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1. Introduction

Inequality means different things to different people: whether inequality should encapsulate
ethical concepts such as the desirability of a particular system of rewards or simply mean
differences in income is the subject of much debate’. Here we will conceptualise inequality as
the dispersion of a distribution, whether that be income, consumption or some other welfare
indicator or attribute of a population.

We begin with some notation. Define a vector y of incomes, yi, Yo....Vi....Vn; VYilll , where n
represents the number of units in the population (such as households, families, individuals or
earners for example). Let F(y) be the cumulative distribution function of y, and I(y) an estimate
of inequality.

Inequality is often studied as part of broader analyses covering poverty and welfare, although
these three concepts are distinct. Inequality is a broader concept than poverty in that it is defined
over the whole distribution, not only the censored distribution of individuals or households
below a certain poverty line, y*. Incomes at the top and in the middle of the distribution may be
just as important to us in perceiving and measuring inequality as those at the bottom, and indeed
some measures of inequality are driven largely by incomes in the upper tail (see the discussion in
section 2 below). Inequality is also a much narrower concept than welfare. Although both of
these capture the whole distribution of a given indicator, inequality is independent of the mean of
the distribution (or at least this is a desirable property of an inequality measure, as is discussed
below in section 2) and instead solely concerned with the second moment, the dispersion, of the
distribution. However these three concepts are closely related and are sometimes used in
composite measures. Some poverty indices incorporate inequality in their definition: for example
Sen’s poverty measure contains the Gini coefficient among the poor (Sen, 1976) and the Foster-
Greer-Thorbecke measure with parameter a=2 weights income gaps from the poverty line in a
convex manner, thus taking account of the distribution of incomes below the poverty line (Foster
et al, 1984). Inequality may also appear as an argument in social welfare functions of the form
W=W(u(y), I(y)): this topic is discussed more fully below under the subject of stochastic
dominance.

2. Measuring Inequality

There are many ways of measuring inequality, all of which have some intuitive or
mathematical appeal®. However, many apparently sensible measures behave in perverse fashions.
For example, the variance, which must be one of the simplest measures of inequality, is not

! See Atkinson (1983) for a brief summary.
2 Cowell (1995) contains details of at least 12 summary measures of inequality.



independent of the income scale: simply doubling all incomes would register a quadrupling of
the estimate of income inequality. Most people would argue that this is not a desirable property
of an inequality measure and so it seems appropriate to confine the discussion to those that
conform to a set of axioms. Even this however may result in some measures ranking distributions
in different ways and so a complementary approach is to use stochastic dominance. We begin
with the axiomatic approach and outline five key axioms which we usually require inequality
measures to meet”.

2.1. The Axiomatic approach.

The Pigou-Dalton Transfer Principle (Dalton, 1920, Pigou, 1912). This axiom requires the
inequality measure to rise (or at least not fall) in response to a mean-preserving spread: an
income transfer from a poorer person to a richer person should register as a rise (or at least not as
a fall) in inequality and an income transfer from a richer to a poorer person should register as a
fall (or at least not as an increase) in inequality (see Atkinson, 1970, 1983, Cowell, 1985, Sen,
1973). Consider the vector y’ which is a transformation of the vector y obtained by a transfer o
from y;j to y; , where y;>y; , and yi+3>y;-, then the transfer principle is satisfied iff 1(y’)=I(y).
Most measures in the literature, including the Generalized Entropy class, the Atkinson class and
the Gini coefficient, satisfy this principle, with the main exception of the logarithmic variance
and the variance of logarithms (see Cowell, 1995).

Income Scale Independence. This requires the inequality measure to be invariant to uniform
proportional changes: if each individual’s income changes by the same proportion (as happens
say when changing currency unit) then inequality should not change. Hence for any scalar A>0,
I(y)=1(\y). Again most standard measures pass this test except the variance since var(Ay)=
Nvar(y). A stronger version of this axiom may also be applied to uniform absolute changes in
income and combinations of the form A;y+A,1 (see Cowell, 1999).

Principle of Population (Dalton, 1920). The population principle requires inequality measures to
be invariant to replications of the population: merging two identical distributions should not alter
inequality. For any scalar A>0, I(y)=I(y[A]), where y[A] is a concatenation of the vector y, A
times.

Anonymity. This axiom — sometimes also referred to as ‘Symmetry’ - requires that the inequality
measure be independent of any characteristic of individuals other than their income (or the
welfare indicator whose distribution is being measured). Hence for any permutation y’ of vy,

1(y)=1(y’).

Decomposability. This requires overall inequality to be related consistently to constituent parts of
the distribution, such as population sub-groups. For example if inequality is seen to rise amongst
each sub-group of the population then we would expect inequality overall to also increase. Some
measures, such as the Generalised Entropy class of measures, are easily decomposed and into
intuitively appealingly components of within-group inequality and between-group inequality: kot =

% See Cowell (1985) on the axiomatic approach. Alternative axioms to those listed below are possible and the
appropriateness of these axioms has been questioned. See Amiel (1998), Amiel and Cowell (1998), Harrison and
Seidl (1994a, 1994b) amongst others for questionnaire experimental tests of the desirability of these axioms, and
Cowell (1999), for an introduction to alternative approaches to inequality.



Iwithin + lbetween. Other measures, such as the Atkinson set of inequality measures, can be decomposed
but the two components of within- and between-group inequality do not sum to total inequality. The
Gini coefficient is only decomposable if the partitions are non-overlapping, that is the sub-groups of
the population do not overlap in the vector of incomes. See section 3 for full details of
decomposition techniques.

Cowell (1995) shows that any measure I(y) that satisfies all of these axioms is a member of the
Generalized Entropy (GE) class of inequality measures, hence we focus our attention on this
reduced set. We do however also present formula for the Atkinson class of inequality measures,
which are ordinally equivalent to the GE class, and the popular Gini coefficient.

2.1.1. Inequality Measures

Members of the Generalised Entropy class of measures have the general formula as follows:

1 s
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where n is the number of individuals in the sample, y; is the income of individual i, i O (1,

2,...,n), and 9 = (1/n) >y; the arithmetic mean income. The value of GE ranges from 0 to oo, with
zero representing an equal distribution (all incomes identical) and higher values representing
higher levels of inequality®. The parameter o in the GE class represents the weight given to
distances between incomes at different parts of the income distribution, and can take any real
value. For lower values of a GE is more sensitive to changes in the lower tail of the distribution,
and for higher values GE is more sensitive to changes that affect the upper tail. The commonest
values of a used are 0,1 and 2: hence a value of a=0 gives more weight to distances between
incomes in the lower tail, a=1 applies equal weights across the distribution, while a value of a=2
gives proportionately more weight to gaps in the upper tail. The GE measures with parameters 0
and 1 become, with I'Hopital's rule, two of Theil’s measures of inequality (Theil, 1967), the
mean log deviation and the Theil index respectively, as follows:
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With a=2 the GE measure becomes 1/2 the squared coefficient of variation, CV:

CVv == Yy
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* In the presence of any zero income values GE(0) will always attain its maximum, . Negative incomes restrict the
choice of a to values greater than 1.
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The Atkinson class of measures has the general formula:

o
A =1—§ZS£

Oyo H

where € is an inequality aversion parameter, 0<e<co: the higher the value of € the more society is
concerned about inequality (Atkinson, 1970). The Atkinson class of measures range from 0 to 1,
with zero representing no inequality®. Setting a=1-¢, the GE class becomes ordinally equivalent
to the Atkinson class, for values of a<1 (Cowell, 1995).

The Gini coefficient satisfies axioms 1-4 above, but will fail the decomposability axiom if the
sub-vectors of income overlap. There are ways of decomposing the Gini but the component
terms of total inequality are not always intuitively or mathematically appealing (see for example
Fei et al, 1978, and an attempt at a decomposition with a more intuitive residual term by Yitzhaki
and Lerman, 1991). However the Gini’s popularity merits it a mention here. It is defined as
follows (Gini, 1912):

Gini =
The Gini coefficient takes on values between 0 and 1 with zero interpreted as no inequality®.

2.2. An Alternative Approach: Stochastic Dominance.

Although the measures discussed above generally meet the set of desirable axioms it is possible
that they will rank the same set of distributions in different ways, simply because of their
differing sensitivity to incomes in different parts of the distributions. When rankings are
ambiguous, the alternative method of stochastic dominance can be applied. We discuss three
types of stochastic dominance below. The first two are sensitive to the mean of the distribution,
and are therefore not applicable to establishing inequality rankings. As the discussion below
suggests, first- and second- order stochastic dominance are fundamentally of use in comparisons
of social welfare. They are presented first, however, because they are logically prior to the
dominance category which is associated with unambiguous comparisons of inequality across
distributions: mean-normalised second-order dominance, or Lorenz dominance. ’

First order stochastic dominance. Consider two income distributions y; and y, with cumulative
distribution functions (CDFs) F(y:) and F(y.). If F(y1) lies nowhere above and at least
somewhere below F(y,) then distribution y; displays first order stochastic dominance over
distribution y,. F(y1)<F(y.) for all y. Hence in distribution y; there are no more individuals with
income less than a given income level than in distribution y,, for all levels of income. We can

> In the presence of any zero incomes A(1) always attains its maximum value, 1.
® Zero incomes pose no problem for the Gini. However it may take a negative value if mean income is negative or a
value greater than 1 if there are some very large negative incomes (see Scott and Litchfield, 1994).

" See Ferreira and Litchfield (1996) for an application of stochastic dominance analysis to Brazil.



express this in an alternative way using the inverse function y=F™(p) where p is the share of the
population with income less than a given income level: first order dominance is attained if F;°
Y(p)= Fo "} (p) for all p. The inverse function F*(p) is known as a Pen’s Parade (Pen, 1974) which
simply plots incomes against cumulative population, usually using ranked income quantiles®.
The dominant distribution is that whose Parade lies nowhere below and at least somewhere
above the other. First order stochastic dominance of distribution y; over y, implies that any
social welfare function that is increasing in income, will record higher levels of welfare in
distribution y; than in distribution y, (Saposnik, 1981, 1983).

Figure 1: First Order Stochastic Dominance
Brazil 1981-1995: Pen’s Parades

In«

Cumulstive Popalstion *
Source: Ferreira and Litchfield, 1999, "Inequality, Poverty and Welfare, Brazil 1981-1995". London School of Economics Mimeograph.

Second order stochastic dominance. Consider now the deficit functions (the integral of the CDF)
Yk

of distributions y; and y,: G(y; ) = IF(yi )dy i=1,2. If the deficit function of distribution y; lies
0

nowhere above and somewhere below that of distribution y,, then distribution y; displays second
order stochastic dominance over distribution y,. G(y1k)<G(y2) for all yi. The dual of the deficit

® The original Pen’s Parades of Jan Pen were conceptualised by comparing the incomes of every individual in a
population. The example that Pen gave was of lining up individuals in ascending order of income and re-scaling
their heights to represent their income level. If these individuals were to be paraded past an observer she would
typically see a large number of dwarves (poor people), eventually followed by individuals of average height
(income) and finally followed by a small number of giants (very rich people). In practice comparing incomes at
every income level proves too laborious, hence some degree of aggregation is usually employed and quantiles are
compared.
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curve is the Generalised Lorenz curve (Shorrocks, 1983) defined as GL(p) = Ide(y) , which
0

plots cumulative income shares scaled by the mean of the distribution against cumulative
population, where the height of the curve at p is given by the mean of the distribution below p.
As Atkinson and Bourguignon (1989) and Howes (1993) have shown, second order dominance
established by comparisons of the deficit curves for complete, uncensored distributions implies
and is implied by Generalised Lorenz dominance: GL1(p)=GL,(p) for all p. Second order
dominance of distribution y; over distribution y, implies that any social welfare function that is
increasing and concave in income will record higher levels of welfare in y; than in y, (Shorrocks,
1983). It should now be apparent that second order stochastic dominance is therefore implied by
first order stochastic dominance, although the reverse is not true.

Figure 2: Second Order Stochastic Dominance
Brazil 1981-1995: Generalised Lorenz Curves
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Cumulative Population %

Source: Ferreira and Litchfield, 1999, "Inequality, Poverty and Welfare, Brazil 1981-1995". London School of Economics Mimeograph.

Mean-normalised second order stochastic dominance. In order to rank distributions in terms of
inequality alone, rather than welfare, a third concept (also known as Lorenz dominance) is
applied. If the Lorenz curve, the plot of cumulative income shares against cumulative population
shares, of distribution y; lies nowhere below and at least somewhere above the Lorenz curve of
distribution y, then y; Lorenz dominates y,. Any inequality measure which satisfies anonymity
and the Pigou-Dalton transfer principle will rank the two distributions in the same way as the
Lorenz curves (Atkinson, 1970).



Figure 3: Mean-normalized second order stochastic dominance
Brazil 1981-1995: Lorenz curves
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Note: 1995 Lorenz dominates 1990, but 1981 Lorenz dominates 1990 and dominates 1995.
Source: Ferreira and Litchfield, 1999, "Inequality, Poverty and Welfare, Brazil 1981-1995". London School of Economics Mimeograph.

2.3. Statistical Inference and Sampling Variance.

In order to make meaningful comparisons between estimates of inequality of different
distributions and of the rankings implied by stochastic dominance we need to examine the
statistical significance of the results. In the case of summary inequality measures we need to
examine the standard errors of the estimates. There are a number of ways this can be done,
depending on the degree of sophistication one wishes to apply and the measure of inequality in
guestion.

Cowell (1995) lists some rough approximations for a number of inequality measures if the
sample size is large and if one is prepared to make assumptions about the underlying distribution
from which the sample is taken. For example the coefficient of variation CV (which is a simple
transformation of GE(2) — see above) has standard error CVV([1+2CV?]/2n) if we assume the
underlying distribution is normal. The Gini coefficient, again assuming a normal distribution, has
standard error 0.8086CV/Vn.

However this may be too rough for some purposes in which case a more accurate method can be
applied. Cowell (1989) shows that many inequality measures can be expressed in terms of their
sample moments about zero. For example the Atkinson class can be written as
r
A =1- Ju”
" .
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where 1, is the r™ moment about zero, r=1-¢ and i, = the mean of the distribution, and the GE
class as:

1 -a a-
GE(a) =m[ﬂm [/Jn] [/Jlo] ' _1]'0 701

where pyq are the moments about zero defined as:
Ha = [[27y"dF(z,Y)

where z is household size (or some other weighting variable), v=1,2 and -co<a <co. The sample
moments m,y can be expressed as myg=1/nyz; “y;" . If both mean household size and mean
income are known, then Var(GE(a)) is relatively easy to derive:

" 1
\ " [n-1[a? -a]

> [mn]_za [mlo]za_2 [m2,2a -m;, ]

la

For the full details of the method and for the cases where a=0 and 1, and where the population
mean income and household size are not known see Cowell (1989, 1995).

It is also possible to test the statistical significance of any stochastic dominance results. Howes
(1993) describes one test based on a simple test of sample mean differences:

where §=(&;, ...&w) is a vector of heights of curves (Pen’s Parades, Lorenz or Generalized Lorenz
curves), Cj; is the relevant element in the diagonal of the variance-covariance matrix associated
with & and N is the sample size. Z; is asymptotically normally distributed. See Howes (1993) for
fuller details and an empirical application to China, and Ferreira and Litchfield (1996) for an
application to Brazil.

3. The Determinants of Inequality

The preceding discussion of measurement and comparisons of inequality should have
sufficed to establish what a complex and multifaceted phenomenon it is. Because it is influenced by
the welfare of any individual or household in a society, and because welfare itself is affected by so
many factors, and determined in general equilibrium, the study of causation or determination of
inequality is a perilous field. Authors aware of the muddy waters in which they wade qualify their
every statement with cautionary remarks about how results are merely ‘indicative’ or ‘suggestive’.



They are often at pains to point out that decomposition results are descriptive, and inferences of
causation are merely suggestive. The analytical techniques are in their infancy, and such caution is
both warranted and necessary. Nevertheless, once the appropriate caution of interpretation is
internalised, some techniques do allow us to glimpse interesting patterns. In the absence of more
definitive inference methods, some of these decomposition and regression analyses are often
worthwhile exercises. We begin with decomposition techniques.

3.1. Decomposition techniques

Decomposability is desirable for both arithmetic and analytic reasons. Economists and policy
analysts may wish to assess the contribution to overall inequality of inequality with and between
different sub-groups of the population, for example within and between workers in agricultural and
industrial sectors, or urban and rural sectors. Decompositions of inequality measures can shed light
on both its structure and dynamics. Inequality decomposition is a standard technique for
examining the contribution to inequality of particular characteristics and can be used to assess
income recipient characteristics and income package influences. The field was pioneered by
Bourguignon (1979), Cowell (1980), and Shorrocks (1982a, 1982b, 1984). For more details on
the methodologies, see Deaton (1997), and Jenkins (1995). Fields (1980) provides summaries of
applications to developing countries.

Decomposition by population sub-group.

The point of this decomposition is to separate total inequality in the distribution into a
component of inequality between the chosen groups (lp), and the remaining within-group
inequality (ly,). Two types of decomposition are of interest: firstly the decomposition of the level
of inequality in any one year, i.e a static decomposition, and secondly a decomposition of the
change in inequality over a period of time, i.e. a dynamic decomposition.

The static decomposition. When total inequality, I, is decomposed by population
subgroups, the Generalised Entropy class can be expressed as the sum of within-group
inequality, Iy, and between group inequality, I,. Within-group inequality I, is defined as:

I, = iijE(a)j

=1

—_\a fl-a
W; =V fj

where fj is the population share and v; the income share of each partition j, j=1,2,..k. In practical
terms the inequality of income within each sub-group is calculated and then these are summed,
using weights of population share, relative incomes or a combination of these two, depending on
the particular measure used. Between-group inequality, l,, is measured by assigning the mean

income of each partition j, y_J _to each member of the partition and calculating:

I, =— f, _’% -10
a’-a & 'Oy H




Cowell and Jenkins (1995) show that the within- and between-group components of inequality,
defined as above, can be related to overall inequality in the simplest possible way: I, + I, = I.
They then suggest an intuitive summary measure, R, , of the amount of inequality explained by
differences between groups with a particular characteristic or set of characteristics, Rb =1, / I.
Hence we can conclude that x% of total inequality is “explained” by between group inequalities,
and (100-x)% is accounted for by inequalities within groups. By increasing the number of
partitions we can account for the effect of a wider range of structural factors®.

The dynamic decomposition. Accounting for changes in the level of inequality by means
of a partition of the distribution into sub-groups must entail at least two components of the
change: one caused by a change in inequality between the groups and one by a change in
inequality within the groups. The second one is the “pure inequality” effect, but the first one can
be further disaggregated into an effect due to changes in relative mean incomes between the
subgroups - an “income effect” - and one due to changes in the size of the subgroups - an
“allocation effect”. Hence we can decompose the change in total inequality into three
components: an allocation effect arising from changes in the number of people within different
partitions, an income effect arising from changes in relative incomes between partitions, and
finally a pure inequality effect arising from changes in inequality within partitions (Mookerjee
and Shorrocks, 1982). The arithmetic becomes complicated for some measures, so this is usually
only applied to GE(0), as follows:
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where y is income, 4 is the difference operator, A; is the mean income of group j relative to the
overall mean, i.e. p(y;)/H1(y) and the over-bar represents a simple average. The first term captures
the pure inequality effect, the second and third term capture the allocation effect and the final
term the income effect. By dividing both sides through by the initial value of GE(0)
proporﬂ)onate changes in inequality can be compared to proportionate changes in the individual
effects™.

Decomposition by income source

Total income is usually made up of more than one source: labour earnings, income from capital,
private and public transfers, etc; and so it is useful to express total inequality I as the sum of
factor contributions, where each contribution depends on the incomes from a given factor source,
f,i.e.

° The Atkinson measure can also be decomposed by population sub-group — see Cowell and Jenkins (1995).
19 This is actually an approximation of the true decomposition, but both Mookherjee and Shorrocks (1982) and, later,
Jenkins (1995) argue that for computational purposes this approximation is sufficient.
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where S¢ depends on incomes from source f. Factor income source f provides a disequalising
effect if S¢ >0, and an equalising effect if S; <0. Now define
Sf
S, =—
f

S0 Zsf =1. St is the absolute contribution of factor f to overall inequality, while s; is the

proportional factor contribution. The exact decomposition procedure depends on the measure of
inequality used, but whichever measure is used must naturally be decomposable and, given the
large number of income sources, it must be defined for zero incomes. In practice the easiest
measure to decompose in this way is GE(2). In that case:

S, =s,GE(2) = p, X, |GE(2).GE(2),

where g; is the correlation between component f and total income and x, =y, / uis f’s factor
share. A large value of S; suggests that factor f is an important source of total inequality.

For the dynamic decomposition we can write

AGE(2) = GE(2)., ~GE(2), = 55, =ZA[pfxf JGE(2).E(2), ]

and proportionate inequality changes as

%AGE(2) = AGE(2) / GE(2), = Z s, %AS,

A large value of s; %AS, suggests that changes in factor f have a large influence in changes in

total inequality. See Jenkins (1995) for the complete methodology and an application to the UK,
and Theil (1979) ™.

3.2. Regression analyses

The decomposition techniques described above are very suitable for assessing the contribution of
a set of factors (household-specific attributes or income sources) to inequality. However one
drawback is that the importance of a particular attribute will vary depending on the measure of
inequality that is decomposed. Fields (1997) proposes an alternative decomposition technique,
which allows one to assess the importance of household specific attributes in explaining the level

1 STATA routines for decompositions by population sub-group and by income source are available at the Boston
College Department of Economics. See above for details and conditions of use.



of inequality, where the amount explained by each factor is independent of the inequality
measures used*?. The method involves running a standard set of regressions of the form:

In(yij)zaj +16jx tE;

where the subscript i refers to the individual, j refers to the population sub-group and X is a
vector of explanatory variables. Then the relative contributions, s;, of each factor can then be
estimated as:

s; =cov[a;Z;,Y]/o*(Y)=a, *a(Z,;)*cor[Z,,Y]/ o(Y)

where a is the vector of coefficients (a, [3), Z is the vector of explanatory variables plus a
constant (1, x;), and Y is log income. The change in inequality over time can also be decomposed
using the s;’s estimated above, although the estimates are sensitive to the inequality measure
used. See Fields (1997) for full details and an application to data from Bolivia and Korea.

An alternative approach is the quantile regression methodology, where instead of estimating the
mean of a dependent variable conditional on the values of the independent variables, one
estimates the median: minimising the sum of the absolute residuals rather than the sum of
squares of the residuals as in ordinary regressions. It is possible to estimate different percentiles
of the dependent variables, and so to obtain estimates for different parts of the income
distribution. Furthermore, it is possible to use different independent variables for different
quantiles, reflecting the view that data may be heteroskedastic with different factors affecting the
rich and poor. See Deaton (1997) for an introduction to quantile regressions and some
applications to developing country data.

Regression techniques are also applied when we want to model the effect of aggregate factors
rather than specific attributes of a household. One method is to regress the level of inequality in
each year (or each country, population sub-group etc.) on a set of explanatory variables, such as
the rates of unemployment (UE) and inflation (INF), as follows:

1(y). =a + L UE, + [, INF +u,

A second method that is often applied in this macro-economic context is to regress a set of
income shares on the independent variables, as follows:

sy =a; + bUE, + [, INF, +u;

where s;; denotes the income share of the ith quantile group in year t*. The i quantile share
regressions are a set of seemingly unrelated regressions (see Zellner, 1962) but since the right
hand side variables are the same in each equation, the SURE estimation technique suggested by
Zellner is equivalent to a set of simple OLS regressions. See Blinder and Esaki (1978) for an

2 The result holds for all inequality measures that are symmetric and continuous, e.g. all members of the
Generalised Entropy class, the Atkinson class and the Gini.
13 See Blinder and Esaki (1978) for the original specifications.



application to the USA, Buse (1982) on Canadian inequality, Ferreira and Litchfield (1999) on
Brazil and Nolan (1987) on UK inequality.
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