THE ENLARGEMENT OF LIVERPOOL-STREET
Station, Great eastern Railway. No 11 .
In our last number we alluded briefly to the origin, in orporation, and subsequent progress of the Grea Eastern Railway, and in the Key Plan published therein will be found an accurate representation of the general acluded both thio site. Within its extensive area is included both the part of the terminus first constructed areatry he hew ene aneady drawn attention to the former sumiciently to ndicate the manner in which it is inseparably connected mumediately concerned, and shall proceed to deseribe more mondile and shaleed to describe an lustrate.
The new part, or widening of the station.-The prin cipal works comprised under this heading consist of new roofs, extra platforms, and buildings, the erection of new roofs, extra platforms, and eight tracks, together and facilities. A new Parcels' Office has also been built

Cranes, lifts, and all other necessary machinery and curved and the upper horizontal flanges of the wrought mechanical appliances are distributed throughout the iron screen girders are composed of a pair of angle irons station wherever required, and are all worked by hydraulic power.
As soon as it was perceived that the first part of the terminus in spite of its magnitude, andincluding an area of some nine and a-half acres, was certain to be inadequate for future traffic, the company commenced to acquire, as occasions presented themselves, land and property in the vicinity. In 1888 an Act was obtained conferring the usual powers of compulsory purchase, by the exercise of which the whole block fronting Bishopsgate street Without was made available for the new site Notwithstanding that the expenditure already incurred for the terminus had amounted to over $£ 2,000,000$, the consent of the shareholders was readily given to the raising of the additional funds for the extension, and the work of widening commenced in 1890 . The result is that the Great Eastern Company now possesses a metropolitan terminal station peculiarly its own, and unequalled for size, position, and extent of local and suburban traffic by
any of its compeers.
$3 \frac{1}{2} i n$. by $3 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2} \mathrm{in}$., and a plate 9 in. by $\frac{1}{2} \mathrm{in}$., and the web is of $\frac{1}{2} \mathrm{im}$. plate throughout-Fig. 7. All rivets, unless other wise specified, have a pitch of 4 in . in these girders and a diameter of $\frac{3}{4} \mathrm{in}$. The manner in which the junction of the principals and the girders, with the gutters, stiffening plates, and angle irons, is arranged over the columns is shown in Fig. 4, which is an elevation of a part of the main principals or ribs at T, in Fig. 1. A cast iron down-pipe of an oval shape, 10 in . by 4 in ., and of in. metal, is carried in the interior of the columns, and Fig. 5 shows a section of it, a plan of the capital of the column, and the cross section of the main rib and the lower flanges of the screen girders. In Figs. 6 and 7 are shown details of the end of the girders in elevation and plan, and a cross section of the upper flange of the principal, and the fixing of the gutter and bracket is shown in Fig. 8. The junction of a part of the first bay of the platform roof with the screen girder is given in Fig. 9, together with a part of the ventilator or louvre.
Vertical tee-irons, 5 in . by $2 \frac{1}{2}$ in. by $\frac{3}{8} \mathrm{in}$. in thickness,

ROOF TRUSSES AND DETAILS
entirely over the eight tracks, and connected with the first part of the station by the "Passage Gallery" shown on the Key plan. These offices are built upon massive vrought iron plate girders, to the details of which we shal raw the attention of our readers when the drawings ar published. The whole extension, estimated lineally commences opposite New-street, near the junction of Liverpool and Bishopsgate-streets, and terminates a Worship-street in Norton Folgate, a total distance of Bishopsgate-street The electric light installation, including engine, boiler-house, and shaft, are situated on the far or northern side of Worship-street. There are three heavy wrought iron bridges-as all bridges must now be that are intended to carry metropolitan traffic-over Skinner, Primrose, and Worship-streets, which we shal describe and illustrate. It will be seen on referring to the Key plan, that the widening has been arranged on the second of the methods alluded to, and that the offices and station buildings are placed on an upper sorey at the dead end of the eight new tracks. Access is ained to them by the stairs and foot-briage shown on the Key plan. On the lower floor at the level of the platforms the bookstalls are placed, and the descent to the lavatories, which are all placed underground, as is becoming now the universal practice elsewhere. The whole of this space, marked C A on the key plan, has an area of 15,000 square eet. It is known as the Circulating Area, and is common to nearly all stations laid out on the same principle.

Roof of the new station.-This roof, which is similar to its neighbours, is of wrought iron, extends from the ooking hall in the Key plan to the Parcels Office, and is divided into two principal parts, the first or transverse portion of which covers, with a span of 87 ft ., the Circula constituting the longitudinal or platform bays, which are thirteen in number, and carried on cast iron columns 30 ft . apart from centre to centre. From the intermediate wall to that on the other side, which separates the offices and shops fronting Bishopsgate-street from the station, the length from out to out is 188 ft . There is an extension of this part of the roof on the far or north side of the Parcels Office, In Fig. 1, p. 524, is represented a lonitudinal section of the roof over the Circulating Area looking north, or down the tracks, and Fig. 2 shows a similar view looking in the opposite direction, or facing the booking hall. Fig. 3 is a cross section of the same roof, including its junction with the bays of the platform roof. In Fig. 1 is shown the arched screen girders, S SS, carried upon cast iron columns 1 ft . 6 in . in diameter, which although consisting of spans of different dimensions, have a uniform rise of 15 ft .9 in . from the springings to the soffits, a height from the springings to the ridge of 20ft., and a depth at the crown itself of 4 ft .8 in . The arch of the east bay is struck from a central radius of 36 ft . 4 in ., and from two side ones each of 12 ft .; that of the west bay has similar dimensions of 33 ft . 3 in . and 12 ft ., and that of the two central spans 23 ft .3 in . and 12 ft . 3 in . Both the lower
placed 4 ft . $8 \frac{1}{2} \mathrm{in}$. from centies, , erve to stiffen the web of the screen girder, and at the same time to strengthen the connections.
ain ribs.-In the roof over the Circulating Area there are four principal or main ribs, marked P P in Figs. 1 and 2, and shown in elevation in Figs. 3 and 10, and ten smaller or intermediate ribs p p p. These main ribs are of the trussed form shown in detail in Fig. 10, with a lowe curved boom struck from a central radius of 53 ft . 4 in . sharpened to 20 ft . near the springings, which are thu caused to meet tangentially the vertical axis of the sup porting columns. The corner or re-entering angle made by at oner arched boom with the centre of the screen girder strenge end, and the upright at the other-in Fig. 10plate iron lin. in thickness. Both booms are composed of pair of angle irons 5 in . by 5 in . by $\frac{1}{2} \mathrm{in}$., another pair 4 in . by 3 in . by $\frac{1}{2} \mathrm{in}$., and two wrought iron plates 12 in . by $\frac{1}{2} \mathrm{in}$. A the haunching, this section-see Fig. 10-which also give a diagram of the plates of the curved boom, is increased by an additional couple of plates 12 in . by $\frac{1}{2} \mathrm{in}$. The depth o the truss is 12 ft .3 in ., and the web consists of vertical tee iron struts, spaced at different intervals and connected with flat diagonal bars varying in width from 6 in . to 9 in . according to their position and the resultant stresses induced on them. A roof truss of the form represented in Fig. 10, in which there are no redundant members, wil furnish to the student and young engineer a very favouable example for the determination of the stresses upen

THE ENLARGEMENT OF LIVERPOOL STREET STATION

it, by the method of graphic analysis. We regret we have not the requisite space at present to devote to the delinea tion of the diagrams of forces which would suffice to ascertain the stresses upon the different members of the truss, resulting from both the static loads and the pressure of the wind. Those, however, who have a partiality for this rapid, elegant, and somewhat fascinatingalthough in inexperienced hands not always safe-process, will find themselves well repaid in applying it to the case under notice. It may be pointed out that, without sensible error, the curved lower boom may be regarded as consisting of a series of straight bars, joining the inter section the of the truss terminates over the ties ings, with the triangle formed by the last vertical sear ngs wal tie inclined at an angle above the horizontal, and the last bay of the slopingrafter. Under this assump and the lare the last bar of the curved boom and the bar inclined at an angle below the horizon will not be represented in the diagram of forces. It will be advis able, so far as our own experience goes, to keep the diagram for the pressure of the wind quite separate from that for the static load, and not, as is sometimes done combine the two. It will be found that the lines represent ing the central vertical strut will close the polygon of forces if correctly drawn
Purlins. - There are two distinct descriptions of purlins carried by the principals of the roof of the Cir culating Area, the side or lantern purlins L L L in Figs $1,2,3$, and 10 , and the curved specimens CCCC. O the former there is an upper and lower tier, and of the latte three tiers placed between the others. One of the longest of the side purlins is shown in elevation in Fig. 11, and partly in plan in Fig. 12. They are lattice girders, an are continuous over both the principal and intermediat girders P and p, and have a depth of 2 ft . 5 in . where they meet the mainribs, and of 3 ft . 6 in . at their intersection with the smaller ribs. Both flanges consist of two horizonta angle irons 4 in . by 3 in . by $\frac{1}{2} \mathrm{in}$., and three plates each 8 in . by $\frac{1}{2}$ in., two of which are dropped at the ends D D, as shown in the diagram of the plates of the upper booms in Fig. 11 Angle iron uprights 4 in . by 3 in . by $\frac{1}{2} \mathrm{in}$., and double diagonal struts of bar iron $3 \frac{1}{2} \mathrm{~m}$. by $\frac{1}{2} \mathrm{~m}$., crossed by single tie bars of the same scantling, compose the members of the web. Timber stringers 4 in . by 4 in . are bolted to angle irons as shown in Fig. 11, and in detail in Fig. 18 The manner in which the side or lantern purlins are riveted to the intermediate, and the principal main ribs of the roof by gusset pieces $\frac{1}{2} \mathrm{in}$. thick and double angle irons $3 \frac{1}{2} \mathrm{in}$. by $3 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2}$ in., is shown in elevation and section -Figs. 13 and 14, and in plan in Figs. 15 and 16. At the ends the purlins rest upon a cast iron shoe of $\frac{7}{8} \mathrm{in}$. metal, to which they are secured by a $\frac{3}{4}$ in. bolt seen in Fig. 17, elevation and section. The intermediate principals are of the solid or plate web form, with flanges 8 in . broad of the usual
plate and double angle iron section, stiffened by angle rons at intervals. In the trussed purlins LLL, the rivets in the flanges are all $\frac{3}{4} \mathrm{in}$. in diameter, except where otherwise specified, and with a pitch of $31 / \mathrm{l} i \mathrm{in}$. In the lattice bars the rivets are increased in diameter to lin. One of the curved purlins is shown with
accompanying details in Figs. 19-23. They are formed

with one curved and one horizontal flange, each $2 \frac{1}{2} \mathrm{in}$. by $2 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2} \mathrm{in}$., and are stiffened by strong gusset plates and double tee irons 6 in . by 3 in . by $\frac{1}{2} \mathrm{in}$. at the junctions over the main and intermediate ribs respectively. The depth varies from 5 in . at the centre to 2 ft . 6 in . at the springings, and they are bolted together at the centre, but the haunchings are
open.
Arch girder over cab approach.-In Fig. 2, p. 524, the
entrance to the cab approach is spanned by a solid arch girder, which has the following construction. There is a whole arch H and a half arch G, surmounted by smaller arches F F shown in elevation in Fig. 24 by corresponding letters, at the point where they are intersected by the main principal. The whole constitutes one built-up structure of plates and angle irons, the web of both upper and lower arched girders having a uniform thickness of $\frac{1}{2}$ in., with flange-plates of the same scantling, and double angle irons $3 \frac{1}{2} i n$. by $3 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2}$ in. for the lower girders H and G , and 3 in . by 3 in . by $\frac{1}{2} \mathrm{in}$. for the upper ones F F. A plan and section taken through the line C C in Fig. 24 is given in Fig. 25, which shows the manner in which the connection is made with the main principal P, and also a cross section of the flanges of the main rib. A reference lating lating area in Fig. 10 will point out that a travelling string order furished with rollers at each end which run ston small horizontal rails, permits of all parts of the roof being inspected for the purposes of painting and roor being inspected for the purposes of painting and Wepairs. for besides offering oren facilities of access to the roof, it obviates all chance of danger to the workmen, who have sometimes met with fatal accidents in who have sometimes met with fatal accidents in sloping surface of lofty roofs. Gangways, W W W, with protecting railings, are also attached to the principals. The method adopted for glazing the roof, in the execution of which no putty is employed, is that known as Rendle's patent invincible glazing, and is similar to that previously used in the first part of the roof of the present terminus. The glass, Fig. 26, is gripped between copper strips bent as shown, which can be tightened up as required by the screw S and the small plate or washer attached to it.

THE TORPEDO DESTROYER HORNET

On Saturday last Mr. Yarrow entertained a large number of guests on board the just-completed torpedo destroyer Hornet, while she made a short oruise in the estuary of the Thames. As the proceedings were entirely unofficial, and partook more of the nature of a private view, nothing was done to eclipse the vessel's previous performance when undergoing her official trials on the 19th March, which were duly stokehold har impression of the 2srd of that month. The and when closed the pressure did not exceed half an inch Her speed, consequently, did not exceed 23 knots, the encines turning at 320 revolutions per minute. As our descriptions of this vessel have hitherto been brief, the following details may not be out of place.
completed for the British Admirpedo boat destroyer as yet general arrangement she is similar to the Havock, the only
difference of any importance being the adoption in the Hornet of Yarrow's patent water-tube boilers, the Havock having been provided with boilers of the locomotive type.
The introduction of water-tube boilers has given the Hornet The introduction of water-tube boilers has given the Hornet
an additional speed of over a knot an hour as compared with an additional speed of over a knot an hour as compared with
her sister boat, the speed of the Havock being in round numbers $26 \frac{1}{2}$ knots per hour, and that of the Hornet $27 \frac{3}{3}$ knots per hour
Length, 180 ft ; ; breadth, at water line , are as follows:is built throughout of mild steel, and is divided by ten watertight bulkheads into eleven compartments, the utilisation of which from forward to aft is as follows: - Quite forward, chain looker and bow torpedo tabe ; then a forecastle with berths, \&c., for the crew; at the after end of these and terminating the turtle deck is the conning tower, containing the forward steering wheel; next to this is a large cabin with berths, to accommodate the petty officers, and below are the magazines. The next compartment is a smaller one, being two large watertight stowage of stores. We now come to Yarrow water-tube boilers, which supply steam at 180 four more, developing, with remarkable ease, 4000 - at yet the total weight of these eight boilers with water is less by 11 tons than that of the two locomotive boilers in the Havock, which only indicated, when pressed, 3600 -horse power. In each boiler compartment is a powerful over-head
fan and fan engine for forced draught, working on the closed fan and fan engine for forced draught, working on the closed
stokehold system. On each side of the boilers are the coal stokehold system. On each side of the boilers are the coal bunkers, containing about 55 tons of coal. The next compartment contains the main engines, consisting of two sets of
inverted triple-expansion engines, with their condensing apparatus. These engines are carefully balanced, so that although running at times 400 revolutions per minute vertical vibration is apparent at any speed. This immunity from vibration is an undoubted advance in naval construc. tion, as the health and comfort of the crew are in a great measure dependent upon it, it having been found that the vibration so common upt till now in vessels of light construction
and abnormal power seriously affects the health and energy of and abnormal power ser
the crew. In the engine compartment steering engine, aircompressing engine for charging torpedoes,
dynamo and engine dynamo and engine
for electric light, and distilling apparatus for making feed-water for the boilers and for Next to the engine room are two cabins for the engine-room artificers, and aft of this are the quarters for the officers, consisting of a large messroom, sleeping cabin,
and pantry.
Quite aft and pantry. Quite aft
is fitted up as a bread is fitted up as a bread total number of off cers and men for whom there is ac commodation is fortythree.
The armament consists of a 12 -pounde quick-firing gun mounted on the con having an all-roun fire, which from it elevated position would no doubt be most effec tive; two 6-pounde quick-firing guns abaft each side range from direct ahead to well aft of the beam; also one 6 -pounder quick-firing gun on a pedestal aft. The torpedo armament consists of a bow torpedo tube under the forward turtle deck, and two swivel torpedo tubes on a turntable aft. The vessel is steered by steam, either by the steering wheel inside the conning tower forward, or by a secondary steering wheel placed on deck aft.
The speed of the Hornet was recently tested on the official trial by a continuous run of three hours' duration, in the presence of the Admiralty authorities, at the mouth of the per hour, carrying a load of 30 tons, which magnificent result is in a great measure due to the efficiency of th Yarrow boiler. It may be interesting to note that from 130 to 140-horse power can be obtained per ton weight of boiler, including water and all fittings.
A coal consumption trial of eight hours' duration showed that these destroyers can steam at a ten-knot speed on a consumption of $3 \frac{31}{2}$ cwt. per hour. They, therefore, have the
means of running a distance of from 3000 to 3400 knots without requiring a fresh supply of fuel. In addition to tha contained in the bunkers, an extra quantity could easily be taken in the stokeholds and on deck, sufficient under exceptional conditions, to enable this little vessel to steam from 4000 to 4500 miles. We may here remark that competitive experiments show that in point of economy of fuel at the same
speed the water-tube boilers of the Hornet and the locospeed the water-tube boilers of the Hornet and the
motive boilers of the Havock are practically on a par. motive boilers of the Havock are practically on a par
Since the successful trial of the Havock the Admiralty and utility of veen so much impressed with the success ordered throughout the country no less than forty-two similar vessels, making good a well recognised want for an increase in our torpedo flotilla ; and great credit is due to the authorities at Whitehall for the energetic action they have taken in
the matter, and we have the satisfaction of knowing that the matter, and we have the satisfaction of knowing that shortly, as regards th
of any other nation.
The Hornet proceeded as far as the Mouse Lightship on Saturday, where she turned, and on her way home did some cirele turning, which was very interesting to the guests,
among whom were Lord Charles Beresford, SirEdward Reed Sir Edward Harland, the Astronomer Royal, and representaives from many of the leading shipbuilding firms. The
water-tube boilers have been fully described in our pages.

THE ROYAL AGRICULTURAL SOCIETY'S SHOW AT CAMBRIDGE

THE engraving given below shows the arrangement of the show ground of the Royal Agricultural Society, at Cambridge, for the meeting which opens on the 23rd inst. The show ground and the shedding for machinery occupy a larger space than at any previous meeting since Kilburn. Of ordinary shedding, in the implement yard there will be 435f., for machinery in motion 2539ft.; for special shedding, comprising 442 separate stands. Last year at Chester the total number of feet of shedding was 13,018, and the number of stands 408.
We may here add that the trials of oil engines will com mence on the 18th inst., and that there will also be trials machines for distributing Bouillie Bordelaise and othe mixtures on potatoes, machines for distributing insecticides on fruit trees, churns capable of dealing with ten quarts o cream and upwards, not to exceed one-man power, and In connection with capable dealing wive to ten quarts of cream. In connection with the Darlington meeting of 1895, the the best hay-making ofrered by the Society :-Class 1 .-Fo £10. Class 2 .-For the best clover-making machines, first prize, $£ 20$; second prize, $£ 10$.

SPEED TRIALS OF THE CHILIAN CRUISER blanco encalada.
Iv our issue of June 1st we gave an account of the gunner rials of the cruiser Blanco Encalada, constructed by Si ment. We are now able to give particulars of the speed trials which have since been most successfully completed.
The principal dimensions of the vessel are as follows; Length, 37 Oft.; breadth, $46 \mathrm{ft}$. . 6 in. ; mean draught, 18 ftt . 6 in.
with a displacement of with a displacement of 4500 tons. She is built entiriely of
steel, and is sheathed with wood and coppered. A steel prosteel, and is sheathed with wood and coppered. A steel pro

the royal agricultural society's show yard, cambridge
tective deck runs throughout her whole length, varying in thickness from 4in. on the sloping sides to 1 gin. on the flat by Messrs. Humphrys, Tennant and Co., of Deptford, consists of two complete sets of twin-screw triple expansion engines. The trial under natural draught was the first taken, and was continued for twelve consecutive hours, the resultant mean
of six consecutive runs over the measured mile (near the of six consecutive runs over the measured mile (near the mouth of the Tyne) with and against the tide, giving a speed The forced draught trinls were suressfully subseqent day, the mean speed attained on the mile with and against the tide being $22 \cdot 78$ knots, or a quarter of a knot in excess of that guaranteed by the contractors, the horse power realised during the runs being about 14,500 indicated The final trials, including the testing of the anchor-gear and other auxiliary, were completed on Tuesday last. The manceuvring qualities one speed in 3 min .47 sec, the diameter of the circle being 405 yards, or little more than three times her length The steam trials took place under the superintendence of the Chilian Commission consisting of the same officers as were present at the gunnery trials, and they expressed their satisfaction at the excellent results obtained.

The Maxchester Assoclation of Enginkers, - At the balf. -intimated that he had attended the Royal opening of the Manchester Ship Canal as the representative of that Association, which included amongst its members several well-known engineers, whose names are inseparably associated with the great undertaking, and
who had rendered invaluable service in the completion of the canal and the members would regard with gratification the honour which had been conferred upon the Mayor of Salford, Sir William H.
Bailey, a life-honorary member of the Association; who been connected with it since 1870 , and had for two years therefore great pleasure in moving that a vote of congratulation
 member, Sir Wm. H. Bailey, Mayor of Salford. Mr. Walthew,
in seconding the proposal, said he was sure the members of the Association would recognise that the distinction conferred upon Sir Wm. Bailey was a thoroughly well-merited honour, and his con nechon med member-was a source of gratification to them. The
honotion
motion was then put to the meeting and carried with acelamation.

FOUR-COUPLED BOGIE TANK ENGINE.

This type of engine has been designed by Mr. W. Adams, locomotive superintendent of the London and South Western Railway, and built at the company's works at Nine
Elms, and is intended for working the lighter suburban and branch traffic of the railway. As will be seen from our supplement, the engine has the leading and driving wheels coupled, 4 ft . 10 in . in diameter, whilst the back of the engine is carried on a four-wheeled bogie of the "Adams" type, having wheels 3 ft . in diameter. The cylinders are 17 tin . in diameter, with a stroke of 24 in . The tractive force developed is accordingly $\frac{17 \frac{1}{2} \times 24}{58}=126.7 \mathrm{lb}$. for every pound of mean effective pressure on the pistons. The cut-off varies
from 77 per cent. in full gear to 28 per cent. under usual running conditions.
The boiler pressure is 160 lb . per square inch, hence the total tractive effort available is about $17,000 \mathrm{lb}$. at starting and $11,000 \mathrm{lb}$. under ordinary running conditions. The total weight on the coupled wheels, with the engine in workin
order, is very nearly 30 tons, which, with a adiesion of one fourth, is sufficient to prevent slipping. Th boiler is constructed of steel plates with butt joints the to of the fire-box casing being flush with the barrel. The mild steel plates are specified to be free from silicon, sulphur, and phosphorus, and to have a tensile strength of not less than 25 tons, and not more than 30 tons per square inch, with an elongation of at least 23 per cent. in 10in. The longitudinal joints have inner and outor cover strips, with zig-zag doubl riveting. The transverse joins are made, thin anexternalweld less sing , dounderivece the borrel The joint between then box and the barel a angle ring. The rivets, 3 in . in diameter, are of the best Yorkshire iron, closed by hydraulic pressure. They are pitched at $1 \frac{1}{2 i n}$. The fire-box is of copper, and contains a fire-brick arch. It is connected to the outer casing by copper stays 1 in . in diameter, twelve threads per inch, pitched at
intervals of 3 zin . The
roof is stayed by eight
cast steel girder stays cast steel girder stays,
the four centre ones being slung from the casing. The tube plate, which is \bar{z} in. thick at the tubes, is stayed to the barrel by six palm
tays. The foundastays. The foundation and fire-hole rings are of wrought iron,
and the fire-bars are of cast iron. The iron, $4 \frac{1}{2}$ in. diameter, with a main slide valve of brass and an easing valve of cast iron.
The dome is of tin. boiler plate, butt jointed, with inner
and outer strips single and outer strips single
riveted. It is flanged to fit the barrel, and with a $\frac{1}{2}$ in. strengthening plate. The boiler is fitted with a Ramsbottom duplex safety valve.
The The frames are of
steel, of boiler plate
ouality, 1in. thick. They are connected under the cab by a clrong steel casting to
cary the bogie centre pin, and transmit the weight to the bogie,
the frames of which are of steel, lin. thick, and stayed together by a strong to the centre pin, this being controlled by laminated plate springs. All the wheel centres are of cast steel. One casting in forty is tested to destruction by dropp-
ing weights in order to determine its breaking strength. ing weights in order to determine its breaking strength,
The tires are of steel, supplied by Vickers and Co., of The tires are of steel, supplied by Vickers and Co., of
Sheffield, and are Sin. thick on the tread. They are secured to Sheffield, and are 3 in. thick on the tread. They are secured to
the wheels with a lip and $1 \frac{1}{2}$ in. set screws. The axles are of the wheels with a lip and 1 inin. set screws. The axies are of
steel, and are specified to have a tensile strength of not less than 32 tons per square inch, with an elongation of not less than 25 per cent. in 2 in.
The cylinders are of the twin type, being one casting, and special arrangements have been made for machining them. ports steam ports are 1 gin. wide and 14 in . long; the exhaust The slide valves are of Stone's bronzee, with recesses on the working faces. The pistons are of cast iron, with two cast iron rings each, each ring being $\frac{3}{3} \mathrm{in}$. wide and $\frac{1}{2} \mathrm{in}$. thick. breaking streng th 30 tons per suure inch They are packed with "United States" metallic packing. The slide bars, one to each cylinder, are of wrought iron case-hardened, and 6in. wide by 3in. deep. The crossheads are of cast steel, with cast iron caps and rubbing pieces. The cap is secured to the main casting by 3in. bolts, a liner being introduced to permit adjustment for wear. The valve motion is of the curved link type, and made of best Yorkshire iron, the worktheir centres, and connected at their extremities to the heir centres, and connected a alleys are in two parts, and
excentric rods. The excentric pull are made of cylinder metal. They are fastened to the crank axle by keys and set scicws. The straps are of cast iron The engine is reversed by a lever and sector on the right-
hand side of the engine. The reversing shaft is of Yorkshire iron, the levers being forged solid with the shaft. All working parts of the shaft are case-hardened. The connecting-rods The big ensire fon, and weasure sith. between cencre. The small ends are fitted with plain gun-metal bushes forced in by hydraulic pressure. The coupling rods are of Yorkhire iron forged solid and milled to an H section, and fitted with gun-metal bushes with white metal strips. The crank pins places places in the wheels by hydraulic pressure, and riveted over
on the inside. The crank axle is of the very best cast steel
forged solid. All four crank webs are hooped with steel
bands, $3 \frac{1}{2}$ in. by $\frac{1}{2}$ in., shrunk on. All crank axles are supplied bands, $3 \frac{1}{2} \mathrm{in}$. by $1 \frac{1}{2} \mathrm{in}$., shrug
by Messrs. Vickers and Co.
The engines are fitted with the Adams vortex blast pipe, with a variable annular steam opening, regulated by a cap
in the top of the blast pipe, which is raised or lowered by in the top of the blast pipe, which is raised or lowered by cap is raised the annulus is widened, the maximum opening having an area of 2007 square inches, which is equivalent to a plain pipe of $5 \mathrm{x}_{\frac{1}{6}}^{\mathrm{in}}$. in diameter. The minimum opening is $14 \cdot 19$ square inches, or equivalent to a plain pipe of 4 in. in diameter, the increase in area being 41 per cent. This pipe has given economical results in working local traffic, facilitating the management of the fire in starting and when running. The lever is placed on the fireman's side of the cab. All working parts in the smoke-box are an easy fit, and are free from any tendency to seize. The vortex blast pipe is successful in softening and utilising the effect being equally distributed over the tubes, the lower tubes being thus kept free and their efficiency unimpaired by becoming blocked up, as is the case when an ordinary pipe is sea.
The engine is fitted with a steam brake worked in conjuncNo with the automatic vacuum brake on the train. Two the engine. The tanks are made of best best Staffordshire ron, with $\frac{1}{2}$. rivets at about $1 \frac{1}{2} \mathrm{in}$. pitch. They have a water capacity of 800 gallons. The coal bunker has a capacity Fifty cubic feet, being equivalent to nearly two tons of coal. pant's Nine Elms Works and are now running giving great satisfaction and being remarkably free from defects in working.

The following are the principal dimensions of the engine : Cylinders-
Dime
Stroke

Stroke of $\begin{aligned} & \text { Sorts } \\ & \text { Length on } \\ & \text { Width of steam ports }\end{aligned}$.
 Centre to centre of cylind

Centre line of cylinder to spindles.
Diameter of pliston-rods
Motion

D
Wheels (cast steel)-
Leading and driving wheels-diameter on tread
Bogie wheels-
Bogie whecls-diameter on tread
Thickness of tiro
Diameter of crank pins for coupling -rods
Length of bearing
Diameter of cranks
Length of cranks.
Length of crank k..
Les (steel): Bogie-.
Diameter of wheel seat
Length
Diameter of journals".
Length
Diameter at centre
Centres of journals
Axles (steel): Leading and driving-
Diameter of wheel seat
Diameth of wheel seat
Length
Diameter
Diameter of journals
Length
Length
Diameter at contro-leadiog
driving
Centres of journal
Frames (steel) --leading
driving
.. ..
From front end to centre of leading axle
From centre of leading axle to centre "". of driving axle to cen
Total length of bogie to back end
Thames .
Thickness of frames
Total length of engine over buffers
Width over platform
Boiler (steel)-
Height of centre from rail
Length of barrel
over all tube plates
Diameter of barrel
Thickness of plates
Ii e.box" casing (steel)-
Width outside at bottom
Depth below centre line of boiler
Thickness of crown and side plates throat plate
Centres of
Diameter
Pitch of
Diets
Firebox (copper)-
Length at bottom (inside)
Width at bottom (inside)
Depth (inside)
Centre of boiler to top of box (inside)
Thickness of crown and side plates crown and side plate
tube plate at top.
bottom back plate
Tubes (steel)-
Number, 201
Number, 201
Diameter outside

eating surf
Tirecebox
This 897.76 square feet.
89.75

Grate area $\begin{aligned} & \text { Flue area (201 tubes) }\end{aligned}$
Chimney area.
Cylinder area
Ratio of sectional area of chimney to grate are grate surface to heating s surface
flue area through tubes to
Ratio of flue area through tubes to
eight of engine empty-
Leading
.
Leading
Driving
Bogie..

Weight of engine per foot ru

LEGAL INTELLIGENCE.

in the high court of Justice, chancery division,

Before Mr. Justice Rower.

12ih June, 1894.
The North British Rubber Company, Ltd, v. Mackintosh and Company, Ltd.
Ir will be remembered that this case, known briefly as the Clincher" case, was commenced some months ago, and after
several days of argument before Mr. Justice Romer, it was adjourned for the appointment and report of a technical assessor. Mr. James Swinburne was appointed, and he experimented with
the several tires, and made his report upon the several questions involved, considered as from an engineer's point of view. Subs quently this report formed the basis of ument by the counsel on both sides.
The action was brought by the North British Rubber Company, as the registered legal owner, and Mr. W. Erskine Bartlett, as the
grantee, of letters patent-16,783 of 1890 -for "Improvements in grantee, of letters patent- 16,783 of $1890-$ for "Improvements in
tires or rims for cycles and other vehicles." The plaintiffs claimed (1) an injunction to restrain the defendants from manufacturing, selling, supplying, letting on hire, or using any rims and tires for cycles or other vehicles manufactured according to or in the manner described in, and claimed by the plaintiff specification (2) damages, or, at the plaintiffs option, profits ; (3) delivery up,
for destruction, of infringing rims and tires ; (4) and (5) incidental relief. The plaintiffs in particular complained of the defendants' manufacturing and selling grooved tires or rims in combination with an arched tire of india-rubber or other flexible material held in the groove of the rim by the pressure of an inflated tube within
the arch which forced its edges against the sides of the groove This latter will be recognised as a description of the celebrated and favourite tire, known as the "Clincher." The defendants denied infringement, and also set up the defence that the plaintiffs patent was invalid, but in the result the question to be decided was whether the defendants had infringed the plaintiffs paten.
Mr. Moulton, Q.C., Mr. Bousfield, Q.C., and Mr. A. WALTER, were for the plaintiffs ; and Sir RICHARD WEBSTER, Q.C. Mr. Revile, Q.C., and Mr. J. C. Graham, for the defendants.
Mr. Justice Romper delivered judgment on the 12th inst., which was the seventh day of the case in Court. The judgment, as printed from the shorthand notes of Messes. Marten and Meredith question in this action is one of infringement, treating as I question in the patented invention as one for the combination claimed by the specification. This being so I need not, with reference
to the objections to the pleadings, deal with them in detail, or do more than say that, in my opinion, those objections fail, and
that the patent is a valid one, and the invention a valid and meritorious one. On the question of infringement, I will first state what in my view is the essence of the invention. It is the combination of an outside flexible tire, that can be easily removed because it is not in itself a complete tube, and of an inside complete tube capable is kept on the grooved dovetailed metal tire by the pressure of the sides of the flexible tire against the groove. And the patentee shows that you may thicken the sides or edges of the flexible tire,
whereby, obviously, you increase the grip, and clearly, the greater the grip the more difficult it will be for the inside tube, if made
very elastic, to force the flexible tire out of the narrow mouth of very elastic, to force the flexible tire out of the narrow mouth of
the grooved metal tire. Now, in my opinion, what the defendants the grooved metal tire. Now, in my opinion, what the is substantially this. They have taken the patentee's idea and the essence of his invention. All they have done in
substance, by way of alteration, is to increase the size of the outsubstance, by way of alteration, is to increase the size of the out
side flexible tire and the thickening of its edges, and to exaggerate the dovetailing of the metal grooved tire, so as to give a greater
grip and render it more difficult for the flexible tire to be forced out of the mouth of the groove; and this enables them to
out employ, as they do, for the inflatable inside tube a more,
elastic tube than that mentioned in the body of the plaintiffs' specification. I think that the defendants' tire is an improved
form of that invented by the patentee, but still in substance form of that invented by the patentee, but still in substance
the patentee's, and an infringement. Let me say a few words in detail on the various grounds urged by the defendants
against the above view. The point which was chiefly relied on by the defendants at the trial, and to which the evidence of the defendants was chiefly directed, was that, owing to the way their
outside flexible tire was made-being made partly of cloth cut on the cross-it was not held at all, or to any substantial extent, in the groove by the pressure of the inflated tube forcing its edges
against the sides of the groove substantially as described in the against the sides of the groove substantially as described in the
plaintiffs' specification. The evidence on this point was considerable and complicated. At the conclusion, if I bad been bound to decide at once, I should have decided against the point. But suggested that an independent expert should be appointed to examine into the matter and report to me. The parties consented
to this, and agreed in selecting Mr. James Swinburne as the to this, and agreed in selecting Mr. James Swinburne as the
expert. That gentleman has acted and reported, and most care-
fully and ably he appears to me to have done his work. Any doubt I had has been entirely dispelled by his report, and it is clear to me that the defendants' tire cannot be distinguished
from the plaintiffs' on the ground I am now considering. Another point taken by the defendants is this. In the body of the specification the patentee describes his inside tube as made of cloth and india-rubber. The defendants inside essential to the plaintiffs,
rubber only. It is said that cloth was essential rub otherwise their inside tube would be too elastic to blow out the outside tire-at any rate, would do so if the sides or edges of the outside tire were not sufficiently thickened. And the argomont is put very ingeniously thus :- "If the plaintiffs' specifica-
ion be construed so as to include an inside tube made wholly of india-rubber, then it is bad, because the patentee has not shown
in that case how to avoid the blowing off of the outside tire which would ensue, and which would make the tire useless." But, ingenious as all this is, it does not appear
to me sound. The patentee has pointed out by his inven-tion-specification-a perfectly good way of carrying his
invention into practice. The invention worked in the way invention into practice, The invention worked in the way
stated in the body of his specification, with an inside tube made of cloth and india-rubber, works perfectly well, and no one
practically could feel any difficulty in carrying it out. I do not practically could feel any difficulty in carrying it out. I do not
think he was bound to point out, what would be obvious to any sensible person, that the less cloth you had, and the more elastic
therefore the inside tube became, the more necessity there wald be for increasing the grip by thickening the sides of the outside tire or exaggerating the dovetailing of the groove. Clearly, to my mind, the patent is not bad on any such ground. But take it that, so far as the patentee is concerned, he has indicated by the reference to the cotton that he does not contemplate his inside tube being too elastic, or being made wholly without cotton.
And then suppose a man subsequently finding that by much increasing the grip referred to in the patent he can, without risk of blowing out the outside tire, make the inside tube more elastic than the patentee thought, and wholly drop the cotton, would this enable bim with impunity, and without being considered an inringer, to take and use the whole of the patentee's invention, so
long as he employed the increased grip and the more elastic inside tube ? I think not. He would still be taking and using the essence of the invention-of that which was patented-and would be an infringer, though bis particular tire might be an improve-
ment on that precisely indicated by the patentee in the body of his specification. The next point taken by the defendants is that their outside tire is essentially a complete tube, and not an arched
tire like the plaintiffs'. But I am satisfied that the defendants' outside tire is not a complete tubs, but is in all substantial respects, though enlarged in size, the same as plaintiffs' arched tire, and acts in exactly the same way, and has the same advantages as to speedy removal and
otherwise as the plaintiff f' tire. Reference was made to paragraph
eleven of Mr. Swinburne's reportand the experiment therementioned as tending to support the view that the defendants' outside tire acted as a complete tube. But this suggestion is made on a misunder standing of Mr. Swinburne e experiment. The strips which he put on were put, not across the tube at right angles to the plane o the wheel, but lengthways. Mr. Swinburne himself, who was pre make out that their tire is held in the groove by a different kin of action from that by which the plaintiffs' is held. The defend ants say that the plaintiffs tire is held in exclusively by frictional action, and that in the defendants' case there is no friction, but on the evidence and reports as a whole, and from my own observation
and judgment, I come to the conclusion that this contention of the defendants is not supported in fact. No doubt there is more direct frictional action in the plaintiffs' case, especially in the example where there is no thickening of the sides or edges of the outside tire. But

Figs,
it is not all frictional pressure even in the last example. You cannot have friction without pressure, and pressure of an elastic material against an edge or anything in the nature of an edge tends to action wholly free from friction. The truth, I think, is that the difference between the two is only one of degree arising from the the size of and exaggerated the dovetailing of the metal-grooved tire. I both cases the tire 18 kept on by the difficulty caused in trying to
pull a broad thing through a narrower opening. The plaintiffs pull a broad thing through a narrower opening. The plaintiffs,
therefore, are entitled to the relief they claim. His Lordship

> F/C.I Figs. B
accordingly gave the plaintiffs an injunction, an account-instead of damages-and costs, and ordered delivery up of the infringing
articles. He certified that the validity articles. He certified that the validity of the patent came into
question, but he stayed the injunction and the effect of the rest of his judgment to enable the plaintiffs to appeal, on the condition that their notice of appeal should be given within a fortnight. In the engravings given herewith, Fig. A shows Bartlett's first dir as described in the specification of patent No. 16,348, 1890. In
this the tire consists of a flat band of rubber, with central cana sprung into a rim, the flanges of which form a wide V canvas, sprung into a rim, the flanges of which form a wide groove.
This forms a cushion tire, and upon it Bartlett founded the Clincher pneumatic tire shown by Fig. B, taken from the specifica ion of No. 16,783, of $1890 ;$ the dates of the two patents are
14th October and 21st October, 1890. Fig. C is from the

FIG. 2

Figs. C
specification of the patent of R. C. Wilson, No. 12,974, of ash August, 1880, amend in April, 1893. This specification provisional specification of this patent did not indicate the form given to some of the many modifications of tires shown
in the drawings of the final, and the Clincher pneumatic tire had in the drawings of the final, and the Clincher pneumatic tire had wilson's provisional and his fin fall specifications. The patent
Wis. under which the defendants manufactured tires was taken out on the 8th December, 1890, No. 19,990, and was amended in July, 1893. with outer rings, having projecting edges or beads which take into the metal rim of the wheel, these flanges of these metal rims being bent inwards to fit these beads, which gave a tire which in aggeration of thickened edge tire Ω, and therefore only an

The Eighth International Congress of Hygiene and Demography is to be held in Buda Pest this year, from the 1 st to
the 8th September. A British committee has been formed, of which Sir Douglas Galton is the chairman, to further the interests in this country of the Congress, about which any information can Walton-street, Chelsea.
 8

The new Italian warship Umbria has successfully passed he

RAILWAY MATTERS.

The Severn and Wye Valley Railway-Acquisition-Bill has been passed, and so also the Monmouth Electric Lighting
Bill
The Great Western Railway claim against the Swansea Harbour Trust, which was originally $£ 31,660$, has been at length
settled. Mr. Garrard, the arbitrator's, award was 114,250 and setted. Mr. Garrard, the arbitrator's, award was $£ 14,250$, and
at the last monthly meeting of the Trust this was adopted and
assed

The Board of Trade have made an Order under Sub section 6 of Section 33 of the Railway and Canal Traffic Act, 1888, prescribing the manner in which notitec shall be be given by a canal
company of any intended increase of its published tolls, rates, or charges.
Mr. William Hobson, who has been over forty-four years with the North-Eastern Railway Company and its prede-
cessor, the oid Stockton and Darlington, for the last thirteen years as assistant tooods and mineral manager for the Darlington seetion, has
life.

At the sale by auction of the undertaking of the West Hetropolitan Tramways Company on Wednesday last, the ject to the clause of the Act of Parliament under wbich they were
created and worked. The power of purchase arose in fourteen years from
An American contemporary describes the King electric railway system, with underground conduit, which is being tried on
the Tenleytown railway at Washington, D.C. Two ploughs on
 hel ling underneath. The cost is estimated at $£ 2000$ to $£ 2400$ per
mile

The Boston and Maine Railroad Co. is making a new sta tion at Lowell, Mass, wedge sbaped in plan, between converging
tracks. The following particulars give an idea of the proportions adopted in such buildings: :The waiting room is 55 ft . by by 66 ft .
smoking room, 15 ft . by 22 ft ; women's room, 18 ft . by 25 ft ; dining
 iog, but under the same roof which covers the platforms.

Lord Trayner, Sir Frederick Peel, and Viscount Cifferences which have arisen between the colliery owners in the differences which have arisen between the colliery owners in the
counties of Fife, Lanark, Linlithow, Striling and Clackmanan,
and the Caledonian and North British Lailway companies as to the and the Caledonian and North British Railway companies as to the
allowance to be mado where the colliery owners and not the rail way companies provide trucks for the coal traffic. The hearing of
the cases is expected to last some days.
Messrs. W. Jessop and Sons, Brightside Works, have delivered at Liverpool, per Midland Railway, two propeller shaft
brackets, weighing each fifteen tons. The brackets, being very large, overhung both sets of rails, and thus blocking both lines
they had to be sent on Sunday. They are for one of the powerful first-class cruisers now being built by the Spanish Government.
$T w o$ other setto of propelier shaft brackets are being constructed Two other sets of propelier shaft brackets are being
The Birminghamand Henley-in-Arden Railway, having ben inspected by Major Yorke, R.E., for the Board of Trade,
and passed, was opened for public trafic on Wednesday, 6 th inst
The company is to be congratulated oo having The company is to be congratulated on having completed, the line
and are nuubh indebted to Mr. Beverleg Grifin, Anso.. Inst.
to whose care the works were intrusted to whose care the works were intrusted, and, now so satitsfactoril)
ended. The line is worked by the Great Western Railway Com ended. The line is worked by the Great Western Railway Com
pany, whose main line it joins thirteen miles from Birmingbam.
In order to comply with Standing Orders of the House of
Commons, the Port Talbot Company has withdrawn from its Bill, as passed by the Howse company has as passed by the House of Commons, all powers to enter inte
working agreements with the Great Western and South Wales
Mineral Railway Companies. The effect of this is, that the Mineral Railway Companies. The effect of this is, that the
Rhondda and Swansea Bay Railway Company has become the only one allied with the Port Talbot Company, and in the event of the
Bill becoming law this fact will pleasurably commend itself to the
shareholders of the shareholders of the latter
The Philadelphia and Pennsylvania Railroad Com
 Pennsylvanaia Railroad for passenger tracks is 4 ft . 8tin., but for
freeight tracks it it if sft. 9 in.
nt it is the purpose to make the gauge uniformly 4ft. 8din. when the wheel gauge is definitely and accu-
rately setted.
divisions having light the lines west of Porvature are ortsburgh some of the whenever now steel is purvatown, it being the intention to make that old gauge standard. Where the curvature is heavy the 4 ft . 9 in
gauge is retained.
ANoTHER new cable tramway system is, we understand likely to be brought forward at an early date. Mr. Sturgeon,
whose name is well known in connection with compressed ai apparatus, is associated with Mr. Davies in a new arrangemen
with which is used a shallow cable conduit and in which the vertica carrying wheels are not employed. A weli-known firm in Yorkshire
is at present engaged with the object of developing the system particilarly in oconnection with its use in a large Yorksbire tow wherein an electrical system has been under trial. The new system
ineludes also a new form of gripper, one of the objects of which is
to reduce the suddenness with which the strai is to redu
cable.
AT a meeting of the Engineering and Allied Trade Section of the London Cbamber of Commerce, Sir Edward
Carbutt, , arat., in the chair, to coonsider a report which had been
prepared by one of the members, Mr. Wm. Shalford, M. Inst. C.E. prepared by one of the members, Mr. Wm. Shalford, M. Inst. C.E.
ns to what tecommendations should be made to the Secretary o
Sto State for India with a view to such concessions being granted to
private capitalists as would oncourage investments in India Railways, Lient.-General Sir Andrew Clarke, G.C.M.G., C.B.,
C.E., and Mr. Doff Brace, C.E., brougt various suggestions
before the meeting, and, after a long discussion, recommendations before the meeting, and, after a long discussion, recommendation
to the Council of the Chamber were agreed upon, the general opinion being that the rebate of 10 per cent. offered by th
Government was not a just division of the interchanged traffic, and not attract capital to Indian rall way enterprise.
The mule train line from Vera Cruz to Jalapa has been
 to Sulina Cruz is 200 miles long, of which there are thirty miles
unfinished. It is expected that the line will be completed by
September next. September next. This line across the Isthmus of Tehuantepec wil
afford a shorter route to many parts lof the world to transit, and will evento tally many part tarts.oniderabe worle amouno of tood fright
from other routes, but it cannot expect to compete effectively unless it is provided with sufficiently good ports at pither terminus,
Acoording to a recent report of the British Consul at Vera Cruz, Contracoalcas on the Guif side can easily be converted into a commodious port with all the requirements necessary for a large
amount of shiping, but Sulina Cruzz, onthe Pacicic, , osly only open
roadstead exposed to the constant heary swell that will greatly
impede the impede tbe shipment of goods, and it does not seem practicable to required, and to be able to compete with Panama.

NOTES AND MEMORANDA

Compressed hay for paving is reported to be under trial by the Amies Pavement Co., of Philadelphia. Under heary
pressure in a Dederick hay press, the dry grass is pressed into preessure in a Dedorick hay press, the dry grass is pressed into
cobes, and then cut into paving blocks of convenient size. After
being soaked being soaked
indestructible
Gold of considerable purity is found throughout nearly the whole of Lower Burma, especially in the beds of the
ivers in Tenasserim. Specimens have been found of quality equa Oaverage Australian gold. Gold occurs also in certain districts on
Upper Burma. The native method of obtaining gold is almost
The automatic signals from the Westminster clock wero received at the Greenwich Observatory regularly throughout
the year ending May 10 th, 1894 , except on fourteen days when
the signal failed 24 per eent.. of the days of observation, under 1.0 sec. on 41 per cent., under 2.0 sec., on 79 per cont., under 3.0 sec. on 94 per cent.,
under 40 sec. on 98 per cent., and exceeded 4.0 sec. on five days.
It has been stated that the 16 -candle light hours which can be obtained for one penny by different systems of light are as hours ; incandescent electric, driven by gas engine and Dowson gas, 106 hours ; duplex oil lamp, $8 \cdot 6$ hours ; good petroleum
lamp, 8 hours ; gas, with Argand burner, $6 \cdot 4$ hours ; with fish-tail burner, $4 \cdot 7$ hours; and with incandescent lamps on town mains,
Mr. Head at a meeting of the Society of Engineers, gave $2 \cdot 2$ hours.
Those who are acquainted with the speed log which ddmiral Fleariais, of the French Navy, brought out in 1878, wil the sound of which was not sufficiently distinct for accurate observation-an electric bell, which rings on the completion of every
twenty-four revolutions of the vane spindle. The speed of the ship is thus obtained from the length of the interval between two
The French are a curious people. Exactly a hundred years ago, they executed Lavoisier, their greatest scientist, with all
ignominy on the guillotine, and at the same time confiscating all his taking the shape of a Salle Loot a national reparation sccome where this apparatus is on exhibition, notably, that with which he made his studies on fermentation, and also what is most important
There are in all twenty-two transformer stations he City of London, whose situations are as follows, viz:
Bartholomew Close, Crosby-square, Coleman-street, Falcon-squar
 square, Milk-street, New-square (Minories), Red Cross-street,
Rood-lane, Salisbury-square, St. Andrew'shill, St. James's-place, Duke-stroet), Watling-street, and Warwick-scuare ; Copthall-
venue, St. Benetink Churchyard (at the rear of Exchange), Queen Victoria-street (St. Nicholas Churchyard) Nicholas-lane (in churchyard), and Pancras-lane.
Commander L. K. Bell, R.N., has contrived a range nder which is to be adopted in H.M. fleet for station-keeping
purposes., It tadmits of greater rapidity of calculation than the ld method of taking a sextant angle, usually from the fighting top, a method which is not only slow but unsafe in action. Seeing,
therefore, that the new instrument can be used with accuracy from the conning tower, a double advantage is gained. The dis
tances are calculated on a scale attached to a graduated prism, the only neessary datum being the height of the enemy's mast, which
is in most cases obtainable from the Naval Intelligence books ; is in most cases ob
THE extent of land returned in 1893 as under all forms of crops, bare, fallow, or grass, in Great Britain appears as
$31,644,000$ acres. The arable land of Great Britain declined by 7 reater acres, while the surface returned as permanent pasture
reat Britain commenced twenty-one years ago, in 1872 , when prices of orn were much above the prosent level, and the reduction wa
ttributed in that and the following year to the increasing cost agricultural labour and the attraction of the high prices of meat agricultural labour and the attraction of the bigh prices of meat
and dairy produce then provailing. Since that period, with two
insignicant insignifcant exceptions, the record of each successive season has
shown less arable land. Compared with 1873 , the arable area of 1893 is rather more than 2,000,000 acres smaller, or about an acre less in everry naine. been so large as it was in 1869, when $9,758,000$ acres were thus accounted for. Comparing the present corn area with
bat of 1873 , the decline is $1,800,000$ acres. Wheat now covers that of 1873 , the decline is $1,800,000$ acres. Wheat now covers
ittle more than half the surface it occupied in Great Britain in 1871-5, and beans much less than balf.
AT a meeting of the Manchester Geological Society on Uuesday, Professor Boyd Dawkins, F.R.S., read a a paper in which
te described an important discovery of a range of salt-berig he described an important discovery of a range of sat- bearing
marls-in the sle of Man, as the result of borings which had been carried out with the object of proving the existence of coal measures,
which, however, bad not been found. He said it was an open question how far the marls of the Isle of Man were continuous North-west in the direction of Carricicfergus. The sequence of the marls in the islands was exactly that of the lake district, and
he geology of the one was to be read by the light of the other They might also concluade from the the identigy of the structure
The betwen the areas of Norrow oo Treland on the other, the
hand, and that of the North of the coal measures of Whitehaven did not range so far south as
the Isle of Man. If they did occur, the only spot where they could be proved was in the extreme north of the island. The
discovery of the salt marls, however, was very important, and issould p
soland.
is
In an article on the "Niagara Falls Power Station, Nature says the patent for Professor Forbes' construction of
dynamo- which is being built-has been just allowed by the nnited States Patent-office. One object to be attained was to have give a very high E.M.F. without being subjected to the enormous antrifugal forces of the revolving part. Another object was to
attain a maximum fly-wheel effect with a minimum weight. The revolving parts of the turbine and dynamo, and the vertical shaft connecting them, are all supported hydraulically by means of
piston in the turbine. The supporting power of this piston limited the weight of the revolving part of the dynamo to $80,000 \mathrm{lb}$. The governor of the turbine demanded-to fulfil the required con-
ditions of regulation - a momentum equal to $1,100,000,000 \mathrm{~b}$, moving at the rate of 1 ft . per second. Both of thess objects are
attained by Professor Forbes' construction, which consists in making the armature ixed and ring-shaped with a space insidid er
getting at the bearings, and in making the fields of a bell-shap the poles being on the inside of a nickel-steel ring, which is
uupported by the top piece or cover, which in its turn is rigidly ixed to the vertical axis. This novel construction gives all the fly design which had been made provionsly required the addition of a tly-wheel costing at least $£ 800$ or $£ 1000$. The construction for which Professor Forbes' patent has now been granted has also the
great merit that the magnetic pull between the armature and the great merit that the magnetic pull between the armature and the
fields tends to diminish the breaking strain of centrifugal force on

MISCELLANEA.

The total length of London sewers constructed during he year ending April 30 th, 1894 , was 1285 ft .
A CORRESPONDENT writes to us inquiring for some more proitable means of disposal of large quantities of tobacco, tea,
cocoa, and other tins-than the dust-bin. Perhaps some of our correspondents can help him.
A new concert pavilion on the Royal Pier at Southamp. ton was opened last week. The hall is 85 ft . in length, 73 ft . in
width, and ahout 46 ft . in height from the floor to the top of the width, and a aoout 46ft. in height from the
cupola, and provides seats for 970 persons.
A "NEW" propeller, we read, has been designed by a arparently , he same in form as that by Francis Pettititle, Smith,
apper
186-1839. The novelty, therefore, in the design is scarcely obvious.
The American torpedo boat Eriesson was launched at Dabuque, Ia., on May 12th. She is built of steel, and is 150 ft .
long, 15 f ft beam, 10 ft . deep, and 120 tons displacement. There are two sets of quadruple expansion engines, driving twin screws at 420 revolutions por minute. They are expected to develope
2000-horse power. She carries three tubes, and four one-pounder

The Russian Government have recently concluded contract with Messrs. Yarrow and Co., of Poplar, to construct
torpedo boat destroyer 180ft. in length, having the guaranteed speed, during a run of three hour' duration, carrying a load of
30 tons, of 29 knots, this being two knots in excess of the speeds hoped for in
Admiralty.

We have received notice of a new work by M. Sebillot, and edited by J. Rothschild, 13, Rue des Saints Peres, Paris,
entitled, "Folklore on Public Works and Mining." Every country is dealt with as regards its beliefs, legends, customs, rites, \& Concerning the ways, bridges, railroads, embankments, canals, waterpower, ports, lighthouses, mines, and min
distant times, over Europe, Asia, and America.
The hopper dredger, Hugh Andrews, recently launched by Messrs. Fleming and Ferguson, Paisley, for the Warkworth
Harbour Commissioners, has just completed a series of dredging and speed trials. When dredfing in very hard material, we are
informed, she raised easily 350 tons per hour, and on measured mile with her full load on board she attained a speed of over seve knots per hour, fulfiling the guarantees on all points.
The construction of the Ramasamudrum Reservoir, storage at this place will fill seven tanks and supplement 'the sapply to four anicuts, yielding a revenuen of Rs. 5000 and odd,
and eventually bring some 1500 additional tion. The progress has been reported as good, the bund on the lef bank being brought up to R. L. 85.00 , and that on the right upto the We read in a Scotch paper that a fifteen
Wer read in a Scotch paper that a fifteen years' test of
 West Quay at Greenock was subjected to Gardner's No. 2 process
In 1881 that used at the new frontage to the Castom House Qay was also subjected to the same process. In both cases the timbe tion was made of the above quays, and the timber found to be tion was made
perfectly sound.
The Manchester Corporation have appointed Mr. T de Courcy Meade, M. Inst. C.E., engineer and surveyor to the Hornsey Local Board, as city surveyor of Manchester at a salary of
ع1000 a year. The British Archited says:-The committee no doubt would have been better ploased to recommend a local man
for the appointment than a Londoner, but they wisely made local preferences give way for broader considerations. LLecal knowledge
is undoubtedly a good recommendation for a borough envineer but it it after all a very subsidiary one compared with the all The casting of the large hour bell for the tower of the new municipal buildings, Corydon, which are being erected in out last week. The clock which strikes it will have foar face each 10ft. 6in. in diameter. It will chime the Westminster
quarters and strike the hours, the aggregate weight of the five bells being bell whig the metal used did duty for eleven years in the shape of a bell o the Eddystone Lighthouse. A syren being now employed on the lighthouse, the two bells, each weighing two tons, wore returned
to C Cooydon, Messrs. Gillett and Johnson buying them from the
Th
Is his report to the City Commissioners of Sewers, refuse destructor apparatus at Lett's Wharf, which has been in constant operation both day and night throughout the year ending
30 th A pril last, with the exception of a stop 30th April last, with the exception of a a stoppage of 192 days
reparis and cleaning flues. To clinkers, more or less hard, but valueless, and for the removal
which which the Commissioners had to pay. Mr. S. Elliot, who has had apparatus, for dealing with the fumes from the chimney, has bee engaged since March last year in ereectign his machinery, which i
now nearly complete, and he hopes shortly to have the same in

The delays that are being experienced in carryin out the naval programme of 1891 are giving rise to a great dea twenty-nine new vessels either completed or on the stocks, but of this
begun. The deficit will be sill more cuisers bave not yet bee the list of constructions just drawn up for 1895 take little accoun
of the torpedo-boats, gun-boats, and other light vesels, whic brings up the deficit to fifty-two units. These proposed new con structions for 1895 comprise a first-class battleship, two cruisers,
vessel for class torpedo boats, making seven vessels in all. The ten ships
already Thesedy delays arrear cannot now be put on the stocks untined anter by the fact that the arsenals canno
Thate undertake more work than is now being done, but against this it is
pointed out that the vessels in arrear were to have been constructed pointod out that the vessels in arrear were to have een constructed
in private shipyards, and these are far from being fully employed. The Middlesbrough Corporation had agrand "field day" intend to have erected, and which is to contain $2 \downarrow$ million cubic
feet of gas. The Whessoe Foundry Company, Darlington, offered to construct this with ordinary guide framing carried to the top of Co., of Stockton, offered to erect a rope-guided gasometer on principle patented by one of the firm, and which had been tried a various places and given great satisfaction. Their tender was $£ 14,401$ They were willing to inflate the holder with air and thoroughly
test it next spring and summer, and then if it failed to give satisfaction, to put up standards on the terms agreed upon
The Gas Committee of the Corporation last month paid a visit to Tyne Doock, and examined a arasholder which is erected on
Messrs. Ashmore, Benson, Pease, and Co.'s principle, and is work ing satisfactorily. After a long discoussion the Corporation decided to accept the tender of the Stockton firm. The holder is to be
$189 f t$ in diameter and 120 ft high.

CONCRETE BRIDGE, ANTWERP EXHIBITION

CONCRETE BRIDGE AT THE ANTWERP EXHIBITION.
THE use of concrete as a substitute for masonry has made years ago it was almost confined to foundations, engineers who used it for retaining walls were thought venturesome, and there were few who considered it a suitable material for
the construction of arches.
Though concrete bridges are now no longer a novelty, there seems to be great difference of opinion as to the most suitable proportions of cement, sand, and stone ; in fact, it cannot be of thumb;" we can only be guided by the experience of others. But as it seems evident that concrete will be employed for arches of much greater span than any which have yet been made, whilst none can assert that we have reached the point below which"it "would be impossible to reduce the proportion

$$
2+2+2
$$

below zero- 14 deg. Fah. On January 23rd the centreing was removed, and though careful observations were made, no settlement could be detected. To avoid the infiltration of rain, the extrados of the arch and the tops of the abutments cement and sand. The general appearance of the bridge is very satisfactory.

CRAWFORD'S AUTOMATIC BARREL FILLING CRANE.
The proper filling of barrels in breweries and distilleries has labays. More recently the development in the industry of
labor importing oil in bulk has greatly increased the number of comparatively small vessels requiring to be charged with more or less exactitude; and as ordinarily performed the filling of such
Fic.l
LONGITUOINAL SEGTION
of cement, it will be interesting to take note of what has already been done with this material, and a description of one of the most recently constructed concrete bridges will serve as an example of present practice in Beigium. It will that usually adopted in England.
On April 20th (page 325) we mentioned that North's Portland Cement Works Co., Antwerp, was putting up a handsome concrete bridge in the grounds of the Exhibition. It serves to cross the Rue des Sculpteurs, which had to be left open for traffic, and it leads from the garden in front of the Industrial Hall to the Congo Section, which is situated between the Machinery Hall and the picture galleries. Fig. 1 is a longiwill be seen from these that the arch is 6 ft . 6 isin, thick at the will be seen from these that the arch is 6 ft . 6 iz . thick at the springing, and only ft . ftin . thick. The height of the under side of the arch above
it the roadway is 14 ft . 9 in ., and the inside width at this level 60 ft . The width of the bridge is 32 ft . 10 in ., and the total length 181 ft . 3 in .
The ground at the abutments was excavated to a depth of 11 ft ., and in doing this a wall about 3 ft . thick was discovered, crossing the line of the bridge obliquely. This wall was demolished to within 3ft. above the seat of the foundation, and the rest of the ground was found to be tolerably firm sand, slightly argillaceous. The abutments are 16 ft . Sin. horizontal layers, each 6in. thick.
The mixture for the concrete in the abutments was not the same mixture in that for the arch; but in both cases a mortar was first made, and subsequently mixed with the stone. For the abutments, this mortar consisted of one of cement to four of sand, whilst for the arch one of cement to two of sand was used. In each case 10 per cent. of water was added, to work the materials up into a rather dry mortar. Forty-five parts of this mortar were then mixed with a hundred parts of crushed porphyry. It will thus be seen that in the abutment there is only part of cement to fifteen of sand and stone, whilst for the arches the proportion is 1 to 8 . For the centreing five wooden trusses were used, placed 6 ft . 7 in . apart, and covered with in. planks. 18th, 1893, and was finished on the 23rd of the same month. A week later a severe frost set in, the thermometer falling to 10 deg. Centigrade
vessels requires close attention on the part of the operatives, a great waste may result. Our illustration represents in section
an ingenious barrel-filling crane, invented by Mr. W. Crawford of Glasgow, which, by pneumatic pressure, automatically cuts

AUTOMATIC BARREL FILLING CRANE

off the supply of liquid when the vessel is sufficiently full. The apparatus is very simple, and the mechanism will be readily insertion into the barrels is faced to fit a disc valve, which when closed is held down by a long spiral spring. The lower
end of the same pipe has an outside casing several inches in length, fixed so as to form an annular space between the pipe and the casing as shown. This space communcaining meather diaphragm attached to a rod operating the trigger lever E. This lever is pressed outwards and against the leather diaphragm by a small spring, the tension of which may be adjusted with the greatest nicety by the milled nut C. When the appliance is to be used the hose conveying the liquid is attached to the spigot, seen to the left of the figure, and the filler pipe inserted into the barrel till the grip points A rest on the edge of the bunghole. The dise valve is then opened by pulling up the handle B, or depressing the lever D vall the The liquid then rushes into the barrel, and as up the valve. The liquid then rushes into the barrel, and as it rises round the filler pipe it increases the pressure of the air imprisoned in the annular space surromunicated to the leather diaphragm operating the trigger lever E, and when the increased pressure on the diaphragm overcomes the resistance of the spring at C, the lever is moved inwards. The handle B is thus released, the diso valve closed, and the flow of liquid instantly arrested. The spring C can be adjusted so that barrels may be automatically filled, either
bung full, or to any lesser desired amount; and after a barrel bung full, or to any lesser desired amount; and after a barrel has been charged, negligence on part of attendants can
cause no waste. The apparatus, which is manufactured by Crawford's Patent Automatic Barrel-Filling Crane Company Glasgow, has, we are informed, already been adopted by some of the largest brewers and oil firms with very satisfactory results.

MITTON'S CENTRIFUGAL AUTOMATIC CRANK PIN OILER.
THIs is being introduced by Messrs. Hunt and Mitton, Oozells-street, Birmingham. The principle involved is very simple. The centrifugal force of the crank is utised of the cup, or its uperate on stroke. It drives the oil to the top of the concave top, from which it is guided into a bell-mouthed orifice,

tapered down to a fine passage, which supplies the oil to the bearing when the crank descends upon the lower half of the revolution.
The same firm are also making the lubricator illustrated. It has been invented to meet the demand for a compact single-
connection lubricator with the advantage of a visible feed.

The cock is below the glass, so that the connection may be broken at once witbout the necessity of disconnecting the lubricator, and new glass may be added whilst in position, affixed from inside the cup. Steam is condensed in the cup by independent supply, and displaces the oil which passes down the oil pipe to the cylinder until all the oil is exhausted when the water is drawn off and the cup re-charged. Regu-
lation is made by the plug being opened or closed as required.
iron and Steet Institute: Buysers Men announced, the autumn meeting of the Iron and - As already will be held in Brussels, and will commence on Mstitute August 20th. The arrangements are being organised by a local reception committee, of which Mr. Gillon, president of the Society reception committee, of which Mr. Gillon, president of the Society
of Liege, is the chairman ; Mr. Briart, president of the Society of Engineers of Hainaut, the vice-chairman ; and Mr. E. Coppée, of Brussels, and Professor A. Habets, of Liége, the honorary secretaries. The following is an outline draft of the provisional programme at present proposed :-Monday, August 23th-Arrival Tuesday, August 21st-The morning will be devoted to the reading and discussion of papers, and the afternoon to visiting the Antwerp International Exhibition. Wednesday, August 22 ndThe morning will be devoted to the reading and discussion of papers, and the afternoon to visiting places of interest in Brussels, special train to visit the Mariemont Collieries and the Couillet Steel works at Charleroi, returning to Brussels in the evening. Friday August 24th-The members will leave Brussels by special train to visit the works of the Cockerill Company at Seraing, and the A detailed programme will be issued when the loca! arrangement are further advanced.

TURNBULL'S STEAM TRAPS.
THE accompanying illustrations almost explain themselves. I is the inlet, O the outlet, C the chamber, F V the float vessel, V the valve, S the regulating screw, A V the air valve,
S P the sludge plug, or may be a small blow-through cock; the latter is recommended. The traps are direct-acting, and are of the simplest possible construction. As the total weight
of the float vessel is carried by the spring-which is made of of the float vessel is carried by the spring - which is made of
the special metal, and which is in all ordinary situations the special metal, and which is in all ordinary situations
practically non-corrosive-it follows that the total displacepractically non-corrosive-it follows that the total displace-
ment of the float vessel is availahle to open the valve against ment of the float vessel is available to open the valve against
the steam pressure, and consequently when the valve opens the steam pressure, and consequently when the valve opens
it gives a full and free discharge, the great value of which will

be fully understood in prolonging the durability of the be fully understood in prolonging the durability of the
bearing surfaces. In one form, Fig.4, the spring is in suspen
sion, the valve being at the bottom, while in another the spring is in compression, and the valve at the top of a central pipe. The multiple trap, Figs. 1, 2, and 3, is constructed like
a gridiron pendulum. a gridiron pendulum.
The expansion arrangement, which at first sight may appear
puzzling to some, is really of a very simple nature, and conpuzzling to some, is really of a very simple nature, and consists of a series of rods connected by plates and suspended
loosely, and so that it cannot be screwed down or jammed in any way, and therefore is not liable to be strained-this

being a defect common to many other expansion traps-by the regulating screw S , and so that the valve which is formed on the bottom end of the centre rod is just touching the seat when there is very little water in the trap. The rods are arranged in the area of a circle in pairs diametri-cally-half the number of pairs $\mathrm{E}, \mathrm{E}^{\prime}, \mathrm{E}^{\prime \prime}$, being of a metal
having a large coefficient of expansion, while the other half $e^{e} e^{\prime}, e^{\prime \prime}$, are of a metal having a small coefficient of expansion, and are so arranged by being fixed to or passing
loosely through the plates $P, \mathrm{P}^{\prime}, \mathrm{P}^{\prime \prime}, \mathrm{P}^{\prime \prime \prime}$, \&c., as in Fig. 3 , passen, through the plates $P, P^{\prime}, P^{\prime \prime}, P^{\prime \prime \prime}$, \& . . , as in in Fig. 3 ,
lonat
that the aggregate difference of expansion due to the number that the aggregate difference of expansion due to the number
of pairs employed causes the arrangement to shorten or lengthen, and thereby causes the valve to open or shut as water or steam may be in the trap.

Naval Enginger Apporvimesvts.-The following appointments have been made at the Admiralty :- Fleet Engineers : Cornelius
Pitt, to the Hibernia, Charles E. Stewart, to the Vivid, both addititonal; W. H. Burner , to the Collingwood, and W. H. T. Bills, to
the Victory, additional. Acting Chief Engineer : J. W. Agnew, to the Victory, additional. Acting Chief Engineer: J. W. Agnew, to
the Cordelia. Staff Engioer: J. H. Adams, to the Howe. Engi-
neer: Mark Blakeman, to the E.olus.

MAXIM'S CUIRASS COMPETITION.

In the daily papers of Saturday, June 9th, Mr. Maxim announced that he had received an immense number of
letters from parties who either had a cuirass to sell, or who letters from parties who either had a cuirass to sell, or who
wanted a cuirass tested, and that he had arranged with the Royal Aquarium authorities that all shields, cuirasses, or tested by a skilful engineer, who on that Saturday night proposed to deliver a lecture on the question, viewed from a scientific standpoint, and who would then try numerous experiments, showing the resistance of various bodies to the passage of a bullet, the disruptive force of the bullets, and so
forth. The original cuirass made by Mr. Maxim would also be tested, and Herr Dowe or any one else was invited to compete. "Should Herr Dowe produce a cuirass on this occasion," wrote Mr. Maxim, "which will beat mine-weight
for weight, and area for area-it should be tested by elecfor weight, and area for area-it should be tested by elec-
tricity after the manner suggested by the publio press, and if tricity after the manner suggested by the public press, and if
it contains no metallic armour-plate or plates, I am to pay over to Herr Dowe the sum of $£ 100$. There will be several other competing cuirasses present, and I offer $£ 10$ reward to
any one who will bring any kind of armour-plate, not steel, any one who will bring any kind of armour-pate, not steel,
which will show higher resistance-weight for weight, and area for area-than the resistance of the plate of the cuirass which was tested at Erith. All cuirasses will be tested with the English service rifle and ammunition.'
Accordingly, at about half-past seven a large audience assembled in the theatre at the west end of the Aquarium to witness an exhibition which, to do it justice, certainly
possessed features of scientific interest, but to which attached possessed features of scientific interest, but to which attached
the boisterous tone imparted by a body of people who have paid for their seats, and have thus acquired a right to express
their views, more especially when they are appealed to their views, more especially when they are appealed to
almost as umpires or judges. Under these circumstances Mr. Maxim did well in appearing in person, and also in drawing on to the stage Admiral Saumarez as umpire, whose drawing on to the stage admiral capital foil to the brilliant personality of Mr. Maxim himself. The surroundings were exactly those which suit an English audience who want
fair play, who want interest and fun, but who are swayed by any popular clap-trap to an extent which prevents serious competition being easily carried out. Suggestions and
questions from time to time were shouted out from specialists questions from time to time were shouted out from specialists
or would-be specialists, and endorsed with cheers or other or would-be specialists, and endorsed with cheers or other
sounds. We will run through the chief proceedings briefly, sounds. We will run through the chief proceedings briefly,
and then deal with the features of scientific interest. Mr. Maxim came forward, and after a short explanation of the Maxim came forward, and after a short explanation of the
behaviour of bullets, which we reserve for the end, he made a humorous speech, in which he said that he should try no more jokes in this country, unless, he added in explanation,
"This is a joke." He stated that his object throughout had simply been to show that English steel might be made to beat anything that Herr Dowe or any German or other foreigner brought forward that was not steel, and though conceivable, that it would be very difficult to beat it with any foreign steel. That, however good German steel might be, he
noticed that if the Germans wanted such a thing as a pronoticed that if the Germans wanted such a thing as a pro-
peller shaft for a big armour-clad, they came to England for peller shait for a mig armour-clad, they came to Eng Eng was introduced very frequently in contrast to the word German, apparently bidding for cheers and enlisting English prejudice on the side of the Maxim shield. may do this almost unconsciously; but here it was very marked, and was of course undesirable. The first Maxim
Erith cuirass, sold to the Aquarium, was then suspended and fired at. The second cuirass was also exhibited, now leather peting, like the first. This, Mr. Maxim said, was the competing cuirass. He proposed to cut open the first one-
"No. " as we may term it-and exhibit the inside. After firing at the No. 1 cuirass, he passed it to be felt by any of any bullet. At this moment a Mr. Loris, a professed rifle shot, asked leave to fire at the first cuirass, and met with such warm support from the audience that Mr. Maxim had to stay his knife before going further. Then he explained
that his first cuirass was not in truth plated all over, but merely in the central strip, the portion covered by the word Maxim, as shown in Fig. 6, and he requested that
the shot might be only aimed there. This Mr. Loris appeared the shot might be only aimed there. This Mr. Loris appeared
to consider was not in the bargain, and he fired at the righthand bottom part, perforating the cuirass, and afterwards he fired, rather unwillingly and on pressure from the audience, at the centre. Mr. Maxim then cut open the first cuirass, showing the centre plating, leather, \&c. It contained, he said, $3 \frac{1 \mathrm{l}}{\mathrm{l}}$. of steel only. He then said that his second cuirass was of $1 \mathrm{in}$. steel, and weighed 10 lb . to the square
foot. This allowed a certain margin of safety; the service foot. This allowed a certain margin of safety; the service
bullet could be stopped, if all went well, with a slightly bullet could be stopped, in a also a sin. plate of ordinary
thinner shield. He placed up all thinner shield. Hee placed up also a sim. plas present, the
steel, and received from Mr. Lowe, who was
remains of the package remains or the package corrite service ammunition, from which he had fired several rounds at the Dowe cuirass, at his own cuirass, just as might be desired. The former let all the bullets pass through, the latter stopped them. He then opened his cuirass, and drew out a steel plate with a turned-up margin. The latter was made thin to show the violence of the particles of lead flying laterally along the face
of the plate, which had cut it through, and had there been of the plate, which had cut it through, and had there been
no further lateral protection would have proved dangerous to no further ateral protection would have proved dangerous to
persons near. After this followed delay and waste of time, persons near. After this followed delay and waste of thime, a block to prevent swinging, and fired at. cuirass, which was naturally objected to. A new Maxim shield, No. 3, was brought out and fired at, successfully resisting the
bullets. Then Mr. Maxim was pressed to show the same confidence in Mr. Maxim was pressed to show the same his-that is, to put it on and let it be fired at when on his person. He replied that he had anticipated such a request, and had raised the question at home, but that Mrrs. Maxim
had charged him on no account to do so ; consequently he had charged him on no account to do so ; consequently he
was unable to accede to this request. Then it was asked was there no one present who would show the same confidence in the English steel that the Germans had exhibited in the Dowe cuirass. In reply, a little sallow boy of perhaps ten or eleven
years of age proudly stepped forward and squeaked out that he knew nothing of Maxim or Dowe, but that he was an Englishman, and would stand fire in the cuirass. This gallant little yellow man, we regret to say, was greeted with laughter, rather than the applause he fairly earned. No one eventually stood
fire in the cuirass. Then followed an exhibition of the behafire in the cuirass. Then followed an exhibition of the beha-
viour of bullets entering other metals. Zinc, lin. thick, stopped viour of bullets entering other metals. Zinc, lin. thick, stopped
the bullet, setting the end up flat. A copper plate, 3in. thick, had a sort of pocket blown in it, in which remained a thin coat-
ing of nickel and lead. Then a shield brought forward by a Mr . Neate was tested, which successfully resisted the bullets, but
which weighed 14 lb .; a lighter one was pierced. A third light shield was also pierced.
We may now pass to the scientific standpoint, as Mr. Maxim
calls it. He early in the evening exploined the calls it. He early in the evening explained the action of the bullet by diagrams, which we roughly reproduce in Figs. 1,2 3, and 4, which show the successive conditions of a lead bullet striking a steel plate. It will be seen that the head is spreading out in Figs. 2 and 3 . In Fig. 4 the head is shown
flying off at the edges, and in 5 the final state is shown with the cavity fully enlarged, the nickel casing forced out as lining, and nearly all the lead thrown off. Mr. Maxim described the behaviour of the lead at this high velocity as being exactly that of water driven into a substance of suitable body. With the illustrations referred to this was very good in its way, but there is nothing very new to specialists. We believe that very hard-faced steel plates have been made by other manu facturers only ${ }^{2}$ th ths thick which have actually resisted the service bullet, but which, although thinner than the Maxim shield, were probably of no better quality, as we may grant him a little more thickness for the larger factor of safety
which he probably had, and indeed claimed. Mr. Maxim hich he probably had, and indeed claimed. Mr. Maxim s, in fact, exhibited an excellent steel shield, such
it is probable would be very difficult to beat. $H e$
Ho has done this, but no more and he less. . Such shield may possess advantages over the one exhibited by
Herr Dowe, but we do not believe that it is the same kind

of article. Fig. 1 exhibits the bullet drawn from memory from that shown to us by Captain Martin as a recovered bullet which had been stopped by the Dowe cuirass. As we is recovered after iout, this is not steel; indeed, Mr. Maxim himself has now said enough to show that this bullet has not been stopped by steel. He appears, however, to disbelieve Herr Dowe and Captain Martin; we have declined to follow his example. We have no kind of hint or information as to the substance used by Herr Dowe, but it has been suggested
that it might be asbestos compressed very tightly, which is that it might be asbestos compressed very tightly, which is known to oppose great resistance to bullets. Many of our
readers are aware of its extraordinary powers when used on the breech of a gun as an obturator. This substance would be as likely as any to give the roughened surface and globular shape intended to be depicted in Fig. 1. This is, however, mere guess. To return to Mr. Maxim's action, he complains that his joke was not appreciated. Was it likely to be so? He stated in his letter of May 30th that he would make a cuirass which would "stand the same test that Herr Dowe's was exposed to," which would weigh only 6 lb . This, we No. 3 weighed 10 lb . to the square foot. It must be presumed that this, then, and not either of the others, was the one that he invited Mr. Lowe to fire at when he authorised him " to see that the experiments were conducted in exactly the same manner." Yet it was this cuirass that he nevertheless refused to allow anyone to fire at at Erith, and which it turns out now only contained a strip of steel down the centre. Had he been so sure that the Dowe cuirass had only received Mr. Lowe exactly to repeat the same attack, he would have been in a sort of way justified. As it was, he put himself out of court. Next as to cuirass No. 2 and No. 3. These, he says, weigh 10 lb . to the square foot. Now, Herr Dowe's, being 12 in. by 16 in ., has an area of 224 square inches, and would, at 10 lb . per square foot, weigh $15 \frac{5}{8} \mathrm{lb}$., so that it is lighter than Maxim's. Mr. Maxim's offer to compete sounds, how-
ever, fair. Herr Dowe could not complain of the electric test as to steel, as it would reveal nothing, but only test the truth of what Herr Dowe has already told us. Nevertheless, Mr. Maxim's letters and action had not been such as to with its boisterous if well-intentioned audience. Herr Dowe's cuirass is his only child, Mr. Maxim has more like 200 children; the former would naturally be careful. We confess to reading all that Mr. Maxim writes now with special care as to its meaning. We will give, for example, the second invitation, that to all competing cuirasses. Probably many readers thought that any of the steel cuirasses competing last
Saturday were open to receive the $£ 10$ offered if they beat Saturday were open to receive the $£ 10$ offered if they beat
Mr. Maxim's cuirass. As we now read it this was not so. Mr. Maxim's cuirass. As we now read it this was not so.
The invitation says "not steel" plainly enough. Probably The invitation says "not stel" plainly enough. Probabery
even the wretched steel plate which was perforated every even the wrecthed as any metal plate not made of steel, and
time was as good and so even this would have held the field. Mr. Maxim may fairly plead that this is plain enough, but surely a true petitor that he was not open to the prize before his shield was fired at. This was not done. Altogether we would conclude by the remark that Mr. Maxim has done himself harm rather than good by the Maxim cuirass. His powers of invention are splendid, it is a pity to have made his name famous by anything so much less to be admired.

The Junior Enankerring Socigtr.-On the 5th inst. the locomotive works of the London and South-Western Railway, at
Nine Elms, were visited. Mr. William Adams, superintendent was present to receive the members, and made adequate arrangements for their guidance through the numerous departments of
the extensive works. The thanks of the party for the facilities the extensive works. The thanks of the party for the facilities
enjoyed were conveyed by Mr. P. J. Waldram, chairman of the enjoyed
Society.

LETTERS TO THE EDITOR.

(We do not hold ourselves repponsible for the opinions of our

water-tube boilerrs.

SR, - Referring to your leading artiole in last week's issue on
'Boiler Efcieng," permit me to refor you to the enclosed cutting from Messrs. Conrad Knap and Co's.s cataloguo of their well-known
"Root" water-tube steam boilers, siving particulars of tests made "Root" water-tube steam boilers, , giving particulars of tests made
at the cement works of Messrs. Brooks, Shoolbridge, and Co. Grays, Essex. It having already on a former occasion ascertaines
to my satisaction that the said testing was carried out in the mos
careful and trustworthy maneer, and that the steam was perfecty dry. will notice that the average evaporation over 77 hours is $4 \cdot 12 \mathrm{lb}$, of water por square foot of heating surface, 10.2 lb . of
water being ovaporated per l . of coal, from foed of 110 deg. under 1201b. steam pressure, , po allowance being made for clinker, \&o. accounts for the greater efticiency of the heating sarface as compared with the boilers you refer to in your article, it being a well
known fact that water-tabe boilers with short tubes evaporate con siderably more water por square foot of surface than boilers having overlooked by bayers of boilers, who are commonly anxious only t t get as mned heating surface, as possible for their money; and per square foot of heating surface than those with short tubes:-

Work very irregular during this trial. The boller evaporated during
is trial about eovo gallons per hour for several hours, owing to stoppage

Sundry stoppages of ong inounduring cilizerers and asher thes the purpose of con.
 the boiler actually did when steaming full.
50, Lombard-street, London,
Robert Porter.
engineering as a profession.
Sur, -I have read the letter of "Pater" on the above subject io Your issue of May 25 th, and would like to offer a few remark occarred from my own experience. Some ten years agoo I entered
as a pupil the office of a civil engineer, and for about two years I did -as 1 find many others do -nothing. I was rudely awakened at this time to the fact that I must earn my living in the profession
to which I was attaching myself, or take to some other. Looking round to oseos what I I could do to to improve and some other. Lop any noting
abilitios, I began to study at a technical school the oparions staras of mathematics, mechanics, drawing, \&c., succeess attendiog these efforts; and for a bigher theoretical education 1 joined and passed
throngh the three years' course of engineering at prominent engineering colleges, under a profesesor who ine impseif a
M.LC.E. Also, daring these three years I studied for the engineering degree to be obtained at the Royal University of Ireland Of all the pupils at the engineering laboratory, there were abou
three or four of ns who can now be said to be earning our living most of the others have had to enter afresh, at the average aggo of
twenty or twenty-one, as pupils in some engineering estabishment twenty or twenty-one, as pupils in some engineering establishment.
In cases twelve months pave been taken off for their training in In cases twelve
the last year, when at Dablin, several graduates accosted me with England? Many a three yarrs ' civil forgineer's an appointment in smile at their weak efforts of draughtsronsship -and, by the way,
the drawings the drawings executed in the engineering colleges are poor speci
mens of the work that has to be done in an enfineer's office are rarely as intricate, and the dimensions are just as often not figured; and again the example set to them from a professor's brain ence.
One of the candidates last year who had never in bis life given degree from mere study, laughingly told me that he did not know the difference between a theodolite and a level, and had never ha eitber the one or the other in his hands, was actually called for
honours and got them. It is a little satisfactory to learn the honours and got them. It is a little satisfactory to learn that the
has taken up the calling of a "bacon factor. H Here arises the
n uextion of for a man calling himself an engineer
The conclusions I draw are much the same as those of "Pater"
as to technical linstruction alcne, but if the course is taken simultaneosly win the apprenticeship the student is the gainer office, and vice rexs. To To conclude, and foulow these conclusions to
a practical example. Four years ago I obtained my first appoint ment away from home, and eighteen months have passed since accepted a berth which carries with it the charge of the design and vassing or influence being exerted.
June 9 th. -
SIR,-IIn your reesent article on "Engineering as a Profession," you oxpressed a desire that the subject shoula be discussed; the dogma. tism which we to
hardly be said to come enten er the heading of discoussion. "Denarius" shows most convincingly that technical education is wasted upon
those who deal in scrap iron and the like, but the question is by no those who deal in ecrap iron and the like, but the question is by no
means exhausted in his exposition. means exhansted in his exposition.
Let us first ask ourselves whet
Let us first ask ourselves whetber there is need of technical
instruction. I find the answer to that question very pinly instraction. the following considerations. How am I to know the properties of materials used in engineering work? How shall I determine the stresses in structures to enable me to arrango my
material most economically? How can I design a valvo gear material most economically! How can I dosign a valuo gear
correctly without expensive models? Why, in the choice of gearing,
is its mechanical efficiency so little regarded Why are so many air compressors ineficient How are the stresses in structures
affected by the elasticity of the materials used These are queries wich must at some time present themselves to the young engihat their eyes are blinded to these important considerations by Lot us consider how we we may attiock.
Let us consider how we may attack these problems. We may
procure abondant literature and educate ourselves by close applice. ion, but a book knowledge is not by any means sufficient to sopply the want felt. Now I believe that it is to supply this long
solt want that technical education has become systematised. At felt want that technical edncation has become systematised. At
present there are two broady
distinct methods of teaching. present there are two broadly distinct methods of teaching.
Firsty, mastraction being given in lectures intended to sopply practical
ind theoretical knowledge. Secondly, there are a few institutions
and ind theoretical k kowledge. Secondly, there are a fow institutions
anhere they do not profess to teach the arts of fitting and turning,
wis. where they do not profess to teach the arts of fitting and turning,
but devote their energies entirely to testing and experimental work, with its theoretical and practica
o direct the experimental work
Both these systoms are largely supported, showing that there is perhaps some need of both. But the opinion is fast growing that the latter system is best suited to fit men for the ever increasing
demand upon the enterprise of the engineer. It is of course demsential that shop trainining thould be gone through before availing
neself of this 1 atter method. Having experienced the effects of onoself of this latter method. Having experienced the
both systems, I feel very strongly in favour of the latter
both systems, I feel very strongly in iaveur of the eattior. than in
"Denarius" says there is no more science in machinery the the and costly experiments h a ase who is best fito to make the long and costly experiments he tions and to conduct experiments successfully, or one whose only knowledge of the subject is the price per ton of the material)
Your correspondent also says, "the oil engine has emanated from men who have had no scientific training. One of the best is the invention of a medical man." I I was not aware that the medical
inser profession is so devoid of the first principles of science-whether
applied to engineering or not. This quotation speaks volumes for applied to engineorngol education, it being capable of the most obvious paraphrasing, namely, that ongineers have not the neces. sary scientific knowledge to assist in the development of their own
siter protession.
It cannot be denied that in the struggle to attain a bigb position they do, but the burden of responsibility must not be placed with those engaged in the great and responsible work of supplying to
young men that knowledge which they may or may not ultimately equire. The latter is entirely beyond the region of prediction,
n conclusion let me but say that whilst the systems of techni ducation are not without the possibility of improvement, I never theless hope that this letter will be read as an emphatic protest gainst its abolishment. I further wish to urge that special atten-
an tion be paid to the different methods of the various technical
institutions in order to choose that most suited to the ultimate requirements.
Leeds, June 9th.
$\mathrm{SRR},-\mathrm{Is}$ not your correspondent "Pater," in your last week's
isue trying to make technical colleges responsible for an evil for issue, trying to make technical colleges responsible for an evil for
which nothing less than the whole social system can be held responAt the present time there are a certain number of "jobs"
xisting in the world. There are a certain number of men and women candiastes for these jobs. The number of men and women argely exceeds the number of jobs. 1 write in every-day
anguage. Whatever the future may bring us in the way of nguage. it caatover the future may bring us in the way
remedies, Iave said is the case.
I am aware that all this is commonplace to a degree. My point I am aware that all this is commonplace to a degree. My point
is this. If technical colleges were to tout for pupils even to the ot see that technical colleges do tout ; but let that go. If one profes. sion become very much more overcrowded than another, the pablic
will hear of it soon, and with no uncertain sound. There are news. mapers and magazines published in this year, 1894, and thougb heir news is a little shaky at times, in general we get to know glaring facts. The ratio Number of jobs is well ahove unity in all professions, and it variesber oy jumpss in any one profession
from time to time ; so does the speed of an engine with an ancient sort of governor. But just as the engine does not stop outright or reach excessive speed, by reason of its governor, so will this ratio nothered from becoming much larger in one profession tban
notlic outcry - -this too even in our profession, and spite of possible skyscraping advertisements of tectrnical colleges. Indeed, sooner to overcrowding instead of dragging in fresh victims. I can only agree with "Pater" that many men try to be engi.
neers who are not mide of the right stuff. But to my certineers who are not mado of the right stuff. But to my certain
knowledge techtical colleges do a good deal of sifting in this line knowledge techical cosleges as a good deal of sifting in this line,
and in a way much exs expensive of time and money than a pupil? age in the shops. To be sure, many men get beyond college and
and are then stranded, bat this in the main is due to ${ }^{\circ}$
No improvements in details
"Pater" surely does not mean us to understand that in his mind here is an idea of apprenticeship veryus technical college asa a trainhave knowledge which can only be gained in the shops, and also What is wanted is that en erss should work hand in hand with technical colleges, instead of affecting to despise them. We
might then get much better arrangements, both for sifting men and training them, than we have at present. You, Sir, have suggested this in your admirable leader this week.
Nevertheless if all systems of training were perfect, the ratio namber of candidates the world over would not be altered.
There is one idea which, if generally given up, might help work. There are many men born in a position which pakes them
think this, but who have not brains enough to do brain work. Let think. this, but who have not brains enonght to do brain work. Let
them give np this idea as to working with the hands. Many have dem give np tois idea as to working with the thands. Wany have facing the difficulty boldly is the only way of remoring
Members of our profession may thank "Pater" if he prevents his one man from becoming an engineer. All other professions will
not thank him unless he contrives to get his man buried in some ulknown manner. I will trespass on your space no farther.
Bristol, June 6 th.

SIr, -As one of the ingenuous youths mentioned by your corre spondent "Denariuss" I should like to express my opinions on the
bove subject. First of all, with regard to a theoretical training t is obvious that a man cannot ever hope to he an engineer unless ee understands the why and the wherefore of the various parts of
he machine he bas to deal with. Where is necessary knowledge ? CCrtainly not in the shops. Again, everyone knows that the modern engine has undergone a process of
volution, and is a case of survival of the fittest, as " Denarius" nentions in his letter published in your issue of the Sth inst., but " Denarius," there is a missing link. Every kind of mechanism had n origin, this being supplied by the theoretical engineer in the irst instance.
To specialise somembat, take the case of an engine working with
saturated steam. Anybody with a knowledge of thermodynamics
is aware that there is a certain maximum theoretical effisiency possible.
Now t Now the actual efficiency is far less than this, but it cannot be sensibly increased by any alteration in the constraction of the practical man. The theorist now comes in and says, "Is superhes your steam," and the efficiency of the engine is at once increased Farther, may I ask, "Is the refrigerator entirely due to the prac cal and chemical properties of the various agents used, one of the greatest boons to civilisation would never have been invented. In conclusion, my argument is this:-All machines of a elass as far as the ruling conditions will allow. Any improvement which can, therefore, comeo only from the theorist is of comm.
value. Hence a thooretical trianing is of commercial value. SIR, -1 have read with interest "Pater's" letter and others
which have appeared in your columns, and being one of the unfor
tunate youths under disconsion, may I be permitted to ask a ques.
tion. Ever since I can remember I have bad a weakness for engineeriog Especially locomotive, and the older I bave grown the stronger has been my desire to learn that particular r ranch. I have been try.
ing for two years the leading railway and contract shops up and ing for two years the leading railway and contract shops up and
down the country, and yet 1 cannot got in ;there seems to be no work to do. I know the hardships one has to put ap with, the dirty
work, long hours, but these do not in the slightest dam ardour, in fact it only makes it stronger. I would go to any part of the globo if need de to learn locomotive engineering.
While your readers are talking about the welfare While your readers are talking about the welfare of the fature
generation of engineers, would one of them kindly put a lite jeractice into the question, and see if every youth is made of sof
practic 89, Belle Vue-road, Leeds, June 12th.
s. R. Bricos.

arnot and modern heat,

SIR,-As nearly all who read the letters in your correspondence
columns either frankly acknowledge that they do not understand matbematics, or merely think they do, but do not, I took aare t put my two criticisms of Mr. Alexander's communication in such a form that they would be clearly intelligible to all who are in the
habit of thinking for themselves, whether they do or do not under. stand mathematics. I am surprised that my criticisms have not olicited a reply from Mr. Alexander, and cortainly fally expected N and would have expanourd to show the falsity of mpols M and since he himself evidently considers that the relations between the scaies of the two air thermometers and the absolute scale, form an
important part of the thermodynamic fabric. If my crit just and well founded, according to Mr. Alexander an important part of the fabric of fin de siede thermodynamics most fall to the ground. As Mr. Alexander has not done so, I mnst ask you to
allow me the small space necessary to give the conp de grace to bis analytical investigations, in a
are interested in the discussion. Regnault's experiments, it appears
Mr. Alevander statest that, by Reg
that N is constant. The formula quoted therefore reduces to the
form

$$
\mathrm{J}\left(\frac{d \mathrm{M}}{d t}\right)^{v}=\left(\frac{d p}{d t}\right)_{v}
$$

There are only two possible values of M which can satisfy this equation, viz, $\mathrm{M}=\frac{p}{J}$ or $\mathrm{M}=\frac{p+\text { const. }}{J}$, where the constant must represent a rressure, since we can only add a pressure to a
prossure. We may therefore put const. $=p o$. If we put eitber of these values in the equation
we shall get $\mathrm{V}_{1}=0$ or $=p_{0}$. In either case the equation A reduce If we substitute eitber of these values in the equation of relation
alleged by Mr. Alexander to exist between J, M, p, and τ, vian to exist betwee
$\mathrm{J}=\tau\left(\frac{d p}{d \tau}\right)$,

We get after integration-

where $\mathrm{P}=p$ or $=p+p_{\text {and }} \mathrm{A}$ is constmnt. This equation is identical and Marriotte, exists in the case of perfect gases between the boylo late pressures and tomperatares indicated by a thermomete
graduated with equal intervals when graduated with equal intervals when the volume of the perfect gas
remains constant. If , therefore, equation B were true, the conclusion at which Mr. Alexander bas arrived would be true, viz the $-t_{0}=\tau-\tau_{0}$. Equation B is, however, not true. Mr. Alex-
ander has simply assumed it to be true and has failed to advance one single argument in support of his statement that the temperaor constant pressure air thermometer by zaro or has the same value at all parts of these scales. Since e elyal
increments and decrements of the temperature on the absolate scale correspond with equal increments terd decrement of the beat possessed by the air, Mr. Alexander has to prove in the case of the equal increments and decrements of the volume of the air, cor:e spond with equal increments and decrements of the beat posess.
WILLIM Doxalisox. the air.

entropy.

SIR,-"When heat is given by conduction to a working substance, that substance, after the influx, must be in a dififerent
condition from what it was before." Thus has written Dr. Lodge condition from what ir was before, "Otto Cycle, ", would not obbect,
and I think your correspondent
nor would be troubled in his slumbers, if be made the admission that whenever beat, by conduction or otherwise, entered or left working substance, this substance wolld then be in a differen conventionally, might be named a difficence of eatropy. And, any purpose was served thereby, sinficient to overrule a not un first rule of reasoning in philosophy," viz, "We are to 2, mmit and noecessary for their explanation"-I quote from ase both true " no one would be a penny the worse! !" 1 , in a published paper sary and improper mystifcations of a simple mattery, as unnece which have been that we have entropy written about as if it m a definite objective existence, instead of its real meaning-the
quantitative superficial phenomenon of the defnite entity, heat.
The equation $\phi_{1}-\phi_{2}=\int^{2} \frac{d Q}{T}$, or otherwise, when the men
bers are very small, $d \phi=\int_{1}^{2} \frac{d Q}{T}$, signifies: the variation of entropy is equal to the sum of the variations of the involved
quantities of heat, each being divided by the absolute temperatures of the associated matter, as influenced by those quantities of of the associated matter, as influenced by those quantities of
heat. Now, variations of the heat, whether inflax or eflox are canses ; to be measured by the product of two con-
joint phenomen
intensity of the temperature effect which the heat induces in that matter; whicb, in turn, is defined as its absolute temperature,
and, also, involves a quality of the matter defined as its specific heat. The absolute temperature being denoted by T, the ratio $\frac{d Q}{T}=\frac{\text { quantity } \times \text { intensity }}{\text { intensity }}=$ quantity simply. That is to say, the quantitative factor of the variation of heat $d Q$, on eliminating
the complexity arising from the conjoint intensity factor. Hence, when integrating this function orjor tarnot working substance, after receiving a quantity of heat, finally returns to its initial state), the heat given back and the work done, evaluated according to the thermal equivalent, together are precisely
cqual to the heat furnished to the working substance ; and necessarily, we have $\int d \phi=\int^{2} \frac{d Q}{T}=0$. This has been a not unim. portant contribution to the common fand of this science. Ooly, the
mistake has been, the having had it advanced as a reversal and condemnation of the even more important work of praceding
investigators, while an air of novelty and fictitions pors most improperly, have been sought to be a affixed to it, by insisting on a ludicrously mistaken notion, to the effect that prior to certain mathematical processes, asserted to be cognate thereto, the doctrine
had been that heat could do work without suffering any diminution of its quantity. Such statements, when not stigmatised as entirely leading. It having been an axiom with capable thinkers tbat whenever work was done, we must bave had a quantity of heat proportional to the work done, disappearing as heat; and having now to be accounted for in mechaninace leffects produced.
Now, effecto due to an imponderable cause have to be ponsiderd from two points of view : as to their quantity, and also as to the co-ordinate intensity. That is to say, not singly, but as a product, for the one factor can merge into and take the form of the other; the conjoint product, alone, can give the equivalent of the vanished heat. In point of fact, the mechanical effects are but modes or
manners of existence of heat. Professor Tait very properly writes -"Heat, though not material, has an objective existence in as complete a sense as matter has." Doubtless, it is the present,
fashion to speak and write about heat as a "form of energy," wich is merely introducing, under a new name, the old tertium yuid, in physics known as calorie, and in chemistry as phlogiston. energy is but one way of saying that beat is an indestructible shapes, of which temperanture of matter and of ensibible move
matter, to us, are the most direct and obvi sel
matter, to us, are the most direct and obvious phenomena.
From this thermo-dynamical point of view, many diffi intricate mechanical problems become much simplified. I have long pointed out how directly it enables us to arrive at the true
law of the relation of power and speed in steam vessels. I would gain refer to the investigations, really pertinent to and intro-
ductory to the discussion of this matter, published in
 ef trials upon H.M.S.S. ris, for which this relation was shown to e: $\mathrm{E}=\mathrm{D}^{\frac{t}{5}} \mathrm{~V} 10$
This vessel, with the displacement $\mathrm{D}=3724$ tons, was propelled
the respective speeds, $\mathrm{V}=17 \cdot 98,16 \cdot 10$, and $12 \cdot 63 \mathrm{knots}$. If so the corresponding powers, in indicated horses, ought to be as

Test speeds, V Subtract, X	$\begin{aligned} & =17 \cdot 98 \\ & =10 \cdot 91 \end{aligned}$	+16.10			${ }^{12 \cdot 63}$
Then, ($\mathrm{V}-\mathrm{x}$)	\% 07	$5 \cdot 19$..	1.72
$\therefore(\mathrm{V}-\mathrm{X}) .0662$ Add, log. \mathbf{V}		:.	(.3435	\because	:	
$\frac{\mathrm{m}}{\mathrm{E}} \text {, or } \log . \mathrm{E}$.	

The rationale of this very simple calculation is, the quantity factor $\mathrm{D}^{\frac{3}{3}} \mathrm{~V}$, into the intensity factor 10 ($\left.\mathrm{V}-10.91\right)^{1 / 06 e}$, is, necessarily, the measure of the heat, which, in this vessel, must
have disappeared from the steam, in developing the indicated horse.poper E . In a hydro-dynamical point of view, we may
hopually state the matter thus: a avolume of water, proportional to the product $\mathrm{D}^{\frac{2}{2}} \mathrm{~V}$, is driven astern, past the vessel-through the Poncelet paroi or imaginary pipe-by a pressure proportional to the factor 10 (v - 1091) ooese the power thus expended is necessarily pro portional to the product $\mathrm{E}=\mathrm{D}^{\frac{8}{5}} \mathrm{~V} 10^{(\mathrm{V}}-10911^{10062}$ and we may again transform this to a still more mechanical, but equivalent
shape, by writing it in the form : $\mathrm{E}=26: 30 \mathrm{~V} 10$ (owas v ; where the factor 2630 means : the measure, in indicated horses, of the initial torque of the screw shafts, when the vessel first begins to move;
this torque being made up of a force, the product of Morin's constant, or the mean diagram steam pressure upon the pistons, under
which they first begin to move ; into the piston travel corresponding to the revolutions-whole or fractional-of the shart, when the yessel just begins to move; in this case of the Iris V
to $26-3$ indicated horse-power. The test as follows :-
 Exactly the same as by the former calculation, and as show by the trial data. Having thus given an example of theory and present.
Glasgow, June 4th.

transatlantic rivalry.

S:R,-The commercial depression that exists within our borders at the present time is due neither to reckless specalation, strikes, many more besides. In some measure it is the result of increasing
compe ition from without. Powerful rivals in lines of manufacture which in former times were almost exclusively our own, have risen up, and not only have they established themselves firmly side by
side with us in export trade, but they have even rounded on us and now pour into our home markets numerous articles cheaper, it
not better, than we can make for ourselves. Some few things indeed, we still supply to our neighbours without fear of competi tion, and of these we may mention warships in particular
Within the past few weeks, however
of the United States have asked H.M. Government for deeigse order that they may tender for the construction of warships for the British Navy; and so, we may presume, the decadence of the
Briton in matters navicular has also begun. If we are not on the downward grade ourselves, it must be that actually outstripping us in the race of commerce. It may therefore be interesting, and perhaps instructive, to consider this matter a little in detail.
First of all, what American firm is it that offers to build battleships for us? And how and by what means has it risen to this
exalted position? We have to look to Pbiladelphia, Pa., and to Ithe firm of Cramp and Co., of that city, to learn.
It is not, certainly, because the yard itself belonging to this firm
ccupies an exceptional situation for shipbuilding that it comes so occupies an exceptional situation for shipbuilding that it comes so
suddenly into fame. It stands on the swamp banks of the Dela-
ware, about seventy miles by water from the ware, about seventy miles by water from the sea, and with an
approach to the deeper parts of the river, made and maintained
only by dredging. Nor has it coal and iron mines at its gates, to
reduce to a minimum the cost of transit. On the contrary, all the material for construction has to be brought to it from Pittsburg,
many miles away. Neither are wages there lower than in Great Britain, to enable them to compete successfully against us. Indeed wages are much higher.
解 smaller than many British. In its equipment, too, as a yard hardly comes up to some of them, or to its own engine and boiler shop departments, which, it must be admitted, are well supplied ever an opportunity presents, but many of these are made in th old country. The visitor, as he looks around the yard, will be surcrised to find, howerer, that attempts have been made to
obliterate the names of the Englist makers wherever it can be "Britisher" which exists being pisfiguremently, the jealousy of the "Britieher" which exists beipg perfectly puerile. Nothing of the known and used on this side of the Atlantic. A floating crane may be pointed out, but its advantages over the fixed cranes generally in use are very questionabie.
The oftices, too, of commanding elevation, near the entrance gates are stuffy within, both from the lowness of the eeilings and the
overcrowding which exists in them. Notbing in all this, therefore calls for special notice or imitation.
Mr. Charles Cramp
dubbed president; and under him is a numerous staff. Strangely then, as one passes along, do the dialects of Englishmen and
Scotsmen fall upon the ear from the lips of the chief dravg bending over their boards, in their much extolled Araughtsme ing.office. On inquiry it, will be found that these men, who are
doing the principal work of the place, are, five-sixths of them, British and Swedish. No doubt there are many young citizens of the United States in addition, but these, it will be observed,
re mere tracers. And the best workmen in the yard besides British and German.
It is difficult to conceive that this United States firm could then under such conditions, build a war vessel for us, either as well or
at as low a cost, as we could build for ourselves ; and from a purely business point of viec, it it in incomprehensible why they should
essay to do it. Merely to study the very latest designs of battleships and cruisers evolved from the British Admiralty, would be only
waste of time to the naval architects who have designed the waste of time to the naval architects who have designed the
Columbia, the "gem of the ocean and the sweeper of seas " Still there are rumours afloat about grave defects existing in the without fonndation Columbia and New York, but, let us hope wanting in time of efeed. Should such defeets have really been
discovered though there will be time to remedy them in the two discovered, though, there will be time to remedy them in the
war vessels now being built; and possibly any little hints recent British practice might be welcome at such a juncture. ministering to the national vain-glory, and to give the newspaper people of the United States an opportunity to vaporise, could
hardly, I should think, be worth the cost. Yet this business has so many large capitalists interested in it, and has friendly rela
tions of more than superficial character with such powerful bodies as the Pennsylvania Railroad Company, the International Line of steamers, and the Carnegie firm, that it might do many thing with impunity which would be deemed foolish on the part of
weaker combination.
It must be ratber galling, however, to the heads of the firm, who have been the objeets of such lavish praise, to be forced to confess that the skilled work of their yards and offices is done chieffy by
men who ire men who are aliens; and it may be the bracing effects of this
bitter cup that is inducing them now to replace as far as they
con by their . can by their own people, those of their instructors who still refuse the strangers until the papers renouncing king and country have been signed. But to their credit be it said, there is a strong
feeling of patriotism binding together these little bands of feeling of patriotism binding together these little bands of
Britons and Swedes away from home; and those among them who have lapsed are well described as "whitewashed" only.
With these facts before us, the fear of any serious competition
warship building from the United States will be set at rest. Th builders on the banks of the Delaware have hardly yet completed their apprenticeship at the hands of the smart Toreigners, who hav
tried to push their fortunes among them. These soon learn that with the cost of living so high, little more is to be saved from thei arnings over there than at home ; and it takes a good deal to mak p for the expatriation.
Our own shipbuilders may well feel regret, when they contemfore the ocean seeking employment in the United States, and helping to establish a rival trade therer ; and it would be bunjust to these,
at this point, not to say a word on their behalf. In many cases they are men of education, who have adopted the profession of engineering for the love of it ; and after having mastered a
details of their craft, and worked and waited on for years withou advancement, receiving wages the while upon which they could hardly subsist, naturally break away and try to better themselves. During, the conflict that has been raging between "capital and
labour," whilst the workman has had his share of the profits increased, the draughtsman's bas been at a standstill. This, as a matter of injustice, can only result in disaster in the end ; and of the many indirect ways that punishment may come, that which
A Britov, June 12th

the board of trade unt of electricity.

Sir,-The B.T.U. of electrical supply is 1000 watt-hours-that together equals 1000 . For instance, the following would be equal
to to 1 B.T.U.: 10 ampreres at 100 velts for 1 horr, or 40 amperese
at 100 volts for a hour. But the number of amperes flowing arough any instaiation is not constant, because of lamps being turned off and on, therefore it it best to multiply the quantity-
coulombs-of electricity supplied by bye pressurat whit supplied, for 1 B.T.U. equals $3,600,000$ conlomb volts. Electrical power is measured in watts, and a watt is that power which win
do 1 joule of work per second. Electrical quantity is measured in coulombs, and 1 coulomb is 1 ampere flowing for 1 second.
Ampère does not denote the quantity but the rate at which elec a kilowatt a time quantity? No ; it simply denotes 1000 watts, whether working for 1 second or 1 hour, and is generally waed to denote the power of machines. For instance, a machine giving
ampères at 100
volts woold be termed a
kilowatt machine, and a
B.T.U. Councillor" says, how long will a machine giving 40 mpères at 2000 volts take to give 80 siving out 80,000 watts-for $2000 \times 40=80,000$-therefore
vill take this machine 1 hour to deliver 80 units-for 1 B.T. U equals 1000 watt-hours, He allos says that to him it seems that que B.T.U. is really 3,600,000 watts. Well, this is really so, but
then the watts are multiplied by the time in seconds in which they
when ave been flowing, they are not spoken of ns watts, but as coulombolts, and are a measure of the quantity suppied as, in orb for 1 hour for 1 B.T.U.U. 1th.
East Croydon, June 11t.
Sir, -The difficulty expressed by your correspondent, "Town Councillor," is by no means an uncommon one. It is also quite at a loss to explain the apparent anomaly, because one gets so into
the babit of using contractions that in the course of time the
shortened form of an exprossion is used to express a certain
definite idea, while the steps that led to the shortening pass entirely from one's memory. "Town Councillor's" difficulty, however, admits of a simple explanation.
A Board of Trade unit is the product of a rate of doing work
into a period of time. It is a kilowatt hour, not a kilowatt into a period of time, It is a kilowatt hoor, not a kilowat. " 2000 volts, is ding wik the rate of 80 kilowatts. At the expiratio of one second $\frac{80 \times 1}{3600}$ or $\frac{1}{45}$ of a Board of Trade unit will have The delivered.
The dynamo therefore must give 40 ampères at 2000 volts for
45 seconds before delivering one Board of Trade nit 45 seconds before delivering one Board of Trade unit. Perhaps an
analogy involving more familiar quantities may best show where his argument is wrong. His question is equivalent to the follow. ing:- Suppose I have a locomotive running at 40ft. per second xle friction of the ameres-against the resistance of the atmosphere, equivalent of volts. That means $40 \times 2000=80,000$ foot-pound ong will sented by the amount of work done during an hour by the ocomotive when working at a velocity of 1000 ft . per second
against a resistance of 1 lb .- the equivalent of the Board of Trade gainst a resistance of 1 b .-the equivalent of the Board of rade unit, namely, 1000 amperes,

1 (ft. per sec.) $\times 1000$ (pounds) $\times 3600$ (secs.)

$3,600,000$
80,000
or 80,000
or 45 secs.
Victoria Mansions, 28, Victoria-street, London, S. W.,

Sir,-With reference to the query raised by "Town Councillor" power developed in a circuit when one ampère flows through it, and when the difference of pressure at the terminals of the circuit is one volt; or stated in another way, a watt is the power developed in a circuit when one coulomb of electricity flows per second past any cross section of the circuit, and when
at the terminals of the circuit is one volt.
Now it can be shown that the power thus electrically developed
is equal to $\cdot 7375$ foot-pounds per second, or $44 \cdot 25$ foot-pounds per minute, or nt of a horse-power.
If the current continues for one hour we have one watt-hour. Hence the Board of Trade unit of 1000 watts hour may be taken
to mean the power developed in a circuit by 1000 watts, and this continued for one hour. If 80,000 watts are being carried by a
courd circuit, then in one hour 80 Board of Trade units have been
tilised, and this, at 6 d . per unit, equals $£ 2$. The horse-power developed is $107 \cdot 2$ H.P., and the cost would be nearly $4 \frac{1}{2} d$. per horse-power per hour.
London, June lith.
Sir,-Formidable indeed is the mountain that "Town Councillor" bas managed to construct from such a simple molehill
as the B.T.U. of electricity. Unfortunately your correspondent has gone wrong from the very beginning; He says, quite rightly, that the "volt" stands for "pressure," but the "ampere" does not by any means stand for quantity, it is an ampère $\times 1$ second. The ampere is the unit of strength of current, and is quite inde The idea "Town Councillor" has that the ampère is a latter-day name for "coulomb" is quite wrong, as the most elementary of a very different thing from Again, the B. . U. is 1000 watt hour \times any number of hours that will make 1000 . Grasping this, then, it is easy to calculate how long "Town Coun-
cillor's" dynamo will take to supply 80 B.T.U.'s.; its maximum out put is 80 kilowatts, therefore, at full load for 1 hour, it will have given the machine at full load will take 1 hour to supply 80 units. The Turret, West Heath, Hampstead, N.W. H. S. West. June 11th.

Sir,-I am not surprised that "Town Councillor" is puzzled. can endorse what he has said as to the ignorance of electrical engi no puzzle. The difficulty arises in the fact that the Board of Trade was intended to represent the "current" that could be passed by an impulse of one volt through a resistance of one ohm in a second of time. The ampere originally represented "current without regard to time. I have put the word current into quotation marks,
because it is the crux of the whole question. Nobody on earth knows what current is. We only know what it is not. It is no quantity. There is no such thing as a quantity of electricity.
There is a letter Q used to stand for it in equations; but that another storty The word quantity is used vaguely, and the ampère is very commonly regarded as a measure of quantity. But Councillor" will turn again to MacFarlane, he will see on page 271 why the use of the word coulomb was given up. At the Inter national Congress of Electricians held in Paris in 1881, the ampère was made to mean a coulomb per second ; after that there was no
further use in practice for the word coulomb, which has been dead and buried in practice this dozen years.
The word "quantity" in electricity has a special arbitrary significance. It means dyne per P C G S by (cm. radius) ${ }^{2}$ per cm .
arc. It would take up too much space to explain what this means,

Physical Arithmetic

The Board of Trade unit is a strictly conventional affair. The moment electricians have decided on the meaning of the wor attempt to measure an action lasting for a given period of time attempt to measure and purposes the watt is a power nuit, involving the second. Deprived of the second, it has no more meaning than 33,000 has if deprived of the minute. The nearest analogy to th Board of Trade unit is to say that $1 \cdot 34$-horse power exerted fo one hour is a
in one second.
"Town Councillor" is quite right when he supposes that his dynamo would earn £2 per hour at 6 d . per unit.
Westminster, June 12th. Sir,-I was interested in the account of a new ship for the
Russian Volunteer Fleet, but where does England come in? We
have our Volunteers, but they are restricted to the land. Why have our Volunteers, but they are restricted to the land. Why
should we not possess a Volunteer fleet as well? I feel sure that response we were put forward, it would it is acknowledged that we want more seamen for our Navy. What better auxiliary can we have than a Volunteer fleet in time of need ?
Greenwich, June Ilth.

(For continuation of Letters see page 529

[^0]

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

grxz, Bootzeller.
Surand
Suanestreet.

PUBLISHER'S NOTICE.

 South. Western Railhay. Every copy as issud by by the Publicher
inctudes a copy fot the sipplement, and subseribers are requested to
notify the fact should they not receive it. Price bd.

CONTENTS.

The Enlarozment

 Carnot and Modern

 Heurs
Henture

 Notes from soctland -Wales and Adjoining Countios-Gerermany :.

TO CORRESPONDENTS

Registered Telegraphic Adoress, "MNOINEER NEWBPAPER,

water analysis.

RENDERING.
(To oth Bitior of The Bnimer.)

Tha Enoingre can be had, oy orderiptions.

ADVERTISEMENTS.

.28 p.m. for Wembley Park Station,

THE ENGINEER.

JUNE 15, 1894

water-tube locomotive boilers.

In the pages of an American technical magazine fo June, we find a suggestive article by Mr. David L. Barne on the present and future locomotive. It is mainly devoted to a consideration of the conditions limiting the power of the locomotive. Mr. Barnes holds that the maximum has been very nearly, if not quite, reached in the United States. He argues that the area of fire-grate and the quantity of coal that can be burned per square
foot per hour determines the power of the boiler, and foot per hour determines the power of the boiler, and
this it is which ultimately fixes the power of the engine. Now in the United States they have got grates 10 ft . long, which is as much as any man can possibly fire, and they put on these grates coal at the rate of 200 lb . per foo per hour. Further than this, he thinks, and we are sure,
it is impossible to go on a 4 ft . 8 in. Mr . Barnes admits that 80 lb . is nearly the maximun rate of combustion per foot of grate. But then the con ditions of traffic do not demand so much power as seem to beceded ine the states. We have repeatedy way practice the power required to do a given amount of way practice the power required to do a given amount the same work in this country, but no satisfactory ex planation of the fact has ever been made public. On theory is, that the wheels of American locomotives are
too small for high speeds, and it is at high speeds that the discrepancy between English and American practice is most apparent. Let the cause, however, b in England, seems that there practicable to construct a locomotive more powerful than anything yet built for a British road. Yet it may be admitted without hesitation that to do this we should have to follow in certain respects in the footsteps of American engineers, and augment the area of our grate laterally over the frames. This is not a policy to be laterally over the frames.
commended. We fancy, however, that in the height of the tourist season most drivers find that they have little or nothing in hand, and that it is only by a fortuitou concatenation of circumstances that they are able to keep time. The limit of locomotive power may have
been reached in the United States. It has not been reached in this country, but we have got rather close to it ; so close that it is worth while to consider how the
limit may be extended.
We take it for granted that all our readers will agree with us that the true measure of locomotive engine power is the boiler. Various devices have been adopted to augment this. Thus, for example, the whole barrel has
been filled with tubes, and one or two subsidiary barrels provided to hold the steam. We illustrated a locomotive of the kind in our impression for March 4th, 1892. The Fairlie double-bogie double-boiler type need only be named to recall the memory of a more or less successful ex-
periment. But there is reason to believe that after all and periment. But there is reason to believe that after all and
notwithstanding all that has been done and proposed we are very far from having reached the limit of steam generating power for railway work. Mr. Barnes greatly insists on the need for keping down weight. the maximum single grate that can be properly fired. The weight per wheel of passenger locomotives is already near the limit that is safe on present track and bridges. The steel bridges now built are practically permanent, and the best road beds about as stable as the boiler power that can be given them without passing the limit of weight, and it is probable, therefore, that in future the steam passenger locomotive will not be changed much, although the weight and power may be increased a little." Mr. Barnes maintains that excessive speeds are picturesque but not practical, and that whatis needed ought, that it is in maintaining them that the greatest power is needed. It is possible, we think, that the solution of the whole problem will be found in the adoption of an entirely different type of boiler ; in other words, It is not change in the method of generaing boiler is an dmirable steam disputed that the is more. It lends itself perfectly to being carried about on wheels. In every way it is suitable to its intended purpose. If the gavge of railways happened to be 7 ft ., or even 6 ft ., it would be unnecessary to suggest a serious change in form ; but with the gauge what it is, it must be admitted that in the United States the limit of power has been reached, although considerable sacrifices have been made, and that in this country the limit has also been reached, unless we, too, are prepared to make sacrifices. If these
points are conceded, then it will be granted, without much trouble, we think, that a proposal for a radical change in locomotive boilers is worth a hearing. Now a considerable advantage over the existing type would be possessed by a boiler which, not less economical than the existing boiler, would weigh a great deal less, and permit the use of a larger grie. The us it appears hat no insur mountable obstacle lies in the way of designing a water conditions. Practice with torpedo boats has proved that a very great saving in weight can be effected by substitu. ting the water-tube for the locomotive type. Again, a much larger grate area than is now admissible could be had, especially if outside cylinders and outside valve gear were adopted, in whi thinge ise of course nothing than the exception on the Continent. Again, every locomotive superintendent knows that his boilers give him more trouble, and cost more for repairs, than anything else. It is more than probable that a suitable locomo.
tive tubulous boiler would give better results, costing less for repairs and up-keep. Ostensibly the best type for the purpose is that of Yarrow or Thornycrof, that is to say an express boiler with small tubes. We are met, however,
by the difficulty that such boilers are worked with dis by the difficulty that such boilers are worked with dis
tilled water, and that they cannot be worked with any tilled water, and that they cannot be worked with any-
thing else. But again, engineers never know what they thing else. But again, engineers never know what they can do till they try. There are, of course, two reason
why ordinary water cannot be used. One is that it why ordinary water cannot be used. causes priming; but it is well known that locomotive can get on with bn absurdly small steam space withou primin. can , ibsuray small steam space 1 ling priming, mainly, it would appear, because the jolting o and engine seems to shake mi st vell tak plac and something analogous might very well take plac with a tubulous biler. The second oly wion water is hat he ore mial Even this, however, might be got over, a a special con struction of boiler is possible. Inee, we heseen desigg for a lanch easily and quilly as flues of the normal locomotive easily and quickly as the flues of the normal locomotive giler can be swept. A compound engine might be used compound system farr ahe; and latly, there is compound system a fair chance, and lasty, there is no rove wintly, inded, pesent any remerable departure from the existing form. The advantage gained would be without gugment weing possible to inerease boiler power by about 50 per cent For extreme speeds whel 9ft in diameter pould be lound most suitable, becouse of the reduction of the number of reciprocations of the piston. But, indeed, any draughtsman who possesses ingennity and a competent knowledge of locomotive engineering, will have little difficulty in designing either a very fast or very powerful locomotive, by abandoning the existing type of powerrul
We do not at all forget that water-tube boilers have long since been proposed and tried in America for locomotives. But the failures of thirty or forty years ago in this direction do not establish a warning precedent ffair from its water-tube boile It has gone far to turn the ocomotive type of boiler out of torpedo boats, and it is by no means impossible that it may yet play a very mportant part on our railways.

The chisis in her sur

Mr. Field's "Analysis" of Gas Accounts for 1893 has just been issued, and confirms our recent remarks as to a decline in the consumption of gas in the metropolis, as well as in some other parts of the kingdom. It may appen that the extent of the backward movement wil enerally. If so in the present year, nor ission in 1893 may be the more confidently attributed in some degree to the unusually fine weather. But the competition of the electric light is such that the statistics of the gas ompanies, especially in London, must be expected to eveal the existence of some check from this quarter on he progress of the older style of illumination. Gas companies may still prosper, and we anticipate that they will, but they will have to share the field with the new omer. Much is being done for gas by improved modes of burning, and this of itself reduces the rate of consump. ion, while conciliating the consumer. Subject to the ivalry of electricity and also of oil, the gas companies , mill be placed under the necessity of giving as cheap a upply as pos an tim pos pinst eletricity and valage wine presell io their ugaint to mainty, and L ledges dece 363 perent in the or in metropolis lost yer, as compared with 1892 The Gas ight and Coke Company exhibits the largest decline its falling off in the quantity of gas sold being 4.57 per ent. The Commercial Company shows a decline of 4.04 er cent., and the South Metropolitan 78 per cent. In 892 the Gas Light and Coke Company showed a decline of 60 per cent., and the Commercial Company - 72 per ent. But in that year the South Metropolitan had an ncreased sale of gas by as much as 2.58 per cent. The eneral result was that the consumption of gas in London in 1892 showed a fractional increase of 13 per cent. The gures for 1893 are especially striking, and show that the sale of gas in London last year was thrown back very early to the point it had reached in 1890, and decidedly below that for 1891. A falling-off in the sale of gas to the xtent of 972 millions of cubic feet in two years is not a matter to be lightly spoken of. In 1892 the net gas rental of the three London companies was $£ 3,969,000$. In 1893 was less by $£ 171,000$. Among the suburban gas com-panies-twelve in number-there was on the whole last year a decrease of 82 per cent. in the sale of gas. Five t Tottenhem to $3 \cdot 62$ per Crystal Palace Company. Brentford has a decline of 3.01 er cent., West Kent $2 \cdot 34$ per cent., and Richmond $1 \cdot 44$ er cent. The maximum increase is at Mitcham, where is as much as $6 \cdot 64$ per cent. Hornsey has an increase of 4.02 per cent., while in three instances the increase is elow 1 per cent.
Proceeding to
Proceeding to deal with the provinces, Mr. Field gives tatistics respecting eight English Corporations supplying gas. Taken collectively, these show an increase of $1 \cdot 37$ per ing to $1 \cdot 84$ per cent. at Birmingham, $2^{\cdot 70}$ at Leicester, and ng s much as 75 per cent. at Oldham. But in this last case he falton i or the greatinces or is in虽 deress of $1 \cdot 10$ per ocrease is 11.66 per per cent. in the sale of gas. The falling. Bristol 1.69 per cent. at 1.4 , 1 There is an increase of 3.35 per cent, and 15 at Brighton. Newcastle, and 3.03 at Portsea, while the increase at Liverpool is only 07 per cent. In Scotland, the Glasgow

Corporation had an increased sale of 4.80 per cent., while in Ireland the Dablin Corporation had a decrease of 249 per cent. Taking the whole range of the statistics rela-
tive to the consumption of gas in 1893 , it may be said that tive to the consumption of gas in 1893 , it may be said that instances-and some on a large scale-in which the sale
of gas has actually fallen off. It is quite possible that of gas has actually fallen off. It is quite possible that
1894 will compare favourably with 1893, but we feel assured that the future history of the gas supply will differ in degree from the past, by a reduced rate of progress,
though we arenot predicting any disaster to the companies. though we are not predicting any disaster to the companies.
They have resources at their command which, if rightly developed will render their position secure. But there are indications of a crisis which the directors and Mr . Field is doing good service to the gas interest by pourtraying from year to year, with such admirable clearness traying fulnems of detail, the mass of facts lying latent in the periodical accounts of the companies and corporations. On " this occasion, we have onlysis," but in former articles we have gone somewhat at length into the elaborate and instructive statistics contained in the annual volume, concernin
which we may say that it improves from year to year.

the pacific telegraph scheme.

Iv a few days we may expect to hear something definite as to the long-projected Pacific submarine cable project. A Sing correspondence which has been taking place between
Sir Charles Tupper and Sir John Pender on the matter may
be said to have brought forward some of the facts that had been almost forgotten. There is the twofold aspect of the question-commercial and strategic-and both have their
interest for engineers. The project is a vast one, the estimate interest for engineers. The project is a vast one, the estimate
for a single cable laid being $£ 1,80,000$, whilst the recommenbe 3s. per word, which Sir John Pender contends would leave ooly ys. 6 . per word for the Pacific cable, after the payment
for the land lines and the other cables had been deducted. Whether the Governments of the United Kingdom and of the Colonies would subsidise a cable so laid sufficiently to give
it the needful revenue to pay its cost, interest on construction, and that heavy depreciation or renewal fund which cable companies must accumulate, remains to be seen. But there
is very litle doubt that the growth of traffic over the cables that are laid-a growth that is perhaps not very marked in periods of depression like the present, but is shown over
longer comparisons-will in the end very probably lead
to the construction of an alternative cable to Australia, to the construction of an alternative cable to Australia,
though it does not follow that it will be one that will be able to adopt the word rate that has been suggested. The Austra-
lian telegraph traffic is now efficiently conducted, and that cheaply, on the basis of government guarantees against any
loss through the lowering of the traffic rate. As there is recovery from the deep depression that overtook the Colonies a year or two ago, it may be expected that there will be a
more marked increase in both the volume and the value of the traffic, and that will stimulate the companies and the projectors to increase the facilities for transmission. It
remains to be seen what the Governments will offer to those who may project the Pacific cable to enable them to trans-
form that project into a fact in the future, for it is evident that it will need years to accomplish. In the meantime, it is noticeable that the great companies which and are adding
service are enlarging the area that they serve, and are new feeders to the great lines, so that it may be fairly said
that there is a prospect of remuneration for those who were the adventurers in days when cables were less certain modes
the situation in the coal field.
We are again threatened with a crisis in the coal trade.
statement has been going the round of the press A statement has been going the round of the press Board a request for a reduction of. 10 per cent. in wages.
This statement is not quite correct. In the first place, the This statement is not quite correct. In the first place, the
Federation of Owners has not been called together, the president of that body, Mr. A. M. Chambers, being still on
the Continent. But there is every reason to believe that the Board, on its meeting, will be called upon to consider this question. An application has been made from the coalowners' side of the Board "to vary the rate of wages," but no,
amount has been named. The president of the Miners'
Federation specifically state its amount. He thinks the coalowners ought to say how much they want. The coalowners reply that they had enourh of that last year. One of the largest coalowners
in South Yorkshire, and himself a member of the Coalowners in South Yorkshire, and himself a member of the Coalowners'
Federation, puts it in this way :-"We first asked one Federation, puts it in this way:-"We first asked one
amount and then another, and the public thought we did not know our own minds. 20 per cent. were due on the figures, leaders want to put a demand for 10 per cent. in our mouths, because they know the figures will justify more than that. Lord Shand to fix the amount to which we are entitled." This is understood to represent the situation from the coalowners' point of view. In other districts the coalowners say
that a 20 per cent. reduction is necessary, and there is a general impression that the Miners' Federation would agree to a 10 per cent. reduction if the owners would make that the minimum wage. But this is the one point to which the owners steadfastly object. The steam coal trade continues in
a brisk condition, and the contracts which have now been a brisk condition, and the contracts which have now been
concluded, both for locomotive and gas coal, have been in advance of the prices obtained last year. Whether this ad-
vance is sufficient to compensate for the higher rate of wages is another point. House coal is in better demand in spite of the varied weather, but stocks are steadily accumulating.
One colliery is reported to have a stock in hand exceeding One colliery is reported to have a stock in hand exceeding
30,000 tons. or tons.

the taxation of machinery,

Machinerx users up and down the country will hear with great surprise of a new practice in the rating of movable
machinery for local purposes. It is asserted on the authority of the Machinery Users' Association that many of the attacks which of late have been made by local rating authorities upon
manufacturers are due to a system under which a certain manufacturers are due to a system under which a certain
class of valuers specially canvass for employment by inclass of valuers specially canvass for employment by in-
stigating the reassessment of works and other properties, and
by offering to secure an increase in the assessments in return system so iniquitous that at first sight it might seem to system so iniquitous that at first sight it might seem to
be almost incredible. We have, however, taken pains to ascertain the correctness of the matter, and, waith out entering into details, we may say that our inquiries
at first hand leave no manner of doubt that the allegations are all too well founded. Steam users and engineers have heard recently of various ways of assessing machinery which constitute a severe injustice on the manufacturing industries
But here is a state of things which amounts to a positive in ducement to private valuers, for the sake of personal gain to inflate values and to harass and annoy machinery user almost beyond endurance. No wonder that Sir William Houldsworth, M.P., should wax eloquent at the recent meeting of the Machinery Users' Association in denunciation of such a practice. It some remedy cannot be found for this abus the proprietors of manufacturing establishments will have a additional and powerful cause of complaint. Already th ficiently difficult to bear with equanimity. If, however ficeret effect even in the demand for machine plant in this country. The matter is one with which the every-day business
interests of the engineering and machinery trades are closely bound up, and machinery users should receive every assis ance in their resistance to this new impost from manufacturing engineers themselves
the engineering trades and short hours.
"One swallow does not make a summer," is a truism which we would just now carefully impress upon some employer too seriously the action of those engineering firms in the country who have conceded the forty-eight hours week. The recent conversion of the additional Manchestor engineerin
concerns to the example set by Messrs. Mather and Platt, following upon the adoption of the new syatem by of of th leading agricultural engineering producers in Bedford, and by certain of the Sheffield and Birmingham engineering houses, may at first sight lend encouragement to the idea that the eight-hours question is settled. It should, however, be pointed out that these instances are merely drops in the
bucket, compared with the overwhelming sea of employer engineers, both private and joint-stock, who continue to resist the new departure. The examples quoted are rathe to be regarded in the light of individual experiments than a
establishing any settled dictum that the forty-eight hours establishing any settled dictum that the forty-eigit hours
week can be adopted in the engineering trades without increasing the cost of production. The views which are here and there being expressed on the progress of the eight-hours Special need that this should be specifically borne in mind. ticular class of manufactures, may lend sufficient warrant for the trial of the new venture by single firms. But the main body of employers continue convinced that the adop. tion of the eight-hours day would only mean a repetition hours system, and that there would a further curtailmen of productive capacity, alike by machinery and hands, together with a necessary rise in dead charges.

LITERATURE.

Sewage Disposal in the United States. New York: D. Van
Nostrand and Co. London: Sampson, Low, and Co. 1894 Nostrand and Co. London: Sampson, Low, and Co. 1894. This large volume is the joint production of Mr. G. W.
Rafter-acting under instructions from Messrs. D. Van Nostrand and Co.-and M. N. Baker, associate editor of the American Engineering News. They were engaged independently of each other, having in view the production of a manual on "Sewage Disposal in the United
States." They ultimately combined the information they had collected, which they state was compiled for the use of American engineers. A perusal of the work, however enables us to say that it will be read with advantage by all engineers, chemists, and biologists, who are interested either in the prevention of river pollation, or in the questions of water supply and sewage disposal, which are practically inseparable subjects. The authors modestly state that "the amount of original matter in the book is
relatively small," but we consider they deserve thanks for relatively small," but we consider they deserve thanks for collecting and sifting so much useful information out of
the mass of available data, and of published expert the mass
opinion.
The first part of the book is devoted to the considera tion of water-borne communicable diseases, infectiou diseases of animals, and river pollution occasioned hereby, and also that caused by manufacturing refuse. The legal aspects of the question are touched upon a oried in the and the tried in the States are quoted. Data are given as to the relation between the water consumption of various American cities and the disposal of sewage, both presen and prospective. The advantages and disadvantages o separate are investigated, and mach information is in America, which is in accord will that elsewhere, as all are agreed that it is better to avoid the great variation all is admittel to the sewera system, eaving diffieultie anl is admitedin and senge systen, causin dificulties and at the outfall.
To all who are engaged in dealing with the question of water supply or sewage disposal the importance of a full knowledge of what is known as nitrification will be recognised, and the authors make full and free use of the in the experiments and researches which are recorded in the reports of the State Board of Health of Massachu-
setts. These contain information of the greatest value and afford ample materials for reference, as is the case also with experiments carried out in this country by Warington, Frankland, and others, which are referred to appropriately. The available data from these sources are summarised in a concise way, and show clearly that filtration is not a mechanical straining and chemical xidation, but is a biological process, and must be viewed in that light by those who have to deal with the problem
of sewage disposal. From a sanitary point of view the
purification of sewage by filtration through land is now tained in it a process by which the organic matter con gerous to health, are corverted into their harmles inorganic constituents. The knowledge of this enables clear line to be drawn between the methods for the dis. posal of sewage upon land for agricultural purposes having in view commercial results-and the large number of cases where the first consideration is the absolute destruction of harmful matters. The failure to recognise this broad distinction leads to the frequent conflicts that arise, and this book contains much that will assist to prevent such conflicts.
The bearing of climatic conditions and temperature are considered as being important features in connection with the disposal of sewage on land. Some useful practical experiments and observations are recorded, and the conclusions arrived at are that where the mean tempera0 are of the air in the coldest winter months is notlower than 20 deg. or 25 deg. Fah., and that of the sewage distribated might from the frost. Below the before-mentioned mea temperature purification by broad irrigation will be probably considerably interrupted by frost, the purifying action of filters by the nitrifying organism being greatly influenced by temperature. The data given
may be usefully studied by those who rely upon land for may be usefully studied by
the purification of sewage.
the purification of sewage.
Tables are given of the composition of sewage, and o the values of commercial fertilisers, determined by observations made at the New York State Agricultural Experiment Station, with a view to indicate the theo retical value of the nitrogen, phosphates, and potash of sewage, in relation to the composition of the various soils used for sewage disposal. Mr. Hazen-the chemist in charge at the Lawrence Experiment Station-made a series of observations with various chemical precipitants, The offect of theration of the records for rele Dupré and Dibden in this country are confirmed by the investigations of Messrs. Hine and Brown in America. These show that the oxidation of organic matter in wate These show that the oxidation of organic matter in water
is not "hastened by vigorous agitation with air or by air under pressure," although the presence of oxygen is mportant in order to secure the purifying operation of the nitrifying microbes before referred to. The same opinion was given by the late Dr. Angus Smith in a words: "In all cases putrefaction is delayed by aëration. The oxygen recovers itself in the aërated specimens better than in the non-aërated. Nitrates are formed more readily in the aërated than in the non-aërated specimens.
The cost of distributing sewage on land, and the arrangemumerous practical illustrationg this, are described, and made to the experiences which have been gained by the fruit growers in California, where sewage has been applied in connection with fruit culture. Much information is given as to the agricultural results obtained from various sewage farms in the shape of crops, cattle fattening, dairy produce, \&c. Where heavy green crops exceed the demand for them at the time of their production, silos are examende, in which the excess can be stored. Many sewage fares given of chemical precipitation worrie out in the United States, and the detailed illustrations afford a mass of practical information of much value.
The authors state "that the book is now other than elatively complete is not pretended; it is merely put forth as representing the best effort in this direction of which the joint authors are capable at this time." The success they have already attained should encourage the volume before us contains much information of practical value.

LUXEMBURG WORK EXHIBITION

In an article on the railways of Luxemburg, published in The Engineer of 18th March, 1892, the accompanying map
showed the extensive iron ore deposits in the south-west of the country. This national wealth has given rise to an important iron industry; and, as the proportion of phosphorus in the ore is sufficient to require the Thomascilchrist process, the quantity of basic pig is gradually
increasing, being now made by all the twenty-three blast furnaces, while some important steelworks finish on the spot the production of five furnaces. Were the iron industry not predominant, there are haf a a dozen others whici woularee
considered important in a little country which is no larger than an average English county. With the two-fold object of bringing before the public products manufactured in opening up new markets on the one hand, and on the and opening up new markets on the one hand, and on the other
introducing small motors, machine tools, and labour-saving appliances, the Government has organised an "Exposition
du Travail" to be held in Luxemburg City, from the 20th du Travail" to be held in Luxemburg City, from the 20th of August to about the 20th September. While finithed pro-
ducts are only admissible, so far as they have been to a conducts are only admissible, so far as they have been to a con-
siderable extent manufactured or perfected in the country, riderable extent manufactured or perfected in the country, saving appliances may be sent from any country. Technical catalogues, besides technical works, will be admitted to tho reading-room. The charge for space is very moderete the no customs dues will be charged. Steam, gas, water and electric current for the motors exhibited will be supplied at cost price ; and power from the main shafting will be charged itr. 25c.- one shilling per quarter-horse power per day. As
it is desired to make a special feature of improved methrds and appliances for forging iron and working up zinc or tin-
plate, special facilities and moderate terms will be accorded plate, special yacilties and moderate terms will be accorded under this head. Application for space may be made, and
further information obtained from M. J. P. Henrion, Con-
seiller du Gouvernement, Luxemburg.

THE CONVERSAZIONE OF THE ROYAL SOCIETY.
Last Wednesday night, the second and last conversazione of the Royal Society was hel
the presidency of Lord Kelvin.

Mr. Shelford Bidwell, F.R.S., brought under the notice of non in optics, which he had first made public at the previous meeting of the Royal
Society. A disc of thin metal with a round hole in it was
caused to turn in the optical caused to turn in the optical
lantern, and on the screen it
threw the little disc H, which threw the little disc H, which
moved round in the larger
circle represented in Fig. 1. circle represented in Fig. 1.
H was of a green colour, because the rays were passed
through a plate of green glass in front of the lantern. When caused to travel at a certain velocity, it was seen by the eyes of most persons to be
followed in a larger circle by the ghost image K , which was of a violet colour; it seemed to describe the larger circle, firmly fixed on the centre A, the ghost image seemed to travel mentary colours, otherwise K would have appeared to be red instead of violet. The more slowly H moves, the nearer to it is the ghost image K ; the latter is always one-fifth of a
second behind K. Mr. Bidwell thinks the effect to be almost entirely due to some action upon those nerve fibres in the retina which are sensitive to violet. He also exhibited a
modified form of Charpentier's experiment, demonstrating modified form of Charpentier's experiment, demonstrating which follows the impact of light upon the eye; Mr. Bidwell
did it by strong transmitted light, instead of using Charpentier's opaque dises with sectors viewed by reflected light.
Mr. G. J. Snelus, F.R.S., described the Walrand-
process of steel manufacture as applied to steel castings. This process, he said, is a modification of the ordinary acid Bessemer process, the object being to make solid steel suitable
for castings and so fluid that small converters down to 5 cwt. for castings and so fluid that small converters down to 5 cwt. adding about 7 per cent, ferro-silicon ontaining 10 per in adding about 7 per cent. ferro-silicon, containing 10 per cent.
silicon, to the metal in the converter at the end of the ordinary blow, then blowing again for about two minutes. The combustion of the added silicon produces so much heat that 250 deg. C., and the steel, therefore, is very much more fluid and sounder than ordinary steel. If pure materials are used
it is equal to crucible steel. He also exhibited what he it is equal to crucible steel. He also exhibited what he
called "the triumph weldless chain," and added that this chain is made from best steel wire by a machine of American
invention, one machine taking the wire from the coil straightening it, and making the links and chain complete at the rate of from 100 ft . to 300 ft . per hour. The chain, he said, is twice as strong as a best welded chain of equal weight, and is suitable for all engineering purposes, especially for yachts, where lightness and strength are important, driving picture hanging. It is
St. Helens, Lancashire.
Professor Elisha Gray exhibited what he has called the "telautograph," in which the principle of the pentagraph is applied to electric telegraphy. Four line wires are required
for the instrument. The writer at one station uses a lead pencil, attached mechanically to the apparatus, and writing apon ordinary paper, transmits to the distant station a facSketches, sketch-portraits, diagrams, plans, trademarks, and the like, as well as the characters of hieroglyphic alphabetsmay also be transmitted. In the experiments with the apparatus, resistance equal to four miles of line wire was inserted between
the two instruments, and when care is taken to keep the pencil always on the paper, it was stated that the sender could write at the rate of thirty or thirty-five words per
minute, with successful transmission. It is a step-by-step system of signalling, and it was stated that a three or four miles of line wire. The receiving instrument works with considerable force, as can be felt by holding the writing portion in the fingers. This telegraph should be of special o send drawings, say from a seat struments have but just arrived in England, and the repreplace, London.
Proessor Oliver Lodge exhibited a sensitive detector of electric charges suddd an emitter of the same. He said that ductor oscillate a few times before settling down in equilibrium, and these oscillations emit waves into the ether, which are in all respects light, except that they are not visible, being
much too big. Hertz first experimentally proved their existence. To-day the detection of them is easy, and the most and portable form. It consists of a minute battery compact meter and a bad joint, all inclosed in a small cylinder 3in. by 2 in . The rest of the instrument is a lamp and scale. Electric waves being generated in the neighbourhood, the resistance
of the bad joint varies and the galvanometer is disturbed. With this receiver all ordinary optical experiments can be microscop
responds.
Mr. J. Wimshurst exhibited models showing an improved ships, or other like purposes. The method consists of arrangships, or other like purposes. The method consists of arranging suitably wound coils of insulated wire K - Fig. $2-$ of the moorings, the one coil being
in communication with the shore station and the second coil in communication with the shore station and the second coil
in communication with the ship. Signals or sound are in communication with the ship. Signals or sound are
transmitted by induction, or by electro-magnetic induction.

This arrangement is more especially for telephonic communication. Mr. Wimshurst, ho

Miss Edna Walter, B.Sc., and Mr. H. B. Bourne exhibited projective goniometer. By means of this instrument,
devised and constructed by the exhibitors, the projection of a crystal on a sphere is actually accomplished, realising in practice the fundamental assumption of the theory of crystallography ; the instrument is thus of value in demon strating the axioms of the science. If necessary, angular
measurements can be made from the image, but these onl attain an accuracy of about 40 in $60 \mathrm{deg} .=$ one per cent. which is inferior to that attained with a goniometer.
Professor Sylvanus P. Thompson, F.R.S., among other things, exhibited the revolution of a large copper egg, of an

FIC. 3 ? oval block of aluवाIIIIUप|IID in a rotary magnetic
field. Fig. 3 will give
an idea of the arrange ment, which consisted of a massive ring of wire round it at in-
tervals, through which coils an electrical current could be sent in a suitable manner The egg lying down would begin to spin, and at last work The Postmaster-General
matic transmitter, running upited a Wheatstone's auto driven by Willmott's air motor. The air motor in this instrument dispenses with the 42 lb . weight which, when the instrument is running at 600 words per minute, requires
rewinding by the operator every few seconds. The air motor rewinding by the operator every few seconds. The air motor
being applied directly to the excentric axle dispenses with the whole of the train of wheelwork, the friction regulator regulated by opening or contracting the nozzle regulating the supply of air. The power required is so small that the instrument can be driven at a moderate speed by simply blowing into it with the mouth. He also
exhibited Professor Hughes' type printing telegraph, driven by Willmot's air motor. The air motor in this instru ment takes the place of the 132 lb . weight previously used nearly all the train of wheelwork, the motor being applied directly to the printing shaft. The air motor is self-starting from position, and will run continuously without any aid air, the instrument is more steady than when driven by
weight, due to the fact that there is less weight in the whole instrumen
Mr. Claude Vautin exhibited some white coherent lumps of metallic tungsten, a metal which has not been seen
in such a state of aggregation before. He also exhibited specimens of metallic chromium, manganese, and iron, free from carbon, as well as fused alumina, obtained during re duction of the metallic samples. The specimens had bee reduced from their oxides by means of metallic aluminium.
The oxide of the metal to be reduced was intimately mixed with finely divided aluminium, and heated in magnesia-lined crucibles.
Professor Norman Lockyer exhibited some maps and plans which accompanied the report of the Egyptian Government
on the Nile reservoirs. Sir David Salomons exhibited two new contact makers and breakers for induction coils Professor C. V. Boys exhibited photographs of apparatus used by him in finding the Newtonian constant of gravitation.
Lord Ross exhibited some original drawings of the Milky croft and Co. exhibited models of torpedo boats, and of their water-tube boiler. Mr. Charles Bradbury exhibited a new for heating pillows, pads, and such like things by electricity for hospital purposes. Mr. J. W. Swan exhibited gold leaves made by electrical deposition, quite transparent, and trans mitting green light. Mr. W. Kurtz, of New York, exhibited photographic prints, in which the colours of nature were
imitated by synthesis, by the process of Dr. H. W. Vogel, o Berlin.

GERMAN ELECTRICAL ENGINEERS IN CONFERENCE.
Two years have just elapsed since the formation took place in
Germany of the Union of Electrical Engineers of GermanyGermany of the Union of Electrical Engineers of Germany-
Verband der Eletkrotechniker Deutschlands. The Union was engaged in the various branches of the principal industry for the purpose of establishing a more intimate connection between German electrical engineers, and to promote the commercial and
technical interests of the profession. It might, in fact, be likened to a combination of our own Institution of Electrical Engineer merce. The Union held its first annual assembly in Cologne last year, when a very large gathering of the members took place. to the Union were down on the books at that time. Various papers were read and discussed, and different commercial
matters were considered; but the Union had hardly go into proper working order. It has taken another year to
improve the position of the society, the president of which is the
well-known Dr. Slaby. The mutual relations of the members well-known Dr. Slaby. The mutual relations of the members re
quired cementing together, the action of the adherents in regard to matters of general importance to the industry needed consolida-
tion, and an official organ of the Union was considered to be tion, and an official organ of the Union was considered to be
essential in assisting the promotion of the members' interests. essential in assisting the promotion of the members' interests
Several steps in advance have been made in the direction of attaining these objects. In the first place, a contract has been the organ of the ElectrotechnicalS Society of Berlin-has now become
the official journal of the Union. Mr. F. Uppenborn, who has so the official journal of the Union. Mr. F. Uppenborn, who has so
ably edited that journal during the past few years in conjunction
with with Mr. West, now retires, and becomes the electrical engineer to
the city of Munich. In the second place, the Union required an the city of Munich. In the second place, the Union required an the position than Mr. Gisbert Kapp, whose agreement with the Union has now been finally ratified, a remuneration of $£ 1000$ per annum
being guaranteed to him. Whilst sorry to lose Mr. Kapp from our midst, we at the same time tender him our congratulations and good wishes for his future success. In the position he has now taken up Mr. Kapp will also act as co-editor with Mr. West, of the Elektroat on the occasion of the second annual meeting of the Union held in Leipsic, on Friday and Saturday last, Mr. Kapp on his part
expressing his thanks for the confidence shown in bim, and assuring exe members that he would not fail to do everything to promote the
the
interests of the Unin interests of the Union. Although in point of numbers the gather
ing in Leipsic was bardly as good as that in Cologne, yet the
proceedings were of an important character. Two days previously pre third assembly took place-in the same town-of the Free
Union of Representatives of Electricity Works, a society dealing purely with the interests of the central electric light station associated with the Free Union. It was probably in celebration of
the assembly in the same week of the two Unions that the Electrical

Exhibition held in the Crystal Palace was organised, where the many applications of electricity were demonstrated. Returning Germany, it was stated the number of members was about the same as last year, namely, some eight bundred, and it was decided to alter the name of the Union to that of the Verband Deutscher Elektro-echniker-Union of German Electrical Engineers. After the general business of the meeting had been transacted, the considera-
tion was commenced of a formidable list of papers. In treating of the scientific electro-chemistry of the present and the technical practice of the future, Dr. Ostwald expressed theopinion that an improve ment in thermodynamic machines would only be possible by
working at bigher initial temperatures. A solution of the ques. working at higher initial temperatures. A solution of the ques-
tion, he remarked, might lie in the direction of gas engines, but tion, he remarked, might lie in the direction of gas engines, but
the most important problem was to obtain cheap energy. Electrochemistry would be the means of solving the problem, doubtless yy means of some type of unknown galvanic battery. The Nissl
telephone system was then described by Mr. Ross. It consists in telephone system was then described by Mr. Ross. It consists in
the employment of a single wire leading to a telephone exchange he employment of a single wire leading to a telephone exchange
for the use of several subscribers, clockwork mechanism and contacts bringing each individual subscriber into communication with the exchange once every minute. The metbod was also recently
described before the Vienna Electrotechnical Society, but it described before the Vienna Electrotechnical Society, but it doubtful whether the system is of any practical value.,
from the question of lead safety fuses, which subject was dealt
ith by Mr. C. P. Feldmann, Mr. W. Lahmeyer discussed at some length the principle of rotary current plants and rectifiers, or, as
they are termed down at Portsmonth, "motor commutators." The ystem described is identical with that employed for some time past in connection with the Bockenheim electricity works, and the
transmission plant between Bozingen and Biel in Switzerland. A paper by Mr. G. Kapp was then presented, dealing with the
historical development of electric lighting in England, and the projected electric railways in this country, Some investigations curves of various types of alternators, and their influence upon the known. Among other papers read was one by Mr. DolivoDobrowolsky, dealing with direct current machines for a three-wire system. This method consists in the employment of a single ynamo in conjunction with a compensating coil and compensatine in series and using a third wire. As far as can be ascertained, this in series and asing a third wire. As ar as can be ascertained, this
system has not been practically applied, although, in justice to it,
it should be mentioned that it has only recently been devised. it should be mentioned that it has only recently been devised.
Various suggestions were made by members that committees
 industry, and the proceedings closed with the intimation that

NCORPORATED ASSOCIATION OF MUNI. CIPAL AND COUNTY ENGINEERS
The following programme of the annual meeting to be held at
25, Great George-street, London, on Thursday, Friday, and aturday, the 21 st , 22nd, and 23 rd, June, 1894, has been issned:Thursday, 21 st June. 10.30 a.m.: Council meeting. $11.45 \mathrm{a} . \mathrm{m} .:$
General meeting. Annual report. Presentation of premiums. tion be amended by inserting in Article 25 the words "Eighteer-18-Ordinary Members," in lieu of "Twelve Ordinary Members." President's address. Paper and discussion-"Arrangements for
Sterilising Cbolera Dejecta, \&e., adopted at Newcastle-on-Tyne," by W. G. Laws, Newcastle. 1 p.m.: Adjournment. 2 p.m. Papers and discussions - "On some Experiments with Model
Wheels and Road Coatings," by Thomas Codrington, London
"The Development of Sanitation in America" by Lt. Col. Jones, London; "Irish County Surveyorships and the Grand Jury System Adjournment. 6.30 for 7: Annual dinner at the Holborn Restaurant-evening dress preferred-tickets 7s. 6d. each. " Main
Friday, 22 nd June. 10.30 a.m.: Papers and discussions- Main enance of Main Roads in Urban Districts," by J. E. Swindlewith the results of four years working," by J. N. Shoolbred, London; "Electric Street Trams," by R. Hammond, London.
12.40 p.m.: Leave the Institution of Civil Engineers and proceed Westminster Bridge station, and take tickets for Mansion House.
Reception by the Lord Mayor. 1 p.m.: The Lord Mayor, the Reception by the Lord Mayor. 1 p.m.: The Lord Mayor, the
Right. Hon. George R. Tyler, will receive the members at the
Mansion House. 1.40 p.m. Leave the Mansion House by breaks Mansion House. 1.40 p.m.: Leave the Mansion House by breaks,
and proceed to visit the Limmer Asphalte Works, where on arrival the members will be received by the manager. After luncheon, a
short paper will be read by Mr. Blake descriptive of the process of short paper will be read by Mr. Blake descriptive of the process $4 \mathrm{p} . \mathrm{m}$.: Proceed to Nelson's Meat Stores, Blackfriars, where the
pembers will be received by Sir Frederick Bramwell or Mr. Harris, members wil be received ay party
who will accemp
process. Fare for breaks, 2s. 6 d
Saturday, 23 rd June. -10 a.m: Members will embark on board Resiver, Queen or other steamer, kindly provided by the
president, Mr. A. M. Fowler, at the Temple Pier, and proceed up the river to Teddington, passing the new lock and foot-bridge at
Richmond. Arriving at Teddington an inspection will be made of the sewage works. Luncheon, 2s. 6d. each. Trains leave Tedding then $1.711 .24,2.6,2.28,3.7$; arrive Waterloo $1.52,2.8,2.51$,
$3.15,3.50 .2 .30$ p.m.: Leave'Teddington for Molesey. Inspection of the Molesey Sewage Works, An opportunity will be afforded
of visiting Hampton Court Palace and Grounds. Trains leave
Hampton Court $3.35,4.38,5.20,6.40$ arrive Waterloo 4.18, Hampton Cour
5.21, 6.2, 7.23 .

The North-East Coast Institution of Engineers and Ship BUILDERS. - The annual excursion of this Society will be on July
19th. It is intended to visit the Consett Iron Company's works. A special train will leave the Central Station, Newcastle-on-Tyne
Important Mining Enterprise in Cumberland.-On the 8th interested in the iron trade of the district, were present at the
Winder mine of the Cleator Iron Winder mine of the Cleator Iron Ore Company, to witness the inwhich was done by Mrs. Ainsworth, wife of one of the proprietore. Owing to the fact that all the water for which provision has been made has not yet been met with, and that there is little standage, Considerable interest had been aroused in the district owing to the management having decided, contrary to local custom, to abolish stage pumping and to force the water to the surface in one direct
lift. The pit which was sunk tbrough rock, \&c., under the direction of Mr. J. G. Howes, the company's mining. engineer, is 820 ft .
deep, and has struck the ore at depths of 540 ft ., 696 ft ., and 820 ft . The sinking, which has occupied three and a-half years, has been most successful, and everything at starting went without a hitch. The pumping machinery, which was supplied by Messrs. Hathorn,
Davey and Co., of Leeds and London, consists of a compound condensing differential engine on the surface, with cylinders 34 in . and meter by 8 ft . stroke, placed 820 ft . below and forcing to the surface in one llft. After the start, Mr. Ainsworth, returning thanks for
the toast of his health, expressed his opinion that the day of high royalties had passed. There was no reason why large quantities of
iron should not be produced in the district, provided they sank deep, and bad the best modern appliances for turning out a large
quantity of ore, and if the royalty owner met them by reducing bis
coyalty he would not be out of pocket, as the larger quantity which must be raised to make a pooket, as the larger quantity
mink pay would bring

SIX GERMAN STEAM BOILER EXPERIMENTS
WITH THE SAME COAL（RUHR．）
by Bryan Donkis，M．I．c．e．
SUmmary of trials．
（Concluded from page 510．）
（3）Analysis of the hot gases．－To test the more or less perfect combustion of the coal，and the corresponding loss of heat，it was necessary to determine the chemical constituents
of the gases of combustion，the amount of draught and the of the gases of combustion，the amount of draught and the
temperature，as compared with that of the air admitted to the grate．Samples of the gases for analysis were taken at the damper end of the different boilers，and behind the fire bridge．The draught and temperature were measured at the chimney damper．Small tubes were introduced at these places，to draw off the gases and to admit thermometers．
Various apparatus were used to determine the CO_{2} and O ， and the results formed a check upon each other．Samples were taken every fifteen minutes at the boiler end，
while those obtained behind the bridge were drawn While those obtained behind the bridge were drawn ofl continuously
glass bottles of $1 \cdot 3$ gallons capacity．As the water was
boilers had to be forced，to generate sufficient steam for the
engines at the Exhibition．The uniformity of the experiment was also affected somewhat by the different pressures of steam required，but this had little influence on the perform ance of the boilers．
With the first boiler the same coal was used for about two hours before the trial．The usual stoker acted throughout， and by desire of the owner 24.6 lb ．coal were burnt per hour per square foot of grate surface．The same conditions some delay in beginning the thest secoiler No． 3 ，which was consequently shorter than usual，and the products from the grate were not so fully determined．A marked peculiarity of produrth experiment was that the quantity of residual products was much smaller than in the other trials．This especially checked，on the second day the quantity was supposed that when cleaning the＂Cario＂grate，part of the ashes and slack were pushed under the low fire－bridge，and was lighter than usual，and the quantity less，The fifth experiment was not satisfactorily carried out until after
of heat to the chimney．We must also notice that the ther－ mal efficiency of this boiler is lower than that of No．3， although the same quantity of coal per pound per square foot of grate surface was burnt in both cases，and the hot gases in No． 2 were carried off at a lower temperature．This shows
that the thermal efficiency of a boiler should not be judged hat the thermal efficiency of a boiler should not be judged only by the low final temperature of the hot gases．
The thermal efficiency of boiler No． 3 was，as we have said， 8 per cent．higher than that of No．2．Accordingly，
we find that the hot gases were less diluted with air on their way from the fire－bridge to the end of the boiler，and hence their temperature was maintained．The final temperature， 595 deg ．Fah．，was higher，and the excess of air 0.6 per cent． at the fire－bridge，and 1.2 per cent，at the damper．In this case the soot doors，\＆c．，were made tight with asbestos，and the joints of the brickwork carefully cemented．
In boiler No． 4 there was the greatest excess of air， 0.83 per cent．at the fire－bridge，while the minimum at this spot in the other boilers was 0.25 per cent．This is explained front of the biler，pand is of the furnace，which projects in external air，while in the other water－tube boilers the furmaces

No．I．－Table of Results of Experiments on Six Boilers with same Coal．

Type of Boiler．
All trials 9 to 11 hours．）

I．－Cornish Boiler

II．－Water－tube bailer
III．－Water－tube boiler
IV．－Vertical（three）
V．－Water－tube boiler
Heatiog surfaces．Quantity of coal．Ash and elider

allowed to run from the bottles，they were filled with the
gases，and no absorption of CO_{2} was possible，because the
water was previously saturated with the gases of combustion water was previously saturated with the gases of combustion of air were calculated，which penetrated through the brick work walls and grate，between the fire bridge and the end of the boiler，and through the walls of the flue．Thus the excess of air passing to the fire beyond the theoretical quantity neces－ sary for combustion was ascertained．Taking the tempera－ ture of the hot gases at the end of the boiler at 572 deg．Fah．， and their proportion of CO_{2} at 12 per cent．，the loss of heat in the chimney gases will be 26 per cent．of the total heating with the same temperature the loss of heat will only be 8 per cent．，and this appears the more correct estimate．The proportion of oxygen in the hot gases was determined by

absorbing it in a strong alkaline solution of pyrogallic acid of potash in hydrate of potash．
Draught．－The draught was measured every quarter of an hour by a Siegert－Dür apparatus．The temperatures of the hot gases were taken with mercury nitronometers flled at the temperature of the air passing to the grate was determined once an hour with mercurial thermometers．These were also introduced into holes in the brickwork，to obtain the emperatures in different parts of the external brickwork surfaces．
The programme as laid down by the committee was generally carried out，except that the standard quantity of coal burnt，viz．， $12 \cdot 3 \mathrm{lb}$ ，to 14.3 lb ．per hour per square foot of grate surface，was in some cases exceeded．Some of the
exhibitors wished to obtain not only a high evaporating power，but also a high boiler efficiency；while a few of the
several preliminary trials，but the sixth was as usual made on two consecutive days．The subsidiary experiments made usual method of proceeding，to test the value of this system There appeared to be no smoke in the fire space．
The table of results gives the evaporation，efficiency，and losses of heat of the various boilers under trial，and also the efficiency of combustion，according to the percentage of CO_{2} in the hot gases．This efficiency can also be determined from the proportion of CO_{2} and O ，but it was impossib estimate exactly the loss of heat in the unburnt gases．
On the whole，boiler No．1－Cornish－gave the best resul The highest thermal efficiency was attained，or percentage of water evaporated to heat received－about 73 per cent． although this boiler was forced，and the quantity of coal burnt per hour per square foot of heating surface was from 43 per cent．to 85 per cent．higher than in any of the other boilers．It is true that the same efficiency was obtained with boiler No．6，but the rate of evaporation per square foot of heating surface was about 44 per cent．lower．The high
efficiency of boiler No． 1 is explained by the high initial tem－ perature resulting from the perfect combustion，although the boiler was forced，the excess of air behind the fire－bridge being only $\frac{1}{\frac{1}{2}}$ per cent．Another contributing circumstance
were inside the brickwork and under the tubes．More air may also have entered，as the＂Cario＂grate was fired fully regulated as with hand stoking．The het be so care－ not distributed in quite the same way as in the other boilers， because part of the products from the grate did not appear The comparatively high thermal efficiency is partly due to the low coal consumption， 0.3 lb ．per hour per square foot of heating surface，partly to the very small excess of air drawn in between the fire－bridge and the end of the boiler．Thus the distribution of heat was little affected，the final tempera－ dilution of the hot gases was less than in pny orcentage of as the internal surfaces were not large，the boiler well covered and the draught small．
Boiler No．5：Here the combustion was imperfect，and there was a larger percentage of heat unaccounted for than in most of the others．To this the amount of draught $0.46 \mathrm{in} .$, possibly contributed，in the writer＇s opinion．The
thermal efficiency，however，was not affected，because less heat escaped to the chimney．Both the initiol because less temperatures of the gases were low，and the boiler was nat forced，the consumption of coal per square foot of heatin surface being relatively low．The excess of air at the end

No．IL－Table of Results of Experiments，all with same Coal．

Type of boller．	Heat balance．				Quantities of air for combustion，per pound of ceal， in different parts of the boiler flues．					
		Heat lost．								
			$\begin{aligned} & \text { 열 } \\ & \text { 응 } \end{aligned}$		$\begin{aligned} & \text { 部 } \\ & \text { 苞若 } \\ & \text { H. } \end{aligned}$	Behind the fire bridge．		At damper end of the boiler．		边
I．－Cornish boiler ．．	$\begin{aligned} & \text { P. cent. } \\ & 73.42 \end{aligned}$	$\overline{\mathbf{P}_{\substack{\text { cent } \\ 3: 56}}}$	$\begin{array}{\|c} \hline \text { P. cent. } \\ 16 \cdot 07 \end{array}$	$\begin{array}{\|c} \text { P. cent } \\ 6 \cdot 95 \end{array}$	$\overline{\text { Cub. ft. }}$	$\begin{gathered} \text { Cub, ft. } \\ 165^{\prime} 9 \end{gathered}$	$\begin{aligned} & \text { Per cent. } \\ & 0 \cdot 25 \end{aligned}$	$\begin{gathered} \text { Cub, ft. } \\ 210^{*} 6 \end{gathered}$	$\begin{aligned} & \text { Per cent. } \\ & 0.59 \end{aligned}$	Cub. ft.
II．－Water－tube boiler	62.0	2．40	$21 \cdot 96$	$13 \cdot 64$	134	$215 \cdot 3$	$0 \cdot 61$	$360 \cdot 9$	$1 \cdot 69$	$145 \cdot 6$
III．－Water－tube boiler	$69 \cdot 91$	$2 \cdot 03$	22．62	5.44	132．1	$218 \cdot 8$	$0 \cdot 65$	2997\％	1.27	80.9
IV．－Vertical triple water－tube boiler ．．．．	70．95	0． 60	20．82	$7 \cdot 63$	$134 \cdot 8$	237	083	$203 \cdot 6$	0.96	26.6
v．－Water tube boiler	69．97	1．70	17.71	10．62	135－6	229	0． 69	$263 \cdot 2$	0－94	34－2
VI．－Water－tube boiler	73.34	$3 \cdot 11$	17\％73	$5 \cdot 82$	$134 \cdot 8$	$218 \cdot 8$	$0 \cdot 62$	$237 \cdot 8$	0.77	19.0
		00 per								

was that no air could enter the fire tube，as compared with water－tube boilers，and therefore the temperature of the hot gases in this flue was not affected．At the damper end of the
boiler the excess of air was increased from t per cent，to more boiler the excess of air was increased from $\frac{1}{c}$ per cent．to more
than $\frac{1}{2}$ per cent．，owing to infiltrations of air through the than $\frac{1}{2}$ per cent．，owing to infiltrations of air through the
brickwork．Nevertheless，the heat was well distributed，as shown by the final temperature， 600 deg ．Fah．of the gases． shown by the fnal temperature， 600 deg．Fah．of the gases．
The loss of heat to the chimney and all other losses were small，from 70 to 80 per cent．of the total heat being utilised to evaporate the water．The excellent combustion obtained was partly due to good stoking，but chiefly to the construction of the furnace，surrounded by air－tight walls． This is the principal advantage of internally－fired boilers．
Boiler No． 2 gave the lowest efficiency， 62 per cent．，but it Boiler No． 2 gave the lowest efficiency， 62 per cent．，but it
ranks high among the water－tube boilers tested，because only 0.4 lb ．coal per square foot of heating surface was burnt per hour．The cause of the low efficiency is shown by the fire－bridge to the damper they were diluted by the admission of considerable quantities of air．The excess of air penetrating to the fire behind the bridge was 0.6 per cent．，or more than double that in boiler No．1．The writer adds his opinion that the stoking in both boilers was equally good，but with external fires it is impossible to preventair entering，not only through the bars of the grate and fire－doors，but also through the walls．Hence the excess of air，which increased three－ fold，to 1.7 per cent．，at the damper end．This was accounted brickwork．The same cause contributed to the increased loss
was only 0.94 per cent．，being 34 cubic feet per pound of coal， as against 80 cubic feet in boiler No．3．The brickwork was less porous than in other cases，and there were fewer cleaning The thermal efficiency in boiler No． 6 was from 2 to 3 per cent．higher than in the other water－tube boilers．The following reasons are given for this：－The boiler was not forced，the coal consumption per pound per square foot of
grate surface being very low；the excess of air，both behind grate surface being very low；the excess of air，both behind
the fire－bridge and at the damper end，was small ；the heat balance，as shown in the table，was as good as in the Cornish boiler，and there was little loss of heat to the chimney．The small excess of air， 0.77 per cent．，near the damper，was due to the non－porous nature of the brickwork and the low draught．The cleaning doors were also well jointed．The draught，consumption of coal，and quantity of air drawn in are less than in any other．Thus we see that with boilers set in brickwork it is important to work with a very low
draught，that is，not to keep too the grate．Combustion was rather imperfect，as of coal on the small percentage of CO_{2} and O ；possibly，however，it was not completed at the place where the samples were taken A difficulty was found in determining the exact spot where the pipe for drawing off the gases should be introduced． Nevertheless the results obtained are practically sufficient to determine the influence of the air drawn in upon the thermal In the of the boiler．
In the subsidiary experiment with boiler No． 1 and Rinne＇s
any of the ordinary trials. However, it only exceeds that of any of the ordinary trials. However, it only exceeds that of quantity of coal burnt was 35 per cent. less, and of steam quantity of coal burnt was 35 per cent. less, and of steam this was probably due to the effect of the Rinne brickwork causing more perfect combustion. The percentage of CO_{2} and O in the fire tube was also higher, the excess of air at the end was smaller, probably because the vacuum in the flues and the draught were less, the boiler being less forced. The heat balance and the thermal efficiency were both good; the final temperature of the hot gases was 48 deg. Fah. lower. brickwork consists less in the better utilisation the Rinne than in the prevention of smoke and soot and of plete combustion. plete combustion.

Summary.
Although all these experiments do not furnish any general standard of efficiency, they afford suggestions for the construction and working of steam boilers. Comparing the thermal efficiency of the different boilers here tested with their excess of air at the damper end, it will be seen that when the one is a maximum the other is a minimum. In other words, the smaller the excess of air the higher the efficiency, and vice versa. This fact has long been recognised by experts, but the influence exerted by the air leaking in through the walls, \&c., upon the thermal efficiency, or rate of interesting experiments. Bad stoking, bad coals, or defective grates are usually made answerable for the greater or less excess of air penetrating the boiler, as shown by the percentage of CO_{2} in the hot gases. The injurious effects of cracks or porosity in the brickwork has not, perhaps, been sufficiently recognised, but trials 2 and 3 show that it must not be neglected. In boiler No. 2 there was double as much excess of air at the damper end as penetrated behind the fire bridge. If, therefore, much infiltration takes place, the fault ments, but to the construction. The three last experiments prove that the bad effect of excess, of air in the combustion pace is compensated if little air is drawn into the flues. Hence the following conclusions may be drawn
Excess of air.-To obtain a high efficiency it is not only necessary to carry out combustion with the smallest excess of air, but also to prevent its entrance into the flues. In other words, not only must the temperature of combustion be as high as possible, but it must not be diminished by air thus iternal firing and tubes are in the same category, as regards nfiltration of air, as those having air-tight combustion space and flues. On the other hand, their loss by radiation is reater, and they do not, as a rule, allow of stoking independent of the skill and care of the attendant, which is especially desirable with poor coal and large grate surfaces. The same remarks apply to boilers internally fired, with partly internal and partly external flues, where the internal flues form the greater part of the heating surface. The loss by 11 y -firedboilers with flues set in the brickork aremost exposed to the injurious effect of infiltration of air. There is, however, ess loss by radiation, and it is possible to regulate combustion over large surfaces of grate. If it is desired to increase the efficiency of the two last classes of boilers, the combustion pace and the flues must be so made that a minimum of air can penetrate after combustion has begun, and this opens a wide field to engineers. The joints of the soot doors, \&c., less injury is done to the heating surfaces by the deposit of soot and ash, than by allowing air to penetrate by frequently opening the cleaning doors. If it is possible to render the lues and combustion spaces of externally-fired watertube boilers air-tight, not only would a higher efficiency be attained, but a better evaporation of steam, and the boilers could perhaps be more forced than hitherto, without impairing their thermal results. These experiments show further square foot of heating surface per hour steam generated per and rise and fall together, without affecting the thermal efficiency. The quantity of steam produced in a boiler is a function of the quantity and heating value of the fuel used, while its efficiency is principally influenced by the excess of air in the gases. From the coal consumption we get the quantity, and from its thermal efficiency the cost of the steam generated. That the best way of economising coal is to have a good stoker is an erroneous idea. These experinents the forts of the contrary, especially Nos. 2 and 3 , siderable admissions of air.
According to experiment No. 1, an excess of 1 per cent, of air is sufficient to insure good combustion. More air, although it prevents loss by unburnt gases and soot, causes a greater loss of heat to the chimney, while at the same time, unless the layer of coal is kept thin, the stronger araught will produce a further excess of air by the porosity of the brickwor. little without acting injuriously on the aficioncy if smokeless combustion be desired. Priming. - The moisture in the
esults, is so small that the mean here given may be safely applied to all other boilers. We cannot deduce from them how the different boilers would work if they were still more forced; but we may conclude that it would be possible in all cases to draw off and separate the priming water from the team.
Gases.-The great importance of analyaing the hot gases, firmed afresh by these tests. Light has been thrown upon factor which, although it greatly influences the efficiency of boilers set in brickwork, has not been sufficiently recognised More systematic and exact observations than it was possible to make on this occasion ought to be carried out, to determine whether the leakage of air through the brickwork can really be so considerable as these experiments appear to prove On page 528 is given a graphic representation of these boile added, made with Rinne's patent on boiler No. 1 Comparing the direction of the lines A B and C D, it will be noticed that with the increase in the quantities of air drawn nto the flues in the various tests, there is a corresponding regular decrease in the boiler efficiencies.
e
Chemical Analysis of one Sample of Coal used during the Trials. Carbon..
Hydrogen
Oxyen a Oxygen
Sulphur
Ash, ck.
Water

The heating value of the coal reckoned from ordinary after it was dried in the air, was $79 \cdot 30$ per cent., or equal to :-

Grate Products.

7347	per cent.
20.23	
5.88	
5.	
047	$"$
10000	

-at 230 deg . Fal

041 to 0.63 per cent.
70.57 to 52.30
29.02 to $47 \cdot 07$

Moisture-or loss of dryness-at 230 d
Incombustible substances-pure ash
Total $\overline{10000} \overline{10000}$
The writer of this abstract was present during some of the trials, and can confirm the care that was taken to insur accurate result

LETTERS TO THE EDITOR

the indicator card of the oll engine $\mathrm{Srr},-\mathrm{At}$ the present time the progress made in oil engines establishes them as of paramount importance. It occurred to me tbat it would be of interest for the purposes of comparison if the
indicator card of the oil engine was subjected to the same treat ment as that of other prime-movers. This is the object of this letter. The indicator diagrams referred to were taken from 12-horse power oil engine, the latest form of the "Priestman type. In this particular form of oil engine, the oil is fed in the form of a spray cloud, mixed with a definite proportion of air, into
a vaporiser or heater, this being kept hot by the products of a vaporiser or heater, this being kept hot by the products of
the previous exhaust. This spray cloud of minutely fine oil particles floating in air, and beated to 260 deg. Fah. (approx.), is a
bighly explosive mixture is are bighly explosive mixture, is drawn into the working cylinder, com-
pressed, and exploded by electric ignition. The cycle used being pressed, and exploded by electric ignition. The cycle used being
the ordinary "Otto," i.e., one explosion or impulse for every two revolutions of the crank shaft. Inasmuch as the diagram take from explosive engines is of a very complicated form, great care should be exercised in choosing a suitable indicator and gear A stiff spring and small inertia of moving parts is to be aimed a in the choce of indicators, otherwise three or four differen diagrams may be taken, and then it is difficult to compute the as shown in Fig. 1. The expansion part of the curve nearly alway

takes a wavy form. To arrive at a correct mean of these waves, I
join the highest and lowest points of the curve, and bisect the vertical ordinates as shown.
The indicated horse-power computed from the original diagram Expenditure of heat.-Since 772 foot-pounds is 1 thermal uni (B.T.U.), therefore 1-H.P. $=\frac{33,000}{772}=42 \cdot 746$ B.T.U.

Therefore 12 -H.P. $=512952$ units of heat developed per minute
Taking 0.80 lb . of oil as used per I.H.P. per hour, and the calorific value of Daylight oil being $19,700 \mathrm{Th}$. . per per pound, and
$\begin{aligned} & \text { the thermal efficiency } \\ & \text { (reckoned on the I.H.P.) }\end{aligned} \frac{42.746 \times 60}{19,700 \times 0.80}=\cdot 162$
the highest thermal efficiency of any gas evgine and produce being not more than 14 per cent.
The diagram of piston velocity. time as the diagram of turning effort. The obtained at the same velocity is drawn using Cartesian co-ordinates, whilst the polar
difference of pressure on the two sides of the piston during one-half of the reciprocating masses which is found from the formula
$\frac{\mathrm{W}}{\mathrm{g}} \mathrm{V}_{\mathrm{R}}^{2} \cdot \frac{1}{\mathrm{~A}}$ per square inch of piston area.
In the present cas
W is taken as 224 lb ., being the weight of piston, half of piston-rod,
V is 156.3 revolutions per minute, or 9.55 ft . per second.
g is taken as $32 \cdot 2$.
R is the radius of the
R is the radius of the crank-7in.
A is the area of piston of 10 in. diameter.
From this a virtual pressure of 12 lb .-calculated-per equare

inch of piston area is, during the early balf of the stroke, used only in accelerating the reciprocating masses, and during the later hal
of the stroke is the pressure required to retard them. This forms

irtually an addition to the gas pressure. Thus the dotted crank pin, Fig. 4.

From the diagram of pressure on the crank pin, or pressure transmitted along the connecting-rod, to the diagram of crank-pin effort,
Fig. 5, which represents the tangential force on the crank pin

Diagram of
Crank Pin Effort
Fig.G
Circumferential a Central Radial
Diagram of Crank Pin Effort

curve is exactly the same only using polar co-ordinates. This will be readily understood from Fig. 2 .
$\mathrm{OD}=$ crank, D R connecting-rod.
O T T is a triangle of velocities, and for every position of the crank These distances set off as $0 \mathrm{~T}^{1}$ on the respective crank positionsradii vectores-form the polar curve-set off on the respective positions of the crosshead as at RS form the linear curve of piston velocity. In order to deal with the crank efforts we must first find ing-doien bolts of cylinder, that is the resultant pressures tending to force off the cylinder cover. In the case of the oil engine this will simply mean the indicator diagram taken to the atmospheric
ine. The atmospheric line is then considered as our zero line of line. The atmospheric line is then considered as our zero line of
pressures. The resultant diagram-Fig. 3-therefore shows the
during half a revolution, is but a step. The pressure on the plston is transmitted to crank pin by the connecting-rod. This pressur at the crank pin can be resolved into two; one acting as a direct force through the crank, and only causing pressure on the bearings, the other causing a turning effort.
If the pressure on the piston was constant during the stroke, and connecting-rod was infinitely long,
then $P_{T}=P \sin \alpha$.
A sine curve would therefore give the graphic representation. Taking now into account the steam pressure varying during the
stroke and the obliquity of the connecting-rod. The diagram of pressure on crank pin A BCD is reproduced as shown in Fig. 6
dicular at S to meet in I ; then I is the point about which the
dicular at S to meet in 1 ; then 1 is the point about w
connectiog.rod S R is rotationg at the instant considered.
$\begin{aligned} \text { ot } V_{e} & =\text { velocity of crank pin. } \\ V_{A} & =\text { velocity of crosshead, } \\ V_{A} & =\frac{8 I}{R} \\ V_{\mathrm{e}} & \end{aligned}$
$p=$ ordinate of diagram A B C D
Let $t=$ tangential effort at R .
Let $t=$ tangential effort at R .
Work done by $p=$ work done by "
Make $\mathrm{R} n \doteq \dot{=}$, draw $n k$ parallel RS,

$$
\frac{1}{p}=\frac{\mathrm{S} 1}{\mathrm{R} 1}=\frac{\mathrm{S} t}{\mathrm{R} n}
$$

Tangential effort " t " vanishes at dead point.
In the circumferential diagram of crank pin effort t is drawn round the circumference and radially outwards from crank pin
circle, substantially as shown. Central radial diagram is measured from the centre 0 of the crank pin circle and radially corresponding to its definite position with regard to the crank.
The theoretical diagram of crank pin effort is one in which the effort is a maximum and practically constant at the middle of the stroke, and gradually decreases to zero at each end of the stroke.
The correction due to the centrifugal force, which is $\frac{g}{g} \hat{\mathbf{R}} \cdot \hat{A}$ at either end of the stroke, does not follow a straight line law,
N-1.42
he next point is the determination of the laws of the expansion nd compression curves and then deducing temperature curces, Many diagrams have been treated, but one example here will sutfice.
engines for the expansion and compression portions of the stroke, a law such as $p v^{n}=$ constant holds
fluid. Hence, $\log . p+n \log . v=$ constant.
From this equation, if values of $\log v$ be plotted as abscissee and $\log p$ as ordinates, the loci of the points thus obtained will form a traight line, Fig. 7, from which the index n is easily obtained :Absolute $\begin{gathered}\text { Total volume, } \\ \text { pressure, including clearance, } \\ \text { P. los. } \\ \text { V cubic feet. }\end{gathered}$
Log. P. $146 \cdot 73$.. .. 0.4360 $2 \cdot 16652$.. .. $\overline{1} \cdot 63949$.. .. ${ }_{1 \cdot 566}$

 $\begin{array}{cccccccccccc}105 \cdot 33 & \text {.. } & . & 0.6340 & . . & . . & 2 \cdot 02255 & . . & . . & \overline{1} \cdot 72754 & . . & . . \\ 88 \cdot 73 & \text {.. } & \text {.. } & 0 \cdot 6075 & \text {.. } & \text {.. } & 1 \cdot 94807 & \text {.. } & \text {.. } & \overline{1} \cdot 78355 & \text {.. } & \text {.. } \\ 1.329\end{array}$ $77 \cdot 43$.. .. $0 \cdot 6810$.. .. $1 \cdot 88891$.. .. $\overline{1} \cdot \$ 3315$.. .. $1 \cdot 449$ 66^{-73}.. .. $0 \cdot 7546$.. .. 1.82432 1.87772 $1 \cdot 449$ $59 \cdot 73$.. .. 0.8281 $1 \cdot 77619$.. .. $\overline{1} \cdot 91808$.. .. $1 \cdot 623$ $46 \cdot 73$.. .. 0.9751 $1 \cdot 66960$.. .. 1 1.98905 | 1.370 |
| :--- |
| 1.231 | $42 \cdot 73$.. .. $1 \cdot 0486$.. .. $1 \cdot 63073$.. .. 0.02061 ${ }_{1 \cdot 448}$ $38 \cdot 73$.. ... $1 \cdot 1222 \quad . \quad$.. $1.58805 \quad . \quad .$.

Mean value of $n=1.42$. Hence $p v^{1-42}=$ constant. The clearMean value of $n=1 \cdot 42$. Hence $p v^{1-42}=$ constant. The clear
ance volume is $0 \cdot 4236$ cubic feet. and the mean value of n determined.
$1.33=1.33$ for compression portion of diagram.
The following indicator diagram - Fig. 8 diagram. is taken from Professor Unwin's Trials of Petroleum Engines," because exhaust

exhaust temperatures in an oil engine of 12 -horse power, because
the temperatures are too high for the ordinary mercurial thermothe temperatures are too high for the ordinary mercurial thermometer.
At point
I there are mixed
2101 cubic feet of exhaust gas at of 268 d The resultant temperature of the mixture is first determined.
Then since the same weight of gas is dealt with from Then since the same weight of gas is dealt with from I to
exbaust X , $\frac{\mathrm{P} \mathrm{V}}{\mathrm{T}}$ is constant.
exbaust gas, namely, CO $\mathrm{H}_{2} \mathrm{O}$, air at 531 deg. Fab. present is $\frac{-2101}{\cdot 605}=\cdot 347$ of exhaust gases,
 268 deg. Fah.
Air used per cycle $=.0476 \mathrm{lb}$, actually measured.
Oil used per cycle $=.001081 \mathrm{~b}$, actually measured.
Thermal capacity of supply $=$ v.s.t.
$\begin{aligned} \text { Thermal capacity of air } & =0476 \times 2375 \times 268 \\ + \text { Thermal capacity of oil } & +.00108 \times 3112 \times 268\end{aligned}$
$=3.0297+.09007$
$=3 \cdot 12=$ thermal capacity of

Exhaust gases are present in the following proportions:-
$\mathrm{CO}_{2}=\frac{428}{617 \cdot 2} \times 02586 \mathrm{lb}$
$\mathrm{H}_{2} \mathrm{O}=\frac{17 \cdot 1}{617 \cdot 2} \times \cdot 02586 \mathrm{lb}$
Air $=\frac{557 \cdot 3}{617 \cdot 2} \times \cdot 02586 \mathrm{lb}$.
and these are at a temperature of 531 deg. Fab
Thermal capacity of exhaust-
$=\frac{531 \times \cdot 02586}{617 \cdot 2}(42 \cdot 8 \times \cdot 216+17 \cdot 1 \times 14 \cdot 8+3573 \times \cdot 2375)$ $=3.248 \mathrm{Th} . \mathrm{U}$.
Total thermal capacity, $\begin{aligned} & \text { exbaust, and supply- } \\ & =6.368 \mathrm{Th} . \mathrm{U} .\end{aligned}$
Total heat before mixing $=$ resultant temp.
Result temp. $t=\frac{6.368}{.0745 \times-2375}$
$=360 \mathrm{deg}$. Fab.
Absolute temperature $\mathrm{T}=360+460=820 \mathrm{deg}$. Fab.
At point I. in diagram
$\mathrm{am}=$
$\mathrm{P}=10.60 \mathrm{Ib}$. absolute,
$\mathrm{V}=0.6052$ cubic feet.

$$
\log \cdot \mathrm{C}=\overline{3} \cdot 89340 .
$$

Therefore, knowing this constant, take any other pressure and corresponding value of temperature T can be determined. $\begin{gathered}\text { Volume of cylinder, in- Absolute pres. } \\ \text { cluding clearance. } \\ \text { sure. }\end{gathered}$

Cubic foet.	$\begin{aligned} & \text { sure. } \\ & \text { P1b. } \end{aligned}$						
0.6052 10.60	.	360	..	-	.	-
$0 \cdot 40$.. 18.60	..	490	..			
$0^{0} 300$ - ${ }^{\text {a }}$ -	.. 26.0	..	${ }^{337}$..			
	-. ${ }^{372}$ 37 7	..	551 3272	.	436 3157	..	6314
0.242 119-7	..	3243	
$0^{0.275}$.. ${ }^{100} 7$..	3080	..	2965	..	1482
$0 \cdot 30$.. 90-7	..	8020	..	2905	,	
$\begin{array}{ll}0.35 \\ 0.40 \\ 0.4 & \text {.. }\end{array}$.. $72 \cdot 7$..	2788	..	2673	..	
$\begin{array}{ll}0.40 \\ 0.45 \\ 0 . & \text {.. }\end{array}$	-. 62.7	..	${ }_{2627}^{2743}$	${ }_{937}^{935}$
${ }_{0} 0.50$.....	${ }^{.}{ }^{46} 7$..	${ }_{2523}$				${ }_{993}$
0.55	.. $39 \cdot 7$.	2330				1107
0.58 exhaust	36.7		2260				

It is to be observed that higher temperatures are obtainable in
the oil engine than either in the gas or steam engine for correthe oil engine than either in the gas or steam engine for corre sponding pressures; hence a greater thermodynamic efficiency wil
result. This result has also been proved by Professor Aime Witz of Lille, who says that in the petroleum engine where no loss is involved in working a producer, the thermodynamic efficiency may be
expected to be more than doble that of a steam engine and boiler expected to be more than double that of a steam engine and boiler.
He finds the thermodynamic efficiency of a steam engine and boiler He finds the thermodynamic efficiency of a steam engin
$7 \cdot 0$ per cent.; gas engine and producer, 12.7 per cent.

The Cooling Curve shown in Fig. 9 is obtained by assuming that tional to the excess of temperature,", i.e., $(t-115)$ deg. Fab., since 115 deg . is about the temperature of the cylinder or water jacket, If H is the quantity of heat lost by the fluid to the cylinder's walls in time $T \frac{H}{T} \propto t-115$ deg., and is the rate of loss of heat per second.
Since the velocity of the piston is proportional approximately of course, is equal to $\frac{l}{T}$

$$
\text { Hence } \underset{T}{\mathrm{H}} \div \underset{\mathrm{T}}{l}=\frac{\mathrm{H}}{l}{ }^{\mathrm{H}} .
$$

$\frac{\mathrm{H}}{\mathrm{H}}$ is the rate of loss of heat per foot travel of piston; (or simply) Temperature curve ordinate divided by the semicircular curve ordinate give you the ordinates of cooling curve.
Determination of the heat reception curre.-The value of " j " bas
first to be determined, and is found by the following Sum the weights of each constituent gas by its specific heat at constant pressure (K_{p}), and divide this by the sum of the weights Symbolically, " j " $=\frac{\Sigma}{v} 10 \mathrm{~K}_{p}$.
Before combustion. - The charge present in the cylinder of the
il engine at the end of the forward stroke is : charge drawn in + oil engine at the end of the forward stroke is : charge drawn in
the charge left by the preceding exhaust. the charge left by the preceding exhaust.
Charge drawn in-
Charge drawn in- Weight in 1 be
$\begin{array}{llll}\text { Air (mensured) } & . . & . . & 0.0476 \\ \text { Oil } \\ 0.0010\end{array}$
Charge left
Air .
Steam
$\frac{557 \cdot 3}{617 \cdot 2} \times \cdot 02586$
$\frac{17 \cdot 1}{017 \cdot 2} \times \cdot 02586$
Carbon dioxide $\frac{428}{617 \cdot 2} \times \cdot 02586$
$\begin{array}{ccc}\mathbf{K}_{p} & & { }^{21} \mathbf{K}_{p} \\ 0.23 / 5 & . . & -0011305 \\ 0.4106 & . . & -00014345\end{array}$
$0.2375 \quad$.. 0.0955454
0.4750 .. 0.00034032
0.1712
$\mathrm{\Sigma} v \mathrm{~K} \rho=\overline{0.01802207}$
Similarly,
Charge drawn in-
Air (measured)
Weight in lbs. $0 \cdot 0.076$
$0 \cdot 000108$

F

Charge
Air
$\frac{557^{-3}}{617 \cdot 2} \times 0.02586$
$\frac{17 \cdot 1}{617 \cdot 2} \times 0.02586$.. $0.899 \quad$.. 0.00028586
Carbon dioxide
$\frac{42 \cdot 8}{617 \cdot 2} \times 0.02586$

$$
\begin{aligned}
& \therefore{ }_{\mathrm{T}}^{\mathrm{PV}}=\frac{10.60 \times 0.6052}{820}=\text { constant } \mathrm{C} \\
& =0007824 \text {, }
\end{aligned}
$$

Hence adi
External work $\quad p v^{1700}=$ constant.
$\mathrm{K}_{p}-\mathrm{K}$.

Internal work done is
 $K_{\varepsilon}\left(\mathbf{T}_{2}-\mathbf{T}_{3}\right)$.

Thus, $\frac{\text { internal work }}{\text { external work }}=\frac{1-n}{j-1}$ which is a constant ratio
Total heat expended is the sum of the internal and external work. The ordinate being the "pressure equicalent,"

$$
p_{h}=p \frac{1.388-1 \cdot 42}{1.388-1}=\frac{-0.03}{0388}=-0.077 p
$$

Values of

From this diagram-Fig. $10-$ as $n>1$ the temperature falls,

Volume
and part of the external work is done at the expense of the intrinsic energy of the working fluid.

irresponsible detectives.

Sir, -10 your issue of June 8th, when writing on the United States armour-plate scandal, you justly condemn the American method of inspection, and conclude the second paragraph of your
leader by asking, "Can we conceive the English Government aader by asking, "Can we conceive the English Government
Alowingsuch relations with our manufacturers to be contemplated "" In reply to this question I beg to quote the following specimen
from the report of one of H.M. Inspectors of Mines for 1893, recently issued:-"During the year I have received a number of orkmen's complaints, both anonymous and signed. In all cases communications, whether anonymous or signed, receive equal attention, and are always treated as confidential information, but 1 again repeat that such letters should specify the nature and the mine; for it is clear that few workmen can whave sufficient knowledge of the ramifications of the whole mine, and understand its work so as to enable them to make a general complaint of mismanagement and neglect. ${ }^{\circ}$. The workmen of this district have no ground of complaint with respect to the communications to
the Inspector of Mines, for all are treated alike and investigated." He also refers to the power of inspection by workmen given by General Rule No. 28, and says that "with few exceptions no such inspections are made," and he might have added that when they are made it is only for purposes of espionago.
The scandalous encouragement thus given
Fould have resulted in a savage roar at Westminster from the "Labour" members if, for example, detectives had been sent to work amongst colliers to get evidence of gambling, obscene and threatening language, \&c. \&c.
It has been well known to
It has been well known to colliery managers for some time that considerable part of the Mines Inspectors' work is due to anonythere has not been in one single instance any cround for these reports. One of this class was sent from one colliery a fortnight ago to "pay off" an under-manager for doing his duty.
ollowing:-(1) Total number of workmen's complaints made of the of Mines, (a) anonymous, and (b) signed; (2) how many cases were onsidered worthy of investigation; (3) how many complaints wer ustified.
June iltb.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS
(From our onon Correspondent.)
Business in the iron trade, with especial reference to the pig iron branch, continues to show slight signs of improvement. Stook of crude metal are very low, and this week buyers entering the market to satisfy their requirements have had to pay dearer rates
than was the case a fortnight back. Staffordshire cinder pigs are firm at $37 \mathrm{~s}, 6 \mathrm{~d}$. to 38 s. ; part mines, 42 s . to 42 s . 6 d. . and best, 55 s . to 57 s . 6d. Agents of Midland material quoted 39 s . 6d. to 41s. for Northamptons ; 42 s . to 43 s ., Derbyshires ; and 43 s . to 44 s . Lincolns. For Staffordshire cold-blast pig iron the price is un changed,
With re
With reference to finished iron, the principal orders on the market relate to home consumption, but makers are hopeful that
the second half of the year will show greater activity as regards export custom. Galvanised sheets, donbles, are this week $£ 915$ s. to $£ 917 \mathrm{~s} .6 \mathrm{~d}$., and $£ 10$ for delivery, f.o.b. Liverpool or equal ; and lack doubles, $£ 6$ 10s, nominal. 1 ron hoops are rather brisk a
constructive angles, $£ 615 \mathrm{~s}$, thin strip, $£ 610$ s. angles, $£ 515 \mathrm{~s}$.; small rounds, $£ 6$ to $£ 65 \mathrm{~s}$.; nail rods, $£ 615 \mathrm{~s}$; and gas tube strip, $£ 515 \mathrm{~s}$. For bars a more buoyant demand has been expressed, both for second and common qualities. The latter are $£ 510$ s. per ton ; merchant sections, $£ 6$ to $£ 610 \mathrm{~s}$.; and marked, $£ 7$ 10s. The steel works continue busy, and for new $£ 57 \mathrm{~s}$ s. 6 d. ., girders; $£ 47 \mathrm{~s}$. 6d., billets; and $£ 45$ s., blooms. The two blast furnaces erected by Mr. G. Addenbrooke, the
former proprietor of the Bedworth Coal and Iron Company former proprietor of the Bedworth Coal and Iron Company
Warwickshire, are being pulled down, the engines, boilers, and Warwickshire, are being pulled down, the engines, boilers, and
other ironwork having been purchased by a Sheffield merchant. other ironwork having been purchased by a Sheftield merchant.
They were erected in 1872-3 at an enormous cost, and one of them has never been used for the purpose for which it was built.
The recent placing by a Birmingham firm of pipe makers of an
order for steel for 2000 tons of large-sized water Messrs. Bolekow, Vaughan, and Co., has been the subject of a
of Staffordshire and the North of England as steel makers. It
seems that in the case of the chief Statfordshire firm who quoted, their rolls were not wide enough for such large plates, and in quoting they had to consider the cost of new
rolls and accessories. This, therefore, increased the Stafford. shire price eossiderably, and gave the Middlesbrough firm patent advantage. Wages and common charges at the
Staffordshire steel mill would also be much heavier than in the North-perhaps double - owing to the much smaviler make. As mall a difiference in price as wd. per tone in the tender will some. competitive period like the present. It is urged, therefore, tha the bistory of this order is no proof of Staffordshiri's's inability to
make steel at a profit. Indeed, it is said by those wha ought to nake steel at a profit. Indeed, it is said by those who ought to
know, that at the present time the leading local steel plagts are paying well.
The necessity which, in consequence of increasing competition
and low price, many manufacturing concerns are now finding and low prices, many manufacturing concerns are nowp finding
themselves under of taking up other branc hes of metalliferous prodaction than those for which the works were originally laid
ut, was prominently referred to by the chairman of S . Heat and Sons, Birmingham, on Tuesday. He congratulated the
sbareholders on a ${ }_{9}$, per cent. dividend on the ordinary hares, but said a tbe goor cesents of the year, which would be a surprise to many people, were not entirely due to the
manufactures poon wbich the company mainy depended manufactures upon which the company mainly depended.
The bedstead and other kindred trades, on which they
mainly relied, had been so depressed that they had had to torn their attention to articles outside. They had been able to adapt
their machinery to the circumstances with most satisfactory results. Everything was now paid for, and the company were ready for any
emergency that might arise. If, in the face of a bad year, the company had produced such satisfactory results, he need not say how much better they would do with improved trade.
The rating of machinery question still occupies much attention
here. Some of the local opponents to the Rating of Machinery Bill are oointing out that there is no sufficient necessity for legisla thon, and urging that there is no uncertainty in the present law
The supporters of the Bill, however, show that this is just oppositt to the facts, and point out that one of the leading opponentro of the
Bill, the late Attorney-Goneral - to say nothing of the report of the Select Committee of the House of Commons-states that there by lecisiation. How great this confusion is, san be seen by refer
ence to the reports of the Select Committee of 1887 . The Court of Appeal is, it is urged, of opinion that tenants' machinery is not
rateable, and it is even ssid that some of the most active upholders rateable, and it is even sxid that some of the most active upholders
of the Bill up and down the conntry are to bof ound amoong assess.
ment committees themselves, these bodies desiring some definite legislation to guide them.
appeam of of the hear that a fair amount of success is attending the Assessment Committee against the heary increased assessment are being cooduduted in priazte, but 1 I learn that some proceedings large
deductions have been allowed in certain cases-in one instarce, that of a leading iron works in the district, the reduction being as
much as $£ 11000$ on a re-assessment of $\& 400$. After they have much a sluou on a re-assessment of $£ 4000$. After they have
obtained all they can from the Assessment Committee, it is open
to manufacturers to appeal to doubt that in some instances this course will be taken, the manu-
facturers being very dissatisfied at the manner in which their facturers being very dissatis
machinery has been treated.
incrustation has just been made by the engioeers to the Sout Staffordshire Mines Drainage Commissioners. With an idea to counteract the effects of acid water on the boiler plates at one
of the leading engine houses, a portion of the inside of one of the boilers was painted with soapstone paint, which had previously
proved successful in preserving ironwork under water in the pits. proved successful in preserving ironwork under water in the pits.
The part upon which this experiment is bing tried had previously
been attacked by acid, and upon examination after a few weeks been attacked by acid, and upon examination after a few weeks'
trial, it has been found (1) that the paint remains and resists the acid, and (2) that the small quantity of oil in the paind thas not led
to any blistering of the plates. The Commissioners are to congratulated on the solution of this very troublesome dificulty.

NOTES FROM LANCASHIRE Manchester:-The position generally throughout all branches of
industryy connected with the engineering, iron, and coal trades of
this district continues about as unsatisfactory as it could well be. A prevailing want of confidence in the future checks all operations
that can in any way be held back; in the iron market there is that can in any way be held back; in the iron market there is
from week to week only a dull, dragging sort of business, with staadily weakening prices, whistst in the coal trade there is again
an unsettled, uneasy outlook with regard to the wage question. an unsettled, uneasy outlook with regard to the wages question.
The chairman and secretary of the Coalowners' accordance with the rules, have proposed a joint meeting of the
Conciliation Board to consider a roduction in wages, but the minerr' officials have raised a quibbling objection to to the form in
which the request for this meeting has boen made, and although it has been formally convened to bo held in London next Tuesday the miners' representatives decline to attend, this policy being purssed with the object of delaying by any means, ane
possible, any consideration of the present rate of wages
Business in the iron market continues oxtremely slow, and
although there was a fair average attendance on the Manchester Exchange on Tuesday, pigg and finished i iron makers generally
report an absence of business of any real weight giving out. report an absence of business of any real weight giving out.
Lanceshire makers still quote nominally on the basis of about 40 s.
for forge, to 42 , for foudry, less for forge, to 42s for foundry, less $2 \downarrow$ at the works, but except
where they sell oceasional small parcels of foundry to special
customers, customers, they are at these figures altogether out of the market,
and in forge quaitities are just now seling practically littre or
nothing Dist low figures, without, however, bringing forward buyers for any
thing like quantities. Lincolnshire does not average more than 39s, for forge, to to 40s. for foundry, net cash, delivered, equal to Manchester, and for prompt belvery, und
figures has here and there been accepted. For P.G. foundry,
Lincolnshire makers foundry is quoted at about 453, to 46 s., net cash, delivered Man-
chester. With regard to outside brands, the impending strike of Soctob miners necessarily bass some hardening tendency, but no better prices are obtains business comes forward. Delivered equal
underquoting where any ber
 still be bought at a
Lancashire ports.
Manufactured ir
great difficulty in keeping their forges cases roing from thand to to mouth
more the
 more to the fact that there is really no sufficient inquiry stirring
to afford any real test of what makers might be prepared to to afford any real test of what makers might be prepared to accept,
if anything like favourable specifications came forward, rather

and bridge and tank plates obtainable at $£ 515 \mathrm{~s}$, to $£ 517 \mathrm{~s}$, 6 d .
delivered in this district delivered in this district.
Oaly a slow, hand-to-mouth sort of business still comes forward maintained at late rates.
The position in the engineering industries, as reflected in the reports issued by the trades union organisations, still shows no novement whatever towards any improvement. In the
monthly report just issued by the Amalgamated Society of Engi. the same as those of the previous month, still showing naarly per cent. on the books in receipt of out-of-work support, whilst the reports from all the principal centres throughout the country
continue most unsatisfactory, the position being returned continue most unsatisfactory, the position being returned
with exceedingly few exceptions as either only
very moderate, ad, or very bad. The returns of the Steam Engine Makers omains practically unchanged. If anything, in both mocietie here is a very slight decrease, which may be taken as indicating that the position gets no worse, but not sufficient to indicate any im-
provement.
Here and there amongst machine tool makers f rather more work of a special character stirring, but the general run of engineering continues extremely quiet, and the principal
ocomotive building works in the district are almost at a standstill, wing to the eotion abs in fac ti is practicallly owigg to the large number of men thrown out of
employment by this one firm that the returns of out-of-work members in this immediate district continues so much above the average. Boiler makers still report rather more orders stirring,
and some of the leading machinists are being kept fairly well applied with work
nd, with plentiful supplies of all descriptions exteme depression, rices show a continued weakening tendency. There is no actually general quoted reduction upon late rates, but to a
very large extent prices have during the week been easing own about sixpence per ton, and do not now average more
han 11s. to 11. $6 d$. for best coals, 9 s , 6 d . to 10 s . for seconds. about 7 s .6 d . to 8 s , per ton for common bouse coals, at the pit
Only a very slow demand is reported for the lower
nouth.
 manufacturing purposes, and these are also easier, in most cases,
to a similiar extent as the better qualities, prices now averaging are so far very. few contracts of any great weight actually settled,
and the advance of 6 d . to 1 s . per ton which has been talked of and the advance of 6d. to 1s. per ton which has been talked of ocomotive fuel and supplies for railway companies, however,
loces.
dvances of 6 d to 9 d , have been raves, the of tprices which have been obtained ranging from 6.s. d .
(or ordinary locomotive steam coal up to 7 s. and 7 s . 3d. for the In quarties, suitabio for gas-making purposes.
In engine classes of fuel supplies are plentiful, notwithstanding
he limited production of slack, and with low sellers from outside districts prices are scarcely so firm. Common slack is readily
obtainable at 5 s . to 5 s .6 d , with best sorts quoted at 6 s , to 6 s , 6 d . In the ship pit mouth
In the shipping trade rather an increased business is stirring,
but very low prices are being taken, the official quotations having
 ton are now the average figures for Lancashire steam coal,
delivered at tte High Level, Liverpool, or the Garston Docks. the hematite pig iron trade, and makers in the North of LIancaness. The consumptive demand remains about the same, and prospects of an increased demand are poor indeed. The consumption on home account keeps fairly yood, but on general foreign
and colonial account it is particularly bad, and the business offering is exceedingly limited. Prices have fluctuated somewhat. but since that time they have dropered again, and 43 s . 8 d . is now now theady in their quotation of 45s, per ton nether f.o.b., for parcels of 4s. 6 d . per ton is being guoted. The stores of warr to increase, a further 780 tons having been added this week,
bringing the total held up to 147,951 tons. Thirty-six furnaces bringing the total held up to 147,91 tons. .
are blowing in North Lancashire and Cumberland
scoil ments, Some fair orders are held for heay in some of the nd the mills will be pretty busy for a week or two. The demand for rails is, however, not by any means good, and orders are difi-
cult to get hold of.' Heavy sections are quoted at $£ 315 \mathrm{~s}$. per ton calt to get hold of. Heary sections are quoted at $£ 3115 \mathrm{~s}$. per tio
and light and colliery sections at $£ 55$. and $£ 5$ 10s. respectively.
 Sip plates are quoted at $£ 57 \mathrm{~s} .6 \mathrm{~d}$. , angles at $£ 510 \mathrm{~s}$, and boiler
plates at $£ 6$ per ton. The bosiness offoring in the other sections made in this district is exceedingly small.
Shipbuilders and engineers are well
ment. Builders are contracting for new work, but no new orders The demand
The demand for iron ore is quiet, and practically confined to
ocal smelters. Average sorts are quoted at 8 s .6 d . to $9 \mathrm{~s}, 6 \mathrm{~d}$. per
Con.
Coal and coke find a pretty good sale. East Coast coke is still
quoted at 17 s . per ton delivered, quoted at 17 s . per ton delivered ,
The shipments of iron and steel for the past week represents in
 year, an increase on last year of 26,892 tons.

THE SHEFFIELD DISTRICT.

Tge May returns of the Holl Chamber of Commerce exhibit

 ons, as compared with
Stean coal, of course, , ase been the cause of this brisk business,
nd, as may be seen from the figures, the trade which drifted and, as may be seen from the figures, the trade whics drifted
olsewhere auring the troubled period in the South Yorkstire dis-
one rict is returniog. There has been a large trade done with foreign tons for May of last year. For the first five months of the year
Hull forwarded to distant markets 237,446 tons, against 147, ,650 tons during the completed period of last year. Sweden and
Norway has taken the largest individual tonnage, with a weight of 19,132 tons for the month, and 91,002 tons for the five months,
as compared with 12,551 and 45,800 tons respectively. The next
ne as comparea wit 1 Russia, which took 10, 1,52 tons for Hay of this
lagest market is
year and 29,220 for the completed period. The monthly business year and 29,220 for the completed ppriod. The monthly basiness
with Hull the Humber ports has about trebled, and the trade done during the five monte
dock strike paralysed trade

the naval programme of the Government by Messrs. Jobn Brown
 She casemate armonr of her Majesty's ships Magnificeett, Majestic,
tenown, Powerful, and Terrible. Additional work is anticipated on an early date.
Business is again quieter in iron and steel. Hematite pig iron
is very languid at 51 s . to 52 s . 6 d . per ton ; common forge iron is is very languid at 518 , to 523 . 6 d , per ton; common forge iron is
rather brisker at 3 ss. per ton. Bessemer billets fetco from
 requirements to what they cannot do witbout. Several of the foundries are well employed ; the boiler-makers are generally well
off for work.
The exports of entlery during May amounted to $£ 155,157$, as
compared with $£ 186,541$ for May of 1893 . The chiet cause of the decrease is the falling off in the United BTates market, owing to the uncertainty about the Wilson Tariff Bill. The value sent to America last month was only $£ 8520$, against $£ 22,480$ for the corre-
sponding month of last year. The other decreasing markets have been Russia, Germany, France, Spain, and Canaries, foreign West
Indies, Chil sions in Esst Indies, Australia, Argentine Republic, and British North Americs. The only markets showing an increase are
Sweden and Norway, Holland, Belgium, and Brazil. For the five completed months of the year the value of exports was $£ 752,424$ $\sum_{£ \text { ear. In }}$ In steel-unwrought-the value of exports $£ 155,069$, agains year,
drop, in3. Here, again, the diminution is mainly owing to the
fon in thite $£ 22,135$, against $£ 33,512$ or May of 1893. Russia fell to $£ 15,937$ Holland, France, British East Indies, and British North Amarica If it be true that there is a prospect of the American Tariff Bil being settled by the end of Jone, Sheffield cutlers who make
American patterns will be thankful She American patterns will be thankful. At present they are suffer being unable to earn balf-a-sovereign per week. The depression ontirely abandonod thg that several or our manufacturers hav Any change for the better which the Wilson Tariff may give them-
and no great benefit is expected-will not induce these firms to return to American patterns, Lecal houses whose chief specialitie to the States are well prepared for the settlement of the making stocks with y it comes, The Germans have aleopenin of the market, and it is quite expected that the Solingen firms will give Sheffield makers considerable trouble in the way of work, In
several kinds of table eutrery the new Tarift, as amended by arrangement, will actually impose higher rates than those under
the existing McKinla second-class goods, it is pretty certain that the Germans, with thei remar
lists. lists.
lin
sield busy, and other trophies for atbletic contests, are exceptionally tsy, country or for foreign and colonial markets. Seeveral of the
the cor state the it was season. The low price of silver is still attenuating the demand in
plated
goods, and many people who would previonsly electro-plate are tempted to pay a liittle more and obtain their In in in sterling silver.
house-perhaps the largest in the are very conflicting. Our larges had such a pressure of orders for all kinde of edge tools as they are now experiencing. It is principally for the foreign and colonial
markets that they are now booking large order markets tbat they are now booking large orders. The country
trade, by which is meant the markets of the United Kingdom, is not very active. The makers of agricultural machinery and garden
tools have had a fairly good season, although the adverse weathe toas retarded garden giandy good season, although the adverse weather which would have existed during April and May. There is now, About as
reported at the works of Messrs. John Crowley and Co., Sheffield. The company is resisting, a demand for an advance of 2s. per wee labourers have struck are as follows:-Two men at 32s. per week of fifty-four hours ; two men at 30s.; two men at 27 s . 6 d. ; two men at 24 s, two men at 23 s ; ; two men at 22 s .; one man at 21 s .
twenty six men at 20 s .; four men at 19 s , ; sixteen men at 18 s . man at 17 s. nine youtbs are anso on strike, one received 188 . per
week, another $17 \bar{s}$., a third $15 s$.; two three had 12s, each. The company, fortunately, is able to con tinue its operations as usual, owing to its baving two large
establismments, so that the dispute, althogh these thing are
always annoying, does not interfere with the execution of orders always annoying, d
in any department.

THE NORTH OF ENGLAND.

mon Correepondent)

CoxTRARY to the general expectation that the iron market in
this district would exhibit improvement when the Scotec colliers decided to enter upon a strike, business has been quieter even than
it was last week, and prices are very little more in favour of the sellers. Buyers continue their policy of purcbasing only what meets their immediate requirements, and seem to think that
after all there will be no strike, though the Scotch miners have already given in their notices. The coalowners are not in the leas
likely to give the advances; but the fact that there are so many non-uniooists in Scotland, and that so many of the men abstained
from voting in the reecont ballot, lead to the belief that a stoppage
Consumers of pig iron, therefore, holding this opinion are in no hurry to buy and and sollers are ont disposed to poression ion upon the
market, for they hop to get better prices for it than are now marset, for they hope the get better prices for it than are
possible, especially if the strike takes place. They will have a because a brisker period of the sam the make is to be reduced by the blowing out of several furnace which need relining. These will shortly go out if there is no stoppage in scotana, bot longer, as their produce will be needed
they may be kept at work lon they may be kept at work longer, as their produce will be needed
and bigher prices will be obtainable. Under present circumstance there is no inducement to keep old furnaces going, as it is difficult
to make ends meet ; in fact the working of a considerable number to make ends meet; ; in fact, the working of a considerable number
of furnaces now involves a loss. Exports of pig iron are rather better than were expected this month, but less is taken out of the increase. The pig iron exports from Middlesbrough this month have amounted to 37,243 tons, as compared with 35,184 tons last
montb, and 44,231 tons in June, 1893, all to 13 th. The shipment oversea a are above the average, but in view of the probable stop
pages in pages in Beotland, merchany, and in stocks, which cannot be a bas speculation at present prices, whether there be a strike or not. In
Connal's warrant stores on Wednosday night 98,086 tons of Cleve. land pig iron were held, 730 tons increase for the montb.
Prices of Clevel
Prices of Cleveland pig iron are slightly better this week than
last, for though there was some obusiness in No. 3 G. M. .B. early in
the week, that would not be taken now, and 35 . 4 .d. is whe the week, that would not be taken now, and 35s. .hd. is. is what is
asked and paid. Buyers offer no more for forward than for
prompt delivery spite of the imminence of a s strike, which should have strengthene
stan spite of the imminence of a strike, which should have strengthened
them considerably. Theoy culd not hate beenlo obtainod under
35s, 4d, cash just before the result of the ballot of the Scotch

numbers cannot be had under 44s. per ton f.o.b. The production
of this description of pig iron has been reduced, as it was in excess
of the requirements, of the requirements, and could not be made by some firms at the
money they were able to obtain for it, while there seemed to be does not decline, notwithstanding that the consumption is smaller and freights are cheaper, but average Rubio still keeps between
12 s . 3 d . and 12 s . 6d. per ton delivered on the Tees. The Cleveland Ironmasters' Association have intimated to the
representatives of the men that representatives of the men that they cannot see their way to give
their assent to the proposal for the adoption of eigbt hour shifts
at the blast furnaces. They do not offer any opinion relative to at the blast furnaces. They do not offer any opinion relative to
the eight hours' day, but are not prepared to adopt the proposal
in the terms submitted to secretary. That would increase the cost of producing pig irnon,
and taking into account the present condition and the immediat and taking in account the present conde question, it would only
prospects of the trade, that is out of the
add to the loss that is being incurred at some of the works. Perhaps if the men had proposed to accept a proportionate
redaction of wages in return for the reduction of hours some
agreement might have been possible. It has been calculated agreement might have been possible. It has been calculated
that the adoption of the eight hours would add at least 1 s . per ton to the cost of making pig iron. The system bas been
adopted at the Seaton Carew Works, and is likely to be at Cariton,
the proprietors of which are not members of the Ironmasters the proprietors of which are not members of the Ironmasters Ormesby Ironworks, propose to adopt the eight hours, when their connection with the Cleveland Ironmaster' Association ceases
in August. The ironmasters also intimate that they cannot assent to the proposal to stop the furnaces for twenty-four hours, in order that the blast furnacemen may bold a demonstration, as the loss
and damage would be so great. The Cleveland ironstone miners are to hold a demonstration at Boosbeck on July 4th, when they
will be addressed by Mr. S. Woods, M.P., and Mr. Tom Mann. They have been more fully employed recently than for a long time past, as more furnaces are working on Cleveland iron.
The strike of moulders and pattern-makers at
works and shipyards continues, and is seriously hampering operations at these and other establishments, in fact a large number of men engaged in other occupations have had to be paid off in con-
sequence. The executive of the men's association will not let the firms whose men are on strike procure their castings from other
places, and so more men than those who are directly connected with the strike are thrown out of employment. Some of the masters have been getting castings from Leeds, Bradford, Glasgow, Manchester, ascertained that any firm was supplying castings to their employers, they at once warned such firms that if they continued to do so
their own men would be called out. In some cases the masters have got their castings from Germany. It is nearly ten weeks
since the moulders came out on strike at the engineering works, and so far nothing bas been done to bring about a satisfactory
settlement. Masters do not see their way to give any advance, settlement. Masters do not see their way to give any advance,
much less such an exorbitant one as the men claim. The joiners also coming out at the engineering works and shipyards has further
complicated matters, and in one case it has been found necessary to send two vessels built in this district over to Hamburg to get their woodwork completed. Ordinary ironfounders bave no diffi-
culties with their men at present, but work is very scarce, One of the chief establishments is not turning out more than a third of what is produced in brisk periods, and others have never known
trade so bad. An order for a large quantity of cast ironwork for the Waterloo and City Railway has been placed at Stockton. ever-in fact, greater, becanse the strikes of moulders bamper operations in the shipyards, and plates, \&c., cannot be taken so
regularly, so that this reduces the output of the finished iron and steel works, and it helps to postpone the restoration of confidence amongst shipowners, who have given out very few orders for new
vessels during the last three months. Quotations for finished iron and steel are the same as last reported.
The coke manufacturers of Durham are proposing to follow the selling prices. A meeting of coke manufacturers was held on their special classes are not prepared to join in the movement. The meeting arranged the minimum price, and this does not differ materially from coal trade is somewhat brent.
quite active again if the strike takes place in Scotland. The extre demand this week has led to the Northumberland coalowners putting up the price of best steam coal to 10s. 6d. per ton, f.o.b. to Middlesbrough, but may be expected to increase, as the supply
is not in excess of requirements, and a greater demand will sping up with the commencement of the strike in Scotland.

NOTES FROM SCOTLAND

From our onon

THE resolution of tte Scotch miners to come out on strike towards the end of the present month has not affected the markets to the
extent that might bave been expected, because it is not believed extent that might have been expected, because it is not believe
that the strike, if it should take place, will bo of long duration.
Perhaps at no former time bave the colliery districts, voted with such a result-viz, a majority in all localities. This is, of course, the outcome mainly of the fact that
the miners' societies have now all affliated with the English Federathe miners societies have now all aflliated wiw a large majority voted
tion, by whom a strike was decreed While in favour of a strike, there is no enthusiasm on the subject among in Fifeshire that no reasonable person there could justify a strike. The wages of the miners are admitted to be above the average,
although of course considerably below what they were during the great strikes in England.
The men could scarcely
The men could scarcely have chosen a worse time to come out from
their own point of view, because July is the industrial boliday their own point of view, because July is the industrial holiday
month, when many works are closed at least a fortnight, even the month, when many works are cosed at east a fortnight, even the
busiest of times. As soon after the strike as supplies of coal are oxhausted, therefore, consumers will close their works, and intima-
tions have in some cases already been given to this effect. Strike tions have in some cases already been given to this effect. Strike
clauses now exist in nearly all contracts, and these will be largely clauses now exist in nearly all contracts, and these will be largely
taken advantage of, in order that the manufacturer may avoid a heary increase in cost of production.
The Glasgow piog iron market has been firmer, with rather more inquiry on the part of consumers and merohants; but speculators
are chary of taking any considerable share in the business, wowng oo the uncertainty that exists as to whether the miners will hol out or not. Scotch warrants have risen several pence per ton; but
there is little change in other classes of iron, Cleveland being indeed rather easier.
indeed ratier easier.
The prices of makers' iron are as follow: -G.M.B., f.o.b. at
Glasgow, No. $1,43 \mathrm{~m}$. per ton; No. 3 , 42s. Carbroe, No. 1 ,

The shipments of pig iron from Scottish ports in the past week
amounted to 5800 tons, being exactly the same quantity as in the corresponding week of last year. Of the total there was dispatched to Holland 129 tons, Germany 495, Canada 200, United State
100, India 68, Australia 280 , France 33, Italy 195 , Rossia 180
Belgium 38, Spain 15, China the coastwise shipmen
There is no change in the total number of furnaces in blast. Th number producing ordinary is rather smaller, but this is made u gy the placing of two adational urnaces on basic iron at Glen garnock, where the notice given to the men oaver has bee
changed into an engagement from day to day. There are now forty-six furnaces producing ordinary and special brands, twenty four hematite, and three basic iron, total seventy-three, compare
with seventy-one at this time last year.
Work is being proced
Work is being proceeded with in a rather more vigorous style at
the steelworks, but this is owing to the pressure to finish up urgent the steelworks, but this is owing to the pressure to niish up urgen
orders previous to the holidass, and there is in reality no change orders provious of the hoidayss, and there is in reaity no change
in the condition of this market. The same remark is applicable to the malleable iron trade.
The shipments of iron and steel manufactured goods from
Glasgow in the past week embraced sewing Glasgow in the past week embraced sewing machines worth
E 3683 ; other machinery,
\&7826; steel goods, $£ 10,991$; and The coal market bas been rather more active, and on several day somewal oxcited, owiog to the approach g strik. Theshipment at Clyde ports have been comparatively heavy, but not quite so
large on the East Coast. The total clearances from all the port hrge on the
reach 161,437 tons, against 141,829 in the preceding week, and 1138,709 tonas in the corresponding week of last year. The demand
for future delivery is only moderate, and this is ascribed to the fact that supplies are very ample, and prices low at English ports thases are extensive scale by manufacturers anxious to keep their works fully occupied until the holidays,
market about 6d. per ton.

WALES AND ADJOINING COUNTIES.

My forecast, that the Ezst Glamorgan Railway Bill would not pass the House of of Lords Committee. bas been verified ; though on
Saturday, when several of the totabilities interested on one side or the other roturoed to Cardift there was a strong impression that it would pass. It is now stated that next year another effor
will be made, but before that Isball expect certain railwa ments on the part of the Taff Vale and the Rhymney that wil make it still more onnecessary. The Taff Vale Railway Company has a line now at Aberdare Junction, which is little used, but win
become more so, and a siding will connect it with the latest colliery venture, the Dowlais-Cardiff
the third trade continues in a very satisfactory condition, and for uhe third week in succession, notwitbstanding that a "Mabon
day" intervened, the Cardiff exports showed an excess of 300,00 ions on the week
ing week last year.
the successful I note the Cy ing coalowners are sold until the end of the month, and on Change this week, Cardiff, it was evident that there was no grea disposicion wo book forward for large quantities, as higher figure
are fully expected. Best steam coal now commands 11 s . 11 s . $6 \mathrm{~d} . ;$ seconds, 10 s . 6 d . to 10 s . 9 d .; ordinary " dry coal" th

 of improvement. Pitwood remains the same after some drooping,
best wood selling at Cardiff, $e x$ ship, at $15 s$, to 15s. 3d. Patent best wood selling at Cardiff, ex ship, at 15s, to 15 ss . 3d. Patent
fuel prices, Cardiff, are 1os. 6d. to 11 s, demand improving from that port to Italy, 1540 to Greece, 1610 to Al geria. Trade at Swansea generally has been exceptionally busy. The
total tonnage 73,537 if it does not beat the record, certainly figures as one of the highest known. It was 30,000 tons above the lalis for the corresponding week last year. In coal, patent fue
and tioplates the increase was marked. At Nowport business has also been good, and some notable cargoes have come in of iron ore, awakening the hope that better
times are Vale received 2000 tons; the Blaenavon Company, 1750 ; and 1790
tons to Tapson and Co . O_{n} the 12th the Ebbw Vale received no less than 5750 tons, Large quantities are also coming in from Cyfarthfa and Dowlais,
Latest prices Cardiff iron ore are:-Best Rubio, 11s. 6d. 11. 9d.; Tafon, 11s. 3d. to 11 s s. 6 d . Garrucha, 11s.; Porman,
10s.6d.; all c.if. Cardiff or Now last week. Swansea has bat bardiff and Swansea, are the same an note that a cargo of steel rails has come in in from Harrington. On of the principal ironmasters, speaking this weok upon the iron and
steel trades, observed to me that things were improving, and be considered that oven a better condition was coming. The demand there was a good deal more activity. One of the consignments of the week has been 842 tons steel sleepers to Bombay. In stee
bars a good average quantity has been dispatched from Cyfarthf arrs a good average quantity has been dispatched from Cyfarthfa
and Dowlais, and now that a better demand is springing up by tin plate man
ing state.
Last week the export of tin-plates from Swansea totalled 93,120 boxes, the largest that bas takeu place for some time. The
receipts from works only amounted to 65,337 , so that stocks again foll, and now consist only of 261,020 boxes, as compared witl The total shipments o
ast month amounted to plates to the United States from Swanse May, 1893. Considerable tonnage is coming in for loading to America, and on Change this week in was the subject of discoss when, in all probability, there quantities, and shipments to Batoum and Odossa are amongst the maintains an average demand. With a good spurt from the States it is anticipated that stocks would be cleared out. Price o moutb," as a change is certain.
Some fow steel quotations, Cardiff, mid-week, may be of
interest :-Heavy rails, $£ 3$ 15s.; light, $£ 410 \mathrm{~s}$; ; Bessemer bars, It is expected thast, It is expected that at the next meeting of the Coalowners
Association a deputation will wait upon the colliiers, the delegates petitioning that some means should be dron, such as "united action, in order to do away with the
droping prices in coal. In the opinion of the colliers the sudde alterations which take place occasionally in coal might be avoided that if a bond were to be entered into by Welsh coalowners to bas been frequently discussed, and the fact pointed out. If prices continue to go up the subject will very likely be
shelved until the next turn of the tide. Coalowners are as anxious
cheir survey is a wider one than colliers take. Thas if the sliding nosophisticated a reduction, the first thought in the mind of the the scale. Possibly, with free libraries and better culture, theso ancies will take flight.
At Ebbw Vale last
and week 4000 colliers were out; but thanks to ingorous action, and discussion, common sense prevailed, and the
ditheculty is now over. At one time the manager expresed his
determination to get the horses ap, and close every colliery. Worl was resumed on Tuesday
A strike bas been averted at Rudry
放 rapidy improving port of Llanelly to The in tor clancease-Bote Docks-has been withdrawn, to the great atisfaction of the public.
The Lletty Sbenkin coal strike has come to an end, and the cffer
to supply bouse coal at 6 s . 6 d . per ton at Cwmbach . to supply bouse coal at 6s. 6d. per ton at Cwmbach, 78. at
Abernantygroes, and 7 s . 6d. Aberaman or Aberdare, is accepted by the men.
The South Glamorgan Company has sunk suceessfully at
The important trespass action Hankey rersus Wimborne, of the Plymouth Company against the Dowais Company, is now on
It is understood that a large sum is at stake, the value of the coal area of the Plymouth Company alleged to have been worked by the Dowais Company.
A Wheel wrights' Association has been started at Merthyr. The
Plymouth fitters are still out, and are getting weekly allowances Plymouth fitters are still out, and are gett
from a society to which they are federated.

NOTES FROM GERMANY

THE reports from the difforent iron markets are more or less of mprove during the week. A good activity exists in most branche of the iron industry, and makers are thowing a tendency to On the Silesian iron market a fair amount of business is coming forward, but quatations are still wanting in firmness, which is
chiefy caused by over-prodoction in some departments. The
Rhenish.Westpbalian ironworks continue to compete with the Silesian firms, and in many instances succeed in getting the
aders. On the Austro-Hungarian iron market all descriptions of raw and the past week, owing in a great measure to consumers now
radually gettiog through the supplies which they had bought in nd were holding in reserve. With stocks rapidly disappearing at ap in prices, and prospects for the foture are decidedry good ard
aprer
Orders of importance have been market lately, but the greater part of the works continue well employed on orders of provious date. Quotations are still the
anme as during former weeks, bars being quoted 155f. p.t., while same as during former weeks, bars boing
girders still stand at 165f. p.t. at works.
Demand and sale continue weik on the Belgian iron market, rig iron is neglected. There has been talk of the forming of a pig
ron convention lately, which would help makers succesfully to compete with the works of Longwy and Luxemburg. Returns
for the first four months of present year show export in steel to have considerably increased, in steel girdens export rose by orts of manufactured iron, on the other band, show a decreaso
 Germany, against $184,705 \mathrm{t}$ in the thear before. Import from during the first four months was 96 , 721 t ., against $82,293 \mathrm{t}$. in 1893 revious year. Export in coal amounted to $11,321,511 \mathrm{t}$, against against 327 .322 t. for the corresponding exp period last year.
taking them as aspholian iron trades are in a fairly active state, neet with satisfactory demand, and prices are well mand sorts For spathose iron ore $\mathrm{M} .7 \cdot 40$ to $7 \cdot 90$ p.t. is quoted, roasted ditto
etching M .11 to $11 \cdot 50$ p.t. at mines.
Inferior qualties ans with M. 800 to 10 p.t. Luxemburg-Lorraine minette is tolerably wed iron ore, 50 p.c contents , has been puoted $M .9$.20 confident tone is reported on the pig iron market, in spite of a slight falling-off in demand which has recently been noticeunremunerative, on the whole. For spiegeleisen M. 52 p.t.
is paid ; forge pig, No 1, is quoted M. 45 p.t., while No. 3 Sotches M. ${ }^{40}$ p.t. Siegerland, good forge quality, stands
 semer, M. 47 to 48 p.t. Luxemburg forge pit, $48 f$. p.t., free Luxemburg. On the malleable iron market the demand coming in
or bars is chiefly on home account. From abroad very littlo inquiry is experienced, and prices, therefore, improve but slowly. nd the girder trade especially competition is still exceedingly keen, Hoops remain firm. Orders and inquiries continue to come very regularly in the plate and sheet department, and a good machine factories are fairly well off for new work, bot find it extremely dificult to esecore hiifher prices. The following
may be considered as latest list quotations p.t. at works:-Good may be considered as latest list quotations p.t. at works: - Good
merchant bars, M . 110 to $115 ;$ angles M. 120 to $125 ;$ girders

 and
steol tires, M. 215 to 230 ; light section rails, M. M. 95 to 100 .
In May the mines of the In May the mines of the Saar district have produced, in twenty-
four days, $536,125 \mathrm{t}$, and sold $540,525 \mathrm{t}$. Output during the same month last year amounted to $481,880 \mathrm{t}$., while $479,405 \mathrm{t}$. wero

american notes

(From
New York, June 5th, 1894.
Fivancial matters are less satisfactory. Last week loans were contracted, deposits decreased 41,000,000 dols., the idle surplus
reached $77,00,000$ dols., and our Treasury gold fell to $79,000,000$ expenses, And jobbers are not trying to force business . Thrying out New England mills and factories run only as orders warrat In the iron trade everything is discouraging. The coal miners
strike keeps up, although frequently it is announced a settlement has been affected somewhere penty it is announced a settlement slowly. Nearly all the rolling mills are in some way affected by
the strike. There is an improving demand steel, bar iron pipes and tubees. The country can afford to wait. well-informed people do not believe it can be done without practically conceding the miners' terms.

LAUNCHES AND TRIAL TRIPS.
The passenger steamer Fingal, owned by the The passenger steamer Fingal, owned by the
Edinburgh and London Steam, Shiping Com-
pany, recently launched at Dandee by Hessrs. W. B. Thompson and Coompany, Caleedon Shasrs. W.
has made
hade her trial trip has made her trial trip, The Fingal left the jetty the river till the Abertay Lightship was reached when her bow was turned southwards, and a course steered for St. Abb's Hoad. The distance from the lightship to this headland-almost forty miles-was covered in a little over two hours. The
Fingal carries two electric light installations, and in all there are about thirty-six engines on board. The Campbeltown Shipbuilding Company's stamer Eira, of 790 tons net register, anp and 2000 tons deadweight, recently launched from their yard at Campbeltown, Clyde, made her trial trip
recently, when an average speed of 11 knots was recently, when an average speed of 11 knots was
attained.
The Eira is a steel screw steamer of the part awning deck type, designed to corry
2000 tons dead weight on 16ft. 8in. draught, and has been supplied with a set of triple-expansion engines by Messrs. Kincaid and Co., Greenoco,
built under the immediate superintendence of Mr. T. M. Broom, consulting engineer, Greenock, ship and fort improvements for navigating the of cargo have been beading and discharging steering gear, steam supplied, including steam nnchors, Clarke, Chapman, and Co's steas
winches, winches, patent compass, c., A large party
was on board, including Lloy's representatives Graenock; Messrs. MeKenzie and Watson, of
James Gardiner and Co James Gardiner and Co., shipowners, Glasgow;
and Mr. E. Lewis, representing the owners, Messrs. LLewis and Co., A Aberdovey.
At Renfrew, on the 8th inst., Messrs. Wm Simone and Co. launched a dredger for the Russian Imperial Government. In addition to
the usual chaino of steel buckets, it is fitted with powerful apparatus by which the mud raised powerrul apparatus by which the mud raised
by the buckets is reduced to a state of plypy
consistency, and discharged at a distance of consistency, and discharged at a distance of
700 ft. from the dredger through floating pipes,
 pairs two sompound surface-condensing engines
and tion borers
arted oon boord one enb working pressure
the dred the dredging machinery, and the other for the mud discharge pump. This vessel is capable of
raising and discharging 250 cubic metres of delris per hour. It is lighted by electricity throughout and suitable steam heating arrangements are made in the crew's quarters. The Volgaskaiaja, as it is named, is to be employed on the river Voiga.
Messrs. John Scott and Co. have launched steel paddle ferry steamer for the Corporation of
Birkenhead specially deeigned for the Woods Birkenhead, specially deeigned for the Woodside
and LLiverpool stations. Her dimensions are :-
He Longth, 150 ft ; ; breadth, 28 ft ;- breadth over
sponsons, 48 ft ; ; and depth, 11 ft . She is fitted sponsons, 48ft.; and depth, 1 1ft. She is fitte
with a spacious saloon nearly the whole lengtt of
the ship 1 16tt wide smokers, , general, and ladies' compartments. Int the construction of these saloons lighting and
thorough ventilation have had specigl httention and passengers will no doubt find this the most comfortable boat in the ferry service. The hull and machinery have been constructed in excess of the latest requirements of Lloyd's and the Board tight compartments by longitudinal and trans verse bulkheads, making her practically unsink able, as she would float safely with any thre compartments full of water and a full complement of passengers on board. The sponsons run nearly
right round the vessel, and are plated on the under side of the girders and rivetted to the hull proper, thus forming otber four watertight compartments, 8.s. Linlithgow, built by Messrs. C. place of the s.s. Linlithgow, built by Messrs. C.S. Swan and
Hunter, of Wallsend to the order Raeburn and Verel, of Glasgow, for their India Mutual Line between London and Calcutta. The dimensions of the steamer are: :- Length over all,
$346 \mathrm{fts} ;$, breadth, 42 att. 6 in. ; depth, 29 ft . 3 in. The
ste Register and 100 Al at Lioyd's Soporation with triple-expansion engines by Messrs. George Clark, Southwick Engine Works, Sunderland, haviog cylinders 26 in., 42 in., and 69 in., by 48 in. stroke, two large steel boilers, 160 lb . pressure,
and forced draught on Messrs. James Howden and Co.'s system. The Linlithgow is the sister ship of the s.s. Osborne, launched by the same builders a fow weeks ago for the same line. She is designed for a high rate of speed, and on trial
attained 12 knots average. The engines worked smoothly and satisfactorily, and the speed wa attained with steam blowing off. The owners were represented by Mr. W. H. Raeburn and
Mr. Thomson, superintending engineer of
 by Mr. George Clarke, jun. The s.s. Larch, belonging to Messrs. Crosby, Magee, and Co., of West Hartlepool, has for some
weeks been weeks been undergoing a very thorough and
extensive overhaul and rearrangement of her machinery and boilers at the Central Engine Works of Messrs. Wm. Gray and Company, and on the 5th inst. went on her trial trip in the bay.
The alteration consists of The alteration consists of smplying new main
boiler working at 150 lb. pressure per square inch, and fitting the main engines with two new eylinders of new proportions adapted to atilise the higher boiler pressure without involving the neces-
sity for a new crank-shaft or other main working sity for a new crank-shaft or other main working
parts. This is a similar alteration to that recently carried out at the same works to the s.s, Mark Lane, the s.s. Sweden, and the s.s. Albania, and on the trial trip the results were such as to justify the progressive policy adopted by the
owners, so far as could yet be seen. The engines ran exceedingly well, giving no trouble whatever and at a speed of seventy revolutions per minate drove the ship at the rate of ten knots per hour. The saving in coal consumption is expected to be
very considerable and to fully justify the very considerable, and to fully justify the expen-
diture. Several details of importance have been introduced in making the alterations to the machinery, amongst which may be mentioned Mudd and Aires's patent metalily gland packing, which ran perfectly well on trial. The trial of the
machinery was witnessed by Mr. Crosby, one of the managing owners, Mr. Airey and Mr. Nevison, superintending engineers, and several other
gentlemen interested. gentlomen interested.

THE PATENT JOURNAL.

 Mustrated oofcial JournaPatents.
for Letters Patent.

Application for Letters Patent.

 *" When patants have been "communicated" thename and adrosess of the communicating party are
printed in italics name and address
printed in italics.
solh May, 1894.
 London.
10, te3s. Cexis of Electric Battries, J. M. Moffat, London.
0,464. Bours, W. W. Saur, London.
o465. Boxes, J . Wilson, Bradford.

 O,473. OYcere PrDals, c. Lee, A. Owen, and E. s.
Bond, Birmingham, 10,474, Pemals for $\begin{gathered}\text {, velocipedes, } \\ \text { mingham }\end{gathered}$ Hailey, Birmingham.
10,755
LETTER-Boxess,
J. France, Birkdale, near South10.476. PAper Fure, \&c., T. M. Easton and A. Coker,
Northampton.
N. Northampton. Hoistina Engines, J. Caldwell,
Silan
Glaskow 10,477. Pripparisa Iron or Stekl Bloons, T. W.

 M. Mitton, jun., Levels, a

 Conning, London.
10,422. CurLINe IRow Pocker Stove, c. M. Walker,

 Redaill 10 Consina Cortos, r. Staub and A. Monforts,
 10,502. Overiead Rallways, G. Henkel and G. Schuld, London
Lo. Lo3., Presses for Golf Clubs, F. E. V. Taylor
Lond 10.504.. Thansportation of Mowzrs, J. R. Knights,
London.
L. 10,E05. Lithooraphic Prixtino Machings, C. Pollar

 Lo,5vo. Brankes for Liftina Apparates, A. Bolzani Liverpool.
$0,51$. Tox Morons, W. P. Thompson.-(J. Schoonner

 London. Revovable Tire for Road Vehicles, H. Kert,
Lo, London.

 London.
10.519. Mintels for Gas Liohting, C. de la Roche
in London.
10,520. Constriction of Floors, \&c., G. A. Wayss,
London
 London.
10,522. Licrsa Boors, E. W. Veale, London.
10,523, SATURATINo Liquids with GAsss, J.
London.
10,524. Arrainso Scresens and SAADEs, J. H. Roso

10.526. Fivid Supply and Delverx, J. w. Glover
 10,528. Apparatus for Weiohivo TEa, G. H. Driver,
London
London.

Slet May, 1894.
0,531. Lead Pionestrs, C. P. Shrewsbury and H. R.

 London,
10. Ls3. Sinoolder Pads for Clotars, A. Rosenzweig,
Lond London.
io, 536 . Divina Gear for Cycles, A. Abrahamson,
Wen

10, 543. Cyole Derving, T. Vann and J. Matthews, Bir-
mingham.

 Manchester.
 Bristol.
 ,5b1. Pertambucot and Lugoage Carrirr, H. Bean,

 m,55. M. Mariva of SALTs of Amsoosi, A. MeDougall

 ${ }^{10,555 \text {. Cormice Poles and Fittinsos, I. A. Read, Bir- }}$

 Thompson, London.
0,566 . MkThluc Fittiwas of Braces, , T. Walker, Bir Lo.5if7. Straininiso Brokex Fevce Wire, D. Johnston

 0,570. Foldina and other Bedsteads, G. A. Billing ton, Liverpool.
$0,571$.
KEX for
Skcurino Rails, E. S. Copeman 10, 5iz2. Smoothiva Crilisas, C. Darrah and R. Brier

 sunderland.
$0,57$. Covstruction of Caroo Vessesis, J. Priestman sunderrand.
 ${ }^{0}$ 0.579.9. Collar Studs, A. Crafer and J. C. Saunders, 10. Soso. Collur and Necktir Holder, w. M. Kent

 London. Bithels or Cylinders, de., w. Heslop

 $0_{0}^{0,508 .}$. Furvescoss, H. J. Haddan.-(H. Wellington United Statea.).
10, 59. . SkL-Activa Brake, J. Kuban and T. Deuble
, ${ }^{\text {London. }}$ Lond. Oil Lamps, J. Mear, J. Mear, and S. F. Mills London.

 London. Lo, Lond. PLoperers, J. Backhouse, London.
lst June, 1894.
10, ${ }^{\text {Poo. Glazing Bricks, Tiles, Blocks, \&c , J. Green }}$

 10,613. OLI Cass, J. W. Kaye, Bradford.
10 6i4. PRevexiso Iscrestatios, W. J. Tranter an
 0, bif. Rotating Clrevlar Brushes, H. L. Joy, Man

 Manchestr.
, dc., J. Lewis

 0,628 . Crank ABNIS of Looms, J. H. Bury and J.
Booth Halifax.

 Germany.)
 mann, Germany.).
0.661 . Smoks ExTRActor, E. Wood and A. Waldren, Lo. Lond. Mon. Mive Power Esoines, T. Clayton and W. C.

 Bournemouth.
10,66. Disc Whess, A. A. J. Boult.--(W. Mellurig and G.

 Manchester.
0.669 Cofriv or Casket Manuracture, G. E. Shaw London. L0,67. Bpornyirg FLAx, R. H. Reade, J. G. Crawford,

 L0,676. Sivirace Protectina Composition, E. F. Wailes Lobnd. STreet Gulurss, A. Fox and P. J. Jackson,
 Lo, Lonad. Crole Brakze, C. J. Jacobs and H. J. Hair London,
Lo, bso BRysers for Blackina Shozs, w. W. H. Owen,
London
 Sendik, London:
0,682 . BEER RAsiso AppARATUS, C. F. F. P. Ublmann

 Lo,696. Pon Protectiva Ships from Torpedozs, G. H
 10, 698. Axpletox MANUFActure, H. Sichelschmidt, 0, 699. SEnamino Shert-3btal Covers, F. J.Tomlinson, . Pnzoxatic Stomalling Apparatus, e. J.
 2nd June, 1894.
10,702. Gas BuRvers, H. A. House, and H. A. House,
jun., and R. R. Symon, London.

 ${ }_{10,706}$ as. Tires for Wheris of Carriuaes, T. W. Robert

 Londi. Lumbicating the Chains of Cycles, F. Jones,
London. 0.711. Sayety Coupling for Tran-cars, A. Hughes,

 10,718 . Curlina the Brims of Hats, R. Schofeld,

10723. Valves for Stenn Enoines, J. Willoughby and
F. Evans, Manchester.
 Beattie, Halifax
$10,76$. WInvow Burv Rolless, H. Lomax, Halifax,
10,727. ATomatic Nosino Motion for MuLas, A. Ainley, Huddersfield.
His. Miniso Textile Fabrics, J. Reffitt and T. Laycook, Halifax.
10,720. GEAR for Openino Slidino Doors, A. Rose.-
H. Rom, Auatralia) (H. Rose, Australia)
10,730. Croxes, W. Purdy, Leeds.
10,731. Nut Locks for Screwed Nottingham. che,73. Alerkrable Chidis Chatrs, W. S. McLennan and T. Morton, Glasgow. Certain Conposition, C. J. Hali, Manchester.
10,735. WAsMIs WooL, \&c., J. Petrie and J. Fielden, Rochdale.
10,736. GAssiso Yars and other Threads, s. Clough 10,737. Riso Spinsise, T. Hiton, W. Shaw, and G. A. Davison, London. Boxes, G. Wilcox and H. J. Candlin, Manchester.
Li, Mas. An ImPRoved Chiney Cowl, w. C. Mowbray,
London. 10,740. The Pedal Music Lever, P. M. Gyselman, London.
10.74. Apparatus for Ruling Dottid Lines, E. Carr,
London. London. Keighley.
$10,743$. Suspession Chains for Garmests, A. Prym,
Berlin. 10,74. Reoulating the Letingo-ovy of Warp from
the Warp Beams of Looms, W. Warrington, Manchester.
107.75. A Continuous Maonet Motor, I. Carruthers,
Brighton. Brighton.
10,746. Fked-Water Heatina Apparatus, J. H.
Rosenthal, Glasgow. Rosenthal, Glasgow.
10,77 A A N
Whittaker, Birmingham. Whittaker, Birmingham.
10, 748 . Foldiva Liap and CaxdLe Stades, L. Martin$10,749$. Collapsible Bedsteads, A. H. Baird, Liver${ }^{\text {pool }} 0$, 7 Goly Hole indicator, A. E. L. Slazenger, London.
10,71. Skly-sopplying 1sk Botrle, J. J. Duffy,
Dublin. Dublin. Reolatino Steam Valves, de, w. Boaz,
London. London.
10,753. Aparatus for Prouboting Images, R. A. Scott,
London. 10,754. Revriogratina Apparatus, A. J. Boult.(P. Schow, Denmark.).
10,75.5. Hosssigios or thelike, E. de Horsey, Liverpool.
10,756. HyDRAULIO VALVE, J. C. Etchells, Manchoster. ${ }^{\text {indrishino Boors, A. Pochin, H. Addison, and }}$
c.757, Shipley, London.
G. C. Shiploy. London. Stichncy, United States.)
10, 759 HiHpravlic Vaivs for Packing Presses, J. C.
Etchells, Manchester.
 Liverpool.
10,762. VELOCIPEDEs, J. B. Cooke and G. Kay,
London. London.
10763. Apparatus for Net Fismina, G. A. Larsen,
London. London.
10,76. Driviso Mecunisisy for Cycless, A. J. Boult.-
(J. Laplant, South Africa) 10,765. Moros-powse Esoises, J. Landry, G. Beyrout, and R. M. de Montaignac, London.
10,766. Coloured PICTURE, C. D. Abel - (The Aeti
Genell Geedlechaft für Anilin Fabrikation, Germany.)
10,767. Nofs and SpANERR, J. Adcock, London.
$10,788$. SHirt Frowts, T. McKeague, London. 10,768. Shirt Fronts, T. McKeague, London. Burberry, London.
10, Tho. ELatic-tike wheris for Road Vehicles, H. Carmont, London.
10,77. PJMP VALVEs, C. Muller, London.
10,772. DEODORISING PETROLEUM, A. J.
London.
10.73. Hir-brushes, H. R. Brewer, London.
10.774. Plantsa WOD. 10,77. Plasina Wood-block Floors, W. Sykes,
London.
10, 775 . Curlisa Tonos Holder, G. Kurschner, Lo.776. Scourina, de., Coitos WAste, F. N. Turney,
London.
 London.
10, 7 T78. Coll Plates, F. W. Kitto and W. Haworth, London.
10,779. Hand Tool for Breakina Coal, de. P. Alriq
London. 10,7s0. Grab for Litingo the Cores Formed by Rock
RriLs P P. . Crelius, London.
 10. R. Davis, London. Manvracrur of Compounds of Amanonis, \&c.,
A. R. Davis, London. A. R. Davis, London.
10.783. ExABLINo a Cyc
R. Hahn, London.
R. Hahn, London. 10, 784. PNEUMTIC Tries, R. Pritt, London.
10,785. Osclulativg Motor, J. S. McAndrew,
 London.
10,7s8. Gas and Hydrocarbon Esoines, F. Hentiod-
schweizer, London. Schweizer, London.
10,789. PLAREs Pristiso Presses, W. R. Lake.-(8. P.
Sten, jun., and C. H. Elliott, United States.) Stcen, jun., and C. H. Eliott, United States.).
10,770. SECURINa Ropes, W. R. Lake.-(A. Sabroe, Gerg. Many.)
10,792. Prbsure Rrcorders. J. Naylor, jun. London STANDS, H. Hoitz, London.

 10,794. Controlliva CAshes,
10,795. MANUACTVRE of AR
Gabbett-Fairfax, London.

4th June, 1894.
10,796. Devices for Athletic Purposes, J. Forrest, 10,797. Mare Mines for Fisishing Comes, E. J. Smith,
Bradford. Bradord.
Manchesters.
Mar Cor Mines, W. W. McLauchlan, Manchester.
10,799. Covers of Tlies of Cycle Whesls, R. Hill,
Stockton-on-Tees. Stockton-on-Tees.
10, 800 . Makisa Rallway Chatrs, A. E. Muirhead, Glaggow.
10.801. Skiobiso Pneumatic Tirks, J. F. Luckman,
Birmigham Birmingham.
10,802 . Covers for Pnevmatic Tires, G. Finney, Bir${ }_{\text {10, }}^{\text {mingham. }}$

TERProoniso Fabrics, W. Thomson and A.

E. Mavor, Manchester. E. E. Evans and W. W.
10.80. Skwisa CCorHs,
Tonkin, Strond 10,805. Door-strex, J. C. Boswell, Norwich.
10,806. VENTLATORS, J. Rothwell, London.
${ }^{10}$,So7. Pabuacilic Tribs for Cycles, \&c., R. Scott,
 in. Furneas.
10,09. Watre-gavar Cocks for Bollers, J. Hutcheson,
Glasgow, 10,810. Growss, G. Gibson, Croydon.
10, FIII. FIINO. CAEEMENT WINDOWs, T. Jenks and T.
Hook, Bath.

10,812. Fixisa Hub AxLes of Cycles, C. Sangster
Coventry. 10, s13. Frymaces for Brewery Coppers, R. H. Leaker
Bristol Bristol.
10.814. Crcless. A. Black, Glangow.
10,816. Ball, A. W. Hughes, Birmingham.
ONENE the Suryauss of Paper Tubes, S ONeill, Manchester.
10,817. CVCLE, I. I. A . Allan, Belfast.
10.818. BELT FASTENERS, T. A Abbot.
10.819. Askostatic Vksike, F. W. Golby.-(c. Oelling
 London, London. way, and J. C. Matthews, Birmingham.
10,823 Extraction of Alumsion, A. F. B. Gomess, London.
10.824. Prougctiles for Uase in Fire-aras, H. Barnes,
London. London. Poctiles for Uáe in Fire-arms, H. Bardes,
10,825. Ralway Brake apparatus, J. Ackermann London.
826. Metrod of Markisa CattLe, C. P. Hayward,
London London
10,827. Extractios of Metal from Ores, M. Body
London 10,828. WhistLes, E. L. Parker and W. W. Twigg 10,829. RULERs, Straioht-Evaess, te., F. H. A. Heyer
London.
 Co, Ld., and R. Britton, London, J. W. Carter, 10,831. Drisk for Caged Birds, J. W. Carter
London.
10,832 Hand-staypino Apparatus, E. Edwards - R Handstaupino Apparatus, E. Edwards - h
Mocmany.)
Mouting Work in Lathes, E. Edwards $(F . H$. Flottmann, Germany.) Lan, London.
10,834. CRANKs, H. J. F. Guillou, Kond
${ }_{\text {RIAL, }}$ A. Brown London.
10,83. GEARINo Chains, O. Lindner, London.
10,837 . Bolleks, O. C. Davis, Londo 10,837. Bonlers, O. C. Davis, London.
10,838 Foustive PkNs, P. Jensen.-(F. C. Brown, 10,83. TRA Cosines, A. Argles, London.
10,840 . Redecino Vibsatios, in Crcle 10,840. Redecina Vibration in Cycles, W. Edwards 10,841. CoNDESSED Food and FoDDER, H. Bunker,
London London. Preventisg Fracture of Skayts of Vehicles,
W. P. Thompson.-(C. Boene and A. Bcende,
 States.)
0,844 . Hinar Device for Windows, W. P. Thompson. - (J. H. Weigel Germany.).
, B4. Treatino Middinas, J. Higginbottom, LiverDisinyzctants, S. A. Vasey and C.F.Townsend, ${ }^{\text {London. }}$ 10,847. Stoppina Leaks in Ships, W. F. Beart, London.
10,84s. Dryina Onioss and Tomatoss, L. Stempel,
London 10,849. MAsh Tuss or Substitutes, L. V. D. Hulle, London.
London.
Londatic Cycle Tibes, J. B. Dunlop, jun. 10,851. Rallway Stovals, H. H. Lake.-(F. Beattie, United States.)
10, 852 . VALVE and other Morioss, C. H. Moberley, 10,853. Storaces Battrkries, J. Y. Johnson.-(La Sociéte L'Accumulateur Fulenen, France.)
10,s54. CoLork, J. Y. Johson.-(The Badische Anilin and Soda Fabrik, Gcruany.)
10,85 . Firina Shors in Quaries, de., J. MacNab, London. 10.856. Tire for Cycle Wherls, H. V. Karlebye,
 London.
10,859. Tribshino Maching, F. Kommnick and F.
Bertram, London. Bertram, London.
10, 800. Bicycuss and other Vehicles, A. Leloup,
London. London.
10.861. Ovenshok, \&c., M. and H. Frendenthal,
London.

20.802. W wer

10, 862. Whtenterube Bollers, dc., J. Garvie, jun.
London. London. London.
10,864. Sarety Sprino Halter Cbais, J. S. Yule,
Manchester. Manchester.
$10,865$. WATER FEED, J. M. Porter and J. Blakey,
Leeds. Leeds. 10,866 . Enoinges for War Purposes, J. E. Brown, Alton $\begin{gathered}\text { Al, } 867 \text {. Covers of Preveatic Tires, A. Gower, East- } \\ \text { bourne }\end{gathered}$ 10,868. Drawis-pliNs, H. Marles, Brighton.
1.869. Wasiso Machines for LauNDRIEs, W. H.
Facon, Nottingham.
 and W. Isherwood, Halifax.
an,87. SWELS of SHOTTLE Bexes, E. and G. Hindle 10,872. SzLr-anwoostina Foldina Chair, J. Harwood, Birmingham.
10 B7. CLasp for Whara-apparel, E. W. Rogers, 10 873. CLasp for Wearino-apparel, E. W. Rogers,
Birmingham.
10.874. Cotima CLoths, G. H. Smith and B. Cooper, 10,875. AppliANcE for the Usz of Cyclists, G. Johnson, 10,876. Syphos Cssterss, G. Brindley, J. McEwen, and S. Thompson, Birmingham.
10, si7. Skd DRILL for Sowisa Manures, G. Russell, sinnington.
10.,78. IRoNino Muchings, A. Metzger, Glasgow.
10,879. GoLr Holes, A. E. Pullar, Glas gow. 10,879. Golv Holes, A. E. Pullar, Glasgow.
10,880. Susshade, W. Fairweather.-(A. Pari, 10,888. Coxe Ovess, H. A. Allport, London.
10.882. Destructios of Ashrit Revose, J. Bennison, Manchester.
10,883. Drilisa GAs and WAter Mains, J. MeNair,
Wishaw. Wishaw.
10,884. Whest, J. Scott, Belfast.
$10,885$. Ekats, H. G. Wells, Londo
10,885. SEaTs, H. G. Wells, London.
10,856. FIITER for SyRUPS and Liquids, G. Rae, Glasgow.
10.87. Tpr for Ends of WALKisc-sticks, C.J.A. Francis, Glasgow. for Chatr Fegt, B. Barnett, Glasgow,
10,888. PAD
10,889 . Pointina Black - LRAD PENCLIS, L. Wolf, 10, 890 . Bevergleino Glass Circless, E. H. Pearce and E. Brown, Birmingham.
10,891. STBiso Economiskr, R. Robertson, Gateshead
on-Tyne.
10,892. Golf WAterproor Coat, C. H. Davis, J. Blake, 10,893. Balle for Bowliso Alleys, C. W. Rodman,
and Lo, indon. Cotina Teeti of Gear-wheris, J. L. Kunz, London.
10,85.. Brakg Mrobanism for Veloctipedes, W. H. 10,896. ToBacco PIPEs, H. McOullough, Belfast.
10.897. Poorstivo Bricks, C. Wilson and A. H. Pepperill,
London. London.
London. Buildisa Blocks, H. T. and J. Grainger,
Lond. LDondon.
10, $\begin{aligned} & \text { ford. Wire }\end{aligned}$

10,900. Fly-trap or Catcher, C. Adams-Randall
London. 10,pondon. Jkelled Metalware, L. E. Ravault, Bir10,902. Sered Ispicators, W. T. Lintner. London,
10,003. Skwing Macaines, H. H. Iake.-(8. H. Wheele Onited States.) C. Radeliffe, London.

London.
L.007. Wateriso and other Cass, G. A. Chapman, London.
10,908. Door Sprisas, G. A. Farini, London.
10909 . AUTOM ATIC GVARD for Forks, C. E. Shefield.
10,910. MAch SHikLD, P. Shields, Belfast. ,911. Ftre-proor Structurss, i. W Rammage an W. Clark, London. Wristbands, \&c., G. J. Newmad,
$0,9 i 2$ Preservina London.
10,913. Horse Reg3 and Slekpiso Ruas, J. Bartram,

 London. London.
10,919. Unbrellas and Parasols, A. J. Boult.-(B. Meger, Germany.)
10,920 Serins Tires, W. P. Thompson.-(J. B. Weat, 10,921. JVatiryina TYPE, W. P. Thompson- - (J. L. Mc Millan, United Stata),
$10,922$. P NEUMATIC SADDLEs, E. E. Preston and A. H Bates, London.
0,923 STrEL, W. P. Thompson.-(E, Bertrand and 0 Thich, Austria. $)$.
10,924. Taps J. Samuel, Londoz
10,924. Taps, J. Samuel, Londoz
10,925 . CARDING and other Ewoinss, G. Turckx London.
10,926. Apparatus for Exhibitiva Goods, F. W. Harris, London.
$10,927$. BLortris PAD, M. Bernede, London.
10.928 Boxks for PLLL London.
$10,920$. VELocipedes and Locosotives, A. Hunnable,
London.
London.

10,933. Matches, W. and C. Schaol, Berlin.
10, 034 . Fixino Cranks, dc, on Sharts, G. Taylo
London.
10, S35. Sor Morios for Looss, K. Hilmig, jun London. 0,936 . Skivisa Machines, H J. Haddan.-(The Scoll Shoe Machinery Company, Onited States.)
10,037. TENsion Devices, H. J. Haddan.- (G. W. Bake United States)
0,933 . HARrs. H. Haddan.- (The C. F. Zimunerman
Company, Vnited Statea) Company, Vnited Statea.) . E. Hodder and w. Good acre, London.
Hoded Coir Yarn Mat Weavina Machinery, E. Hodder, London
Indicatino Apparatus, P. Ellis, London. . 10 , Sik Hat Pads or Polishers, w. S. Simpson London.
10,944. Rotary Engangs, Le de Maio, London. Sa44. Centrifugal Creas Separators, E. G.
Salonius London.
10,945 . Cream Separators, E. G. N. Salonius, London.
0.946. I Brighton Impone Beveraoss, E. A. B. Beaumont Brighton.
$10,947$. Live-bgovs, J. P. A. Gallbert, London.
0,948 . MAKINo STEEL TUBEs, J. Y. Johnson. $10,948$. Makiso Stekl Tubes, J. Y. Johnson.-(J. P
8ren, Franc.).
0 , 949 . Sisogisg Cloth, J. R. Reynolds and W. E. Whittle, London.
O.950 An IProve INraler, I. Quaglio, Iondon.

6th June, 1894.

10,953. Horns for Rallway Waoons, E. Rees, Mon mouthshirc.
10,954 PREVEININa the FALL of a CáaE in a Pit-shart,
G. Archer, Ilkeston. 10,955. RaILWAY Cgairs, R. M. Harison, Glasgow.
10,956. MANUFACTURE of Starch, R. Wilson, Glasg , Glasgow.
 Auld, Dublin.
Sonetina Maveracture of Goly Clues, Slazenger an Sons, London.
10,961 . Cricker Bats, C. Rose, jun., Accrington.
10, Rear Rover PUMPs, A. H. Tyler and J. S. Elis do Vesian, London.
0, cos. Closina Stage Curtains, E. Lytton, Manchester. Billiard Cug Holder, J. F. Childs and E. F. B. Rolfe, London.
0,96 .
SwERPING, \&c., Chingexs, J. Godwin, Man c,966. Window Sashes, J. Lawrie, Glasgow.
0,967 ELectrical Switches, J. H. Tucker, Bir mingham.
0,968 Inseriva Press Papers, J. Reffitt and H
Clife, Halifax. 10,969. Drill Coulters, J. E. Holyoak, Leicester.
10,970
Machise for WAshivo Botive, T. Hill, Hull 2,971. Lastivo Piscers, J. Allen, Leicester
0,972 Oroan Pipss, J. T. Cussons, Beverley 0,972. MGAN Pirgs, J. T. Cussons, Beverley.
Mans. Manhole Covers in Stean Bolusra, J. Mill
Manchester. 10,974. Door Sneck or Catch, A. W. McMurdo Glasgow.
10,975. Decorative Laspra, D. L. Simpson, Glasgow.
10,976. BlisDs, C. Horton, Birmingham.
 Eglogkorry, R.S O.
S.978. Mrasining Instruments, W. T. Goolden an 8. Evershed, London.
10,979. Packine for Piston Rods, T. Hosking, Liver pool. Fender Cures, F. W. Green, Birmingham,
10.980. Find
10,981 . The Cricket Bat Prerector, E. A. Pemn Coventry.
London Svoir Shell, J. B. Harper and R. Gomme London.
0, P3, Prodvotion of Vineoar, E. Pew and W.
Blenheim, Surrey.

SELECTED AMERICAN PATENTS

518,342. Tin-platino Machine, C. R. Britton, Cleve Craim. - (1) In a tin plating a tion of a tinning pot, agrease apparatus, the combina neck connecting said two pots, with supporting
masonry in which are formed two flues \mathbf{E} and G, the masonry in which are formed two flues E and G, the
former extending in front of the tinning pot, the
latter behind the neck and under the grease pot, and a wall which divides the space above the neck into
two flues E, G, the former being connected with flue E, the latter with flue \mathbf{G}, whereby the tinning pot on the one hand and the rear part of the neck and the
grease pot on the other hand may be independently
heated, substantially as and for the purpose specifed
(5) In a tintplating appanatus, the combination of (5) In a tin-plating apparatus, the combination of a
tinning pot, a grease pot, and a connecting neck, with
two guides D D ach having three enges two guides D D' each having three flanges ot de d d
thereby forming, on each guide, two grooves which

are arranged with respect to each other, substan
tially as described, whereby either edge of a plate may be placed in the upper groove on one gulde, whitle
the other edge is placed in the lower groove on the the other edge is placed in the lower
other guide, for the purpose specified.
518,310. Usiversal Phase Alteryate Curryy
Motor, T. Dincan, Fort Wayme, Indianu.--Filed May 222 , In an a alternating current electro-mays.
Ctain- (1) In an
netic motive device, the combination of a laminated netic motive dovice, the combination of a laminatod
feld having its polar projections facing inward at an angle, as shown, , and a closed secondary or armature, aul substantially as set forth and described. (2) In a
univeral phase motor, heombination of a lainatod
iron field having polar projections with suitable coils wound thereon for the purpose set forth, a closed
armature of low resistance and a magnetic path armature of low resistance and a magnetic path
diverter for regulating the direction of the magnetic
fux flux through the armature, substantially as described.
(3) The combination in an electro-magnetic motor for single or multiphase alternating currents, of a field magnet adapted to be connected with said, currents, a
closed rotary armature, a magnetic path diverter and closed rotary armature a magnetic path diverter and
the adjusting lever, all substantially as and for the purpose set forth. (4) In a universal phase alternating
current motor, the combination of an energising field cmret m, a closed cylindricion secondary or armaturo
magnet
C, the bearing heads F supporting said armature, and

he adjusting shaft S on which the said mandrel heads are adapted to rotate, all substantially as described.
(5) In a univeraal phase motor, the combination of the teld magnet, the armature e C, the bearing heads F,
the diverter D, the lever J H
f, the worm the diverter D, the lever J H L, the worm gear M, the
ajjustig ghatt S, and the plug or switch-board \bar{V}, all
is deacribed and hel as described and hereinbefore set forth. (6) In an
electric motor for single and polyphase currents, the
combination of a laminated field having its polar combination of a laminated field having its polar
projections facing the armature at an angle, and pro. Vided with suitable coils located in the circuit or
circuits of the supply, and a laminated diverter for circuits of the supply, and a laminated diverter for
varying the speed and direction of rotation, all sub-
stantially as described. (7) In an electric motor for stantially a s described. (7) In an electric motor for
single and polyphase currents the combination of a single and polyphase currents the combination of a
laminated fold having its polar projections facing the
armature at an angle, and provided with suitable coils armature at an angle, and provided with suitable coils
located in the circuit or circuits of the supply
a
lominated diverter for varying the speed and direction aminated diverter for varying the speed and direction
of rotation and the terminals, plugs, or switch-board as he
518.455. Apparatus yor Hzatino Air, J. Hoveden,
Glangore, Scotland,-Filed August 21یt, 1593 , Claim.-(1) \mathbf{A} steam boiler having an air-heating
chamber in connection with the smoke-box, and Chrough which pass the products of combustion, an air inlet or inlets to the chamber, fuess or the passage
of heated air from said chamber, and a partition or partitions in the latter to give divided streams of air
through the chamber, substantiall as described. (2) through the chamber, substantially as described. (2)
A steam boilcr having an air-heating chamber in con-
nection with the smoke-box, with vertical tulbes nection with the smoke-box, with vertical tubles
therethrough for the passage of the products of com-
 bustion, an air inlet or inlets to the chamber, fluos
for the pasago of the heated sir from said chamber
and horizontal partitions in the chamber, substantially as and for the purpose set forthber, (3) A stcam
boiler having an air-henting chamber in connection with a smoke-box, with a a central vertical division
wiste and horizontal plate and horizontal partitions for the distribution of and side flues for the passage of the heated sir from scriced.
the to the furnace, all substantially as de-

[^0]: The institution of Naval Architects.-The summer meeting will be held this year at Soutbampton, beginning on Tuesday, July
 2th. An excellent programme is being arranged, particulars o which will be made public at an early date.

