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Abstract. A triangle in the Euclidean plane has various kinds of centres such as

the centroid G, the circumcentre O, the incentre I, the orthocentre H, and the cleavance

centre J. We find higher dimensional analogues of these centres of simplices in

Euclidean n-space and in spherical n-space. Each centre is described as the point

of intersection of certain hyperplanes (or great hyperspheres in the spherical case).

Several theorems relating the various kinds of centres for triangles are generalized

to higher dimensions. For example, we show that the centres O, G, and H are

collinear and that the centres J, G, and I are collinear for any simplex in Euclidean

n-space.

Keyword: simplices.

Introduction

A triangle in the Euclidean plane has various kinds of centres such as the centroid

G (the point of intersection of the medians), the circumcentre O (the point of

intersection of the perpendicular bisectors, which is the centre of the circumcircle),

the incentre I (the point of the intersection of the angle bisectors, and also the

centre of the inscribed circle), the orthocentre H (which is the common point of

the altitudes), the cleavance centre J (which is the intersection of the cleavers),
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and the nine-point centre (which is the centre of the circle passing through the

midpoints of the sides, the midpoints of the lines joining the orthocentre to the

vertices, and the feet of the altitudes).

In this paper, we find higher dimensional analogs of these centres for simplices

in Euclidean n-space and also in spherical n-space. Each centre is described

as the point of intersection of certain hyperplanes (or great hyperspheres in the

spherical case). Several theorems relating the various kinds of centres for triangles

are generalized to higher dimensions.

The Centres of Simplices in RN

An n-simplex is the set of all convex combinations of a set of n + 1 affinely inde-

pendent points. A 1-simplex is called a line segment, a 2-simplex is called a triangle

and a 3-simplex is called a tetrahedron. Note that, the n-simplex [a0, a1, ..., an] is the

set

[a0, a1, ..., an] = {
n∑

i=0

tiai |
n∑

i=0

ti = 1, ti ≥ 0 for all i }.

The Centroid

Given an n-simplex T = [a0, a1, ..., an] in RN , and given 0 ≤ i, j ≤ n with i 6= j, the

medial plane of T at the edge [ai, aj ] is the (n − 1)-plane Mij which passes through

the midpoint of [ai, aj ] and through all the other vertices ak, k 6= i, j. Note that if

T is a triangle, then its medial planes are in fact its medians.

Theorem 1. The medial planes Mij of an n-simplex T = [a0, a1, ..., an] have a unique point of
intersection G, called the centroid (or the barycentre) of T . It is given by

(n + 1)G =
n∑

i=0

ai.

Proof. Since G− ak =
∑

l 6=i,j,k

1
n + 1

(al − ak) +
2

n + 1
(
ai + aj

2
− ak), G ∈ Mij for all i 6= j. Note

that the intersection of the medial planes M0j with j = 1, 2, ..., m is the (n−m)-plane passing

through 1
m+1 (

m∑

j=0

aj) and the other vertices am+1, am+2, ..., an. In particular, G is the unique

point of intersection of the medial planes Mij . 2
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Given an n-simplex T = [a0, a1, ..., an] in RN , we define the medial line at ai to be

the line Mi passing through ai and the centroid gi = 1
n (

∑

k 6=i

ak) of the opposite face

Ti = [a0, a1, ..., âi, ..., an], where âi indicates omission of the vertex ai. Since the

medial line Mi is the intersection of the medial planes Mjk with j, k 6= i, the medial

lines of an n-simplex T also meet at the centroid G of T .

The Circumcentre

We define the perpendicular bisector of the edge [ai, aj ] to be the (n − 1)-plane Pij

in 〈T 〉 = ak + span{ak − ai | i 6= k} which is perpendicular to the edge [ai, aj ] and

passes through the midpoint of [ai, aj ].

Let V (T ) = span{ak − ai | i 6= k}. We choose an orthonormal basis for the vector

space V (T ). For fixed k with 0 ≤ k ≤ n, let Ak(T ) denote the n × n matrix whose

rows are the vector ai − ak with respect to the chosen basis.

Theorem 2. The perpendicular bisectors Pij of an n-simplex T meet at a unique point O,
called the circumcentre of T . If we fix k with 0 ≤ k ≤ n, then O is given by

O = ak +
1
2
A−1P

where A = Ak(T ) and P is the n× 1 matrix whose rows are |ai − ak|2.
Moreover, O is the centre of the (n − 1)-sphere in 〈T 〉, called the circumscribed sphere of T
which passes through each of the points ai.

Proof. Let O = ak + 1
2A−1P . Since A is the matrix whose rows are ai − ak and P is the

matrix whose rows are |ai − ak|2, this means that 〈ai − ak, 2(O − ak)〉 = 〈ai − ak, ai − ak〉.
So 〈ai − ak, 2O〉 = 〈ai − ak, ai + ak〉 for all i 6= k. For all i 6= j, we have 〈aj − ai, 2O〉 =
〈aj−ak+ak−ai, 2O〉 = 〈aj−ak, aj+ak〉−〈ai−ak, ai+ak〉 = 〈aj , aj〉−〈ai, ai〉 = 〈aj−ai, aj+ai〉.
This shows that O is the point of intersection of the perpendicular bisectors Pij . Fix k we shall
show that O is the only point of intersection of the perpendicular bisectors Pki, i 6= k (hence
also of all the Pij , i 6= j). Suppose that x ∈ Pki, i 6= k. Then 〈ai − ak, 2x〉 = 〈ai − ak, ai + ak〉.
So 〈ai − ak, 2(x− ak)〉 = 〈ai − ak, ai − ak〉 or equivalently, 2A(x− ak) = P . Thus x = O.
Note that the perpendicular bisectors Pij is the set of all x ∈ 〈T 〉 such that |x− ai| = |x− aj |.
We see that O is the only point with the property that |O − ai| = |O − aj | for all i, j. Then
the (n− 1)-sphere in 〈T 〉, whose centre is O and radius is |O − ak| passes through each of the
points ai. 2

Given an n-simplex T = [a0, a1, ..., an] in RN , let Pi be the line which is perpendicular

to the face Ti and passes through the circumcentre oi of Ti. Since Pi is the

intersection of the perpedicular bisectors Pjk, j 6= k, the lines Pi also meet at the

circumcentre O of T .
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The Orthocentre

In R2, it can be shown that three altitudes of any triangle meet at a point H,

called the orthocentre of the triangle. In RN , however the altitudes of an n-simplex

do not always intersect, so we shall give an alternate definition for the orthocentre

of an n-simplex.

Given an n-simplex T = [a0, a1, ..., an] in RN , we define the altitudinal plane at

the edge [ai, aj ] to be the (n − 1)-plane Aij in 〈T 〉 which is perpendicular to

the edge [ai, aj ] and passes through the centroid gij of the opposite (n − 2)-face

Tij = [a0, a1, ..., âi, ..., âj , ..., an]. Note that if T is a triangle then the altitudinal

planes are in fact its altitudes.

Theorem 3. The altitudinal planes Aij have a unique point of intersection H, called the
orthocentre of T . If we fix k with 0 ≤ k ≤ n and let A = Ak(T ) then H is given by

H = ak + A−1K

where K is the n× 1 matrix whose rows are 〈ai − ak, gik − ak〉.

Proof. Let H = ak + A−1K. Since A is the matrix whose rows are ai− ak and K is the matrix
whose rows are 〈ai − ak, gik − ak〉, this means that 〈ai − ak,H − ak〉 = 〈ai − ak, gik − ak〉 for
all i 6= k. So 〈ai − ak,H − gik〉 = 0 for all i 6= k. Since gij = gkj − 1

n−1 (ai − ak), we have
〈ai − aj ,H − gij〉 = 0. This shows that H is the intersection of all altitudinal planes Aij . Fix
k, we shall show that H is the only point of intersection of the altitudinal planes Aki, i 6= k

(hence also of all the Aij , i 6= j). Suppose that x ∈ Aki, i 6= k. Then 〈ai − ak, x− gik〉 = 0. So
〈ai − ak, x− ak〉 = 〈ai − ak, gik − ak〉. That is A(x− ak) = K. Thus x = H. 2

In R2, H, O and G of a triangle all lie on a line called the Euler line of a triangle,

and H + 2O = 3G. We shall show more generally that the points H, O and G of an

n-simplex in RN all lie on a line, also called the Euler line.

Theorem 4. H, O and G of an n-simplex in RN are collinear and

(n− 1)H + 2O = (n + 1)G.
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Proof. Let A = A0(T ).

By Theorem 3, we have H − a0 =




〈a1 − a0, g01 − a0〉
〈a2 − a0, g02 − a0〉

...
〈an − a0, g0n − a0〉




=
1

n− 1
A−1




〈a1 − a0,
∑n

i=0 ai − a1 − na0〉
〈a2 − a0,

∑n
i=0 ai − a2 − na0〉

...
〈an − a0,

∑n
i=0 ai − an − na0〉


 .

By Theorem 2, we have O − a0 =
1
2
A−1




〈a1 − a0, a1 − a0〉
〈a2 − a0, a2 − a0〉

...
〈an − a0, an − a0〉


 .

Thus (n− 1)(H − a0) + 2(O − a0) = A−1




〈a1 − a0,

n∑

i=0

ai − (n + 1)a0〉

〈a2 − a0,

n∑

i=0

ai − (n + 1)a0〉
...

〈an − a0,

n∑

i=0

ai − (n + 1)a0〉




= A−1A(
n∑

i=0

ai − (n + 1)a0)

= (n + 1)(G− a0).

Therefore (n− 1)H + 2O = (n + 1)G. 2

Given an n-simplex T = [a0, a1, ..., an] in RN , let gi be the centroid of the face Ti.

We have that T ′ = [g0, g1, ..., gn] is an n-simplex in RN . The n-simplex T ′ is called

the medial simplex of T .

The nine-point theorem says that for any triangle, the midpoints of the sides, the

feet of the altitudes and the midpoints of the segments joining the vertices to the

orthocentre all lie on a circle which is called the nine-point circle of a triangle. The

centre of this circle lies midway between the orthocentre and the circumcentre.

Note that this centre is the circumcentre of the medial triangle.

We shall generalize the nine-point theorem to the higher dimension.
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Theorem 5. (The 3(n+1)-point Theorem) Given an n-simplex T = [a0, a1, ..., an] in RN ,
let gi be the centroid of the face Ti, hi the point which lies ( 1

n )th of the way from H to ai and ki

the point of the intersection of 〈Ti〉 with the line Hi which passes through hi and is perpendicular
to 〈Ti〉. Then the points gi, hi and ki all lie on the circumscribed sphere S(O′, R′)of T ′.

Proof. By Theorem 2, the circumscribed sphere S(O′, R′) of T ′ passes through gi for all i. Since
hi = (n−1)H+ai

n and gi = (n+1)G−ai

n , O′ = gi+hi

2 . So [gi, hi] is a diameter of S(O′, R′). Thus
hi lies on S(O′, R′) for all i. Since [hi, ki] is perpendicular to 〈Ti〉 and [gi, ki] ⊆ 〈Ti〉, [hi, ki]
is perpendicular to [gi, ki]. Thus the angle ki in the triangle [gi, hi, ki] is π/2. Since [gi, hi] is
a diameter of S(O′, R′), we have ki ∈ S(O′, R′). Hence the points gi, hi and ki all lie on the
circumscribed sphere S(O′, R′) of T ′. 2

The Incentre

Given an n-simplex T = [a0, a1, ..., an] in RN , there are two normal vectors ±mi

for the face Ti, that is there are two vectors ±mi ∈ V (T ) such that |mi| = 1 and

〈mi, aj − ak〉 = 0 for all k, j 6= i. If mi is the normal vector such that 〈mi, ai − ak〉 > 0

for all k 6= i, we call mi the inward normal vector for the face Ti.

We define the angle between two (n− 1)-faces of T as follows;

The angle between two faces Ti and Tj is the angle

θ(Ti, Tj) = arccos |〈mi,mj〉| ∈ (0,
π

2
)

where mi and mj are normal vectors of Ti and Tj, respectively. An angle bisector

of Ti and Tj is an (n − 1)-plane B in 〈T 〉 which contains Tij and θ(B, Ti) = θ(B, Tj).

Note that, for any n-simplex T in RN , there are two angle bisectors of Ti and Tj.

They are the two (n− 1)-planes in 〈T 〉 with orthogonal vectors mi ±mj.

We define the internal angle bisector of Ti and Tj to be the angle bisector Bij of the

faces Ti and Tj with orthogonal vector mi −mj.

For fixed k with 0 ≤ k ≤ n, let Bk(T ) denote the n × n matrix whose rows are the

vectors mi −mk, i 6= k with respect to the chosen basis for V (T ).

Theorem 6. The internal angle bisectors Bij have a unique point of intersection I, called the
incentre of T . If we fix k and let B = Bk(T ) then I is given by

I = ak + B−1M

where M is an n× 1 matrix whose rows are 〈mi −mk, ali − ak〉, li 6= i, k.
Moreover, I is the centre of (n− 1)-sphere in T , called the inscribed sphere of T whose radius
is dR(I, 〈Ti〉).
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Proof. Let I = ak +B−1M . Since B is the matrix whose rows are mi−mk and M is the matrix
whose rows are 〈mi −mk, ali − ak〉, this means that 〈mi −mk, I − ak〉 = 〈mi −mk, ali − ak〉
for all li 6= i, k. For i 6= j, 〈mi − mj , I − ak〉 = 〈mi − mk, I − ak〉 − 〈mj − mk, I − ak〉 =
〈mi−mk, alp −ak〉− 〈mj −mk, alp −ak〉 = 〈mi−mj , alp −ak〉, lp 6= i, j, k. This shows that I is
the intersection of all internal angle bisectors Bij . Fix k, we shall show that I is the only point of
intersection of the internal angle bisectors Bki, i 6= k (hence also of all the Bij , i 6= j). Suppose
that x ∈ Bki, i 6= k. Then 〈mi −mk, x− ali〉 = 0. So 〈mi −mk, x− ak〉 = 〈mi −mk, ali − ak〉
for all li 6= i, k. That is B(x− ak) = M . Thus x = I.
Note that for x ∈ 〈T 〉, we have dR(x, 〈Ti〉) = dR(x, 〈Tj〉) if and only if x lies on one of the angle
bisectors of Ti and Tj . Then I is the centre of (n− 1)-sphere in T whose radius is dR(I, 〈Ti〉).
2

The Cleavance Centre

Given an n-simplex T = [a0, a1, ..., an] in RN , we define the cleavance plane at the edge

[ai, aj ] to be the (n − 1)-plane Qij which passes through the midpoint of the edge

[ai, aj ] and is parallel to the internal angle bisector of Ti and Tj. Note that the

cleavance planes of a triangle are its cleavers.

Theorem 7. The cleavance planes Qij have a unique point of intersection J , called the clea-
vance centre. If we fix k, and let B = Bk(T ) then J is given by

J = ak +
1
2
B−1Q

where Q is the n× 1 matrix whose rows are 〈mi −mk, ai − ak〉.

Proof. Let J = ak + 1
2B−1Q. Since B is the matrix whose rows are mi−mk and Q is the matrix

whose rows are 〈mi −mk, ai − ak〉, this means that 〈mi −mk, 2(J − ak)〉 = 〈mi −mk, ai − ak〉
for all i 6= k. For i 6= j, 〈mi − mj , 2J〉 = 〈mi − mk, ai + ak〉 − 〈mj − mk, aj + ak〉 = 〈mi −
mk, ai + aj〉 − 〈mj −mk, ai + aj〉 = 〈mi −mj , ai + aj〉. This shows that J is the intersection
of all cleavance planes Qij . Fix k, we shall show that J is the only point of intersection of the
cleavance planes Qki, i 6= k (hence also of all the Qij , i 6= j). Suppose that x ∈ Qki, i 6= k. Then
〈mi−mk, 2x〉 = 〈mi−mk, ai + ak〉. So 〈mi−mk, 2(x− ak)〉 = 〈mi−mk, ai− ak〉 for all i 6= k.
That is 2B(x− ak) = Q. Thus x = J . 2

Theorem 8. I, J and G of an n-simplex in RN are collinear and

(n− 1)I + 2J = (n + 1)G.

Proof. Let B = B0(T ). By Theorem 6,

I − a0 = B−1




〈m1 −m0, aj1 − a0〉
〈m2 −m0, aj2 − a0〉

...
〈m1 −m0, ajn − a0〉


 where ji 6= 0, i.
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Since 〈mi −m0, aj〉 = 〈mi −m0, al〉 for all j, l 6= i, 0, we have (n − 1)〈mi −m0, aji〉 = 〈mi −
m0,

∑

k 6=0,i

ak〉.

So (n− 1)(I − a0) = B−1




〈m1 −m0,

n∑

i=0

ai − a1 − na0〉

〈m2 −m0,

n∑

i=0

ai − a2 − na0〉
...

〈mn −m0,

n∑

i=0

ai − an − na0〉




.

By Theorem 7, 2(J − a0) = B−1




〈m1 −m0, a1 − a0〉
〈m2 −m0, a2 − a0〉

...
〈m1 −m0, an − a0〉


 .

Thus (n− 1)(I − a0) + 2(J − a0) = B−1




〈m1 −m0,

n∑

i=0

ai − (n + 1)a0〉

〈m2 −m0,

n∑

i=0

ai − (n + 1)a0〉
...

〈mn −m0,

n∑

i=0

ai − (n + 1)a0〉




= B−1B(
n∑

i=0

ai − (n + 1)a0)

= (n + 1)(G− a0).
Hence (n− 1)I + 2J = (n + 1)G. 2

The Centres of Simplices in Sn

The n-sphere Sn in Rn+1 is the set of all points u in Rn+1 such that ‖u‖ = 1. Given

u1, u2, ..., uk+1 in Sn, we define

(u1, u2, ..., uk+1) = {
k+1∑

i=1

tiui ∈ Sn | ti ≥ 0 for all i }.

If {u1, u2, ..., uk+1} is linearly independent in Rn+1 then (u1, u2, ..., uk+1) is called a

k-simplex in Sn. A 1-simplex is called an arc and a 2-simplex is called a spherical

triangle.

Given a k-simplex S = (u1, u2, ..., uk+1) in Sn, we write [0, S] for the (k + 1)-simplex

in Rn+1 given by [0, S] = [0, u1, u2, ..., uk+1].
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The centroid

Given an n-simplex S = (u1, u2, ..., un+1) in Sn, we define the medial great hypersphere

of the edge (ui, uj) to be the great hypersphere SMij in Sn which passes through

the midpoint of the edge (ui, uj) and through the points uk, k 6= i, j.

Theorem 9. The medial great hyperspheres SMij of an n-simplex S = (u1, u2, ..., un+1) in Sn

have two points of intersection ± G
|G| where G is the centroid of the simplex [0, S] in Rn+1.

Proof. Since G = 1
n+2 (

n+1∑

i=1

ui), and SMij = Sn∩Mij where Mij is the medial plane at the edge

[ui, uj ] of [0, S] in Rn+1, the medial great hyperspheres meet at the two points ± G
|G| . 2

Note that G
|G| ∈ S but − G

|G| /∈ S. We call the point G
|G| the centroid of S and denote

it by Gs.

The Circumcentre

Let SP and SQ be two great hyperspheres in Sn, say SP = P ∩Sn and SQ = P ∩Sn for

some hyperspaces P and Q in Rn+1. The angle between SP and SQ in Sn, θs(SP, SQ)

is given by θs(SP, SQ) := θ(P, Q). Let S = (u1, u2, ..., un+1) be an n-simplex in Sn. The

perpendicular bisector of the edge (ui, uj) is the great hypersphere SPij in Sn which

is perpendicular to the edge (ui, uj) and passes through the midpoint of the edge

(ui, uj).

Theorem 10. The perpendicular bisectors SPij of any n-simplex in Sn meet at two points
± O
|O| where O is the circumcentre of the simplex [0, S] in Rn+1.

Proof. Since SPij = Sn∩Pij where Pij is the perpendicular bisector of the edge [ui, uj ] of [0, S]
in Rn+1 and

⋂

i 6=j

Pij is the line passing through 0 and O, we have the perpendicular bisectors

SPij meet at the two points ± O
|O| . 2

Let Os = O
|O| . Since the perpendicular bisector of (ui, uj) is the set of all points

u ∈ Sn such that ds(u, ui) = ds(u, uj) for all i, j, ds(Os, ui) = ds(Os, uj) for all i, j. Let

Rs = ds(Os, ui) = θ(Os, ui) = arccos〈Os, ui〉 ∈ (0, π
2 ). The sphere S(Os, Rs) = {u ∈

Sn | ds(Os, u) = Rs} is called the circumscribed sphere of S. Note that S(Os, Rs) passes

through each of the points ui.
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The Incentre

Given a point u and a great hypersphere SP in Sn, the distance between u and SP ,

denoted by ds(u, SP ), is given by

ds(u, SP ) := inf {ds(u, v) | v ∈ SP} = arcsin d(u, P ).

An angle bisector of two great hypersphere SP and SQ is a great hypersphere SB

in Sn which contains SP ∩ SQ and θs(SB, SP ) = θs(SB, SQ). In other words, SB is

the intersection of Sn with an angle bisector B of P and Q at P ∩Q in Rn+1.

We define the inward pole of the face Si to be the pole mi such that 〈mi, ui〉 > 0.

Equivalently, mi is the inward normal vector for the n-face [0, S]i which is opposite

to the vertex ui of the simplex [0, S] in Rn+1.

Let mi and mj be the inward poles of Si and Sj, respectively. The internal angle

bisector of Si and Sj is the great hypersphere SBij which passes through uk, k 6= i, j

with the pole mi−mj

|mi−mj | .

Theorem 11. The angle bisectors SBij of an n-simplex in Sn meet at two points ± I
|I| where

I is the incentre of the simplex [0, S] in Rn+1.

Proof. Since SBij = Sn∩Bij where Bij is the internal angle bisector of the edge [ui, uj ] of [0, S]
in Rn+1 and

⋂

i6=j

Bij is the line passing through 0 and I, we have the internal angle bisectors

SBij meet at the two points ± I
|I| . 2
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