Nasa reveals bizarre 'hedgehog' robot that can jump, roll and fall around alien planets 

  • Shaped like a cube and can operate no matter which side it lands on
  • Craft moves by spinning and braking internal flywheels 

Hopping, tumbling and flipping over are not typical manoeuvres you'd expect from a spacecraft exploring other worlds.

However, Nasa has revealed a concept for a rover called the 'hedgehog' that can do just that.

The space agency says it could be ideal for exploring planets and asteroids, as its rugged design means it can fall and hop its way out of trouble without   

Scroll down for video 

The 'hedgehog' rover moves by jumping around, and can fall and roll on almost any terrain.

The 'hedgehog' rover moves by jumping around, and can fall and roll on almost any terrain.

HOW IT WORKS 

The basic concept is a cube with spikes that moves by spinning and braking internal flywheels. 

The spikes protect the robot's body from the terrain and act as feet while hopping and tumbling.

It is shaped like a cube and can operate no matter which side it lands on.

'Traditional Mars rovers, for example, roll around on wheels, and they can't operate upside-down,' Nasa said.

'But on a small body, such as an asteroid or a comet, the low-gravity conditions and rough surfaces make traditional driving all the more hazardous,' 

The project is being jointly developed by researchers at NASA's Jet Propulsion Laboratory in Pasadena, California; Stanford University in Stanford, California; and the Massachusetts Institute of Technology in Cambridge.

'Hedgehog is a different kind of robot that would hop and tumble on the surface instead of rolling on wheels. 

'It is shaped like a cube and can operate no matter which side it lands on,' said Issa Nesnas, leader of the JPL team.

The basic concept is a cube with spikes that moves by spinning and braking internal flywheels. 

The spikes protect the robot's body from the terrain and act as feet while hopping and tumbling.

'The spikes could also house instruments such as thermal probes to take the temperature of the surface as the robot tumbles,' Nesnas said.

During 180 parabolas, over the course of four flights, these robots demonstrated several types of maneuvers that would be useful for getting around on small bodies with reduced gravity.

After pointing itself in the right direction, Hedgehog can either hop long distances using one or two spikes or tumble short distances by rotating from one face to another.

After pointing itself in the right direction, Hedgehog can either hop long distances using one or two spikes or tumble short distances by rotating from one face to another.

Researchers tested these maneuvers on different materials that mimic a wide range of surfaces: sandy, rough and rocky, slippery and icy, and soft and crumbly.

'We demonstrated for the first time our Hedgehog prototypes performing controlled hopping and tumbling in comet-like environments,' said Robert Reid, lead engineer on the project at JPL.

Hedgehog's simplest manoeuvre is a 'yaw,' or a turn in place. 

After pointing itself in the right direction, Hedgehog can either hop long distances using one or two spikes or tumble short distances by rotating from one face to another. 

Hedgehog typically takes large hops toward a target of interest, followed by smaller tumbles as it gets closer.

Two Hedgehog prototypes -- one from Stanford and one from JPL -- were tested aboard NASA's C-9 aircraft for microgravity research in June 2015.  During one of the experiments on the parabolic flights, the researchers confirmed that Hedgehog can also perform a 'tornado' manoeuvre, in which the robot aggressively spins to launch itself from the surface.

During one of the experiments on the parabolic flights, the researchers confirmed that Hedgehog can also perform a 'tornado' manoeuvre, in which the robot aggressively spins to launch itself from the surface.

This manoeuvre could be used to escape from a sandy sinkhole or other situations in which the robot would otherwise be stuck.

The JPL Hedgehog prototype has eight spikes and three flywheels. 

It weighs about 11 pounds (5 kilograms) by itself, but the researchers envision that it could weigh more than 20 pounds (9 kilograms) with instruments such as cameras and spectrometers. 

The Stanford prototype is slightly smaller and lighter, and it has shorter spikes.

The basic concept is a cube with spikes that moves by spinning and braking internal flywheels.

The basic concept is a cube with spikes that moves by spinning and braking internal flywheels.

Both prototypes manoeuvre by spinning and stopping three internal flywheels using motors and brakes. 

The braking mechanisms differ between the two prototypes. JPL's version uses disc brakes, and Stanford's prototype uses friction belts to stop the flywheels abruptly.

'By controlling how you brake the flywheels, you can adjust Hedgehog's hopping angle. 

The idea was to test the two braking systems and understand their advantages and disadvantages,' said Marco Pavone, leader of the Stanford team, who originally proposed Hedgehog with Nesnas in 2011.

It is shaped like a cube and can operate no matter which side it lands on.

It is shaped like a cube and can operate no matter which side it lands on.

'The geometry of the Hedgehog spikes has a great influence on its hopping trajectory. 

'We have experimented with several spike configurations and found that a cube shape provides the best hopping performance.'

The cube structure is also easier to manufacture and package within a spacecraft,' said Benjamin Hockman, lead engineer on the project at Stanford.

The researchers are currently working on Hedgehog's autonomy, trying to increase how much the robots can do by themselves without instructions from Earth. 

Their idea is that an orbiting mothership would relay signals to and from the robot, similar to how NASA's Mars rovers Curiosity and Opportunity communicate via satellites orbiting Mars. 

The mothership would also help the robots navigate and determine their positions.

The construction of a Hedgehog robot is relatively low-cost compared to a traditional rover, and several could be packaged together for flight, the researchers say. 

The mothership could release many robots at once or in stages, letting them spread out to make discoveries on a world never traversed before. 

 

No comments have so far been submitted. Why not be the first to send us your thoughts, or debate this issue live on our message boards.

By posting your comment you agree to our house rules.

Who is this week's top commenter? Find out now