THE GOHNA LANDSLIP AND FLOOD. Ir will be remembered that a mighty landslip occurred in the end of the year 1893 in one of the outliers of the Himalaya Mountains, on the north-west frontier of India. This,
by blocking up the Birahi Gunga, one of the tributaries of by river Ganges, led to the formation of a large lake whose waters threatened, as soon as they had accumulated whose waters threatened, as soon as they had accumulated
sufficiently to overtop the obstruction caused by the
landslip to landslip, to overwhelm the valley below. The story is now two years old, yet so slowly do the official mills
grind that up to the present-as we believe-no authorigrind that up to the present-as we believe-no authori-
tative report has been presented to the public of the occurrence, and the measures adopted to meet the catascome to us in a first complete account of the event has come to us in a paper read before the Imperial Institute
by the Secretary of the Indian Section, in the absence of by the Secretary of the Indian Section, in the absence of
its author, Mr. J. H. Glass, C.I.E., a chief engineer of the Bengal Public Works.
ment of our Indian Empire care with which the Government of our Indian Empire safeguards its subjects been
more clearly exemplified than in the case before us, when an enormous volume of water suddenly hurled itself wheng many places more than 100ft. above the level of ordinary many places more than 100ft. above the level of ordinary
flood, yet without causing, so far as is known, the loss of a single human life.
of 200 souls situated in latitude happened, is a small village and longitude 79 deg. 31 min. 60 sec. E. in Garhwal, in bank of the Birahi Ganga, a tributary of the Alaknanda river, which, after its junction with the Bhagirathi at Deopryag, sixty-two miles above Hardwar, is henceforth known as the Ganges.
At Hardwar, 150 miles below Gohna, the river passes
through the last gorge in the hills and debouches on the plains of Northern India. Between these two places its course lies in narrow ravines, and this part of the river famous as the resort of Hindoo pilgrims, is along its
margin studded with sacred stations and holy shrines, between which streams of devotees pass to and fro.
The valley in general is sparsely inhabited, Srinagar,
with a population of 2000 , being the largest town, and the cultivation scant; yet in case of an unexpected release of the accumulated waters, owing to the presence of the
pilgrims and the surrounding circumstances, the loss of life might have been immense, and the destruction o property would have been enormous if sufficient and Just precautionary measures had not been adopted. Just below Hardwar, at Maiapur, on the river, are
situated the headworks of the great Ganges Canal, and serious injury to this work would have caused enormous loss to the Government and the agricultural community, as well as doing incalculable damage to the country
below, over which so large an area of cultivation with its revenue is dependent on irrigation by the canal.
The problem, therefore, that the Government set
before itself in dealing with the catastrophe was to before itself in dealing with the catastrophe was to pre
vent, if possible, all loss of life among the pilgrims and villagers on the road leading to the shrines and in the valley, and to save from destruction, as much as could be
done, all public and private property within the probable range of the avalanche of waters that was expected to
In connection with the measures to be adopted, first and most important point to decide on was the period the lake would take to fill and overflow. In
the nature of the case the data on which to base calcula tions were most insufficient ; yet it speaks well for the care and judgment of the engineers that, when the surveys and contours of the basin were effected, and the rainfal and snowfall during the year on the catchment duly would be overtopped was only ten days earlier than the date-the 25 th of August-on which the event acually cot by which all prations for the overflow should be complete.
The first and chief precautionary measure was the Hardwar, following the river line between Gohna and at all important points along the line. It was decided that there should be in all ten telegraph signalling stations, se lected with regard to their importance as camps or halting places for the pilgrims on their journey along the river he public and officials at the most critical periods, and facilitating operations generally, avoided the necessit that would have otherwise existed of closing the road along the valley used by the pilgrims ; to have stopped al and been an extremely unpopular measure. This road admits only of foot trattic, but the Government has spent considerable sums of money on its improvement. Suspension bridges have been built, precipitous paths eased provide the pilgrims with supplies. It was decided to dismantle the permanent suspension bridges along the road, and replace them by temporary rope structures, and his was done except in two cases, where at the special request of the local authorities, two briages were left likely to occur. As a result, these bridges were com pletely wrecked
Further, it was arranged to erect masonry signal pillars in the valley at a level of 200 ft . above ordinary flood from
Gohna to Srinagar, and at 100 ft . above the same datum Gohna to Srinagar, and at 100 ft . above the same datum
in the valley below Srinagar. These pillars were 4 ft . square and 6 ft . high, and were erected at all villages and camping grounds; and elsewhere at intervals of half unsafe for people and their property to remain after warning of the approach of the tlood had been issued.
So much for the precautions above Hardwar ; below it
he safety of the headworks of the Ganges Canal demanded the safety of the headworks of the Ganges Canal demanded
earnest attention, as a heavy flood bursting into the canal
might not only carry the headworks away, but also seriously injure the great torrent works and falls as far as Roorkee. The following protection works were therefore carried out:-A massive crate dam filled with heavy boulders was constructed between the river weir and the
canal head, with embankments leading to the risin canal head, with embankments leading to the rising
ground to prevent the headworks from being outflanked by the flood. The canal head-gates were strengthened to make them better able to resist the exceptional head of make them better able to resist the exceptional head
water against them. Subsidiary boulder "bunds," water against them. Subsidiary boulder "bunds, or
banks, were erected to prevent outllanking, and other banks, were erected to prevent outfanking, and other
minor provisions adopted. In the low lands, in the ninth mile of the canal, and immediately above the embankmile of the canal, and immediately above the embank-
ment of siani Aqueduct in the sixtenth mile, the canal banks were lowered so as to provide temporary escapes, which would relieve the canal and thus possibly aid in saving the great masonry works on the canal lower down at Roorkee, in case of the flood bursting into it at the headworks.
According to native reports-for no European, scientific what happened visted the site till some time afterwardsn enormous mass of material from the mountain of Maithana, on the right bank of the Bhirai Gunga, slipped into the river; and again in October of the same year 11,000 ft, has another great fall. is 4000 ft . above the bed of the stream. The material consisting of earth and rock came down with a deafening noise, and the neighbourhood for miles around was enveloped in clouds of dust, which whitened ths ground and the branches of treeslike a fall of snow. The magnitude of the barrier formed across the stream by the landslip may be judged by the following rough measurements: The height was 900ft., the length measured across the gorge was 3000 ft along the top, and 600 ft . at the bottom; it the base, so that the side slopes must have been about ne in five.
It was calculated from the contoured map of the valley, prepared by Lieut. Crookshank, R.E., the ofticer in charge
f the operations, that the area of the lake which would be ormed, when the water was at the level of the top of the dam, would be thirty-seven millions of square feet, or say, 13 square miles and its contents roughly estimated
would be 16,650 millions of cubic feet. Its catchment was about ninety square miles, and was bounded on the north by a snow-clad ridge of the Himalayas rising to The of $21,200 \mathrm{ft}$. above the sea level.
The longitudinal bed fall of the Birahi Gunga is about 250 ft . per mile at Gohna, and its course bends nearly at
a right angle immediately below the site of the slip. It uns entirely through ravines with steep precipitous ides, grass covered at the base, and higher up clothed The phenomenon of thodendrons
The phenomenon of the landslip was adjudicated by an expert of the geological department to have been due alteration of the chemical condition of the substance of teration of the chemical condition of the substance
the strata, the solution of substance and reduction of he strata, the solution of substance and reduction of
riction among the beds by the action of water, all of which tended to prepare the mass for motion, while the which tended to prepare the mass for motion, whe of temperature seconded by hydrostatic pressure, may most probably have caused an impulse in the direction of east resistance, and thus produced the slip. An interesting report on the subech is published in the records o paper concludes with the following words:-"It may be of interest to remind the general reader of the fact that the folding of the Himalayan range having continued to imes geologically recent, if not still in action, there has nd relieving itself by earthquakes ; and of steep slopes with rushing torrents, frequently resulting in landslips. When subsequently the inequalities of level have been sufficiently reduced by denudation, the scenery tamer-a condition of affairs exemplified by the more geologically old-fashioned peninsular portion of hemical and physical action been the cause of the landlip at Gohna.?
The periodical rains commenced early in June, but The waters of July all arrangements were completed sising rapidly, owing to heavy rain and the melting o the snow on the mountains, and on the 9th there was a downpour on the dam itself. On the 10th of August the first symptoms of the approaching collapse developed themf the in the shape of a serious slip of the down stream face 0oft, high, leaving an almost perpendicular scarp or some stones at the top resting, so far as could be seen, on pulverised rock.
The first note of warning was in consequence of this slip cencerned Ped the 11th August down the river to all considerable stream, about 300 cubic feet per second, was o be seen running over the boulders of the former river t this time by the slip of the dam. The water level was estimated that in fifteen days the overflow would take place.
On the 22nd, Lieutenant Crookshank essayed to hasten events by making a small cut through the crest of the dam, and thus hoped to produce the overtlow early in the morning of the 24th, it being important that the flood should take nd diminished rainfall in the ing to increased percolation lowly than expected, and the first overflow did not take place till 6.35 o'clock on the morning of the 25th of ugust.
At first the destructive action of the water was slight, but before long the immensely increased percolation caused
a rapid cutting back of the dam, and at 2 p.m. a message was despatched down the line announcing that the flood
might be expected during the night. Unfortunately, at this time a thick mist had descended on the scene, and al the provisions for observing the subsidence of the water the dam, in the shape of masonry bench marks, were rendered nearly useless. These bench marks were placed on the top of the down stream face of the dam, at 50 ft . apart, and numbered consecutively in large figures so as to be plainly observable from the sides of the valley Their object was to allow of a reliable record being made of the way in which the water, when discharging itself cut away the material of the dam. The rate at which the water of the lake subsided was to have been recorded every hour by observations of other bench marks placed on the hill side, and as the valley had been carefully contoured at verticals of 1 ft., the outflow could have been easily calculated. In addition to the above arrangements a the lake, other bench marks were placed at observing stations down the river. By numbers on these the rise of the floods passing could be accurately observed by daylight, and at night lighted lanterns were placed on them wertical intervals of 10rt.; the lights, as hiowaters rose, estimated

At 11.30 p.m. a loud crash was heard, and in spite of the mist and rain, the air was filled with a fine dust which rose from the site, and so far as could be ascertained, the dam was completely breached, a fact at once telegraphed down the valley. The rush of water was was great, but owing to the atmospheric conditions morning although gauge the discharge. At five in the light very unsatisfactory, it became evident that a considerable fall had taken place in the level of the lake, and the authorities at Hardwar were warned to expect a great flood. It was calculated that 10,000 millions of cubic feet of water had been discharged in the space of $4 \frac{1}{2}$ hours, as the lake had fallen 390ft. At the gorge immediately below the dam, the flood rose to 260 ft . over its ordinary level. The valley was filled up with huge blocks; and the bed of the river was raised some 234 ft ., by a substantial weir with a long gentle slope stretching far down the valley. At thirteen miles down, the river bed reached a height of 160 ft . above its ordinary level.
All down the valley, for fifty odd miles, the flood rose from 113ft. to 140 ft. , causing serious damage. Even at which fin mum height of 42 ft . above ordinary flood level. Here the damage done was great. The entire town, with the Rajah's palace and the public buildings, were destroyed, and a thick layer of stones, sand and mud, deposited over he area. Several smail villages in the valley, which here opens out into a large amphitheatre of between three and four miles long and one mile wide, were com-
pletely swept away. The flood reached Hardwar, 150 miles from Gohna, at 8.45 a.m. on the 26 th August, and obtained a maximum height of 11 ft . above the ordinary flood level. Fortunately, the main river was low at the time--
lower, in fact, than at any time during the previous month. Had the extra Gohna flood arrived on top of one of the very heavy normal floods of the previous thirty days, the canal must have suffered grave disaster. As it was, canal must have suflered grave Thisaster. As damage was done. The revetment walls at considerable damage was done. The revetment walls at
Hardwar and the marginal "band " or dam were topped, and the diversion channel breached. Four out of seven of the sluices in the Maiapur dam were put out of action by the débris brought down, and though the crate dam was not topped, yet some water broke into the canal was not topped, yet some water broke into the canal
through the head. In the town itself the flood is reported to have stood 6 ft . deep in the main streets. The velocity of the torrent was gauged by observing the time that blocks of wood or other floating bodies took to pass between fixed points of known distances apart. By this method it was estimated that the average velocity of the food in the upper seventy miles of its miles it is considered that a maximum of at least 40 ft . per second must have been attained.
At Srinagar a curious phenomenon occurred. Below Jakhni Ge open valley contracts suddenly, at the cipitous. The effect of this conformation was that the flood water after spreading out at Srinagar was abruptly contracted at the gorge and a strong swirling backwater current was set up. The furious rush of this eddying water was terrifying in the darkness of night close below the observers, and many who had been securely placed in temporary shelter huts fled in terror still higher up the mountain side.
Although the greatest care was taken to keep down the expenditure, and every proposal was submitted to the strictest scrutiny, yet the total of the loss to Government and the outlay in measures for the protection of the life property of the people, the former of which formed a first che as far as Hard or briages and buildings down the valley of the telegrapar may be takenasing of the staff engaged in the operations amounted to about Rs. 90,000 , and the protection work, added to the repairs of the damage done by the flood to the Ganges Canal, is estimated at
Rs. 50,000 . The loss caused to private individuals has not been estimated.
The loss of life has been nil, if we except the case of the Gohma fakir and family; these perished in the slip of the dam tina on August 11th, a result due to their own fatuous ob lakacy, and not necessarily a consequence of the flood. The ion had persisted in remaining in a very dangerous posi orders to the dam, though he had repeatedy receive forcibly removed; but each time they had returned, and were eventually overwhelmed in the slip, which we have described as taking place in its rear slope previous to the
One of the results of the landslip from the mountain
is that a lake of considerable size has been established at Gohna. Its dimensions are about two miles long by a large rocks and residual débris have been so consolidated and packed by the flood, that they now form a massive and solid dam or weir which is not likely to be
disturbed, so that the lake is probably a permanent one nd Gohna may one day prove a pleasant resort from the plains below.
Naturally, while the preparations to meet the flood o
 operations in the public papers, and much advice was
offered to the Government, both publicly and privately.
The chief question taken up by the influential section. the public was the advisability of cutting a channe before it reached the full height of the obstruction. This proposal was set aside for the reason that the mass o
water which would in any case be headed up, and mus eventually cut through the upper layers of the dam would cause a serious flood of practically the same in tensity as if the dam were untouched, and because of the great expense, if not the impossibility, of making a suffisay, 50 ft . deep would have still left over 700 ft . of water in the lake, and have had no appreciable effect in lessening work would have had to be imported, housed, and fed in an almost inaccessible country during a season of heavy rainfall, at an estimated cost of three lakhs of rupees or more. Considerations, too, in connection with the dange
at the temporary headworks, which are put up yearly a Hardwar for the purpose of supplying the Ganges Canal with water in the dry season, led Government to reject the propos
advantage.

Various other suggestions were rejected for differen reasons, and some persons even urged that there would be no cutting back and no flood, but that the water
would quietly pass over the crest of the dam and down would quietly pass over the crest of the dam and down
the face of the talus, and so into the regular river chan ael, producing no more damage than an ordinary flood. Other objectors urged that the velocity of twenty miles an
hour, at which rate the flood was calculated to escape down the river, was exaggerated and impossible. Some ridiculed the provision of the safety pillars as an arbitrary
and absurd arrangement. And the construction of the and absurd arrangement. And the construction of the the dismantling of the bridges was held to be quite unnecessary. However, the success which attended the could have been anticipated, and no higher testimony is possible to the efficiency of the protective measures, and the people themselves recognise and are grateful for the were taken for their safety. We have no doubt that the recollection of the beneficent care shown by Government for the preservation of their lives and the protection memories. It speaks well for the administration of Si memories. Crosthwaite, K.C.S.I., that the situation was so promptly and firmly grasped, and to prove that such has
been the case, and to judge of what might have happened otherwise, we have only to compare the record of this flood
with that of 1868 . The latter flood was due to a similar cause, viz., the bursting of a lake, probably also formed by a landslip, at no great distance from Gohna, and
it does not appear that any precautions, such as in the present instance, were taken to meet it. At that
time Sir Henry Ramsay was Commissioner at Kumaaon, and in reporting the occurrence of the flood to Govern ment, he stated that several bridges along the valley had time by pilgrims on their way, were submerged. The accumulated waters, he adds, came down so suddenly at -most likely awakened by the noise of the rushing waters-were able to run up the hill and escape; all the
others with the houses were swept away. Much animal others with the houses were swept away. Much animal
life was lost and a considerable amount of property destroyed.

THE ENLARGEMENT OF LIVERPOOL-STREET STATION, GREAT EASTERN RAILWAY.

bRIDGE AT $\overline{\text { WORSHIP-STREET. }}$

Iv carrying out the extensive works in connection with the
widening of its metropolitan terminus, the Great Eastern Railway Company found it necessary to bridge over, stop up, divert, and otherwise unavoidably to interfere with several takings, three large over bridges were required to be built to carry Worship-street, Primrose-street, and Skinner-street, and having for their common focus, Liverpool-street Station All these three structures are on the skew, that at Worship-
street, which we now intend describing and illustrating, street, which we now intend describing and illustrating,
forming an angle of 60 deg. with the line of roadway overhead A general elevation of the bridge is shown in Fig. 1, and a
plan in Fig. 2. From the former figure it will be seen that plan in Fig. 2. From the former figure it will be seen that that is, a form which is a cross between the horizontal lattice While, therefore, embodying in its design and construction the and web bracing are concerned, it trenches upon the bowstring
type by the curvature of the upper boom. The vertical members shown in Fig. 1 are necessitated by practical require-
ments connected with the peculiar double section of the booms, which will be apparent when we proceed to treat o the details of their construction. Besides, vertical members are common to both types. Theoretically, the result of
curving the upper boom of an open web girder is to increase
the stresses towards the ends of both booms, while at the the stresses towards the ends of both booms, while at the same time relieving the diagonal struts and ties in the web
generally of a portion of the shearing stress. Practically, the generally of a portion of the shearing stress. Practically, the
effect is to impart a more graceful appearance to the contours
of the structure, as in the example before us. Besides, the amount of curvature is small, and not sufficiently great
The span of Worship-street bridge is 73 ft . on the square and $85 \mathrm{ft} .7 \frac{1}{2} \mathrm{in}$. on the skew. The height from rail level to the lowest point of the lower boom of the main girder is 14 ft ., and the distance from the same datum to the
level of the roadway 20 ft . 3 in . At the centre, including level of the roadway 20 ft . 3in. At the centre, including
cover plates, the depth from out to out is 10 ft . 2in., diminishcover plates, the dit the ends over the bearings. From centre to centre the main girders are 43 ft . 2 in . apart, which dimenion allows for a roadway 24 ft ., and two footpaths, each 8 ft . wide respectively. The vertical members or diaphragms, which connect the two separate sections of the upper and lower booms, divide the span of the main girders into eleven ays, consisting of a pair of diagonal struts and ties riveted
gether at their central intersection. All the bays, except he two short ones forming the ends of the girders, are 8 ft . n width, and, where the dividing diaphragms are riveted to thirteen of these altogether, of which nine in the general plan, Fig. 2, run from one main girder to the other, and the remaining four rest partly upon girders and partly upon the abutments. A general cross section on the square, in Fig. 3, shows the double section of the upper and lower booms of the main girders, the cross girders, which are of the solid
web or plate description, and a section of the side screens nd supports. Over the bearings at the abutments the manner in which the bed plates and ends of both main and cross girders are arranged is indicated in Figs. 4 and 5, while
Fig. 6 is a section through the line A A in Fig. 5, and shows ig. 6 is a section through the line A A in Fig. . , and shows foundation of concrete, 2 ft . 3 in . in thickness.
A half elevation of one of the principal girders, $97 \mathrm{ft} .7 \frac{1}{\mathrm{f}} \mathrm{in}$. in total length, is given in Fig. $3 a$, a half sectional and half plan, or an inside and outside plan of the booms, in Figs. 7 and of plates and angle irons composing the upper and lower booms in Fig. 4. There are in each boom, not including the long extra plate doing duty as a cover plate or wrapper over all,
seven horizontal flange plates, all 1 ft . 6 in . in width by $\frac{1}{2} \mathrm{in}$. 10ft. 10in., riveted to the angle irons of the flanges by rivets in. in diameter, with a pitch of 4 in . from centres. The flange angle irons, which are four in number, two
eparate section of the booms, are 4 in . by 4 in . by $\frac{1}{2} \mathrm{in}$.
In Fig. 3a, the diagonal struts are lettered S and the sloping fies T, and they both vary in dimensions, and consequently in sectional area, according to their position in the girder.
For instance, the ties increase from 7 in . by gin. at or near the centre of the main girders to 1 ft . 3in. by $1 \frac{1 \mathrm{gin}}{} \mathrm{in}$. at the ends.
It will be observed that in the central bay, counting the whole number as thirteen, which includes the semi or incom plete bay over the east abutment, both the diagonal bars are ties, and each 7 in . wide by gin. thick, thus giving a gross secties in the end bays. In girders of the description under
notice in which the dead load, that is the insistent, weight f the principal girders, and in fact of the whole superstructure f the principal girders, and in fact of the whole superstructure
together, may be regarded as uniformly distributed, and also when it bears a fairly high ratio to the rolling or live load, he stresses on the central diagonals of the web are comparauniformly distributed dead or static load, there is theo-
retically no stress on the diagonals under notice, but it is a retically no stress on the diagonals under notice, but it is as
well even in an instance of this description not to adhere too losely to the abstract dictates of theory. As a case in point, and energetic in matters pertaining to the designing and construction of girders, had some lattice girders built for carrywere absolutely left out. They were passed, it is true, after some difficulty, by the superintending engineer, but it was
tipulated that for the sake of appearance, wooden bars were to be inserted, painted and fashioned so as closely to resemble heir iron neighbours.
Apologising for our brief digression, we now return to the main girders of the bridge at Worship-street, and for further
details refer our readers to Figs. 5 - 11 . It will be seen from them that each main girder consists essentially of a pair of space equal to lin., and as the boom of each girder is 1 ft . 6 in . broad, the distance between their centres is 1 ft .7 in ., and the total width from out to out 3 ft . 1 in . If, therefore, the girder tinuous over their whole available width, a plate 3 ft . in
breadth would have been required. Unfortunately, the time by which the bridge had to be constructed did not permit of that the engineer manner described. In addition, therefore, to the plates and angle irons already specified, we have to add two vertical the bearings, a uniform depth of ft., but vary in thickness from gin. at the centre to $1 \frac{1}{3} \mathrm{in}$. in thickness at the ends of the girders, corresponding with respect to these dimensions with to which they are riveted by strong gusset pieces. Over the
bearings these vertical plates have their depth increased to 1 ft .6 in . The form and size of these latter vary with the towards the ends of the girders from $\frac{1}{2} \mathrm{in}$. to $\frac{5}{8} \mathrm{in}$. The ties twelve in number, all pass outside the struts, and it will be ties nor the struts extend down the sides of the vertical plates or between the angle irons of the flanges, but terminate flush, or nearly flush, with the free or uncovered edges of the vertica In both the upper and lower booms to the angle irons of the flanges, as shown by the letters Din Figs. 5 and 3a, which re pross elevation in the plane of a transverse section of the main girder. The diaphragms which bridge over-that separate parallel girders constituting the single main girderare built of eight angle irons, each 3 in . by 3 in . by 1 lin ., two plates 1 ft . $\frac{\mathrm{i}}{2} \mathrm{in}$. by $\frac{\mathrm{in}}{} \mathrm{in}$. riveted in between them, and covered described, by a cover plate on each side of the joint, 8 in . broad by $\frac{1}{2}$ in. in thickness. In order to make the diaphragms
extend the whole distance between the angle irons of the flanges, the angle irons of the diaphragms are cranked so a In Figs. 8 and 9 are plates of the flanges.
In Figs. 8 and 9 are given an elevation and section of the all similarly built up, although varying in girders, which are all similarly built up, although varying in length and othe
dimensions. The section of struts 1 and 2 is made up of a
pair of outside or flange plates 1 ft . by $1 \frac{1}{\mathrm{in}}$., two tee irons
6 in . by 4 in . by g .in., cross braced in elevation by three tee irons 4 in . by 2 in . by 3 in ., or four diagonal flat bars 3 in . wide by in. thick. These dimensions for the bracing are constant for all the struts, but in strut 3 the thickness of the outside plates is reduced to $l i n$. , and that of the longitudinal tee irons
to $\frac{1}{2} \mathrm{in}$. In strut 4 the corresponding scantlings are, outside plates 10 in . by 1 in ., and tee irons 6 in . by 3 in . by $\frac{1 \mathrm{in} \text {., }}{\text { which }}$ which in struts 5 and 6 are reduced to 7 in . by lin. by $\frac{3 i n}{4}$.
respectively, and 6 in . by 3 in . by gin. in both instances. The tee irons of all the struts are bent to allow the plates to pass Figs. 6 and 7 -having a length of 5 ft . 6 in ., a breadth of
4 ft . 9 in ., and a thickness 4 ft . 9 in ., and a thickness of 4 in ., are bolted to the abutments
meter, a girders. Temporary brackets, B in Figs, $3 a$ of the main riveted to the ends of the main girders for the purpose of the bridge in position, but were subsequently removed when on the square of the general disposition of the cross girders and the roadway and footpaths of the bridge. The cross girders, seen partly in elevation in Fig. 10, and partly in cross section in Fig. 12, are of the plate type, 40 ft . lin. in span, flange plates 1 ft . 6 in . by $\frac{1}{2}$ in., angle irons $3 \frac{1}{2} \mathrm{in}$. by $3 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2}$ in., and a web plate sin. thick at the centre, increasing
towards the ends of the girders to lowards the ends of the girders to $\frac{1}{2} \mathrm{in}$. At intervals of every both sides, consisting of plates 1 ft . in breadth by 6 in . by 3 in . by ${ }_{3} \mathrm{in}$. The spaces of 4 ft . between the vertical stiffening plates and tee-irons decrease towards the ends of the girder to 3 ft .8 in ., 2 ft .8 in ., and 1 ft .4 in . In all plate becomes of chief importance, and the necessity for vertical stiffeners the most urgent.
Considering the roadway for the moment as distinct from the footpaths, upon the cross girders are placed, every 4 ft .
apart, rolled steel joists 8 in. deep by 5 in. wide over apart, rolled steel joists 8 in. deep by 5 in . wide over
each flange, and where their joints occur they are plates 8 in . by 6 in . by sin.-Fig. 12. Over the rolled stee plates 8 in. by 6 in . by gin.-Fig. 12 . Over ine rolled stee wrought iron buckled plates 4 ft . by 4 ft . and ${ }^{3} \mathrm{in}$. thick,
and with a rise or camber at the centre of $2 \frac{1}{2} \mathrm{in}$.-Fig. 13 Transversely the rolled steel joists are connected together by tee-iron bearers 5 in . by 3 in . by sin., shown by the letter T
in Figs. 13 and 14 , to which the other fillets of the
buckled plates are riveted. A substratum of concete laid by wooden sets-Figs. 10-completes the formation of the roadway, and the same figure shows the construction of the footpaths, which is as follows:-A strong rolled
steel joist 12 in . deep by 5 in . in width, is carried by steel joist 12 in . deep by 5 in . in width, is carried by a
wrought iron bracket or knee piece riveted to the stiffenin tee-iron of the cross girder. To the upper flange of this jois are riveted the adjacent fllets of the two buckled plates sup porting the materials of the footpaths, which consist of dry Figs. 3, 10, and 15, the side screens are shown, which, while Fig. 15 is an elevation of one bay of the parapet or screen on the inside forming the upper edge of the parapet; and Fig. 17 is a panels in Fig. 15.
Although all the work in connection with the enlargement any rate, so far as bridgeavy and onerous character, yet a street may be considered to have carried off the palm. In Fig. 1, is shown in dotted lines the original contours of the
old bridge of two skew arches turned in brick, which previously spanned the tracks, with clear openings of 27 ft . each on the square. Between parapets the width of the old
bridge was 40 ft ., but if the depth of the warehouses on either side be added cn, the total width amounted to 70 ft . As it of new tracks fantailing into the enlarged terminus under the narrow area afforded by the two old skew arches, it was determined to demolish the structure altogether, including the central pier, which was of dimensions sufficient to permanent way. The demolition or removal once accomplished, the restoration of the thoroughfare upon wrought iron girders spanning the entire width of line at this point
would have, under ordinary circumstances, been unattended ith any engineering difficulty especially worth recording. ork it embraced necessitated the execution of it without in any way interfering with the ordinary traffic of the railway oow, and in a great measure with that above. To carry on the erection of the new bridge in a single span, when about
eight hundred trains every twenty-four hours had to be lowed an uninterrupted passage during the operation, was the feat to be accon.
For the information respecting this stage of the work Horseley Company, Limited, of Tipton, Staffordshire, and Victoria-street, Westminster, who were the contractors for the construction and erection of all the ironwork, not only for the present bridge, but also for the adjacent similar struc ures at Primrose and Skimner streets. In commencing the rst demolished, and a temporary bridge of timber was built to carry the water and gas mains which supplied the districts
on the north-east side of the extension with those requisites demanded by modern civilisation. In addition to serving the purpose described, the temporary structure acted as a bridg letely re-opened for traffic; for it was never entirely closed during the whole of the work, except for a very brief interval of time, which will be subsequently alluded to. It should be ion, thed here, before proceeding further with our descrip were concerned, and took an active part in the execu-
tion of the works in connection with the removal and Ee-erection of Worship-street bridge. They were the Great Eastern Railway, the Horseley Company, and the con-
tractors for the earthwork, brickwork, and foundations, Messrs. Mowlem and Co., who carried out, with the exception
of the ironwork, the building of the new parcels' office already described and illustrated in The Engineer Having cleared away the warehouses, the contractors

LIVERPOOL-STREET STATION, GREAT EASTERN RAILWAY-WORSHIP-STREET BRIDGE MR. WILSON, M. INST. C.E., ENGINEER
(For description see page 414)

the erection of the two main girders, of the largest of whieh we have given general and detail drawings in the
present article. While so doing, the roadway had to be present article. While so doing, the roadway had to be those acquainted with the locality, the necessity for regulations so stringent with respect to the non-interruption detour, with ary road trafnc, is not quite apparent. A smail cause but a verry insignificant small sacrifice of time, would arterial routes, althoughi, it must be admitted, the vehicular traffic in and about Bishopsgate, Norton Folgate, and Shoreditch is of both a frequent and heavy description. No sooner had the main girders been built in situ, than it became necessary to cut away the arches and all the brickwork underneath. This duty devolved upon the railway
company and the resident engineer, Mr. Sherlock, and the company and the resident engineer, Mr. Sherlock, and the
district engineer, Mr. Wilmer, under the engineer-in-chief, district engineer, Mr. Wilmer, under the en
Mr. Wilson, who had the charge of the work
In order to protect the incoming and outgoing trains from the fall of the old materials, which were now nothing more than so much useless and half baiks of timber of a handy length, and scantlings and timber lagging, were pressed into the service, and a strong and substantial soreen shield or platform was speedily interposed between the demolition above and the steam locomotion beneath. The steel wedge, the hammer and the pick were now brought into requisition, the side portions of the arches cut away, and the new main girders lowered down
upon their bedstones. Under the powers of its Act of Parupon their bedstones. Under the powers of its Act of Par-
liament the company were able to stop the entire traffic of liament the company were able to stop the entire traffic of
the roadway for a period not exceeding 168 hours. This brief interval was thus allotted among the different parties engaged in the work:-Messrs. Mowlem and Co., to remove the Great Eastern Railwa, and cart away brickwork of the arches and remove the shield, 96 hours; the Horseley Company, to fix all the cross girders and platform, 48 hours; total, 168 hours.
A few words must be said
which the cross mirders were gespecting the manner in wain girders were fixed in position, place. When the main girders were fixed in position, a rough sort of a running along the upper booms at a slow pace. A special goods train hauled the cross girders, weighing some
five tons each, underneath the new bridge, and from the tracks they were lifted bodily by the gantry to their permanent position on the main girders, to which they were ultimately
riveted in the manner already described. In addition to the riveted in the manner already described. In addition to the ironwork required for the three new bridges over the terminal John Mowlem and Co. used a large quantity in carrying out their contract with the Great Eastern Company for to Globe-road, and from Bethnal Green to Hackney Downs.

Royal Meteorological Society.-The monthly meeting of this Society, was held on Wednesday evening, the 15 th inst., at the Institution of Civil Engineers, Westminster ; Mr. E. Mawby,
president, in the chair. Mr. W. Elis, F.R., read a paper on the Mrean Amount of Cloud on Each Day of the Year at the Royal Observatory, Greenwich, on the average of the Fifty Years, $1841-$
90, " in whioh he showed that a principal maximum occurs in winter and a principal minimum in autumn, with a secondary much less pronounced maximum in summer and a secondary
minimum in spring. There is, however, considerable irregularity in the succession of daily values, the differences between which on
consecutive days are, in numerous cases, relatively large. Cloudloss days are most numerous in spring and autumn, and least so in winter and summer ; days of little cloud are somewhat less whilst days of medium cloud are much more numerous in summer than in winter. Days of much cloud are nearly equal in amount in all parts of the year, whilst overcast days aro much more numerous
and nearly equal in amount in the first and fourth quarters of the year, much less numerous in the second quarter, and again less numerous in the third quarter. Mr. E. D. Fridlander, B.Sc., gave an account of "Some Observations of the amount of Dust in the
Atmosphere, made at Various Places during a Voyage Round the World in 1894.-5." The experiments, which wero made with a form of Aitken s pocket dist counter, showed enst particles in a very short space of time. Not only did dust occur in the air of inhabited
countries, over the water surfaces immediately adjoining them, and up to an altitude of 6000ft. or 7000 ft . amongst the Alps, but it was
also found in the also o ound in the open ocean, and that so far away from any land
as to preclude the possibility oo artiticial pollution, and its exist.
ence ence has been directly demonstrated at a height of more than
13,000). Major H. E. Rawson, F.R. Met. Soce., gave an ". Analysis of the Greenwich Rainfall Records from 1879 .to 1890, with Special
13, Reforence to the Declination of the Sun and Moon,
Breminghas Assoclation of Mbchanical Enginerrs. -A
paper was read before this Association at its last meeting by the paper was read before this Association at its last meeting by the
first president of the society, Mr. Thomas Meacock, on $"$ The Application of Electrioity to Motive Power Purpuses." The author
treatod the subject under the following four divisions:--1) The applization of electricity to tramcar propulson ; ${ }^{(2)}$ to factory
drving ; (3) to domestic uses; (4) general application. Upon the
U topicor t tam caca propulision, theanthor defined the position of the three partiess interested in tramways, viz, the tramway companies, the cor-
porate Councils, and the public. The former having the paramount question of first cost or capital outlay to consider, turned to the overhead trolley electric system for the equipment or re-equip-
ment of their lines, as the only system at present available which ment be laid at comparatively moderate cost. The corporate
can
councile finding councils finding the electric conduit system too costly, finally
sanctioned the overhead trolley scheme. The public invariably petitioned against the overbead trolley scheme, but up to to te petioned ane has not been able to fond a substitute, first cost being
present time
the barrier to other systems for ordinary services. The author then described a system dovised by his own firm which removed the barrier of excessive first cost, gave no obstruction
above the street level, and was perfectly insulated. He trusted that shortly the scheme would be put to practical use.
Treating the question of factory-driving, the author whilst ndeating the question of that aptory-driction of an electric motor to each
nddivinal machine was the ideal system, still in practice he suggested a judicious grouping of the machines, with light line scheme as regards first cost, maintenance, and efficiency. After going somewhat fully into the question of electricity as a motive Yower, he described a regulating slipping device he had designed
for relieving the motor of all shocks from the machinery. Upon the third topic- the application of electricity to domestic purposes
-he naintained that the time had now arrived when the preat boon of electricity; now only available in towns, leading hotels, and public institutions, should be within reach, of residents in
suburban and rural districts. Mr. Meacock proposed a scheme of what he termed electrical colonisation, or grouping of, say, a dozen residences, having a common generating station, with
attendant, which would supply the electricity for the group of
residences,

EXPERIMENTS WITH ACCUMULATORS FOR Lighting railway carriages.
During the past year a series of exhaustive experiments was carried out by the officials of the Hungarian state Railway on the lighting of railway carriages by electricity, and several systems of accumulators were made the subject of examination.
The conditions operating when vehicles in motion are to be Illuminated differ appreciably from those obtaining in the weight of the accumulators is practically of little moment and the dimination of the tension of the current as the dis charge progresses can be easily compensated by the addition of reserve cells. This must, however, be avoided in railway work, as entailing too great a degree of complexity in the apparatus and inconvenience in application, and the following essentials, viz., lightness, regularity of current, and high capacity, are therefore insisted upon by the railway authorities.
Some makers endeavour to conform to the first-named condition by employing comparatively light plates containing very little metallic lead, but a great proportion of more
active "paste." To this category belong the Austria and Boese accumulators. On the other hand the Accumulator Manu facturing Company at the Hague adhere for railway work to a modification of their Tudor battery, wherein the plates have a very large surface, their capacity being increased by the superimposition of suitable "paste," with the object of reducing to a minimum the decrease of current while discharging. The importance of this latter condition is considerable, a diminution of 5 per cent. from the initial strength of the current being sufficient to lower the candle-power of the limit of practical efficiency.
These two competitive systems being at disposal, a comparascope of the experiments alluded to above, the batteries sub jected to the different practical tests and measurements being of the Tudor, Boese, Austria, and Bristol types.
After having been in constant use for a period of over six months the batteries were all discharged and recharged,
until gas was freely evolved. The discharging was the until gas was freely evolved. The discharging was then
proceeded with at the strength of current, and until the final
accumulators, at reductions of voltage amounting to 3,5 , and 7 per cent. respectively

Mean value of the foregoing measurements
At 3 per cont. At 5 per cent.
Atpere-hours. Ampere-hours. 7 per cent.
Ampere-hours.

The Tudor accumulator thus possesses an appreciably
igher absolute capacity than the Boese battery. The weights of the accumulators used were :-

Boese
Tudor

t 7 per con
Kilos
$\therefore 1+200$
1.208
1

Therefore within the permissible limit of reduction, viz 5 per cent., the Tudor accumulator is, notwithstanding its greater absolute weight, lighter in proportion to its effective capacity than the Boese battery, and it is only when the
reduction of voltage amounts to 7 per cent. that the relative weights coincide.

LAUNCH OF A TORPEDO GUN VESSEL FOR CHILI.
The Birkenhead Ironworks are at present very actively employed in the construction of war vessels of various types for our own naval service and
for several friendly Powers, for whose navies as well as our own the acquisition of fighting ship of the very highest speed is of paramount importance, as is evidenced by the fact that the great majority of vessels now building at those works are designed for a speed of
30 knots, while there is nothing at present on the
 stocks of a less speed than 21 knots. A fortnight ago Messrs. Laird floated out
of one of their building docks, H.M.S. Mars, o cated horse-power, which is cated horse-power, which is in the west float, receiving the remainder of her machinery.
Last week they launched orpedo Chilian Government, ver similar in design and dimensions to the AlmirCondell, built by the same firm for the Chil the sam ment in 1890 . The n $\in \mathbb{W}$
ension detailed in the subjoined tables, which, together with the curves, show the results obtained.

The accumulators were then fully charged once more and finally discharged completely-see second table and curve. Second Discharge.

After proceeding with the discharge for thirty hours, a rest resumed until complete. Finally a cell was selected from each of the batteries that had been in use for six months, and was taken to pieces to allow its eternal condition to be
examined. The Tudor and Boese alone passed this tes atisfactorily.
The tables below show the actual capacity-as obtained rom the analysis of the curves-of the Tudor and Boese
Q. Klose, " Zeitschrift
Voreines,
xlvii. No .
vessel was named the Almirante Simpson, and was christened by Madame Goni, wife of Captain Luis A. Commissioe inilan Her length over all is 240 ft , with beam of 27 ft . 6 in ., and a depth of 16 ft ., and she measure 858 tons, o.m. She is, of course, constructed of steel. She has a forecastle and a half poop which provide good accom the height of forecastle deck connecting with the poop and to this level the casings of hatch ways and engine-room skylight are carried, the openings on main deck level being water-tight The hull is sub-divided into numerous water-tight compart ments by transverse bulkheads, and longitudinal bulkheads divide the two sets of engines, and extend along the outer sides of the machinery spaces, so that great power of flotation is insured in case of injury. The side and deck plating abreast the machinery spaces are of increased thickness to this object, and of large capacity. The armament, of the torpedo tubes, two $4 \cdot 7$ in. guns, four 3 pounder quick fring guns, and two machine guns and mining plant. The machinery will consist of two sets of Messrs. Laird's high speed triple-expansion engines, developing about 5000 indicated horse-power collectively, driving twin screws, and designed to give the vessel a speed of 21 knots. The boiler are four in number, of the Normand tubulous type, with a working pressure of 200 lb . per square inch. Range of acticn at 10 or 11 knots speed, about 4000 knots.
Among those present were Admiral Uribe, chief of the Chilian Naval Commission; Sir E. J. Reed, K.C.B., consulting Commission : Captain Romulo Medina, C . Mian Naval inspecting engineer; Mr. Bernal, engineer; Mr. C. B. Liverpool ; Mr. Moller, Chilian Consul, Manchester, and Mrs. Moller; Mr. Meyer, German Vice-consul; Mons. Sève, Belgian Consul-General, \&c.

Trade and Business Announcement.-The Harrison Engine Company, Limited, has taken over the business of the Harrison W. White managing director-for many years with Messrs. Hulse and Co., Manchester
*First pattern. + Second pattern

COMPOUND EXPRESS ENGINE, GREAT SOUTHERN AND WESTERN RAILWAY. Abour five years ago the Great Southern and Western Railway Company converted one of its standard goods plan. stroke was substituted for the two 18 in . cylinders. The compound cylinders were adapted to the existing standard crank centres, and with the $5 \mathrm{ft}$. . 3in. gauge, this left space
for the low-pressure valve to be placed between the cylinders,
starts without any trouble, but for starting on an incline, or for starts without any liv with a heavy train, the arrangement fo working simple is of great advantage, and enables the engine to exert as much power as a simple engine with two 18 in . cylinders and the same steam pressure. The arrangemen is also exceedingly handy for shunting ; there is no steam locked up in the receiver, and the engine does not, in steam shed phraseology, " beat two or three times after steam is shut off."
The working of the change valve is entirely in the hands of the driver. Mr. Ivatt does not believe in the theory that
ordinary gas and acetylene in France, where the Jatter is now being produced upon something like a commercial scale, it may be said that the price of coal gas per carcel hour is one centime, while acetylene gas costs 3.2 centimes, but a acetylene is so much more powerful, the two gases work out in practice to about the same figure. While admitting these enormous advantages, the question was raised in the early stages of development whether acetylene was shown, poisonous than ordinary gas, but exp 40 per cent. in the mosphere before it can be dangerous, and its presence can

COMPOUND EXPRESS ENGINE, GREAT SOUTHERN AND WESTERN RAILWAY, IRELAND
in which position it is driven direct, the high-pressure valve is placed on the top of its cylinder and is driven with a rocking shaft. This arrangement enabled the standard motion to be retained, so that practically the engine could
be altered to simple again at any time by changing the be altered to simple again at any time by changing the
cylinders.
cylinders.
The pressure was purposely kept the same as in the
standard goods engines, viz., 150 lb ., in order to see whether
it is not advisable to give the driver the power of working simple if required. To argue that the driver of a compound engine so fitted is likely to work the engine simple any longer than is absolutely necessary, is about the same trusted to pull the driver of an ordinary engine cannot The engine has only been at work about eight months, con sequently no accurate information as to comparative con-
be distinguished long before it attains to this proportion. In burning it has no perceptible odour whatever.
Another advantage claimed for acetylene, so far as lighting is concerned, is that it gives off very little heat, and this naturally tells against its employment for the many domestic purposes to which ordinary gas is applied upon such a for the driving of motors, though it is believed that when

IVATT'S COMPOUND ENGINE CHANGE VALVE
the engine showed any economy due to the compounding alone. The result has been that the engine, which has now been at work for five years, shows a saving in coal consumed of about 10 per cent. as compared with other engines doing the same work. The cost for repairs, and lubrication, \&c., has not been greater than in the case of ompany's standard goods type.
Mr. Ivatt considered the results obtained with the goodsongine after an extended trial, sufficiently encouraging to construction of a compound express engine, of which we give on page 424 an elevation, and in a future impression we shall publish sectional drawings.
The chief dimensions are as follows:-Cylinders 18 in . and 26 in . by 24 in . stroke. Wheels, $6 \mathrm{ft} .7 \frac{1}{2} \mathrm{in}$., four coupled. Heating surface : fire-box, 112 square feet; tubes, 824 square feet; total, 936 square feet; grate area, 183 square feet steam pressure, 150 lb . Weight of engine in working order 40 tons, distributed as follows : on bogie, 15 tons; driving, 13 tons; trailing, 12 tons. These weights are light compared designed for running on a 74 lb . rail. The engine is built under the Worsdell, von Borries and Lapage's patents, with an arrangement of change valve designed by Mr. Ivatt This valve, of which we give a section, allows the engine to be worked "simple" or "compound" at will. It is actuated by a small lever and rod from the foot-plate, which, by suitable valves admits steam to a cylinder on the spindle of the change valve, and so moves it to either position, the movement being controlled by a dashpot. When in the "simple" position the valve opens a communication from side of the high-pressure cylinder; at the same time it closes the communication from the high-pressure exhaust to the low-pressure steam chest, and opens a connection for live steam from the steam pipe to the low-pressure steam chest. This supply of live steam is wiredrawn so as not to exceed about 75 lb . pressure on the low-pressure side, and the lowpressure cylinder and steam chest are, as usual, provided with relief valves, set to blow at 75 lb . in case the pressure should exceed that amount.
In ordinary working the engine is always run compound, and
sumption of coal, \&c., is yet available. She is doing the same work as other express engines with similar boiler and pressame size of wheel.

COMMERCIAL VALUE OF ACETYLENE

The first practical demonstration, says a French correspondent, of the illuminating qualities of acetylene gas produced meeting of the of calcium carbide with water was made at th was then generally admitted that the new gas was destined to revolutionise the existing systems of lighting, but few people could have anticipated that it would have made

so much progress as a commercial product in the short tim that has elapsed since then. The experiments carried out a the meeting were necessarily imperfect, and the amount of before the gas could be used for lighting purposes This been done simply by the employment of a special burner in which the orifice is smaller than in the ordinary gas burner This economy is indeed one of the features of acetylene, for with one kilo. of calcium carbide and 500 grammes of water the amount of gas produced is 300 litres, and this, it is stated, will provide a light equal to fifteen ordinary gas jets for six hours, while, if a smaller burner is used, the duration is, of course, much greater. To give a comparison between the cost of
acetylene comes to be generally adopted it will be used for cooking, heating, and power purposes simply by consuming the new gas in larger quantities than ordinary gas to give the same caloric result. But, for the moment, the only scope that is opened to acetylene is for lighting. The chances of explosion are held to be not greater than with ordinary gas, and it may even be deemed safer on account of the fact that it is produced upon a much smaller scale. This facility of my the aid of small appliances the gas may be produced in any household, and may be manufactured as required on steamboats and trains. A great many such appliances have already been constructed, in which the chief objects aimed at are that they should occupy very little space, that they may be placed in the care of any servant or labourer without fear of accident, and that they should be very cheap. Untillately the appliances, such as those manufactured by MM. Escher Wyss and Co., of Zurich, have run into very high figures, but now acetylene producers, claimed to be of equal quality, are sold for ket, having a capaty of 1 kilo f , providing a light equal to ten ordinary burners for six hours is priced at £6. These appliances are now being supplied by a company which has just been formed in Paris under the title of Le Gaz Acétylene.
The company is placing on the market an apparatus known as an "At Home," and composed of a gas-holder and one or two producers, according to whether the supply is to be continuous or not. The producer contains a closed cylinder, into which an iron wire receptacle holding the calcium carbide is introduced. The two parts of the cylinder are brought together by catches which make it water-tight. The cylinder is then just covered with water which finds its way inside by means of a small pipe. The gas-holder is constructed upon when the bell rises the water cannot enter into the calcium carbide receptacle. Upon its descending, however calcium enters the producer in just the quantity necessary to water fill the gas-holder, and so on until the whole of the carbide is decomposed. When a constant supply is needed the installation comprises two producers, so that on one becoming exhausted the tap connecting it with the gasometer is closed
and the other producer is put into communication. The Company Le Gaz Acétylène possesses several other patents,
notably the Boesmann apparatus, and another. The forme will supply gas for from apparatus, and another. The former wil supply gas for from 200 to 1500 burners. A very simple
form of home acetylene gas make was recently illustrated in the Scientific American. The company has also been experi menting with liquid acetylene under pressure, varying from pressure it has not been thought advisable to use the liquid, the more so as the gis is produced ithe sparatus described under a pressure of not more than 20 centimetres of water Now that the necessary appliances for producing acetylene are on the market, or will be in a short time when Le Gaz Acétylène will be manufacturing ten producers a week, the
only difficulty lies in procuring sufficient quantities of pure only difficulty lies in procuring sufficient quantities of pure
calcium carbide. At present itsmanufacture is very restricted, calcium carbide. At present itsmanufacture is very restricted,
but a large number of works are in course of erection on the but a large number of works are in course of erection on the
Continent for producing carbide, and when in full operation the price of 70 centimes to 1 f . a kilo. that has to be paid for likely to take place for some while. It is yet still possible to procure large supplies at a lower price than that quoted, but a kilo. instad of 300 litror, prodacing only 150 litres of gas as to the large quantities capable of being produced in
America, but so far not a single kilo., it is said, has found its way to Europe. On this side, it would probably be extremely difticult for the moment to secure supplies of ten tons a day.
One of the problems which Le Gaz Acetylene has set itself to solve is the finding of a portable lamp, but there are a great have been constructed, but they are entirely impracticabs owing to their liability to explode. As to the future of acetylene, there can be little doubt but that in course of time it may be employed for lighting purposes upon a very conpetition with ordinary gas for town lighting com in Paristo coming
to the fact that not only is the latter more suitable for cooking and heating, but the monopoly of lighting is enjoyed take place until the monopoly expires, by which time the cessionsires may care it to may be so cheap that the new congas, the more so as no great change in the present system of piping is necessary. In laying down new installations for
acetylene smaller pipes need only be used, with a consequent ecouomy in cost, while the manufacturing plant is, of course,
infinitely more simple and less costly. The aim of Le Gaz Acétylene is, therefore, to supply the new gas in places where
there is no ordinary gas or electricity, and the directors think there is no ordinary gas or electricity, and the directors think
that it is especially adapted to luminous advertising, and to other purposes where the ordinary gas does not give a
sufficiently brilliant light. It is siguificant of the interest that is being taken in acetylene that though the company has only been recently formed it is yet receiving innumerable demands for information from all parts of the world, and,
according to our correspondent, there is a prospect of the new gas taking up a prominent position.

A PIECE-RATE SYSTEM.*

(Continued from page 392.)
(28) A still further improvement of this method was made by Mr. . A. Halsey, and described by him in a paper entitled,
society in 1890. Plan or Paying for Labour," Halseys plan presented to this
allows free scope for each society in 1891. Mr. Halseys plan allows free
man's personal ambition, which Mr. Townes does
(29) Messrs. Towne and Halsey's plans consist br ing the cost of each job as a starting.poins anta a certaint time; then, done in a shorter time and at a lower cost, the gain is divided among the workmen and the employer in a definito ratio,
workmen receiving, say, one-half, and the employer one-half. (30) Under this plan, if the employer lives up to his promise,
and the workman has confidence in his integrity, there is the proper basis for co-operation to secure sooner or later a large
inerease in the output of the estabishment. Yet there still remains the temptation for the workman to "soldier" or hold
back while on day-work, which is the most difficult thing to overcome. And in this, as well as in all the systems heretofore referred to, there is the common defect, that the starting point from which
the first rate is fixed is unequal and unjust. Some of the rates the first rate is fixed is unequal and unjust. Some of the rates
may have resulted from records obtained when a good man was therking cerformance of a medium man at one-third or one-quarter speed. rom this follows a great inequality and injustice in the reward
even of the same man when at work on different jobs. The result is far from a realisation of the ideal condition in which the same
return is uniformly received for a given expenditure of brains and energy. Other defects in the gain-sharing plan, and which are and irregular in its operation in reducing costs, being dependent upon the whims of the men working under it ; (b) that it fails to
especially attract first-class men and discourage inferior men (c) that it does not automatically ensur
the establishment per man and machine.
(31) Co-operation, or profit-sharing, has entered the mind of every student of the subject, as one of the possible and most
attractive solutions of the problem ; and there have been certain instances, both in England and France, of at least a partial success of co-operative experiments. So far as 1 know, however, these
trials have been made either in small towns, remote from the manufacturing centres, or in industries which in many respects are not subject to ordinary manufacturing conditions.
(32) Co-operative experiments have failed, and, I think, are generally destined to fail, for several reasons ; the first and most
important of which is, that no formo of co-operation has yet been
devised in which each individual is allowed fre sonal ambition. This always has been and will remer for his perpowerful incentive to exertion than a desire for the gemeral wellare. The few misplaced drones, who do the loafing and share equally
in the profits with the rest, under co-operation are sure to drag in the profits with the rest, under co-o.
the better men down towards their level.
lies in the recond and almost equally strong reason for failure I don't say all men - cannot look forward to a proftit which is six months or a year away. The nice time which they are sure to
have to-day, if they take things easily, proves more attractive than hard work, with a possible reward to be shared with others six months later.
are the equitable division of the profits, and the fact that while workmen are always ready to share the profits, they are neither able nor willing to share the losses. Further than this, in many
cases it is neither right nor just that they should share either in cases it is neither right nor just that they should share either in
the profits or the losses, since these may be due in great part to

they do not contribute.

the interests of the men and their employers, under all of the $\xrightarrow{+ \text { Presented at the Detroit meeting of the American Society of Mecha. }}$
systems of piece-work in common use ; and when we remember
the apparently irreconcilable conflict implied in the fundamenta and perfectly ligitimate aims of the two-namely, on the part of the men: The universal desire to receive the largest possible rayes for
their time; and on the part of the employers : The desirie to recein the largest possible return for the rages paid; what wonder that can be devised which shall enable the two to co-operate without antagonism, and to their mutual benefit
(36) Yet it is the
(36) Yet it is the opinion of the writer that even if a system has not already been found which harmonises the interests of the
two, still the basis for harmonious co-operation two, still the basis for harmonious co-operation lies in the two
following facts :-First, that the workmen in can and will materially increase their present output per day, provided they are assured of a permainent and largut perturn for
their time than they have heretofore received; secondly, that the employers can well afford to pay higher wages per piece even permanently, providing each man and machine in the establish (37) The truth of the latter stater amount of work
recognised fact that, in most lines of manufacture, the indirect expenses equal or exceed the wages paid directly to the workmen, and that these expenses remain approximately constant, whether
the output of the establishment is great or small From this it the output of the establishment is great or small. From this it men when the output is proportionately increased ; the diminution in the indirect portion of the cost per piece being greater than
the increase in way the increase in wages. Many manufacturers, in considering the
cost of production, fail to realise the effect that the rolume of out. put has on the cosl. They lose sight of the fact that taxes, in surance, depreciation, rent, interest, salaries, office expenses
miscella power-which in the aggregate amount to as much as wages paid
to workmen-remain about the same whether the output of the establishment is great or small.
application of the two fundalve the piece-work problem by the us consider the obstacles in the path of harmonious co-operation, and soggest a method for their removal.
(39) The most format
the part of most formidable obstacle is the lack of knowledge on the part of both the men and the management-but chiefly the
latter-of the quickest time in which each piece of work can be
done the place.
(40) The
every factory of a proper rate-fixing department ; a departmen which shall have equal dignity and command equal respect with the engineering and managing departments, and which shall be
organised and conducted in
(41) The rate-fixing as at present conducted, even in our best managed establishments, is very similar to the mechanical engi-
neering of fifty or sixty years ago. Mechanical engineering time consisted in imitating machines which were in more or less successful use, or in guessing at the dimensions and strength of
the parts of a new machine ; and as the parts broke down out, in replacing them with stronger ones. Thus each new machine presencia problem almost independent of former designs, an experience and a series of break-downs. Modern engineering, how
over, has become a study, not of individual machines, rut of the resistance of materials, the fundamental principles of mechanics, and of the elements of design.
(42) On the other hand, the ordinary rate-fixing-even the best
 of the time in which a whole job was done as nearly like the
new one as can be found, and then guesses at the time required
oo do the new job. No attempt is made to analyse and time of the classes of work, or elements of which a job is composed although it is a far simpler task to resolve each job into its
elements, to make a careful study of the quickest time in which each of the elementary operations can be done, and then to
properly classify, tabulate, and index this information, and uso properly classify, tabulate, and index this information, and use
it when required for rate-fixing, than it is to fix rates with even
an approximation to justice, under the common system guessing. fact, it has never occurred to most superintendent.
(43) In In
hat the work of their establishments consists of various combi. that the work of their establishments consists of various combi
nations of elementary operations which can be timed in this way and a suggestion that this is a practical way of dealing with the
piece work problem usually meets with derision, or, at the best piece-wor problem usualy meets with derision, or, at the answer that "It might do for some simple business, bu
with my work is entirely too complicated.
(44) Yet this elementary sucesf Yet this elementary system of fixing rates has been in
sucessful operation for the past ten years, on work complicated in its nature, and covering almost as wide a range of variety as any
manufacturing that the writer knows of. In 1883 , while foremai of the machine shop of the Midvale Steel Company, of Philadel
phia, it occurred to the writer that it was simpler to time each o he elements of the various kinds of work done in the place, an summing up the total times of its component parts, than it was
earch through the resords of former jobs, and guess at the pro price. After practising this method of rate-fixing himself for
ibout a year, as well as sircumstances would permit, it became the rate-fixing department, which has given out piece-work price in the place ever since.
(45) This department far more than paid for itself from the very
tart: but it was several years before the full benefits of the systen start; ;ut it was several years before the full benefits of the system
were felt, owing to the fact that the best methods of making and recording time observations of work done by the men, as well as of etermining the maximum capacity of each of the machines in the
place, and of making working tables and time tables, were not at rst adopted.
(46) Before ork done by metal-cutting tools, such as lathes, planers, boring long and exponsive series of experiments was made, to the law governing the proper cutting, speed of tools; ; nammely, the
effect on the cutting speed of altering any one of the following variables; the shape of the tool-i.e., lip angle, clearance angle
and the line of the cutting edge--the duration of the cut, the and the line of the cutting edge-the duration of the cut, the
quality or hardness of the metal being cut, the depth of the cut,
and the thickness of the feed or shaving (47) It is the writer's opinion that a more complicated and
difficult, piece of rate-fixing could not be found than that of determining the proper price for doing all kinds of machine work
on miseellaneous steel and iron castings and forgings, which vary on miscellaneous steol and iron castings and forgings, which vary
in their chemical composition from the softest iron to the hardest Yool steel. Yet this problem was solved through the rate-fixing
department and the " differential rate," with the final result o completely harmonising the men and the management, in place of
the constant war that existed under the old system. At the same time the quality of the work was improved, and the output of the machinery and the men was doubled, and in many cases trebled
At the start there was naturally great opposition to the rate-fixing department, particularly to the man who was taking time observations of the various elements of the work; but when the men
found that rates were fixed without regard to the records of the
 the comparative uniformity of this slosso of orork, aner, the the ewing to to
tumber of machines and men engaged on similur operations, the maximum
number

quickest time in which they had actually done each job, and that
the knowledge of the department was more accurate than their own, the motive for hanging back or "soldiering" on this work
ceased, and with it the greatest cause for antagonism and war between the men and the management.
(48) As an illustration of the
(48) As an illustration of the great variety of work to which
elementary rate-fixing has already been succesfully elementary rate-fixing has already been successfully applicd, the
writer would state that, while euting as general manager of two large sulphate pulp mills, he directed the application of piece-work to of these mills, by means of elementary rate-fixing, with the result, within eighteen months, of more than doubling the output of the
mill. The difference between elementary rate-fixing and the ordinary plan can perhaps be best explained by a simple illustration. Suppose the work to be planing a surface on a piece of cast iron.
In tho ordinary system the rate-fixer would look through his records of work done by the planing machine, until he found a piece
of work as nearly of work as nearly as possible simiar to the proposed job, and then
guess at the time required to do the new piece of work. Under the elementary sys
ing would be made:
 Total Ad -
It is evident that this job consists of a combination of elementary operations, the time required to do each of which can be readily
determined by observation. This exact combination of operations
may neerer occur again but elementary operations similar to these may never occur again, but elementary operations similar to thes
will be performed in differing combinations almost every day in the same shop. A man whose business it is to fix rates soon be
comes so familiar with the time required to do each kind of ele. mentary work performed by the men, that he can write down the time from memory. In the case of that part of the work which is
done by the machine, the rate-fixer refers to tables which are made out for each machine, and from which he takes the time
required for any combination of breadth, dopth and len (49) While, however, the accurate knowledge of the quicke time in which work can be done, obtained by the rate.fixiog
department and accepted by the men as standard, is the greatest and most important step towards obtaining the maximum output be done in a day, and an entirely different matter to get even the best men to work at their fastest speed or anywhere near it.
(50) The means which the writer has found to be by far th effective in obtaining the maximum output of a shop, and which ofar as he can see, satisfies the legitimate requirements, both of
the men and the management, is the difierential rate system of piece roork. This consists briefty in is paying a higher price per piece,
per unit, or per job if the work is done in the shortest per unit, or per job, if the work is done in the shortest possible
time, and without imperfections, than is paid if the work takes a onger time or is imperfectly done.
(51) To illustrate:- - $u p p o s e ~ t w i n t y ~ u n i t s ~ o r ~ p i e c e s ~ t o ~ h e ~ t h e ~$ largest amount of work of a certain kind that can be done in a day
Under the differential rate system, if a workman finishes twenty
pieces per day, and all of these pieces are perfect, he ereceives, pieces per day, and all of these pieces are perfect, he receives, say,
15 cents per pieee, making his pay for the day 15 X 20.3 dols.
If, however, he works too slowly and turns out, say, only nineten pieces, then, instead of receiving 15 cents per piece ho gets only 2 cents per piece, making his pay for the day $12 \times 19=2.28$ dols.
nstead of 3 dols. per day. pr he succeds in finishing twent
ieces, some of which are imperfect, then he should receive a stil pieces, some or which are imperfect, then he should receive a still
lower rate of pay, say, 10 cents or cents per piece, according to to
circumstances, making his pay for the day 2 dols,, or only 1 dol.

instead of 3 dols.

(52) It will be observed that this style of piece-work is directly
the opposite of the ordinary plan. To make the difference between the two methods more clear: supposing, under the ordinary system
of piece-work, that the workman has been turning out 16 pieces per day, and has recied 15 conts per piece, then his day's wages
would be $15 \times 16=2 \cdot 40$ dols. Through extra exertion hes ceeds in increasing his output to twenty pieces per day, and thereby
increases his pay to $15 \times 20=3$ dols. ncreases his pay to $15 \times 20=3$ dols. The employer, under the
old system, howerer, concludes that 3 dols, is too much for the man to earn per day, since other men are only getting from 2.25 dols
to 2.50 dols., and therefore cuts the price from 15 cents per piec to 12 cents, and the man finds hime prife wrorking at a m more prapid
pace, and yet earning only the same old wages, $12 \times 20=2 \cdot 40$ dols. pace, and yet earning only the same old wages, $12 \times 20=2.40$ dols.
per dan. What wonder that men do not care to repeat
formis per (53) Whether co-o
form of piece-work be chosen, ine differential plan, or some othe fixing, as the best method of workingetion where are elementary certain rate-
mental facts and principles which must be recognised and incor porated in any system of management, before true and lastin be found to be not far removed from what the strictest moralist would call justice:
(54) The most i
 attempt on the part of the employers to get the best work out of
their men and give them the standard wages paid by thei neigh-
bours will surely be, and ought to be, doomed to failure. (55) Justice, however, not only demands for the
increased reward for a large day's work, but should compel him to suffer an appropriate lossin case his work falls off either in quan
tity or quality. It is quite as important that the deductions for omingsof the workman, as that the reward should be the short to the work done. The fear of being discharged, which is practi cally the only penalty applied in many establishments, is entirely
inadequate to producing the best quantity and quality of work since the workmen find that they can take many liberties before (56) It is clear that the differential rate satisfies automatically as it were, the above conditions of properly graded rewards and deductions. Whenever a workman works for a day-or even a
shorter period unusually high wages but when he follsecofes, either in quantity or
quality, from the highest rate of efficiency, his pay falls below even the ordinary. $(57$) The lower differential rate should be fixed at a figure whicl will allow the workman to earn scarcely an ordinary day's pay
when he falls off from his maximum pace, so as to give him every inducement to work hard and well.
(T_{0} be continued.)

> LekDs Assoclution of Evanvers.- The annunl meeting for
the election of officers was held April 16 th. The following were elected to serve for the ensuing twelve months:- President, Mr Messrs. TT Craister Robert Lupter Mess. N. Drakinson ; auditor, Mr. A. J. Balk will ; treasurer, Mr
Mr. W. J. Drake ; hon, sectetary Mr. vote of thanks to the retiring ofticers was wassed, on the motion
of Mr. J. C. Jefferson, seconded by Mr. Alfred Atkinson, and acknowledged on their behalf by Mr. Samuel Thornton, the retir-
ing president.

RAILWAY MATTERS

Ir is stated that a new express service from London to Paris, and vice cerse, via Folkestone and Boulogno, has been finally
decided upon. It will be inaugurated on July 1st. Leaving decided upon. It will be inaugurated on July 1st. Leaving
London at hal.-past threeand Paris four at p... respectively the
passongers will arrive at their destinations about half.past eleene passenger
at night.
Ir is stated that the North Metropolitan and the London Street Tramways have jointly agreed to sell their undertakings to
the London County Council at once, and to pay a sum of $£ 600,000$ the London County Council at once, and to pay a sum of $£ 660,000$
for the fourteen years' lease to be granted to them. This will be equivalent to 9 per cent. on the capital outlay. The committee of the Council have completed negotiations for leasing o
ways, which will return 5 per cent. on the capital outlay.
In Victoria a gauge of 5 ft . 3 in . has been adopted, while in Now South Wales that known as the standard gauge,
4ft. 8 in., , has been taken. The private line, Deeiiliquin to Mooma
-New South Wales-is laid to the Victorian gauge, South Australia has both the 5ft. 3in, and the 3ft. 6in. In Queensland the narrow gauge of 3 3t. 6 in. has been adopted throughout, and in
Western Australia both the Government and private lines are laid on the narrow gauge of 3 ft . 6 in .
The many accidents to railway servants have caused frequent expressions of regret in the reports of the Board of Trade.
Particulars are given in the recent returns as to the different classes concerned in the accidents during the past year. Of the
442 who were killed, 17 were men employed on the permanent way, 49 were porters, 37 wero labourers, 35 were brakesmen and
goods guards, 30 were firemen, 26 were shunters, and 22 were engine drivers. II are setion of the report which enumerates the
accidents to servants in the employ of railway companies or con. accidents to servants in the employ of railway companies or con-
tractors, such accidents Leing caused by the travelling of trains the movement of vehicles used exclusively upon railways, it is
shown that 75 were killed and 648 injured during shunting operaShown that 75 were killed and 648 injured during shunting opera-
tions. Sixten were killed and 331 injured wwie coupling or un-
coupling vehicles, and 93 were killed while walking or standing on couphing vehicles,
The record of train accidents in the United States in February includes 34 collisions, 91 derailments, and four other
accidents, a total of 129 accidents, in which 37 persons were killed accidents, a tota. of 129 accidents, in which 3 persons were kiled
and 107 ijiured. These accients aro clasisied by the Rairoud
Giaette as follows:-Collisions: Trains breaking in two 2,2 mis. paced switho, 3 ; failure to give or obserre signal, 6 ; mistake
pingiving or understanding orders, 3 ; miscellaneous, 5 ; unexplained,
 truck, 3 ; fallen brakebeam, 2 ; boilor explosion, 1 ; misplaced
switch, $1 ;$ careless track, 1 , landslide, $5 ;$ washout $2 ;$; Hood, $1 ;$, mhicious obstruction,
 of accidents, 129 .
On Monday, at the House of Commons, a deputation, representing the ratepayers of Sligo and Eaniskillen, waited upon
Mr. Hanbury, Secretary of the Treasury, for the purpose of opposing the proposed purchase of the Sligo, Leitrim, and Northern
Counties Railuay of reland by the Great NNorthern and Midand
Railway Companies of Ireland Sir Mr. Hanbury a short histary of the formation of tha line, and
explained how it came to be in financial dificulties, as a result of which the Treasury, who had found some portion of the capital,
applied about two years ago for tenders for the purchase of the applied about two years ago for tenders for the purchase of the
line. The Great Northern and Midland Companies replied offering line. The Great Northern and Niodand companies replied offering
to purchase it for aboot $£ 130,000$, which was about one-third of
the original cost of the undertaking. Sir Heary strongly urged the Treasury not to accept the offer, schiefly onry the trongrong urged that
the sale would result in a monopoly, with the evil consequences of the sale would result in a monopoly, with the evil consequences of
increased rates and of preventing the development of the district. Mr. Hanbury, in the course of a brief reply, said he was strongly
in favour of not selling the line. He soloud be glad to recelve
details of the scheme of reconstruction, to which ho would give his detarisur of the s.
best attention.

The importance of railways in the development of Australia cannot be over estimated, as owing to the absence of
natural waterways, almost all the traftic from the interior has to natural waterways, almost all the tratic from the interior has in
be carried by rail. The four principal cities of the Colonies are in
direct railway com nunication; and viewed from the "population per mile of line " point, Australia can boast even now of being
better served by its railways than any country in the world. New
 tion; Victoria, 15 m miles authorised; Western Australia is pushing
on with 382 miles of additional lines, 57 of which were to bo opened in the amsets for the national debts of eech Colony. It is
rapresed that to a certain extent the railway administration
agreed that should be separated from politics; the construction and direction of new lines may well be left to Parliament to determine, but the
management of the lines and control of the railways daily working are matters for skilled and capabbe rail way managers, untram. melled by the exigencies that political consideration would often
cause to influence the political mind. These views have been given effect to in Viotoria, South Australia, New Sooth Wales, and Queensland, which provided to a certain extent for the manage. lines. Each system was placed under the control of three com.
missioners, who had large powers to administer free from political interference, and the generally expressed opinion is that the
system worked well. Victoria, howerer, amended her Railway system worked well.
Act of
1883
by limiting the powers of the Commissioners, and giving the Minister for Railways of the day greater power to
interfer in the management. but this change has not trought
about the desired result, and the Act is being agnin anended.
Four persons killed, a dozen seriously injured, and fifty others hurt more or less severely, is, says the Railroul Gazette, the
result of the colision of electry car at St. Louis, on March stb.
Recklessness, either of officers in failing to prescribe rules, or of Recklessness, either of officers in failing to prescribe rules, or of
motormen, generally ignorant, in carrying theme out, is apparent
on electric railroads all over the country, and collisions or runaways illustrating it occur every few days; but fortune favours practice seem not to be heeded. Here, however, is a flagrant case, in many respects typical. The road- the St. Louis and Kirkwood -runs, a part of the way at least, on its own right of way,
separate from the street, so that cars can be run as fast as may be
desired desired. Grades are steep and cars pretty heavy, so that high
speed down grade is easily made. The Repeblicic reporter timed speed down grade is easily made. The Rem minies an hoorter. The
several cars and found them maki forty man
manager has had no experience on standard railroads, entrusts cars manager has had no experience on standard rairoads, entrusts cars
to men hired without adequate inquiry, and has no printed
togutan motormen. Ruling trains are required to wait three minutes at meeting points, and those going in the opposite direction in-
definity $;$ but it appears that this last provison is modified most of the time so as to permit an inferior train to proceed cautiously supervision, and inferior trains are in the habit of "stealing
switches " whenever it seems desirble. to reach the next meeting point before the ruling train gets there,
while the whereabouts of the latter is wholly unknown-was while the whereabouts of the latter is wholly unknown-was
what caused this collision. To cap the climax, says the Gazetle,
the passengers on these forty miles an bour trains are allowed to the passengers on these forty miles an bour trains are allowed to
crowd the front platforms of the cars.

NOTES AND MEMORANDA.

The weekly return of the Registrar-General shows that the deaths registered last week in 33 great towns of England
and Wales corresponded to an annual rate of 19.0 per 1000 of their aggreg
In London 2836 births and 1654 deaths were registered or 87 above and the deaths 27 below the average numbers in the
corresponding weeks of the last ten years. The annual death-rate corresponding weeks of the last ten years. The annual death-rate
per 1000 from all causes, which had been $17 \cdot 9,179$, and 20.3 in the
C
Chloride of lime, Traube has pointed out, provides the means of obtaining a germ-free drinking water, and has proved its
utility by practical experiments. His tests were not conducted with pathogenic germs, though he concluded from his experiments that, used in th
kinds of bacilli.
Sternberg and Delettre have, according to the Monitew de la Ceramique et de la Verrerie, invented a new process
for the production of refractory material. They claim that by adding 10 to 15 per cent. of asbestos, either fibrous or pulverised,
the material is made more fire-proof and durable. The addition of the material is made more fire-proof and durable. The addition o
asbestos is made while the chay, or whaterer earth is used, is being mixed. Bricks produced from this material are said to prove exce.
In the French journal, L'Industrie Velocipédigue, which he has found to be best is given. It is as follows: Kaolin
62 parts, 4 chalk, 17 sand, and 17 feldspar. Each of these con 62 parts, 4 chalk, 1 i sand, and 17 feldspar. Each of these con-
stituents is ground in water separately, and these waters, whilst and deane particles are carried in suspension, are mixed togethe material obtained is moulded into tubes, which are at first air dried. They are then baked in clay cylinders for about fifteen hours with
wood fire. The cost is high, but the durability is high
Referring to statements advanced at the 1895 meeting of the Bavarian society of Applied Chemistry-Chem, Zatifin
1452 -Mr. R. Kissling points out that the amount of parafin in burning oils is very, slight, and can, in any case, only affect th with the assertion that Ohio oil containing a large proportion of sulphur is now in the market, necessitating the examination of such
oil for the detection of sulphur, he remarks that those who ought to know deny that refined Ohio oil is dealt in in Germany, but that
even if it be, the desulphurising processes this oil undergoes in oven ing be, the desulphurising
retiniog render it undistinguishable
containing but litle
taining but little sulphur.
The velocity of an earthquake-wave within a shor thence from the epicentre is so difficult to ascertain on aceount of
the lare erro resulting from a small error in the recorded times that all estimates with an approach to accuracy are of value. In
the Brescian earthquake of November 27 , 18.189, , good from the epicentre. Assuming the velocity to the uniform in all
directions Dr. M. Baratta calculates it to be $1 \cdot 411$ kiloms second. Taking account of the nature and extent of the rock
traversed by the earth wave, he also tinds the average velocity to be $\% 2$ kiloms. per second in alluvium, and 1.569 kiloms. per
second in the older and more experiments made at Holyhead by Malletect gave these results for
sand, slightly discontinuous and discontinuous rocks. They wer published in the "Transactions" Royal Society in 1873 .
AT a recent meeting of the Philadelphia Academy of on the apparent capricious distribution of iron oxide as colouring
matter in the points, apparently, the accessiblo supply of iron was exhausted by complete distribution in the strata under process of eposid
intermediate and subsequent periods during which new supplies
anpear from some source not yet clearly explained. Professor appear from some source not yet clearly explained. Professor A.
P. Brown stated that it had been suggestod by Russell, that the red aërial decay of iron bearing rocks, and the subsequent deposit a this material as sediment forming the red rock. As far as the
ash of coal is concerned, it is probablo that the colour is due to
 white ash, while
ash will be red.
A novel series of exepriments is in progress at Wesleyan University, Middletown, Connecticut, to determine the nutritive and caloric value of food, and many other questions relative to
nutrition and other vital processes. named Nature says:-- For this purpose a calorimeter is employed,
consisting of a copper-lined box, measuring inside ftt. by 4 tht. by
6 bift., thus giving 182 cubic feet of air, within which space a man is confined for several days at a time. It is fitted with glass
windows of three thicknesses. Fifty litres of air per minute are pumped in. Food is paseed in three times a day through an air
tight tube, and is tight tube, and is carefully weighed, as are ail the exudations and periments are conducted by Pro. Wm. O. Atwater, and the ex
pense is shared by the Department of Agriculture of the United pense is shared by the Department of Agriculture of the United
States Whesleyan Univerity, and the Stores Experiment Station subject-of his hours of sleep, minutes of exercise, respiration,
appetite, \&c. To this end there are two watchers and two ascis tants, a watcher, who is a professor in the university, and an

The Department of State in Washington has published reports from Magdeburg, Dusseldort, Frankfurt, and Stottin
deaning, with the slag cement trade. This cement, it seems, is made by mixing pulverised hydrate of lime with basic
blast furnace slag, which has been granulated, dried, and reduced
lat to powder by grinding. It is used for certain purposes as a sub
stitute for Portland cement, for it is about 20 per cent. cheaper and being of lower specific gravit, spreass farther," so that on alleged that the mortar is moro tenacious and elastic, and thus is
and more suitable for the foundations of bridges and other structures liable to unequal strain or to the shock of passing trains or vehicles,
It was originally suagested by the excellent cement obtained fron mixtures of hydraulic lime and puzsolani or pulverised lava, which
was first produced in Germany in 1863. The essential element in was first produced in Germany in 1863. The essentar element
basic slag for making cement is silicie acid in proper proportions,
and then this must be "live" and in a condition to unite readil and firmly with the lime, while the slag must contain a due pro. portion of magnoesia and not an excess of some impurity which
will resist the combination and sooner or later cause crumbling or disintegration. In Western Germany there is only one small dis. and here the slag cement manufacture is concentrated in the hand of two firms. This cement seems to be regarded with some suspi-
cion by ensins cion by ongineers, ,hho will only uso it when they know where,
whom
of always be moist and protected from the sun. The consul at Mag deburg says the industry is dying out in Germany owing to the
opposition of Portland cement, lack of support from the Government, and stagnation in the building trade it at actory opened at Stettin
some years ago failed. In Germany it is generally colled some years ago failed. In Germany it is generally called puzzolan
cement.

MISCELLANEA.

Messrs. Earles Shipbulding and Engineering Cos any, of Hull, have received an order from the Admiralty to con Even experienced carriers get into trouble under the present traction on roads regulations. At the Mansion House the
ardell Traction Haulage Company, Limited, were fined in all $£ 10$ with $£ 10$ 10s. costs, for having on five occasions in March last used a traction engine in the City with
poration under the Highway Act.
In reply to a correspondent, writing on high and low tension currents, the Board of Trade replied that they have bee
informed of nine cases of fatal accidents to employes at generatin or transforming stations where high-pressure alternating currents are used, but that no instances have been reported in the case of
aperes Iow-pressure continuous currents. It may also be true that tho
Board of Trade have heard of the drowning of many people in the an, but none in street gutters.
The new American torpedo boats or destroyers-for they are of 180 tons displacement-differ, acoording to the Nace
and Military Record, from most other craft of their kind in that
and they have built-up forecastles, very much like our "catcebrs
the Alarm, or si0-ton type. These forecastles gave them a free board forward of no less than 12 ft . 6 in., and should render then excellent boats for sea work. The speed is to be 26 knote, wil
3200 -horse-power and 395 revolutions. The armament consists of four 1-pounders and three torpedo.tubes, ono being astern and two
ch elielon nearly amidships. There are three funnels and two conning towers.
A Sholapur correspondent writes to the Bombay Cazette:-"As a sign of the times, we hear that a patriotic and
leading native of Pandurpur has opened a shop for the sale country-made mill and hand-woven cloths in that town, and laid in a stock of over ton thousand rupees worth of cotton and woone
fabrics, in order to help the masses to patronise Indian industries only. His example is being followed in numerous other places. pronits to merroly cover cost, it is probable that Manchester has
raised a bornet's nest, and given an impetus to Indian, Chinese and Japanese trade which it never contemplated, and from whick

Some floods prevention works are much wanted in Canada. Damage ach ang 0 a milion dollars has been done perienced for twenty years. The town of Richmond and part of Sherbrooke have been subumerged and hundreds of families have
been driven from their homes. Many mills and factories on the banks of the St. Francis River have been swept away, and tho Quebec and the crippled, iron were swept away from St. Anne's and Isle de Grace on the 20th
inst. The loss of life is fortunately very slight considering the

On January 7th, 1890, the Egyptian Govermment, having received the assent of the European Powers, issued a decreo
levying a tax of $1 \ddagger$ milliemes-about 3 s . 10d. -per ton on shipping ontering and leaving the harbour, to become payable when a ne
pass having 300 ft width and 30 ft . depth should be compled This is now officially declared as accomplished, and that the tax wil be levied from May 1st next, when compulsory pilotage dues will be €60,000, to be borne equally by the Government and shipping, the is to cease absolutely sos conns it has realised the amount of $£ 33000$ with 5 per cent. interest, and a special half-yearly report is to be
published showing the receipts. The Times Cairo corresponden says the Government bears the expense and responsibility of keeping the new pass lighted at all times, and it is
used by ships entering and leaving during the nigbt.
It is stated, the Dover Standard is authoritatively ontered into a contract with a firm of mining engineers in the north of England to sink two colliery shafts at Hongham, two mile be sunk within twelve months. It is intended to make furthe borings. The syndicate consists of the following gentlemen:-
Mr. Philip Stewart Mackenzie Arbuthnot, West Hoathley Sussex ; Mr. Richard Berens, St. Mary Cray, Kent; Mr. George
Frederick Fry, Dover Harbour Commissioner; Mr. Frederick Pitts, County-chambers, Cornhill, London; and sir Henry Beyer
Robertson, Pale, Merionethshire. The experts calculate that there is sufficient coal in the meassures already discovered, taking an for seventy years. The coal-bearing district in Kent is estimated

A great engineering work of immense importance the city of Venice has just been completed. Fifty-eight years hao,
flowing of the river Brenta, the Austrian Government, on the
recous recommendation of the celebrated engineer Paleocapa, carried out
certain works by which the months of that river were carried into the Chioggia Lagoon, some distance south of their original outlet.
Since then the alluvium brought down by the river has threatene to convert a portion of Chioggia Iapoon into a fever-breedin swamp; and also to cause serious damage to the whole Venico
Lagoon by silting. It was accordingly decided to construct a new Lagoon by silting. It was ascordingly deceided to construct a ne river a direct outlet into the sea near Brondolo, still furt ther south.
The scheme, which was estimated to coot eight million lire, and
was beerun in 1884 , was begun in 1884 , has now been brought to a successful conclu-
sion. The new channel, by means of subsidiary canals, also
provides a fresh outlet for the Bachiglione and other rivers provides a fresh outlet for the Bacco
formerly flowing into the Venice Lagoon.
In the course of a lecture on "Recent Chemical fessor Dewar, F.R.S., commented on the great future opened out to synthetical chemistry by the employment of the temperature
of the electric arc. Some of the most interesting results had been obtained from the electric furnace by the French chemist, M.
Moissan, in the shape of carbides, stable bodies produced by the Many of these carbides were decomposed by water, the hydroge of the water combining with the carbon to form hydrocarbons Tylen with water some carbides, such as that of calcium, gave ace-
tylene o others, like that of aluminium, gave marsh gas, while wonderful, liquid petroleums. It was a curious fact that many years ago Professor Mendeleef speculated that the only reason for
the immense being generated there - he suggested by the action of water on car bides. His idea was rather smiled at then, but now it was his turn
to smile. When aceotylone was heated to a dull red heat ot was polymerised to benzene. Benzone was the basis of all the new
modern eolours, and thus by three direct stages we were able to
reach the nucleus of all the colours hitherto manufactured from coaltata products. First there was the combonination of limed and
cole in the electric furnace secondly the decomposition of coke in the electric furnace; secondly, the decomposition of the
carbide thus formed by water ; and thirdly, the transformation into benzene of the resulting accotyleno by means of heat. Professor
Dewar concluded by brielly divcusing some of the properties of acetylene, explaining, among other things, the cause of its extra-
ordinarily great luminosity as due to its peculiar endothermic
structure.

COMBINED CABLING AND SERVING MACHINE. Some time ago we promised our readers particulars of a machine of this description, supplied by Messrs. Johnson and Phillips, of Charlton, to H.M. Postal Telegraph Department, for cabling their gutta-percha covered cables, and at machine, which we now illustrate, is arranged for cabling even wires, i.e, laying six wires round one and the same time laying a yarn in the recess formed between each pair of wires, so that when the cable is taped it forms a more perfect round.
The machine is erected on a strong cast iron bed-plate, and he six wire bobbins-arranged in two bays-are carried in orged wrought iron fliers between three discs, the third disc also carrying the six yarn bobbins. The central hollow steel shaft runs in a large gun-metal stepped bearing at one anti-friction rollers. The draw gear is driven from the "layhead "end of this shaft by means of a belt driving on to a countershaft carried from the bed-plate of the machine. The motion is transmitted to the draw-through drum by means of spur and bevel gearing, change wheels being provided to give the requisite length of "lay" for the different sizes of wires. The taping head is designed to serve various widths f tapes, and for that purpose is driven by means of coned adjusted very minutely.
The bobbin of tape, as will be seen, is arranged concentrically with the cable, the tape being led from the bobbin by means of a series of rollers, \&c., down through a slotted guide on to the cable. The wire bobbins are each arranged o hold one mile of gutta-percha covered wire, and the yarn and tape bobbins respectively hold sufficient tape to "worm" nd "serve "this length of cable. The diameter of the tape obbin is $21 i n$.; the radius described by the taping head, f this head is about 500 revolutions per minute The central hollow shaft is 3 in . diameter, and runs in large un-metal stepped plummer blocks, having bearings two and a-half diameters long. All the bobbins are provided with means for adjusting the tension on the various wires, yarns, ke., as may be desired. The finished cable is led from the draw-through drum on to a receiving drum placed a few feet distant from the cabling machine, from which it is driven by means of a belt. This apparatus is provided with an automatic guiding-o
Besides the above-described machine we understand that Messrs. Johnson and Phillips have supplied H.M. Postal Telegraph Department with a four-wire combined cabling and serving machine, all complete with the necessary bobbin winders, swifts, and automatic winding and coiling gear, for making the finished cable up into coils, and have fitted it up at the Mount Pleasant factory.

CONDENSERS FOR ROLLING MILL ENGINES. Mr. Robert J. Worth, of Worth, Mackenzie, and Co., Limited, engineers, Stockton-on-Tees, at the monthly meeting of the Middlesbrough District Association of Foremen Engineers and Mechanical Draughtsmen, read a paper on He remarked that, owing to the fact that steel was rapidly superseding iron, the rolling mills no longer had that superabundance of steam which formerly was raised by the waste heat from the puddling furnaces. Economy of steam in rolling mill engines was formerly a matter of no consequence, but now it was becoming one of primary importance. The difference between a rolling mill with engines of the type usual in the North of England, and a mill laid out on the best system for economy of steam was, he believed, just the difference between one that barely paid and one that returned a good profit to the owners. Thus, if an engine of the usual size, with a pair of 42in. cylinders and sit. stroke reversing, were taken, the diference in fairly economical type tion between the ordinary type and a fairly economical type hour during the time the engine was actually running. If the engine ran six hours per shift, and ten shifts per week, and the value of the coal delivered were 8 s . per ton, there would be a saving of $£ 61$ per week, or on a year of forty-eight
weeks £2920. By the alteration of a cylinder and the addition of a condenser to a smaller engine, a larger propor-
tion of saving in steam had actually been effected. Mr. Worth showed that the lighter an engine was loaded the greater the saving in steam consumption, and, as in a "pull over" or "crab reversing" mill, the time during which the engine was running empty or lightly loaded formed a very large propor-
tion of the total running, the saving with mills of this type and with engines well up to their maximum work would be very great. There were circumstances, however, when the saving effected by the use of a condenser was greater and more important than those mentioned, and these were when the engine was under its work, and when the workmen, in consequence, had to wait a considerable time for the engine to

The makers, Marshall, Fleming, and Jack, of Motherwell, rowing been very successful in keeping pace with the everheavier lifting heavier lifting machinery, and have supplied cranes of the
above type for loads up to 20 tons to leading steel makers.

The Cbystal Palace School of Engineering.-On Friday last Mr. A. T Walmisley, M. Inst. C.E., engineer to the Dover Harbour Board, distributed the certificates obtained during Easter
term by students at the Crystal Palace School of Practical Enterm by students at the Crystal Palace School of Practical En-
gineering. In the course of his address he said that they had to gineering. In the course of his address he said that they had to
congratulate themselves on the results of the first term of their twenty-fourth year. Very few people had any idea of the twenty-fourth year. Very few people had any idea of the
amount of educational work carried on at the Palace. .Oldstudents
from that school were to be found exercising their rofession all

LOCOMOTIVE STEAM CRANE, MESSRS. MARSHALL, FLEMING, AND JACK, ENGINEERS

be from 40 to 50 per cent., and that would represent a great saving in labour. The main engines using less steam would leave more for the auxiliary engines, and a more regular pressure would thus be maintained in the boilers. The of its great simplicity, the absence of any working parts, and the fact that it needed no attention.

LOCOMOTIVE STEAM CRANE

The above engraving illustrates a handy size of locomotive steam crane, one of a class specially designed for use in steel works; it lifts and travels with 10 tons at 14 ft . radius on 4 ft . $8 \frac{1}{2} \mathrm{in}$. gauge of rails. As very quick speeds are are made with an ample margin of strength. The framing of are made with an ample margin of strength. The framing of the gearing throughout is of Siemens cast steel. The jib is swan-necked, to give plenty of clearance for the load at a swan-necked, to give plenty of clearance for the load at a
short radius and under limited head room, and the radius is adjustable by worm gear from the engines. The carriage is provided with feet, so that should the crane leave the rails it cannot sink or overturn.
over the world, and no small portion of the success which had been
attained was due to the personal attained was due to the personal influence which the principal,
Mr. J. W. Wilson, had exercised over the 1172 students who had passed through the school since its foundation. In the first tern of 1872 , when the school was established, they had fifteen students. This term they numbered seventy-one. They demanded an entrance examination as a test of proficiency in general education. The Institution of Civil Engineers did the same for their class of students since the year 1889, when the Institution had 967 students on their books. The students class at the Institution was esta-
blished in 1867. Of courso many had become transferred to corporate membership upon attaining the proper age, and the present number of students was 877 . He strongly recommended all those who wished to come to the front in the profession to join the Institution of Civil Engineers as students as soon as they could, and felt sure the technical training they received at the Palace
would prove an additional testimonial for their nomination, although the Council of the Institution of Civil Engineers simply demanded proof of a sound general education, and did not specially insist upon proof of previous technical education. He advised the students not to run away with the idea that what they had learned was incapable of improvement, and he strongly urged them not to At the close of the distribution, Mr. G. T. Rait, chairman of the Palace Company, thanked Mr. Walmisley on behalf of the directors, and the proccedings terminated.

SOME MORE STEAM CARRIAGES.

The two steam carriages illustrated by the engravings now published are of considerable interest, as showing the direction which design took from twenty to thirty years ago, or a quarter of a century after the very different designs of Hancock, Gurney, James, Hill, Macerone, Church, and others had been given up for various reasons, though they had been which coaches could be thereafter built. Reasons other than this direction, and except spasmodically little was efforts in quarter of a century, and then most of the designs were rather of the carriage for a steam engine and boiler than a comfortable passenger carriage operated by a steam engine. The engine was in many cases much better from the steam

Saturday, April 4th, 1896.-"After lunch to Baltonsborough with steam carriage; went to several places there and did my business and back by five. Distance run, seven miles."
Tuesday, April 7th, 1896.-" Mr. Pinney came at 9.30 a.m. and we started with steam carriage at 9.45 , George Mildred with me in front, and Noble firing, Mrs. N. G. and Mrs. Audry with us as far as the Horse and Lion; we on through Glastonbury and to Polsham; stopped there for five buckets of water, and on to Wells, arriving at the Palace at $10.50-$ ten miles in sixty-five minutes, including stops for horses,
water, and at railway level crossing. Called on the Bishop as I promised, and took him and some friends for a run round the Palace. One of them thought I was a bagman round the Palace. One of them thought was a bagman come to try and sell the carriage to the Bishop for him to use
in inspecting the diocese! Put up at the stables, Pinney and Ing. County Council meet-
me he has been to London to see autocars, but did not get any satisfaction, so told
him to come home on him to come home on
mine. After the meeting ${ }_{\text {Sir }}^{\text {mine. R. Paget, Hobhouse, }}$ Dyke, Colonel Clarke, and other County Councillors came and had a ride, and
were much pleased. oLeft for home at 4.40, having on board Barstow and Gibbons extra; a good run to Glastonbury; dropped Gibbons at Edgarley at
5.25 , and on via Baltonsborough, stopping a few borough, stopping a few
minutes for five buckets of water; arrived home at 6 p.m. Fourteen miles in eighty minutes, including stoppages and slowing
down. Total run out, ten miles; home, fourteen miles; run in Wells, one
 equal about 6 lb . per mile including getting up steam twice, as being some hours in Wells I let the fire out We need not have taken any water on the road either
way, but thought we would be on the safe side. Water used for the twenty-h
engine designer's point of view, but in nearly all cases the
useful work done by Hancock, Gurney, and others, with reference to the boiler, was ignored, and no real progress from the carriage point of view was made, the weight of the engine and boiler and gear being excessive, much of it being due to he boiler, which in most cases was either the modern loco motive or the then modern vertical boiler, with large unstayed or unbalanced surfaces requiring heavy plates. Many of these steam carriages of a quarter of a century ago were
from the mechanical engineer's point of view successful, and as they played an important part historically they are interest even now in part as illustrations of what could be done or might be done, and partly as showing what not to do.
One of these shown by side and end views is of a steam arriage still existing. It was built for Mr. R. Neville Grenville, of Butleigh Court, Glastonbury, in
1875, by Messrs. T. Cooke and Sons, York. The boiler is a Shand and Mason type. It had a single ynverted cylinder bolted outside of the boiler 5in. diameter by 6in. stroke. factory and was altered to wo cylinders of the sam ize, and geared to half the original speed, and place
horizontally, the ratio o crank shaft to driving wheels being now 4 to 1 The driving wheels are 4 ft . diameter with 3 in . tires and are solid diso wheel of teak. These, no doubt are heavy, but the reason they were made so was that hat others had had trouble hat others had had troubl with spokes working loose
He questions now if this is really the fact, but the disc wheels are very eas o clean. The second motion shaft is linked to the driving axle at the right-hand end, and rises nd falls with it by the action of the springs. The eft-hand end has a ball
effect of this is slightly to throw the gear teeth ratio as originally arranged with the single cylinder across each other, but in the same plane, so no ill results and no wear are perceptible. In this way the difficulty attaching to the use of springs and gearing is
perfectly overcome. The steering wheel is 2 ft . 6 in . diameter, perfectly overcome. The steering wheel is 2 ft . 6 in . diameter with a 3 in. tire, and works well. At first there was an rrangement for turning the exhaust into the tank when ecessary, but this was not wanted, and, as it was at times ater put on inter the running back into the water tank. The boiler is fed by a pump and by an injector. The weight with coal and water s 45 cwt . The tank holds 55 gallons. The boiler heating surface is fire-box 13 ft ., tubes 16 ft .; total, 29 square feet. The grate area is $2 \downarrow$ square feet. The carriage is still in working order, and Mr. Grenville ran it in the last few weeks 120 miles. The following is the account of the last two runs rom Mr. Neville Grenville's diary, which will give an idea of what the carriage will do.

MR. KNIGHT'S STEAM CARRIAGE, 1868
The originally arranged with the single cylinder wo angle irons, which formed the frame of the machine. They were fitted with link motion, the reversing quadrant and the steam lever being on the steersman's right. The teering wheels, 2 ft . 8 in . diameter, were on a gauge of 2 ft ., the hind wheels 4 ft . diameter and 4 ft . 2in. gauge. The but the tiller moved through an arc of twice the radius of the steering wheels; the steersman had thus good control over the carriage, and but little muscular effort was required in steering. Only one wheel was the driving wheel, and this was ound sufficient for all practical purposes; it was only found olip on wet grass. In motor carriages with one driving wheel it seems advisable, at least for use in England where vehicles pass one another on the left, to have the driving wheel on that side, for it is sometimes necessary to leave the crown of the road in passing, and if the right wheel be the
driver there might be some difficulty in regaining the hard
road. The boiler, originally a multitubular, was afterwards aitered into a "Field," with about 26 square feet of heating surface. A tank under the engines carried 40 gallons of water, sufficient for six or seven miles' run. Coal for 10 , toker ; the boiler was fried. The brake was and a donkey ump; the weight in running order was 32 or 33 cwt Three people sitting side by side were accommodated on the seat.
In fair running order the speed was eight to nine miles an hour. A small four-wheeled chaise, carrying three passengers as often towed by it, and except on steep hills it did no ortunately it was sqmewhat noisy in running, and a very harp blast was necessary. To keep steam coal had to be used is there was not draught enough to burn coke.
After being in use as a steam carriage for three or four years, it was sold. The purchaser converted it into a mall traction engina. Writing of it Mr. Knight says :

MR. NEVILLE GRENVIL'E'S CARRIAGE, 1875
"I think"this is a fair'account. Some of these details are from memory. The carriage was so frequently altered that drawings would only show it as it was once."

HORSELESS CARRIAGE NOTES.

AN interesting lecture on "Horseless Carriages" was delivered on the 10th inst. before the Belfast Philosophical Society at Belfast by Mr. John Brown, the honorary trea-
surer. The latter part of the lecture dealt with modern horseless carriages, and necessarily with those of German, Swiss, and French make. Mr. Brown exhibited his own Serpollet steam carriage, purchased from M. Doarzan, of
St. Omer. At the close of the lecture, Mr. George Andrews St. Omer. At the close of the lecture, Mr. George Andrews
moved the following resolution:- That this meeting approves of the proposed modification of the Locomotive Acts so as to promote the use of mechanically propelled carriages on public roads, subject to suitable provisions for the safety and convenience of the public." Such an amendment of the Acts as the resolution approved was, he considered, necessary. Though all sorts of motors might not be an unmixed benefit to the public, yet he felt, and he thought it was the feeling of the meeting also, that if these be used with equal safety in this, and though they might be unsuitable for crowded towns, there could not be any reasonableobjection to their use under proper provisions in the country districts. Professor Everett seconded the motion. He believed he was right in saying that a measure for the amendment of thy Acts on the lines of the resolution was at present in the wae of being passed in the Lords, and he hoped it would pass the future borso, as he believed these carriages had a great

The letter we publish on another page from Mr. Flood Page draws particular attention to the questions which concern the construction and working of electrically-propelled great number, although the means of economical pplications of electricity for this purpose are not very obvious except over a limited field where the many virtues of an electric motor outweigh the disadvantages of accumulators. This field, although limited at present to the short distance runs of vehicles for town and suburban use, will no doubt widen as accumulators are further improved, and as the necessity for the weight which high discharge capacity requires is lessened by improvements in the means of transmission, so the mean.

There is a question to which Mr. Flood Page does not namely, the proposed refusal of mermission to attention, namely, the proposed refusal of permission to allow one
vehicle to haul another. It is, perhaps, early in the days of our hoped-for freedom from trammels which restrict our hoped-for freedom from trammels which restrict
mechanical and industrial enterprise in the design and use of self-propelled vehicles as they do in no other country, to ask for more than the Bill now in Parliament proposes to give but we must not overlook the fact that it may in the first few years of the use of self-propelled carriages be very necessary to be able to make one haul another which has been disabled or run short of current, or other power source.

The haulage of a vehicle by a self-propelled carriage or by a separated light motor carriage, is according to present inten-
tions, barred. This is presumably with the object of prevent ing anything like traction engine or road locomotive trains, undesirable it should also prevent the production of a satisactory motor vehicle, which, though passenger carriage or goods van it hauls, may when coupler
oit form a complete whole. Such an arrangement offers some advantages and provides the means of using existing in their repairs shall not be idle time for the vehicles also.

LETTERS TO THE EDITOR.

(We do not hold ourselves repponsible for the opinions of our
horseless carriages.
Sir,-I am sending you a cutting from L'Industrie Velocipédique,
containing Mons. M. Mallet's account of his inspection of the Cugnot steam carriage, in which you will see he does not give all
credit
dosis his ". Compatriotes," neither does he give the glowing carriage.
1 am glad to see Mons. Mallet share the credit between Cugnot
and Trovithick. Cugnot had the support of the State to carry out and Trovithick. Cugnot had the support of the State to carry out
his experiments ; Trevithick had not, although the latter was one of the greatest pioneers of the high., pressure steam engine, steam road carriage, railway locomotive,
developments in latter-day use.
It is sad to conceive that such a "grand esprit" as Trevithick
should have should have passed the latter years of his life in poverty and misery,
and saved a paupers's funeral by subsciption of his shopmates, resting place.
I should be ment to be erected in honour of the great inventor of motor road vehicles.
Beeston, Notts, April 10th.
M. Mallet, ing inniur est allf examiner l'ancêtre de nos automobiles actuelles, le voituro do Cugnot, remisee au Conservatoire des
Atrs et Metiers, or rond compte de sa visite, comme suit, dans le
Bylletin de "Nous ne cacherons pas que nous avons ete profondement proprement dite n'est pas mal combine, surtout si on tient compte
 On a requemment signale les mauvaises proportions
génau
tance de de la chadispositiono pou favorable du foyer, le peu de resis. ce n'est pas tout ; dans la machine qui est an Conservatoire, et qui
est, dit-on, la seconde machine de Cugnot-nous ignorons totalement comment tanit faite la premiere- -il est absolument impossible
de comprende comment
don aurait pu mettre de leaun dans la chaudière et faire do feu sous celle-ci. D'abord le genérateur en forme
dellipsoide de revolution ne poseside a que den
 assez mal place au plus vif du feu-si ce feu pouvait ttre vif. On ne pourrait donc introduire d'eau qu'en demontant le tuyau de vapeur. roote pour refournir de locuu à la chandîre à mesure de léevapora-
tion. enveloppe en tole fermeo do toutes
deux pertites
parts

 in s'introduire?
"Cette chaudière, telle qu'elle est actuellement et telle que la reen aucune maniìre, a moins qu'on, ne suppose que le foyer agis-
sait comme dans un samovar, et alors quelle production de vapeur
 leau dans la chaudière. secondairese en presenence importants imperfections ruads soient, des détails bien teur, qui nous semblent entraniner une impossibilités de fonctionne-
mont. 11 semblerait vraiment que la chandiere dont nous nous
 nier, siles dans soute generateur de le la premiere voitura, on reconnaitra quil y a la un mystere auquel nous n'avons jamais vu faire la
moindre allusion dans tout co Mugnot, memen par des ecriven quires atements.
GToute autre etait la voiture de Trevithick
pendant ph mes rues de Londres circule en 1803 ou dix personnes, et en marchant ad des vititesses do 88 kifometres à Theure qui pouvaient facilement etre portees an double. Cette
voiture etait parfaitement pratique et, si elle n'a pas eu de succes voiture etait parfaitement pratique et, sie elie na pas en de succes
duraboe, in ne faut pas en chercher ra raiso autre part que dans
1'tpuisement des ressources de lauteur, epuisement qui lobligea $\begin{aligned} & \text { a }\end{aligned}$ chercherer ailleurs un travail plus immediatement rémunérateur.
La melancolique devise de Bernard Palisy, encore un inventeev meconnu, porreté empeshe les lons sprits de parcenir, a trouvé la une application de plus. La voiture de Trevithick n'eut pas la chance
d'etre conservee comme celle de Gugnot, elle fut vendue \grave{a} la ferraile et le moteur fut utilis $\hat{\text { pour actionner un la }}$
 mais dans des proportions inégales, d'avoir eté les pionniers de la
locomotion mecanique sur les routes, lun ayant fait le premier
 réguliìrement et avec un plein suceces sur des dispositions et pour
un but d'ailleurs entièrement différents de ceux du precedent. d'etre méconnus de leur vivant et peut favorises par la fortune mais encore dans des proportions très inégales. En effet, Gugnot dont les travaux avaient et' encourages et même payés par 1'Etat, les
vit dans ses dernieres annés recompenses par lobtention d'une pension; son ceuvre a ét pieusement conservé, sa mémoire
honoré presque de snite peut.être avvec quelque exagération.
"Trevithick, aun contraire, passa ses dernìres annés et mourut
dans la misère, fut enterre a la charité et quelques ouvriers qui avaient travaille a la construction de ses machines durent se cotiser et payer une garde nocturne pour preserver ses restes contre los
voleurs de cadavres. 1 s' 'tait vu refuser dans ses derniers jours un secours national qu'il avait sollicité et cependant cet homme
avait inventé, ou tout au moins avait réalise pratiquement machine a hante pression, la locomotive routìre, la locomotive de chemin de fer, la drague a a vapeur, les caisses à ean metalligues
pour la marine, les boues, mats et vergues en fer, etc, tout pour la marine, les boufes, mats et vergues en fer,
choses dont les résultats ont plus tard eté immenses,"

Mallet.

the light locomotive blle.

Sir, - The Light Locomotive Bill which was recently introduced
in the House of Lords is of such vital importance to the electrical industry that terhaps you will tind space for the following:-Mr. on the 12th February, after which I had an interview with him, and I wrote to him at length on the following day. I need not,
however, trouble you with my letter of that date or Mr. Chapplin's
courteons answer. When, however, on the 30th March we were able to obtain a copy of the Bill, 1 wrote to Mr. Chaplin a letter-copy
of which 1 enclose, together with his reply. I am glad to be able to add that on Tuesday last Mr. Chaplin and Lorr Hanris did me the honour of receiving me at the Local Government Board. I
found them most anxious to do all in their power to meet the reasonable requirements of all the industries interested in this par some restriction should be placed on weight, as otherwise they fear that heavy traction engines will be run about the country and
through our towns at a considerable speed. I am glad, however, through our towns at a considerable speed. I am glad, however, os be able to add that though they were not able, until after con
ulting with their technical advisers, to determine the exact limit of weight that the Government may think necessary, yet I have We shall find, instead of two tons, if not five, at any rate four tons will be substituted. Mr. Chaplin said that this is a matter of experiment, and that the Government, while most anxious to assist
he industries connected therewith in every possible way, felt that hne industries connected therewith in every possible way,
until some experience was gained on the subject, they must bery
und autious. Electrical omnibus traffic can certainly be conducted with suceess with a weight of five tons, and I have very little doubt
that even if we aro restricted to four tons, we shall be able to do
隹 very well with this traffic in our London streets and in other
S. FLood.PAGE.
locomotives on highways.

 orseless ommibuses not found necessary with the existing omnibuses,

 legally permitted to traverse our streets, while the harge three-horse
omnibuse, weighing very many tons, are allowed the free use of the
omion

 I have the honour to remain, Sir,
To the Right Hon. H. Chaplin, M.P., \&c. \&c. ${ }^{\text {(Signed) }}$ S. Floon-PAoE.

 (Signed) H. C. MusRo.
the lequefaction of gases.
Sib,-After careful perusal of both "Zero's" letters, I am still
unable to agree with him. With your permission I will explain why When oxygen escapes at high pressure through a narrow orifice situated in a tube of some length, two things happen: (1) pro-
duction of cold, owing to conversion of sensible heat into mechani cal energy of motion of the issuing gas; and (2) production of
heat, from reconversion of the mechanical energy into sensible heat. (Parenthetically, I may point out to "Zero" that the
issuing gas does do external work, because it does not flow into
in sphere.) As a matter of fact. proved by experiment and observa tion, these two things neutrarise each othpr within a f few inches
from the orifice, and therefore the temperature of the gas become substantially what it was before expansion. But only substan tially; accurately speaking, it is rather cooler than it was, which
meanns, of course, that energy has disappeared somehow. But a "Zero" says, "After the air has left the cooler," there is no possiproper. What then has become of it? There is only one way out
of the of the dificulty; the missing energy must have gone in doing in
ternal work on the gas itself. It is obvious that if ell the gas before expansion were restored after expansion, there
could be no progressive cooling effect since the vould all be bathed in gas no cooler than the compressed gas con tained in them.
This disappear
This disappearance of energy in internal work is, of course, the
Thompsonand Joule effect, of which "Zero" Thompsonand Jouleelfect, of in ungo appears to hold sopoor an
opinion. But liberal as he is in unsupported assertions that it ha nothing to do with the matter in hand, he is very sparing of
arguments. His only one, indeed, is that it is to trifing in arguments. His only one, indeed, is that it is too trifing in
amount to be of any commercial value. That may well be so, but its commercial value is not under discussion. Of course, the Joule effect is trifling, but so is the efficiency of the self-intensive
refrigerating process, an ounce or so of liquid oxygen being all there refrigerating process, an once is to shor the energy abod by a big compressor during twenty or thirty minutes, work., As to a a satisfactory explanation of
the effect I do not know, but Ibelieve that Lord Kelvin, so far from patching up a theory to suit it, predicted its existence from theo retical consid erations before it was experimentally discovered.
I was not concerned in my former letter to discuss questions of priority. It was only as some sort of reply to "Zoro's" strictures on the shortcomings of "dogmatic science" that I pointed out
thatProfessor Dewarhad actually constructed a machine, giving pro.
gressivecooling by theexpansion of gas through asmallorifice, before
Dr. Hampson had done so, and before his patent was published Although at the time I wrote I find I was in error in stating that quite valid, since the specification had not then been publishas and was not till last Saturday. But as "Zero" has indulged some comparisons, may 1 suggest that it is rather an abuse of Linde's chiefly in the use of frigorific agents? One might as well say that the chie
ironclad is inference between an ane boys toy steamer and an
anded spirit, in the other coal, is the suggestion abou will consult No. 158 of the Chemical Society's "Proceedings," ho will find an illustration of an apparatus which works without rigoritic agents, and probably does not weigh as many ounces as Linde's does hundred weights. That seems to me a more im-
portant difference than the use of initial cooling, while a important one is the employment of vacuum vessels as a protection against heat. Of the latter device, which I imagine was the outcome
of dogmatic thermodynamic reasoning, I noticed that Dr. Hampson April or made use in his apparatus shown at Brin's Works. April 22nd.

CRyos.
permanent way.
Sir, -The correspondence on this subject will not be complete
without a reference to the chairs. Since railways began these without a reference to the chairs. Since railways began these
have not altered in any particular, except that they are heavier, being in all cases made of cast iron of the poorest quality.
It sems an extraordinary fact that in an age of steel a steel
chair cannot be made commercially and mechanically to supersede the cast iron chair, the present cast iron chair being quite out of touch with other improvements in railway engineering. For example, many of the chairs weigh 56 lb . each- tat
cast iron to support erery 801 lob or 90 l . of steel rail This is
surely an enormous waste of material. It is not as if the weight of the chair were any advantage ; quite the reverse. There would be less shock if there were no chair, or if the chair were made
lighter and of stronger material, such as steel, which has the requisite properties for this purpose. The relative strength of the two
tian metals being, say, 5 to 1 , the steel chair might with safety be
reduced to 201 lb . or even less, and still have ample margin for reduce
safety.
We.
leaves thatelayers experience daily the fact that when a vehicle flange is broken. This could not happen were the chairs made of similiar material to that of the rails. It must not be forgotten that
until broken chairs are rephaced, traffic is suspended on the line. until broken chairs are replaced, traftic is suspenced on the line.
This causes much delay and trouble, and is noticeable every day This causes much delay and trouble, and is noticeable every day
where there is a lot of shunting, and where heavy mineral traffic is It seems a very curious thing that up till now a steel chair of increasing speeds and weights, its merits would be all the more appreciated. Railways were started with cast iron rails, What April 20th.

SIR, -The interest that is now being directed to this subject by
engineers is in itself an evidence of its importance. There is a new engineors is in itself an evidence of its importance. There is a new
element in the question, which is likely to have an important bearing on the subject ; I refer to a steel chair that is being laid down on some of the Northern and Scotch lines. The trials, which are
of course of too short a time to arrive at a definite conclusion, have so far proved that it is vastly stronger than the old chair, having the Lanarkshire steel works, where the derailing of wagons with One thing is clearly demonsstrated, trat the terailing of a train does not affect the steel chairs further than a slight indent on the base, where they are struck by the passing tire flange. The maker,
a Glasgow firm, claims a deal for them ; but time alone will soon disclose what, if any other merit beyond cheapness and strength, they may possess.
Glasgow, A pril 19 th

LOCOMOTIVE FIRE-BOXES.

Sir, -Referring to the letter from "Adriatic" on the above
subject in your last issue, it is generally considered that direct stays for the crown of the fire-box are less than useless, owing to The fact that since the inner and outor fre- box shells are both
ttached to the fire.box ring at the bottom of the water expansion due to the heat will be, in the case of the inner fire-box, in an upward direction, and as copper is frequently used for this portion of the fire-box, and as its coefficient of expansion is greater than that of iron or steel, the crown of the inner fire-box shell will pproach to the upper part depression of the inner fire-box crown.
expand and thereby cause Now, when crown or bars stays are sued, sinee they support the flat
surface of the inner fire-box crown and act independently of the pper part of the boiler in contradistinction to direct stays, they will not be affected by the expansion due to heat of the inner fire-
box. It is also for this reason that sling stays are said not to be of much, if any, use. Even when steel fire-boxes are adopted the above action takes place to more or less extent, since the inner fire. the outer shell, which is separated by the layer of water in the water space. I agree with your correspondent with regard to the Belpaire type of fire-box, and do not see any advantage that it possesses ore
EDwARD J. M. DAVIEs.
the ordinary type. 24, Harrington-square, London, N.W., April 18th.

the jenny lind

Sir, - A curious story has been circulated to the effect that the
Uenny Lind locomotive was designed as the result of the heating of an outside axle-box. The driving wheels of a certain engine had iside and outside bearings. On one run one of the outer bearings with her inside bearing only; thereupon the outside bearings were with her inside bearing only t thereupon the
dispensed with, and behold the Jenny Lind.
The story is preposterous, and it has not the merit of being new.
If your readers will turn to the "Life of Trevithick," published in 1872 , they will find a somewhat similar story told of an engine running between Carlisle and Preston. In this case it was a lead ngot, projecting from the end of the axle in the wheel bose, alone retained it in its place, while the torn-off bearing was embedded as a solid mass with the fused brass and iron of the axle-box.
I do not pretend to know who designed the Jenny Lind. I fancy the first idea of it was to be found in an engine by Gray on the
Brighton line, but I feel quite confident that there is not a trace of Brighton line, but I feel quite confident that there is not a trace of
truth in the broken axle story, which seems to have been taken Whithout acknowledgment from Trevithick's work, vol. i., page 219, motives, such as that about the 6 ft . driving tire left in the ditch at Tring, the driver knowing nothing about it till he got to Chalk
Farm. A collection of them would be interesting ; perhaps some of your readers will contribate one or two. This about the Jenny Lind may be taken as a sample.
St. Deny's, April 21 st .
the crystal palace.
$\mathrm{SIr},-\mathrm{I}$ am glad to see that you admit to your corresponcence I have reason to think that the directors are not blind to the truth
and if I am not mistaken, they have entertained proposals from
more than one contractor, but negotiations have fallen through. more than one contractor, but negotiations have fallen through.
The problem is not easy of solution, unless the asthetic is to The problem is not easy of solution, unless the esthetic is to be
sacrificed. A line such as that suggested by your correspondent
"Norwood " would he very nely, unless a considerable sum was
"No. spent in ornamental screens. Iam rather disposed to think that spent in ornamental screens. Vam rather disposed to think that
the onstruction of an iron viaduct, in strict keoping with the
architecture of the Palace, extending from the present Low Level architecture of the Palace, extending from the present Low Level
entrance and curving round at the west water tower, would be the best solution. No railway or vehicle would be used. Powerful
iftsof the kind used for the electric railway at King William-street
 viaduct. As the dimensions of this last need not be great, it would
not be expensive. I do not know the difference in levels precisely, but I fancy it is about 50 ft .

M. E.

Dulwich, April 20th.
Sir, - Referring to "Norwood's" letter in The Enginere of the to the difticulty of of getting from tron the Low Lowe, Lonel Station alt into the says as
Crystal Palace Crystal Palace. The remedy for this which I adopt, is to take the
train from West Norwod Station to Gipsy Hill Station, and walk thence to the High Level Station. The walk is a pleasant one, on than that entailed by walking up the many long passages and
thand
staircases from the Low Level Station. Others of my family do the same, and we save thereby time, money, and of atigye. I Icannot
understand the short-sightedness of the Crystal Palace directors understand the short-sightedness of the Crystal Palace directors
in not providing some beterer mode of access than the existing one
into the Pal London, April 18th.

circulation in water-tube bollers.

Sir, -I begleave tocorrect thestatementmade by "Old Tubulous"
in your issue of last week regarding the behaviour of the models show issue of last week regarding the betkinson at the Institutiour of Nat Nave modelis.
sects. Being present all the time the models were working, both tects. Being present all the time the models were working, both
before and during the meeting, I noticed that out of the five
models which were working, only in two of them did the tubes models which were working, only in two of them did the tubes
fracture. I also noticed that one of the models-that of the
Babocock-was working continuously for about four hours without any of thc tub
April 22nd. \qquad Obserter.
the institution of civil engineers. THE THIRLMERE WORKS FOR THE WATER SUPPLY OF
MANCHESTER. Ar the ordinary meeting on Tuesday, the 14th April, Sir
Benjamin Baker, K.C.M.G., the president, in the chair, two communications, dealing respectively with the water supply of Man-
chester and Liverpool, were read. In the first paper, on "The Thirlmere Works for the Water
Supply of Manchester," By Mr. G. H. Hill, M. Inst. C.E., the Supply of Manchester, by Mr. G. H. Hill, M. Inst. C.E., the
Longdondale system of works, which, before the introduction of
Thirlmere water, alone supplied the city, was first briefly described. Thir mere water, alone supplied the city, was first briefly described.
The drainage area of Lake Thirlmere, the new source of supply,
was 7400 acres, but the scheme included the to was 7400 acres, but the scheme included the taking of water from
an additional area of 36000 acres. The geological formation was
the lower silurian, and the water was remer an additional area of 3600 acres. The geological formation was
the lower silurian, and the water was remarabably clear, even in
times of heavy flood. The mountains surrounding the lake were times of heavy flood. The mountains surrounding the lake were
very precipitous, and the floods consequently very large. The
rainfall variod between 100in. and 137in. in wee years, and between
60in 60in. and 80in. in dry years; and the quantity of water available
for the city, atter giving 5t million gallons per day as compensa-
tion to to the river, was estimated at about 50 million gallons per tion to the river, was ostimated at about 50 million collonsen per
tany
dand The area of the lake in its natural condition was
and when raised by the dam it and when raised by the dam it would be 793 acres. The capacity
of the reservoir then formed was more than 8000 million aglions,
exclusive of the water below the surface of the original lake, which was not available.
The water in th The water in the lake was impounded by a masonry dam, the
foundations of which were carried well into the rock, the maximum Youndations on which were carried well into the rock, the maximum
depth beeing 5oft. below the bed of the rive. It was constructed
of concret, in which large masses of rock were imbedded, faced
with heeve, with heavy rock-faced masonry; and, to comply with the Act of
Parliament, a public roadway had been made along the top. The
discharge tunnel for carrying off surplus and compensation water Parchament, a punnel for carrwing off surplus and compensation water
disharge triven through the small isolated hill which rose on the centre-
was line of the dam. Upon it was sunk a shaft, in which the evaves
for controling the water in the pipes laid in the tunnel were placed. The waste weir was constructed in the solid rock at one
end of, and separate from, the dan a and ange basin, in which
the compensation water could be measured, was provided. New
 wiping F It started at a circular straining woll, lined with concrete
and 4oft. in diameter into which the water was admitted from the lake through a tunnel about 100 yards long. Upon this tunnel
and adjoining the straining well was sunk a rectangular shaft and adjoining the straining well was sunk a rectangular shaft
lined with concrete in which the valves controlling the supply were
placed. A hydraulic crane was provided for ifting the strainers in the straining well for washing, the values were also worked by by
hydraulic power. The water after leaving the straining well hydraulic power. The water after leaving the straining well
entered the Dunmail Raise tunnel, 5188 yards in 1 tength. Some
of the ther long tunnels were the Moor Howe, 3040 yards; Nab of the other long tunnels were the Moor Howe, 3040 yards; Nab
Scar, 1419 yards ; and the by compressed air was largely used for driving the tunnels, which
were iined with concrete sides and arching only where the nature
of the ground required it but the concrete invert was continuous were lined with concrete sides and arching only where the nature
of the ground required it, ,unt the concrete invert was continuuus
throughout. Itt internal width was $\overline{\mathrm{ft}}$. lin., and the height ft . throughout. Its internal width was 7 ft . lin., and the height 7 ft
The cut-and-cover portion of the
concrete, the internal dimensions beingecuct was constructecte concrete, the internal dimensions beeing the same as in the case
the tunnels. Manholes and ventilators wero provided eve quarter of a mile. The bridges were in all cases of masonry, and
provision was made for emptying the aqueduct at convenient
points. Throughout the tunnels and cut-and-cover the inclination points. Throughou
was 2oin. per mile.
Wherever the
deep to be crossed by bridgges, five parallel linese of cos valirens pipes
were used, 40in. in diameter. As first instanment of ten millon gallons per day was at present only required by the city, only one
of these pipes had been laid. They began, in the case of each
syphon ine syphon, in a rectangalar chamher, into which the concrete aque-
duct discharged, and in which an automatic arrangement was
placed at the mouth of each pipe to shut off the water from it in case of a burst. The total weight of one line of pipes, 45 miles
long, was about 5.200 tons. The greatest care was taken in the manufacture, coating, testing, and handling of the pipes. each of
which had a number cast on it, which was recorded, together with which had a number cast on it, which was recorded, eogether with
the tests applied, the dates, ultimate position on the aqueduct,
and the angles, double-socketed bevel castings were used, about 12 in. in
length, and varying between 1 deg. and 10 deg. For larger angles a combination of these bevels was used, a spigot pipe 3 ft . long
being placed between each pair of bevels. AAl jonts.
solid with lead, which was provented from runging into a spring ring., The section of the the lead was wedning into thaped, pipe beory
blown joints. The longest syphon, that crossing the velle of
 pipes
ribs
The
The number of valves on the 45 miles of piping was very large,
Thd included stop of discharge valves, for emptying the pipes at convenient places.

The self-acting valves had fulfilled their purpose perfectly in the
case of the fow bursts which had occurred, the water being complotely shut off. The mechanism was set in motion by the increased energy of the water due to its greater velocity in the event of a
burst: a a pair of heavy weights was thus released, and closed a disc valve in the main, the operation being controlled and regulated by a cataract cylinder. An air vessel was provided to
obviate shocks which might.
cocur duming of water : means were also provided for chappage of the column of water: means were also provided for charging the air
vessel. All stop valves, self-acting valves, and reflux valves were vessel. All stop valves, self-acting valves, and reflux valves were
anchored, the latter in one direction only. Valve houses had been
bilt bize to cove the large stop valves and self-acting valves, of sumficient sive to cover the five lipes of pipss ; the roofs were of glass fixed
in wrought iron framing; firders were fixed capable of carrying
blocks and tackle for raising any part of the valves requiring
${ }^{\text {repair. }}$ The
aqueduct delivered into a service reservoir at Prestwich,
anchester, where a straining well was provided with lifting and washing arrangements.
The works had been let
ontracts. Portland the quantity being about 100,000 tons. The total cost of the work mentary expenses, which was about $£ 2,800,000$, including Parlia mentary expenses, which were excepti
scheme would cost about $£ 4,400,000$.

THE VYRNWY WORKS FOR THE WATER SUPPLY OF The second paper was entitled "The Vyrnwy Works for the
Water Supply of Liverpool," by Mr. G. F. Deacon, M. Inst. C.E. The Vyrnwy reservoir, now known as Lake Vyrnwy, occupied the
site of a post-glacial lake, which had been filled chiefly with alluvial detritus to a height of about 45ft. above the original water
level. That level was maintained by a bar of rock at a narrow part of the valley such as was found in most glacial lake basins. On removal of the dislocated or otherwise unsound rock in this
bar, a sound foundation was met with about 15 ft . lower, so that the deepest part of the foundation was nearly 6oft. below the
ground level ; the eight of the dam to the sill level being 84f.
grove foundation 144ft.
Below the sill of the dam and above the outlet to the aqueduct,
ake Vyrnwy contained 12,131 million gallons. Its area was
 crosss.section did not differ widely from a figure with a horizontal
base 2000 ft . wide, having a depth of water over it of 7 Oft., and end slopes of 24 to 1 .
The author row special attention to the methods adopted for securing water-tithtntenss, and showed by the resenults obtaineded from
this structure and from a concrete culvert-the walls of which this structure and from a concrete calvert- the walls of which
wero only 18 in. thick- subject t a vertical pressure of water of
56 ft that concrete might be made perfectly water.tight ing the use of so much water as to render it incompressible when
first placed in sith, and by rammig it until the jelly l -like condition
indicative f indicative of incompressibility was obtained.
Thirty-three per cent. of the stonet
Thirty-three per cent. of the stones used in the dam weighed
between four tons and ten tons each. The hearting.stones were roughly dressed on their beds, but were otherwise left quite rough. The face stones had rectangular faces, and no part of any stone
was allowed to come within lin. of any other stone. The stones and rock were rendered scrupulously clean with wire brushes and
jets of water under pressure. The foundation rock was drained up to above the back-water level, and the total leakage from the up entral 8000 square yare ys of of rock foundataion, ingluding that
chrough the dam, if any, amounted to about two gallons a minute. through the dam, if any, amounted to about two gallons a minute.
The specific gravity of the rock of which the dam was built was
 ascertained by comparing the measured volume of the work with ascertained by comparing the measured into it. all of which were
the total weitht of the materias put
carefully weighed. Crushed rock was largely used in the preparacarefully weighed.
tion of the mortar.
diameter of securing water-tightness of the two culverts, 15 ft maiameter, through the dam was explained. The compensation
water to the Vyrnwy and the Severn, of which it was a tributary was 10 million gallons a day, and 40 million gallons a day in addition, during four successive days in each of the eight months from
February to October inclusive. The modes of gauging were also February
set forth.
water of the lake, provided at a vith strainainers of copper wire gauze, which were removed, washed, and replaced wholly by hydraulic
machinery. The outlet valves consisted of a series of short cylinders standing upon one another so as to form a vertical pipe, being opened very readily by hydraulic pressure. Thus the water
was drawn off atany level desired. The aqueduct was constructed for the passage of 40 million gallons per day or more, with the ex
ception of the iron syphon pipes and some other portions not required until later, and every part of the work now constructed would pass the fuil amount of between 13 million and 15 million
gallons a day required as the first instalment of water. The gradient of the aqueduct being from 4.5 ft . to 6.87 ft . per mile, cast iron pipes under pressure had been used, except in the three
tunnels constructed at the hydraulic gradient, and in certain special places where steel had been employed. Throughout the syphons the hydraulic gradiert had been varied wherever it was economical to vary it, subject to the total loss of head amounting to whatever
could beafforded in each case. All specially expensive parts, such could be afforded in each case. All specially expensive parts, such
as valves and pipes under heavy presure or in tunnels, had been
considerably redued in dian

The filter-beds were at Oswestry, where necording gat gase full information as to the variations in the water passing through
the aqueduct from time to time. The five balancing reservoirs on the aqueduct from time to time. The five balancing reservoirs on,
the aqueduct were generally described, and the Norton tank, where the balancing reservoir was at a height of 113ft. above
Norton Hill, was particularly referred to. The tank contained about 650,000 gallons, and consisted mainly of a steel basin in the
form of the segment of a sphere in tension, depending from a steel form of the segment of a sphere in tension, depending from a steel
ring in compression, resting through the medium of an expansion ring, upon the masonry.
crossings, including the Weaver Navigation and the Manchester Ship Canal, were generally described. The crossing under the
river Mersey was the most difficult portion met with. The pipes had been originally intended to pass through the bed of the river,
but Parliamentary exigencies rendered it necessary to submit reference clause which resulted in a tunnel having to be constructed through ground fall of water under a head of 517t. The work was, however, successfully perform
in every respect satisfactory.

> American Patevts Records. - The U.S. Patent-office has issued 3075 patents for inventions, contrivances, and discoveries in
telegraphy.
Over 25,000 inventions for the manipulation of metals preparing patented. There are 636 patented fuels or methods o been issued for the var. ous kinds of electrical appliances. There
are 1771 patents on the mechanism employed in sinking artesian or oil wells. Railways and railway eappliances are represented by for much ant ention, no loss than 736 devices for these purposes
having been patented. There are 4240 models of patented pumps in the Washington office.

TRACTION ENGINES ON ROADS.

The Select Committee of the House of Commons appointed to investigate the working of the laws relating to the above subThursday the 16 the fime since the to was Mr. F. Bacon Frank, vice-chairman of the West Riding of Yorkshire County Council, and chairman of the Rural Dis
trict Council. Mr. Frank stated that there were forty-nine raction engines licensed in the West Riding, the revenu derived from which was $£ 450$ annually, which amount he did done to the roads. He complained that Clause 23 of the Highways and Locomotives (Amendment) Act of 1878 was not clear
factorily
Mr. Trevor Edwards, the solicitor to the West Riding County Council, the next witness, considered that the maximum limit of speed might be increased in towns and villages from two to three miles an hour, but that on the country miles. Asked regarding the number of men employed on each engine, the witness gave it as his opinion that the present number-three-was not too many. He recom licensed-a course he considered necessary for public safety. This licensing he would place in the hands of the county隹 of the engines. Other recommendations made by the witnes were that no more than three wagons should be hauled by one locomotive, and the total length of such train, including engines, be not more than 54ft.; that in addition to the two
lights carried on the front of the engine at nights, there should also be a red light carried at the rear; and that the clause relaling chexraordmary tramic should be ame Brided. Committee of Lancashire County Council, having charge, roads at an annual cost of $£ 137,000$ and $£ 25,000$ respectively stated that the annual cost per mile of these roads varied between $£ 20$ and $£ 600$, according to the district. The cost of a licence taken out within the jurisdiction of this Authority was stated to be $£ 5$, while engines licensed by neighbouring counties could have their licences endorsed for a nominal
fee of 10 s .6 d . Mr. Hulton endorsed the recommendation of the previous witness regarding the increase of the maximum limit of speed in towns and villages, but satisfactory. He did not think that uniformity of prohibited hours could be achieved, since the conditions necessary for working in different counties and county boroughs were so dissimilar. He recommended the legalising of the Bolton block tires, which had given great satisfaction in Lancashire.
Mr. J. Vickers Edwards, the surveyor to the West Riding of Yorkhire County Council, next gave evidence, in which he stated that their roads were of a condition quite suitable for ordinary horse traffic, but not strong enough for locomotives. He approved of the principle of the Bolton block wheel, but
considered it very liable to get out of order, and consequently inflict much damage to the road surface.
At the proceedings of the Committee on Monday, the shire ; Mr. Thomas, A.M. Inst. C.E., county surveyor, Buckinghamshire ; and Mr. Phillips, county surveyor, Gloucestershire, were the witnesses examined. Mr. Moncur said there and the prohibited hours part of the night. He would not advocate the increase of the maximum limit of speed, but would place the choice of
type of wheels in the power of the Local Government Board He would limit the use of traction engines to roads 18 ft . and upwards in width, and thought it advisable to restrict five tons. The other byief recop gradients of 1 in 10 to be hauled by more than three trucks should be allowed to the rear at nights engine, and that a red light be carried in engines licensed in Bucks, the licence fee being $£ 3$, and that there were no prohibited hours for working. He would increase the maximum limit of speed on country roads to
six miles, but recommended no addition to the speed in towns and villages. His experience of the construction of wagon wheels showed that the tires were frequently too
narrow and suggested that they should have a clear inch in width for each ton carried. As regards the extraordinary traffic clause, he had no complaint to make, but thought
that, with the increase of speeds indicated, the man in front of the engines might be provided with a cycle.
The last witness, Mr. Phillips, informed the Committee that there were no prohibited hours for working in Glou-
cestershire, and that no accidents had resulted from this arrangement. The licence fees varied from $£ 10$ per annum for engines of 10 tons and upwards, decreasing el per ton
below this weight. Mr. Phillips recommended the alteration of the clause which specified that all wheels should be cylinand agricultural engines, and the insistence of the inspection of engines by the registration authorities. In place of the annual licence the witness proposed a novel scheme for as a reasonable rate $\frac{t}{} d$. per ton per mile. This would necessitate the forming of small sub-committe. of cour nould necessis and the detective duties might be performed by the weights and measures authorities. He stated that by this arrange-
ment about $£ 700$ per annum would be derived from the traffic in Gloucestershire, as against about $£ 180$ as at present satisfied with the and that owrs the the rdine traffic clause were abandoned. The witness stated that to raise the quality of the Gloucestershire roads, which had no yet been so treated, up to locomotive standard, would involve the expenditure of about $£ 500$ per mile, or $£ 250,000$ alto-
gether, a sum which he did not consider ought to come out of the pockets of ratepayer
The Committee again adjourned until yesterday-Thursday.

FOREIGN AGENTS FOR SALE OF THE ENGINEER.

CHINA.- Krily and Walsh, LD., Shanghai and Hong Kong. France.-Boyene axd Cuevilut, Rue de la Banque, Pari
Germany.-Asuze and Co., s, Unter den Linden, Berlin.
 ITALY.- Loezcals, Bombay And Co., soz, Corso, Rome. Bocca Freris, Turin.
Japan.
Kity

 AUSTRALIA.-Gordos Asbury. Gotch, Queen-street, Melbourne; George-
 Little Collins-strect, Melbourne: 7, King William-street,

Turner and Hexdrrson, Huni
new zealand.- Uptow and Co., Auckland.
NEW ZEALAND.-Uraig, J. W., Napicr
 UNITED STATES OF AMERICA.-INTERSATIONAL NEws Co., 88 and 85 , Duanestruct, Ner York.
Subscriptoo News Co., c,

CONTENSTS.

TO CORRESPONDENTS.

Registered Telegraphic Address, "ENQINEER NEWSPAPER,

books on railway signals.

reversing propellers.
(To the Editior of The Enginer.)
SIR,-Will any reader kindy let me know the name and address of the
J. W. B. makers of rev.
April 2st.
dr. angus smithis composition for coating water pipes. (To the Butior of The Enginecr.)
Sin, Wiil any readen tell what are the materials usei in this composi-
C. H. B. tion, or where 1 an fin
London, April 2 Ist.
superheating steam.

ADVERTISEMENTS.

 Prices for Dospplay ad Advertise
will be sent on application.
Advertisements cannot be inserted unless delivered before 8ix
o'clock on Thursday evening o'clock on Thursday evening; and in consequence of the
necessity for going to press early with a portion of the edition,
ALTERATIONS to standing advertisements should arrive not Letters relating to Advertisements and the Publishing Department of the
paper are to be addrased to the Publisher. Mr. yddney White; all other
letters to be addressed to the Editor of The ENornEER.

meetings next week.

 lanterr. thwate, F.G.S.
 April 29th,
W. Badger.

 North-East Cosst Isstitutoy or Exorserns AND Shipguliders.
Saturday, April 25th, at 6 p.m. Discussion on "Some Structural Details of

THE ENGINEER

APRIL 24, 1896.

horseless carriages

Ir is absurd to doubt that a great and novel industry is springing up in this country. The self-propelled vehicle is with us, and its popularity will not be less than that of the bicycle. The history of the movement in favour of mechanical road carriages has yet to be written. History
is being made daily. But our descendants will probably is bender not that the horseless carriage has caught the public fancy, satisfied an all but universal want, or gratised a ubiquitous desire, but that we, as a na sented for so many years to leave the forld a hishays has done much to educate public opinion. We have learned that the roads of a country can be employed without the aid of horses and without walking on them. The fact was known to comparatively few until recently. Now to the horseless carriage is as ne step from the bicycle tween the horse drawn vehicle and the bicycle. It is impossible to forecast the results of the adoption of the new mode of locomotion with either certainty or profit. But it is not difficult to understand why the of movement. A little be popular. The age is an age most men that the great difference between the world of to-day and the world at the beginning of the present century is that locomotion of every kind, and in all its
endless forms, is infinitely more facile and more abundant now than then. Civilisation and locomotion go together. Not locomotion of the individual or the thing only, but locomotion of thought. It is because he has given the world roads and railways, and steamships and telegraphs, that the engineer has been the civiliser of the world. He has done more to promote material progress than the warrior, the statesman, or the philosopher. And the
desire for locomotion has grown, and is growing. More people travel each day than travelled the day before. Our ships steam faster, our trains run more quickly, year after year. The horseless carriage will come to satisfy the wants of a humanity which finds the railway too untrivial.
Very largely, no doubt, the advent of the oil engine has promoted the growth of the horseless carriage. Legislation has laid a heavy hand on steam, and has steam- infrinite harm not only by prohibithg topping in vention and the development of ideas. Inventors and
engineers have been assured so strongly by legal enactments that a steam-propelled vehicle must be a nuisance that they have come to believe it. The petroleum motor has not yet earned or received a pestilent parliamentary has not yet earned orlic are willing to believe in it, though they will not believe in steam, knowing the while not much, if anything, about either; and lessin any case about much, if anytning, about either, We are much mistaken, however, if it is not yet found that steam will hold its hown against the petroleum motor. Its possibilities are far greater now than they ever have been hitherto. We can produce engines of a lightness undreamed of in the days of Hancock or Gurney, and boilers which, fired with petroleum, will realise the wildest dream of the inventor
in the matter of small size and power. A copper coil in the matter of small size and power. will, asper we have which can be carried on a man's propel a carriage carrying seen, make steam enough to propel a carriage cearyub it is persons on an minferent road a good pr may do, it is indisputable, wateve steam a be or may do, that the notion of pence have not hesitated to push praise of the light oil engine to the extreme limits of veracity. The public has been promised a vehicle which will leave nothing to be desired, and the public has wondered how it has done without that vehicle so long. That is one reason why the present revement is so powerful, so widespread, and sopid. But is not all ; the public needs to be educated, and the think we are justified in taking credit to oursel, have played in promoting the establichment of the new industry.
For years we have carefully placed before our readers particulars of every advance that was made in steam locomotion on common roads. We have persistently ficationed the cause of the rract. When in France, where fication of legislative restriction. When in France, where the law of highways does not kill inventled hy brought before the public, we despatched a special combrought before the public, we despatched a special commissioner to examine, investigate, and describe for the benefit of our readers; and we venture to say that the Enginere was the first journal in England to tell the world what was being done in France. So impressed
were we with the results of our investigation, that we decided to do all that lay in our power to promote the decided to do all that lay in our power to promote the
construction and use in Great Britain, and in British possessions, of the self-propelled vehicle. To that end we took two steps of prime importance. To stimulate invention we offered substantial money prizes, and we were successful in enlisting the warm co-operation of two successful in enisting the wamplopit ectrici The names of Sir Frederick Bramwell, Mr. J. Audley Aspinall, Dr. Helkinon, are sufficit guarantee Aspinall, and Dr. Hopkinson, are a sumficient guarantee,
not only of the trustworthiness of the trials which will decide the awarding of our prizes, but of the real importdecide of the undertaking as a whole. We cannot but think that the possession of a first prize may be taken as think that the possession of a first prize may be taken as a certificate of merit, possessing an unparauleled signifcance. The severe nature of the tests to which the competence of the judge to estimote at their true value each phase of the performance of the vehicles, will impart phase of the performance of the vehicles, will impart maximum value to the fail to appreciate.
But it was not enough to promote the construction or development of the horseless carriage. It was essential that our highways should be thrown open to its use. To this end we promoted a memorial tothe Government, and
the host of signatures we have obtained in every centre of industry in the kingdom could not fail to impress of industry in the kingdom could not fail to impress
Government, and assist the good work. The mere demand for change in the law could effect little unless it was backed up by substantial evidence of the soundness of the demand and the extended range of the desire for a change. We have left nothing undone to supply this evidence, and our efforts have been, we are glad to say, completely successful. The passing of Lord Harris's Bill is, we venture to hope, now a mere question of time, and long before the date of our trials the high. ways will be thrown open to the use of the self-propelled carriage, under the same restrictions as those We ask for regulate the use of the horse-drawn vehicle. with no less. At every turn we hear of exhibitions, competitions, and prizes. They will all do good, no doubt. Far be it from us to say that they will not. But in the midst of the hurry and dust, and confusion of tongues, it is possible that the fact that to The Enginerr, the inception of the whole movement in this country is mainly, if not wholly, due may be forgotten; and we have been too much gratified by the success which has hitherto attended our efforts to suffer the truth to slip into oblivion. It is not every day that a journal can accomplish so much for the promotion of a new national industry as The Enanerer has done. That must be our sufficient excuse for insisting, as we do, on the fact.

engineers for the royal nayy.

To state opinions as facts is a not unusual method of controversy. A notable example is supplied by a fetter written by Mr. Albert Durston, Chief Engineer of the Navy, in reply to one addressed to him by Mr. Adamson, secretary of the Institute of Marine Engineers. In our last impression we referred at some length to a paper
read by Mr. F. Cooper on "Engineers and the Royal Naval Reserve.; We have not got a copy of Mr. Adam. son's letter, which is of the less consequence that we can gather its tenour without difficulty from Mr. Durston' reply. That gentleman says: -" The paper on N B engineers is a most interesting one, and the matter is well put. Unfortunately, it is based on the erroneous statement published in THE ENGINEER, and it takes no account of our staff of chief engine-room artificers, and engine-room artificers who correspond to the junior engineer of the old navy or the mercantile marine. When these are taken into account our engine-room staffs these are taken into account our engine - room staffis
compare favourably with the mercantile marine. As to
points named in your letter (1) assistant-engineers for temporary service, as advertised for, the regulations will parents have made some sacrifice for them. We do not, parents have made some sacrifice for them. We do not, (2) Engine-room artificers, as I have said, do junior
engineers' duties, and I think their case well deserves consideration as to whether some of them could not have warrant officer's rank. (3) We should not, except in an emergency, draft engineers direct from the mercantile into the Royal Navy. (4) I think it would be a most desirable thing to put R. N. R. engineers on same foo
as to training, dc., as the executive or deck officers."
as the statement referred to as
lished in our impression for March 7th "was published in our impression for March 7 th last year.
Whether it is erroneous or not is a matter of opinion, and not of fact, as Mr. Durston seems to think. Mr. Durston, it must be understood, speaks for the Admiralty, and what he has to say on the subject we may regard with
strict propriety as an Admiralty utterance. We have stated, it will be remembered, that at least 1100 engineers and assistant-engineers are needed, and that a less number would not give the official complement to each
warship that may be put in commission. We carefully eliminated all craft which no longer deserved the name of fighting ships; and we took for granted that if war on anything like a large scale broke out we should need all reason to believe, do not contemplate the use of all our warships under any conceivable circumstances; and they have arrived at the conclusion that 850 engineer officers of all grades are sufficient to meet the needs of the Navy for the next twelve months. Now this may very well be true, and yet the statement which we have made, far from
being erroneous, will remain strictly accurate. We assert, and we advance it as a fact, that there should be on the Admiralty lists a sufficient number of engineers to It appears to be useless to toss, always and at all times. ships, while we cannot utilise what we have got. But it may very reasonably be argued, that this is a matter of ships of war we should need if war broke out. It happens point from a very recent expressority opill scan on this questioned. Lord Charles Beresford was the guest of the Sheffield and District Press Club on Saturday night, and Lord of the Admiralty said we should not want all our ships. That he utterly denied. We were short of ships, had more. There ought to be a ship's company rating for every ship in the service, without touching the Reserves. Between April, 1897, and 1899, we should have to get
22,000 men. Where was the First Lord going to get them? It was a very different matter getting men in require engine-room artificers, artificers, and stokers. These men were all skilled men. It took five years to make a seaman-gunner who could handle guns. In the 10 per cent. of those on board were non-combatants. In combatants, so they could understand how cent. of non of a ship's company had altered. The position of being not being ready for requirements three years ahead, was We dangerous position.
We direct attention to the words which we have opinion. We are content to take Lord Charles Beresford's word. But we do ourselves assert-and that as strongly her full complement of engineers. Probably if Mr . Durston will look at the matter from this point of view erroneous, it war from The Engina in the most minute particulars. The difference between ourselves and the but the nuber one concerring Provided all the ships in the Navy of the classes we particularised are to be available man them. Mr. Durston does not, we take it, dispute this. It cannot be disputed in the face of the Navy List.
The contention of the Admiralty is that all the ships we possess would not be available in war time, whether we able and even startling proposition. We shall be surprised if we have heard the last of it.
It may be urged that this is not what the Admiralty
eally means. That they " back their luck" that there will be no war, and that, consequently, there are engineers in abundance. We fancy that very recent events must have excited some little doubt at Whitehall as to interesting to know what percentage of our fleet our Admiralty contemplate putting in commission on emergency. We could then form some opinion as to whether let us, for the sake of argument, conclude that only a percentage of our fleet would take part in a war, and go on to ask on what basis 850 officers are held to be sufficient. So far as we can gather, no provision whatever is made in this estimate for the expenditure of engineers. A Admiralty estimation endowed with charmed lives, which will carry them safe from violence, and with iron constitutions which will enable them to sustain the mos down. Our estimate of 1100 officers provides no reserve of any kind. There is nothing to draw on if a man is invalided; no one to take the place of a man killed or Enginese lies in under-estimating instead of over-estimating the number which should be available. We may knoek off 30 per cent.of all the ships on our list, and then
in war time 1100 would be all too few.

So much being said in defence of our accuracy, we may go on to consider the subject from another point of view.
Lord Charles Beresford pointed out in the speech to which Lord Charles Beresford pointed out in the speech to which
we have just referred, that the Admiralty are going to we have just referred, that the Admiralty are going to
add forty-six ships to our fleet within the next two years. add forty-six ships to our fleet within the next two years.
We shall be under rather than over the mark if we say that 100 engineers of various grades will be needed for these vessels. It is true that many of them are torpedo these ressels. It is true that many of them are torpedo to carry less than six engineers each. Where, we ask, do the Admiralty propose to get these men?. And we may ask further, sistent in its pooticy of under-manning the engine-rooms
of our fleet? The money saved is such a small sum by of our fleet? The money saved is such a small sum by comparison with other items of expenditure, that we can-
not believe that parsimony or a desire to save has anything to do with the matter. Is it not a fact that we have not more naval engineers because the Admiralty is most desirable. The official statement that all the men wanted are to be had must be discounted. Everything depends on how many the Admiralty say are necessary. Instead of 850 ofticers, they may hold that
50 would suffice. They may think that all the men they can get, however few, are enough. On this point we want something more reassuring than a mere expression of Admiralty opinion. If we had an engineer as First different aspect.
We gather fro
We gather from Mr. Durston's letter that the Admiralty egard engine-room artificers as competent to discharge ndmiralty rely. Is it too much to suppose that the Admiralty rely on the artificers to supply the deficiency that it is not. If so, the inconsistency of the policy of Whitehall becomes more than ever manifest. We are told hat the naval engineer must have an exceptionally excel ient technical education, and in the same breath we are informed that artificers are competent to discharge the
duties that highly trained gentlemen are expected to perform. It really is time, we think, that the Admiralty should make some specific statement of the nature of its policy as regards engineer affairs; there is nothing than reticence. The First Lord of the Admiralty virtually ignores the engineering branch of the service in his speeches. Others are not more open. purpose is served by silence, and much would be gained future in manning the engine-rooms and stokopted in our ships of war, and the reason why two engineers and half-a-dozen artificers can do the work in a man-of-war with their greasers, \&c., in an Atlantic liner, and of the part which the artificer is intended to play in future lucidation; we should be satisfied, howeverer as with definite information on the points we have stated.
the incandescent gas light case.
Public interest has been aroused in no common degree neandescent Gas Light Company been brought by the De Mare Incandescent Gas Light System, Limited, an the Sunlight Incandescent Gas Lamp Company, Limited, for infringement of the former corporation's patent nce once, and directly affecting the convenience and pocket. parative obscurity, and receive brief paragraphic notice insta daily press. The only difierence in ine presen one coming immediately and literally before the eyes of the community. Throughout the country, in every little tradesman dazzle their customers and display their goods, and both users and onlookers feel that they have some personal illumination known succinctly butinexactly as the incan descent gas light. The state of general opinion is accurately indicated by the appearance in the Times of Monday Saturday but also of a leading article recapitulating an commenting upon those judgments. A judicial delivery on a patented process for the production of synthetic
indigo at a cost lower than that of the natural material might occur and pass alm enat of the nad, although its effect upon one of the great industries of the greatest of our dependencies might prove to be colossal. That the obvious is always to be met with is more than an etymorecent contest possesses interest of a technical character sufficient to warrant its consideration in these columns. For months it has been a matter of common knowledge that the Welsbach system of lighting, owned and worked by the Incandescent Gas Light Company, has, after a Iong period of probation, advanced to an assured industhave been gradually overcome by the pe severing research of the company's technical advisers, and alight has been produced which for economy and efficiency takes a high rank. With the remembrance of lean years the company, being a trading organisation, no doubt prices charged for burners and mantles bore suted. The relationship to their cost of production, and the public legitimately enough, was made to pay pretty stiffly for a valuable idea. The natural result followed. Others were anxious to reap part of the rich harvest which it was evident could be gathered from the not wholly intelligible anxiety of civilised man for a superfluity of artificial light. The principle underlying all varieties of incandescent gas last few weeks, and needs no re-statement now. It is enough to say that inventors seeking a method to rival
the Welsbach light must devise a difierent form for the refractory material to be heated, or must employ a different refractory material, or must prove the Welsbach patent made, but with indifferent success. In the defence offered by the De Mare Incandescent Gas Light System it was contended that the patent was not novel, as the production of light by heating certain refractory substances has long been known and practised. This a judgment showing a remarkable grasp of a subject not without complexity, stated that, in his opinion, the patent covered perfectly new ground and had shown the road to success in a region where before was failure unrelieved. Further, it was argued for the defence that the specification did not give instructions sufficiently precise to allow of the manufacture of mantles by the prescription included therein ; this was also overruled. Thus for the validity of the Welsbach patent there has been issued a weighty pronouncement. Beaten on this point, the defence resorted to the denial that their method of light. ing infringed the Welsbach patent. The structure used the judgment as consisting "of a number of threads tied on to a platinium wire, and arranged so as to form a sort of fringe, all the threads of which are brought very allowed to separate as they leave it, so that the apparatus looks like a housemaid's small brush, the cross-sections of which would take the shape of a fan." The refractory erbis and mosio and in the opinion of the Court fall within the sope the Welsbch secification. Differ ences in the mode of manufacture and in the design o the finished plume from those of the Welsbach mantle to exonerate the defendants from the charge of infringe. ment. Judgment was accordingly given against the De Iare Company, and, should the decision be upheld on appeal, the manufacture of plumes of the refractory rare
earths must be discontinued until the lapse of the Welsbach patent.
The second case-that against the Sunlight Company different conclusion. The refractory structure manufactured by the Sunlight Company is a hood or mantle sarcely distinguishable in form from that made by the which it consists, however, is composed of 50.60 per cent. which it consists, however, is comma, about 30 per cent. of zirconia, and a top-
of alumina
dressing of chromic oxide. The last named is applied by spraying a solution of a chromium salt on to a mantle made of alumina and zirconia and igniting the composite product. Mr. Justice Wills considered that the large difference in the oxides used from those employed in the Welsbach mantle removed this hood from the domain of the Welsbach patent which specifically embraces rare earths, whereas none of the oxides adopted by the Sunthis chemical category. Some stress was also laid in the judgment on the homogeneity of the Welsbach mantle, quality being presumably brought about by the process of spraying the chromium salt on to a skeleton preview, for seeing that the chromium is applied in a soluble state to a porous material it will penetrate the latter to a ent and may even saturate it, forming ub the simultanture almost as intimate as that produced We are, therefore, inclined to believe, that the essential ground for allowing, as was ultimately done, the claim of
the Sunlight Company's patent to be considered ine Sunlight Company's patent to be considered no nature of the oxides used rather than in the particular mode by which they are formed into a mantle. Thus the Sunlight Company is in the present position of affairs, free to make and sell a mantle of shape substantially identical with that of the Welsbach device. Disregarding the mantle depends on its efficiency as compared with that of the Welsbach, and on its prime cost.
The result of the two actions at law, which we have sketched above, goes a long way to confirm what we have sind. There is a strong disposition-and on the whole it is a healthy one-on the part of the Courts to uphold, if possible, a patent which is new and useful in a given
field, even if foreshadowings of it can be adduced as anticipations. At the same time, although a fairly liberal interpretation of the specification of a patent of this class may be expected, it not infrequently happens either that the specification claims more than can be shown to be proved to be practicable in a way peculiarly poignant, viz., by its successful exploitation at the hands of a rival in trade. The protection of modifications of a process by separate patents, instead of by numerous claims or an advisable where the ingle specification, appears to be and opposition is probable. With regard to that aspect of the case which has to do with the evidence of experts on both sides, we should be silent were we not thoroughly convinced of the necessity of iteration. It is not insig. views, has adopted the opinion which we have oftentimes expressed, and declares that picked technical assessor judge aids a jury on points of law, would much facilitate the hearing of cases lying outside the knowledge of the Court. The attainment of these desirable ends would be sonable compensation for the regrettable loss of many

THE GROWTH OF STEAMSHIPS.
THE return of the vessels in course of construction at the

Abstract

of special interest. There is first shown the fact that out of all the steamships building, steel was the material used except in a trivial quantity; and that is due to the fact that ron and wood are only used in the construction of a few steamers which average 120 tons each, and are thus shown steamers which average 120 tons each, and are thus shown not to be for ocean purposes; whilst, on the other hand, the average of the steel steamships building was about 2250 tons each; and in only a slightly minor degree, similar remarks apply to the sailing vessels that were in course of construc- tion in the same quarter. Out of some 400 vessels building in the United Kingdom, the largest proportion-more than a seventh-is of vessels between 3000 and 4000 tons; and the even in the numerical contrast, the comparison is in favour of the large steamers. In Belfast, the average size of the vessels building is very noticeable, it being over 5300 tons for vessels building is very noticeable, it being over 5300 tons for both sail and steam together, an average which does not seem both sail and steam together, an average which does not seem to be attained by any other of the British districts tabulated by Lloyd's returns. At the same time, it is noticeable that by Lloyd's returns. At the same time, it is noticeable that on the Continent there are many vessels of large dimensions out of the vessels building there, seven were of an average o 5900 tons each, but this is the average of 5900 tons each, but this is the average of the large vessels only-the smallest vessels not being included in the tables. Apart from Germany, there does not appear to be any very large average attained by the builders, though in one of the French districts, the large vessels in course of construction already made as to the exclusion of small vessels from the returns. The fact, however, may be looked on as settled, that the tendency towards the building of large steamers continues, and that there is now a determination on the part of some of the foreign builders to participate in the orders for the construction of these vessels of greater tonnage. How far it will go remains to be seen, but the large steamships will far it will go remains to be seen, but the large steamships wil increase the share of the work of the world over the seas they have been doing.

LITERATURE

Polyphase Electric Currents and Alternate Current Motors,
By Sinvanus P. Thompson, D.Sc., \&c. London: E. and F. N. Spon. 1895.

The author delivered a course of four lectures at the Technical College, Finsbury, on the subject of "Poly phase Currents, and has now published the matter with
many additions, in the form of the present volume. Little has so far been done in this country with polyphase Little has so far been done in this country with polyphase
currents, and the author offers his thanks to German and Currents, and the author offers his thanks to German and use. The addition at the end of the volume of a full
bibliography of the subject, and also of a list of British patents, will be found of great use. The book opens with a sketch of the construction of the ordinary alter nator, and diagrams show how the current curve is
caused to lead or to lag behind the volt curve. In our opinion the graphic method is decidedly the most useful for dealing with this subject; and the Zeuner type of referred to in the first chapter, and is very useful for showing the momentary pressure on each of the three wires of a linked system. It seems strange to be
reminded that the original Gramme machine, built about 1877 , was in reality a polyphase generator, but the cirsuppose that Gramme realised the possibility of linking up the different monophase curis. The author gives, form of polyphase generator, and this is followed by description of the now historical machines used for the Lauffen transmission work. The second chapter deals with the combination of polyphase currents. The author makes use of the clock diagram to show how the pressure varies between the line wires of the three-phase system
when the coils of the generator are joined up in star fashion, proving that the pressure between two of the while that generated by one coil was 100 virtual volts, and diagrams make this somewhat difficult subject clear Economy in copper is most assuredly obtained by the use of the polyphase system, and the author proceeds to which are not practicable for voltages over 100 to 110 This statement we think requires some correction, in riew been used with the greatest success for 215 volts; and, in fact, there is little doubt that the three-wire system for direct current will be used very largely with 400 to 480 volts between the outside wires
The author discusses the somewhat intricate question of the relative costs of copper, and finds that the three 75 per cent. of the copper is used which would be require for the single-phase system. Taking the single phase and have been put very clearly by Mr. Goerges. It appears wire half the e-phase three-vors, stands at $31 \cdot 35$; while three-phase with four wires has no advantage over the ordinary three-wire system, when the extra cost of fixing .
e two-phase and three-phase currents duce the rotary field, and then takes up the history of by those of Babbage and Herschel. Walter Baily exhibited the first polyphase motor in 1879, before the Physical Society of London; and this fact will surprise Germany. Three years later, Deprez laid down an important theorem; and in 1885 Professor Galileo Ferraris of Turin, arrived independently at the same fundamental ideas as Baily and Deprez. A history is then given of the Frankfort Exhibition naturally supplying the best examples. The author then describes Mr. C. E. L and "stator" respectively for the moving and stationary parts of the machine. The most important part of the
work is probably that which deals with the structure of the polyphase motor, and Chapter VI. deals with the to the work carried out by various firms at the present time; and we may say that it sums up, in a very compact form, information hitherto scattered through the pages o the "Proceedings" of scientific societies and technical journals.
ie Berechnung der Centrifugalregulatoren. Von W. Lynen Berlin: Julius Springer. 1895. (The Calculation o Centrifugal Governors.)
THis work is written by the governmental architect and charlottenburg the Royal Technical High School of have seen devoted solely to the consideration of the design of the various forms of speed governors for prime movers. The author has evidently made the subject his special study, and although a considerable knowledge o to follow him throughout, yet the various curves and formulas given should be of use to the practical designer The method used is synthetic, and the action of each single force is considered separately. The general conditions of equilibrium are not discovered by analysis of the forces, that is to say, by static methods, but by the dynamic method. Results are given in the form of a
series of curves, and with the aid of curves 1 and 2 the author considers that all weight governors with normal action can be calculated.
One result is a new calculation of the double ball cosine governor author hopes that the efficiency of the cosine governor will be better understood. The subject out that spherical or disc weights are to be preferred, for constructional reasons, to the usual club-shaped swinging veights. Numerous examples of calculation are given, in understood. The author concludes that the numerous and that the type invented by Watt prom one another among the best. The curve of centrifugal force for the ing point. This type is especially suitable for a turnrunning with great uniformity, such as are used for elec ric light work, for it is almost astatic at the speed gene The author of governors to engine builders, there is yet a great lack fnowledge on the part of engineers; the reason of this, by firms who make a speciality of the work. Personally we think, however, that the latter statement is more applicable to continental than to British practice author points out that the weight is considered in conunction with the gear for moving the sliding piece, and practice can understand He also gives a sletch of the usual figure drawn, and quotes the resulting formula for angular velocity in which there are eight arbitrarily hange of anglar ve value of ω is less decisive than the on this point neither formula nor diagram give any ermation The author's method is first to consider the orce of a centrifugal pendulum suitable for the governor, and afterwards the forces other than centrifugal force acting on it. The action of the latter is independent of the nature of the governor, and depends only upon the the most normal motion, and with the simplest changes lealt the arithmetical is well shown for obtaining rapidly a clear view as to which particular part of the governo olume should certainly be of value to governor design who can read German and follow the calculations. great many different types of governors are dealt with howing the links and joints.

A Laboratory Course of Experimental Physics. By W. J Loudon, B.A., Demonstrator in Physics in the University strator. London: Macmillan and Co. 1895. Demy 8vo His somet 8 s .6 d . Uncut
Toronto, printed in cosmopolitan production-devised in ished in London and New York-is intended to pub come the difficulty experienced by the authors in provid ing during a limited time ample instruction in the matte of details and methods to large classes engaged in experimental physics in laboratories, and they signify that arranged as far as possible in order of difficulty. These are intended for students who have but little acquaintance owed by an advanced course of experimental wre acoustics, heat, and electricity and magnetism intended for those who have taken the elementary course, and who have a m
methods.
The elementary course is arranged under the following eadings:-The vernier, the calipers, the cathetometer, engine, specific gravity bottle, hydrostatic balance, hydro meters, Mor's gravity bothe, hydrostatic balance, hydro determination of capillary constants, the sextant, the goniometer, curvature of mirrors, focal length of lenses, indices of refraction, magnification with lenses, photo raphic lenses, photometers, specific heat of solids an The latent heat of fusion, and level testing.

1) Acoustics, dealing with the sonometer, sens:ment, transverse vibration of strings, pitch, Lissajou's
method of tuning, harmonic motion, overtones, the chronograph, the clock fork, Melde's experiments with strings Helmholtz's apparatus for combining simple tones Konig's analyser, the manometric fame, velocily sound and Doppler's principle, (2) heat, cameter, latent hent of steam, weight of dry air, hygrometry, density of vapour, Dumas method, coefficient of expansion of metals, specific he fry air, pressure of vapours for low sure at high temperatures ; and (3) electricity and mag netism, treating magnetic lines of force, magnetic coments, the declination and inclination compass, inte sity of earth's magnetic field, magnetic field of a current angent and sine galvanometers, hydrogen and coppe oltameters, calibration of galvanometers, galvanic bat calvanemance, temperaw, determination and absolute determination of resistanc by use of calorimeter. 'Shen the determination of gravit y the pendulum and the torsion pendulum furnish matt for two short appendices, and twenty-one tables of various data terminate the book.
From the above synopsis the
For the scope and the arrane the lot it is by no mard he lapy, coinl in the is the happy, especially in the elo could not but confuse the student; whilst as regards the former, when considered as a course of practical physics, it is inadequate and incomplete. It is true, on this point he authors state that the "ptics" has been omitted mapped out a suitable course of epperies it is concise an
 nd ,uran ; for oxal the sudent intro luced to the vernier, whieh is described but not defined; duced to it is based are not clearly set forth; examples of its appl cation are given, but the manner of applying it is not ex plained. Regnault's apparatus for the determination of the pressure of vapours at high temperatures is illustrated by an unworkable diagram with unexplained conventions, and the whole of the directions for working are, "compres the air in the large reservoir, determine pressure by mean of the manometer and barometer, and finally take the temperature at the boiler." The object being essentiall practical and instructive, the extreme brevity indulged in does not contribute to the utility of the articles. Ther are more or less copious tables of contents, distributed a rregular intervals, preceding each section in fact, which re far from readily accessible, and as there is neither general table of contents nor an index, ready reference i mpossible, a by no means useful feature in a book fo students. The book, however, is well printed and well illustrated, and may serve a useful purpose as a note ook for the particul of lectures on practical work.

SHORT NOTICES

The Volunteers und the National Defence. By Spencer Wilkinson,
Westminster, London: Archibald Constable and Co. 1896 Westminster, London : Archibald Constable and Co. 1896
Price 2s. 6d.-This is an essay written with the object of giving Price 2s. 6d.-This is an essay written with the object of giving
comprehensive account of the chief processes of modern war, and to show how the volunteer force may be fitted to do the work of defence with conditions of war what they are to-day. After a
introduction , nd chapter on the scope and method of inquiry int the subject, the author deals with his subject in two main parts, and under the subheads mobilisation, transport, march, quarters,
security and exploration, battle, actual conditions of voluntee service, attendances,

BOOKS RECEIVED,

The Cheque Bank Handbook; 1896. Second edition. List of
The Progress of Artillery. Nacal Guns. By James Atkins
Longridge, M. Inst. C.E. London: E. and F. N. Spon. 1896. An Elementary Treatise on the Calculus, for Engineering Students,
With numerous Examples and Problems norked out. By John
Graham, B.A., B.E. London: E. and F. N. Spon. 1896 . Les Rayons X et la Photographie à travers les Corps Opaques. Pat
Ch. Ed. Guillaume, Adjoint au Bureau International des Poids e.
Mesures, D.Sc. Paris: Ganthier Vill Mesures, D.Sc. Paris: Gauthier-Villars et Fils. 1896. Paper

A Reuter telegram from Simla says heavy floods in he Panjkora Valley have damaged the bridges at Chutiatan, and
have destroyed all the bridges on the river above Dir. It is hoped,
however, that the forwarding of reliefs to Chitral have destroyed all the bridges on the river above Dir. It is hoped,
however, that the forwarding of reliefs to Chitral will suffer no

THE FOUR-MASTED SCHOONER HONOLULU

A NOTABLE CLYDE-BUILT SCHOONER.
The attention now being directed to the subject of the manning of ships, coupled with the constant aim of ship owners to avail hemselves of any economy possible ift
direction, while at the same time securing the needful effi ciency, are considerations which should render some details of the new steel fore-and-aft schooner Honolulu of interest.
This vessel -of which we give an illustration reproduced from This vessel - of which we give an illustration reproduced from Robert Duncan and Co., Port Glasgow-besides being the largest steel fore-and-aft schooner ever built in this country is of a type very rarely met with in British waters, and
altogether a novelty as emanating from the stocks of a Clyde shipyard. She has been built for the timber-carrying trade to the order of Mr. John Ena, merchant and shipowner Honolulu, for whom Messrs. Duncan and Co. have before from our illustration, the Honolulu, both in the matter o hull and of rig, has features distinguishing her from the ordinary sailing ships of modern times, at least so far as
British practice is concerned. This was conspicuously made British practice is concerned. This was conspicuously made
evident in the course of last month, when the Honolulu, evident in the course of last month, when the Honolulu,
while loading a general cargo prior to departing on her maiden voyage, lay alongside some of these ful-rigged essel Honolulu, however, are no novelty on the Pacific and along the west coast of America ; many of these being double her onnage, which is about 1000 tons gross.
rig, of the vessel, and perhaps also of her hull. Feature which at once attract notice are the great sheer, graceful clipper bow and bowsprit, the four lofty pole-masts of equal length, and the simplicity, not to say meagreness, of the
rigging gear. The vessel's general proportions are somewhat rigging gear. The vessel's general proportions are somewhat in modern sailing vessels, while the hull form is quite yachtlike in its fineness of lines. The vessel's dimensions are 225 ft . length over all, or 210 ft . between perpendiculars ; 42 ft . beam, and only five beams to the length; and 18 ft . 6 in. depth of hold. The rise of floor is of the unusual height of 6 ft ., giving a relatively small midship area, and, combined with
the fineness of water-lines, giving a coefficient of form resembling that water-ininges, giving a coenficient of clipper built in our midst in the "fifties," which made such marvellous passages to and from the Far East. The 140ft. in height from keel to truck, and with an immense fore-and-aft sail, hoom keel to truck, and with an immense oom. These four sails, and three jib sails which gre carried forward, give a total spread of canvas considerably greater in proportion to displacement than the total sail area of any square-rigged vessel afloat.
The structure of the vessel is of the strongest description for the safe carrying of heavy timber cargoes, somewhere about 1_{1} millions superficial feet of lumber being
her complement. Save the collision bulkhead forward, her complement. Save the collision bulkhead forward,
the interior of the vessel is unobstructed from end to ene interior of the vessel is unobstructed from end to
end end, and there is no 'tween decks. The main deck from
stem to stern is entirely of steel, with strong bulwarks supported by heavy bulb web stanchions every 4 ft . apart supported by heavy bulb web stanchions every 4ft. apart,
in order to secure safety in carrying the immense deckloads common in the particular trade for which the vessel is intended. The forecastle deck is also of steel, while the poop deck is laid with specially selected Oregon pine.
Besides having unusually large hatchways forward of each mast for timber cargoes, there are fitted in the bow and stern large ports capable of taking in the heaviest timber of almost any length, the timber being put on board by an ingenious arrangement of leads and pulley blocks worked
from a special steam winch of extra power, situated in the from a special steam winch of extra power, situated in the
large deckhouse abaft the forecastle. This steam winch, large deckhouse abaft the forecastle. This steam winch,
combined with a large multitubular boiler, is specially combined with a large multitubular boiler, is speciall
designed with warping drums, both horizontal and vertical and every appliance and gearing, not only for loading and discharging deckloads of heavy timber, but for rapidly hoisting and working the vessel's immense fore-and-aft sails. This combination of boiler, winch, and gear has been supplied by Messrs. Murray Brothers, of San Francisco, who are
familiar with the requirements in this installation of special machinery on board ships of this type. In case of need, steam can be raised in this boiler in about ten minutes to a
pressure of 200 lb . per square $\mathrm{icn}-\mathrm{m}$ immense advantage where all the spars, sails, and gear are of the heavies description. Manual labour is saved to a very considerable capable of managing the sails, ropes, \&c. The style of rig adopted, in fact, and the equipment of the vessel generally admit of her being efficiently worked by about half the num ber of seamen whic
British regulations
Steam from the boiler above-mentioned also drives powerful capstan windlass of Emmerson and Walker's make and also actuates one of Tangye's patent duplex steam pumps capable of throwing 2000 gallons of water per hour. This
appliance will be invaluable in the event of fire or other appliance wiil be invaluable in the event of fire or othe is fitted amidships, which can also be worked from the stean winch through the medium of messenger chains. The entire outfit of blocks for the vessel is of a special and very expensive description made by Messrs. Laird and Sons, Irvine, from patterns and particulars supplied by its owner and adapted rudder is of a design also furnished by the owner, and whic is seldom seen in large sailing vessels in home waters, bein abnormally broad at the bottom, tapering to nothing at th oad water-line, for the purpose of mancuurring the ship Sandwich Islands. The vessel, which is classed "British standard" with the British Corporation of Shipping, Glasgow, was built and equipped under the superintendence of Captain
William Thonagel, of San Francisco, who has had great experience, and is well known in the Pacific trade.

THE RAILWAY ZONE TARIFF SYSTEM IN RUSSIA.
Sisce the introduction in February, 1879, of the specia Government tax on railway passenger tickets, 25 per cent. on first and second-class, and 15 per cent. on third-class tickets the passenger rate on Russian railways per mile has been hird- per mile first-class, 1.61 d . second-class, and 0.827 d reduce these rates but the attempts were made to reduction in the three classes of 3 per cent. per mile in 1880 nd 6.8 per cent. in 1891. The comparatively small use oo high. While in 1891 the nuncusively that the rate wa Great Britain was $817,000,000$, in Germany over passengers in In France $208,000,000$ and in Belgium sout 57,00000 , th number conveyed in Russia was only $43,500,000$. Notwith tanding the enormous distances in Russia, more than on half of the passengers conveyed did not travel over $33 \cdot 15$ miles, and only 6 per cent. of the total travelled 199 miles. The number of coaches used is, therefore, very small. On the average for each first-class passenger five places were available for each second-class passenger not less than four places, and on some lines twenty places,
passenger more than two places
The good results which followed the adoption of the one tariff in Hungary led the Russian Government to pursue a similar course, and the new passenger tarif was in 199.56 miles 1 st December, 1 pint and 1011.3 miles there are 36 zones, viz $199 \cdot 56$ - $331 \cdot 5$ miles, eight zones : $392 \cdot 16$ $470 \cdot 73$ miles, seven zones : $471 \cdot 39-656 \cdot 37$ miles, eight zones $657 \cdot 03-1011 \cdot 3$ miles, thirteen zones. After this distanc ery $33 \cdot 15$ miles is counted as a zone
The cost of a third-class railway ticket for a distance o from 0.663 to $199 \cdot 56$ miles is: up to $106 \cdot 08$ miles, 0.824 d , per mile; from $106 \cdot 74$ to $198 \cdot 9$ miles, $0 \cdot 516 \mathrm{~d}$. per mile The charge for a second-class ticket is one-half, and fo first-class ticket two and a-half times higher than for a third-class. Children from five to ten years pay in
each class half a full fare. Baggage to the amount of 36.112 lb . is allowed for each full ticket. The rit transportation for each hundredweight of passer rer's for yage is up to 215.48 miles, 0.369 d per mile ; beyond th distance 9.64 d . per zone is added. The new passenger tarif makes long-distance travelling by rail very much cheaper than under the former system. The following shows the com
. As the valuo of the rouble has fluctuated from 3s. 2 dd . in 1874 t
4s. Sdd. in 1895 , all rates in this paper are based on its gold value 38 s. 2 d .
parative cost of a third-class ticket for distance up to 198
miles under the old and new systems :-

The reductions vary from 7.76 per cent. at 132.6 miles to $60 \cdot 8$ per cent. at 1989 miles, and average 46.81 per cent. The reduction between certain known places is still more marked, viz.:- St. Petersburg to Moscow, old fare $£ 17 \mathrm{~s} .53 . \mathrm{d}_{\mathrm{d}}$. ,
new fare 19 s s. Riga, old fare $£ 17 \mathrm{~s}$. 101 d new Verballen, old fare £1 18s. 27d., new fare $£ 13 \mathrm{~s}$. $5 \nmid \mathrm{~d}$. Nishni Novgorod, old fare $£ 26 \mathrm{~s}$. $2 \frac{1}{2} \mathrm{~d}$. ., new fare $£ 16 \mathrm{~s}$. $7 \frac{1}{4} \mathrm{~d}$. .; Warsaw

 $£ 30 \mathrm{~s} .8 \mathrm{~d} .$, new fare $£ 111 \mathrm{~s} .8 \mathrm{~d}$.; Kiev, old fare $£ 3 \mathrm{7s}$., new | fare, $£ 114 \mathrm{~s} .2 \frac{1}{2} \mathrm{~d} . ;$ Odessa, old fare $£ 44 \mathrm{~s}$. $0 \frac{1}{2} \mathrm{~d} .$, new fare |
| :--- |
| $£ 20 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$. ; Piatigorsk, old fare $£ 5$ |
| 2 s . 3 d. , new |
| fare |

The difference in the rates of second-class travelling is stil greater, the fare from St. Petersburg to Verballen havin Warsaw from $£ 413 \mathrm{~s}$. $6 \frac{1}{2} \mathrm{~d}$. to $£ 20 \mathrm{~s}$. 101 d . ; and that to Odessa from $£ 82 \mathrm{~s}$. $5 \frac{1}{2} \mathrm{~d}$. to $£ 217 \mathrm{~s}$. $11 \frac{1}{2} \mathrm{~d}$. The result is that people of small means, who had to travel long distances by third-class, can now go second-class for less money. How little the first and second-class have been used is shown by the following figures

The following shows the difference between the old and new tariffs for every hundredweight of baggage:-Distance 397.80 miles, old tariff, 13 s . $3 \frac{1}{2} \mathrm{~d} . \mathrm{d}^{2}$; ; new tariff, $11 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$ d 596.0 miles, old tariff, 19 s . 111 d.; new tariff, 16 s .8 d These reductions, ranging from 8 per cent. at 198.90 miles to $25 \cdot 12$ per cent. at $994 \cdot 50$ miles, and averaging $16 \cdot 1$ per cent. re much less for long distances than those for passengers. It was expected that the Russian railways, through the ntroduction of the new tariff, would lose yearly $£ 1,894,202$ provided trafic remained the same. According to the former ariff the railways earned $£ 8,061,754$ from the passenge raffic, and according to the new tariff they could only expect loss could For instance, when in 1881-82, on the Warsaw-Vienna Railway lower rate was introduced on fourth-class tiekets, the numbe f passengers increased from $1,600,000$ to $2,000,000$; but a oon as the rate advanced again the number of passenger eturned to the former figures. The Griaze-Tsaritzine Rai way had the same experience. It made a reduction of 0.43 d . per mile, and not only did the number of passengers becom In 1891 when the rater were reduce to the people of needy districts, it was shown thet in comparison with 1890 the number of persons who used the lower rates increase by 44.3 per cent., and the number of miles travelled by 80 per cent. If the passenger traffic should increase o account of the great reductions under the new tariff in pro portion to that mentioned in the foregoing cases, the prospect or the Russian railways are bright, and other countries ma ollow the Russian example. Later advices state that instea of the expected deficiency of $£ 1,894,202$, the receipts last year According to the United States Consul-General per cent Petersburg, it seems from the number of railway projects oot as if Russia were about to enter upon a period o unusual railway activity. Last year, when the zone tariff had been working for some time, a syndicate of Berlin an Paris financiers was formed at Warsaw for the purpose of proposing to the Russian Government an extensive scheme of railway construction, comprising the construction of railway from st. Petersburg to Kiev, the renting of the exist ing lines joining Kiev, Kazatin, and the Uman-Elisabetgro Kolnesensk to Odessa, without Gevernment geanteoug

New Walrand-Legenisel Plants.-Walrand and Legenisel, of Paris, have just completed and put in operation two of their and the Boltic Works, in St Pet he societe Franco-Russe works there is only one 300 kilog. converter, while first-name there are two of 800 kilog. As a result of the success attained at he last-named works, the authorities of the Obouchov Stat American Manufacturer.
Gainsborough Waterworks.-Attheirmeeting on the 13th inst the Gainsborough Urban District Council, after passing a vote of ondolence with the widow and family of their late engineer, Mr Percy Griffith, as engineer to continue and complete the water works extensions now in progress. Since our last reference to thes works, the first portion of the large boring has been successfull with 30 in . This is 320 ft . deep and 36 in . diameter, and is lined with 30 in . Wrought iron tubes, the annular space around the tubes of Portland cement. The last lengths of the tubes were lowered on March 10th, and after carefully testing them for verticality, the top of the last tube behind them till it finished off level with the tubes the last tube. As the boring was so much larger than 18 tons-had to be suspended on the overhead -upwards of precautions were, however, taken by the contractors, Messrs. E with boring mishap or accident of any kind. The next section of the it is found possible to continue this to the total depth required to be tubed-another 440 ft .-without any difficulty from infall, \&c. the whole of this section will have 18 in . tubes lowered into it, and that this boring is to be carried down to a total depth of 1450 ft and is to finish not less than 18 in . diameter at the bottom, so that the endeavour to avoid any driving of the tubes by the system described will be fully appreciated by anyone experienced in boring

FORMULE FOR CALCULATING THE PERFORATION OF ARMOUR.

Captain Tresidder, the well-known member of Brown's Armour Plate and Steel Works, last year suggested a formula for perforation which might, he urged, be adopted with advantage internationally, on the following grounds (1) Close agreement with actual results obtained at various There is considerable (2) thetical soundness; (3)" simplicity There is considerable support for the claims thus advanced -that is to say, this formula gives results for high velocities which are much more nearly correct, so far as we have evidence, than do the recognised British formule of Maitland or Fairbairn. For low velocities, we believe the last named formulx, which are practically identical,
give good results-better, we are inclined to give good results-better, we are inclined to think, than residder's ; but in the present day high velocities are much more important than low ones, because the former are more likely to be employed. Then, again, without question, Tresidder's formula is more simple than others. luxury for those who have to calculate perforations actual regard to theoretical soundness authorities do not With regard to theoretical soundness, authorities do not appear He has not had much opportunity of advocating his vieved aud mathematicians are slow to be convinced on a question, lise this, so that at present the formula stands on its working merits, and the working merits of any formula now are difficult to determine fully, because firing ordinarily takes place against steel plates treated and hardened in such a variety of ways as to make comparison very difficult.
the Nettle two guns available for testing plates, an old fashioned 10 in . gun and a new type 6 in . piece. The perforation of the two was about equal, the smaller gun attaining to an equality with the heavy old-fashioned one, by having less work to do in making a 6in. hole than the heavy shot had to perform in making one of 10 in .
For the work of fracture the small projectile had no such advantage, and it is probable that efficiency of the two shots might be nearly in proportion to their respec tive striking energies, and these were nearly in the proportion of two to one; so that while the 10 in . and 6 in . shot were able to perforate about the same thickness of soft armour, the former delivered about double the shock of the latter on hard armour. As armour developed
further, it generally took an intermediate form, yielding further, it generally took an intermediate form, yielding
partly by perforation and partly by fracture, and this may be said to be the case at the present time. Calculation also becomes more difficult from the liability of the shot o break against the hard face. As we have asked before now, who can calculate what a tool may do in the act of
breaking? We may certainly understand may be. We may certainly understand how the effect may be greater under some conditions than others. For example, at a high velocity a shot may perform work
before the line of least resistance is found, and thus cause surprise by behaving much better toona, and hus cause surprise by behaving much better than at a lower velocity.
On the other hand, at a still lower velocity, the shot may ot break eal, ad thus a worse velt may be may at an intermediate velocity than result may be obtained very high one. These ffects than at eller a very low or we may conje. These why, but any appoech experiments; is difficult. A question of this kind can only be dealt

On the diagram the curves pass through the points cal culated and plotted at the different velocities, these points lying on or between $\mathrm{A} a, \mathrm{~B} b$ and $\mathrm{C} c$.
Fairbairn's, it will be seen, gives the highest result at low velocities, but soon falls below most of the others, the curve crossing that of De Marre at X about 1350 footseconds, Krupp at Y at about 1460 foot-seconds, and Tresidder at Z at about 1600 foot-seconds.
From about 1200 to 1750 all the variations in the results fall within an inch, but at 3000 foot-seconds Fairbairn gives $6 \frac{1}{i n}$. less than De Marre, which, as has been repeatedly pointed out, is a monstrous discrepancy. The Gârre formula gives also strangely low results throughout. We think, however, that this formula has been abandoned generally in favour of that of De Marre. Those then with which we are most concerned are the formula of Fairbairn or Maitland, De Marre, Krupp and Tresidder. The first has been long used ollicially, and is not yet actually discarded. Krupp appears to agree
with our Shoebury trial better than De Marre's, and with our Shoebury trial better than De Marre s, and
Tresidder gives practically very nearly the same results, Tresidder gives practically very nearly the same results, the difference mainly being that in Krupp's the element
of weight tells more, so that with a long projectile with of weight tells more, so that with a long projectile with
great weight in proportion to its calibre, Krupp would great weight in proportion to its calibre, Krupp would
give greater perforation. Tresidder's formula is commonly written thus, for working by logarithms:

$$
t^{2}=\frac{W}{} v^{3} \times \frac{1}{d} \times \frac{18 \cdot 84 \mathrm{l}}{\log -18},
$$

where $t=$ the thickness in wrought iron in inches, w the shot's weight in pounds, v the striking velocity in footseconds, and d the diameter of shot or calibre of the gun

Diagram showing curves obtained by plotting perforations given by various formule for the 100 lb projectile of the 6 inch Gun

So far as we can speak with confidence, the whole question stands as follows:-We have in past years fired at comparatively low velocities at wrought iron until experience enabled us to arrive at a trustworthy formula for these conditions. Such a formula was obtained by a combination of such elements as are theoretically sound, with such empirical terms and corrections as caused a fairly correct result to be obtained over a certain range of conditions. As armour developed, difficulties increased. Steel, chilled iron, and steel-faced armour replaced wrought iron. If these always yielded in the same way as wrought iron, that is, by perforation, it of any particular steel plate and that of wrought resistance same thickness, but when plates yield by fracture the conditions are greatly changed. For example, in the foration, the smaller the diameter of example, in peris the hole it needs to make in order to pass through, and the less is the work required to make such a hole. If, on the other hand, the plate yields in preference by fracture it is a question if the diameter of the shot enters into the calculation. It appears probable that the action is the splitting action of a pointed wedge struck with the plate and both plate and shot generally break without a hole the size of the shot's transverse section being made at all. Chilled iron and wrought iron offer the extreme examples of what were then termed "hard" and "soft" armour, the former yielding wholly by fracture, the latter wholly by perforation. Probably the former action depends mainly on the total striking energy of the shot, affected, no doubt, also by its tenacity, on which depends the amount of work delivered before the shot breaks. The latter depends directly on the striking energy, and inversely on the diameter of the hole to be made, that is, the smaller the hole the greater the penetration. How widely the powers of perforation and of fracture differ may be seen powers of perforation and of fracture differ may be seen
with systematically. The elements must be separated and investigated one by one. The first step needed is to ascertain the laws relating to perforation of wrough iron at the high velocities which have now come in. At present formule which have been empirically adjusted, so as to give good results over a certain range of velocities, are employed for those much higher with very little guidance as to their suitability. The little evidence we have is to the effect that the English official formulx give perforations which are far too small; indeed, at Shoe moderately one occasion a 6 in . shot, fired even at the moderately high velocity of 2378 foot-seconds, passed clean through plates 17 in . thick, and went on about 1600 yards, when by the old English formulæ it should have only perforated a 16 in . plate, and should not have entered nearly 16 in . into a 17 in . plate. Krupp's formula, and tha of De Marre, appear to be much more correct for high The relation borne by the respective formulport them. other is best results they sive. The diagrathe curves showing the perforations given the the 6 in herewith exhibits the tile by the formuls the 6 in. gun firing a 100 lb . projecTresidder, and a Gâvre formula
The ordinates give the perforation in inches of iron due to the velocity in feet-seconds regist wrough the abscissa. The figures and points of registered along taken and worked out phlet "Notes on Formulæ for Armour Piercing," pam are as follows:-

Projectile. $\quad \begin{aligned} & \text { Striking } \\ & \text { velocity }\end{aligned}$ Fair- Perforation in inches by
6 in . shot of 100 lb .

in inches. Krupp's formula, using the same notation, isRaising all Krupp's terms to a power of $t^{2}=\frac{W^{3} v^{3}}{d^{\frac{5}{2}}} \times \frac{1}{\log -18 \cdot 6664}$
This obviously approximates nearly to Tresidder's formula. It is very desirable that the subject of perforation of wrought iron at high velocities should be investigated, not y firing on a large scale, when only a few rounds can be when on the score of economy, but with some small piece be obtained give sound data for the scale on which it was carried out, and furnish a formula which would be carried tested by every round fired on a large scale, and those who have most experience in these matters believe that it would be found to hold good. It might be possible after that to devise something to teach laws of fracture although this is difficult and far less important than perforation.
In the meantime, we can only act on what data we ive before us. It is not to be expected that we should hey uping formuls for the low velocities for which fortunave been proved good. For high velocities, unmistakes. there is evidence that their use causes gross vould be the most natural course to take then formula up keep to our old Maitland or Fairbairn it agrees wit 1450 or 1600 foot-seconds, at which point we might "shunt" and Tresidder respectively. Here and use the Krupp or Tresidder formula for the higher velocities.
There is, however, an objection to such a course-
namely, that service tables exist which it is undesirable
to alter unless we know that we are right in doing so. Now, in the present state of our knowledge, we have no certainty that we are correcting for the better until the act. On the whole then the best present course is to let our tables stand wnalter up po 2000 forse is let our tables stand unaltered up to 2000 foot-seconds velocities over 2000 foot-seconds we may be confident that Krupp's or Tresidder's formula is much nearer the truth than the old ones, and we are inserting new velocities for new guns rather than making corrections in our existing tables. There remains the evil that a projectile striking at a velocity just below 2000 and one just above 2000 foot-seconds are calculated on differe sugrest, and abruptly leaves the Fairbairn curve for that of Tresidder at 2000 leaves the Fairbairn curve for that good thing that perhaps it is a good thing that we should have an inconsistency made condition of ignorance. At all events, we can suggest nothing better at the present time.

THE MOBILITY OF MOLECULES OF CAST

 IRON.By A. E. Outerbridee, jun., Philadelphia, Pa.
IT has been generally accepted as a fact that cast iron, under the infuence of repeated shocks, beconies brittle, and will finaily
break under a blow which othervise it would have withstod.
It will probably surprise metallurgists, therefore, to loarn that It will probably surprise metallurgists, thorerofre, to learn that experime
opposite. grides fro thabout a thousand tests of bars of cast iron of all grides, from the solttest foundry mixtures to the strongest car
wheel metal, enables me to assert with confidence that, within limits, cast iron is materially strengthened by subjection to repeated it is very well
ings-such, for example as car wheels-increases their strength ings-such, for example, as car wheels-increases their strenth
by relieving cooling strains. But, it is not well known-if known
at all prior to this announcement-that the molecules of cast iron at all prior to this announcement- -that the molecules of cast iron
are capable of movement-for they do not touch each othertwithout the necessity of hear thig the casting, and that they can
thus rearrange themselves in thus rearrange themseves in comfortable rea hion to their neighIn more t technical words, a molecular ane saling may be be accom.
plished at ordinary temperatures|which will releaso the strains in the castings, precisely as does annealing by slow cooling in heated pits or ovens. A statement so surprising should not be made without
sufficient data to establish its correctness beyond cavil, since it is contrary to former belief, certain to be questioned, and properly so. Before proceeding to give a record of the experiments which
have been made, and which can be readily repeated by any one a so. ee ben madee, and whinch can bereradily ropented by any one, a
have been
brief history of the origin of the first observation leading thereto may be interesting.
large car wheel establishment-I noticed that chilled cast iron car wheels rarely cracked in ordinary service after having been used
for any considerale t ime if whel for any considerable time; if wheels did not crack when compara-
tively new, they usually lasted until worn out or condemned for time, further than to institute a careful investigation of the condi tion of the annealing ovens when some new wheels were returned cracked, under the supposition that the wheels were not wed
annealed, and an equally careful revision of the iron mixture to annealed, and an equally careful revisio
ascertain whether the fault lay therein.
and 15 in . large numulated in the ferse test bars," lin. square Co., Incorporated; and, to expedite the cleaning of sand from their surfaces, they were all thrown into an ordinary "tumbling
barrel" with other castings, and knocked about for several hours. When these test bars were broken upon the transverse testing that the average estrenth of the entire sasieses was considerably
higher than was usual with similar iron mixtures. This difference was fortunately so marked as to cause a careful inquiry -first, into the condition of the testing machine ; then as to the chemical be in good order, and the metal was normal card 1 cound was then made, upon which twelve test bars could be moulded side by
side in one tlask, and poured from one runner. Six of these bars were placed in the tumbling barrel, the other six were cleaned of adhering sand with an ordinary wire brush, and the twelve bars
were broken upon the machine. All of the bars which had been subjected for about four hours to incessant blows in the tumbling barrel were stronger than their companion bars - the actual gain
varying from 10 to 15 per cent. This metal was soft foundry
iron.
These tests were repeated on several consecutive days with
similar results, while various theories were sugrested and clues were followed, to detect the hidden cause of this strange One plausible explanation offered was, that the rubbing of the bars together in the tumbling machine slightly rounded the corners, bar under the strain in the testing machine. This theory was soon overthrown by tests. The corners of six bars were rounded by filing-the companion bars not being filed;
all of the bars were then cleaned with a wire brush and broken upon the transverse testing machine, and there was no apparent gain in strength in the bars with rounded edges. Round test bars
${ }_{1}^{1}$ in. in diameter, 1 Fin. long - were then poured from one lade of iron. Some of these were cleaned in the tumbling barrel, and
all that wero so treated companion bars which had been merely cleaned with a wire
bersher brush.
This
finally
This process of eliminating false theories was continued, until
finally a new explanation occurred to me, and simultaneously finally a new explanation occurred to me, and simultaneously a
convincing test of its accuracy suggested itself. The explanation, as incinated in the title of this paper, is the mobility of the mole.
cules of cast iron, at ordinary temperature, when subjected to repeated shocks.
The crucial test referred to consisted in subjecting six bars to 3000 taps each with a hand hammer upon one end only of the bar.
All the bars so treated showed a gain in strength equivalent to the
 gain exhited by bars which had been sumected to bors. Here was
entire surface for several hours in the tumbling barecter
a new revelation, of scientific interest to tho metallurgist, and a new revelation, of scientific interest to the metallurgist, and
suggesting to the founder the possibility of anneealing castings at
ordinary ter ordinary temperatures by availing himself of this molecular
mobility. It proves also that we have for many years been mobinty. It proves also that we have for many years been and irregularly, by tumbling small castings in a revolving barrel,

merely for the purpose of conveniently cleaning them from adhering | merely |
| :--- |
| sand. |

- Read at the Pittsburgh Meeting of the American Institute of Mining
Engineers, February, 1886 . In order to comprehend the modern idea of the nature of matter, we
should trys to realise that the molecules composing even the motet dense
solld substancos with which wo aro familiar-such as gold, platinum

Another interesting fact was incidentally brought out in this consequent weakening, exists even in the smallest castings, where we would naturally expect that the cooling would bo practically
uniform throughout the section ; moreover, that even in bars of uniform section, such as lin, test bars, the weakening by cooling strains sometimes amounts to more than 10 per cent. of the ultimate
stress. Repeated tests show that
jin. bars, in which the fracture is comparatively uniform to the eye throughout the section, are subject to the same law. Other tests show that the comparative difference in transverse strength between bars which have been hammered on their ends, or otherwise subjected to the process of molecular annealing by vibration when cold, and companion bars
cast in the same flask, not so improved, depends to upon the number and force of the blows, and to a still greater degree upon the grade of cast iron tested. For example:
(1) Greater relative difference is found in hard mixtures, or (2) Gron, than in soft mixtures, or weak iron. (2) Greater relative difference is found in lin. bars than in lin.
bars, and somewhat greater difference in 2in. bars than in Iin

Impact tests.-The foregoing experiments having been repeated sufficiontly often to satisfy me of their absolute reliability-and really remarkable uniformity $=$ new series of tests was commenced
for the purpose of ascertaining how many blows were required, and approximately what force was needed to accomplish the desired object of relieving cooling strains. A new machine was constructed for this purpose, and light was soon thrown upon these
questions, while still other important questions were suggested and answered by the use of the same machine.
weight fastened to an arm swinging in one, and consisted of a weight fastened to an arm swinging in a graduated arc. The
friction of the pivot and the crude construction of the machine prefriction of the pivot and the crude construction of the machine pre
cluded even an approximately accurate measurement of the force of the blow delivered.
The new machine consisted of a frame or yoke, marked in inches, an a wedge-shaped weight, adapted to the size of the bars to
be tested, which was raised vertically to any desired aumber of inches, and when released, fell by gravity in free space, striking the bars in the centre between the supports, which were 12in. Impact testing machines have long been used, and car wheels machinest.ed or condemned accordiog to to tests made upon such
malways been maintained that each blow of the "drop" weakened the casting, and that the final blow was only a record of the residual cohesion remaining in the metal after
previous blows had proportionately weakened it. In the case of a horoughly annealed car wheel, this reasoning may be sufficiently unannealed bars, the argument is absolutely fallacious. In such cases the impact machine is itself a means of molecularly annealing test bars, as I will now demonstrate.
Impact experiments.- Six of the lin. square test bars, cleaned
with the wire brush, were broken upon the impact machine by dropping the weight from a sufficient height to break each bar at
the first blow. The six companion bars, nlso cleaned with the brush, were then in turn subjected to blows, numbering from ten to fifty each, of the same drop weight, falling one-half the former
distance, these blows being insufficient to break the bars. The weight was then permitted to fall upon each of these bars in turn
from the broken at the first blow. Not one oar brove. Two, three, six, ten,
brow and in one case fifteen blows of the same drop from the same
extreme height were required to break these bars. In another similar case the weight was doppped once from the former height,
then raised by inches until four than the last, had been delivered before breaking the piece. Subsequent teststs showed still greater gain in strengtt.
The next experiment with the impact machine w The next experiment with the impact machine was designed to
test molecularly-annealed bars from the tumbling-barrel, in comparison with untreated companion bars, under one heavy blow.
It was found that a blow of sufficient force to break annealed bars with one fall of the weight must be repeated from five to twenty times-depending mainly upon the nature of the
iron mixture-to break the molecularly-annealed companion bars. iron mixture- -10 break the molecularly-annealed companion bars.
By careful oxperiment in the manner deseribed, it was shown that the ultimate strength of the bars which had not been
through the tumbling-barrel could be incresed slight blows upon the impact machine, to an equality with their companions.
The experiments here related in a running conversational narra-
tive form a part of the daily records of metallurgical work at the tive form a part of the daily records of metallurgical work at the
foundry of William Sellers and Company, Incorporated, Philadelphia; and the aggregate number tabulated is very large. All
the tests corroborate fully the statements hare in susceptible of repetition and confirmation by anyone interested in
work of this character. They form a part of a long series of in. vestigations-extending over a period of fifteen years -upon the onst irotween the physical nature and chemical composition hitherto obscure connected with the design, construction, \&c. castings ; and, as it is believed that thy contain the egeru, of a
new scientific discovery valuable in its principle to all workers in new scientific discovery valuable in its principle to all workers in
these fields, these brief notes are presented to the Institute in response to the invitation of its secretary, and through the
courtesy of the firm of William Sellers and porated, for whose benefit and at whoso cost they were primarily $\underset{\mathrm{In}}{\mathrm{made}}$
In conclusion, it should, perhaps, be observed, to avoid the
possibility of misunderstanding, that the molecular annealing of cold cast iron my buccecssive slight that the mo molececular annealing
heat in that it has no power to thaling by the casting or to alter the chemical constitution in any way. All
that is claimed is that every iron casting when first made is under that is claimed is that every iron casting when first made is under
a condition of strain due to difference in the rate of the cooling of the metal near the surface, as compared with that nearer the centre,
and also to the difference of section; and, further, that it is practicable to relieve these strains by repeatedly tapping the
casting, thus permitting the individual metalic particles to rearrange themselves and assume a new condition of molecular equilibrium. The large number of tests made and the remarkable
uniformity of the results obtained warrant me in making these uniformity of the results obtained warrant me in making these
statements with full confidence that the repotition of such experiments even under less favourable conditions for accurate obserraof my conclusions, and will perhaps ostablish a new law of the $\underset{A}{\text { phys }}$
A few practical deductions of universal application may be
drawn from theso observations. (1) Castings, such as hammer rrawn from these observations. (1) Castings, such as hammer
frames, housings for rolls, cast iron mortars or guns, which are to bo subjected to severe blows or strains in a a ctual use, should never
be suddenly tested to anything be suddenly tested to anything approaching the severity of in-
tended service. Quantitative tests made upon the impact machine tended service. Quantitative tests made upon the impact machine
prove that the molecules of cast iron rearrange themselves under reasonably few shocks, so that it is perfectly practicable to molecu
larly anneal such castings when cold. Pulleys, and indeed al castings, are subjected in every-day service to this process o molecular annealing; and old castings are therefore more reliable than new ones, unless they have been misused. It is not impossible
that the same law applies to steel castings and perhaps to all metal castings, and that in testing new guns, each preliminary
small charge of explosive paratively moderate shocks, enables the gun to relieve itself of internal strains, and eventually to withstand with safety shooks which would have destroyed it without this precautionary measure
This, however is mere theory and must not carry the weight o the argumerts regare ting cast iron, which are are cline wed by by
thousand actual tests. thousand actual tests. (2) Strong iron castings, and coastings of
irregular section, have greator initial strains thgn soft or castings of comparatively uniform section ; and it is, therefore,
more important to subject the former to gradually increasing
shocks until the strains are relieved by the movement and reshocks until the strains are
arrangement of the molecules.
Tables.-The tables here given show the results of tests for trans.
verse strength of test bars, of different section and widely different verse strength of test bars, of different section and widely different
grades of iron, which have been subjected to this process of molecular annealing, and also tests made upon the impact machine
 lated, but they represent the average of probably a thousand records. The largest apparent gain shown in Table I. in the trans-
verse strength of companion bars of 1 lin section is 5.51 b . - see last line of the table-or very nearly 19 per cent. It is evident, even without plotting all the tests, that they would show a gradually
ascending curve having direct relation, first, to the character of the alloy of iron; and second, to the number of blows given, up to the point when strain is relieved - beyond which an increased
number of blows does not increase the strength of the bar. Furthermore, it may be onted that these tests with the impact machine of the metal to resist sudden and severe shocks. Similar observa. tions apply to the tests recorded of lin. and 2in. bars. All the
2in. bars were broken upon the testing machine of Messrs. A. Whitney and Sons, by their operator, who was at first ignorant of the object of the tests. Subsequently, similar tests were made by
that firm with their car-wheel iron, and identical results were obtained by them. The tabulated tests have been selected from the daily records of experiments made at the machine tool works of William Sellers and Co., Incorporated, Philadelphia.
In Table 1 , the left-hand columns show the breaking strain and deffection of test bars of different kinds of cast iron, cleaned in
the ordinary manner with a wire brush. The right-hand columns the ordinary manner with a wire brush. The right-hand columns
show the tests of companion bars, cast from the same runner, molecularly annealed by being subjected to shocks in the tumbling barrel, or by tapping on one end with a light hammer, as noted
under "Remarks "also a few tests made with round bars 1 din. under "Remarks ", also a
in diameter, cast on end.
in diameter, cast on end.
Table II. gives a few of the tests with 1 lin. bars, made upon the new impact testing machine, using a a 14 lb , weight. The tests
marked A represent bars cleaned with a brush, and those marked
Ber B companion bars, molecularly annealed in the manner described. Thable III. gives a fow records of 2in, test bars, broken by A. Whitney and Sons upon their machine. The tests marked A were
cleaned with the brush ; those marked B were molecularly annealed in the tumbling barrel.
Other experiments have suggested themselves in the course of this investigation ; and my paper, therefore, is not presented as an exhaustive, but as a tentative treatment of this interestiog and,
I believe, novel line of research which is not incapable, even in its believe, novel line of research, which is not
present stage, of some practical application.

Nore.-The last bar, after withstanding these blows, was broken upon
he transverse testing machine at a strain of 29Tblb. Table III.

I have suggested, and adopted throughout this paper, the
hypothesis of the mobility of the molecules of cast iron, resulting in an effect similar or analogous to the effect of annealing by heat experiments described; it is of course possible, in our a prior ignorance of the laws governing atoms and molecules, that the
theory may not be correct, but the tentative propounding of a probable hypothesis, by inciting to a more extended course of experiment, along different related lines of investigation, often
leads to establishing or disproving the theory, and thus adds to leads to establishing or dispro
our stock of positive knowledge.

Guatemala: Central Ambrican Exhibition, 1897.-The De partment of Science and Art bas received, through the Foreign General at Guatemala, respecting a "Central American Exhibi tion" of Science, Art, and Industry, which it is proposed to hold
in that city next year, commencing on the 15th March, and closing in that city next year, commencing on the 15th March, and closing the Government of Guatemala are desirous that foreign nation should take part in it ; a department will be assigned to them, and they will enjoy all the privileges possible, with the right of Naval. Enginerr Appointments.-The following appointments
have been made at the Admiralty :-Chief engineers : Mark Blake have been made at the Admiralty :-Chief engineers : Mark Blake-
man, to the Daphne, to date February 2nd ; William J. Anderson, to the Skipjack, to date March 7th ; and Henry Percival Vining, on promotion: Georg Seagull, to date March 1sth, all reappointed Engineers : Harry R. Batchelor to the Magpie, additional, for recommission; and Richard Bryan to the Wildfire, additional, for
the Sans Pareil, to date April 17th ; W. J. Duffell, to the Repulse, to date May 5 th. Assistant engineer: Arthur F. White, to the
Blanche, to date May 5th.

HODGES' COMPOUND BLOWER

The accompanying illustration-Fig. 1 -shows, by a trans verse section, a compound blower manufactured by Messrs. Hodges and Co., of Cazenove-road, Stoke Newington, the peccessive successive compressions during its passage through the three. A blower of this type is most the one under notice is a working pressure of $1 \frac{1}{2} 1 \mathrm{l}$. per square inch, but they are

Fig. 3-HODGES' COMBINED ENGINE AND BLOWER also made to give as high an air pressure as 4 lb ., involving
the necessity of six compressions. It will be seen from the the necessity of six compressions. It will be seen from the sectional view that the blower is constructed with five separate
blast wheels mounted on a common shaft, and enclosed by blast wheels mounted on a common shaft, and enclosed by
suitable casings, so formed as to allow each wheel to work in suitable casings, so formed as to allow each wheel to work in
its own chamber. The shaft revolves in bearings carried by the brackets shown, and is driven by the pulley situated between the bearings. A A are the two outer blast-wheels, on one side only; B B are
two intermediate wheels of similar construction, but with narrower blades and consequently smaller capacity than A A; C C, the centre blast-wheel, has
blades fitted on both sides of the disc, forming a of the disc, forming a still smaller blades with a consequent further diminished capacity. In the spaces D D D D, between and the adjacent casing are provided a number of the peculiar shape of stitutes an important facto In operation, air entering the efflowercy of the machine. shown by the arrows, is caused to rotate by the outer wheels A A, from the peripheries of which it is thrown off in a state
of rapid rotary motion, the energy of which is utilised by

Fig. 1-HODGES' COMPOUND BLOWER-SECTION

impact upon the radial scoops E. This impact is said to transform the rotary movement of the air into a series of centripetal jets of high velocity, which, converging centrally, produces a blast at the inlets of the intermediate wheels of greater pressure than at the peripheries of the outer wheels, the increase in pressure being obtained without further expenditure of driving power. Upon the air leaving the increased density and weight, and it may here be pointed
out that a superabundance of air is always maintained under pressure at the inlets of the intermediate wheels, owing to the diminished area of the latter. A second compression now takes place by the agency of the wheels B, upon leaving
which the air comes in contact with the second series of scoops and is finally compressed by the secontre series and delivered into the annular receiving chamber F Fig. 2 is a diagram giving the results of experiments made by Messrs. Hodges on the speeds and pressures of a compound blower of size No. 25 , and shows clearly the pressure and volume of air delivered at any given speed. Referring to the diagram, each of the horizontal lines above 0 represents 2 oz . pressure per square inch, while each of the vertical lines from O to the right represents 200 revolutions per minute. The upper line X represents the curve of maximum pressures at the speeds given; thus
at 1400 revolutions per minute the No. 25 size blower gives a maximum pressure of 8 oz the No. 25 size blower gives a maximum pressure of 8 oz . per inch, at 2600 revolutions
$30 \frac{1}{2} \mathrm{oz}$. pressure. The most efficient working pressure is $30 \frac{1}{2} \mathrm{oz}$. pressure. The most efficient working pressure is
found to be about two-thirds the maximum, which is represented by the dotted line Y. On this line, at the pressures of $4 \mathrm{oz} ., 6 \mathrm{oz} ., 8 \mathrm{oz}, 12 \mathrm{oz}, 16 \mathrm{oz} ., 20 \mathrm{oz}$., and 28 oz , the figures under the intersections represent the cubic feet of air discharged per minute at the stated pressures.
with also illustrate in Fig. 3 one of these blowers combined with a high speed engine, the whole forming a compact and serviceable arrangement, obviating the use of counter-shafts tained, the only fixing this machine requires is the bolting tained, the only and provision of steam and requires is the bolting down and provision of steam and exhaust pipes for the
engine. As the floor space required is limited, it can be engine. As the floor space required is limited, it can be
placed in any suitable position, such as the corner of a smithy, close to the cupola, where the pressure of blast can be varied as required by the furnace attendant. When
once the engine is started it requires little or no attention beyond the filling of the sight-feed lubricator, and a little oil being added to the crank chamber at weekly intervals. The connection between the blower and engine is made with an endless belt, a tightening drum or pulley being provided
for keeping the belt taut. The engine, which is doubleacting, is very carefully constructed, all the running parts acting, is very carefully constructed, all the running parts
being of steel, working in extra large phosphor bronze bearings. The crank chamber, it will be seen, together with the bearing brackets, is one solid casting, thus insuring perfect rigidity and alignment. The main bearings are adjustable upwaras, by which means the shaft is retained square with the crosshead guide. The slide valve is of the balanced piston type, and the steam ports very short and straight. The cylinder, which is $8 \frac{1}{2} \mathrm{in}$. in diameter, is fitted with relief
valves and drain cocks, with pipes led into the exhaust and sight-feed lubricator. By extending the crank shaft, as sight-feed lubricator. By extending the crank shaf, as
shown, to receive a separate pulley, the engine can be used independently of the blower for driving any extraneous appliance or a line of shafting.
Although the engine is elevated it is remarkably free from vibration, even at very high speeds, a feature which is due to the careful method employed by the makers in balancing the moving parts. We have seen this engine running at a speed
of over 500 revolutions per minute, driving the blower, and of over 500 revolutions per minute, driving the blower, and
the engine running separately over 1200 revolutions without the cngine ruming bolts whatever, and with no perceptible vibration.

TESTING STEEL BOILER PLATES IN THE UNITED STATES.
When the Board of Inspectors of Steam Vessels met at Wash
ington, in annual session in January, the representatives of all th

FIg. 2-DIAGRAM OF REVOLUTIONS AND AIR PRESSURE-HODGES' FAN

steel plate manufacturers in the country appeared, and urged a
large number of changes in the regulations to ascertain the tensile strength. The Board, after considering the matter acquiesced in some of the points urged, and adopted the following
rule, which was made public at the Treasury Department on the rule, whic
3rd inst.:-
plate, there shall be taken from each sheet to be used in shell or other parts of boiler which are subject to tensile strain, a test ptraight part in the centre shall be 9 in . in length and ling, in width, marked with light prick punch marks at distances of lin. apart, as shown, spaced so as to give 8 in. in length. The sample must show when tested, an elongation of at least 25 per cent. in a length of 2 in ., for thickness up to \ddagger in. inclusive ; and in a length of $4 \mathrm{in}$. for
over $\ddagger \mathrm{in}$. to $7-16 \mathrm{in}$. inclusive ; in a length of 8 in . for $7-16 \mathrm{in}$. to 1 in . inclusive, and in a length of 6 in . for all thickness over 1in. The reduction of area shall be the same as called for by the rule of the Board. No plate shall contain more than 06 per cent. of phos-
phorus, and 04 per cent. of sulphur, to be determined by analysis by the manufacturers, verified by them, and copy furnished deemed expedient by the supervising inspector-general, be verified by an outside test at the expense of the manufacturer of the plate. "It being further provided that said manufacturer shall also furnish a certificate with each order of steel to be tested, stating
the technical process by which said steel was manufactured. It being further provided, that steel manufactured by what is known as the Bessemer process shall not be allowed to be used in the construction of marine boilers. Plates over lin. in thickness may be reduced to lin. in the straight part for testing, in cases where
the testing apparatus is not of sufficient capacity to test the full the testing apparatus is not of sufficient capacity to test the full
thickness of plate. The reduction of area and elongation must be equal to the requirement of full thickness of metal. Provided however, that contracts for boilers for ocean-going steamers require a test of material in compliance with the British Board of Trade, British Lloyd's, or Bureau of Veritas rules for testing, the inspec-
tors shall make the tests in compliance with the above rules. The samples shall also be capable of being bent to a curve of which the inner radius is not greater the $1 \frac{1}{2}$ times the thickness of the plates after having been heated uniformly to a low cherry red,
and quenched in water of 82 deg. Fah."

RAILWAY CARRIAGE LAVATORIES.

The modern luxuries of railway travelling, and the extensive introduction during recent years of sumptuously equipped saloons on most of the leading lines, have necessitated special attention to matters of detall connected with the general fittings and accessories of these carriages. With regard to the sanitary fittings, Messrs. Morrison and Ingram, of Manchester, have recently designed several specially arranged
lavatories and closets for railway carriages, of one of which ve give an ilustration showing closing-up lavatory, which, whilst being commodious and replete with convenient accessories, is compressed into a remarkably small space, the lavatory, when closed, not projecting more than $9_{4}^{3} \mathrm{in}$. from the wall, whilst the width is only 191 in. , and the height 6 ft ., including the over-mirror. The lavatory, every working part of which is readily accessible, is fitted with a hot and codl water supply to the basin, and a convenient arrangement is provided for hanging towels, whilst there is also a small cup-

board suitable for various toilet requirements. The folding automatically flushed, whilst the door is kept open.

WEAR OF TIRES ON PASSENGER ENGINES OF THE NEW YORK CENTRAL RAILWAY FOR THE PAST TWENTY YEARS.
By P. H. Dudley.

Comparivg the weights upon the drivers a few years ago with those in present use shows an increase in the static or dead load o produces dynamic effects more than double the static loads, yet by increasing the width of the head of the rails as they wer renewed and the higher standard of track maintained, the rate of the wear of tires for the heavier locomotives has not increased and narrow type of heads, drivers carrying $13,360 \mathrm{lb}$. ran an average of 19,400 miles for a loss of J in. in thickness of the tires This was the second type of 65 lb . rails, the first one having been
rolled in England and had a wider head. olled in England and had a wider head.
In 1884 the 5 in . pioneer 80 lb rail was
In 1884 the 5 in . pioneer 80 lb . rail was put in service, the head
being 24 in . wide. Its use was yearly extended, and by 1889 laco motives on the Hudson division made nearly one-half their mileage on the 80 lb . rails. Engines then carrying $17,600 \mathrm{lb}$, per driver ran an average of 19,300 miles per loss of $\frac{10}{16} \mathrm{in}$. in thickness of tire. In mileage on the 80 lb , rails, while thoos on the made their entire divisions made about three-quarters of theirs on the same class of rails; drivers carrying $20,000 \mathrm{lb}$. ran an average of 19,400 miles pe loss of 1 ig in. in thickness of the tire. This refers to the loss by wear and returning for future service. In 1892 the 100 lb . rail,
head 3in. wide, was laid on the Harlem line, which head 3 in . wide, was laid on the Harlem line, which carries the
combined passenger traffic of the three railroads entering leaving Grand Central Station, New York City. The renewing the entire line of the New York Central and Hudson River Rail road from Mott Haven Junction to Buffalo and return with 801 l , rail was completed in 1892. In 1894 the 1001b. rail was laid fron Spuyten Duyvil to Peekskill, making about one-quarter of the
Hudson division laid with 100 lb . rails. In June, 1895, I asked Mr. William Buchanan, general superin
tendent of motive power and rolling stock, for the of the class " " " power and rolling stock, for the mileage of some When the class "II" engine was designed in 1889 , the weight on each driver was $20,000 \mathrm{lb}$., but as the 80 lb . rails were put into the track the weights have been increased to $22,000 \mathrm{lb}$. The total $40,000 \mathrm{lb}$. being lomotives in running service is $200,000 \mathrm{lb}$., or ove $40,000 \mathrm{lb}$. being upon the truck. The mileage of the tires only
includes one turning since October, 1892, and ends March, 1895 ,

Some of the engines, of which there were 43 in all, did not enter Some of the engines, of which there
service until 1893 , and others in 1894 .
The list is so large, covering such a wide range of service, that
it must show conclusively whether or not a broad flat-topped rail it must show conclusively whether or not a broad flat.t-opped rail
increases or decreases the rate of wear of tires running over them. The 43 engines ran $3,706,567$ miles, and the total loss in thickness
 which ran in part over the 1001 b . rails show an average mileage of
29,046 miles for each 1 in. l .oss in thickness of the tire. The mile. age of 19,400 miles per loss of 1 in. in thickness shown by the light engines on the 65 lb . rails is now much exceeded by the heavier engines on the 80 lb . rails, the average mileage being 23,166 miles,
and on the 100 lb . rails it will exceed the 29,046 miles, which over one-half the present engines n
their mileage on the wide rails.
The comparison between the wear of tires on the engines running
the Empire State Express over the Hudson division mating the Empire State Express over the Hudson division, making one. fourth of the mileage on the 1001 b . rails, and the one running over
tho Westorn division exclusively on 801 lb , rails is very interesting The engravings show the approximate wear as obtained by
plaster casts after the mileage indicated on them had been made by the engines.

Diagrams Showing Wear of Tires on Engines No. 903 and No. 870.
Engine 870 commenced the service for which the wear of the 1895. The engines are double crewed, as is customary with all, and the mileage made per month fluctuated between 8576 and
9200 . Out of the 575 days, the engine was worked 571 days, the four idle days being occupied in boiler washing. The total mileage
in that period was 167,176 miles. During all this time the fires were not drawn except on the four idle days.
The following tazeepe shows the wear of titres with different weights
on them and running on various rail sections:-

$\substack{\text { No, of } \\ \text { engine }}$
870
503
84
80
4
4

$\begin{gathered} \text { No. of } \\ \text { miles run. } \end{gathered}$		$\underset{c}{\text { Pounds }} \begin{gathered} \text { of metal } \\ \text { ost per } \\ \text { loon milles } \\ \text { fouvedrivers } \end{gathered}$	Rail section on which engines which engines ran.
107,176	$20 \cdot 41$	$0 \cdot 801$	801b. and 1001b.
152,314	$22 \cdot 00$	1.332	solb. ralls.
56,219	18.06	$1 \cdot 23$	Englsh 65 lb . rail.
73,647	18.00	$1 \cdot 387$	" "
78,864	$17 \cdot 28$	$1 \cdot 379$	" "

Woight
ontiver.
drive.

Nork.-The 1001b. rail has a head 3in. wide, the solb.
wide, and the English 651 lb . riil had a head 2 din. wide.
The loss per yard in circumference of tire, per $1,000,000$ tons
rolling contact on the rails was as follows:-

Ib 0.042 0.070 0.121 0.136 0.132

The general dimensions of the class " $\ddot{\mathrm{I}}$ " $\ddot{\ddot{ } \text { engines are given in the }}$ Cylinder, diameter and strok Steamen, port
Exhaust
Bridges:
Valves
19in. $\times 2$ inin.
1sin.
1inin.
1yin.
1in. wide.
$\underset{\substack{\text { Travel } \\ \text { Onside iap } \\ \text { Inside hap }}}{\text { and }}$
Boiler:-
Dimeter, smallest ring.
Presesure per square inch

Area Heating surfice
uus:-
Number.
Outside di
Outside diameeter
ength betweer
Length betwoen
Heating surface
Heating sufface
Weeinhtating surface onizig orde
Weight on drvers
Weight on trucks
Wefight on maximum tënder loade
Tractive force per pound M. E. P.
Adhesion to treartive fo
Diameter of driver
Driving whecel base
Total wheel baso

Engine No. 903 hauled the "Empire State Express" on the western division from April 3rd, 1894, to December 3 rd, 1895,
total mileage 152,314 . Of the four tires of engine No. 80 , the left front one was physically the osftest and shows the most wear, as seen in the accompanying inas ones from crushing the sand when frrst applied to the rails, and is more noticeable than
on the crucible steel tires of the lighter engines, of which I took
plaster casts many years since. Ross Meehan shoes were applied to the drivers covering the full tread and flange of all drivers for outhide of the flanges of the left side drivers, which is not included
out as it was not produced by the rails.
The wear of tires per $1,000,000$ t.
for the amount of metal lost, as shown by plaster casts would be for the amount of metal lost, as shown by plaster casts, would be
influenced by many conditions which need not be considered here; yet the results point to the same general fact that by widening the top of the rail, and giving it a larger top radius, the rate is decreased, notwithstanding an increased weight is carried upon
the drivers. The top radius of the pioneer 80 lb . rail is 12 in., with I. in. corner radiin, and for the 801 b , and 100 lb . rails, laid in 1892 point is to secure as large an area of contact between the driver and the rails as practicable, for the larger the area is the less are the wheel pressures per square inch of contact, and the greater wiath of metal of both rails and wheels to resist and distribute the
tractive force exerted. The tractive force of both 870 and 903 on tractive force exerted. The tractive force of both 870 and 903 on
the rails drawing the same train would be practically alike, and the difference in wear of tires mainly due to the greater averace area of contact of 870 , running part of its distance on the 1001 lb . rails, while 903 ran entirely on 80 lb . rails. The mileage of either engine is very largo, nearly double what is obtained on the narrow-
headed rails, as will be seen by a comparison with engines Nos. 84 , headed rails, as will be seen by a comparison with engines Nos, 84 ,
886 , and 44 which ran on the 6511.0 rals. The practical results of 86, and 4, which ran on the 56 . . rails. The practical results of tires, frogs, rails, ties, and expense of minimum maintenance,
while the speed and train loads have been largely increased. The estandard frieight train load of the New York Central and
Hudson River Railroad, on the 80 lb rails is 50 londed 60 , 00 lb Hudson River Railroad, on the 80 lb . rails, is 50 londed $60,000 \mathrm{lb}$.
capacity cars, making a gross load of 2250 tons, forming a train capacity cars, naking a gross load of 2250 tons, forming a train
2000ft. long, which runs 150 miles in six to eight hours. The train load has more than doubled from the old 65 lb . rails.
The broad thin type of head is making rapid progress abroad.
Dr. Haarman, at his Osnabruck works, Germany, has introduced D.r. Haarman, at his Osanabruck works, Germany, has introduced
several seetions, while manyare being rolled in England for India and
Australia. My 80 lb, section has recently been rolled in two Canadian lines, While the thin wide head and stiff is now generally recognised as the most economical form, the pioneer 5in. 801 lb . rail met with decided opposition, as being heavier and stiffer than was needed. Its introduction was largely due to
the persistent efforts of Mr. J. M. Toucey, then general superinthe persistent efforts of. Mr. J. M. Toucey, then general superin.
tendent, but now general manager. of the New York Central and Hudson, River Railroad. The rail once in the track mado friends
and had strong advocates, for the value of stifness in a section and had strong advocates, for the encue of stifrness in a section
was recognised, the principle being utilised by many rairoads. It is not weight alone, but stifffesss as well, which gives valuive ot a
section. It marked an epoch in railway progress, and while the section. It marked an epoch in railway progress, and while the
advantages of a broad head and stiff 5in. rail have exceeded expectations, there are still greater values to bo obtained by the
use of the broader head and stiffer 100 lb . rail. use of the broader
Engineer Car Buider.

THE NEWPORT HARBOUR COMMISSIONERS'

WEEKLY TRADE REPORT

GooD attendance on 'Change. Steam coal shipments are good,
with fair inquiries for the future. Prices steady. The house coal trade continues good for the advancing sesson, and prieces are with-
out change. Tinoplates in better demand. The steel and iro out change. Tin-plates in better demand. The steel and iron
works continue well employed.
 colliery small, 4s. 3 d . to $4 \mathrm{s}$. . 6 d ; smiths' coal, 6 s . $6 \mathrm{~d} . ;$ patent fuel,
10 s .3 d . Pig iron: Scotch warrants
 prompt; Middlesbrough hematite, 45 s . 4 d . Iron ore: Ruvio,
11s. 9d. to 12s.; Tafna, 11s. 3d. Steel rails, heavy sections, $£ 4$ 12s. 6 d .; light ditto, $£ 5$ to to $£ 5$ 5s., fo.b.; ; Bessemer steel tin-plate

 London
£5 10s. Exchange telegram : Copper
Freights: Homeward. firm.

THE IRON, COAL, AND GENERAL TRADE OF BIRMINGHAM, WOLVERHAMPTON AND OTHER DISTRICTS.

(From our oun Correspondent.)
STEEL is steady this week at $£ 5$ for Siemens marked steel slabs at
stations in the Midlands $£ 415$. for Bessemer blooms and billets, stations in the Midsands, 415 15s. for Bessemer blooms and billets,
56 to $£ 6$ 10s. for Siemens bars, $£ 57$ s. 6d. to $£ 6$ for Bessemer
 boiler-plates, and 45 . $15 s$. delivered for Bessemer ship-plates.
Angles and girders of basic steel are 2510 s, and $£ 65 \mathrm{~s}$, for boiler. plates. All the steel works are active, and the finished ion works
and blast furnaces are also well engaged upon ordere booked at the pand blast furnacees are also well engaged upon ordere booked at the
commencenent of the new quarter. Common bars are $£ 55 \mathrm{ss}$. to $£ 5$. 10 s . . merchant bars, $£ 6$ to $£ 65 \mathrm{~s}$.
and marked iron $£ 7$, with $£ 7$ 12s. 6d. for the L.W.R.O. brand of and marked iron $£ 7$, with $£ 7$ 12s. 6 d. for the L.W.R.O. brand of
the Earl of Dudley's make. Black sheets are $£ 6$ 12s. 6 d to $£ 7$ for singles, $£ 7$ to $£ 77 \mathrm{~s}$. 6 d . for doubles, and $£ 715 \mathrm{~s}$. for lattens. Angles are $£ 515 \mathrm{~s}$., stamping sheets are $£ 9$ 10s. and best thin sheets $£ 11$. Nail rod is $£ 610 \mathrm{~s}$. Hoop and thin strip $£ 67 \mathrm{~s}, 6 \mathrm{~d}$.
Tube strip for bedstead tube making is $£ 65 \mathrm{~s}$, and for gas tube making ± 5 10s.
Staffordshire
starfordshire cinder pig is 36 s . to 37 s . for forge, with 2 s . more for foundry ; part mine, 39s. to 45 s ., according to quality ; and
all mine pig is 44s. id. net at stations. North Staffordshire and Derbyshire, 42s. to 43 s , and Northamptonshire 41s.
The Tame and Rea District Drainage
eeting on Thesday year, totalling $£ 60,170$. The Board approved a scheme submitted by their engineer, Mr. Till, for a l large extension of tho seexage
farm. This scheme of extension will in all probability ultimatoly farm. This scteme of extension will in all probability ultimatoly
involve a capital expenditure of $£ 24,500$. When the Board was formed in 1877 the population in the drainage area was but
481,944 . In 1884 the constituency had incrensed to tion of 605,594, and, without any extension of the area, it is
estimated that by the year 1912 its population will amount estimatod that by the year 1912 its population will amount
to 900,000 persons, nearly the whole of whom will be resito 900,000 persons, nearly the whole of whom will be resi-
dent on land draining to the sewage farm. A considerable dent on land draning
extension of land and works is therefore absolutely necessary in the course of the next few years, in order to deal with the con. tinually increasing quantity of sewage. Parliamentary powers will
be necessary. The engineer of the Board is Mr. Till be necessary. The engineer of the Board is Mr. Till, and the ser-
vices of Mr. Charles Hawksley have also been retained on a com. mission of 5 per cent. on the cost of construction, Mr. Hawksley undertaking to design the works, prepare all needful working
drawings, and supervise the works during construction to give advice in relation to Local Government Boards and Parliamentary inquiries, and attend thereat. The new land which is to be acquired will raise the total area of the farm to be used for sewage disposal to 2320 acres, of which over 2000 acres will be
available for irrigation. Mr. Till estimates the costs of the works only, including main conduit, outfalls, and stream diversions, new improvement, pipes and main drainage, laying out, machinery, and ing the land, at $£ 124,500$, exclusive of easements, compensation, or purcbase of mill or water rights. He estimates, approximately,
the cost of pumping expenses for lifting $5,000,000$ gallons of
sewage per day to the high level lands, exclusive of interest, sink. Cycle enfineers seem to be enjoying a good time. Easter week was one of the most remarkable in the history of the cycle engineering trade, and orders continue to pour into the Midland
towns for machines from all parts of England and abrond and factory accommodation at Coventry is extending in all directions This remarkable activity in the cycle and cycle fittings trades is responsible for some extraordinary advances in the cycle share market of the Midlands, in which securities of this description have lately been sought after, to the neglect of nearly all other kinds of
industrial shares. The extent of the upward movem gauged, perhaps, by a comparison of the prices of a week ago with those realised on the first of the month, before the "boom" had set in. Beeston Pner matic Tire at the carlier date were selling at been $£ 6$. W. Bown, Pref. 7 per cent., has risen in the same
period from $£ 315 \mathrm{~s}$, to $£ 410 \mathrm{~s}$.; Cycle Components, from 20 s. to $44 \mathrm{~s} .6 \mathrm{~d} . ;$ Humber and Co., from 26s. 3d. to 29s. 3d.; Pneumatic 13s. 9d. sellers to 19s. 6d. buyers ; St. George's Engineering, from
 minister to the wants of cycle manufacturers have shared in tho advance, Star Tube rising from $£ 3$ premium to $£ 4$ premium, or min the $£ 1$ shares, and Rose Tube from about par to $£ 1$ pre. mium; and during the week, in some of these cases, still further
advances have been made. The newly-formed Cycle Manufac turers' Tube Company have arravged for the erection of a factory upon land purchased from the Coventry Corporation. The con A conference of representatives from the County Councils of Montgomeryshire, Breconshire, Radnorshire, Cardiganshire, Merionethshire, and Carnarvonshire, with the local members of Parliament and gentlemen interested in agriculture, has taken place at Machynlieth. The object of the meeting, which was pro-
moted by the directors of the Cambrian Railway Company, was to discuss methods for facilitating the carrige of agricultural produce over the district served by the Cambrian Railway. Sir Humpbreys word, M.P., presided, and among other directors present were Lord Henry Vane Tempest and Mr. Edward Davies. After an
interesting discussion of the conveyance of live stock, the man announced, amidst aplouse that the compary war to revert to the rates of 1892 locally. Mr. Forrester Addie advo.
竍 cated the opening of a market in the Black Country by a reduction in the rates for procuce, and the publication by the company of a spoke of unfavourable rates for home produce compared with spoke of unfa.
foreign goods.
Three fatalities have unfortunately occurred at Himley Colliery,
causing the death of William Marson killed whilst following his Marson (20), Gornalwood, who was Colliery; and the death also of a man named Joseph Shaw (51), heath, who was killed on ; and of Wallace Kentil (22), hearn, who willery. The first two cases were caused by the fall of a
Homley Cor
roof whilst they were fixing up an iron girder across the rof. In roof whilst they were fixing up an iron girder across the roof. In
the last-named case the deceased was engaged in shunting, when he was crushed against a truck and diad almost immediateiy. The Public Works Committee of the Birmingham City Council have decided to report to the Council in favour of the scheme of recently mentioned. It is proposed to Surveyors Department Mr. Till in connection with the City Council, but not in with the Drainage Board, and to pay him a reduced salary of $£ 600$ a year; while a deputy or assistant colleague shall receive $£ 400$
from the Corporation and $£ 400$ from the Drainag arrangement will involve no increase of Drainage Board. Tlis hitherto having been $£ 1000$ from the City Council, and $£ 400$ from the Drainage Board.

NOTES FROM LANCASHIRE

(From our oun Correspondents.)

Manchester.-Although there is perhaps not quite so confident a tone in some quarters, owing to the persistent slackening off in the
demand during the last month, with demand during the hast mon, , would seem to be nothing actung of the present position to occasion any real uneasiness as to the future. It was not to be expected that the heavy buying that
went on two or three from the lull which was onlhs back could be continued ; and apart through, is satisfactory, and natural tho forlow, trade, taking it all industry are not only kept fully employed, but in most departing quantities. Of course there are nervous or needy holders of iron who are always, in a condition of the market like the present, anxious to realise even at a sacrifice in price. Generally, however, a strong tone is maintained; and apart from second-hand parcels stances, given way more than might bave been looked for
A continued absence of animation is the report throughout the iron market here, and although there was an average attendance In pig ironys Exchange, business all through was extremely slow. In pig iron especially there is a conplete pause as regards further
buying for the present. This absence of new business forward has, however, not hitherto been regarded as appreciably affecting the position of makers, and the report on 'Change of the altogether unexpected action of the associated Lincolnshire smelters at their meeting last Friday in deciding to reduce their list rates 1s. per ton occasioned considerable surpriso. It was generally
supposed that the Lincolnshire makers were so heavily sold that they were practically independent of new business for some time to come, and the explanation is that Northampton pigs have recently been offered at such extremely low figures that the important Staffordshire trade in Lincolnshire pig iron has been almost, if not altogether, lost, and that it is solely with a view to the recovery of
this trade that the reduction has been made. With regard to other brands of pig iron, makers' prices remnin without regard to change, but the position, taking it all through, is unquestionably weaker, and in the open market prices were very irregular, merchants, in fact, making their own quotations, according to circum41s. for to 47s. for foundry, net cash delivered here, but with regard to Derbyshire iron the position of makers is not so strong as it has been recently. Local makers have made no change in their quoted prices, foundry qualities remaining at 46s. 6d., less 2 L d., delivered here, and it at only where they come into competition with forge Lincolnrates. For delivery Warringon, 41s, 8d, net cash is average price for Lincolnshire forge, and Lancashire makers, to secure business, will have to come in at something like the same igure. Makers prices for outside brands are somewhat easier, but without quotable alteration. They are still quoting 47s. net cash
for good foundry Middlesbroush delined for good foundry Middlesbrough, delivered by rail Manchester,
but orders could be placed at 6d. to 9d. less Quays, Manchester, at about 44s, 9d. net cash. For Clen Dock makers' official quotations are 48s. 6d. delivered Lancashire ports, and 50 s. 6 d . delivered Manchester Docks, but sellers could be
found at 6 d . to 9 d . under these figures, and Eglinton could be bought without difficulty at 47s., net prompt cash, delivered Lan cashire ports, and 49s. 3d. delivered Dock Quays, Manchester trade, and forges are lorward steadily in the manufactured iron

qualities，delivered here．Sheets，however，are weak and irregular owing chiefly to the ecollapse of prices in thaffordshire；and $\pm 75 \mathrm{~s}$ to ef 10s．may perhaps bo taken as about the average figures fo
delivery here．The Association list rates for hoops are steady a $£ 6$ 2s．6d．for random，to $£ 6$ ． 7 s ． 6 d ．for special cut lengths delivered Manchester district，and 2．s． 6 d ．．ess for shipment．
In the steel trade a moderate business is reported，with a ste one in prices at late quotations，makers being very，firm at 58 s ． to
 for local made steel bars ；$£ 6$ fis． 6 d．for boiler plates ；and $£ 5$
to $£ 512 \mathrm{~s} .6 \mathrm{~d}$ ．for steel girders，delivered Manchester district． A brisk tone prevaiss in
maintained at fult list rates．
In the engineering trade general activity continues to bereported booked during the last few weeks．This remark applies particu larly to machine tool makers，who have securad somp large orrders
for delivery well into next year，whilst at many of the local esta－ lishments there is quite a pressure to get through the work alread in hand．Stationary engine builders also continue fully engaged，
both in the light and heavy departments ；boiler makers are also kept extremely busy，having a larger weight of orders in hand than they have had，for a considerable time past，and amongst
locomotive builders a fair amount of new work has also been
secured．Wenry Wallwork and Co．have just completed for
Messs．Henry
Messrs．A．C．Wells and Co．，of Manchester and London，aspecially Messrs．A．C．Wells and Co．，of Manchester and London，a specially
designed painting machine to be used on the Liverpoo Overhead
Railway．This consists of a modification of their＂．Lightning＂ Railway．This consists of a modification of their＂Lightning
painter，which was osme time back described and illustrated in
THE ENoINEER，but in the present instance it is to be driven by an THE ENoINEER，but in the present instance it is to be driven by an
electric motor．The whole of the machinery，ocosisting of the elec． the painting nozzles，and then discharged in fine spray，the pain recoptacle，and the electric motor，are ixed，in compact，form，upan a travelling car constructed to run upon the tram rails below the
overhead railway，and the machine can be operated at any point along the line by，Anctric curront supplied from the company
own installation． painting machinery is also being introduced in the form of
portable self－contained painting machine weighing less than 1 ewt． and complete in itself，with air－pumps，paint receivers，and ail
the requisite apparatus carried on one small base－plate，fitted the requisite apparatus carried on one small base－plate，fitted
with wheels and a couple of handles，arranger in truck
form，so that it can be readily wheeled from point to point．The mixing arrangement，which is automatic，is operated
by the rotation of the crank actuating the air pump which is worked by hand，and supplies the compressed air for
forcing the paint to the nozles．I may and that the method of painting by machinery，introduce，the machines they have already supplied having，I understand，given great satisfaction，and I hope，
for a later issue，to be in possession of more complete details，with illustrations，of the newly designed and improved machines they Throughout the e with come coal trade the position remains unsatisfactory， week，and all descriptions of round doal hanging upon the market． With the present mild spring weather，requirements for house fire
qualities are necessarily falling off，and although there is no quaitites are necessarily faling off，and although there is no
actually quotable change in list rates，surplus supplies are pushed
for sale and in the open market prices are weaker．The lower for sale，and in the open market prices are weaker．The lower
descriptions do not move off any better for iron making，steam， and general manufacturing purposes，and the complaint generally
is that they are extremely difticult to sell，with only excessively low prices obtainable，ordinary steam and forge coals not averaping
above 5s．9d．to 6s．3d．at the pit mouth．For engine classes of ae there is a fair demand，and with collieries in many cases rather short of supppies，the tendency as regards prices is，
there，deeidedy in an upward direction．The general average
prices，however，remain unchanged at about 3 s ．and 3 s ．6d．for
 per ton are being got，these are altogether exceptional． In the shipping trade business shows no improvement，and
owing to the excessively low figures at which orders recently have only been obtainable，some of the collieries are declining to com
pete at all for business，preferring rather to leave this branch of prices．Common steam coals，delivered Garston Docks or High Lriesel，Liverpool，average about 7 s ．to $7 \mathrm{7s}$ ．3d．，and for delivery
Partinton tips，Manchester Ship Canal，about the same figure oould be taken，
Some feeling of anxiety with regard to the possibility of anothe
wages dispute in the coal trade is beginning to manifest itself a wages dispute in the coal trade sesinconciliation Board agree．
the period approches when the present Cone
ment comes to an end．It is evident that the miners are as detor－ mined as ever upon the question of a minimum wage，and this
part of their policy they have all along kept to the front with nshaken persistency．The coalowners，on the other hand，are as
trongly adverse to binding themselves down rate of wages－at any rate on the basis proposed by the miners－
rand if the question is to be fought out on this issue，it is difficult o see how a renewal of the struggle can be avoided．By
the agreement which comes to an end in July，the miners have already succeeded in getting in the thin end of the
wedge with regar to the priniple of a minimum wage，
and it is probable they may endeavour to drive it still further
and home by suggesting that ethe existing arrangement－that
is，that the present rate of wages remain undisturbed for period of eighteen montenthe ofter whages remain the undiliess，if the the state o
trade warrants it，are to be in a position to ask for an advance－ hall be carried over for another similiar period．The contention o
the coalowners，however，is that the present state of trade and the lower wages paid in other competing colliery districts does no
 reduction．I＇s sarcely，think，however，that either the miners or and in well－informed quarters it is thooght probable that some means will be found to bridge over the difficulty by an arrangement
which，whilst not actually binding the coalowners to a minimum wage，may for the time being satisty the mmen，
be advised by their leaders that it is not their policy just at present to push the matter to the extremity of forcing on another struggle．
It would seem，however，to be almost tinevitablo that the minimum wage question，which has taken so strong a hold upon the minds
of the colliers，must，sooner or later be fought out，but in all pro－
bability of the coal trade is more favourable than it is at present for carry－ ing the struggle to a successful issue．
Barrov．－The demand for hematite qualities of pig iron is still brisk，and orders are offering freely to makers，who are already
well sold forward．Business in Bessemer qualities of metal is not only strong by reason of the immediate large consumption on the
part of stee makers，but because there is an all－round good
ond 39 furnaces in blast is all going into consumption，and during the week 1102 tons have been cleared out of warrant stock，leaving
302,816 tons still in hand，or 13,641 tons increase since the beginning of the year．Makers quote old rates of 50 s．per iron is selling at 478．11d．net cash，while buyers are offering at 47．1012d．
There is still a good business in the iron ore trade，and smelters
are using large supplies as well of native as of Spanish qualities． are using large supplies as well of native as

The steel trade is brisk，and the mills are busy in every depart nent，including rails and plates，as well as billets，hoops，castings are frim，heavy rails being at $£ 412 \mathrm{~s}$ ． 6 d ．per ton．
Shipbuilders are looking forward to some new orders，and during the week the Naval Construction and Armaments Company has destroyers．It has already in hand two of this class of boat and it is quite on the cards that boats of a
will be ordered．
The coal and coke trades are very firm．
The coal and coke trades are very firm．
In shipping things are much brisker．During the week the exports
from West Coast ports reached 9189 tons of pig iron and 14，694 rom West Coast ports reached 9189 tons of pig iron and d 4,69
tons of steel，as compared with 4098 tons of pig iron and 455 tons of steel in the corresponding week of last year，an increase of 509 the year the shipments have totalled up to 94,771 tons of pig iron
and 131,222 tons of steel，as compared with 78,888 tons of pig iron
and and 111, ，169 tons of steel in the corraesponding period of last
an increase of 15,883 tons of pig iron and 21,058 tons of steel．

THE SHEFFIELD DISTRICT

Betrer time has been workrd in most of the collieries in the South Yorkshire district．The week＇s output has been an average Values remain low，although the prices of steam and small fue request，owing mainly to the extra demand for coke－making purposes．Lstablishments making their own coke find it to then
advantage to use their own slack and smudge．The supply of slack is very restricted owing to the short time worked at the pits． being forwarded to London，owing to the mild weather，and the large quantity of seaborne coal at present in the m m
similar remark applies to the eastern and other markets．
In house fuel the quotations，owing to the plentiful supplies，are
Iow．Silkstone coal is at $8 s$ ．to 9 s ．for best hand－picked while ordinary samples are obtainable at 7s．to 7s．6d．per ton at the pits． Best qualities of Barnsley＂softs＂make from 7 m .3 d ．to 7 s ． 6 d ．
per ton，inferior qualities 6 d. to 9 d ．per ton less．Owing to the low perices asked for secondary sorts of thick seam coal，the thin seam
pits are worked with considerable difficulty．The best qualities of pits are worked with considerable difticulty．The best qualities or
this class will not fetch more than 5 s ．9d．to 6s．per ton．There is an abundant supply of fuel in the market，and low values
only can be obtann．It is expected in many quarter only can be obtaned．It is expected in many quarters is being forwarded in connection with railway and other contracts．
Steam coal prices range from 6s． 9 d ．to 7 s ．per ton．Good screened Steam coal prices range from 6s．9 9 ．t to is．per ton．Good screene
slack is obtainable at from 3 s．6d．to 4 s．；ordinary pit slack，
 majority of the district ovens are now well employed．North
Lincolnshire bas been taking a much larger tonnage of late，owing to more furnaces being put into blast．Derbyshire is requiring an verage amount，and a simiar remark applies to several of the
ther iron smelting districts．Values of best coke range from 5． 6 d ．to 1 18．，per ton in owner＇s wagons at the works．
The heavy departments of the city continue in the same regular condition．The railway material branchs are well off for work．
Some very good orders for springs，buffers，axles，tires，and similar
年
 London extension，as well as for other of the leading home rail－
way companies．Several foreign railways，including South American， way companies．Several foreign railways，including South American， wave also placed some large contracts．The increased activity in
these branches has bad a stimulating effect on the demand for steel，and three of the Bessemer works are working night and day． engines with the Yorkshire Engine Company．This company is
anso well cmployed on work in other departments．The armour－ also well employed on work in other departments．The armour． wo some eceived by the Sheffield firms who make this class of work a specialit
In the lighter industries a remarkable improvement has taken lace since the quarter ended．A very．Competition is still very ken，and it is stated that in some cases manufacturers are dispos．
ing of the files at cost prices，relying on the steel used for their profit．The skate business has been very por this yoar，owing to to
tho absence of any prologed winter，and heavy stok slaid in last
the ffect of stimulating the demand for building tools，and heavy tools for the engineering trades have been in good request．The
saw business is only q quiet．Since Easter an improvement bas aken place in the cutlery trade．Some excellent orders have been
received for cutlery．These have been mainly for the pen and pife branch．Manufacturers of the cheaper qualities of cutlery are well off for work，finding full employment for their men．
Lord Charles Beresford，who has been the guest of the Maste Cutler－Mr．H．Herbert Andrew－during his visit to the Shetfield
Press Club，visited the Toledo Stee Works，the Master Cater＇s and Co．，on Monday．At the first place he witnessed the process nining Martin process，the drawing of telegraph wire，\＆c．The Master Cater and Beres．ord．and the party accompanying him over the the
departments．At the Cyclops Works，Mr．Alexander Wilson J．P．，the managing director，and Mr．T．W．Jeffecok，J．P． the rolling of a 25 －ton armour plate for H．M．S．Illustrious，now Harveyised，and his lordship was also able to see the machining o of the minor processes．At the Press Club，Lord Charles cally excellent but practically rotten．He particularly objected to no provision being made for manning the new war vessels，pointing
out that the First Lord of the Admiralty admitted that in Apri next he would be 11，00 men short，and that he intended to tak them from the irrst Naval Reserve．He
we had no Naval Reserve，and that 22,000 more
men will be required a year he
going to get them．

THE NORTH OF ENGLAND

（From one oven Correspondent．）

Thovar the local iron market is very quiot，and both buyers cannot by any means be described as depressed．On the contrary business men are decidedely hopeful，for their belief is that this
lull is simply one of those unaccountable pauses which occur from till is simply one of those unaccountable pauses which occur from
time to time in every upward movement，when buyers，after a
brisk period of buyin take a brisk period of buying，take a rest．Makers have certainly well
filled order books，and are quite indifferent about selling further at present，while buyers have ordered enough to satisfy their re－
quirements for some little time to come，and they hold off just now．But there is nothing in the position and prospects of trade

The activity in the pig iron industry is unprecedented，the pro－ is regarded as certain that it is nor noe excess of the nents，though it has been so for the last half－year．But now the arger，for finished iron and steel works are in full swing－indeed he present rate of production has never been surpassed．It is the stocks of Cleveland pig iron will be reported．Some appre－ hension is felt that the output of pig iron will be increased，atly
that too many furnaces will be put in blast．This has been partly caused by the report of the sale of en the ix months，as the furnaces need to be relined．It is not probable
 where a producer has to buy his materials in fhe open
The exports of pir iron from the Cleveland district have this The exports of pgiron tons，as compared with 68,858 tons last month，and 84,344 tons in April last year to 22 nd．The export save kept up very well isdeed when it
that the navigation season commenced so early this year．Local onsumption also is good，and a large quantity of Makers generally maintain their quotations fairly well，as they别 they，however，have only been seling smatil ots for der sales have
the end of the month．Of No． 3 Cleveland pig iron s．
 tically unprocurable．In the absence of business and the desire to竍 it reliabole prices for forward deiivery can hardly be given．
Cleveland warrants have this week touched a lower price than has been known since January 14th， 37 s ．8d．cash being all that the suyers would give on hoday．．ecere has since been a silght given，there being sellers at 37 s ．11d．The stock of Cleveland pig
ron in Connal＇s stores on Wednesday night was 190,256 tons，an increase for the month of 2782 tons．It might have been expected rather be drawn out of than put into the public stores．
Finished iron and steel manufacturers have booked very few orders since before Easter，but they are wel supplied with con racts，and can keep their is，therefore，no easing of prices．The managing director of one
of the leading bar－making establishments in the North of England stas that never since their works were founded has business been
so brisk ns it is at present ；indeed，orders have been coming in so rapidiy that hey were unable to keep seems to be every prospect of a still more active trade．The been idle since October，1894，is much discussed．The directors had a meeting last Saturday，when the subject was considered，and a further meeting is to be held，so as to settle upon the proposal
to be made to the shareholders at the fortheoming annual meeting． It is true that the selling prices of steel rails have gone up，but the to be production has in be situation of the worrss tells against them in their competition
inland
with the manufactories near the seaboard．Deliveries of rails and railway material Tees，and it it a a long time since Middlesbrough Dock has been so for India and Japan．Heavy steel rails are obtainable at $£ 412 \mathrm{~s}$ ． 6 d ． per ton net at works．
The steel ship－plate trade is very briak，as shipbuilders in the
North of England and Scotland are so actively employed Tyne especially is this the case，a considerable proportion of it been placed with Palmers＇Shipbuilding and Iron Company for two thirty－knot torpedo boat destroyers，and other two are to be built
by Messrs．Hawthorn，Leslie，and Co．Palmers have now on hand for the British Government eight torpedo boat destroyers，and votird－class cruisers．Owing to the improved prospects，the ago their $£ 15 \mathrm{~A}$ shares could have been bought at 7 I ，now they are 9 ． On the Tyne there are at present ordered eighteen war se fins，in cluding torpedo boat destroyers，and an these
British Government．The Tyne Iron Shipbuilding $C o$ ．will build a steel steamer of 3400 tons gross for the stag steamship Co．，and of 5400 tops deadweight，for a a Cardiff firm，the price，it is
stated，being $£ 30,000$ ．Owing to the activity in shipbuilding the price of steel plates is strongly upheld at $t 52 \mathrm{~s}$ ． 6 d ．per ton，
and some firms will not sell under $£ 53 \mathrm{~s}$ ．，both less 2% per cent．

Wages questions continue to come to the front，the improvement of the realised prices．At the foundries the men have commenced Foundry，Port Clarence，are the first to hand in a definite claim， hich is for no less than 15 per cent．advanco．The Norther United Engincmens Association，which includes cranemen and ire per week in wages for those receiving e2ps．per week and upwards， ccept an advance of 1 s ，per week．The joiners of the Tees， Hartlepools and the Tyne yards claimed 3s．per week advance，
and the employers offer 1s．from May 6 th ；the men have this offer nder consideration．
The death is announced of Mr．Thomas Walker，of Saltburn，a
partere，since its formation in 187 ，of the firm of Walker Maynard partner，since its formations．
nd Co．，Redcar Ironworks． The employes of the Cleveland Bridge and Engineering Co．
Darlington，on Monday presented an illuminated address，a gold pendant，and a silver kettle to Mr．Edward Westby Jacob，who
is retiring from the managership of the works，which he has held s retiring from the managership of the works，which he has hel
for the last ten years，during which time the works had been con for the last ten year．
iderably extended．
A testimonial from the working men and others in South－East son，D．L．Mr．Richardson is senior partner in the firm of The University of Durham have conferred the honorary degree been a leading member of the iron and coal trades in this district， and has done so much to popularise the principles of arbitration
and conciliation in disputes between employers and their men．He took a prominent part in establishing the Board of Conciliation that industry since 1869.
The traders of Middlesbrough and district have commenced to
agitate for an enlargement of and a new entrance to the Dock， which is the property of the North－Eastern Railway Company， as there is not accommodation for the very large vessels that
are now employed in the trade between this country and India gaged，as so much railway ma In the district for that part of the world．The trade up till within
the last few years has been carried on with steamers of from 2000 to 4000 tons，and the dock and entrance were capacious enough for these．But of late the tendency has been to greaty enlarge the capa－
city of the vessels employed，as it is found that steamers of from 7000 tons upwards can be worked much more economically，and lower
freights can be accepted without loss．But there is not adequate accommodationat Middlesbrough Dock for such vessels，and the con
of their cargo on board in the dock and fill up elsewhere. Some
vessels are too wide to get into the dock at all, and some of the vessels are too wide to get into the dock at all, and some of the
leading shipowners decine to risk sending their vessels. Not only is the entrance too small, but there is not room enough to swing
the vessels if they were in. It has been decided to send a deputation to the directors of the North-Eastern Railway Company, to represent to them the neeessity of making adequate provision for
dealing with these large vessels. The dock at Midd lesbrough was
opened in opened in 1842 ; in 1852 it passed into the hands of the railway company; in 1872 it had to construct a new entrance ; and in 1883
it had to make a still larger entrance and to enlarge the dock considerably. If the trado is not to be hampered it will be neceessary
without delay to still further increase the accommodation. Some without delay to still further increase the accommodation. Some
traders are of opinion that it would be well if the example of traders are of opinion that it would be well if the example of
Antwerp could be followed, and quays erected with deep water
berth Antwerp could be followed, and quays erected with deep water
berths in the lower reaches of the river. That would make the
port a less eepensive port a less expensive one. The suggestion that a now dock inde-
pendent of the railway company should be constructed lower down the river does not find favour with the traders.
collieries north of the Tyne are doing better than for six and the past, while the price of best steam coal has been this week raised past, whil the price of best steam coal has been this week raised
3d, per ton, viz, to 8 . f.o.b. Blast furnace ooke is scarce; the the
supply was not in excess of the requirements before the Brancepeth supply was not in exceess of the requirements before the Brancepeth
explosion, and now consumers cannot get all they need. Brance. peth Colliery was probably the largest coke making establisliment in
the country, and the stoppage of the business there could not but seriously affect the supply. This week fancy prices have had to be paid by those n needing coke at once, but contracts over three or
six months can be placed at 14 s . delivered at the Tees-side six mont
furnaces.

NOTES FROM SCOTLAND.

THE pig iron market has been comparatively quiet this week.
Scotch warrants are only in moderate request, hematite being slow Scotch warrants are only in moderate request, hematite being slow
of sale, while Cleveland iron is much nellected. There is scarcely
any speculative interest in Glacgow market at any speculative interest in Glasgow market at present. Prices are
already such that an early rise could hardly be oxpected ; and on
the other hand, the " obears" do not appear assured that the time has yet arrived for a very decided fall. Business has been done in Scotch warrants from 46s. $1 \frac{1}{2 d}$ d. to 45 s . 11d. cash, and 46s. 3 dd. to
46 s . 1d. one month. Cumberland hematite has sold from 48s. 1d. to 37 . 101 s d, one month.
There are 43 furnaces producing ordinary, 35 hematite, and 3
basic iron, the total of 81 comparing with 75 at this time last year. Only a small quantity of iron has been added to the stock in Prices of G.M.B. iron are 3d special brands are not quite so steady to 6 d . per ton lower, and the special brands are not quite so steady as of late. Govan and Monk-
land, f.o.b. at Glasgow, Noo. 1, are quoted at 47s. 3 d.; Nos. 3 ,
45s. 9d.; Carnbroe, No. 1, 47s. 6d.; No. 3, 468.; Gartsherrie,

 Good shipentso of Socth pig iron are being made to Italy, but
in other directions the export trade doess not show any improvein other directions the export trade does not show any improve-
ment. The past week's shipments have amounted to 7937 tons, compared with 8695 in the corresponding week of last year, and of
the total there was sent to Italy, 2200 tons ; Germany, 10 ; India, 145; United States, 25 ; Russia, $170 ;$ Australia, 245 ; France, 30 ; 86 , the coast
week of 1895 .
The
The finished iron industry is fairly active, but competition is
keen, and prices are thereby kept down. The steel works are very busy, with good prospects as to the fature, orders coming in
freely, both for shipbuilding and general engineoring work. It is freely, both for shippuilding and goneral engineering work.
reported that tho tender of a lyde firm recently sent to the United States, for 3000 tons of railway bridge material, has been found
to be the lowest-cost, freight, \&..-but it it ocsidered doubtful
whether the order will be sent here. Be this as it may, the inciwhether the order will be ent here. Be this ansit mad, the inci-
dent is instructive as to the ability of our steel makers to cope with competition abroad, at least in this particular kind of material.
There are one or two somewhat more hopeful features connection withe the coal trade, which on the whopefol stands much in in
need of improvement. A brisk demand is experienced for small coal and dross for manufacturing purposes, and the shipmonts abroad are this week considerably larger, the quantities despatched
from the East Coast to continental ports being heavier than for

 although th.
its volume.

WALES AND ADJOINING COUNTIES.

THE coal trade is alightly

THE coal trade is slightly brisker, and holiday influences are
steadily wearing off. The coal shipments from the port of steadily wearing off. The coal shipments from the port of
Cardiff for the past week were $805,00 \mathrm{O}$ tons. This is very
satisfactory, and indications are that it was not a sudden
 Big steamers. have been again in evidence, the Pindari
for Colombo with 7700 tons, the Samoa for Bombay with 8000
tons, and Oriscallit for the same port with 6000 ot tons. Swasse coal shipments last week were encouraging, 31,000 tons, though it was reported that the San Francisco trade is quiet. Nee
oxported 47,270 tons foreign, and 21,919 tons coastwise.
The anthracite trade between Swansea and Germany is improving, and coal totals for that destination tate second rank in inportance
with those for France. It is hoped that, as the season advances,
and business with
 form.
There has been some little trace of discontent noticed amongst
the Plymouth colliers with regard to the settlement of tho the Plymouth coliliers with regard to the settiement of tho
"test case," but am glad to state thant at a meeting of colliers on
Monday the matter was satisfactorily explained, and a vote of confidence in Mr. David Morgan, the miners agent, passed The impartial notice of the "discharged note" question in The
ENGINEER of last week reminds me that a short time ago I had Exginser of last week reminds me that a short time ago I had
an interviow with an old miners' agent, and a long discussion of
 surprise that so much intense excitement had been aroused. The
men were stubbornly bent at all hazards, if refused, to throw down men were stubbornly bent at all hazards, if refused, to throw down
their t tools, and the prompt action of the coalowners and of the Sliding Scale Committee, in frankly and even genially abandoning
the situation, has done agood deal towards ringing aboota better
underatanding " Mabon" commended, and there is but one opinion, and that a warm one about the good services of Sir W. T. Lewis, Bart.
Colliers, like those "who go down to the deep in
Colliers, like those "who go down to the deep in ships," seem to
be perversely reckless. T wo men from the Dowlais Collieries were fined this week for having tobacco pipes in thoir possession in Bedinog collier last week.
On ${ }^{2}$. Change mid-week, Cardiff, the mustering of members was gratifying, and business was regarded as healthy in coal, coke, and
fuel. Best steam coal was in demand at 10 s . 3d. to 10 s . 6 d . feconds ranged from 9 s . 9 d , to 10 s , ; ordinary seconds, $9 \mathrm{~s}, 9 \mathrm{~d}$, to
ser

9s. 6d.; drys. 8s. 9d. to 9s. 3d. ; best Monmouthshire, 8s. to 8s. 3d.
seconds, 7s. 9d. to 8s. \quad very best small 4 s . 9 d to to 5 s . best 4 .
 house coal trade is now unmistakeably upon the down grade. The of a good house coal demand appear to have been abandoned. Quotations remain much about the same, but prices vary a good
deal with the conditions. Best, 10 s , to 1os. 3 .; No. 3 Rhonda,

Good trench

15s. Iron onch on Saturday was offered in Cardiff from 14s. 9d. to quoted in Cardiff firmly are focoming more :-Rubioticaable, 11s. 9d.; Tafna, 11s this week. Cyfarthfa had several cargoes, Blaenavon three, Dow lais three; Mr. Howard, Ebbw Vale, and Briton Ferry, one
each. I Was pleased to see an abundant supply in all sorts of places around the Cyfarthfa furnaces this week, and a much
better despatch of tin bar from the same quarter. Preparations better despatch of tin bar from the same quarter. Preparations
are going on at Cyfarthfa for resuming the steel rail trade, which
has has been partially abandoned on account of the demand for stee bar for tin-plate destinations. It was reported on'Change, Cardiff, the highest price obtainable for Bessers is getting less, and that while Siemens is quoted at $£ 318$ s. Heavy steel rails are dow The prices of ship plates are well maintained, and steel scrap, rail The prices of ship plates are wp.
and bar ends, de., are caught up.
A more varied list of quotations, iron and steel, was given this
week at the Swansea Exchange, as follows :- Pig iron, Glasgow

 Other 5 wansea quotations are $:-$ Anthracite, best, 11 s . to 11 s .6 d .;
 ${ }^{98 .}$ 6d.
Coke continues to advance, implying increased activity in the
iron trade. Last prices Cardiff, were, 12s. 9d. to 15 s ., furnace

There is still not much movement to record at the iron and steel works ; Cyfarthfa is to have its resident London agent, though of
course, from time immemorial, Cyfarthfa has had its representative in the city. All that can be stated about the trade is that prospects are more hopeful. Better news reaches me from the tin-
plate districts. Last week there was a larger shipment than make, reducing stocks, and gratifying news is to hand that several works
are going to restart. One ontable case 1 am glad to announce is
that of the Beaufort Works, Morristown, by concession of the men.
regret to announce that the tin-plate trade is very depressed at Briton Ferry. The mills at the Vernon, Gwalia, and Villiers
are still idle, and there is no prospect of a restart unless the men see still idie, and there is no prospect of a restart unless the men
see the wisom of following the steps of others, and make a reduc.
tion ion. This is what I have on various occasions pointed out as an
imperative necessity to take books. If these had stubbornly contended for old wages, furnaces
would now be as deplorably hard off as mills. The mills at Baglan would now be as deplorably hard off as
Bay and Earlswood are fully occupied.
Production of tin
average.
I note that Wales is importing freely pig from Ulverstone, and iron bars from Workington.
I referred lately to the possibility of a now industry at Swansea, and the likelinood that the waste supplate of soda in the district This is now made tolerably sure by the arrival of the steamer Buluwayo from Port Pirie, South Australia, with a cargo of
3006 tons, and new works are planned to be adopted for the process forthwi
Opponents of the movement in London for obtaining Welsh
water, and who think that it has collapsed, may be interested to water, and who think that it has collapsed, may be interested to
learn that a steady survey is still going on in certain localites,
tending to indicate that if carried out Langorse Lake will figure
conspicuously.
It is stated at Milford Haven that a subsidy has been granted to the Milford Dock Company by the Admiralty for the use of their large graving dock and cord when required by them. This dock in the kingdom.
It has been decided, adverse reports notwithstanding, to proceed
with the Llanelly Harbour Bill. The Docks Committee have held with the Llanelly Harbour Bill. The Docks Committee have held
several meetings of late, when all matters in reference were discussed, and they now report that they expect the Bill will come before the House of Lords Committee next week, when all matters
pro and con. will be dealt with in evidence.
I share with many a good deal of intercst in the fate of our Welsh Bills, which, as I close my dispatch, are coming to the front. The first is the Great Western Additional Powers Bill for lines in
Roath, and improvements in connection with the comes the great struggle, the proposal to amalgamate the Bute Docks and Kraym strugg. Next, tho propoposal to form the Windsor
Dion Docks on the mud flats between the Taff and Ely rivers. This is
expected to be strongly opposed. Then we have the proposal of expected to be strongly opposed. Then we have the proposal of
the Barry Company to get into the Monmouthshire coalfield, and certain to bring out the best powers of promoters and counsel.

NOTES FROM GERMANY.

(From our oren Correspondent.)

The trade in iron and steel is improving steadily all round; material changes, either in prices or demand have, however, not taken place, and
related this week
Business on the Silesian iron market continues strong. The felt, especially in the steel and hardware trade, where a steady End altogether satisfactory employment prevails,
Exports in machines to Russia have also been pretty large for
some weeks past, the prices realised being, as a rule, fairly re-
Though heary contracts are not being booked just at present, the activity on the Austro-Hungarian iron market continues, on
the whole, satisfactory, owing to the numerous orders that were secured some weeks ago. During the first three months of the
present year, the convention of the rolling mills sold about $75,000,000$ kilos,, which shows a plus of about $23,000,000$ kilos, against the same period last year. There is an exceedingly brisk
business done in girders and structural iron, and the railway and engineering department is also in fair employment.
On the French iron market raw as well as finished iron finds good markets, and prices are tolerably firm, but have not percep-
tibly changed since last week, merchant bars being offered at 150 f. p.t., girders 160f. p.t., while steel rails were sold at 115f. p.t. free p.t., gird
at works.

A lively tone prevails on the Belgian iron market, and prices
have been rather more paying of late. Pig iron is in pries
but regular demand, while the various sorts of malleable iron con.
tinue to be very actively inquired for. Quotations are, as a rule,
tending upwards. Luxemburg foundry pig is quoted 533, p.t. common forge, 52f. to 53 f . p.t.; merchant bars, No. 2, f.o.b.

 duced in Belgium, against $222,800 \mathrm{t}$. for the same period the y yoar
before $75,795 \mathrm{t}$, being forge pig, against $109,809 \mathrm{t}$. last year $21,325 \mathrm{t}$. foundry pig, against $26,100 \mathrm{t}$.; and $14,650 \mathrm{t}$. basi, against
$86,900 \mathrm{t}$ for the corresponding period the year before. On A pril 1 st $3,900 \mathrm{t}$. for the
of present year
out of
On the Rhenish. Westphalian iron market a good number of pring demand are most encouraging. Export trade has also per eptibly improved of late. The week's business in pig iron has nore remunerative. The same may be told of the manufactured ron department. In bars and girders quite an animated busines is doing; hoops are, likewise, in good request, and as for plates and
sheets, the mills have not been so well employed for months. The number of orders that come in at the foundries and machine actories increases from week to week. The situation of the tub puicas are fluctuating, and have, in a few instances, even been pricess are nuctuating, and have, in a
moving in a downward direction. This may chiefly be accounted Yor by the exceptionally large stocks, which have been increasing
all through last winter, and now concessions have naturally to be made to clear the stocks. The occupation of the wagon factories
mate

Total output of coal in the Saar district was, for the first quarter , $1,20,0$ a in the Ruhr district $9,218,130 \mathrm{t}$., against $8,344,120 \mathrm{t}$. , and in the same period last year. This shows an increase of $14 \cdot 6$ per cent for the Saar district, 12.0 per cent. for the Silesian districts, 10.5 districts together, when compared to the production for the same period the year before.
Negotiations are
Government and German to be carried on between the Russian supply of about 300 locomotives worth M. $19,000,000$. One-third
of this the remaining two-thirds will be delivered in 1897 . In 1895 output of gold in Russia is stated to have been con2664 pud were washed, output in 1894 decreased on 2483 pud, and last year amounted to 2406 pud only. This decreaso may partly which, for a time, prevented the gold washing in the rivers, and partly because there was much difficulty in securing labourers, a
great number of them being employed in the less fatiguing and much more remunerative work for the Siberian Railway. nd metals for 1895.. In fign trade of the Low Countries in iron Britain, Germany, and Belgium. There were imported iron wanufactured goods as well as raw iron, worth 90.4 million florins; articles 16 matured goods, worth 49.7 million florins ; lead and lead 20.2 million florins. With regard to export in iron and iron
manu manufactured goods, which was worth $75 \cdot 4$ million florins, England,
Gormany, and the Dutch Colonies in East India are the chief consumers. Copper and copper articles ($48 \cdot 4$ million florins) chiefly go to Germany ; steel and steel manufactured goods (17 -4
million florinss) are exported to different countries. In plates and
bare florins) are chiefly sent to the East Coast of Africa and to the Dutch Colonies in East India, while for steel wire ($5 \cdot 6$ million florins)

AMERICAN NOTES.

(From our oven Correspondent)

k, April 16th. of the next thirty days, unless something unusual happens. The reason is current requirements are not heavy. Pig iron production
is 750,000 tons ahead in stocks. Current weekly close on to 200,000 tons. Consumption is 180,000 tons, or perhaps under. A break in the billet pool is a possibility, and besides we
have alww and
have suddenly turned their backs on the market. They never recognised 2 diols. coke and 4.00 dols. Bessemer ore as fair, and with the hanging-back demand they now say they will wait and
see. Political questions are pressing, and politicians are at sea The semi-centenary of the Pennsylvania Railroad was celebrated this week. The capital stock is $129,31,600$ dols. ; lines owned
and controlled, 9077 , investment, $857,000,000$ dols. troses receits and controlled, $9077 ;$ investment, $87,000,000$ diols, ; gross receiptsts.
last year, $132,720,000$ dols. ; operating $75,052,479$; tons of freight carried, $160,410,144$. The recent rumours of enlarged railway construction are encouraging the iron
trade. Much mileage is projected, and in several localites ther is urgent need of construction of short lines. The gold craze is now on ; large parties are going to Alaska, The inquiries and
orders for machinery are increasing steadily. In the smaller railway and mandions are improving. Projected enterprises in enormous outlays, and if the general conditions warrant suc expenditures, iron and steel capacity could be fully engaged.
$\overline{\text { OUR' FOR RUSSIA. - Last week the first test of armour }}$
Testing Armour for Russia.- Last week the first test of armour plate was made by the Carnegie Company for the Russian Govern-
ment, by the courtesy of the United States officials, at the Indian of 350 tons of armour now ready for shipment to Russia 5 in . double-forged plate, the first thin armour to be subjected to that process. The test was conducted under Russian require ments, which were that the plates should repel the projectiles. Two shots were fired, one of a 4in. and the other of a 5in. shell, with a velocity of l700ft. a second. Both shells failed to penetrate th The value of the armour represented in the test was between 125,000 dols. and 150,000 dols.-American Manyfacterer.
The Incorporated Assoclation of Municipal and County dates for the offices of municipal engineers and surveyors to District Councils carried out by this Association was held at
the Institution of Civil Engineers on Friday and Saturday 10th and 11th inst. Twenty-seven candidates entered and twy the which was taken on first examination, the written portion of second day was occupied with the viva voce portion portion of the second day was occupied with the viva voce portion of the exami-
nation. The examiners were:-I. For Engineerin Municipal Work, W. Santo Crimp, M. Inst. C.E. II. Building Construction, J.' Senior, M. Inst. C.E., past-president, superintonding east-president. IV. Public Health Law Work, J. T. Eayrs, Liverpool in October next.

LAUNCHES AND TRIAL TRIPS.

Os the 14th there was launched from the ship. building yard of Messrs. Joseph L. Thompson and Sons, North Sands, Sunderland, a steel screw steamer built to the order of Messrs. Joseph Brown and Son, of Old Castle Buildings, Liver-
pool. The vessel is of about 4850 tons dead weight pool. The vesser is of about 4850 tons deadweight Lloyd's rules for highest classification. The engines are of the triple-expansion type, by
Messrs. John Dickinson and Sons. On leaving he ways the kessel was named Netherfield by Miss Amina Brown, of Liverpool, daughter o Mr. Joseph Brown
which has been built to the order of Mr. F. Ie which has been built to the order of Mr. F. le
Boulanger, of Swansea, by Messrs. Craig, Taylor
and Co., of Thornaby-on-Tees, proceeded to sea and Co., of Thornaby-on-Tees, proceeded to sea
on her trial trip, which proved highly satisfactory. The engines, which have been constructed by
Mesars. Westgarth, English and Co., Middles brough, worked without a hitch, and a speed of
about 11 knots was maintained during a run of over three hours. The dimensions of the boat are as follows: -254 ft . by 37 ft . by 18 ft ., the
engines being $19 \mathrm{in} ., 31 \mathrm{in}$., 51 in., by 33 in stroke, engines being 19 in ., $31 \mathrm{in} ., 51 \mathrm{in} .$, by 33 in . stroke,
with two large boilers working at 160 lb . pressure The owner was represented by Mr. George
Eldridge, of London, and Captain F. Dinan, the Etter of whom will take command of the vessel. During the current month Earle's Shipbuilding and Engineering Company, of Hull, have delivere the same town, a fine steel screw steamer named the Dido, 400 ft . long, built for the Bombay trade and capable of carrying 7200 tons deadweight they have completed and handed over to the successfully carrying through her speed and gun trials, a 16 -knot steel gunboat, named the Crette ì-Pierrot, of 950 tons displacement, constructed under the superintendence of Sir E. J. Reed K.C.B.; also the steam trawler Argo, owned by and they have in addition engined the trawler Prince, which has been built at Beverley for the Grimsby Anchor Steam Fishing Company. There is still a good share of Go
work in hand at this yard
Messrs. John Scott and Co. launched from their yard on the 16th the screw steamer Giang Seng, hich they have built for a Chinese gentleman in Singapore. The dimensions are :-Length, $240 \mathrm{ft} . ;$
 riple-expansion engines of 160 nominal horse wer, with two large steel boilers having a work built for the coasting trade round Singapore She will carry 1500 tons of cargo, and steam eleven to twelve knots per hour. She has a Board
of Trade passenger cortificate, and can accommodate twenty first-class passengers above awning eck, thirty second-class passengers in the poop, and she has also third-class accommodatfon abaft orecastle. The vessel has two teak decks, and has ample accommodation for the captain, officers, the superintendence of Captain Follot, who has had a long and successful experience in the trade or which the vessel is intended. The launching ceremony was performed by Miss Lily Follet, of
Liverpool. The vessel, as usual, was launched with steam up, and, on leaving the ways, imme-
diately left for Burntisland, where she will load a cargo of coals for Singapore.
On Friday, the 17th inst., Messrs. Wigham, Richardson, and Co., launched from their steel screw steamer, which they have in course of construction for the Chinesische Kustenfahrt Gesellschaft, of Hamburg, being intended for their service in the East. The steamer is 310 ft . in length by $38 \frac{1}{2} \mathrm{ft}$. beam. She will be rigged as
a two-masted schooner, and is being built to attain the highest class in the registry of the has a handsome clipper bow with a finely carved figure-head. The vessel has been specially constructed for the Chinese coasting trade, and
contains handsome, well ventilated and convenient accommodation for a large number of native and European passengers. The engines and boilers are also being constructed by Messrs. Wigham, Richardson, and Co., the former being
of the quadruple-expansion type, self-balanced on of the quadruple-expansion type, self-balanced on system, and are intended to propel the steamer at a high speed. This type of machinery is being extensively applied to the better class of vessels, including the large mail steamers build-
ing for the Norddeutscher Lloyd. These vessels are to be larger and faster than the Majestic and Campania. A goodly company witnessed the Caunch, amongst whom were Mr. Drury, of Darlington, and Mr. Sutton, of Newcastle, and Captain Kohler and Engineer Blesing, represent-
ing the owners. As the vessel left the ways she was named the Loongmoon by Mrs. John Tweedy of Newcastle-on-Tyne.
On Thursday, April 16 th, Sir Raylton Dixon and Co. launched from the Cleveland Dock yards, Middlesbrough, the handsomely-modelled Company, London, for the African Steamship Maritime du Congo, for the line between Antwerp and the West Coast of Africa. The dimensions of the vessel are:- Length, 365 ft .; beam, 44 ft .
depth moulded, 26 ft . The cabin accommodation will be of very handsome description, fitted for with very spacious state-rooms, specially venti-
110 with very spacious state-rooms, specially venti
lated and provided with every improvement which experience has suggested as suitable for the in hot climate. The first-class dining-room is in a large house on deck, panelled with marble and inlaid woods in the handsomest possible manner The first-classsmoking-room, second-classsmoking
room, and cabin entrances, are all most elaborately room, and cabin entrances, are all most elaboratel
fitted and decorated. The decks are all of teak and over the mid-ship part of the vessel a teak shade-deck extends to the sides of the ship so a to give shelter from the sun and to form a promenade above for passengers. The second
class saloon is placed aft, handsomely panelled i
teak, with tables, revolving chairs,
will be lighted throughout with the electric light,
and also provided with ref and also provided with refrigerating machinery
and a large cooling chamber for the conveyance of fresh meat, provisions, indicated horse-power will be supplied by
Nesses. Thos. Richardson and Sons, of Hartlo pool, consisting of triple-expansion ongines, having cylinders 27 in, , 43in., and $72 \mathrm{in}$. . by 48 in,
stroke, with two stroke, with two large boilers, working at 180 lb .
pressure, and fitted with Howden's forced draught. The vessel was launched in the presence of Mr. Frederick W. Bond, of London, the chairman of the African Steamship Company,
and named by Mrs. Bond. The Albertville is a similar vessel to the Leopoldville, built last year Yor the same.

THE PATENT JOURNAL

Condensed from "The nlustrated oftcial Journal

Application for Letters Patent.

 - When tiventions have been "comuntcated" thenamo and dadaress of the communtcating party aro
printed ti tallics.

9th April, 1896
500. Skevaino Pickiso Bands to Pickers, J. and R.

Bristol.
 ${ }^{\text {507 }}$ Williams, Beediord

 on- TTent.
F5. P. P. Cox
F.
512. Taxz, L C Corpool.

7517. Mutrimb: Tuncow. Cans, J. Priee, D. E. Rad
clyffe, A. H. smith, T. Hann, and W. Bromloy
clyffe, A. A. H. smith, T.
Tondon. 7518. Centryvonl Lleuid Skparators, R. A. Lister
 ${ }^{7521 .}$ Aaxiass for Wherls of Vehicles, S. Pettit, 7522. Porss for SMokkss, D. Hampton, London.
7523. PIckrvo Anxs for Looss, A. Sykes and T.
 L526. Constructios of Walls, \&c., J. Sheypard and F

 London. Clesanisa Butrons, o. Watkins Th30. Electrical Alark Apparates, G. H. Atkinson
 7533. Covered Wire for Millinery, \&o., P. J. Baker T534. Boot Less for Aerated Liquids, \&e., W. Kilsby,

 Liso. Arparatus for Rasisa, de., Loads, J. Tem-

 34. Waterproor Th4. Corces Wheks, W. Rodgor and B. Southworth,
Manchester. 546. Rallway Automatic Brakes, v. b. Beer, Man chaster. NUr Lock, w. Hudson and C. E. Noren,
Tond
London. Edis. Yaporisgrs, J. S. Judge, J. McKee, and G.
 7550. STEERiso Devices, E. J. Pennington and A. G.
Now, London.

7552. GEAR Whesis, L. C. Papenfus and L. Loowenthal
7553. CR1
555. Crispriso Toyas, G. L. Thompson, London,

Londone.

7563. Contino Costectionkry, W. b. Phinneg,
7504. Nail-strip Cutina Maching, J. A. Horton,

London. ${ }^{7565}$. Manuacturino Cyole Framse, F. A. Euise
 Lindon.
TSOs.
Petersenven
 LTOndon.
T50. SmLLARMs,
LTondon. J. Hourat and J. Castadere,

London.
10th April, 1890
7573. Portable Saktix Bioxole Stand, J. Mills,
Gloucester.

F574. "Guv" Trooser Guard, R. J. and W. R
Muckloy, Cheshire. Muckley,
7575 KMy
London. Fine-onates of Refuse Destroyge, C.Christ BRirmingham.

 Rotary Morors, W. G. Potter, London.
Paistiva from Stexcus, ©c., J. R. Turnock, Hereford
 Tisis. Prevenentiso the Fruudulent Re-viluina of

 Ghango
757
Halifa

-590. Equally Dividino ory Spacks, G. Key, Birming

han
T501.
Crow
Gias
Gias
7393
Gine
Gingowino Spiral Sprisos, c. A. v. Hallgren, T594. Lhsounso Mucurws, H. C. Longsdon and F.
Wikison, Keighley. Wilkinson, Kolghley. Willoughby, Manchester. Ti. Levinsten, NETMiso MATTERs, Levinstein, Ltd., an

\section*{7595 7600 7600

 \begin{tabular}{c}7590

7600

\hline
\end{tabular}}

Norwich.
Tive . Morive - powse Enoine, F. W. Lanchester
London.

 , 10. Tonicco Pipzs, H. Allock, London
 London. London.
T60. STopp
London.
1
Lond
Re2.
2.0nd
7623.
T.

1625. Coulapsible \&c., Boxes or Casse, E. H. Archer,

 London.
cosi. Washisa Granular Substances, T. Parkins
${ }^{\text {L }}$

 Lon.London.
ondon.
dd

nth April, 1896.

fi63. Masuracture of hoorino Thes, A. Weil,
London.

 764. SKATINO CYCLE, J. M. Chambors, London.
TAT7. Travecuss, A. Wichard and G. A. J. Schott,
Bradord. Bradord. London.

T Lesi. TuBes for Steam Boinkrs, o. Meredith, Birken
fis2a, Weldiso Lap-weld Tubes, S. Y. Goddard
 Giasgow.
Tess. Bortiso Liquide, W. W. Courtonay, Birming
ham. hesim. Vestilative Boorts and Shose, w. Bacon,

76
month, and the Planet Foundry Company, Ltd.,
Manchester. Triliby Crole Brake, A. F. Germsin, Brighton.
Rviso Lises, J. Joly, Dubbin.
 and R. Whaatloy, jun., Birmingham. Portse
574.
Bo

 mingham.
W. Logan, Sunder-

680
681
685

Rephirino Pigevmatic Tires, F. Forrestor and

 London.
 Polke, London. Garner, London.
Lasts ior Booms and Shoss, w. Firman, London. Pseguatio Tries, E. Hale, Liverpool
Makiso VANiluke, O. Pren, London 693. Genkration, \&c., ff Acetrlese Gas, p. Woog.

 London.
Londonklas and Walkino Sticks, A. S. Woollett,
London. London.
Than Hon
Iondon.
 Toin Heniss for Casks, \&c., T. G. and A. Stevens,
Greenhithe, Kent.

 France.) 7i2. Coriroowns of Albuxes and Protein Bodies
A. Classen, London. Haylor, London.
son, wavivo Bkivass, G. Browning, W. A. Johe
Basdwell, London.
 Loudons Cowrion for Electrac Liort Cabus, R. J.
Hatton and W. T. Henleys Tolegraph Works Com

E. Batson, London. on Palm Leaves, G. Walker

720ndon. TEmina and Disixyeotina Drains, c. T. King
722., Esvzzope, G. A. Tydeman and E. Nowton Waitham Cross. of Printed Dessioss upon Fannics
 Londol

T7.2. Pristivo Dbsions upon Calico, 1. Frankenburg, Mric. Atcichiching Containers to Stande, T. J. Stur-

 733. Snovidza Pad for Coats, dc., W. H. Sladdin,
 336. Pickle Fonk, G. A. Brookes, Manchester.
37. MARKINO PATTERNs, R. Greenhligh, Manchest J. Porter Wap on Fabrics, J. D. Tomlinson and
 741. Ralway Gner, H. J. Tremellen, Nowport, Mon-
742.
Colour GAME, H. J. Tremellen, Nowport, Mon. 774. Swives, W. Dipple, Birmingham. P. Robjent, Newport, Mon, ing and J. G. Heywood, Manchester,
 74. Votaky Morors, W. W. Potter, London:
Sheflield.
for WARMING PLATEs, T. F. Senior, 7750. Colosixa GATES, E. G. Herbert, Manchestor. 775. Boors, C. C. Hutchinson, London, J. A. Brooks,

 castle-on-TYne. W. A. H. Grifiths and T. B. Smith, Tisp, Thingham, the Gase of Biluards, J. Newman,
Durhmum.
 Smith, Manchester.
Trib. SuTM. ALL Bour for Doors, J. N. M. M. Brise
Dublin.
7762. Trussing Sections of Rallways, G. V. de Luca, 1.0ndon.
7763 . Stoperino of Bottles, \&c., S. H. Baines,
then 7764. MEans for Generatina Steam, P. Pinckney, Portsmouth.
7765. Machinery for Trussino Straw, R. Maynard 7766 Coloving Matter, J. Y. Johnson.-(The Batische dailin uatd Sola Fabrik, Gcrmany.). Carter,
7767. Drivino GEar of Bicyoles, P. M.
London. 776s. Ress for Cycles, The Automatic Cycle Stand
L. ., and J. J. Shedlock, London. 7769. HEATERS, G. A. Watson, London.
777. Prevention of Therts from Plilar Boxes, D.
Shawe, London Tita. Spiral Sprino Tire, H. L. Todd and w. Wright, Z773. Liohting of Lasps, R. Godfrey and J. P. Norring. ton, London. L775. SEwing Machines, M. T. Denne, London.
7776. Process for Hardenino Iron, A. Tauxe, London.
7777. Sooos, The Patent Stowaway Stool Co., and T.
H. H. Lewis, Londen.
7778. Method of Closing Bungholes, C. E. Muller,
London. T779. ADJUstable Cornice Pole Joints, E. Corbridge,
London, 77 London. Football and Cricket Boots, W. Barber, London.
781. A New Cloth Pleater, de., w. B. Mulligan, 7783. ExTENsion Table, H. Grant, London.
7783 . OBtaiNING Gold, W. P. Thompson.-(E. Wohluill, 7784. Looss, H. R. Ross, Manchester.
7785. Protectiva Shirs' Bortons, \&c., J. Sanders, London.
7786 . Cravat Atti Ctment, C. A. Jensen.-(c. J. 7778. Brakes for Critzs, A. Frampton, London.
778s. Colourive MAITERS, O. Imray.-(G. H. Weiss, Gcrmany.)
7799. ELECRIC Arc Laypr, J. Brockie, London.
7790 . Buter Drying APPARATUS, T. Bradford, London. Motions for Evanses, L. St. Peter,
Ti91. Srop
London. London. Motions for Enoines, L. St. Peter,
7792. Consers, E. and S. Kohnberger, and A. Neumann,
London. LT93,MANavuracture of a New Product, C. Stahlschmidt,
London. 7794. Shade Holders, H. A. C. Hellyer, London.
7795. Shaft and Blast Furnces, de., F. Burgers, London.
7796. Obxainino Salt from Brine, w. Shedlock,
London. Lig7. Drivisa Mechanism for Funnels, G. R. Gaunt,
Bradford. ${ }_{7}$ Bras. LETTEE FiLE, A. Kojer, London. 7792. INKEDT, S. Coppen, London. Chike, London.
7800. Morve Power Exoisks, W. Clarke,
7801. Zoetropic Pictures, B. J. B. Mills.-(A. and Lumiere, Prance.)
LTERLILINo Milk, Cream, \&c., A. T. Pfeiff,
London. London. Cutting or Pulpina Machines, S. B. Bamford, London.
7804. Dress Fastexers, B. A. Spaull, London.
7805. Cors and Berd DriLs, J. Wilson, London. 7805. Corn and Serd Drills, J. Wilison, London.
7806. IvDu-RUber 7807. Croues, C. Hill, London.
780s. Navigable Batcle Forts, J. F. Crease, London.
7809. Photooraphic Apparatus, G. R. Sanson, London.
7s10. WHEELS, F. W. Horridge, London.
7SUN Fitive, A. W. Swallow, London.

14th April, 1896.
7812. Drill Chueks, D. Weir, London.
7813. Cycles, W. G. Maelvy, London.
7813. CyCles, W. G. Maclvy, London.
7814. PERamboblator-MAILCARt Bodies, G. P. Taylor, Birmingbam.
7815. WheELs Creles, R. Malkin and T. Bowyer,
Manchester. 7816. STeEL Re-heatina Furnaces, W. Trewhitt,
Middesbrough. Middlesbrough.
sif. Takina Photooraphs, J. Oulton W. Shaw, and R. H. Adams, Bradford. metz, London.
Glasgow.
7820. Movable Partitions, \&c., C. Strapps, Manchester.
7821. Lice-securino Attichment, J. G. Rollason,
Birmingham.
Birmingham.
7822. On. Exisks, H. N. Bickerton, Manchester.
7823. TRIVEIs, T. le Poidevin, Guernsey. 7824. Cvele Tires, T. Guthrie, Newasaste-on-Tyne.
7822. ApPARTVS for Coapressiva AIR, M. E. Clark, 7826. Polishiva Cloth, J. J. Ashworth, Manchester.
7827. Splir PIN, J. Barker. Oldham. chester.
7892. MATCR-Boxps, F. Hutchins, London. T830. Machine for Sowino Turnip Serds, W. Doyle,
Dublin. 7831. SpEed of Vessels, J. Davis, Bradford-on-Avon.
7833. AvTomatic TAPPING ATTACBMENTS, F. A. Errington, London.
7833. Rivertiva Machines, J. Johnson.-(c. B. Allree, Unitel States.
T8s4 Electric Ralways, A. S. Krotz, W. P. Allen,
and O. S. Kelly, Manchester. and O. S. Kelly, Manchester.
7835. TwiN Pga and Ball Tov, H. J. Tremellin, New-
port, Mon. port, Mon.
7836 . Valve Motion of Bekr, \&c., Engines, A. Bruce, 7837. Linotype Printing Machines, R. H. H. Baird and I. Hall, Glasgow, under-Lyne.
7839 . LAEL and Ticket Holders, S. Learoyd, Hud7840. Garden Rollers, F. Brangwin and H. F. Baly,
London. L841. Posirive Drive for SpindLes, T. Sowerbutts and
J. Watson, Accrington. J. Watson, Accrington. TuT for Surpontina Tabpauli's J. Tilley,
North Shields.
 weather.-(The Balroch and Wilcox Company, United
Slate.).
7815. Securina Spokes in Cycle Wheels, A. C. Ten-
 7847. RUobser Tries, J. D. Beebe, Lobidon.
7848. CAR Movers, P. H. Jacobus, London.
7849. Disesvovanso Boart on Shirs, R. Anderson and
W. Prentice, London. 7850. Ships' Davits, R. Anderson and W. Prentice,
J850ndon. Botile Labeleino Machine, H. S. Grace and A. D. Reynolds, Birmingham.
7852. Mosic Lear Turner, H. B. Kirk, London.
7853. Devices for Elevators, Otis Elevator Com 7853. Devices for Elevators, Otis Elevator Company,
Limited.-(Otis Bros. and Co., United States.) Limited.-(Otis Bros, and Co., Unital States.)
78s4. Reavintivo ELEcrRIC Morors, OOtis Elevator
Company, Limited.-(Otis Bros. and Co., United Statece.)
7855. Rallway Permanent Ways, J. Butterworth,
London. London.
7856. Typewriting Macuings, J. Y. Johnson.-(I
Philauletphia Typecoriter Company, United States.)
7857. Machine for Stonina Rasins, E. Sutherland,
London. London.
7858. Vehicles Propelled by Oil, A. G. New 946. S SAsp W
hall, Staffs. Birmingham.
794s. Combined 7949. Let-ork Motioss for Loons, J. Crabtree, J. Robinson, and J. W. Haworth, London, Whitelow,
7950. Selvedae Weavina ApparAtus, E. T. When Manchester.
7951. Compound for the Inside of Barreis, G. Stacey, London.
7952. Horseshoss, W. H. Crawcour, London.
7953. Masuracture of Stockinos and Socks, W. L. Hill, London.
7954. Detachable Butrons, A. E. Webb, London.
7955. IvCandescent Gas Burner, \&c., C. Howard, London.
7956 . Construction of Unions, \&c., G. S. Trafford, 7956. CoNstructios of Und
London.
7957. Boxes, H. and H. Inman, London.
7958. Rooriva Tiles, G. Power, London.

7959. Vent Plug, S. H. Robinson, London.
7960. Device for Preservina the Evesioht, B. A.
Dorat, London. Dorst, London.
7961. Driving Gear for Bicycles, W. D. Scott-Moncrieff, London.
7962. Centrifugal Governors, J. N. and W. Paxman and J. C. Peache, London. London.
T964. LAMP Chisyey, G. Rowlands, London.
7965. FUNNEL, L. Kemp and J. E. Smurthwaite, 7965. Funsel, L. Kemp and Jondon.
Lo96. Tires for Cycles, F. W. Randall, London.
796. Lave W Staveley, London. 7967. Laxprs, W. Staveley, London.
7968 . Botrte and SToper, W. Youlten, London.

SELECTED AMERICAN PATENTS.

553,574. Incinerator, C. Thackeray, Montreal, Canada.- Filed July 30th, 1894.
claim. - An incinerator-having a main flue for
the products of combustion; auxiliary flues running the products of combustion, auxiliary flues running
parallel thereto, suitably controlled communicating
passages between the main and auxiliary flues, series passages between the main and auxiliary flues, series
of furnaces and combustion chambers laterally adjoining the auxiliary flues, main transverse communica-
ting passages, suitably controlled, between said comting passages, suitably controlled, between said com-
bustion chambers and the main flue, and auxiliary
transverse communicating passages, suitably contransverse communicating passages, suitably con-
trolled, between said combustion chambers and said trolled, between said combustion chambers (2) An
auxiliary flues, for the purpose set forth. (2)
incinerator having a main flue for the products of combustion, a series of main fue for the products of
chambers laterally adjoining said flue, suitably conchambers laterally adjoining said flue, suitably con-
trolled transverse communicating passages between
the combustion chambers and said flue, and a series the combustion chambers and said flue, and a series
of auxiliary cells arranged in alternate order with
said main furnaces and of auxiliary cells arranged in alternate order wide
said main furnaces and communicating on each side
with same, for the purpose set forth. (8) An incinerator having a main horizontal fue for the products
of combustion, a chimney located at one end of same,

$553,574$.

a central auxiliary flue and outer auxilinry flues
running parallel with the main flue, suitably controlled communicating passages between said central
auxiliary flue and main flue, series of furnaces and combustion chambers laterally adjoining the outer
comithes and
auxiliary flues, main transverse communicating pass. auxiliary flues, main transverse communicating pas-
sages, suitably controlled, between said combustion
chambers sages, suitably controlled, between said combustion
chambers and the main flue, auxiliary transverse
communicating passages, suitably controlled, between said combustion chambers and said auxiliary flues,
series of auxiliary furnaces or cells arranged in alterseries of auxiliary furnaces or cells arranged in alter-
nate order with said main furnaces and communica-
ting on each side with same a s steam boiler located in nate order wh shide with same a steam boilier located in
ting on each
said main flue, and suitable conductors connected said main flue, and suitable conductors connected
with said boiler, and serving to convey superheated
steam to said furnaces or cells, for the purposes set forth. Claim.-(1) The tail stock for engine lathes, having
the horizontal base or seat-plate 4, the body or standard 5 integrally disposed upon said base wholly
in rear of its central line, with the integral forwardly over-hanging tail-spindle, bearing 6 at the top of said
body, the upright front of the body backwardly reccssed as at 8, below said bearing; and the hole 9
for the clamp bolt formed through said base at or
nearly for the clamp bot formed through said base at or
nearly adjacent to the central plane, in combination
with the cricket block, and the lathe bed having the with the cricket block, and the lathe bed having the
front and rear horizontal supporting guide ways, the front and rear horizontal supporting guide ways, the
centrally disposed clamp bolt with its adjusting nut

$553,594$.

above the foot and beneath the spindle bearing, all
substantially as shown and described. (2) The comsubstantially as shown and described. (2) The com-
bination of the low cricket block having the top seat. ing surface with transverse goide, the tail-spindle
support composed of the base or seating plate adjustably mounted on said cricket block, the body standard
integral with said base and standing thereon sub integral with said base and standing thereon sub-
stantially in rear of the central vertical plane, the
back of said body fcrwardly arched and carrying back of said body fcrwardly arched and carrying
the integral forwardy overhanging bearing at the
top therge the the integral forwardly overhanging bearing at the
top thereof, the tail-spindle mounted in said bearing,
the clamp bolt arranged through an opening in said the clamp bolt arranged through an opening in said
base approximately adjacent to the centre plane, with its operating nut disposed above the top of the base
and beneath the bearings, the binding shoe on said and beneath the bearings, the binding shoe on said
bolt, and the set over adjusting serew in said cricket, 553,607. Canse Mrut, C. A. Catreet, Buffalo, N.Y.-
Fital July 2nd, 1995. Claim.- (1) In a cane mill, an imperforate bottom
plate provided with a raised flange or rim forming a pan, and with journal pockets having their walls
axtended above the bottom of the pan and their bottomsona level therewith, and provided in theirinner walls with openings or passages arranged above the bottom of the pan, whereby the pockets communicate
with the surrounding space of the pan, substantially with the surrounding space of the pan, substantially
as set forth. (2) In a cane mill, the combination with
and the bottom plate having a raised rim or flange form ing a pan, and a pair of opposing journal pockets
extending above the bottom plate, of a horizontal
bridge piece extending above the bottom plate, of a horizontal
bridge piece connecting said pockets, having a bearing
for the lower journal of a acraper and raised above
the bootomp plate, whereby a sppace is left between the
S53,607.

bridge piece and the bottom plate for the removal of
chips, substantially as set forth. chips, substantially as set forth.
553,658. Turbive Moror, C. A. Parsons, Narcastle. upon-Tyne, Englan
Clam.-In a steam turbine, a shaft, high, 1895 . Clam,- -n a steam turbine, a shaft, high-pressure
discs thereo having lateral blades, fixed rings inter-
mediate of the discs having lateral blades alternatin decs thereon havises having lateral blades alternating
mith the blades of the discs, said rings extending with the blades of the discs, said rings extending
inwardly toward the shaft, and providing passages to 553,658.

direct the stamm inwardy and a low.presure disco of

 (553,659.1

 one wall being opposite the headers of the other wall)
anmd.drum (ommunicating with the bottoms of tho headerso of the ream waili, wheter separatotors commumi:

connecting the cross headers and standing headers,
and a steam drum communicating with the water separators and located in the path of the outgoing
products of combustion, substantially as described. (2) A steam boiler, having vertical headers forming
part of the end walls of the combustion chamber, and water-turbes traversing said combustion chamber
diagonally from opposite headers, and doors in the dagonally from opposite headers, and doors in the
end walls of the combustion chamber between the
headers, substantially as described

