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Abstract. A triangle in the Fuclidean plane has various kinds of centres such as
the centroid G, the circumcentre O, the incentre I, the orthocentre H, and the cleavance
centre J. We find higher dimensional analogues of these centres of simplices in
Fuclidean n-space and in spherical n-space. Each centre is described as the point
of intersection of certain hyperplanes (or great hyperspheres in the spherical case).
Several theorems relating the various kinds of centres for triangles are generalized
to higher dimensions. For example, we show that the centres O, G, and H are
collinear and that the centres J, G, and I are collinear for any simplex in Euclidean

n-space.
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Introduction

A triangle in the Euclidean plane has various kinds of centres such as the centroid
G (the point of intersection of the medians), the circumcentre O (the point of
intersection of the perpendicular bisectors, which is the centre of the circumcircle),
the incentre I (the point of the intersection of the angle bisectors, and also the
centre of the inscribed circle), the orthocentre H (which is the common point of

the altitudes), the cleavance centre J (which is the intersection of the cleavers),
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and the nine-point centre (which is the centre of the circle passing through the
midpoints of the sides, the midpoints of the lines joining the orthocentre to the
vertices, and the feet of the altitudes).

In this paper, we find higher dimensional analogs of these centres for simplices
in Euclidean n-space and also in spherical n-space. Each centre is described
as the point of intersection of certain hyperplanes (or great hyperspheres in the
spherical case). Several theorems relating the various kinds of centres for triangles

are generalized to higher dimensions.
The Centres of Simplices in RY

An n-simplez is the set of all convex combinations of a set of n + 1 affinely inde-
pendent points. A 1-simplex is called a line segment, a 2-simplex is called a triangle
and a 3-simplex is called a tetrahedron. Note that, the n-simplex [ag, a1, ..., a,] is the

set

[ao,a17...7an] = { Ztiai ‘ Zti = 1, ti 2 0 for all }
=0 =0

The Centroid

Given an n-simplex T = [ag, a1, ...,a,] in RV and given 0 < i,j < n with i # j, the
medial plane of T at the edge [a;,a;] is the (n — 1)-plane M;; which passes through
the midpoint of [a;,a;] and through all the other vertices ax,k # i,j. Note that if

T is a triangle, then its medial planes are in fact its medians.

Theorem 1. The medial planes M;; of an n-simplex T = [ag, a1, ..., an] have a unique point of
intersection G, called the centroid (or the barycentre) of T. It is given by

=0

. 1 2 La;+a; .
Proof. Since G —ay, = l;k ] (ap — ag) + m(% —ay),G € M;; for all i # j. Note
that the intersection of the medial planes My; with j = 1,2,...,m is the (n — m)-plane passing

m

through #H(Zaj) and the other vertices @41, Gma2, ..., an. In particular, G is the unique
j=0

point of intersection of the medial planes M;;. O
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Given an n-simplex T = [ag,a1,...,a,] in RY, we define the medial line at a; to be

the line M; passing through a; and the centroid g; = %(Z ar) of the opposite face

ki
T; = [ag,a1, .., Gi, ..., a,], Where a; indicates omission of the vertex a;. Since the

medial line M; is the intersection of the medial planes M, with j, &k # i, the medial

lines of an n-simplex T also meet at the centroid G of T.
The Circumcentre

We define the perpendicular bisector of the edge [a;,a;] to be the (n — 1)-plane P;
in (T) = ar, + spanf{ay —a; | i # k} which is perpendicular to the edge [a;,a;] and
passes through the midpoint of [a;, a;].

Let V(T) = span{ai, — a; | i # k}. We choose an orthonormal basis for the vector
space V(T). For fixed k with 0 < k < n, let A,(T) denote the n x n matrix whose

rows are the vector a; — a, with respect to the chosen basis.

Theorem 2. The perpendicular bisectors Pj; of an n-simplex T meet at a unique point O,
called the circumcentre of T. If we fix k with 0 < k < n, then O is given by

1
O = Clk;+ iA_lp

where A = Ai(T) and P is the n x 1 matriz whose rows are |a; — ax|?.
Moreover, O is the centre of the (n — 1)-sphere in (T'), called the circumscribed sphere of T
which passes through each of the points a;.

Proof. Let O = ay, + %A‘lP. Since A is the matrix whose rows are a; — a, and P is the
matrix whose rows are |a; — ay|?, this means that (a; — ag,2(0 — ax)) = {(a; — ax,a; — ax).
So (a; — ax,20) = (a; — ag,a; + ag) for all i # k. For all ¢ # j, we have (a; — a;,20) =
(aj—ar+ar—a;, 20) = (aj—ak, a;+ap) —(a; —ag, a;+ax) = (a;,a;)—(a;, a;) = (a;—a;, a;+a;).
This shows that O is the point of intersection of the perpendicular bisectors P;;. Fix k we shall
show that O is the only point of intersection of the perpendicular bisectors Py;,i # k (hence
also of all the P;j,i # j). Suppose that « € Py;,% # k. Then (a; — ag,2z) = (a; — ax, a; + ag).
So (a; — ag,2(x — ar)) = {a; — ag, a; — ax) or equivalently, 2A(x — ax) = P. Thus z = O.
Note that the perpendicular bisectors P;; is the set of all z € (T') such that |z — a;| = |z — ;.
We see that O is the only point with the property that |O — a;| = |O — a;| for all i,j. Then
the (n — 1)-sphere in (T}, whose centre is O and radius is |O — ai| passes through each of the
points a;. O

Given an n-simplex T = [ag, a1, ..., a,] in RV, let P; be the line which is perpendicular
to the face T; and passes through the circumcentre o; of 7;. Since P; is the
intersection of the perpedicular bisectors Pjy,j # k, the lines P; also meet at the

circumcentre O of T.
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The Orthocentre

In R?, it can be shown that three altitudes of any triangle meet at a point H,
called the orthocentre of the triangle. In RY, however the altitudes of an n-simplex
do not always intersect, so we shall give an alternate definition for the orthocentre
of an n-simplex.

Given an n-simplex T = [ag,a1,...,a,] in RN we define the altitudinal plane at
the edge [ai,a;] to be the (n — 1)-plane 4;; in (T) which is perpendicular to
the edge [a;,a;] and passes through the centroid g;; of the opposite (n — 2)-face
T;j = lao,a1,...,a;,...,a4,...,a,]. Note that if T is a triangle then the altitudinal

planes are in fact its altitudes.

Theorem 3. The altitudinal planes A;; have a unique point of intersection H, called the
orthocentre of T'. If we fix k with 0 < k <n and let A= Ai(T) then H is given by

H = aq+A'K

where K is the n x 1 matriz whose rows are {a; — ak, gir, — Gk)-

Proof. Let H = aj, + A~'K. Since A is the matrix whose rows are a; — a; and K is the matrix
whose rows are (a; — ag, gir — ag), this means that (a; — ax, H — ax) = (a; — ag, gir — ag) for
all ¢ # k. So {(a; — ax, H — gi) = 0 for all ¢ # k. Since g;; = gi; — ﬁ(ai — ay), we have
(a; —aj, H — g;5) = 0. This shows that H is the intersection of all altitudinal planes A;;. Fix
k, we shall show that H is the only point of intersection of the altitudinal planes Ag;,i # k
(hence also of all the A;;,i # j). Suppose that € Ay, i # k. Then (a; — ag,z — gix) = 0. So
(a; — ag,x — ag) = {a; — ag, gir, — ag). That is A(x — ax) = K. Thus x = H. O

In R?, H, O and G of a triangle all lie on a line called the Euler line of a triangle,
and H + 20 = 3G. We shall show more generally that the points H, O and G of an

n-simplex in R all lie on a line, also called the Euler line.

Theorem 4. H,O and G of an n-simplex in RY are collinear and

(n—1)H + 20 = (n+1)G.
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Proof. Let A = Ao(T).

<a1 — @o, 901 — ao>

(a2 — ao, go2 — ao)
By Theorem 3, we have H —ag =

(an — ag, gon — ao)

(a1 — ag, Y1 ai — a1 — nag)
1 e (az — ao, Z?:o a; — az — nag)
T n-—1 :

<an — ao, Z:‘L:O Qi — Qp — na0>

(a1 — ag, a1 — ao)

1., | (a2—ao,a2—ao)
By Theorem 2, we have O — ag = §A

<an — ag, an — CL0>

al—a072 a; — (n+ 1)ag)

{as — ag, a; — (n+ 1ag)
Thus (n—1)(H —ag) +2(0 —ag) = A™! Z '

—amz:ai (n+ 1)ag)

= A" 1/123(1Z (n+ 1)ap)
= (n—l—l)(G—aO).

Therefore (n —1)H 420 = (n+1)G. O

Given an n-simplex T = [ag,ay,...,a,] in RY, let g; be the centroid of the face T;.
We have that T’ = [g9, 1, ..., 9] 1S an n-simplex in RY. The n-simplex 7’ is called
the medial simplex of T.

The nine-point theorem says that for any triangle, the midpoints of the sides, the
feet of the altitudes and the midpoints of the segments joining the vertices to the
orthocentre all lie on a circle which is called the nine-point circle of a triangle. The
centre of this circle lies midway between the orthocentre and the circumcentre.
Note that this centre is the circumcentre of the medial triangle.

We shall generalize the nine-point theorem to the higher dimension.
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Theorem 5. (The 3(n+1)-point Theorem) Given an n-simplex T = |ag, a1, ..., a,] in RY,
let g; be the centroid of the face T;, h; the point which lies (%)th of the way from H to a; and k;
the point of the intersection of (T;) with the line H; which passes through h; and is perpendicular
to (T;). Then the points g;, h; and k; all lie on the circumscribed sphere S(O’, R)of T".

Proof. By Theorem 2, the circumscribed sphere S(O’, R’) of T” passes through g; for all i. Since
h; = %RHM and ¢; = W,O’ = 9thi Qo [g;,hy] is a diameter of S(O’, R'). Thus
h; lies on S(O’,R’) for all i. Since [h;, k;] is perpendicular to (T;) and [g;, k;] C (T;), [hi, ki]

is perpendicular to [g;, k;]. Thus the angle k; in the triangle [g;, h;, k;] is 7/2. Since [g;, h;] is
a diameter of S(O’, R'), we have k; € S(O’, R"). Hence the points g;, h; and k; all lie on the
circumscribed sphere S(O', R") of T'. O

The Incentre

Given an n-simplex T = [ag,a1,...,a,] in RV, there are two normal vectors +m;
for the face T;, that is there are two vectors +m; € V(T) such that |m;| = 1 and
(mi,a; —ag) =0 for all k,j #i. If m; is the normal vector such that (m;,a; —ax) >0
for all k # 4, we call m; the inward normal vector for the face T;.
We define the angle between two (n — 1)-faces of T' as follows;

The angle between two faces T; and 7} is the angle
0(T;,T;) = arccos|{m;,m;)| € (O,g)

where m; and m; are normal vectors of T; and T}, respectively. An angle bisector
of T; and 7j is an (n — 1)-plane B in (T) which contains T;; and 0(B,T;) = 0(B,T}).
Note that, for any n-simplex 7' in R, there are two angle bisectors of 7; and 7j.
They are the two (n — 1)-planes in (T) with orthogonal vectors m; &+ m;.

We define the internal angle bisector of T; and T; to be the angle bisector B;; of the
faces T; and 7; with orthogonal vector m; —m;.

For fixed k with 0 < k <n, let B,(T) denote the n x n matrix whose rows are the
vectors m; —my, i # k with respect to the chosen basis for V(7).

Theorem 6. The internal angle bisectors B;; have a unique point of intersection I, called the
incentre of T'. If we fiz k and let B = By (T) then I is given by

I = a.+B'M

where M is an n X 1 matriz whose rows are (m; — my,a;, — ag), l; # i, k.
Moreover, I is the centre of (n — 1)-sphere in T, called the inscribed sphere of T whose radius
is dr(I,(T3)).
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Proof. Let I = ap+B~'M. Since B is the matrix whose rows are m; —my, and M is the matrix
whose rows are (m; — my,a;, — ax), this means that (m; — my, I — ag) = {(m; — mg,a;, — ag)
for all ; # i,k. For i # j,(m; —mj, I —ag) = (m; — my, I —ap) — (mj —myg, I —ag) =
(mi —mp, ar, —ag) — (mj —my, ay, —ap) = (m; —mj,a;, —a),l, # 4,7, k. This shows that I is
the intersection of all internal angle bisectors B;;. Fix k, we shall show that I is the only point of
intersection of the internal angle bisectors By, # k (hence also of all the B;;,7 # j). Suppose
that © € By, i # k. Then (m; — mg,xz —a;,) = 0. So (m; —my,x — ag) = (m; — my,a;, — ag)
for all I; # 4, k. That is B(x — ax) = M. Thus = I.

Note that for z € (T'), we have dgr(z, (T;)) = dr(z, (Tj)) if and only if x lies on one of the angle
bisectors of T; and Tj. Then I is the centre of (n — 1)-sphere in T" whose radius is dg (I, (T})).
O

The Cleavance Centre

Given an n-simplex T = [ag, a1, ..., a,] in RN, we define the cleavance plane at the edge
[ai,a;] to be the (n —1)-plane Q,;; which passes through the midpoint of the edge
[a;,a;] and is parallel to the internal angle bisector of T7; and 7;. Note that the

cleavance planes of a triangle are its cleavers.

Theorem 7. The cleavance planes Q;; have a unique point of intersection J, called the clea-
vance centre. If we fix k, and let B = B(T) then J is given by

1
J = ag + §B_1Q

where Q is the n x 1 matriz whose rows are {(m; — my, a; — ag).

Proof. Let J = ax+ %B_lQ. Since B is the matrix whose rows are m; —m;, and @ is the matrix
whose rows are (m; — my, a; — ay), this means that (m; — my, 2(J — ax)) = (m; — mg, a; — ag)
for all ¢ # k. For i # j,(m; —m;,2J) = (m; — my,a; + ar) — (m; — my,a; + ag) = (m; —
my, a; + aj) — (mj —my, a; + aj) = (m; —mj,a; + a;). This shows that J is the intersection
of all cleavance planes ();;. Fix k, we shall show that J is the only point of intersection of the
cleavance planes Qy;, ¢ # k (hence also of all the Q;;,% # j). Suppose that z € Q;,i # k. Then
(m; —myg, 2z) = (my —myg,a; +ag). So (m; —my,2(x —ag)) = (m; —myg,a; —a) for all ¢ # k.
That is 2B(z —ag) = Q. Thus x = J. O

Theorem 8. I, J and G of an n-simplex in RN are collinear and
(n—1I+2J=(n+1)G.
Proof. Let B = Bo(T). By Theorem 6,
(m1 —mo, aj, — ag)
(mge — my, aj, — aog)

I—ay=B""! _ where j; # 0, 1.

(m1 —mo, a3, — ao)
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Since (m; — mg,a;) = (m; — mo, ;) for all j,I # ¢,0, we have (n — 1)(m; —mo,a;,) = (m; —

mo, Z ak>.

k£0,i
— n -
<m1 — My, Zai —a; — TLCLO>
1=0
(mg — my, Zai — as — nag)

So (n—1)(I —ag) = B~} =0

n
my, — Mo, E a; — an — Nagp)
i=0

<m1 — Mo, a1 — a0>

(ma —mo, az — ao)
By Theorem 7, 2(J —ag) = B~}

(m1 — mo, an — ag)

(mq — mo,Zal (n+ 1)aop)

(ma — my, a; — (n+ 1)ag)
Thus (n —1)(I — ag) +2(J —ag) = B™* Z

mo,Zaz (n+ 1)ag)

= B7!'B( Zaz (n+ 1)ag)

=(n+ 1)(G —ap)-
Hence (n—1)I+2J=(n+1)G. O

The Centres of Simplices in S™

The n-sphere S™ in R**! is the set of all points v in R**! such that ||ju|| = 1. Given

Uy, Us, ..., up1 10 S, we define

k+1
(ul,uQ,...,uk+1) = {Ztiui e s” | t; >0 for all Z}

If {uy,ug,...,ury1} is linearly independent in R™*! then (uq,us,...,ury1) is called a
k-simplez in S™. A 1-simplex is called an arc and a 2-simplex is called a spherical
triangle.

Given a k-simplex S = (ug,us,...,ur+1) in S*, we write [0, 5] for the (k + 1)-simplex

in R**! given by [0, 5] = [0, uy, ua, ..., ug11].
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The centroid

Given an n-simplex S = (u1,us, ..., un41) in S", we define the medial great hypersphere
of the edge (u;,u;) to be the great hypersphere SM;; in S* which passes through
the midpoint of the edge (u;,u;) and through the points uy, k # i, 5.

Theorem 9. The medial great hyperspheres SM;; of an n-simplex S = (u1,ua, ..., Up41) in S™
have two points of intersection i% where G is the centroid of the simplex [0,S] in R™F1.

n+1
Proof. Since G = %4_2(2 u;), and SM;; = S™ N M;; where M;; is the medial plane at the edge
i=1

[u;, u;] of [0,5] in R™!, the medial great hyperspheres meet at the two points i%. a

Note that |%| € S but _I%\ ¢ S. We call the point |%| the centroid of S and denote
it by G;.

The Circumcentre

Let SP and SQ be two great hyperspheres in S”, say SP = PNnS™ and SQ = PNS™ for
some hyperspaces P and Q in R**!. The angle between SP and SQ in S, 0,(SP, SQ)
is given by 0,(SP,SQ) := 0(P,Q). Let S = (u1,ua, ...,un11) be an n-simplex in S*. The
perpendicular bisector of the edge (u;,u;) is the great hypersphere SP;; in S* which
is perpendicular to the edge (u;,u;) and passes through the midpoint of the edge
(us, uj).

Theorem 10. The perpendicular bisectors SP;; of any n-simplex in S" meet at two points

j:‘%‘ where O is the circumcentre of the simplez [0, 5] in R 1.

Proof. Since SP;; = S" N P;; where P;; is the perpendicular bisector of the edge [u;, u;] of [0, 5]

in R*™*! and ﬂ P;; is the line passing through 0 and O, we have the perpendicular bisectors
i#]

SP;j meet at the two points +5;. O

Let O, = %. Since the perpendicular bisector of (u;,u;) is the set of all points
u € S" such that ds(u,u;) = ds(u,u;) for all i,4,ds(O0s,u;) = ds(Os,u;) for all 4,5. Let
R, = dy(Os,u;) = 0(Os,u;) = arccos(Os,u;) € (0,5). The sphere S(Os, R,) = {u €
S™ | ds(Os,u) = R} is called the circumscribed sphere of S. Note that S(O, R,) passes
through each of the points ;.
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The Incentre

Given a point u and a great hypersphere SP in S*, the distance between u and SP,
denoted by d,(u, SP), is given by

ds(u, SP) :=inf {ds(u,v) | v € SP} = arcsind(u, P).

An angle bisector of two great hypersphere SP and SQ is a great hypersphere SB
in S® which contains SP N SQ and 6,(SB,SP) = 0,(SB,SQ). In other words, SB is
the intersection of S* with an angle bisector B of P and Q at PnQ in R**!.

We define the inward pole of the face S; to be the pole m; such that (m;,u;) > 0.
Equivalently, m; is the inward normal vector for the n-face [0, S]; which is opposite
to the vertex u; of the simplex [0,5] in R**!.

Let m; and m; be the inward poles of S; and S;, respectively. The internal angle

bisector of S; and S; is the great hypersphere SB;; which passes through uy, k # i, j

mMi—m;
[mi—mj;|*

with the pole

Theorem 11. The angle bisectors SB;; of an n-simplex in S™ meet at two points j:ﬁ where
I is the incentre of the simplex [0,S] in R™F1.

Proof. Since SB;; = S"NB;; where B;; is the internal angle bisector of the edge [u;, u;] of [0, 5]
in R™*! and ﬂ B;; is the line passing through 0 and I, we have the internal angle bisectors
i#j

SB;; meet at the two points i|T' O
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