Analysing Wiki Quality using Probabilistic Model
Checking

Giuseppe De Ruvo, Antonella Santone
Department of Engineering, University of Sannio, Benevento, Italy
e-mail: {gderuvo, santone } @unisannio.it

Abstract—Wikis delineate a new work tool in enterprises and
they are spreading everywhere. Indeed, they are often used
as internal documentation for various in-house systems and
applications as well as powerful tools for collaboration and
knowledge sharing. As occurs with software, the fundamental
growth of a wiki may lead to its degradation. The quality of
wikis, especially in enterprise contexts, should not play a trivial
role. Software quality is a very discussed topic, but there are not
many studies regarding the quality of wikis.

We propose a probabilistic model to represent wikis and to
investigate their quality. Due to the similarity with the World
Wide Web it is natural to consider the popular Google PageRank
(with minor modifications) to calculate probabilities between
pages. Each wiki category, a set of wiki pages, is modelled
using the PRISM language in order to verify specific properties
in PCTL*. Experiments conducted on a adequate number of
(enterprise) wikis assess the validity of our methodology.

Index Terms—Wiki, Probabilistic Temporal Logic, PRISM,
Quality.

I. INTRODUCTION AND RELATED WORK

Wikis have been used as Knowledge Base, Encyclopedia
and Support Base, acting as new tools for group work,
intra organization and management [1]. They have formed
participative environments, allowing anyone to create, share,
and modify content in an easy and intuitive way - even
users with very limited technical expertise. The first wiki was
created in 1995 by Ward Cunningham, but they have deeply
changed from the original purpose. There are hundreds of
wiki engines available! which provide a plethora of features.
In this paper, we call enterprise wikis special wikis tailored
to particular environments and regarding specific topics. We
analyse them aiming at understanding what is the quality of
their structure. Thus, inspired by software bad smells [2],
[3], we identify some clues of good (or bad) quality. We
propose a variant of our methodology [4] in order to critically
deal with wiki quality. The latter is strictly connected with
knowledge organization, management and user interaction
[1], e.g. easiness of browsing pages. We use probabilistic
model checking which is a formal technique for proving the
correctness of a system that exhibit random or probabilis-
tic behaviour. This is accomplished by checking whether a
structure representing the probabilistic system (i.e., Discrete
Time Markov Chain) satisfies a logic formula describing the
expected behavior. In this paper we will show how to use
probabilistic model checking to analyse and verify wiki quality

Uhttp://www.wikimatrix.org

transforming them into PRISM [5] modules and then checking
whether they satisfy suitably-defined properties with a given
probability. Properties are expressed using the PCTL* logic
[6]. We exploited the capabilities of (probabilistic) model
checking in a rather unexplored area with encouraging results.
Our methodology has been tested on a adequate number of
enterprise wikis.

As far as we know nobody addressed the analysis and
discussion of wiki quality using probabilistic model checking.
The first attempt can be found in [4], where the authors
proposed a novel methodology based on model checking to
analyse and verify the architecture of wikis. This approach has
been extended in this paper in order to model with Markov
chains the navigation among pages, especially because some
links are more likely to be used than others. However, there
are some works regarding wiki quality and evolution.

Rosenfeld et al. [7] proposed an approach to detect quality
problems in semantic wikis inspired, like us, by the bad smell
problems in software engineering. The approach mostly focus
on annotations in order to incrementally create a structured
ontology, while we work on links to identify quality indicators.

Alluvatti et al. [8] also investigated on the quality and
evolution of wikis. They proposed to evaluate the quality of
wikis basing on the number of edits and contributors per page.

Flekova et al. [9] studied the user-perceived quality of
Wikipedia articles based on a novel Wikipedia user feedback
dataset. They analyzed ratings of ordinary Wikipedia users
along four quality dimensions (complete, well written, trust-
worthy and objective), using current text classification and
language processing tools.

Unlike other works, in our opinion, our approach is valuable
also in different contexts developing other types of wiki
analyzers [10].

The remainder of this paper is organized as follows. First,
in the next Section we give basic definitions of wikis, prob-
abilistic model checking and PRISM and Google PageRank.
Section III deals with our methodology to investigate wiki
quality. In Section IV we discuss achieved results and how
they can be used to summarise wiki quality. Finally, in Section
V we provide new inputs for further research.

II. PRELIMINARIES

In this section, first we introduce wikis with basic def-
initions - main topic of our research. Second, we quickly
recall probabilistic model checking and PRISM [5] which we

employed to model and verify wikis. Finally, we give a very
short introduction regarding Google PageRank [11], since we
exploited its calculation to set the probabilities between pages.

A. Wikis

A wiki (from the Hawaiian wiki, to hurry, swift, quick) is a
collaborative Web site whose content can be edited by anyone
who has access to it.

A wiki is generally divided in categories. Each category
may be split into subcategories. Categories contain pages and
each page belong to different categories. Pages are divided into
sections and each section may be divided into subsections.
Each page has links to other pages or categories and have
external links (i.e., links to web pages). Since wikis are
easy to edit, they have changed how we construct knowledge
repositories on the Web. Wikis allow groups to form around
specific topics and they are a great way for a group of people to
coordinate and create content, even though that group counts
thousands of people in different places [12]. Here are some
typical things we can do on a wiki: create an article on a
specific topic; make changes to other people’s articles, without
requiring their permission; create links between articles; group
similar articles together into convenient categories; view the
history of an article to see all the changes, who made them,
and when; see interesting statistics about the articles i.e., which
ones are most popular and/or need updating.

There are disparate types of wikis such as Wiki Mapia that
combines Google Maps with a wiki system supporting over
35 languages; WikiTravel, a travel guide; LyricWiki, a listing
of lyrics by album; Flu Wiki, intending to help local public
health communities coping with a possible (avian) influenza
pandemic, and Ganfyd, an online collaborative medical refer-
ence that is edited by medical professionals and invited non-
medical experts; Diplopedia, billed as the Encyclopedia of
the USA Department of State; IkeWiki [13], a semantic Wiki
developed at Salzburg research for collaborative knowledge
engineering. While it has been developed primarily as a tool
for ontology engineering, it can be used in a variety of
application scenarios.

Wikis may also fit in the context of innovation and learning
in organizations [14], [15], [16]. Moreover, many FLOSS
projects use wikis for technical and user documentation, i.e.,
Eclipse and its Eclipsepedia.

In Section IV we will analyse an adequate number of
enterprise wikis.

B. Probabilistic Model Checking and PRISM

Model checking is a technique to establish the correctness
of hardware or software systems in an automated fashion.
Conventional model checkers input a description of a model,
represented as a state transition system, and a specification,
typically a formula in some temporal logic, and return yes
or no, indicating whether or not the model satisfies the
specification. In the case of probabilistic model checking, the
models are probabilistic, in the sense that they encode the
probability of making a transition between states instead of
simply the existence of such a transition, and the analysis

normally entails calculation of the actual likelihoods through
appropriate numerical or analytical methods [17].

There exist many probabilistic models. In this paper we
use discrete-time Markov chains (DTMCs), which specify
the probability 7(s,s’) of making a transition from state s
to some target state s’, where the probabilities of reaching
the target states from a given state must sum up to 1, i.e.,
Yoo m(s,s") = 1.

A probabilistic model checker tool automates the correct-
ness proving process. A popular probabilistic model checker is
PRISM [5], successfully adopted in many application domains
such as communication and multimedia protocols, randomised
distributed algorithms, security protocols, biological systems,
risk management domain [18], [19]. In PRISM the system
model is defined with a probabilistic reactive module and
system behaviours are defined in terms of properties written
in Probabilistic Computation Tree Logic (PCTL*) [6], a prob-
abilistic extension of the temporal logic CTL. More precisely,
a PRISM model is composed of modules, whose state is
determined by a set of variables and whose behaviour is
specified by a set of guarded commands. A guarded command
contains an (optional) action label, a guard variable, and a
probabilistic update definition for the modules variables:

[action] guard -> probl : updatel + ... + probn : update;

When a module has a command whose guard is satisfied
in the current state, it can update its variables probabilisti-
cally, accordingly to the update definition. For action-labelled
commands, multiple modules execute updates synchronously,
if all their guards are satisfied. Each probabilistic transition
in the model is thus associated with either an action label
or a single module. System behaviours are defined in terms
of properties written in PCTL*. A fundamental feature of
PCTL* logic is the probabilistic operator P, which allows
one to reason about the probability that executions of the
system satisfy some property. For example, the formula:
P =?[F G(“error” & “repair”) | returns “the probability
of an error occurring that is never repaired”.

C. Google PageRank

Underlying the definition of PageRank is the following basic
assumption. A link from a page u € Web to a page v € Web
can be viewed as evidence that v is an “important page”. In
particular, the amount of importance conferred on v by u is
proportional to the importance of w and inversely proportional
to the number of pages u points to. The mathematical grounds
of ranking of pages are based on the concept of Markov
chains and related class of Perron-Frobenius operators nat-
urally appearing in dynamical/bio systems [20]. A concrete
implementation of these mathematical concepts to the ranking

of WWW pages was started by Brin and Page in 1998 [11].

Thus, let Google Matrix be: Gj; e aS; +(1—-a)/N,

where the matrix S;; is obtained from an adjacency matrix
A;; by normalizing all nonzero columns to one and replacing
columns with only zero elements by 1/N (dangling nodes)
with N being the matrix size. The largest eigenvalue of G
is A = 1 and other eigenvalues have |A\| < «. The right

o3 Pu/S;
Pi/Sy
—07
§7/ /S, Pos/So

Po/Sy |
"& /A' Py/S;
P2/Sy
— 06
P2/S,

Fig. 1: A DTMC of a small wiki category - 2 pages and 2
sections

Puic/So

dtme

module categoryExample
p : [0..5] init 8;
z & [0..4] init 0;
s @ [0..2] init @;

[1 p=00 —= B.5:(p'=1) + B.5:(p'=2):

[1 p=1 —= 8.3:(2'=1)}&(s'=1)&(p'=5) + B.7:(z'=1)&(s'=2)&(p'=5);
[1 p=2 —= 0.4:(z2'=2)&{s'=1)&(p'=5) + 0.6:(z'=2)&(s'=2)&(p'=5);
[1 p=3 == (p'=3); /rext site Pext

[1 p=4 -= (p'=4); //ext category Pwk

[1 z=1 & s=1 —> (p'=3)&(s'=0);

[1 2=1 & s=2 == (p'=2)&(s'=0);

[1 2=2 & s=1 -> (p'=1)&(s'=0);

[1 2=2 & 5=2 —= (p'=4)&(s'=0);

endmodule

Fig. 2: Small example of wiki category as PRISM module

eigenvector at A = 1, which is called the PageRank, has real
nonnegative elements P(7) and gives a probability P(7) to find
a random surfer at site 7.

III. THE METHODOLOGY

In this section we present our methodology to analyse and
verify the quality of wikis. We extend an approach, based on
formal methods [4], exploiting probabilistic model checking
that is able to capture the aleatory nature of the problem. More
precisely, from the wikis we derive PRISM modules, which
are successively used to perform probabilistic model checking,
as can be seen in Figure 3. The goal of our methodology is
to provide clues to understand the quality of wikis. Four steps
are required by our process. The four steps are:

1) PRISM Model Creation; 2) Formal Verification process
(probabilistic model checking); 3) Synthesis Generation; 4)
Quality Evaluation. In the following subsections the four steps
are discussed in detail.

A. PRISM Model Creation

We use as internal representation the PRISM language.
Thus, PRISM modules are generated from wikis. For the sake
of clarity in this section we only present a simple example.

First of all, when analysing a category C, we have to
distinguish between different pages belonging to C'. A page
can belong to the same category C, to a different category or
can be an external web page.

A small DTMC regarding two pages composed of two
sections each is depicted in Figure 1, where P, and P,
indicate respectively an external page of category and an

«dalasiores
Wiki Dump with wiki-markup

Mediawiki
Parsing :

wstructureds

Properties

PCTL®
properties

N,

Wiki Java Objects

Formal
Verification
{probabilistic
model checking)

= indicators of HEALTH status

Synthesis

Generation

C5V Results |«

\ Quality .
:

Fig. 3: An UML activity diagram explaining our methodology

external web page. Each node of the DTMC in Figure 1
represents a section of a page, i.e., P;/Ss indicates Section 2
of Page 1. Every category C has been translated into a PRISM
module. The module that translates the wiki category in Figure
1 is shown in Figure 2. Thus, in our model we divide pages
nto:

« the internal page P belongs to the analysed category C'
(p =1 or p =2 in Figure 2);

« the internal page P belongs to a different category (p = 4
in Figure 2);

« the page P is an external web page (p = 3 in Figure 2).

The variable p in Figure 2 represents a wiki page. It is
initially set to 0 meaning that we are choosing a page to
navigate. Instead, states of s indicate that we are choosing a
section. Therefore, for example, if p = 0 we are in the initial
state and we will move to state p = 1 with probability 0.5
or to state p = 2 with probability 0.5, with s still equal to 0,
meaning that no section has yet been chosen.

Looking at Figure 2 we can also notice a state p = 5
for the variable p and another integer variable z. Both are
needed to represent the user behaviour. In other words, every
update in the module is a link of the wiki category and z is a
necessary duplication to correctly represent the behaviour of
wiki readers, i.e. to trace from which page the user is coming.

Google PageRank [11] yields a score for each page. We
exploited the matrix of probabilities employed by Power
Method [21] to obtain the weights of the links. We also have
to consider the damping factor i.e., a (see Section II-C).
Such a factor exists to allow users to move from one page
to another even though the pages are not connected i.e., the
ones which we got writing the exact URL in the navigation
bar. Notwithstanding, we do not need neither o nor the entire
(1 — @) term, since we want to examine only the pages which
can be reached by links. For this aim, we choose an « very
next to 1 whilst retaining constrain 0 < a < 1 to have a
primitive matrix as in the original algorithm.

B. Formal Verification process (probabilistic model checking)

In our approach, we use probabilistic model checking to
verify wikis. Once we have the PRISM modules of wikis, we
can use PCTL* logic to specify desired properties. Inspired by
software engineering refactoring, we reformulate code smells
[2] in wiki content, that can be viewed as a drawback of a wiki
page (and category) and generally they indicate the quality of
the structure of a wiki. We consider the following properties
representing wiki smells, inspired by greek classics.

Temple Property

P="F(p=7)&F((p=49)|(F (=i
(XX pl =extC) & (XX p! = extS)))]

where extS is an external web page, extC' is a page that does
not belong to the inspected category and j indicates a page
belonging to the inspected category. Thus we need to verify
this property for every j.

If P = 0 page ¢ is a temple, i.e., page ¢ cannot be reached
starting from any page of the analysed category and no page
can be reached from the page 7 apart from eztS and extC

pages.
Closed Chain Property
P =7[Fp=i& (X F(p=1i))]

If P > 0 page ¢ belongs to a closed chain, i.e., page 7 belongs
to an infinite path starting from the initial state.

God Property
P=7[Fp=j&(XX(p=1i)]

If P > 0 page ¢ is a god (candidate) page for page j, i.e.,

page ¢ can immediately be reached from page j.

Minor God Property
PFp=j& (F (p=1i))]

If P > 0 page 7 is a minor god (candidate) page for page j,
i.e., page ¢ can be reached from page j after having crossed
other pages. In other words, page 7 can be indirectly reached
from page j.

P =

Other properties

Unlike other bespoke wiki analysis techniques, methods and
tools, we can easily add new properties and proceed with new
analyses thanks to the power of (probabilistic) model checking.
In fact, it is sufficient to express the new meaningful properties
of interest in PCTL* logic.

C. Synthesis Generation

PRISM is the state of the art of probabilistic model check-
ing. It can even export the results of verification in various
formats i.e., CSV. Such results are further employed by a Java
prototype to check how many and which pages satisfy the
properties and proceed with quality evaluation.

D. Quality Evaluation

The final activity deals with quality evaluation. After model
creation, automatic (probabilistic) model and synthesis gener-
ation, we have all the necessary products to discuss regarding
wiki quality. This is a manual task.

We employ the results of probabilistic model checking to
figure out their meaning and possible solutions. Our goal is
to provide “indicators of health status” of enterprise wikis.
The success factors and main features of the enterprise wikis
are knowledge sharing, organization, management and better
users interaction [1]. A page identified as “temple” does not
communicate with any other page: it is an isolated page. The
latter does not contribute to a good organization and sharing
of knowledge. If we are dealing with a whole wiki, this may
be a bad sign of quality, with content that may not fit in that
context - i.e., a wrong page in a project. Maybe something
was planned, but we forgot to deal with that page or to link it
to other pages in order to be reachable and readable by users
or we forgot to create a category to group a certain amount
of pages. An enterprise wiki with many temples is more an
obstacle than an aid.

A “Closed Chain” (CC) indicates that the page is involved
in a closed chain. This is a clue that the pages composing such
a chain behave as concepts that span across multiple pages.
Without considering the other indicators, the presence of CCs
is a sign of medium quality. It is like the wiki is migrating
towards an improved structure. In fact, such chains may be
employed to create categories regarding the pages involved.

When a page is referred by another page, it is a candidate
to be elected as a “God Page”. On the one hand, a “Minor
God” page may arise when a page is indirectly referred by
another page. Moreover, a “God” page means that such a
page is directly linked to the one whose property is verified
with a probability greater than a chosen threshold. God pages
operate as little concentrations of knowledge and are a good
source for learning how to use the wiki for new users. In fact,
they can understand how to link and cope with old and new
pages. Conversely, minor gods are another good origin towards
a better organization. Indeed, if we follow the indirect links,
the involved pages act as “cut chains” or part of chains.

The properties we defined are flexible and may be adapted
to various domains. For example, one may change aforemen-
tioned probabilities or even add new domain oriented quality
attributes and properties.

IV. EXPERIMENTAL RESULTS

MediaWiki? is a popular free web-based wiki software
application, developed by Wikimedia Foundation. It is the
main engine of most wikis all over the world. Indeed, all
the wiki pages are stored in a MySQL database. The Wiki
Markup Language is adopted for both pages and relationships
(i.e., links) [4]. The database dumps of wikis are usually freely
available. We downloaded some ones dumped by WikiTeam
3. We employed a MediaWiki parser - capable of locating
categories, pages and sections from Wiki Markup Language

Zhttp://www.mediawiki.org/wiki/MediaWiki
3https://archive.org/details/wikiteam

TABLE I: Results of eight wikis considering a probability greater than zero (P > 0) and greater than a given a (P > «)

Wiki Temples CC Gods mGods
P>0 P>a | P>0 P>a | P>0 P>a | P>0 | P>a

sea 0% - 20,75% | 3,77% 50% 33% 30% 18%
gt4 70,37% 0% 0% 0% 0% 0% 0%
start 60% 16,2% 4,32% 6,2% 6,2% 3% 3%
cond | 43% 9% 5% 10% 9% 24% 14%
bio 70,1% - 11% 7% 6,1% 2,5% 8% 4%
vigil | 6,22% - 1% 1% 10,36% | 4% 2,6% 1,2%
emb | 70% - 0% 0% 5% 4% 6% 2%
prod | 50% 6% 2% 5% 3% 18% 10%

and translated wikis in Java Objects, in order to automatically
create a PRISM model (see Figure 3).
Experiments were conducted on eight enterprise wikis:
o “Marine Science wiki of the University of OTAGO, NZ”
(sea, 53 pages);

e “Celica GT4 Drivers Club wiki” (gt4, 54 pages);

o “Startup wiki” (start, 162 pages);

e “Cookipedia UK - Condiments category” (cond, 172

pages);

e “Vegetable oil and Biodiesel wiki” (bio, 181 pages);

o “Vigilmetrics wiki” (vigil, 193 pages);

o “UNSW Embryology - 2014 category” (emb, 199 pages);

o« “YSTV History wiki - Productions category” (prod, 230

pages).

We have randomly chosen wikis (or categories) different for
size (increasing) and topic.

The execution time was maximum 15 minutes. We found
that it is mostly due to the overhead needed to invoke the
external PRISM probabilistic model checker from the Java
prototype. Nevertheless, the objective of our work is to focus
on the methodology rather that on the efficiency of the tool.
In fact, the prototype has been shown to yield good results,
even though it is not fast.

Table 1 shows the percentage of temples, CC, God pages
(Gods) and Minor God pages (mGods) candidates per wiki
(or category) when probabilities are greater than zero (P > 0).

“Sea” regards the Department of Marine Science of the
university of Otago in New Zealand, a multidisciplinary
department with research strengths in both biological and
physical marine sciences, focused on pure and applied research
in oceanography and aquaculture. As can be seen in Table I,
there is no isolated knowledge in the wiki, i.e., 0 temples,
20% of CC and more than 50% and 30% of god and minor
god pages. This is indeed, a good quality wiki with distributed
knowledge and various sources for future improvements, even
though “sea” is a rather small one.

Very different are the cases of “start”, a guide to city’s
startup and entrepreneurship community, and “bio”, an un-
biased and independent knowledge base for home biodiesel
production and vegetable oil motoring. They contain a lot of
isolated knowledge (more than 60%) and few hints to migrate
towards a better organization (at least than 11% of CC and 6%
of god pages), although in “bio” there exists 8% of minor god
pages which may or may not be sufficient to group temples
into convenient categories.

“Gt4” concerns a community of Celica GT4 owners. There
are no closed chains, neither god or minor god pages and

many temples (70%). “Vigil” deals with Vigilmetrics product
suite, it is a good quality wiki with few temples (6%) and an
adequate number of minor gods (2, 6%) which can be used as a
starting point to categorize the isolated knowledge. Moreover,
10% of god pages constitutes knowledge concentration to help
new users. We also analysed categories “condiments” from
an UK cooking wiki, “2014” from a medical wiki regarding
“Embriology” and “productions”, the biggest category of a
private TV wiki. As it can be seen, we can use the same
quality indicators even for single categories, especially if we
have an adequate number of pages.

We used probabilities (and probabilistic model checking)
because we want to model the behavior of users. For this aim,
we show what occurs with a probability threshold greater than
zero. In fact, in Table I we also chose another threshold (P
>), i.e., the average of probabilities among pages regarding
each indicator for each wiki. Temples are not affected, since
they do not depend on thresholds. Closed chains, gods and
minor gods are strongly influenced instead. This is a very
important point when we want evaluate the quality of wikis
with respect to the hypothetical user behavior i.e., depending
on how users actually navigate the pages we are analysing.
Thus, choosing only the average probability, the number of
CC, gods and minor gods decreased, since we employed
Google Page Rank and probabilistic model checking. Thus, we
excluded less important pages which may be very inaccurate
to create categories and new links among pages. For example,
in “vigil” only 4% of gods are considered, with a reduction
of more than 50% with respect to the previous result. In other
words, without considering a threshold greater than zero, we
may have misleading clues.

Probabilities thresholds have to be decided by a human.
Notwithstanding, empirically speaking, choosing the average
is a first step in the direction of full automation. In our
experiments we employed a common probabilities threshold
like zero or average, but one may change them according to
a particular domain or need.

After performing probabilistic model checking, we figured
out that there were pages completely excluded by the indi-
cators, i.e., pages that are neither temples or closed chains or
gods. We called such pages Unstructured Temples (UT) and we
obtained them through manual inspection. They are completely
unorganized pages since they do not contain sections or every
kind of link (even external links). They are very far from the
idea of wiki: they are just text, more near to a file than a wiki
page. Therefore, we consider the presence of UTs a very bad
sign of quality. Figure 4 shows the percentage of temples and

W temples UTs

sea
start
bio
vigil
emb
prod
gid

cond

0% 17.5% 35% 52.5% 0%

Fig. 4: Percentage of temples and UTs per category

UTs, the worst clues of bad quality we found in a wiki. For
example, even “vigil”, that looked a good quality wiki, has
35% of UTs. Single categories like “emb”, “cond” and “prod”
have few or more UTs, proving that we can obtain hints of
good or bad quality wikis analysing only one category.

We work offline and avoid parsing wikis on the fly or do
web-crawling. Our methodology can be easily integrated as a
part of existing processes because of its simplicity.

V. CONCLUSION AND FUTURE WORK

In this paper we have investigated a methodology based on
probabilistic model checking for analyse the quality of wikis.
Starting from a wiki dump, after parsing wiki markup using
a MediaWiki parser, we generate a process model for each
wiki (or category) employing the PRISM language and a set
of specific properties expressed using the PCTL* logic. We
verified these properties against the model in order to gather
indicators of wiki health status. We exploited the calculation
of Google PageRank to set the probabilities between pages in
the probabilistic model.

We think we made a first step towards the analysis of wiki
quality. Future work will focus on improving and extending
the methods outlined in this article. We want to consider
other kind of wikis and contact enterprises which use wikis
as internal tool for their competitive advantage. The indicators
we employed may be used to create new metrics to understand
wiki trends, e.g. during weeks, months, years. The achieved
results may be supported and compared by the types and
number of contributors in a wiki, in order to understand how a
team is working in that context. More data and indicators can
be used to gain a full automation without human intervention
[22], [23].

Finally, from an organizational point of view, our methodol-
ogy may be adapted to other social contexts, like communities
in twitter, facebook or linkedin.

ACKNOWLEDGEMENTS

The authors want to thank Federico Leva maintainer of
Wikipedia Research Newsletter and part of WikiTeam for
having provided spontaneous feedbacks and hints.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

A. Richter et al., “Malleable end-user software,” Business & Information
Systems Engineering, vol. 5, no. 3, pp. 195-197, 2013.

M. Fowler and K. Beck, “Refactoring: improving the design of existing
code,” Addison-Wesley Professional, 1999.

F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia, “Do
they really smell bad? A study on developers’ perception of bad code
smells,” in 30th IEEE ICSME, Victoria, BC, Canada, September 29 -
October 3, 2014, 2014, pp. 101-110.

G. De Ruvo and A. Santone, “A novel methodology based on formal
methods for analysis and verification of wikis,” in 20/4 IEEE 23rd
International WETICE Conference, WETICE 2014, Parma, Italy, 23-25
June, 2014, 2014, pp. 411-416.

M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in Proc. CAV’11, ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp.
585-591.

A. Bianco and L. De Alfaro, “Model checking of probabilistic and
nondeterministic systems,” in Foundations of Software Technology and
Theoretical Computer Science. Springer, 1995, pp. 499-513.

M. Rosenfeld, A. Ferndndez, and A. Diaz, “Semantic wiki refactoring.
a strategy to assist semantic wiki evolution,” in Proceedings of the
Fifth Workshop on Semantic Wikis (SemWiki 2010), co-located with 7th
European Semantic Web Conference, ESWC, 2010.

G. M. Alluvatti, A. Capiluppi, G. De Ruvo, and M. Molfetta, “User
generated (web) content: Trash or treasure,” in Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution, ser. IWPSE-EVOL’11.
New York, NY, USA: ACM, 2011, pp. 81-90.

L. Flekova, O. Ferschke, and I. Gurevych, “What makes a good
biography?: multidimensional quality analysis based on wikipedia article
feedback data,” in Proceedings of the 23rd international conference on
World wide web. International World Wide Web Conferences Steering
Committee, 2014, pp. 855-866.

G. De Ruvo and A. Santone, “Equivalence-based selection of best-
fit models to support wiki design,” in 2015 IEEE 24th International
WETICE Conference, WETICE 2015, Larnaca, Italy, 15-17 June, 2015.
S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,” Computer Networks, vol. 56, no. 18,
pp. 3825-3833, 2012.

R. Chebil, W. Chaari, S. Cerri, and K. Ghedira, “A causal graph based
method to evaluate e-collaboration scenarios,” in Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 2013 IEEE 22nd
International Workshop on, June 2013, pp. 225-230.

S. Schaffert, “Ikewiki: A semantic wiki for collaborative knowledge
management,” in WETICE ’06, June 2006, pp. 388-396.

C. Pruski, R. Bonacin, and M. D. Silveira, “Towards the formalization of
guidelines care actions using patterns and semantic web technologies,”
in AIME 2011, Bled, Slovenia, July 2-6, 2011, pp. 302-306.

N. Dessi and G. Garau, “A case study for a collaborative business
environment in real estate,” in ADBIS, 2013, Genoa, Italy, September
1-4, 2013. Proceedings II, 2013, pp. 351-360.

O. Nabuco, “Delivering deep health information using clinical eye,”
IJWP, vol. 5, no. 1, pp. 28—40, 2013.

E. Abrahém, B. Becker, C. Dehnert, N. Jansen, J.-P. Katoen, and
R. Wimmer, “Counterexample generation for discrete-time markov mod-
els: An introductory survey,” in Formal Methods for Executable Software
Models. Springer, 2014, pp. 65-121.

M. Fugini, G. C. Hadjichristofi, and M. Teimourikia, “Dynamic security
modeling in risk management using environmental knowledge,” in 20714
IEEE 23rd International WETICE Conference, WETICE 2014, Parma,
Italy, 23-25 June, 2014, 2014, pp. 429-434.

M. Ceccarelli, L. Cerulo, G. De Ruvo, V. Nardone, and A. Santone,
“Infer gene regulatory networks from time series data with probabilistic
model checking,” FormaliSE 2015.

E. Demidenko, “Microarray enriched gene rank,” BioData Mining,
vol. &, no. 1, pp. 1-18, 2015.

A. D. Sarma, A. R. Molla, G. Pandurangan, and E. Upfal, “Fast
distributed pagerank computation,” Theoretical Computer Science, vol.
561, pp. 113-121, 2015.

M. L. Bernardi, M. Cimitile, G. De Ruvo, G. A. Di Lucca, and
A. Santone, “Improving design patterns finder precision using a model
checking approach,” CAiSE forum.

G. De Ruvo and A. Santone, “An eclipse-based editor to support lotos
newcomers,” in 2014 IEEE 23rd International WETICE Conference,
WETICE 2014, Parma, Italy, 23-25 June, 2014, June 2014.

