moved hundreds of meters.  But what does this look like to Clovis, the shepherd taking a 
break?  Looking across the creek, he sees anything but a steady pattern.  Staring at the 
same segment of hillside he has in his field of view, he sees first the arrival of the sharply 
defined front end of the herd, then the high concentration of the middle of the band, with 
Elmer at the edge of it, and finally he sees the diffuse tail go by, after which the 
concentration of sheep on this hillside returns to zero.  From his perspective there has 
been a temporal pattern of sheep concentration, while for his buddy moving with the 
sheep the pattern was steady, not changing in time.  What is seen depends upon the point 
of view.  These points of view are the end-member cases, one still, the other traveling 
with the medium.  These have names: that traveling with the medium is the Lagrangian 
point of view, while that pinned down at a point is the Eulerian point of view.  (Joseph 
Louis Lagrange (1736-1813) was an Italian-born mathematician and astronomer, teacher 
of Fourier and Poisson; Leonhard Euler (1707-1783) was a prolific Swiss-born 
mathematician and physicist who spent most of his life in Germany and Russia). 
 

 
 

In order to go back and forth between these points of view, which in the end must 
describe the same system, we need advective terms in the equation describing the system.  
But let me do this graphically first. 
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We would like to be able to get back and forth between these two points of view. Clearly 
we need some mathematical mechanism that involves derivatives in time and derivatives 
in space.  Let us get precise.  To describe the Lagrangian point of view, we must define a 
derivative following along with the medium.  This is called the substantial derivative, or 
“the derivative following the fluid” or medium.  It is denoted D/Dt, with a big D instead 
of a partial.  In the case I have illustrated, the rate of change of sheep concentration 
following along with the herd, as seen by the herder embedded in the herd, is zero.  He 
sees no change in the pattern through time; it would always look like that shown in the 
top graph.  In other words DC/Dt = 0, C being the concentration of sheep.  The herder 
across the creek, however, is fixed in space.  In his fixed field of view, he sees a temporal 
pattern of concentration, shown in the bottom diagram.  He sees temporal changes while 
fixed in space.  We use the partial derivative to denote this, or 

� 

!C /!t .  This means 
formally that, all other variables fixed (here we only had one spatial variable, x), this is 
the pattern seen.  It is only changing in time.  So how do we get between these points of 
view?  It comes through the full definition of the substantial derivative.  Let me define it 
first, and then turn back to the sheep. 
 
The substantial derivative (also called the material or total derivative) of a hypothetical 
quantity, which I have called A, is: 

 
DA

Dt
=
!A

!t
+ u

!A

!x
+ v

!A

!y
+ w

!A

!z
 (18.1) 

Translating into words, the rate of change following the medium, the substantial 
derivative, depends upon the rate of change at a fixed point plus the rate of change caused 
by motion in any direction in which there is a gradient of the concentration.  These last 3 
terms are the “advective terms”.  Here u is the speed in the direction x, v that in the 
direction y and w that in the direction z.  In our case, the variable of concern is the 
concentration of sheep, C, we have only one spatial dimension, x, and the speed of the 
herd moving in that direction is u.  The substantial derivative then becomes: 

 DC

Dt
=
!C

!t
+ u

!C

!x
 (18.2) 

In the scenario I have described, the substantial derivative is zero: there is no change 
following along with the herd, from Elmer’s point of view.  We can now translate 
between what Elmer sees and what Clovis sees: 

 !C

!t
= "u

!C

!x
 (18.3) 

Does this work?  Turning back to the figure, focus on the two times, t1 and t2.  In the 
early time, the rate of change of sheep concentration with time is positive and high.  It 
corresponds to the passage of the sharply defined front end of the band, with a strong 
negative concentration gradient (C declining as x increases), passing the site at a rate u. C 
changes because there is motion, u, in the direction in which there is a gradient, x.  The 
minus sign assures us that concentration increases when negative concentration gradients 
advect by.  Consider now the later time.  Motion is in the same direction at the same 
speed, but this time the concentration gradient is positive.  The negative sign assures that 
the concentration seen at the fixed site now declines as the pattern with a positive 
concentration gradient passes by.  To summarize, advection of some quantity requires 
motion in a direction in which there is a spatial gradient in that quantity.  Mathematically, 
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one can always recognize advection terms as u
!A

!x
 or v

!A

!y
or w

!A

!z
, where u, v, and w 

are the components of velocity in the x, y and z directions, respectively. 
 
Consider a different problem, adapted from the one I originally heard to illustrate the 
concepts of advection and the substantial derivative.  Imagine that you are a bug on a 
leaf, floating steadily northward in the ocean, having been delivered to the ocean from 
say a river draining the cloud forest of Costa Rica.  What temperature history might you 
record in your bug-sized thermometer?  You are traveling with the medium, here 
seawater, so any changes you experience will involve the substantial derivative of 
temperature.  This will include two kinds of change, one associated with temporal 
changes at any fixed point (say associated with daily oscillations in temperature), and the 
other with the fact that you are in motion in the direction in which there are gradients in 
temperature (associated with latitudes).  The equation for the rate of change of 
temperature will be 

 DT

Dt
=
!T

!t
+ u

!T

!x
 (18.4) 

where the 1st term represents the rate of change at a point (daily cycle) and the 2nd 
represents the change associated with northward motion (defining x northward, and again 
taking u to be the component of velocity in the x direction).  The first term will therefore 
rapidly vary with the daily temperature cycle.  This oscillation will be embedded on a 
slow decline represented by the second term, as you slowly advect into colder climates. 
 

 
 

Let us examine a couple more relevant thermal examples.  In the first imagine a site on a 
polar glacier in which there is little melting in the summer, and only slow net 
accumulation, at a rate b.  If the ice were not in motion, the temperature profile would 
simply be a geotherm, reflecting steady operation of the conduction process, with a 
uniform gradient set by the heat flux and the thermal conductivity of the ice, Q/k.  The 
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net accumulation slowly buries a parcel of ice, giving it a velocity that transports it in the 
direction of a temperature gradient, from the relatively cold surface downward.  The full 
equation for the evolution of the temperature is then 

 DT

Dt
=
!T

!t
+ b

!T

!z
="

!
2
T

!z
2

 (18.5) 

This differs form that presented in the discussion of permafrost in the presence of the 
second term on the left, representing downward advection of ice.  There is advection 
because there is motion in the direction of a temperature gradient.  See discussion in both 
Paterson (2000) and in Hooke (2005) of the expected temperature profiles in both 
accumulation and ablation areas of glaciers. 
 
A perfectly analogous situation exists when we consider the temperature profile we might 
expect in a landscape that is steadily eroding.  Here the (cold) surface is being brought 
closer to the rock underground, and will lead to curvature in the expected temperature 
profile.  This corresponds to the ablation area of a glacier, in which the surface is being 
brought closer to a parcel of ice at depth; the ice is being exhumed. 
 



19.  Summary and discussion 
We have seen throughout the book that the machinery involved in setting up and in 
working all of these problems is quite similar.  The words may change, but the 
mathematical statements that grow out of the words are indeed nearly equivalent (in some 
cases they are identical if we only change the symbols).  It is therefore the mathematics 
that is the bridge between the problems, and indeed between the disciplines.  This too is a 
point made eloquently by Feynman in one of his lectures collected in The Character of 
Physical Law.  We consistently arrive at a partial differential equation with a time 
derivative on the left hand side, and spatial derivatives of flux or discharge on the right, 
along with terms for sources and sinks: 

 d!

dt
= "#Q + B " D  (19.1) 

where ψ is the concentration, and Q the flux of some quantity, and B and D are source 
and sink for it.  I have used the 

� 

!  (del) operator to denote the sum of spatial gradients in 

each dimension: 

� 

! =
"

"x
+

"

"y
+
"

"z
.  We anticipated at the outset that the order allowed by 

employing these conservation equations allows us now to focus on the physics, biology 
and chemistry involved in the transport of the quantities of concern, the Q’s in this 
equation.  To be specific, in order to “close” our conservation equations, we need 
formulas, or rules, or constitutive relationships for: 

• Transport of heat in rock and soil by conduction, or by turbulent fluids in the 
atmosphere and in the ocean (These are effectively in place in the form of 
Fourier’s Law for heat conduction, and Reynold’s extension of Newtonian 
viscous rheology.) 

• Transport of ice 
• Transport of sediment by wind or river or waves 
• Transport of regolith  
• Transport of water down a slope 

For the sources and sinks, we need rules for 
• Production of cosmogenic radionuclides 
• Precipitation and evaporation of water (lakes) or of ice (glaciers) 
• Production of regolith by weathering of rock 
• Release of littoral sediment by backwearing of seacliffs 

 
And so on.  Several of these constitute major quests in modern geomorphology, as 
without them we cannot solve the larger scale problems of landscape evolution.   
 
While this book has been about the derivation of a few representative conservation 
equations, and less about the solutions to the equations, I can nonetheless recommend a 
strategy for solution of them.  As I have done in several instances, we can seek first the 
steady solutions.  If such solutions exist, they will come from setting the left hand side of 
the conservation equation to zero; if the time derivative is zero, nothing can change in 
time, and the system is steady.  This transforms a partial differential equation (a PDE) 
into an ordinary differential equation (an ODE), which is generally very much easier to 
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solve.  This is why courses in ODEs are taken before courses in PDEs.  I also try to work 
the problem in 1D before going to 2D.  With these assumptions, and taking the dimension 
of interest to be in the direction x, the equation above transforms to 

 dQ

dx
= B ! D  (19.2) 

 We saw this in several of the cases described: lakes, glaciers, runoff, littoral drift, 
sediment transport, hillslopes.  The solution, which yields the expected steady pattern of 
discharge, then requires one integration: 

 Q(x) = B ! D( )
0

x

" dx  (19.3) 

As long as we know the spatial pattern of sources and sinks, B(x) and D(x), we can 
perform this integral.  While the pattern of discharge is not necessarily our final goal, it is 
in some cases greatly useful.  For example, on hillslopes the discharge of water or of 
regolith at the base of the slope is that delivered to the stream.  In the case of glaciers, the 
site at which the discharge of ice returns to zero is the terminus, meaning we can predict 
the terminus position of the steady glacier as long as we are given (from the 
meteorologists) the spatial pattern of snowfall and of melt.  We did no ice physics at all.  
Nor, in the case of water and regolith on the hillslope, did we need to know the physics of 
water and regolith discharge to calculate the expected steady pattern of discharge.  It 
almost seems like cheating! 
 
Let us turn this on its side and look from another angle.  Let us say we have a box, and 
we can only measure the stuff that comes out of one side of the box. The box is black, 
and we cannot see inside, nor can we see any of the other sides.  The equation we have 
just described tells us that if we can measure very well what comes out this one side, and 
if the processes occurring inside and across the other sides of the box are steady, then we 
can infer from the measured discharge what the net rates of motion across all of the other 
invisible sides must be.  This is not as silly as it sounds.  Consider for example that the 
black box is a hillslope, and that we measure carefully the discharge of regolith at its 
base.  This in turn provides us a first assessment of the rate at which material is being 
transformed from rock into regolith – and this is otherwise a very difficult thing to 
measure!  Once we know this rate, and I can tell you that this rate is usually so slow that 
one would have to string many PhD’s together to be able to measure it, we can begin to 
ask what sets the rate.  Or here is another example.  Let us say that we not only can 
measure the output from the base of the slope, and using a different tool we can measure 
the inputs from the transformation of bedrock, say using cosmogenic radionuclides.  We 
find that the two measures do not match: the rate of loss from the hillslope is less than the 
rate of gain from weathering.  We can still lean on the conservation principle.  If the rate 
of output is less than the rate of input, there must be another sink. Something must be 
leaking from the system that we cannot or have not measured.  Mass must be 
disappearing from the system in solution.  Note that the chain of reasoning I have just 
been using involves two independent activities: generation of a theoretical framework, in 
this case based upon the principle of conservation, and generation of data to constrain one 
or another or several terms in the equation.  Once the theoretical framework is in place, 
and has no holes in it, our ability to make statements like “mass is disappearing from the 
system at such and such a rate by dissolution” depends entirely upon the quality of the 
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data.  This is what links observational and theoretical aspects of geomorphology.  Kepler 
was only able to discard a hypothesis that the planets orbited in circular orbits by 
knowing that the orbital observations of Tycho Brahe would not permit an error of 8 arc 
seconds (see Feynman 1965) in the position of Mars – sending him on his hunt to arrive 
at a better shape of orbit, the ellipse.  We too must link high quality observations with a 
sound theoretical backdrop in order to continue to advance our science. 
 
In his book about the evolution of everyday things, like pins and tape and forks and 
zippers, Henry Petroski (1992) strongly advocates the hypothesis that it is the failure of 
these items to live up to our expectations that drives innovation.  The good engineer, he 
says, is a good critic of the things around him, always asking how they came about, and 
how they fail to work as well as we might wish.  The scientist’s currency is not things but 
ideas or, more grandly, theories.  We must be the critics of those ideas, asking how they 
fail.  But we cannot assess success or failure unless we have both a theory and data 
against which to test the theory.  This Little Book is designed to provide the 
geomorphologist a firm foundation from which to launch theories of how our world 
works, and how particular features of the surface of the world, geomorphic features that 
is, have come to be. 
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