

Cygnus Beyond Low-Earth Orbit – Logistics and Habitation in Cis-Lunar Space

Carl Walz Vice President Advanced Programs Group

Outline

- Cygnus current capability for commercial resupply
- Cygnus future capability as an Exploration Augmentation Module
- Why Cygnus meets Global Exploration aims

Current Capability: Low Earth Orbit Transfer Operations Underway Innovation You Can Count On Count On

• Orbital COTS Program Successfully Completed

- ➤ Economically developed through Space Act Agreement
- ➤ 2 Major Space Operations completed
 - Antares Test Flight
 - COTS Demonstration Flight

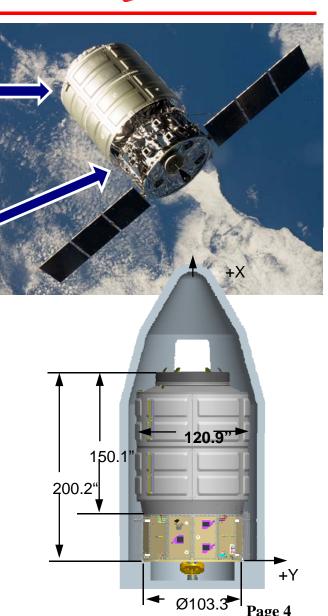
• Cygnus Has Begun Cargo Resupply to the ISS Program

- ➤ Orb-1 Mission Completed on 2/19
- ➤ Orb-2 Mission On Track for 5/6
- ➤ 8 CRS Flights from 2014 to 2016

Page 3

Orbital Innovation You Can Count On

Cygnus Overview


Cygnus vehicle is comprised of two major modules

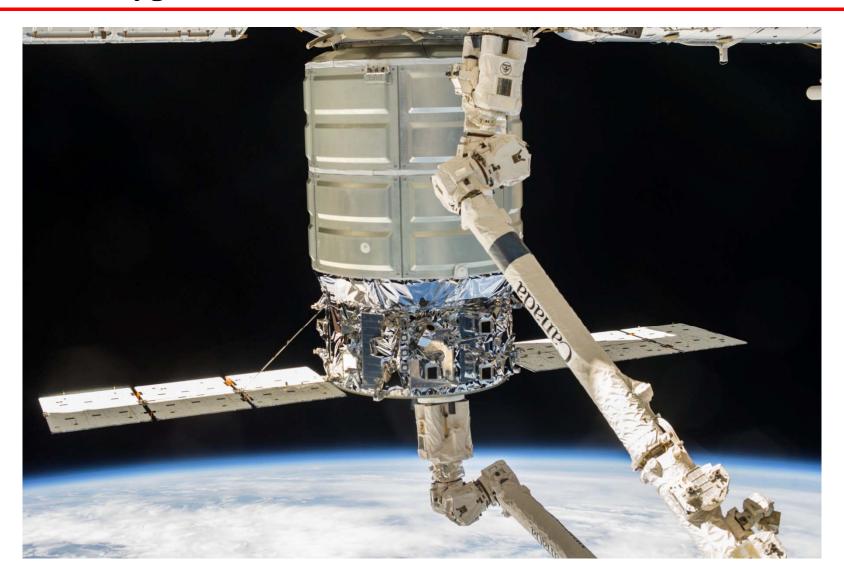
• Pressurized Cargo Module (PCM)

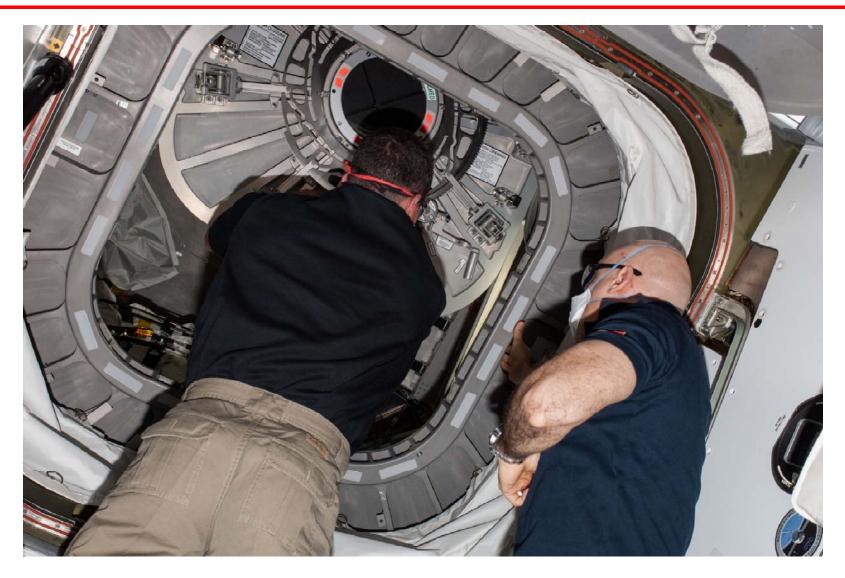
- ➤ Heritage: Multi-Purpose Logistics Module (ISS); ATV
- ➤ Total Payload Mass: 2,000 kg, 2700 kg
- ➤ Pressurized Volume: 18.7 m3, 27 m3
- ➤ Berthing at ISS: Node 2 Common Berthing Mechanism

• Service Module (SM)

- ➤ Heritage: Orbital GEO and LEO missions
- ➤ Power Generation: 2 Fixed Wing Solar Arrays,
- ➤ Power Output: 3.5 kW (sun-pointed)
- ➤ Propellant: Bi prop/Mono prop system
- ≥32 thrusters in 3 independent strings
- ➤ Quad-redundant computer architecture
- ➤ Compatible with Antares

Orb-D1 Cygnus on Approach


Orb-D1 Cygnus Grappled and Ready for Berthing



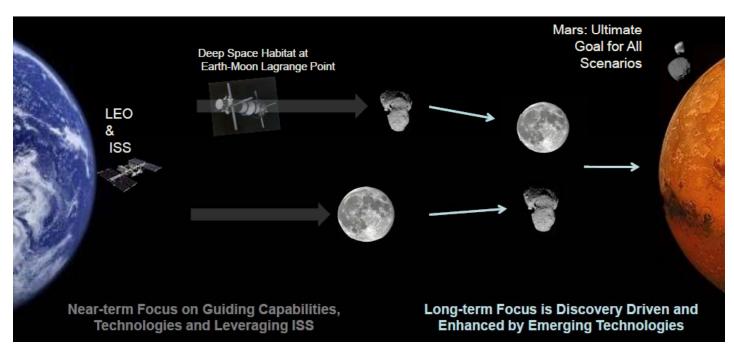
Orb-D1 Cygnus Berthed to the ISS

Cygnus Hatch Opening

Cygnus Crew Operations

Cygnus Crew Operations

Cygnus Separation and Re-Entry



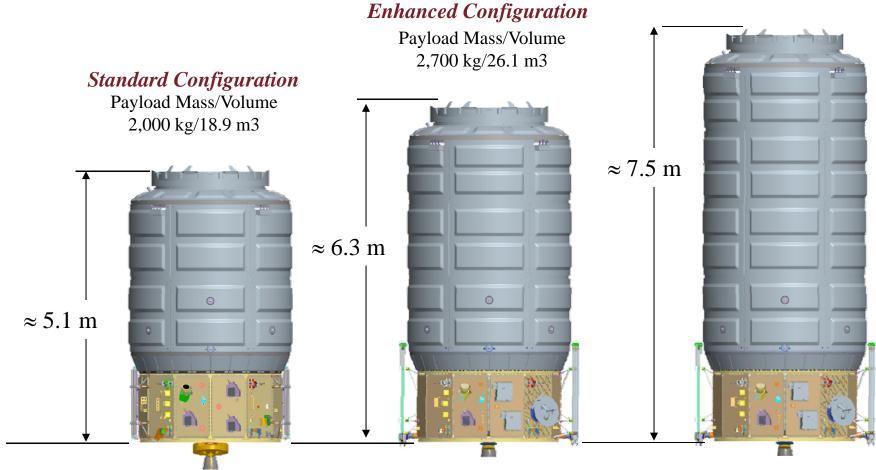
Page 11

Cygnus Future Capability – The Exploration Augmentation Module

- Orbital Sciences feels that Cygnus can be evolved to an Exploration Augmentation Module (EAM)
 - To provide additional habitation capabilities and logistics requirements
 - To support more distant space destinations, providing essential services
 - To provide an affordable solution
 - To meet the aims of Global Exploration Strategy roadmap
- The evolution of NASA human space capabilities from one program to another has historical precedence
 - The Skylab, NASA's first space station, was derived from a Saturn V upper stage

Cygnus Missions for Exploration

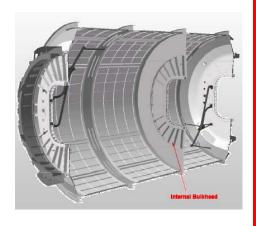
- Orbital's Cygnus Spacecraft Provides an Operational Capability That Is Available and Affordable In a Variety Of Applications Beneficial To NASA Exploration Missions Currently Under Development
 - Can extend the duration of an Orion mission, either in Cis-lunar space or a highaltitude Earth orbit
 - Can provide a safe-haven at a distant destination
 - Can allow for early testing of systems required for Asteroid retrieval
 - Docking systems
- A Cygnus EAM can provide space required for logistics, crew accommodations, crew medical requirements
- Cygnus EAM would be a modification of the existing module currently in production
 - ➤ Supply chain already established
 - ➤ Non-recurring engineering completed

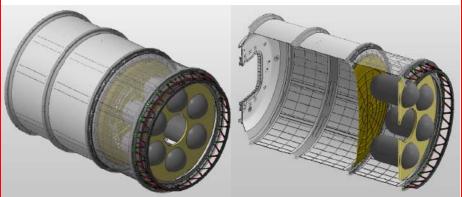


Candidate EAM Options

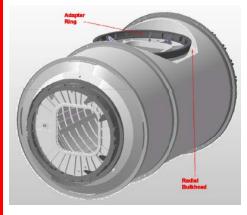
Cygnus can support a 4-person crew for 60 days while berthed to Orion

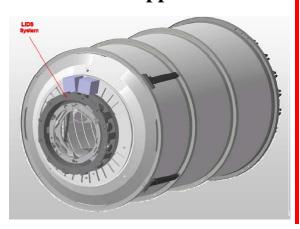
"Super" 4-Segment Configuration

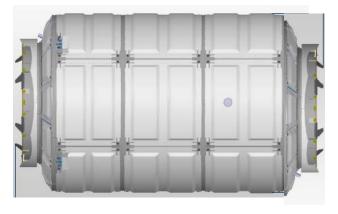

Payload Mass/Volume 3,400 kg/33.5 m3



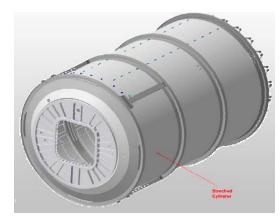
Other EAM Topologies/Capabilities


Internal Bulkhead




Hybrid Cygnus Pressurized Cargo Module with Unpressurized Gas/Water Storage

Side Hatch


ILIDS Application

Cygnus Dual-Hatch Configuration

"Stretched" PCM

Candidate Cygnus Functions

Structural Elements

Pressurized Module (PM)

- ➤ Habitable Volume
- Optical Viewing Port
- ➤ Life Support
- Thermal Control Internal
- Crew Systems
- Waste Management
- Docking System

Service Module (SM)

- Electrical Power System
- Communications System
- ➤ Attitude/ Trajectory Control
- ➤ In-Space G&NC and Flight Computer
- Propulsion System
- ➤ Thermal Control External

Cygnus Habitat Functionality

Supports/Enhances Deep Space Operations Through the Following

Internal capabilities

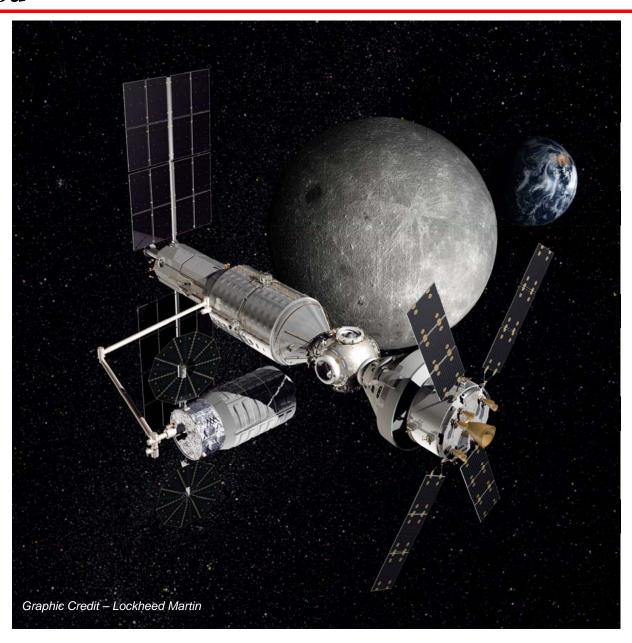
- ➤ Medical/Life Sciences Accommodations
- ➤ Mission Operations/Robotic Operations
- ➤ Habitat Operations
- ➤ Food Storage
- ➤ Hygiene Provisions
- **≻** Toilet

External Capabilities

- ➤ Storage for Water
- ➤ Storage for O2 and N2
- ➤ Storage for liquid waste
- ➤ Propulsion/Station-keeping capabilities
- ➤ Potential to be target or chaser for rendezvous

Cygnus System Facilitates Exploration Goals

- <u>Affordability</u> Evolutionary approach with utilization of existing space qualified systems and cargo missions to ISS, provides lower cost under tightening budget constraints
- <u>Early Schedule</u> Utilization of existing capability provides opportunity for near-term mission support. Potential to "piggy-back" on currently planned CRS missions (8 missions through 2016)
- Maturity / Reliability Cygnus heritage and redundancy provides reliability
- <u>Technology Advancement</u> Cygnus utilization provides new technology risk reduction in flight environments
- <u>Flexibility</u> Cygnus system elements are adaptable to evolving mission needs, goals and requirements
- <u>Partnership</u> Involvement of Cygnus concepts in NASA Exploration assessments promotes commercial / NASA / international partnership



- Extends Human Presence Longer duration missions away from Earth
- <u>Develops Exploration Technologies and Capabilities</u> Crew support technologies, ECLSS, more efficient logistics
- **Perform Science** Human research beyond LEO, Lunar observation
- **Engage the Public** More ambitious mission, additional elements
- <u>Stimulate Economic Expansion</u> Inclusion of Affordable Additional elements
- <u>International Elements</u> Cygnus EAM represents a US/International industrial collaboration, contributing to a joint international activity

Orbital Innovation You Can Count On®

Thank You

