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Real-Time  Detection of Brain  Events in EEG 

A6stmct-Evoked responses or event related potentials in human EEG 
have been mostly stud ied  with off4ine analog recording and  averaging. 
It is shown here that,  at  least m some situations, it is possie to detect and 
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classify individual evoked responses or “single epochs” with surprising 

To do so, however, required thinking anew not  only the data processing 
but the  whde experimental strategy. ‘Ihe clnssificltion is done in 
real-time by treating the experiments as a signal detection problem in 
which the computer, in tfie position of impartial o m ,  assigns 
clPssestomcomingepochsacmrdiugtoapredetermineddecisionrule. 
Since data collection and procedng are mtedeaved, each dnssihcption 
outcome can be a factor in experiment control as well as in subject 
feedback. 

T h e &  * * tion performance, expressed in tenns of mutual in- 
formation, is shown  to be both I pmctb l  index for procedure optimiza- 
tion and a concise and spedfic descriptor for the experiment results. 

relinbility. 
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1.  INTRODUCTION: EVOKED RESPONSES AND EVENT 

c RELATED POTENTIALS 
ONTEMPORARY VIEWS about  the  nature and origins 
of electroencephalographic (EEG) signals and  evoked 
responses (ER’s) are presented elsewhere in this issue and 

will not be discussed here. However, a brief review is given 
below of those characteristics of the signal that are most 
relevant to the present discussion. 

EEG signals, collected on  the  human scalp are fluctuations of 
electrical potential  that reflect  activity in  underlying brain 
structures  and particularly in  the cerebral cortex below the 
scalp surface. The signal energy  appears confined mostly to 
low frequencies and especially around  the 1 @Hz alpha rhythm 
and below. Amplitudes vary typically in the 5 to 50-mV range. 
This continuous activity is spatially distributed over the 
scalp and  can be described as a nonstationary  or,  at best, piece- 
wise stationary  time series. The  “ER”  or “event related 
potentials” (ERP’s) discussed in  the present paper are micro- 
scopic signals embedded  in this continuous activity. 

When a brief sensory stimulus  such as a flash of light or a 
tap  on  the forearm is delivered to a subject, a perturbation 
of the on-going EEG takes place, starting  after some delay 
following the initial  event  (stimulus) and spreading over half 
a  second or less. The changes in signal amplitude,  due to the 
perturbation, are small (a few microvolts at  best),  and  buried 
in as well as interacting  with  the on-going activity. Because of 
these conditions,  the  existence and  consistency of evoked 
response have been generally shown by averaging stimulus 
bound EEG epochs over a number of stimulations. 

Fig. 1  illustrates the appearance of raw epochs,  contrasted 
with  their averages, for  two scalp locations  and identical 
visual pattern stimuli. The averages shows  distinct waveshapes 
although  one  location is clearly more favorable than  the  other; 
individual  epochs, however, fluctuate wildly. 

Averaging has revealed the presence of potentials  induced by 
stimuli  other  than sensory  events, suggesting to Vaughan 
[ 121 the  more general designation of ERP’s rather  than 
evoked potentials  or ER’s. A tentative classification of these 
ERP’s can be made as follows: 

1 )  Sensory ERP’s: Responses that have been  elicited  by 
visual, auditory, somatosensory and  olfactory  stimuli as well 
as by  direct  electrical stimulation of the  afferent pathways. 
Their presence is most  prominent  at  short “latencies” (e.g., 
within 50 to 150 ms). 

2) Motor ERP’s: Responses found accompanying voluntary 
movement  that may in  fact precede the  actual behavioral 
event. The  phenomenon  has been shown  for  limb  movement 
as well as with phonation  and  eye movement. 

3) “Long Latency”  Potentials: These  refer to potential 
changes  taking  place  some 250  to 450 ms after  the initial 
event. Most prominent  in  the  literature is a  positive deflection 
occuking  around 300 ms. In  experiments involving a  behavioral 
task,  they  are  enhanced  both  by  the  rarity (Le., the  low 
subject expectation)  and  the  task relevance of the initial event. 

4 )  Artifacts: Potential  fluctuations of nonneural origin are 
called artifacts. These include  electroocular  potentials (EOG) 
and muscle potentials  from  neck, scalp and face  (including eye 
blinks), as well as electrocardiographic signals (ECG). 

Event  related potentials have received considerable attention 
in  recent years and have become an essential  research tool in 
psychophysiology  and human neurophysiology. A number of 
clinical applications have also made  their  appearance  and 
lately sophisticated  evoked  response procedures have been 
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(b) 
Fig. 1. Ten  single epochs of visual evoked responses are superimposed. 

The  avemge  appean, as a darker line in the cluster. Stimulus was a 
diamond  shaped  checkerboard pattern, flashed while the subject was 

taneous  epochs  collected  on two different electrodes (locations are 
fixating the right  corner of the pattern  border. (a) and (b) Show simul- 

illustrated on Fig.  3. 

developed to evaluate visual or  auditory  acuity,  chart  the 
progress of demyelinating diseases that  impair nerve propagation 
and even to test brain functions  for  perceptual  and cognitive 
disorders. 

However, as more  demand is put  on  this measure of brain 
activity the  limitations  and inadequacies of time-locked 
averages as descriptors of evoked  events  become more ap- 
parent. However, most investigators take it for  granted  that 
EEG signals are too noisy and  the evoked event too small in 
amplitude to detect  and measure in any other way. Yet this 
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may  not necessarily be the case. For  the last four years, at 
the Brain Computer  Interface  Laboratory  at University of 
California at Los Angeles (UCLA), our  group has  pursued the 
identification of EEG evoked  responses based on  the processing 
of individual  responses or “single epochs”  in real-time, Le., as 
they  occur  during  the  experiment. We have determined  un- 
equivocally that  under suitable conditions, reliable detection 
and classification  can be performed. Pursuing the logical 
implications of this new paradigm leads to  the  introduction 
of completely  different  descriptors for the response, based on 
the investment of information within the evoked  event, rather 
than  on  the  actual  potential  fluctuation. This reformulation 
bypasses the largely idiosyncratic  nature of potential wave- 
forms  in  different  subjects and  bring experiment results at a 
semantic level that  matches  that of most of the psychophysio- 
logical experiments involving ERP’s. The balance of the  paper 
will be devoted to  the  rationale  and general  strategy in  the 
new approach, i.e., keeping  with the  purpose of this issue, to 
the signal processing methodology. Sample  results  are given 
informally  and  for  the  purpose of illustration. 

11. SINGLE EW EPOCHS VERSUS AVERAGES 

As mentioned  before,  most  of  the research on event related 
potentials  has been concerned exclusively with averaged 
potentials. These averages are obtained over a number of 
replications of the evoking  stimulus. Before the  routine 
availability of general purpose digital computers, waveform 
averages were the  only  attainable  descriptors,  obtained  either 
by photographic  superimposition  or  with special electronic 
averagers. Because of technical  limitations,  most investigations 
were limited to the recording of one  electrode channel  selected 
on a neuroanatomical basis, (the  spatial  distribution of si- 
multaneous activity around  the recording electrode  or over 
the scalp was considered only  by very few researchers.) Within 
the  last few  years  however, the general availability of eco- 
nomical,  laboratory-sized general purpose  computers  has 
tremendously  extended  the capability of many  laboratories 
and  more  sophisticated  approaches  are becoming increasingly 
common. 

The  opportunities  afforded by the new equipment have 
prompted a  search for alternatives to averaging. Clearly aver- 
aging is an essential and  powerful tool for  the  detection of 
ERP’s but it is easy to show  that  it may  mask as many relevant 
phenomena as it enhances, depending  on  the signal properties. 
It will for  instance,  show  the presence of prominent  amplitude 
features  but  without regard for  their consistency in  the  epoch 
population. On the  other  hand, averaging would  be clearly 
indicated if evoked  responses were deterministic signals 
superimposed in an linearly  additive manner to independent 
noise. Whenever this additive model is valid, averaging is 
indeed  an efficient way to recover the signal. Instrumentation 
noise is a case in  point  and because of that  property is not a 
particularly  worrisome cause of error in the measurement of 
averaged potentials.  To a somewhat lesser extent  the same 
can  be said of EOG and ECG artifacts. The evoked signal 
itself,  however,  can be considered deterministic only as a 
crude  approximation. 

Most investigators have been using loosely  defined  models 
to articulate  their findings. These models are usually expressed 
in  terms of “components”:  those  peaks  and valleys in  the 
waveform that  can be detected by eye  in  the averages. Peak 
to peak  measurements provide  a  simple and convenient way 

to reduce  the data. However, these components are seldom 
well defined or  reproducible  and  stochastic variations in 
amplitudes  and  latencies  combined with component overlap 
makes positive identification  often very difficult. The  in- 
fluence of the  concurrent ongoing  activity is also extremely 
complex,  and  has been the  object of considerable contro- 
versy. On-going activity, unrelated  to  the event of inter- 
est,  competes with the  ERP  for “signal space” and as such 
constitutes  or  plays  the role of noise. The evoked  signature, 
moreover, is not  independent of the EEG state  at  the time 
of the evoking event; this has been shown  for instance  by 
delivering stimuli  at fixed times within the alpha  cycle [ 31, 
[ 1 1 1 . To this day  however, there is still no clear understanding 
of the  nature  and  extent of the  interaction. 

Thus, because “components” need not be time  locked to 
the initial event and because the  ERP signal is generated  by 
unknown processes that may exhibit branching and  multiple 
modes  influenced by  unobservable factors, averaging can 
produce a signal prototype  that is not representative of any 
of the single epochs  that  entered  the average. Another limita- 
tion of averaging is that,  in principle, it requires the  stationarity 
of the target phenomena with  a concommitant inability to 
reflect  rapid changes. Neural states change continuously  and 
should be expected to do so over the  time  required to deliver 
the necessary number of repetitions  (often 50 to 100). In 
other words, the elusive evoked potential  does  not necessarily 
remain the same from  the beginning to the  end of a stimulation 
series. Habituation,  shifts of attention, drowsines and  boredom 
are only a  few of the possible causes that could mediate 
waveform changes. 

Finally, the  misrepresentation of single events and  the loss 
of information is magnified when averaging is made, as it 
often is, across  a population of subjects. This is a most severe 
limitation  that  cannot be obviated as long as results must 
rely on  the presence of common  trends  and  “components”  in 
the observed waveforms. Indeed,  intersubject variability is 
much larger than  that measured  with data  from  the same 
subject (Fig. 2). 

Thus it is obvious that, ideally, one would like to recover 
the event related  information  from  the electrical potential 
on  the base of single events. To accomplish this however, 
presents an  enormous challenge in view of the elusive nature 
of most ERP’s. Also the  effects of instrumentation noise and 
of artifacts become far  more critical without  the benefit of 
averaging. 

Single epoch  identification is now being done successfully on 
a limited scale at  the UCLA’s Brain Computer  Interface 
Laboratory  but required thinking anew the whole experimental 
strategy (and  not  just  the  data processing) as well as developing 
an ambitious  computer facility specifically for this program 
[ 131, [ 141, [ 161.  The overall approach will be discussed in 
some  detail in  Section V. 

111. REAL-TIME IDENTIFICATION OF EWs 

The real fascination of single epoch  identification rests, 
however,  with the possibility to perform it in “real-time.” 
With this provision, a door  opens to a  whole new realm of 
experiments  in which cognitive variables that vary from trial 
to trial may be manipulated  and  sorted  out. 

Indeed the need for  repetition is definitely  inimical to 
experiments dealing with stimulus meaning since meaning 
will shift inevitably and  often  uncontrollably where the 
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Fig. 2. Variability of response  averages with same and difterent subjects. Averages of visual evoked 
responses for two different subjects are shown superimposed. The four curves in each graph correspond 
to four different stimuli (identical for each graph). While  averages  from the same subjecta vary in 
such replications, there are much  more pronounced idiosyncratic differences in data collected from 
different subjects 

same “message” is repeated. The  study of cognitive  brain “codes”  can  be read in  context,  and  translated by the  computer 
function is presently at  the  forefront  of  experimental psycho- into a perceivable change in the  environment,  the specific 
physiology. The possibility that ERP’s could  provide an brain  activity  becomes  a  “behavior,” open  to conscious 
objective  measure of the brain  processes involved in learning validation. Thus biofeedback  with  respect to Event  Related 
and  problem solving is tantalizing. To bring about real-time EEG codes brings to the field the same  advantages enjoyed  by 
discrimination  would  provide  a quantum increase in the other behavioral experiments, i.e., the subject’s conscious 
power of the psychophysiological method.  Indeed, if ERP participation  and verbal  reporting. 
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Fig.  3. Electroae locations in pattern experiments.  Electrodes  are ap- 
plied at  fwe scalp locations and to  the  connected ears. The  ERP  data 
is collected from  the occipital and parietal  areas  with four bipolar 
channels: P,-0,, Ol-O,, 02-0,,  1-0, and  one monopolar  channel (to 
the ear reference): O,-A. The frontal electrode is used for  artifact 
detection only (F,-P,). 

The  experiment campaign conducted  in  our  laboratory  with 
visual evoked  responses involved single epoch classification in 
real-time, ie.,  the  identification  for each epoch of the value 
or class of the  input stimulus. Stimulus  parameters included 
flash intensity  and  color,  background  intensity  and  color 
(retinal  adaptation)  and finally pattern shape. The real-time 
paradigm in every case lead to a  nontrivial elaboration of the 
experiment design. 

N. EXAMPLE OF EXPERIMENT DESIGN 
One of these experiment series, dealing with parafoveal 

pattern stimuli, will be briefly described here to illustrate 
the general paradigm. 

Subjects are seated in a  shielded room, in front  of a multiple 
field display. Electrodes  are applied on  the scalp at five 
locations  and  on  the earlobes for electrical  reference. Four of 
the scalp locations are in  the occipital-parietal area which 
receive the  primary  afferent  pathways  from  the visual system. 
The  fifth  location is on  the  frontal  pole  and serves as a  channel 
for  the  artifact  detection process discussed in  the  next section. 
ERP  data is collected from five channels  comprisingmonopolar 
(to ear  reference)  and bipolar combinations of the  electrodes 
(Fig. 3). Ordinary  EEG  amplifiers with  approximate  bandwidth 
of 1 to 70 Hz are used. Data  epochs consist of digitized 
samples taken every 4 ms. Epoch  duration  is typically 400 ms 
including 50 ms of data  taken before the  stimulus event. 
Stimuli consist of brief (30 p) flashes from a xenon light 
source  illuminating  a red checkerboard  with  alternating red and 
black (opaque) squares against a  dimly lit yellow  background. 

Fig. 4 illustrates the  outline of the  stimulus target. The 
small dots  at each of the vertices of the  diamond serve as 
visual f i a t ion  points  for  the  subject during the experiment. 
As will be explained  below,  these fixation  points are  changed 
from trial to trial, which in  effect changes the physical stimulus 
and  the resulting  evoked response. Depending on which of 
the  fixation  points  has been in use at  the  time of each  flash, 
one of four nonoverlapping  parafoveal  areas receives the 
stimulus. In  other words, the diamond-shaped checkerboard 
“lands” on  four  different  retinal  positions depending on which 
dot  has been  selected.  This very simple arrangement  provides 
an alternative to the  more  traditional  approach of presenting 
the  four  different  patterns to a passive subject [ I O ] .  An 
important difference  however, is that  the  subject  has  control 
of stimulus selection,  a control  that will be directed  by  a  new 
entity  introduced  in  the  experiment design: an independent 
cognitive  task that  performs several important  functions.  In 
the  present  experiment,  this  outside task is provided  with the 
help of a  simple  maze,  simulated on a CRT (Fig. 5 ) ,  and visible 

0 

0 

0 

Fig. 4. Stimulus  target in real-time visual ERP experiments.  The 
target  consists  of  a  fixed  diamond  shaped  red  cherckerboard illumi- 
nated  with a xenon flash to provide visual stimulation.  (a) The  four 
dots  at  the  comer of the diamond are fixation points. For  each 

respect to  the fovea and  thus distributes  neural  activity on different 
point the stimulus target lands on a different-retinal position with 

sites  of the primary visual cortex.  (b) From the subject’s view the 
target  appears as one of the  four  options shown. 
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Fig. 5. Maze feedback display for real-time ERP classification experi- 
ment: The display, generated on a computer graphic  terminal, 
shows a  fixed maze containing  a  triangular mobile. This continuous 

visual field. The subject task is to see the mobile through the maze 
display and the  intermittent stimulus pattern of Fig. 4 share the same 

by selecting before each stimulus time  the  appropriate  fuation point. 
Four  fixations  dots are  provided:  left,  right, up  and down. The ERP’s 
are classified and  the result is translatedinto  the corresponding mobile 
motion to  provide subject  feedback. 
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continuously  in  the  backgound of the subject display. The 
task here is to move a symbol  through  the maze and  out, 
from an initial  position  at  the maze center.  The  subjects 
conveys each desired move, (in  one of four possible up,  down, 
left and right directions),  by fixating  the corresponding dot 
(which  remains visible in  the display unlike  the checkerboard 
which appears only  at  stimulus times). Actual  movement of 
the  symbol  on  the CRT  however, is implemented by the 
computer system  according to  its classification (in  one of 
the  four  expected classes) of each  incoming ERP. Thus, 
single epoch  identification  is  the key to the subject feedback 
that simultaneously delivers implicit instructions  for each 
successive selection,  maintains  a steady level of attention by 
keeping the  task meaningful and provide the learning  clues 
that will minimize artifacts  by rewarding clear signals. The 
last function is further  enhanced by an audible reporting of 
detected  artifacts which functions as  a  second level feedback. 

This cybernetics  modus  operandi  and  the general broadening 
of experimental perspective afforded  by  the real-time identifica- 
tion  approach have far reaching  implications. They will be 
further discussed in  Section VI after  the  presentation of the 
essential  aspects of experiment  control  and  data processing. 

v. EXPERIMENT CONTROL AND DATA PROCEsSING 

Under the  experimental  conditions  tested so far  the program 
has been  remarkably successful: rate of correct classification 
over small sets of stimuli [4 ]  -[ 101 now  exceeds 90 percent 
consistently  with average subjects. Even when one includes 
early experiments, where performance was degraded because 
of various  mishaps  with instrumentation,  the  procedure con- 
sistently averaged more  than 80 percent of correct classifica- 
tions. Fig. 6 shows the results of the  thirteen first experiments 
using parafoveal stimuli as  described in  the preceeding  section. 
The percentage of correct classification is shown  for each 
experimental session relative to the 80- and 90 percent levels. 
The  coordinate axes and  the  mutual  information scale Z(i, j )  
are discussed below  and in the  next section. 

This rewarding level of discrimination performance  has 
been achieved through successive refmements of the experi- 
mental strategy and of the  data processing. Each multichannel 
epoch was submitted  to several processing steps  that will be 
reviewed below in chronological order.  There is little  doubt 
that  these  procedures is still suboptimal,  and  the  present 
performance level should be viewed as a lower  bound  rather 
that as a  limit on what could be theoretically  attained. 

1 )  A Priori Artifact  Rejection: This procedure  detects 
electroocular  and  movement  artifacts  before  and  during  the 
ERP epoch. On-line artifact rejection is a fundamental  tenet 
of the real-time approach  and  probably  the  most effective 
and rewarding step in t,he overall strategy. 

EOG artifacts,  blinks and head movements  create  sharp 
disturbances of the EEG baseline that  produce oversized peaks 
in  the waveform. Detection is made by amplitude averaging 
over a sliding time window, comparing  the difference between 
each  sample and  the  current average to a  preset threshold. A 
peak detection algorithm is also used, that  tracks  the waveform 
and  looks  for  alternations where the difference between maxi- 
mum  and minimum  exceeds  a given value. The  width of the 
window and  the  threshold value are adjustable parameters. 
The  computer  controlled  data  acquisition schedule on Fig. 7 
shows the  time sequence ,and the  position of artifact rejection 
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Fig. 6. Parafoveal  experiments:  Summary of discrimination  perfor- 

stimulation experiments.  Each  circle identifies  one experiment 
mance.  Discrimination  performance is shown  for thirteen  parafoveal 

session. Different  letters  correspond to different  subjects.  The  full 
circle locates  the average. 

Performance  levels are indicated with respect to  the 80 and 90 per- 
cent levels of correct  classification.  The  coordinate axis and the 
mutual  information  scale Z(i, 13 are explained in Sections V  and  VI. 
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Fig. 7. Real-time  computer  scheduling  in  experiments.  Real-time 

where the result of one  classitkation, i.e., the classification feed- 
scheduling of  stimulus cycle. Multilevel  experiments are possible 

back becomes  the stimulus  for  a second level  ERP. 

Artifact  monitoring  starts  before  stimulation  and  continues 
throughout a  period called the pre-epoch. The  detection of 
an  artifact  during  the  pre-epoch  aborts  data acquisition and 
reschedules the  stimulus event. After  the beginning of the 
epoch  proper,  data acquisition is completed  but  the  affected 
epoch is “rejected.” 

2 )  Preprocessing- Wiener Filtering: Real-time filtering is 
performed to improve the signal-to-noise ratio based on 
covariance information. Wiener filtering of evoked  response 
has  been suggested by a  few  researchers and used with some 

in the overall scheme. success in an earlier  off-line study [ 21. 
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The  filter evaluates smoothed estimates X of the  unknown 
ERP signal S from  the measured raw amplitude  vector Z. For 
the present purpose, Z is assumed to be made  up of true signal 
and  additive  zero-mean noise U: 

z = s + u .  (1) 

However S is considered here as  a stochastic vector. The signal 
mean  E[ SI and  the covariance  matrices. W( V )  and W(S + V )  are 
evaluated from ensemble data using data preceding the  stimulus 
for  the evaluation of W( V). The  estimate is given by 

X = E [ S ]  + A  *(Z-E[S l )   (2 )  

where 

A = W(S) - [ W(S + U)] -1 
X is the  minimum mean-square error  estimate of the signal 
vector  under  the assumptions. 

The  operational validity of the  procedure can be evaluated 
objectively  by  comparing classifkation performances. The 
results at  this  time are st i l l  unconclusive, mostly because of 
statistical  errors  in  the evaluation of W(S), due  the  the  unknown 
level of covariance between S and U. 

3) Selection of a Feature Vector: The  features used in all 
the  aforementioned  experiments were simply the filtered 
amplitude samples (i.e., the X vector). It is the simplest 
possible feature  vector  and a logical choice because of the 
sequential  nature of ERP’s which demands preservation of 
time ordering. Obviously, a number of transformations of 
the original vector would be possible and  in  that light the 
current  procedure can be viewed as a particular case of the 
linear class of spectral  transformations, where the basis func- 
tions are an  orthogonal set of impulses, one  for each  sample 
time. 

4)  Step-Wise Selection of Best Samples: Sampling  intervals 
in  the  experiments discussed were 4 ms. Thus  the acquisition 
of a half-second epoch generates  initially  a large measure 
vector  made of adjacent filtered samples. Considerations of 
statistical  stability demands that dimensionality be reduced 
before attempting classification. Here again many h e a r  
operators,  and  particularly  the Karhunen-Loeve transformation 
which  would  yield the principal components,  could achieve a 
drastic reduction of dimensionality in  the highly correlated 
sample vector. Several authors have used  principal component 
analysis in combination  with  coordinate  rotations,  to analyse 
average evoked responses [ 51, [9] .  Yet most spectral  trans- 
formations will to some extent  blur timing information. 

In  the  current  experiments, a step-wise discriminant  pro- 
cedure similar to  that described  by Dixon  [4] was applied 
to the  components of the X vector itself.  This procedure is 
actually related to  the principal component  strategy.  It 
selects  a small subset of the origjnal components  that simul- 
taneously achieve the best F-ratios  and maximum  statistical 
independence. Fisher’s F-ratio [7] is computed as a ratio of 
data variance computed with  respect to  the overall mean 
across the classes versus the relative variance to each class 
mean.  Thus  the  F-ratio  offers a  measure of class separability 
(for each  sample time) by  measuring how  much each component 
of X varies across the classes in  relation to its variations  within 
each class. The discriminant analysis method requires therefore 
a  “training set,” Le., a set of labelled epochs of known classes 
(50 epochs  in  the  current  experiments),  to guide the  data 
reduction.  After  reduction of the  data  vector,  the F statistics 

are given by 

(N - K )  VT W ( X )  V 
F= (3)  

where N is the  number of epochs, K is the  number of classes, 
W ( X )  and V(X) are,  respectively, the covariance matrices 
relatively calculated with respect to the within  group and  the 
across group means,  V is the  “thinning” vector,  a  set of 
weights set to zero  for all but  the “surviving” samples in  the 
selection, “T” denotes  the transpose of the corresponding 
matrix.  The  problem is then  to select V in such a way as to 
maximize F .  

Differentiation yields  a  linear  system of equations to be 
solved: 

(K - 1) vT U(X)  v 

[ V(x)-’ * W(X) - ZII * v = 0 (4) 

where 

vT W(X) v 
vT U(X)  v 

Z =  

and I is the  identity matrix. 
The step-wise method of Effroymsen  [61 is used to solve 

these equations  and select the samples one  by  one  into  an 
ordered subset of preassigned dimensionality D (D was equal 
to ten in the  present  application),  with  monotonically de- 
creasing F ratios. From  that  point  on,  the reduced vector Y 
becomes the  epoch  descriptor  and  the  only  ERP  information 
retained  in  subsequent  computations. 

5 )  Epoch Classification and Recursive  Outlier  Rejection: A 
linear Bayesian decision rule  is calculated for each class over 
the reduced  vector. The classification is based on Bayes 
posterior probabilities: 

p[i l  Yl = 
~ [ i l  P[ Y I il 

C d k I  p[YIkJ 
, i = l , 2 ; . . , K ;  

k 

k = l , 2 ; * . , K .  ( 5 )  

The classification procedure  starts  with  the same training 
population used to perform  the dimensionality reduction. 

The decision rule is then built on  the  assumption  that  the 
Y-vector population should distribute  into K classes. As a 
first approximation,  the  data  distribution within  each class 
is conveniently assumed to be multivariate normal with the 
same covariances: 

exp  [-o.s(Y - - Ti)] 
f ( Y l i ) =  

d(2n)D I WY) I (6) 

Because the class covariance are equal,  equation  (6) can be 
simplified by  eliminating the  quadratic  term, yielding a simple 
expression for  the  posteriori  probability: 

p(i) : exp  [a(i) + B(i) a Y] 
p(i I Y) = (7) 

~ ( k )  * exp [ a ( k )  + B(k) Yl 
k 

Equation (7) varies monotonically with the linear  term 
in  the  numerator which  becomes the “decision rule” for 
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group i:  

d( i )  = a( i )  + B(i)Y (8)  

In  addition,  a ( K  + 1)th class is defined,  the  outlier class, 
containing  those  epochs Y for which the Mahalanobis dis- 
tance to  the group  mean  exceeds  a given threshold. This 
nonlinear  test  overrules  any  assignment  made  by (8) i.e. 
the  training  set is examined  for  outliers regardless  of whether 
they have  been initially misclassified or  correctly classified. 
The program  offers the  option of removing  these outliers 
before  returning to  the stepwise  discriminant  selection  in  order 
to  obtain an updated  selection  and  thus  a  corrected  decision 
rule. 
6) Real-Time  Defaulting: Once the  initial decision  rule 

has  been  established on  the  training  set, real-time classifica- 
tion  (“testing”)  can  proceed  with  a minimum or  computing 
between  epoch  acquisition.  The  only  calculations  involve 
the  evaluation of the Linear decision  rule (one expression 
must  be  computed  for  each class) and  a  comparison of the 
results to  identify  the largest value.  This  again is followed by 
distance  calculation to  detect  outliers. When present,  outliers 
now  create  a  default  or  “don’t  know” class, which  during 
the real-time experiment. will cause the  system to label  the 
epoch as such  and to  repeat  the  stimulation  cycle  (a  posteriori 
artifact  or  outlier  rejection). Here  again,  because classification 
in  the  default class results in no change  in  the  display,  (probably 
against the subject’s expectation), specific  feedback is provided 
on  the  discrimination  outcome. 

7) Decision  Rule  Updating: By making the procedure  recur- 
sive, blocks  of  epochs,  (epoch strings) sequentially  serve  as 
training  sets  for  the  next  string.  Thus  the  decision  rule  can  be 
tracked as it  undergoes  changes  due,  for  instance, to  task 
learning, operant  conditioning or any  other cause. 

VI.  THE CYBERNETICS VIEWPOINT 
The real-time  interactive  mode of ERP experimentation 

made  possible  by single epoch  identification  brings  the  experi- 
mental process into a  new light. 

It is first  observed that  the single epoch classification is 
essentially  a signal detection  problem  in which the  computer, 
in  the  position of  an  impartial  observer, assigns classes to  in- 
coming  epochs  according to  a given decision rule. Each  experi- 
ment  trial  can  therefore  be  viewed as a  communication process 
in which  an  enciphered  message is retrieved in the ERP signal. 
The “message,”  which  usually  changes  with  each  individual 
trial, is the  position of the  stimulus  event  in  the  input  set, i.e., 
the class label. Thus, the set of class labels  can be regarded as 
an alphabet of symbols or characters,  one  for  each  of  the K 
stimulus  types. 

Simple ERP experiments,  such as described earlier, realize 
the transmission of one  such character every  time  an epoch 
is classified, which,  amounts t o  log K bits of information  at 
the  input, if stimuli are equiprobable. 

The  output  set likewise  forms  an  alphabet.  Indeed, the 
components of Y ,  the  reduced ERP data  vector  may be viewed 
as the  euclidean  coordinates  of  a signal space. This signal 
space is initially divided into K ccmpartments by the decision 
rules, one  compartment  for each input  character. Subse- 
quently,  a  default region is defined that  includes all 
the  points  that lie beyond  a given distance  from  any of the class 
means,  and t h y  cannot be placed confidently  into  any of the 
original slots. The-*default class brings the  number of output 
characters to  K + 1. 
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The ERP identification  therefore  maps  the  input  alphabet 
into  the  output  alphabet [ l l .  The resulting information 
“channel” is represented  in Fig. 8. The efficiency of this 
mapping  can  be  quantified  conveniently: 

Let i and j be the respective  indexes for  the  input  and 
output  alphabets;  the  mutual  information I( i ,  j )  is a  measure 
of the  efficiency of the  transfer  defined as the difference 
between  average information  and  equivocation received at  the 
output. 

Average output  information: 

I ( j )  = - p ( j )  log p ( j )  (9) 
i 

but since 

p ( j )  = C p ( i ) p ( j  I i )  
i 

= - C C ~ ( i )  * p ( j  I i )  log p ( j )  . (10) 
j i  

Similarly the equivocation yields: 

E ( j )  = - C p ( i )  * p ( j  I i> log p ( j  I i). (1  1) 

The  difference  between (IO) and (1 1) yields the  mutual 

i j  

information measure 

The  probabilities  in ( 12)  can be  estimated  from  the  observed 
discrimination  performance, Le., by the  “confusion  matrix” 
generated  by  the  accumulated  trials; I(i, j )  expresses  (in  bits 
when the  logarithms  in (1 2)  are  in  base 21, the average amount 
of information  that survives the enciphering  and  decoding 
process. It provides an  objective  and unassailable index  that 
can be  used to  compare  different  experiments,  or to  heuristically 
optimize  the  discriminant  procedure. 

Finally the  dynamic,  spatio-temporal  distribution of the 
mutual  information  can be  analyzed.  Indeed, al l  the  probabil- 
ities  in ( 12) are  implicitly  conditioned on  the ERP data  vector 
X at  the  input of the  pattern  recognition  procedure. Until 
now X was taken to  contain  the  entire  multichannel  epoch, 
however,  since the  time  boundaries of the  epoch are  arbitrary 
as well as the  inclusion  or removal  of  any  subset of data 
sensors, mutual  information  can be evaluated,  conditioned  on 
any  subset of components  from  the original data  vector.  At 
the  limit I( i ,  j )  can  be computed  for  each single electrode  site 
and  sample  time if the  data base is large  enough to  insure 
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Fig.  9. Mutual information function-Time  distribution:  Mutual 
information  function H(/i)  computed in function of time  from  stimu- 
lus. The distribution shows that  no  information is provided before 
75msec and that it  subsequently  appears in two separate waves at 
about  80  and 145ms.  Pattern  experiment-SAD7-200  epochs. 

statistical  stability. Specifically, if these components are 
partitioned  into subsets, I(i, 1) will in  theory, i.e., except 
for  statistical errors, form a  nondecreasing function of the 
number of such  subsets  entered  one by one  in  the calculation. 
In using the stepwise  discriminant procedure,  the samples or 
features surviving the selection  process at each step  must be 
pooled  with each additional  data subset to compute each new 
value of I .  What emerges then,  is  the  concept of an “event 
related  information wave” (ERIW)  indicating the presence of 
experiment relevant information  in space (electrode  location) 
and  time. 

This approach can  be used to tackle  fundamental  questions 
in ERP research  regarding time  and space distribution.  For 
instance,  in Fig. 9 the  time arrival of information has  been 
traced  by cumulatively computing H(j i )  over adjacent  bins 
in  time, corresponding to the  optimal Y components across 
all channels for this experiment.  The  plot clearly shows the 
arrival of information in two successive waves, respectively 
around 80 and 145 ms. 

This analysis translates the  fluctuations of electrical potential 
in  the ERF’ into a direct answer to  the specific quest  contained 
in  the  experiment paradigm. As mentioned earlier, the E W  
waveforms  are subject specific to such  an  extent  that pooling 
data  between  subjects is often of doubtful value and  certainly 
amounts to a reduction of the signal structure  to some lower 
common  factor.  Thus  the  informational  approach will recog- 

nize a commonality  in  the overall timing  and  anatomical 
location of the evoked  neural processing without requiring 
that  the f i e  structure of the electrical  activity be comparable 
on a one-to-one basis. 

In this  perspective, the  method lies at  the  proper semantic 
level with regard to  the  questions  that  motivate  most evoked 
response  research, at least with  human subjects,  such  as de- 
termining delays between stimulus  and cortical  response or 
fiiding  whether a given process favors one side of the brain 
over the  other. 

Until very recently,  the considerable amount of computa- 
tion  required by  this approach would have ruled it  out as a 
practical  approach. These days  are over. 
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