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The dynamics of the major disruption of DIII-D discharge 87009 are investigated with theNIMROD

code fSovinec et al., J. Comput. Phys.195, 355 s2004dg. To explore the time dynamics in a
computationally efficient manner, a fixed-boundary equilibrium is used to model the physics of a
plasma being heated through an ideal magnetohydrodynamicsMHDd instability threshold. This
simulation shows a faster-than-exponential increase in magnetic energy as predicted by analytic
theoryfCallenet al., Phys. Plasmas6, 2963s1999dg. The dynamics of the heat flux loading on the
divertor surfaces is explored with an equilibrium that has the plasma beta raised 8.7% above the best
equilibrium reconstruction to start above the ideal MHD threshold. The nonlinear evolution of the
ideal mode leads to a stochastic magnetic field and parallel heat transport leads to a localization of
the heat flux that is deposited on the wall. The structure of the heat flux deposition is dependent upon
the magnetic topology that results from the growth of the ideal mode. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1873872g

I. INTRODUCTION

During tokamak experimental operation, events that rap-
idly terminate the plasma discharge occasionally occur. The
complete and rapid loss of thermal and magnetic energy in
these disruptions results in large thermal and magnetic loads
on the material wall. For proposed next step experiments
such as the International Thermonuclear Experimental Reac-
tor, the stored energy will be approximately 100 times
greater than present day devices1 greatly increasing the po-
tential damage of these events. Exacerbating the risk to the
machine and increasing the engineering challenges, the dis-
ruption phenomena are often highly non-axisymmetric;2 this
results in localized deposition of the heat loads. Understand-
ing the onset mechanisms and the nonlinear dynamics lead-
ing to the disruption is crucial for understanding ways to
prevent or mitigate disruptions.

Disruptions are generally placed in one of two categories
depending on the sequence of events that occur.2 In major
disruptions, the thermal energy is lost first in the thermal
quench phase. The current density profile flattens, and the
resultant change in the internal inductance causes the total
plasma current to increase. A current quench from the cold
plasma then occurs. These types of disruptions are generally
caused by long wavelength, non-axisymmetric magnetohy-
drodynamic sMHDd instabilities. Because the thermal
quench generally occurs first, the heat flux normal to the
material wall surface is of primary concern for understanding
the implication of major disruptions in burning plasma ex-
periments; in particular, greater understanding of the local-

ization of heat flux as observed in divertor temperature mea-
surements, and of how the point of maximum heat flux
moves away from the original strike points is needed. In the
other type of disruption, the vertical displacement event
sVDEd, the plasma moves vertically to strike the material
wall. A thermal quench occurs followed by a current quench
without an increase in the current. In general, simulations of
major disruptions are more difficult because the initial mo-
tion of the VDE is axisymmetric, reducing the toroidal reso-
lution required.

The experimental phenomenology of the major disrup-
tion in DIII-D discharge 87009 has attracted a great deal of
experimental and theoretical interest.3–8 A combination of
analytic theory3 and linear ideal MHD code analysis4 has
been successful in predicting both the time scale of the
disruption3 and the spatial structure4 of the mode. The suc-
cess of the model and the indication that the phenomenology
can be described strictly with a magnetohydrodynamic
model makes this an attractive case to study with the
NIMROD

9 nonlinear initial-value code. Unlike the simple
analytic/linear numerical MHD model, an initial-value code
allows for detailed studies of the mechanism leading to the
loss of plasma confinement and the resultant heat deposition
on the plasma wall.

In this paper, two different aspects of the dynamics of
the major disruption in DIII-D discharge 87009 are explored
using the NIMROD code. Before discussing the simulations, a
detailed discussion of the model including its strengths and
limitations is presented. Then the first set of simulations,
which investigate the time dynamics using fixed-boundary
equilibria, is presented. In the next section, the NIMROD

simulation starts from a free-boundary equilibrium that is
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above the ideal MHD threshold. The emphasis in this simu-
lation is to model how the heat flux gets deposited on the
wall. In the final section, conclusions are drawn and further
work is discussed.

II. SIMULATION MODEL

The fluid equations used in these studies are evolution
equations for density,n, flow, V, current,J, and total ion and
electron temperatures,Ti andTe:

]n

]t
+ = ·nV = 0, s1d

minS ]V

]t
+ V · = VD = − = p + J Ã B + = · mmin = V ,

s2d

n

g − 1
S ]Ta

]t
Va · = TaD = nTa = · Va + = ·nfski − k'db̂b̂

+ k'Ig · = Ta − Qa, s3d

E + V Ã B = hJ, s4d

m0J = = Ã B, s5d

whereE andB are the electric, kinetic, and magnetic fields,
respectively; andh ,m, andk is the electric, kinetic, and ther-
mal diffusivities, respectively; andQ is a heat source. In Eq.
s3d, the Ohmic heating and stress-tensor heating have been
neglected because our simulation times are much less than
the transport time scales. These equations, in conjunction
with Maxwell’s equations, are closed because the closures
have been specified for the stress tensors,Pa, and the con-
ductive heat flows,qa. Specifically,Pi =nmim=V and Pe

=0 have been used for the ion and electron stress tensors,
and a simplified model of the Braginskii heat flux has been
used for the heat flux closure:

q = − nkib̂b̂ · = T − k'='T. s6d

The rapid equilibration of temperature along field lines is
modeled by havingki @k'.

The resistive MHD equations neglect the whistler, Hall,
and electron inertia terms, i.e., the two-fluid physics in the
generalized Ohms law, Eq.s4d. As discussed in Sec. IV, the
thermal quench of the plasma disruption is caused by a rapid
stochasticization of the magnetic field. The change in the
topology of the magnetic field is a result of magnetic recon-
nection that is known to be sensitive to the model used in the
generalized Ohms law10 with two-fluid physics generally
giving faster reconnection than resistive MHD. Resolving
the length scales necessary in a two-fluid model over the
entire plasma region as the magnetic field becomes stochas-
tic presents a large numerical challenge. The successful ap-
plication of linear MHD codes to analyze the experimental
results4 gives confidence that intuitive insight into the dy-
namics can be gained with the nonlinear, resistive MHD
model.

To minimize the interactions of the hot plasma with the
cold wall, modern tokamaks divide the plasma into two dis-
tinct regions, as seen in Fig. 1: a core region where field lines
close upon themselves and confine the plasmasTe,10 keV,
n,1019 m−3 in DIII-D d, and a halo region where the field
lines intersect the wall and the plasma remains coldsTe

,1–10 eV,ṅ,1016 m−3 in DIII-D d. Using a Spitzer resis-
tivity sh,T−3/2d in the halo region gives large values that
suppress currents. The separatrix that divides the two regions
is only clearly defined with two-dimensional magnetic fields;
with three-dimensional magnetic fields a stochastic region
generally exists that blurs the separation and increases the
modeling difficulty. To avoid the numerical difficulties asso-
ciated with the large three-dimensional gradients, the major-
ity of magnetohydrodynamic simulations in tokamaks have
placed the conducting wall on the last-closed flux surface.
Thesefixed-boundary simulationshave the added advantage
that inverse Grad-Shafranov solvers11 can be used to give
highly accurate, easily specified equilibria. A prominent ex-
ample of a fixed-boundary major disruption simulation
showing a thermal quench is the kink-ballooning simulation
of Park.12

Free-boundary simulations, which have the computa-
tional boundary beyond the last-closed flux surface, have pri-
marily been used for VDE disruptions13,14or studies of liquid
walls,15 where the dominant axisymmetric nature of the in-
stability gives weak stochasticitysor none if only then=0
component is keptd. For more non-axisymmetric modes, ac-
curate modeling of rapid parallel equilibration in three di-
mensions is required to resolve the distinction between the
halo region and core region as the plasma evolves nonlin-
early and becomes highly stochastic. The use of high-order
finite elements in NIMROD

9 has allowed numerical simula-
tions of ratios ofki /k' never before possible, and the simu-
lations presented here use values ofki /k'=108. This new
capability allows accurate free-boundary simulations of ma-

FIG. 1. sColor onlined. Equilibrium reconstruction of DIII-D discharge
87009 at 1675 ms shows a reverse shear profile and peaked pressure profile
in a highly triangulated plasma. The plasma region contains a hot region
where the field lines are closed and a cold, halo plasma where the field lines
strike the wall.
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jor disruptions to be computationally feasible. In the simula-
tions below, fixed-boundary simulations are used to explore
the time dynamics because accurate control of the equilib-
rium is needed, and the computational savings allow for
longer time scales to be studied. Free-boundary simulations
are used to explore the spatial dynamics; in particular, the
dynamics of the thermal quench and how heat gets deposited
on the material wall.

III. TEMPORAL GROWTH

Long wavelength instabilities in fusion plasmas have of-
ten been described within the framework of MHD theory.
These instabilities are often categorized by the physics in the
generalized Ohms law required for the instability to be de-
scribedse.g., ideal, resistive, neoclassical, driftd. The types of
instabilities have different time scales associated with their
growth, with the ideal modes growing on the Alfvénic time
scale, and the other modes having a time scale that is a
hybrid of the Alfvénic and resistive time scales. In addition
to the time scales of the mode growth, the marginal stability
point as calculated by linear eigenvalue codes is frequently
used to determine the type of mode in theory-experimental
comparisons.4

However, this traditional type of analysis neglects how
the plasma reached an unstable equilibrium. Recently, an
analytic theory3 has been put forth to describe the growth of
an instability being driven through the marginal stability
point. Assuming that the free energy of the mode is propor-
tional to internal energy as measured byb,

v2 =
dW

dK
, − gMHD82 S b

bcrit
− 1D . s7d

Assuming a slow heating rate so that the heating may be
approximated as a linear increase inb with a heating rategh

near the marginal point,bstd=bcrits1+ghtd, one obtains a
growth rate that depends on the heating rate with the result-
ant mode growing faster than exponential:

j = j0 expfst/td3/2g. s8d

The time constant of the mode is a hybrid of the measure of
the variation of the growth rate with beta and the heating
time scale:

t ;
s3/2d2/3

sgMHD8 d2/3gh
1/3. s9d

As the limit of eitherg8MHD or gh goes to zero, the mode
does not grow because it is exactly at the marginal point.

This heuristic analytic theory was successfully used to
explain many of the features of DIII-D discharge 87009
which disrupted during neutral-beam heating,3 including the
time scale which was deemed to be too slow for an ideal
mode. An interesting part of this derivation is the use of
linear theory to model what experimentalists observe to be in
the nonlinear regime. To further test this theory and gain
additional insight into the nonlinear behavior, discharge
87009 was modeled using the nonlinear resistive MHD equa-

tions with anisotropic heat conduction with an equilibrium
with similar pressure and safety factor profiles as the actual
discharge at 1681.7 ms.

Before running a self-consistent nonlinear simulation
with heating, it is necessary to begin the simulation near the
ideal marginal stability point. Because having a conducting
wall placed on the last closed flux is stabilizing, the plasma
pressure was raised to the ideal marginal stability point by
self-similarly increasing the plasma pressure profile. To de-
termine the critical beta with sufficient accuracy, the equilib-
rium was varied frombN=4.0 to bN=5.0 in increments of
DbN=0.05. The ideal linear stability of the equilibria was
tested withDCON

16 to determine plasma stability to ideal
modes using a generalized version of Newcomb’s criterion.17

Because linear calculations withNIMROD take much longer
thanDCON to determine ideal stability, usingDCON on a large
number of equilibria is generally preferred. The ideal mar-
ginal stability point was found byDCON to bebN=4.45. Lin-
earNIMROD simulations found resistive interchange modes at
bN=4.0, and the extremely robust growth rates expected of
ideal instabilities atbN=5.0 andbN=6.0 as shown in Fig. 2.
Because the growth of the mode atbN=4.45 is very slow, we
consider it to becomputationally stableswith regards to ideal
instabilitiesd and we chosebN=4.70 as the starting point for
our calculations.

To model the heating of the plasma, we apply a heating
source that increases the equilibrium pressure self-similarly

]p

]t
= ¯ + ghpeq. s10d

As the plasma heats, the flux surfaces shift outward, but the
heating is still maximum at the old magnetic axis. Because
our heating rate is slow compared to the growth of the mode,
but still much faster than the resistive decay timesg8MHD
@gh@1/tRd, the assumptions of the analytic theory3 are sat-
isfied. Note that throughout the simulations, the finite-

FIG. 2. sColor onlined. Linear NIMROD runs used in conjunction withDCON

determine the marginal stability point with pressure that is larger than the
experiment. NonlinearNIMROD runs started with an equilibrium atbN

=4.70.
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element grid ofNIMROD is aligned to the equilibrium mag-
netic field and does not move.

The NIMROD simulations were run with Lundquist num-
ber,S=106, Prandtl numbersratio of normalized resistivity to
kinematic viscosity Pr=200 with heating rates ofgh

=10−3 s−1 and gh=10−2 s−1. A finite-element grid in the po-
loidal plane with 128 radial vertexes and 64 poloidal ver-
texes was used with bicubic finite elements.9 The toroidal
direction is discretized using the pseudo-spectral method us-
ing then=0 andn=1 modes. Because the vacuum region is
not included in these simulations, the increase in beta to
make then=1 mode unstable results in the highern modes to
be substantially destabilized. Because two-fluid effects stabi-
lize these modes but introduce a substantial time step limita-
tion due to the dispersive Whistler wave, only the first two
modes are kept. Our results are only qualitatively correct in
the fully nonlinear regime, but the goal is to compare with
the quasi-linear analytic theory. The results ofNIMROD simu-
lations with gh=10−3 s−1 are shown in Fig. 3. As predicted
by the analytic theory, the growth of the mode is faster than
exponential. As represented by the straight lines in the fitting
shown in Fig. 4, the growths satisfy Eq.s8d well into the
nonlinear regime. Using the slopes of the lines in Fig. 4 to
determine the time constant for each heating rate gives a fit
to the time constant of

t , gMHD8−0.72gh
−0.28, s11d

which agrees well with the analytic prediction given by Eq.
s9d.

In doubly periodic geometry, any non-axisymmetric
magnetic harmonic that has a component of the magnetic
field perpendicular to the axisymmetric flux surfaces at the
harmonics rational surface causes a change in topology. Per-
turbations that satisfyBmn· n̂=Bmn·Dc0/ uDc0uÞ0 wheren is
the normal vector at theq=m/n rational surface, break to-
pology and are termed tearing-parity modes. Modes that
have zero resonant normal components are termed

interchange-parity modes.18 Due to the frozen flux theorem,
ideal instabilities necessarily are interchange-parity modes.
As ideal instabilities grow in amplitude, they distort the flux
surfaces, but do not cause confinement degradation because
the topology is unchanged. In Fig. 5, the normal components
of the dominant harmonics are plotted along with the safety
factor for time t− t0=217ms. The harmonics are calculated
with reference to the new flux surfaces that have shifted due
to the heating of the plasmasthe magnetic axis has shifted 2
cm at this timed. The safety factor profile is the sameswithin
numerical accuracyd as the equilibrium profile, which is con-
sistent with no reconnection and the slow heating assumption
of the flux-conserving tokamak.19 At this time, then=1 per-
turbation is approximately two orders of magnitude smaller
than the equilibrium toroidal field; thus it is in the nonlinear
regime. Even in the nonlinear regime, the harmonics have
similar structure as the linear eigenfunctions, only scaled to
larger amplitudes, explaining the good agreement of the lin-
ear ideal MHD eigenfunctions and experimental data4 even
though the experiment is in the nonlinear regime.

IV. DYNAMICS OF HEAT TRANSPORT

To understand how a large, nonlinear ideal perturbation
can lead to a thermal quench, freeboundary simulations were
performed by initiating from an equilibrium based on the
best equilibrium reconstruction at 1675 ms. Because starting
below the critical ideal MHD threshold adds computational
cost to an already expensive calculation, equilibrium pres-
sure was raised self-consistently by 8.7% above the best
equilibrium reconstruction to place the plasma beta above
the ideal MHD threshold. The plasma equilibrium and a
cross-sectional plot of the plasma is shown in Fig. 1.

The simulations presented were run with a temperature-
dependent resistivity normalized such that the Lundquist
number in the core plasma wasS=105. A ratio of ki /k'

=108 was held constant throughout the computational do-

FIG. 3. sColor onlined. Then=1 perturbation grows faster than exponential
as predicted by analytic theory.

FIG. 4. sColor onlined. Plotting the log of the magnetic energy,Em, vs the
normalized time raised to 3/2 power shows excellent agreement with the
analytically predicted scaling behavior as evidenced by the straight lines.
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main. The use of constant coefficients results in the parallel
conductivity being underestimated in the core region and
overestimated in the halo region, but greatly simplifies analy-
sis of the complex dynamics. The boundary conditions are
applied at the vacuum vesselsmodeled as a perfectly con-
ducting walld, and not the first material wall, as seen in Fig.
1. The normal component of the magnetic field is held con-
stant at the conducting surface. For the density, velocity, and
temperature, the boundary conditions are also applied at the
vacuum vessel instead of the more physical limiter surface.
This is done for two reasons:s1d applying the natural bound-
ary conditions at the limiter would give no density flux
across the limiter, which is less physical than our current
method of applying the natural boundary conditions at the
vacuum vessel and allowing a mass flux across the limiter;
s2d on the time scales of the mode growth and nonlinear
evolution, impurities would not have time to penetrate into
the plasma. Thus, complicated plasma-wall interactions are
unimportant for this simulation.

In Fig. 6, the global parameters of internal energy and
plasma current from theNIMROD simulation are shown. The
plasma energy decreases by two-thirds in approximately 200
µs, in qualitative agreement with the experiment. As the in-
ternal inductance changes due to the reconnection processes,
the plasma current increases as is also observed in the ex-
periment. To explain the processes leading to the loss of
energy confinement, a series of visualizations is presented. In
Fig. 7, the initial starting point of theNIMROD simulation is
shown. The temperature isosurfaces show a reversed tem-
perature profile due to the peaked pressure profile and
broader density profile. The magnetic field line plotted is
colored according to the temperature with the brightness of
the nodes indicating the distance along the field line. Finally,
the DIII-D limiter wall, corresponding to the axisymmetric
version of the limiter shown ins1d, is shown with the heat
flux contours plotted on this surface. At this early point in
time, the heat flux is small and cannot be seen.

As the temperature evolves, the first notable macro-
scopic feature in the temperature isosurfaces is the appear-
ance of a 2/1 islandsFig. 8d, which occurs at 505µs from the
beginning of the simulation. As seen in the Poincare surface
of section in Fig. 8, at this time step there are two 2/1 ratio-
nal islands, a large 3/1 island, and the edge is stochastic. As
can be seen from the safety factor profile in Fig. 1, two 2/1
rational surfaces exist with the outer surface having lower
shear. The temperature only shows the inner 2/1 island be-

FIG. 5. sColor onlined. The 2/1srightd and 3/1sleftd harmonics ofBn have zero components at their resonant surfaces indicating no change of topology.

FIG. 6. sColor onlined. The plasma loses two-thirds of its internal energy in
200µs in qualitative agreement with experiment. As the plasma expands, the
internal inductance changes causing the current to increase.
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cause of the competition of the parallel and perpendicular
heat conduction near rational surfaces.20 The scale length of
this equilibration competition increases with decreasing
shear. We note that more conventional DIII-D shear profiles
have an equilibration length scale of 4 cm forki /k'=108.9

The fact that the edge went stochastic first is a generic fea-
ture of the magnetic nulls at theX point. Because the pres-
sure profile is a peakedL-mode profilesFig. 1d, little stored
energy is lost in this phase of the disruption.

As the islands grow and overlap, the core becomes sto-
chastic as well. At 546µs into the simulation, the core region
is largely stochastic as shown in Fig. 9. The field line, which
was started at the same location as in Fig. 8, is more volume
filling; however, it is confined and does not strike the wall.
The heat flux on the limiter is increasing as evidenced by the
contour plot on the limiter wall. At this time, 96% of the
internal energy is still contained by the plasma.

At time of maximum normal heat flux on the material
wall st− t0=639msd, the heat flux is localized toroidally and
poloidally as seen in Fig. 10. At this point in time, 87% of
the internal energy is still confined. Because the time of
maximum heat flux on the wall occurs well after the core has
become stochastic, and because it is of greatest interest for
an engineering point of view, a more complete investigation
of the heat transport at this time is presented.

In Fig. 11, the isosurfaces corresponding to 47% of the
peak value of the magnitude of the perpendicular heat flux is
shownsbecauseuq'u2=−k'q' ·=T this can also be viewed
as a measure of the perpendicular heat flux flowing through a
temperature isosurfaced. As seen in the figure, a large amount
of heat transport is on the inboard side and in the core. In
addition, two small isosurfaces are located farther out on the
outboard side as shown in the lower part of the figure. This
particular value of heat flux magnitude was chosen for visu-

FIG. 7. sColord. The axisymmetric starting point for the
three-dimensional simulations shows the temperature
isosurfaces, two magnetic field lines, and the heat flux
on the divertor, which at this point in time is negligible.

FIG. 8. sColord. At t− t0=464ms, multiple islands can be observed in the Poincare surface of sectionsleftd and the edge region is largely stochastic. The
temperature isosurfacessrightd only show the inner 2/1 magnetic island.
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alization because it is the first time an isosurface appears this
far out on the outboard mid-plane. All larger magnitudes of
heat flux occur in the core region. Four field lines are initial-
ized near this location as shown in the inset of Fig. 11. In
Fig. 12, the integrated field lines are shown with the color
denoting the total length of the field lines. The red field line,
which was initialized from a point inside of the isosurfaces,
is confined completely within the plasma, and the blue field
lines strike both the top and bottom divertors. Because the
heat transport along magnetic field lines is much more rapid
than heat transport across field lines, any heat flux that
reaches the open field lines is able to quickly equilibrate and
reach the plasma boundary. The localization of the normal
heat flux on the divertor is a consequence of the localization
of the perpendicular heat flux within the core plasma. As can
be seen by the isosurfaces of heat flux, the most important
localization is that which occurs near the transition between
the open and closed field lines. The heat flux that is localized

in the core plasma remains relatively well confined even
though the field is stochastic. An examination of the red field
line shows that it is related to the heat flux isosurfaces in the
interior, and possibly contributes to the appearance of the
outer hot spot.

The contour plots of the normal heat flux on the top and
bottom divertors in Fig. 12 also show the movement of the
original divertor strike points. The brightest spots indicate
the location of the original strike points. Moving 180° away
from this spot shows a bifurcation in the heat flux impinging
upon the wall. The distance between these two peaks at this
toroidal location is 5 cm. A comparison of Fig. 9 and Fig. 10
indicates that this bifurcated structure appeared early in the
plasma discharge. Then=1 dominance of this bifurcation is
due to the initialn=1 perturbation driving the edge boundary
distortion as the edge goes stochastic. The implication is that
higher n perturbations, such as edge localized modes
sELMsd, would presumably give even more toroidal, and

FIG. 9. sColord. At t− t0=546ms, the core region is largely stochastic although the field lines are confined. The heat flux is rising on the limiter although it
is not at its maximum value.

FIG. 10. sColord. The heat flux being deposited on the upper and lower divertors is localized both toroidally and poloidally. At this time, the heat flux loading
on the wall is maximum, and the field is completely stochastic in the core.
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FIG. 11. sColord. Isosurfaces of the magnitude of the
perpendicular heat flux is plotted to show where the
perpendicular heat flux is flowing across the tempera-
ture isosurfaces. The field lines shown in Fig. 12 are
started near the outer isosurfaces as shown by the inset.

FIG. 12. sColord. Field lines started near the open-
closed boundary show different contributions to the
peak heat flux loading on the wall based on position
near the heat flux isosurface. The field lines are colored
by their total length with the red field line being com-
pletely confined and the blue field lines striking the top
sshown in the lower leftd and bottomsshown in the
bottom rightd divertors.
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hence poloidal, variation. Because tokamaks are designed to
handle their maximum heat loads based on the equilibrium
strike points, understanding the movement of the peak wall
loading away from their wall is an important part of these
studies.

V. DISCUSSION AND CONCLUSIONS

Despite the heuristic nature of the analytic derivation of
mode growth being driven through an ideal marginal insta-
bility point, the NIMROD simulations show that the analytic
scaling given by Eq.s8d gives an excellent description of the
mode growth even into the nonlinear regime. For ideal
modes, where the mode amplitudes can grow quite large
without a change in magnetic topology, the fundamental as-
sumptions of the analytic theory hold into the nonlinear re-
gime. The simulations emphasize the point of the importance
of simulating not only the instability, but also the mechanism
by which the plasma has evolved to that state. Unfortunately,
simulations near the marginality point are the most difficult
to simulate because of the slowness of the mode growth.
How resistive instabilities, which are unstable below the
ideal marginal stability point, influence the evolution of the
discharge to the unstable state is an open question. Investi-
gating this question, will be studied in future work.

The free boundary simulations that explored the realistic
DIII-D geometry and heat flux deposition agrees qualita-
tively with many features of the thermal quench phase of
plasma disruptions. The macroscopic loss of energy confine-
ment time of 200µs is in qualitative agreement with experi-
ment, as is the concomitant rise in the plasma current due to
the change in internal inductance. The edge went stochastic
first, as would be expected given theX points and the close-
ness of the rational surfaces in that region. Because of the
peaked,L-mode pressure profile, little of the stored energy
was lost in the early phase of the disruption. Future work
will include the extension of these simulation diagnostic
techniques for studying heat transport to ELM simulations
where significant stored energy is located near the separatrix.

The localization of the heat flux, both toroidally and po-
loidally, has been observed in divertor temperature measure-
ments in similar experiments. The heat flux localization
arises because the original mode distorts the plasma surfaces
and localizes the perpendicular heat flux. As the heat flux
increases near the boundary between open and closed field
lines, the parallel heat conduction rapidly carries it to the
wall. Although the use of a diffusive heat transport model
with constant coefficients is a relatively crude model for
equilibration of temperature along field lines and probably
exaggerates the importance of the open–closed boundary,
avoiding the complications of temperature-dependent coeffi-
cients is useful for gaining a qualitative understanding of the
overall dynamics of heat transport in a complicated magnetic
topology. Future work will include more accurate modeling
of the heat flux, including temperature-dependent Braginskii
coefficients, use of Landau-fluid closures,21,22 and a kinetic
calculation of heat flux.23,24

Much of the success of the modeling this discharge is
due to the peaked,L-mode pressure profile of the equilibrium

studied. Because the pressure gradient was peaked inside the
plasma, the resultant mode was largely internal and resulted
in little movement of the plasma boundary. Complicated
plasma-wall interactions were not required for the obtained
agreement. Also, because the time scale of the ideal mode
growth is rapid compared to the time scale of impurity pen-
etration, the need for impurity modeling is unnecessary. For
disruptions caused by resistive wall modes25 where mode
growth is both slow and primarily external, for disruption
mitigation experiments where impurities are injected into the
plasma,26 or for density limit disruptions,2 modeling of im-
purities in theNIMROD code would be necessary. Current
work is under way to include these effects.

Future simulations will try to drive the free-boundary
simulations through the stability point in the same way the
fixed-boundary equilibria were driven. By more accurately
modeling the time-dependence, the heat flux closure, and
more realistic diffusivity parameters, direct quantitative com-
parisons of simulation results to experimental diagnostics
can be made. By improving our understanding of disrup-
tions, intuition can be gained to guide the experiments, and
allow the use of numerical experiments to explore how fac-
tors such as external magnetic configuration can be used to
mitigate the damage caused by major disruptions.
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