

Title: iCALENDAR TIMEZONE PROBLEMS AND
RECOMMENDATIONS

Version: 1.0

Date: 24 January 2006

Contributed: TIMEZONE Technical Committee

Editor: Simon Vaillancourt, Oracle Corporation

Status: Published

This document was created by the TIMEZONE Technical Committee
of the Calendaring and Scheduling Consortium. It contains
information about common time zone implementation issues and
recommendations on how to resolve these issues. We first justify the
need for time zones, then we identify time zone implementation
problems, and then offer some guidelines and recommendations.
Take note that the listed recommendations often describe what
vendors are currently doing to solve the problems.

©2006 The Calendaring and Scheduling Consortium. All Rights Reserved.

STATEMENT OF INTELLECTUAL PROPERTY RIGHTS

This document and the information it contains is the work product of The Calendaring
and Scheduling Consortium (“Consortium”), and as such, the Consortium claims all
rights to any intellectual property contained herein.

STATEMENT OF APPROPRIATE USAGE

Standards Setting Organizations and others who find that this document is of use in their
work are hereby granted the right to copy, redistribute, incorporate into their own
documents, make derivative works from, and otherwise make further use of the document
and the material it contains at no cost and without seeking prior permission from the
Consortium, subject to properly attributing the source if unmodified to the Consortium
and notifying the Consortium of its use according to the guidelines below:

1. If the document is excerpted or used in its entirety in another document, the text must

remain unchanged and a complete citation must be supplied referencing the full title,
version, date, and appropriate section/subsection/paragraph identification from the
original document.

2. A normative or informative reference to this document may be used in place of

excerpting or incorporating the entire original document. Such references should
include the full title, version, date and appropriate section/subsection/paragraph
identification from the Consortium document being referenced.

3. In either case, the user referencing or excerpting a Consortium document is requested

to notify the Consortium of the referencing specification and to provide the
Consortium with an appropriate link or other way of reviewing the specification.

DISCLAIMER OF WARRANTY

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS PROVIDED ON
AN “AS IS” BASIS, WITHOUT ANY WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, FROM THE CONSORTIUM, ITS CONTRIBUTORS, AND THE
ORGANIZATIONS ITS CONTRIBUTORS REPRESENT OR ARE SPONSORED BY
(IF ANY), INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, AND NON-
INFRINGEMENT.

©2006 The Calendaring and Scheduling Consortium. All Rights Reserved.

 Page 2

1. Introduction... 2
2. Why do we need time zones?.. 2

2.1. Why should time zone information be preserved in a VCALENDAR object? .. 2
2.2. Should a VCALENDAR object contain whole VTIMEZONE objects or a
reference to a time zone? .. 2

3. Identified implementation problems and recommendations....................................... 3
3.1. General time zone issues... 3
3.2. Consuming time zones.. 4
3.3. Client application time zone issues... 5
3.4. Time zone registry and service issues... 7

4. References... 7

1. Introduction
This document contains information about common time zone implementation issues and
recommendations on how to resolve these issues. We first justify the need for time zones,
then we identify time zone implementation problems, and then offer some guidelines and
recommendations. Take note that the listed recommendations often describe what
vendors are currently doing to solve the problems.

2. Why do we need time zones?
This section contains emails gathered on various mailing lists (e.g.: ietf-
calsify@osafoundation.org, tc-timezone-l@calconnect.org…) and a summary of
discussions between Calendaring and Scheduling Consortium members.

2.1. Why should time zone information be preserved in a VCALENDAR
object rather than converting to UTC?

2.1.1. Recurring events that occur on both sides of a daylight savings time change need the
appropriate time zone information to ensure they happen at the correct local time.

2.1.2. Keeping the time zone information during the whole life of the event is important because
it allows the events to be adjusted if a change to the time zone rules occurs.

2.1.3. Interoperability with well-established products is a requirement for most calendar
applications. Anything that those products support will most likely have to be supported
by the majority of standards-based calendar applications, so we should keep time zones
in the standard, clarifying them if needed instead of removing them entirely.

2.1.4. It gives more context information about the meeting creation that can be used in the
future if the meeting times have to be adjusted.

2.1.5. Because the day of the week corresponding to a local time and a UTC time may be
different, recurrence rules cannot reliably be expanded using only UTC time. For
example: A meeting occurring every first Monday of the month at 0:30 CEST would be
22:30 every Sunday in UTC. Since the first Sunday of the month is not always occurring
just before the first Monday of the month, converting that event to UTC would not expand
that rule correctly.

2.2. Should a VCALENDAR object contain whole VTIMEZONE objects or
reference to a time zone?

Here are some arguments for having a whole VTIMEZONE object inside a
VCALENDAR object instead of just a reference to an external time zone definition:

mailto:ietf-calsify@osafoundation.org
mailto:ietf-calsify@osafoundation.org
mailto:tc-timezone-l@calconnect.org

2.2.1. Including the VTIMEZONE data in the VCALENDAR object makes the entity self
contained and very portable.

2.2.2. An application with only offline viewing capabilities does not have to worry about keeping
a time zone database if all the VCALENDAR objects contain the necessary time zone
information.

3. Identified implementation problems and
recommendations

Implementing a standards-compliant calendar client or server that supports time zones
correctly is not an easy task. This section describes some common implementation
problems and recommendations in italics.

3.1. General time zone issues

3.1.1. How should a client / server react towards existing meetings when a time zone rule
changes? For example, if DST changes for a time zone, should the existing meetings
created in that time zone be adjusted to the new rules or should they remain the same
and let the changes be applied only to newly created events?

3.1.1.1. In most cases, meetings created using a time zone should use the new time
zone definition so that effected recurrences reflect the time zone change
(Example: Lunch at noon every day). Cases where the timing has to be fixed
should be created in UTC (Example: Enter a few digits on a terminal every
108 minutes), which has no dependency on time zone rules.

3.1.2. How should a client / server handle a new time zone?

3.1.2.1. If a client /server model is used, the server should have a means of updating
the time zone list. This can be accomplished in many different ways such as
keeping a checksum of the “current” time zone list; when that list changes on
the server, clients simply re-download their local copies.

3.1.2.2. If a PIM client is used (no server), a patch could be issued updating its time
zone list.

3.1.3. How should a client / server handle a time zone fork? (For example: if DST changes in
the US only and not in Canada and meetings were created using an EST5EDT time
zone). This could create two new time zones EST5EDT_CA for Canada and
EST5EDT_US for the US (and deprecating EST5EDT).

3.1.3.1. The GEO property might be used to detect which of the new time zones
every meeting belongs in.

3.1.3.2. The LOCATION property can also be used to detect the appropriate time
zone for the meetings.

3.1.3.3. If no information in the calendar object can be used to detect the appropriate
new time zone, a default choice could be used based on where the majority
of the meetings usually occur.

3.2. Consuming time zones
Quite often, applications have a list of time zones stored internally or in a non-standard
registry, and when a meeting is created with a time zone, the application will:

1. Try to match the supplied time zone with its internal representation. This match
can be accomplished by using any of these techniques:

• Have an algorithm pick an internal time zone with the closest corresponding
set of rules to the supplied one.

• Try to match the TZID with its internal counterpart.
2. If no match can be found the application will do one of these:

• Return an error.

• Add the new time zone to its internal time zone list.

At this point, these problems can occur:

3.2.1. If the application cannot add “unmatchable” time zones to its internal list, even a perfectly
valid VTIMEZONE can be rejected.

3.2.1.1. The meeting could be converted to UTC using the provided time zone, take
note that this solution is less than ideal since time zone information is lost.

3.2.2. If the application has in its internal list a TZID “America/New_York”, and receives a
VTIMEZONE with a TZID “America/New_York” with a different definition than its internal
one, the server may react unpredictably.

3.2.2.1. If using a time zone registry the time zone definition of the registry should be
the one used.

3.2.2.2. If using an internal time zone list that can be changed, a versioning of the
TZID could be used allowing different versions of the same TZIDs to be kept.
This would allow applications to have events using different time zones with
the same TZID. Take note however that consuming and preserving all time
zones can become quite problematic:

• Since time zone ids are often shown to users, the time zone list could
become quite large and confusing over time.

• The need to “preserve” the original consumed time zone can also look
like a bad idea when a time zone rule changes; meetings that have yet to
occur will most likely need to be updated with the new time zone rule.

3.3. Client application time zone issues

3.3.1. How should client applications present a choice of time zones to users?

3.3.1.1. Use TZDATA database (a.k.a. Olson Database, “America/New_York”)
names.

3.3.1.2. Use a GMT Offset scheme (“GMT+2, Cairo”…).

3.3.1.3. Use common name presentation (EST5EDT, PST8PDT…).

3.3.1.4. Additionally, a “clickable” world map is often used.

3.3.2. Where should a client application get its supported time zone list?

3.3.2.1. Use TZDATA database (a.k.a. Olson Database).

3.3.2.2. Use standardized registry.

3.3.3. How can a client application map the Operating System time zone to the calendar server
time zone?

3.3.3.1. Time zone registry with “aliases” could be used. The mapping of OS time
zone to a standardized time zone database could be provided by OS
Vendors or by a third party. For the long term, platform vendors should
ideally start using data coming from a standardized registry.

3.3.4. How often should a client update its time zone definition

3.3.4.1. Clients can compare a checksum of its time zone list against the server’s
checksum, if it’s different; the client refreshes its time zone list with the
server’s time zone list.

3.3.4.2. By doing periodic checks on the server.

3.3.4.3. Using a push mechanism notifying the client that a time zone has been
updated. Possibly by adding a new ITIP method.

3.4. Time zone registry and service issues

3.4.1. Why do we need a time zone registry and service?

3.4.1.1. A time zone registry would be useful in producing a standardized list of time
zones.

3.4.1.2. A time zone service protocol would be useful in defining how time zones
should be retrieved and in what format.

3.4.1.3. A time zone registry and service would promote interoperability.

3.4.1.4. A time zone registry and service would solve the problems encountered
when trying to consume time zones.

3.4.1.5. A time zone service means having centralized time zone definitions that are
easy to update.

3.4.1.6. A time zone registry and service could open the door for time zones being
sent by reference (Useful for mobile devices and other bandwidth limited
platforms).

3.4.2. How should a time zone registry be implemented?

3.4.2.1. By using an IANA registry to store time zone data with a standardized
naming scheme.

3.4.3. How should a time zone service be implemented?

3.4.3.1. By defining a standardized way to retrieve the IANA registered time zones
(i.e.: VTIMEZONE objects accessible through an extension of CalDAV, DNS,
HTTP....).

3.4.4. Who should be responsible for updating it, how can it be trusted?

3.4.4.1. Updates could be done through: RFC, informational RFC, appointed/elected
committee/individual who approves updates to the list.

4. References

Time zone registry draft http://www.ietf.org/internet-drafts/draft-royer-timezone-registry-02.txt

Windows time zones to TZID mapping http://unicode.org/cldr/data/diff/supplemental/supplemental.html#windows___tzid

CalDAV Draft http://ietfreport.isoc.org/all-ids/draft-dusseault-caldav-08.txt

RFC 2445 (iCal) http://www.ietf.org/rfc/rfc2445.txt

RFC 2446 (iTIP) http://www.ietf.org/rfc/rfc2446.txt

TZ Database (Olson) http://www.twinsun.com/tz/tz-link.htm

http://ietfreport.isoc.org/all-ids/draft-dusseault-caldav-07.txt
http://www.ietf.org/rfc/rfc2446.txt

	Title: iCALENDAR TIMEZONE PROBLEMS AND RECOMMENDATIONS
	Version: 1.0
	Date: 24 January 2006
	Contributed: TIMEZONE Technical Committee
	Editor: Simon Vaillancourt, Oracle Corporation
	Status: Published
	ICalendar Timezone Problems and Recommendations Draft-1.pdf
	Introduction
	Why do we need time zones?
	Why should time zone information be preserved in a VCALENDAR
	Recurring events that occur on both sides of a daylight savi
	Keeping the time zone information during the whole life of t
	Interoperability with well-established products is a require
	It gives more context information about the meeting creation
	Because the day of the week corresponding to a local time an

	Should a VCALENDAR object contain whole VTIMEZONE objects or
	Including the VTIMEZONE data in the VCALENDAR object makes t
	An application with only offline viewing capabilities does n

	Identified implementation problems and recommendations
	General time zone issues
	How should a client / server react towards existing meetings
	In most cases, meetings created using a time zone should use

	How should a client / server handle a new time zone?
	If a client /server model is used, the server should have a
	If a PIM client is used (no server), a patch could be issued

	How should a client / server handle a time zone fork? (For e
	The GEO property might be used to detect which of the new ti
	The LOCATION property can also be used to detect the appropr
	If no information in the calendar object can be used to dete

	Consuming time zones
	If the application cannot add “unmatchable” time zones to it
	The meeting could be converted to UTC using the provided tim

	If the application has in its internal list a TZID “America/
	If using a time zone registry the time zone definition of th
	If using an internal time zone list that can be changed, a v
	Since time zone ids are often shown to users, the time zone
	The need to “preserve” the original consumed time zone can a

	Client application time zone issues
	How should client applications present a choice of time zone
	Use TZDATA database (a.k.a. Olson Database, “America/New_Yor
	Use a GMT Offset scheme (“GMT+2, Cairo”…).
	Use common name presentation (EST5EDT, PST8PDT…).
	Additionally, a “clickable” world map is often used.

	Where should a client application get its supported time zon
	Use TZDATA database (a.k.a. Olson Database).
	Use standardized registry.

	How can a client application map the Operating System time z
	Time zone registry with “aliases” could be used. The mapping

	How often should a client update its time zone definition
	Clients can compare a checksum of its time zone list against
	By doing periodic checks on the server.
	Using a push mechanism notifying the client that a time zone

	Time zone registry and service issues
	Why do we need a time zone registry and service?
	A time zone registry would be useful in producing a standard
	A time zone service protocol would be useful in defining how
	A time zone registry and service would promote interoperabil
	A time zone registry and service would solve the problems en
	A time zone service means having centralized time zone defin
	A time zone registry and service could open the door for tim

	How should a time zone registry be implemented?
	By using an IANA registry to store time zone data with a sta

	How should a time zone service be implemented?
	By defining a standardized way to retrieve the IANA register

	Who should be responsible for updating it, how can it be tru
	Updates could be done through: RFC, informational RFC, appoi

	References

