The Various Kinds of Centres of Simplices

Somluck Outudee and Stephen New
Department of Mathematics, Faculty of Science
Chulalongkorn University, Bangkok 10330, Thailand
E-mail: outudee@hotmail.com

Abstract

A triangle in the Euclidean plane has various kinds of centres such as the centroid G, the circumcentre O, the incentre I, the orthocentre H, and the cleavance centre J. We find higher dimensional analogues of these centres of simplices in Euclidean n-space and in spherical n-space. Each centre is described as the point of intersection of certain hyperplanes (or great hyperspheres in the spherical case). Several theorems relating the various kinds of centres for triangles are generalized to higher dimensions. For example, we show that the centres O, G, and H are collinear and that the centres J, G, and I are collinear for any simplex in Euclidean n-space.

Keyword: simplices.

Introduction

A triangle in the Euclidean plane has various kinds of centres such as the centroid G (the point of intersection of the medians), the circumcentre O (the point of intersection of the perpendicular bisectors, which is the centre of the circumcircle), the incentre I (the point of the intersection of the angle bisectors, and also the centre of the inscribed circle), the orthocentre H (which is the common point of the altitudes), the cleavance centre J (which is the intersection of the cleavers),
and the nine-point centre (which is the centre of the circle passing through the midpoints of the sides, the midpoints of the lines joining the orthocentre to the vertices, and the feet of the altitudes).
In this paper, we find higher dimensional analogs of these centres for simplices in Euclidean n-space and also in spherical n-space. Each centre is described as the point of intersection of certain hyperplanes (or great hyperspheres in the spherical case). Several theorems relating the various kinds of centres for triangles are generalized to higher dimensions.

The Centres of Simplices in \mathbb{R}^{N}

An n-simplex is the set of all convex combinations of a set of $n+1$ affinely independent points. A 1-simplex is called a line segment, a 2 -simplex is called a triangle and a 3 -simplex is called a tetrahedron. Note that, the n-simplex $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ is the set

$$
\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\left\{\sum_{i=0}^{n} t_{i} a_{i} \mid \sum_{i=0}^{n} t_{i}=1, t_{i} \geq 0 \text { for all } i\right\} .
$$

The Centroid

Given an n-simplex $T=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ in \mathbb{R}^{N}, and given $0 \leq i, j \leq n$ with $i \neq j$, the medial plane of T at the edge $\left[a_{i}, a_{j}\right]$ is the $(n-1)$-plane $M_{i j}$ which passes through the midpoint of $\left[a_{i}, a_{j}\right]$ and through all the other vertices $a_{k}, k \neq i, j$. Note that if T is a triangle, then its medial planes are in fact its medians.

Theorem 1. The medial planes $M_{i j}$ of an n-simplex $T=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ have a unique point of intersection G, called the centroid (or the barycentre) of T. It is given by

$$
(n+1) G=\sum_{i=0}^{n} a_{i} .
$$

Proof. Since $G-a_{k}=\sum_{l \neq i, j, k} \frac{1}{n+1}\left(a_{l}-a_{k}\right)+\frac{2}{n+1}\left(\frac{a_{i}+a_{j}}{2}-a_{k}\right), G \in M_{i j}$ for all $i \neq j$. Note that the intersection of the medial planes $M_{0 j}$ with $j=1,2, \ldots, m$ is the ($n-m$)-plane passing through $\frac{1}{m+1}\left(\sum_{j=0}^{m} a_{j}\right)$ and the other vertices $a_{m+1}, a_{m+2}, \ldots, a_{n}$. In particular, G is the unique point of intersection of the medial planes $M_{i j}$.

Given an n-simplex $T=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ in \mathbb{R}^{N}, we define the medial line at a_{i} to be the line M_{i} passing through a_{i} and the centroid $g_{i}=\frac{1}{n}\left(\sum_{k \neq i} a_{k}\right)$ of the opposite face $T_{i}=\left[a_{0}, a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{n}\right]$, where \hat{a}_{i} indicates omission of the vertex a_{i}. Since the medial line M_{i} is the intersection of the medial planes $M_{j k}$ with $j, k \neq i$, the medial lines of an n-simplex T also meet at the centroid G of T.

The Circumcentre

We define the perpendicular bisector of the edge $\left[a_{i}, a_{j}\right]$ to be the $(n-1)$-plane $P_{i j}$ in $\langle T\rangle=a_{k}+\operatorname{span}\left\{a_{k}-a_{i} \mid i \neq k\right\}$ which is perpendicular to the edge $\left[a_{i}, a_{j}\right]$ and passes through the midpoint of $\left[a_{i}, a_{j}\right]$.
Let $V(T)=\operatorname{span}\left\{a_{k}-a_{i} \mid i \neq k\right\}$. We choose an orthonormal basis for the vector space $V(T)$. For fixed k with $0 \leq k \leq n$, let $A_{k}(T)$ denote the $n \times n$ matrix whose rows are the vector $a_{i}-a_{k}$ with respect to the chosen basis.

Theorem 2. The perpendicular bisectors $P_{i j}$ of an n-simplex T meet at a unique point O, called the circumcentre of T. If we fix k with $0 \leq k \leq n$, then O is given by

$$
O=a_{k}+\frac{1}{2} A^{-1} P
$$

where $A=A_{k}(T)$ and P is the $n \times 1$ matrix whose rows are $\left|a_{i}-a_{k}\right|^{2}$.
Moreover, O is the centre of the $(n-1)$-sphere in $\langle T\rangle$, called the circumscribed sphere of T which passes through each of the points a_{i}.

Proof. Let $O=a_{k}+\frac{1}{2} A^{-1} P$. Since A is the matrix whose rows are $a_{i}-a_{k}$ and P is the matrix whose rows are $\left|a_{i}-a_{k}\right|^{2}$, this means that $\left\langle a_{i}-a_{k}, 2\left(O-a_{k}\right)\right\rangle=\left\langle a_{i}-a_{k}, a_{i}-a_{k}\right\rangle$. So $\left\langle a_{i}-a_{k}, 2 O\right\rangle=\left\langle a_{i}-a_{k}, a_{i}+a_{k}\right\rangle$ for all $i \neq k$. For all $i \neq j$, we have $\left\langle a_{j}-a_{i}, 2 O\right\rangle=$ $\left\langle a_{j}-a_{k}+a_{k}-a_{i}, 2 O\right\rangle=\left\langle a_{j}-a_{k}, a_{j}+a_{k}\right\rangle-\left\langle a_{i}-a_{k}, a_{i}+a_{k}\right\rangle=\left\langle a_{j}, a_{j}\right\rangle-\left\langle a_{i}, a_{i}\right\rangle=\left\langle a_{j}-a_{i}, a_{j}+a_{i}\right\rangle$. This shows that O is the point of intersection of the perpendicular bisectors $P_{i j}$. Fix k we shall show that O is the only point of intersection of the perpendicular bisectors $P_{k i}, i \neq k$ (hence also of all the $\left.P_{i j}, i \neq j\right)$. Suppose that $x \in P_{k i}, i \neq k$. Then $\left\langle a_{i}-a_{k}, 2 x\right\rangle=\left\langle a_{i}-a_{k}, a_{i}+a_{k}\right\rangle$. So $\left\langle a_{i}-a_{k}, 2\left(x-a_{k}\right)\right\rangle=\left\langle a_{i}-a_{k}, a_{i}-a_{k}\right\rangle$ or equivalently, $2 A\left(x-a_{k}\right)=P$. Thus $x=O$.
Note that the perpendicular bisectors $P_{i j}$ is the set of all $x \in\langle T\rangle$ such that $\left|x-a_{i}\right|=\left|x-a_{j}\right|$. We see that O is the only point with the property that $\left|O-a_{i}\right|=\left|O-a_{j}\right|$ for all i, j. Then the $(n-1)$-sphere in $\langle T\rangle$, whose centre is O and radius is $\left|O-a_{k}\right|$ passes through each of the points a_{i}.

Given an n-simplex $T=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ in \mathbb{R}^{N}, let P_{i} be the line which is perpendicular to the face T_{i} and passes through the circumcentre o_{i} of T_{i}. Since P_{i} is the intersection of the perpedicular bisectors $P_{j k}, j \neq k$, the lines P_{i} also meet at the circumcentre O of T.

The Orthocentre

In \mathbb{R}^{2}, it can be shown that three altitudes of any triangle meet at a point H, called the orthocentre of the triangle. In \mathbb{R}^{N}, however the altitudes of an n-simplex do not always intersect, so we shall give an alternate definition for the orthocentre of an n-simplex.
Given an n-simplex $T=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ in \mathbb{R}^{N}, we define the altitudinal plane at the edge $\left[a_{i}, a_{j}\right]$ to be the $(n-1)$-plane $A_{i j}$ in $\langle T\rangle$ which is perpendicular to the edge $\left[a_{i}, a_{j}\right]$ and passes through the centroid $g_{i j}$ of the opposite $(n-2)$-face $T_{i j}=\left[a_{0}, a_{1}, \ldots, \hat{a}_{i}, \ldots, \hat{a}_{j}, \ldots, a_{n}\right]$. Note that if T is a triangle then the altitudinal planes are in fact its altitudes.

Theorem 3. The altitudinal planes $A_{i j}$ have a unique point of intersection H, called the orthocentre of T. If we fix k with $0 \leq k \leq n$ and let $A=A_{k}(T)$ then H is given by

$$
H=a_{k}+A^{-1} K
$$

where K is the $n \times 1$ matrix whose rows are $\left\langle a_{i}-a_{k}, g_{i k}-a_{k}\right\rangle$.

Proof. Let $H=a_{k}+A^{-1} K$. Since A is the matrix whose rows are $a_{i}-a_{k}$ and K is the matrix whose rows are $\left\langle a_{i}-a_{k}, g_{i k}-a_{k}\right\rangle$, this means that $\left\langle a_{i}-a_{k}, H-a_{k}\right\rangle=\left\langle a_{i}-a_{k}, g_{i k}-a_{k}\right\rangle$ for all $i \neq k$. So $\left\langle a_{i}-a_{k}, H-g_{i k}\right\rangle=0$ for all $i \neq k$. Since $g_{i j}=g_{k j}-\frac{1}{n-1}\left(a_{i}-a_{k}\right)$, we have $\left\langle a_{i}-a_{j}, H-g_{i j}\right\rangle=0$. This shows that H is the intersection of all altitudinal planes $A_{i j}$. Fix k, we shall show that H is the only point of intersection of the altitudinal planes $A_{k i}, i \neq k$ (hence also of all the $A_{i j}, i \neq j$). Suppose that $x \in A_{k i}, i \neq k$. Then $\left\langle a_{i}-a_{k}, x-g_{i k}\right\rangle=0$. So $\left\langle a_{i}-a_{k}, x-a_{k}\right\rangle=\left\langle a_{i}-a_{k}, g_{i k}-a_{k}\right\rangle$. That is $A\left(x-a_{k}\right)=K$. Thus $x=H$.

In \mathbb{R}^{2}, H, O and G of a triangle all lie on a line called the Euler line of a triangle, and $H+2 O=3 G$. We shall show more generally that the points H, O and G of an n-simplex in \mathbb{R}^{N} all lie on a line, also called the Euler line.

Theorem 4. H, O and G of an n-simplex in \mathbb{R}^{N} are collinear and

$$
(n-1) H+2 O=(n+1) G
$$

Proof. Let $A=A_{0}(T)$.
By Theorem 3, we have $H-a_{0}=\left[\begin{array}{c}\left\langle a_{1}-a_{0}, g_{01}-a_{0}\right\rangle \\ \left\langle a_{2}-a_{0}, g_{02}-a_{0}\right\rangle \\ \vdots \\ \left\langle a_{n}-a_{0}, g_{0 n}-a_{0}\right\rangle\end{array}\right]$ $=\frac{1}{n-1} A^{-1}\left[\begin{array}{c}\left\langle a_{1}-a_{0}, \sum_{i=0}^{n} a_{i}-a_{1}-n a_{0}\right\rangle \\ \left\langle a_{2}-a_{0}, \sum_{i=0}^{n} a_{i}-a_{2}-n a_{0}\right\rangle \\ \vdots \\ \left\langle a_{n}-a_{0}, \sum_{i=0}^{n} a_{i}-a_{n}-n a_{0}\right\rangle\end{array}\right]$.

By Theorem 2, we have $O-a_{0}=\frac{1}{2} A^{-1}\left[\begin{array}{c}\left\langle a_{1}-a_{0}, a_{1}-a_{0}\right\rangle \\ \left\langle a_{2}-a_{0}, a_{2}-a_{0}\right\rangle \\ \vdots \\ \left\langle a_{n}-a_{0}, a_{n}-a_{0}\right\rangle\end{array}\right]$.

$$
\begin{aligned}
\text { Thus }(n-1)\left(H-a_{0}\right)+2\left(O-a_{0}\right) & =A^{-1}\left[\begin{array}{c}
\left\langle a_{1}-a_{0}, \sum_{i=0}^{n} a_{i}-(n+1) a_{0}\right\rangle \\
\left\langle a_{2}-a_{0}, \sum_{i=0}^{n} a_{i}-(n+1) a_{0}\right\rangle \\
\vdots \\
\left\langle a_{n}-a_{0}, \sum_{i=0}^{n} a_{i}-(n+1) a_{0}\right\rangle
\end{array}\right] \\
& =A^{-1} A\left(\sum_{i=0}^{n} a_{i}-(n+1) a_{0}\right) \\
& =(n+1)\left(G-a_{0}\right)
\end{aligned}
$$

Therefore $(n-1) H+2 O=(n+1) G$.

Given an n-simplex $T=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ in \mathbb{R}^{N}, let g_{i} be the centroid of the face T_{i}. We have that $T^{\prime}=\left[g_{0}, g_{1}, \ldots, g_{n}\right]$ is an n-simplex in \mathbb{R}^{N}. The n-simplex T^{\prime} is called the medial simplex of T.
The nine-point theorem says that for any triangle, the midpoints of the sides, the feet of the altitudes and the midpoints of the segments joining the vertices to the orthocentre all lie on a circle which is called the nine-point circle of a triangle. The centre of this circle lies midway between the orthocentre and the circumcentre. Note that this centre is the circumcentre of the medial triangle.
We shall generalize the nine-point theorem to the higher dimension.

Theorem 5. (The $\mathbf{3 (n + 1) - p o i n t ~ T h e o r e m) ~ G i v e n ~ a n ~} n$-simplex $T=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ in \mathbb{R}^{N}, let g_{i} be the centroid of the face T_{i}, h_{i} the point which lies $\left(\frac{1}{n}\right)^{\text {th }}$ of the way from H to a_{i} and k_{i} the point of the intersection of $\left\langle T_{i}\right\rangle$ with the line H_{i} which passes through h_{i} and is perpendicular to $\left\langle T_{i}\right\rangle$. Then the points g_{i}, h_{i} and k_{i} all lie on the circumscribed sphere $S\left(O^{\prime}, R^{\prime}\right)$ of T^{\prime}.

Proof. By Theorem 2, the circumscribed sphere $S\left(O^{\prime}, R^{\prime}\right)$ of T^{\prime} passes through g_{i} for all i. Since $h_{i}=\frac{(n-1) H+a_{i}}{n}$ and $g_{i}=\frac{(n+1) G-a_{i}}{n}, O^{\prime}=\frac{g_{i}+h_{i}}{2}$. So $\left[g_{i}, h_{i}\right]$ is a diameter of $S\left(O^{\prime}, R^{\prime}\right)$. Thus h_{i} lies on $S\left(O^{\prime}, R^{\prime}\right)$ for all i. Since $\left[h_{i}, k_{i}\right]$ is perpendicular to $\left\langle T_{i}\right\rangle$ and $\left[g_{i}, k_{i}\right] \subseteq\left\langle T_{i}\right\rangle,\left[h_{i}, k_{i}\right]$ is perpendicular to $\left[g_{i}, k_{i}\right]$. Thus the angle k_{i} in the triangle $\left[g_{i}, h_{i}, k_{i}\right]$ is $\pi / 2$. Since $\left[g_{i}, h_{i}\right]$ is a diameter of $S\left(O^{\prime}, R^{\prime}\right)$, we have $k_{i} \in S\left(O^{\prime}, R^{\prime}\right)$. Hence the points g_{i}, h_{i} and k_{i} all lie on the circumscribed sphere $S\left(O^{\prime}, R^{\prime}\right)$ of T^{\prime}.

The Incentre

Given an n-simplex $T=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ in \mathbb{R}^{N}, there are two normal vectors $\pm m_{i}$ for the face T_{i}, that is there are two vectors $\pm m_{i} \in V(T)$ such that $\left|m_{i}\right|=1$ and $\left\langle m_{i}, a_{j}-a_{k}\right\rangle=0$ for all $k, j \neq i$. If m_{i} is the normal vector such that $\left\langle m_{i}, a_{i}-a_{k}\right\rangle>0$ for all $k \neq i$, we call m_{i} the inward normal vector for the face T_{i}.
We define the angle between two ($n-1$)-faces of T as follows;
The angle between two faces T_{i} and T_{j} is the angle

$$
\theta\left(T_{i}, T_{j}\right)=\arccos \left|\left\langle m_{i}, m_{j}\right\rangle\right| \in\left(0, \frac{\pi}{2}\right)
$$

where m_{i} and m_{j} are normal vectors of T_{i} and T_{j}, respectively. An angle bisector of T_{i} and T_{j} is an ($n-1$)-plane B in $\langle T\rangle$ which contains $T_{i j}$ and $\theta\left(B, T_{i}\right)=\theta\left(B, T_{j}\right)$. Note that, for any n-simplex T in \mathbb{R}^{N}, there are two angle bisectors of T_{i} and T_{j}. They are the two ($n-1$)-planes in $\langle T\rangle$ with orthogonal vectors $m_{i} \pm m_{j}$.
We define the internal angle bisector of T_{i} and T_{j} to be the angle bisector $B_{i j}$ of the faces T_{i} and T_{j} with orthogonal vector $m_{i}-m_{j}$.
For fixed k with $0 \leq k \leq n$, let $B_{k}(T)$ denote the $n \times n$ matrix whose rows are the vectors $m_{i}-m_{k}, i \neq k$ with respect to the chosen basis for $V(T)$.

Theorem 6. The internal angle bisectors $B_{i j}$ have a unique point of intersection I, called the incentre of T. If we fix k and let $B=B_{k}(T)$ then I is given by

$$
I=a_{k}+B^{-1} M
$$

where M is an $n \times 1$ matrix whose rows are $\left\langle m_{i}-m_{k}, a_{l_{i}}-a_{k}\right\rangle, l_{i} \neq i, k$. Moreover, I is the centre of $(n-1)$-sphere in T, called the inscribed sphere of T whose radius is $d_{R}\left(I,\left\langle T_{i}\right\rangle\right)$.

Proof. Let $I=a_{k}+B^{-1} M$. Since B is the matrix whose rows are $m_{i}-m_{k}$ and M is the matrix whose rows are $\left\langle m_{i}-m_{k}, a_{l_{i}}-a_{k}\right\rangle$, this means that $\left\langle m_{i}-m_{k}, I-a_{k}\right\rangle=\left\langle m_{i}-m_{k}, a_{l_{i}}-a_{k}\right\rangle$ for all $l_{i} \neq i, k$. For $i \neq j,\left\langle m_{i}-m_{j}, I-a_{k}\right\rangle=\left\langle m_{i}-m_{k}, I-a_{k}\right\rangle-\left\langle m_{j}-m_{k}, I-a_{k}\right\rangle=$ $\left\langle m_{i}-m_{k}, a_{l_{p}}-a_{k}\right\rangle-\left\langle m_{j}-m_{k}, a_{l_{p}}-a_{k}\right\rangle=\left\langle m_{i}-m_{j}, a_{l_{p}}-a_{k}\right\rangle, l_{p} \neq i, j, k$. This shows that I is the intersection of all internal angle bisectors $B_{i j}$. Fix k, we shall show that I is the only point of intersection of the internal angle bisectors $B_{k i}, i \neq k$ (hence also of all the $B_{i j}, i \neq j$). Suppose that $x \in B_{k i}, i \neq k$. Then $\left\langle m_{i}-m_{k}, x-a_{l_{i}}\right\rangle=0$. So $\left\langle m_{i}-m_{k}, x-a_{k}\right\rangle=\left\langle m_{i}-m_{k}, a_{l_{i}}-a_{k}\right\rangle$ for all $l_{i} \neq i, k$. That is $B\left(x-a_{k}\right)=M$. Thus $x=I$.
Note that for $x \in\langle T\rangle$, we have $d_{R}\left(x,\left\langle T_{i}\right\rangle\right)=d_{R}\left(x,\left\langle T_{j}\right\rangle\right)$ if and only if x lies on one of the angle bisectors of T_{i} and T_{j}. Then I is the centre of $(n-1)$-sphere in T whose radius is $d_{R}\left(I,\left\langle T_{i}\right\rangle\right)$.

The Cleavance Centre

Given an n-simplex $T=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ in \mathbb{R}^{N}, we define the cleavance plane at the edge $\left[a_{i}, a_{j}\right]$ to be the $(n-1)$-plane $Q_{i j}$ which passes through the midpoint of the edge $\left[a_{i}, a_{j}\right]$ and is parallel to the internal angle bisector of T_{i} and T_{j}. Note that the cleavance planes of a triangle are its cleavers.

Theorem 7. The cleavance planes $Q_{i j}$ have a unique point of intersection J, called the cleavance centre. If we fix k, and let $B=B_{k}(T)$ then J is given by

$$
J=a_{k}+\frac{1}{2} B^{-1} Q
$$

where Q is the $n \times 1$ matrix whose rows are $\left\langle m_{i}-m_{k}, a_{i}-a_{k}\right\rangle$.
Proof. Let $J=a_{k}+\frac{1}{2} B^{-1} Q$. Since B is the matrix whose rows are $m_{i}-m_{k}$ and Q is the matrix whose rows are $\left\langle m_{i}-m_{k}, a_{i}-a_{k}\right\rangle$, this means that $\left\langle m_{i}-m_{k}, 2\left(J-a_{k}\right)\right\rangle=\left\langle m_{i}-m_{k}, a_{i}-a_{k}\right\rangle$ for all $i \neq k$. For $i \neq j,\left\langle m_{i}-m_{j}, 2 J\right\rangle=\left\langle m_{i}-m_{k}, a_{i}+a_{k}\right\rangle-\left\langle m_{j}-m_{k}, a_{j}+a_{k}\right\rangle=\left\langle m_{i}-\right.$ $\left.m_{k}, a_{i}+a_{j}\right\rangle-\left\langle m_{j}-m_{k}, a_{i}+a_{j}\right\rangle=\left\langle m_{i}-m_{j}, a_{i}+a_{j}\right\rangle$. This shows that J is the intersection of all cleavance planes $Q_{i j}$. Fix k, we shall show that J is the only point of intersection of the cleavance planes $Q_{k i}, i \neq k$ (hence also of all the $Q_{i j}, i \neq j$). Suppose that $x \in Q_{k i}, i \neq k$. Then $\left\langle m_{i}-m_{k}, 2 x\right\rangle=\left\langle m_{i}-m_{k}, a_{i}+a_{k}\right\rangle$. So $\left\langle m_{i}-m_{k}, 2\left(x-a_{k}\right)\right\rangle=\left\langle m_{i}-m_{k}, a_{i}-a_{k}\right\rangle$ for all $i \neq k$. That is $2 B\left(x-a_{k}\right)=Q$. Thus $x=J$.

Theorem 8. I, J and G of an n-simplex in \mathbb{R}^{N} are collinear and

$$
(n-1) I+2 J=(n+1) G
$$

Proof. Let $B=B_{0}(T)$. By Theorem 6,

$$
I-a_{0}=B^{-1}\left[\begin{array}{c}
\left\langle m_{1}-m_{0}, a_{j_{1}}-a_{0}\right\rangle \\
\left\langle m_{2}-m_{0}, a_{j_{2}}-a_{0}\right\rangle \\
\vdots \\
\left\langle m_{1}-m_{0}, a_{j_{n}}-a_{0}\right\rangle
\end{array}\right] \quad \text { where } j_{i} \neq 0, i
$$

Since $\left\langle m_{i}-m_{0}, a_{j}\right\rangle=\left\langle m_{i}-m_{0}, a_{l}\right\rangle$ for all $j, l \neq i, 0$, we have $(n-1)\left\langle m_{i}-m_{0}, a_{j_{i}}\right\rangle=\left\langle m_{i}-\right.$ $\left.m_{0}, \sum_{k \neq 0, i} a_{k}\right\rangle$.
So $(n-1)\left(I-a_{0}\right)=B^{-1}\left[\begin{array}{c}\left\langle m_{1}-m_{0}, \sum_{i=0}^{n} a_{i}-a_{1}-n a_{0}\right\rangle \\ \left\langle m_{2}-m_{0}, \sum_{i=0}^{n} a_{i}-a_{2}-n a_{0}\right\rangle \\ \vdots \\ \left\langle m_{n}-m_{0}, \sum_{i=0}^{n} a_{i}-a_{n}-n a_{0}\right\rangle\end{array}\right]$.
By Theorem 7, $2\left(J-a_{0}\right)=B^{-1}\left[\begin{array}{c}\left\langle m_{1}-m_{0}, a_{1}-a_{0}\right\rangle \\ \left\langle m_{2}-m_{0}, a_{2}-a_{0}\right\rangle \\ \vdots \\ \left\langle m_{1}-m_{0}, a_{n}-a_{0}\right\rangle\end{array}\right]$.
Thus $(n-1)\left(I-a_{0}\right)+2\left(J-a_{0}\right)=B^{-1}\left[\begin{array}{c}\left\langle m_{1}-m_{0}, \sum_{i=0}^{n} a_{i}-(n+1) a_{0}\right\rangle \\ \left\langle m_{2}-m_{0}, \sum_{i=0}^{n} a_{i}-(n+1) a_{0}\right\rangle \\ \vdots \\ \left\langle m_{n}-m_{0}, \sum_{i=0}^{n} a_{i}-(n+1) a_{0}\right\rangle\end{array}\right]$
$=B^{-1} B\left(\sum_{i=0}^{n} a_{i}-(n+1) a_{0}\right)$
$=(n+1)\left(G-a_{0}\right)$.
Hence $(n-1) I+2 J=(n+1) G$.

The Centres of Simplices in \mathbb{S}^{n}

The n-sphere \mathbb{S}^{n} in \mathbb{R}^{n+1} is the set of all points u in \mathbb{R}^{n+1} such that $\|u\|=1$. Given $u_{1}, u_{2}, \ldots, u_{k+1}$ in \mathbb{S}^{n}, we define

$$
\left(u_{1}, u_{2}, \ldots, u_{k+1}\right)=\left\{\sum_{i=1}^{k+1} t_{i} u_{i} \in \mathbb{S}^{n} \mid t_{i} \geq 0 \text { for all } i\right\}
$$

If $\left\{u_{1}, u_{2}, \ldots, u_{k+1}\right\}$ is linearly independent in \mathbb{R}^{n+1} then $\left(u_{1}, u_{2}, \ldots, u_{k+1}\right)$ is called a k-simplex in \mathbb{S}^{n}. A 1 -simplex is called an arc and a 2 -simplex is called a spherical triangle.
Given a k-simplex $S=\left(u_{1}, u_{2}, \ldots, u_{k+1}\right)$ in \mathbb{S}^{n}, we write $[0, S]$ for the $(k+1)$-simplex in \mathbb{R}^{n+1} given by $[0, S]=\left[0, u_{1}, u_{2}, \ldots, u_{k+1}\right]$.

The centroid

Given an n-simplex $S=\left(u_{1}, u_{2}, \ldots, u_{n+1}\right)$ in \mathbb{S}^{n}, we define the medial great hypersphere of the edge $\left(u_{i}, u_{j}\right)$ to be the great hypersphere $S M_{i j}$ in \mathbb{S}^{n} which passes through the midpoint of the edge $\left(u_{i}, u_{j}\right)$ and through the points $u_{k}, k \neq i, j$.

Theorem 9. The medial great hyperspheres $S M_{i j}$ of an n-simplex $S=\left(u_{1}, u_{2}, \ldots, u_{n+1}\right)$ in \mathbb{S}^{n} have two points of intersection $\pm \frac{G}{|G|}$ where G is the centroid of the simplex $[0, S]$ in \mathbb{R}^{n+1}.

Proof. Since $G=\frac{1}{n+2}\left(\sum_{i=1}^{n+1} u_{i}\right)$, and $S M_{i j}=\mathbb{S}^{n} \cap M_{i j}$ where $M_{i j}$ is the medial plane at the edge $\left[u_{i}, u_{j}\right]$ of $[0, S]$ in \mathbb{R}^{n+1}, the medial great hyperspheres meet at the two points $\pm \frac{G}{|G|}$.

Note that $\frac{G}{|G|} \in S$ but $-\frac{G}{|G|} \notin S$. We call the point $\frac{G}{|G|}$ the centroid of S and denote it by G_{s}.

The Circumcentre

Let $S P$ and $S Q$ be two great hyperspheres in \mathbb{S}^{n}, say $S P=P \cap \mathbb{S}^{n}$ and $S Q=P \cap \mathbb{S}^{n}$ for some hyperspaces P and Q in \mathbb{R}^{n+1}. The angle between $S P$ and $S Q$ in $\mathbb{S}^{n}, \theta_{s}(S P, S Q)$ is given by $\theta_{s}(S P, S Q):=\theta(P, Q)$. Let $S=\left(u_{1}, u_{2}, \ldots, u_{n+1}\right)$ be an n-simplex in \mathbb{S}^{n}. The perpendicular bisector of the edge $\left(u_{i}, u_{j}\right)$ is the great hypersphere $S P_{i j}$ in \mathbb{S}^{n} which is perpendicular to the edge $\left(u_{i}, u_{j}\right)$ and passes through the midpoint of the edge $\left(u_{i}, u_{j}\right)$.

Theorem 10. The perpendicular bisectors $S P_{i j}$ of any n-simplex in \mathbb{S}^{n} meet at two points $\pm \frac{O}{|O|}$ where O is the circumcentre of the simplex $[0, S]$ in \mathbb{R}^{n+1}.

Proof. Since $S P_{i j}=\mathbb{S}^{n} \cap P_{i j}$ where $P_{i j}$ is the perpendicular bisector of the edge $\left[u_{i}, u_{j}\right]$ of $[0, S]$ in \mathbb{R}^{n+1} and $\bigcap_{i \neq j} P_{i j}$ is the line passing through 0 and O, we have the perpendicular bisectors $S P_{i j}$ meet at the two points $\pm \frac{O}{|O|}$.

Let $O_{s}=\frac{O}{|O|}$. Since the perpendicular bisector of $\left(u_{i}, u_{j}\right)$ is the set of all points $u \in \mathbb{S}^{n}$ such that $d_{s}\left(u, u_{i}\right)=d_{s}\left(u, u_{j}\right)$ for all $i, j, d_{s}\left(O_{s}, u_{i}\right)=d_{s}\left(O_{s}, u_{j}\right)$ for all i, j. Let $R_{s}=d_{s}\left(O_{s}, u_{i}\right)=\theta\left(O_{s}, u_{i}\right)=\arccos \left\langle O_{s}, u_{i}\right\rangle \in\left(0, \frac{\pi}{2}\right)$. The sphere $S\left(O_{s}, R_{s}\right)=\{u \in$ $\left.\mathbb{S}^{n} \mid d_{s}\left(O_{s}, u\right)=R_{s}\right\}$ is called the circumscribed sphere of S. Note that $S\left(O_{s}, R_{s}\right)$ passes through each of the points u_{i}.

The Incentre

Given a point u and a great hypersphere $S P$ in \mathbb{S}^{n}, the distance between u and $S P$, denoted by $d_{s}(u, S P)$, is given by

$$
d_{s}(u, S P):=\inf \left\{d_{s}(u, v) \mid v \in S P\right\}=\arcsin d(u, P)
$$

An angle bisector of two great hypersphere $S P$ and $S Q$ is a great hypersphere $S B$ in \mathbb{S}^{n} which contains $S P \cap S Q$ and $\theta_{s}(S B, S P)=\theta_{s}(S B, S Q)$. In other words, $S B$ is the intersection of \mathbb{S}^{n} with an angle bisector B of P and Q at $P \cap Q$ in \mathbb{R}^{n+1}. We define the inward pole of the face S_{i} to be the pole m_{i} such that $\left\langle m_{i}, u_{i}\right\rangle>0$. Equivalently, m_{i} is the inward normal vector for the n-face $[0, S]_{i}$ which is opposite to the vertex u_{i} of the simplex $[0, S]$ in \mathbb{R}^{n+1}.
Let m_{i} and m_{j} be the inward poles of S_{i} and S_{j}, respectively. The internal angle bisector of S_{i} and S_{j} is the great hypersphere $S B_{i j}$ which passes through $u_{k}, k \neq i, j$ with the pole $\frac{m_{i}-m_{j}}{\left|m_{i}-m_{j}\right|}$.
Theorem 11. The angle bisectors $S B_{i j}$ of an n-simplex in \mathbb{S}^{n} meet at two points $\pm \frac{I}{|I|}$ where I is the incentre of the simplex $[0, S]$ in \mathbb{R}^{n+1}.

Proof. Since $S B_{i j}=\mathbb{S}^{n} \cap B_{i j}$ where $B_{i j}$ is the internal angle bisector of the edge $\left[u_{i}, u_{j}\right]$ of $[0, S]$ in \mathbb{R}^{n+1} and $\bigcap_{i \neq j} B_{i j}$ is the line passing through 0 and I, we have the internal angle bisectors $S B_{i j}$ meet at the two points $\pm \frac{I}{|I|}$.

References

[1] George A. Jennings, Modern Geometry with Applications, Springer-Verlag, New York,
1994.
[2] H.S.M. Coxeter, Introduction to geometry, $2^{\text {nd }}$ edition, John Wiley and Sons, New York, 1969.
[3] John G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, New York, 1994.

