THE ENLARGEMENT OF LIVERPOOL STREET STATION, GREAT EASTERN RAILWAY.

No. V .

Double and single stanchions.-The arrangement of double columns carrying single vertical stanchions, hown in Fig. 23, is continued throughout the whole length of the Parcels Office until the end walls are reached, when a modification of the former design is adopted. Restricting our attention for the pre sent to the far, or railway end wall of the office

channel iron 2 ft . by 1 ft . $10 \frac{1}{2} \mathrm{in}$. by $1 \frac{1}{2} \mathrm{in}$. thick, and provided with a central rib of one-half the depth of the sides. They are bolted down to the base girder by a pair of bolts $1 \frac{3}{8} \mathrm{in}$. in diameter. To the capitals of and 26 , which is a polyribbed double flanged horizontal cast iron girder, 7 ft . long, 3 ft . deep, 2 ft . 6 in . wide, 3 in . thick at junction of flanges and web, $2 \frac{1}{2} \mathrm{in}$. at edges and in the web, and is shown in section at C C in Fig. 26, which also contains an elevation of the single stanchion shown in section in Fig. 27. It is of the same form and of the same dimension in elevation as the pair which support it; but, instead of being 1 ft . $10 \frac{1}{2} \mathrm{in}$. in cross section, it is reduced to 1 ft . 4 in ., and is in . less in the different thicknesses. It will be evident that where the double columns and single vertical stanchions are placed at right angles to the side walls of the building, some alteration must be made in the relative position of the different members of the supports. It is no longer possible to carry the load or adjust the centres axis of the columns, so that the ensemble of the especial arrangement is rapresented in Fig. 29
where the fantail gallery and approach from the first part |and a section through the centre of the table girder in of the terminus joins on to the building, we find that the junction the double cast iron columns are replaced by twin stanchions, and an upper single one of the same material ranged in both the first and second storeys flat against the wall, something after the manner f a pilaster, or considering the depth of the projection more like an interior counterfort or buttress. An eleva tion of these double stanchions, and supports for the first nd second floor, is shown in Fig. 23, together with cros sections of the longitudinal plate girders, which will be subsequently referred to. While the general disposition of the various parts is similar to that already described or the twin columns, and includes a table girder, it is to be noticed that the cast iron bed or base-plate is in three parts, and consists of an upper wedge-shaped poly-

ribbed girder, 4 ft . deep at the centre, 2 ft . 6 in . deep at the ends for a length of 3 ft . over the bearing plates, and 3 ft . in width, as shown in Figs. 23- 25 . In the last figure it is cally of almost the same dimensions and form as is pract girder, surmounting the twin columns with a trough lower flange $3 \frac{1}{2}$ in. thick in the horizontal part, and 3 in. in the vertical sides, tapering to 2 l in . at the upper end. Both the middle rib and the upper flange are Bin. in thickness, diminished in the flange to $2 \frac{1}{2} \mathrm{in}$. at the horizontal edges This upper bed-plate is supported by two others, that is, it virtually rests upon a pair of hollow cast iron abut ments which stand upon a solid foundation of concrete as represented in Figs. 23, 24, and 26, and is thus in the

Fig. 30. The proportions, thicknesses of metal, and general sections are similar to those already described and illustrated.

Elevation of Stancheons $V \& W$.

 31. It is taken through the line of the tracks, and contains details of the construction which are not shown in the former figures. Each side wall K of the building iscarried upon a box girder of great strength, of which the
the entire length of the girder, which is $51 \mathrm{ft} .11 \frac{1}{2}$ in., and all in. in thickness at the centre, diminishing to two plates of the same thickness at the ends over the columns as in ig. 33, which also shows a portion of the stanchion of the table girder over the twin columns. Of the $\frac{1}{2}$ in. flange plates the maximum length is 30 ft ., which gives rather more than a quarter of a ton for the weight of a single plate. What may be regarded as the common or constant part of the section of the box girder consists, therefore, of two plates 3 ft . by $\frac{1}{2} \mathrm{i}$ in. each flange, of four angle irons 4 in . by 4 in . by in., of a maximum length of 34 ft . 5 in ., and a pair of sides or webs placed 2 ft . apart from out to out, and varying in hickness from $\frac{1}{2}$ in. at the centre to $\frac{7}{8} \mathrm{in}$. at the ends. In the flanges, the rivets passing through the plates and angle irons, are 1 in . in diameter, but only $\frac{7}{3}$ in. elsewhere, unless otherwise specified. All bearing surfaces are flush riveted, and the rivets are pitched 4 in . from centres. At distances of 10 ft . 8in., where the transverse floor girders are placed, the webs of the main longitudinal box girders are stiffened by double angle irons $3 \frac{1}{2}$ in., by $3 \frac{1}{2}$ in. $\mathrm{bv} \frac{1}{3}$ in. Figs. 32 and 33 .
Plate girders.-Dividing for a portion of the height the two spans of the Parcels Office, is a partition wall K, shown in Fig. 31, and 14in in thickness. Here the longitudinal box girders carrying the side walls are represented by a pair of plate girders whose vertical axes are in a line with those of the twin columns, supporting the table girder upon which they rest. Each plate girder-Fig. 34 -is 4 ft . 6 in . deep at centre, bach plate girder- 18.34 plates $\frac{1}{2}$ in thickness and 2 ft wide, diminishing to one

the two central spans of the Parcels Office is given in Fig. at the ends. Angle irons 4in. by 4 in . by $\frac{1}{2} \mathrm{in}$. rivet the
by $\frac{1}{2}$ in. rivet the thickness fromge plates to the web, which has a varying exception to this otherwise to $\frac{20}{8}$ in. at the ends. An occurs on the inner side of the girders or those facing

position of a girder with a clear span of 11ft. 4in. Each of the under bed. plates consists of a hollow casting 1 ft .6 in . over all 8 ft . by 6 ft . 8 in . It has a depth o faces 2 tin . in thickness, and is secured to the concrete by six slotted wedges or bolts. Upon the upper bed-plate or girder, as it virtually is, are bolted the double stanchions shown in elevation in Fig. 23 and in section in Figs 24 and 28 , where they have the appearance of a very large
sections at the centre and ends respectively are seen in Figs. 32 and 33 . At the centre the girder is 5 ft . 7 in . in tin. thick in both the upper cover. plates are each 14ft uper and lower booms. These cover collectively the separate joints and designed so as to and thus avoid the multiplication of the different plates, and thus avoid the multiplication of individual wrappers plates, 3 ft . in width, which quantity is constant throughout
each other. The plates-Figs. 31 and 36 -next the angle irons in both flanges are 2 ft . 3 in . in total width, the additional projecting 3in. serving to carry the cast iron fue plates of the smoke chamber, which will be subse quently alluded to. Passing on to the transverse floor girders C C-Fig. 31-they are also of the plate description, as shown in cross-section in Fig. 35, where they are riveted at their junction with the main longi-
tudinal plate girders.

Floor girders and joists.-The general arrangement of the floor of the Parcels Office will be apparent from an inspection of the two Figs. 31 and 36. Upon the cross girders C are riveted at intervals of 5ft. apart the rolled steel joists
F F, which have a depth from out to out of 8 in., a width over both flanges of 5 in ., and a weight of $31 \cdot 25 \mathrm{lb}$. per foot run. To the lower flanges of these are attached smaller rolled steel joists, spaced 1 ft . 6 in . apart, and having a section of 4 in . by $1 \frac{13}{4} \mathrm{i}$., and a weight per running foot of 8.5 lb . Between and around this skeleton steel gridiron flooring framework is well rammed and thoroughly consolidated a mass of concrete composed of coke breeze and Portland cement in proportions of about 5 of the former to 1 of the latter. It will be seen in Fig. 36 that there is a depth of 2 in . of this conerete over the larger sized rolled

Fig. 32

steel joists, and a depth of 3 in. below them, forming a kind of ceiling to the under storey. While in process of ramming and consolidation the lower surface of the concrete was supported by temporary sheeting boards and props. Over the concrete is spread a layer of French asphalt lin. in thickness, A different description of flooring is adopted for the side approaches to the Parcels Office, as will be seen on referring to the details in Figs. 37 and 38. The smaller rolled steel joists are dispensed with, and their place occupied by cast iron plates. These latter vary slightly in their dimensions, which are on an average 4 ft .8 in . by 4 ft . 8 in . They have a dip of 2 in. and a uniform thickness of sin. metal. The plates are in two lengths, Fig. 39, and are bolted together by three bolts $\frac{8}{8} \mathrm{in}$. in diameter. A section of the joint is given in Fig. 40. Over the cast iron plates is laid a bed of concrete, and upon it are bedded wood blocks $5 \mathrm{in}$. . in depth. A similar description of flooring obtains for the ramps or inclined approaches from
Bishopsgate-street, but the rolled steel joists are a little
smoke-hole is connected with four smoke stacks S , and finally reach the open by means of the respective which are continued right up through the building to smoke stacks.
a height of about 4 ft . above the ridge of the roof. In Second storey.-Although it is possible that the second case the draught should not be sufficient to keep the storey of the Parcels Office may not be subjected to loads of station and the area below the building clear of smoke, quite the same weight as that immediately below it, yet it
fans can be used; but hitherto there has been no neces. is constructed in a similarly strong and substantial

sity for their employment. Each stack has an opening manner, which will appear on inspecting the general cross in the clear of 2 ft . 3 in . by 2 ft ., and consist of a series of section and Figs. 14-6a. The first of the last three cast iron plates bolted together through external flanges. Between each pair of tracks, at or near the point where the locomotives would stand underneath the Parcels Office, is constructed a smoke chamber, shown in detail in Fig. 41. There are consequently four altogether, shown in section to a larger scale with

Fig. 36.

the main longitudinal girders M , the cross girders C , office. The girder P , a portion of which is shown in and the rolled steel joists V and V , Fig. 41. Each smoke elevation and plan in Fig. 4a, has a depth of 6ft., a width chamber is therefore built parallel to the main longi- over flanges of 3 ft ., and two webs $\frac{1}{2}$ in. thickness each. tudinal plate girders of the Parcels Office, and occupies All the flange plates, the longest of which is 30ft., which

heavier in section, being 9 in . deep and 7 in . wide over flanges.
Smoke flue.-In the general plan of the Parcels Office the letters TTT indicate the lines of track-eight in number, which all pass underneath the building at the entrance to the sind engines are passing, and also standing beneath the same spot, it becomes necessary to make some provision for carrying off the smoke, waste steam, and wher gaseous vapours emitted by locomotives, which we shal now proceed to describe. It must be premised that a hori zontal flue, H, F-in Fig. 31-is carried the whole length of the Parcels Office, between the double longitudinal plate girders, and is built of side walls of brick, with top
and bottom curved cast iron plates. This flue or
a space equal to the distance 10 ft . 8 in , between the pair of adjoining cross girders C C. Along the steel joists V, which are 14 in . deep by 6 in . in width, at intervals of 1 ft . 2 in . are rivetted tee irons 4 in . by 3 in . by $\frac{1}{2} \mathrm{in}$. Con. crete temporarily supported as before mentioned, is rammed all round, so as to form the floor of the chamber and one wall of the smoke possages P P, in Fig 41. The other side wall consists also of a bed of concrete 14 in deep, which deep, wish V having a section of 12 in by 6 in rod teel joists P , havis a section of 12n. by bin. The passes the smoke and steam of the locomotives into the chamber. From hence they find their way over the top of the main girders M into the smoke-hole, Figs. 86 and 41, from which they gain access to the horizontal flue,
vary from two to seven in number, are $\frac{1}{2}$ in. thick, and are riveted to the webs by rivets lin . in diameter through the horizontal angle irons, $4 \frac{1}{2} \mathrm{in}$. by $4 \frac{1}{2} \mathrm{in}$. by $\frac{5}{8} \mathrm{in}$. Rivets in other parts of the girder are $\frac{7}{8} \mathrm{in}$. in diameter, with a pitch of 4in. Plate girders W, supported like the box girder P by cast iron stanchions, carry the cross-girders P_{1} at the side walls. They have the same depth of 6 ft ., but are only 1 ft .8 in . in width, while the thickness of flange plates, angle irons, and web is $\frac{1}{2} \mathrm{in}$. throughout, but the sides of the angle irons are reduced to 4 in . by 4 in . The junction of the girders W and the cross girder P_{1} is shown in Fig. 6a, and needs no further description. An elevation of the cross girders P_{1} and a section of them are given in Figs. 1A, 2A, and 3A. They are spaced, as a rule, 21 ft . 2 in . apart, although this distance varies in

some of the bays, are 3 ft .6 in . deep at centre and 2 ft . in uniform width. These distances correspond with the spans of the smaller plate girders P_{2}, which carry the ceiling joists of timber $5 \frac{1}{2} \mathrm{in}$. by 4 in . To these are bolted

the runners $3 \frac{1}{2}$ in. by $2 \frac{1}{4}$ in., to which the sheathing and layer of expanded metal and plaster are attached, as shown by the strong dark line in Figs. 1a and 2a. Upon the upper storey are situated the offices appropriated to the use of the officials and employés of the company,
the whole back and front ranges being divided by a corridor running the entire length of the handsome facade erected along the north side of Bishopsgate-street. The whole of the heavy ironwork in connection with the new building was constructed and erected by the well-known firm, Messrs. Head, Wrightson, and Co., of
box girders weighed as much as 40 tons, and 100 tons were taken up by the footbridge. They were riveted up complete by machine riveting in the workshops, sent by special train to their destination, and hauled up bodily to their permanent site by a couple of powerful derricks.

Fig. 41

the Teesdale Ironworks, Thornaby-on-Tees, and of 5, by hand. About 130 tons of steel floor joists were fixed in Victoria-street, Westminster. We are indebted to the position. The whole of the materials and workmanship courtesy of Mr. S. Young, of the firm, for some particulars respecting the work. In the columns, stanchions, and floor plates there were some 620 tons of cast iron used, and the box and plate girders and their accessories
accounted for 1230 tons of wrought iron. The heaviest
was English, and the contract occupied about sixteen months, the work being carried out from beginning to end without a hitch or accident of any kind whatever. The six hydraulic lifts were provided from the Elswick The six

NEW VICTORIA BRIDGE, BRISBANE-PIERS AND PIER BRACING-DETAILS

THE VICTORIA BRIDGE OVER THE BRISBANE RIVER.
By the two-page supplemental engraving which we publish this week, we commence the illustration of the new Victoris Bridge now being erected over the Brisbane River, from the designs of Mr. Alfred R. Brady, Assoc. M. Inst C.E. After the destruction of Victoria Bridge by the great flood of February, 1893, a sketch design for a bridge was prepared by Mr. Alfred B. Brady, who is Engineer for Bridges to the Department of Public Works, and received the approval of John Whitton, M.I.C.E., for many years enmendation of Mr. the New South Wales Railwany years engineer-in-chief of Premier-the proposed bridge being an engineering work of much magnitude-went carefully over the design, and spent some time in examining the site and the old bridge. The preparation of the working plans was then proceeded with. Of a selection of these we now commence the publication. Invitations for tenders were issued, and a large number received by the $28 t h$ March last. The selected tender was accepted on the 10th of April last, the contract time being hirty months for completion.
The bridge will consist of six 170 ft . spans, with three main Iongitudinal girders in each span, the whole carried upon five piers of three oylinders each. The girders will be of the hog-backed-lattice type, 22 ft . deep at the centre and 10 ft . at be of cast iron masonry, backed with concrete. For about half the length
of each span the main girders will be braced overhead with light lattice girders and diagonal bars. One end of each main girder wiul be fixed on cast steel rocker bearings, but der ond rest and main girders on the bed-blocks. bed-blocks.
Brisbane, Queensland.- New Victoria Bridge orer the Brislone River.
Alfred B. Brady, A.M.I.C.E., Engineer.-Tenders for the Entire

Geo. W. Kelly, Melbourne, Victoria
Watson Bros, Brisbane,

Brand and Dryborough, Townsville, Queensland
Overend and Robinson, Overend and Robinson, Brisbane, Queensland . Johnart and Sons, Adelaide, S.A. .
He Jude, Adelaide, S.A. Q.. Brïbane. Queensland
McArdle and Thompson, Brisbane, Queensland
Chamberlain and Wylie, Brisbane, Queensland McCormick, Melliourrue, Victoria Queensland
Engiveer's estimate.. Alternative Tender for

 Alternative Tenders for Alutments and Approaches only.
Chamberlain and Wylle, Brisbane, Queensland
A. Midson, South Brisbane, Queenland (accepted)
Engineer's estimate..

Swaza Lma
The length of the bridge between the faces of the abutments will be 1011 ft . 8 in., while the width between the parapets of the footways will be 78ft. The level of the roadway 25 ft . at the south end of the structure, the gradient thus being 1 ft . in 90 ft . The level of the highest known flood in the Brisbane River, $27 \cdot 17 \mathrm{ft}$. above high water ordinary spring tides, was recorded on February 5th of this year. In the vent, therefore, of a repetition of that disastrous inundation there would be only about 2 ft . of slack water on the roadway end of the bridge, where the the bridge, whilst at the north way would be 91 ft , above the current was strongest, the roadof the roadway on the new structure will be 2 . The surface the old throughout its length affording 2 ft . higher than headroom above water level of 3 ft . more than exist/d under the superstructure of the old bridge. The weight of the iron and steel work in the new bridge will be about 3265 tons, of which about 1860 tons will represent the weight of steel. Cylinder piers.-Every cylinder, three of which form a pier, will be sunk to a hard rock foundation, each pier in the direction of the stream having a base of 63 ft . Judging from borings made after the Fe uary floods, the depth to which thil be necessary to sink the cylinders will vary from 60 ft . cylinders from high-water mark. The diameter of the level of the river boull ben distance above the will be reduced to ft by a high-water mark a cylinder will reduce the diameter to 6 ft . From the moulded
base to the cap the cylinders will be 6ft. in diameter. The outer cylinders will be 13 in. metal at the base, reduced to will be of in thicker metal throughout, in order to sustain the extra weight thrown upon the centre girders. The cylinders will be filled to the top with Portland cement concrete, and finished with ornamental cast iron caps and bases in keeping with the architectural treatment of the stone abutments and arches to same. Wrought iron riveted
diaphragm bracing of great strength will connect the diaphragm bracing of great strength will connect the
cylinders, each pier having four elliptical panels above highcylinders, each pier having four elliptical panels above high
water level, with girder ties at top and bottom. The webplates will be pierced with ornamental design. The cylinder wolted further braced with heavy cast iron spandrils firml the bracing, apart from thewater level. In fact, the whole o the bracing, apart from the greatly increased dimensions of wanting in the light diagonal bar-bracing of the old bridge piers.
Mas

Masonry abutments.-The bridge will gain considerably in beauty and finish by having massive and architecturally each end. The abutments will be faced with O'Connelltown purple hard stone, rock-faced with margin drafts and V joints, of brown freestone. There will be solid piers and archways, of brown freestone. There will be solid piers and archways, pillars, built in white and brown stonework, to cover the ends has been adopted. The walls will walls a quadrant form archway piers, and terminate with square lamp pillars. The wing walls will be entirely of brown freestone, with heavy moulded copings. The lamp pillars and piers to archways will have alternating bands of brown and white stone upon O'Connelltown-stone plinths, with rusticated joints and moulded bases, copings, and seats for lamps, and moulded imposts under the arches. The arches and the piers at the arch level will be entirely of white freestone, with rusticated filled with slabs of polished ornamental granite. Surmounting these will be an entablature treated inthe Doric style, enriched top. The abutment at the north end will be founded on rock, while the southern abutment will be carried upon a foundation of driven piles.
Roadways and footways.-There will be two road or divide the roadways, which are each to be of a clear width of 24 ft . Cantilevers springing from the outer main girder will carry the footways, each 9 ft . wide in the clear. The decking of the bridge will be constructed of steel trough plates
12in. deep, laid transversely between the main girders and riveted to the flanges of the same. This decking will be covered with tarred blue metal, finished on the surface ment of hardwood blocks 6 in. deep, with 3 in which a pavewill form the carriage-ways. It is, animals approaching the north side of the river shall use one roadway, and those leaving the city the other, a similar arrangement being made with regard to foot passengers on the footways. The flooring of the footways will consist of corrugated steel plates laid longitudinally, riveted to the cantilevers, levelled with tarred blue metal screenings, and the surface covered with Val de Travers or Seyssel's asphalt lin. thick. The parapets of the footways will be of wrought ron lattice work with a moulded hardwood handrail, and ornamental wrought iron brackets on the ends of the canticast iron finials.
Approaches.-The increased width of the bridge will require a corresponding increase in the width of the approaches. On road and William-street will be moved back a distance of 18 ft . That much of the retaining wall will be taken down and the necessary levelling done to give a better approach hops on $i a m$-street. At the South Brisbane approach the save by the slightly-raised level of the approach roadway, but the building on the east side, known as the People's Cash Store, will have to be removed. The land on which the store is built, together with the right-of-way alongside, will be acquired by the Government and thrown into the approach, ines will take an easterly sweep on to the bridge.
Fender piles.- For the purpose of protecting the bridge against contact with floating debris during flood time, fenders will be provided opposite each pier on the upstream
side. Each fender will be of shape, and will consist of five piles driven to a hard foundation, and being of the height reached by the 1893 flood, and sheathed with muntz metalup to high-water mark. The piles will be strongly braced ogether, and sheathed on the outside, above high-water mark,
with 9 in . by 3 in . hardwood planking. The nosing of the enders will bel planking. The nosing 2 ft . 6 in . in breadth. The width of the fenders across stream will be 10ft., and their length in the direction of the stream a minimum, the fenders are to be placed in crescent form, minimum, the fenders are to be placed in crescent form, the clear spa
Lighting of the bridge.-Gas fittings are to be provided for he lighting of the bridge, but if it should at any time be suitable for carrying electric lights. The lamps to be used vill vary from 20 to 50 rall power. The appro be used be lit by a four-light lamp on each pillar, carried upon ornamental cast iron standards, and on each side of the archways there will be two lanterns fixed to the walls with ornamental wrought iron brackets. At each intersection of the outer girders, over the piers, there will be three-light lamps on ornamental cast iron standards for the lighting of the roadways and footways. In addition, in the centre of each span in each roadway will be suspended a 50 -candie means of an ornamental bracket. Gas will be supplied to he lamps by service pipes from the companies' mains, half the supply being drawn from the city side and half from the outh side of the river.
Water pipes, tram lines, and telegraph and telephone cables. -Provision is made to carry water across the bridge by means of two riveted steel 12 in . pipes suspended beneath the decking on each side of the centre girder. The Brisbane Board of Waterworks will supply the pipes, which for the sake of conridge. In the plame way the contractor will put down the briage. In the same way the contractor will put down the
rails and all other necessary material. The tram lines will e laid in each roadway alongside the centre girder. The cost incurred under these heads by the Bridge Board will be pany. Close to the parapets and below the surface of the ootways will be wooden troughs, in which the electric telegraph and telephone cables will be laid. The unsightly overhead system of telegraph wires will thus be done away with o far as the bridge is concerned.
Building.-The bridge is being built in two sections. Two of the three cylinders required for each pier will be sunk on the east or down-stream side of the existing bridge This will carry one-half of the new structure, and by xing two of the girders of each span in position and ready for traffic. The completed half may then be ay wiled of by the public, the rempleted baridge may the availed of y the public, the remaining old bridge and the temporary the new structure erected. The centre line of the new bridge is only 32 ft . down stream from the centre line of the old one The parapet of the up-stream footway of the new bridge will be 18 ft . removed in a down-stream direction from the upstream parapet of the old bridge. Although the work is to be completed in two and a-half years, it is expected that the frst section of the bridge will be ready for traffic in twenty ne months from the date of the contract.
coffee and cacao drying machinery.
THE preparation for market of many items of tropical agricultural production differs materially in several importan usually be subjected without injury to rapid and in leaf may while such as are of the character of beans need to have their moisture expelled far more gradually. Partaking of the nature of these last are the fruits of the coffee and cacao trees, from the second of which the ordinary so-called cocoa of commerce is prepared. Not alone does the difference in the required treatment to which we have above referred exist, but the method of applying it varies in the different countries producing the same plants. Both coffee and cacao, for in-
stance, grow freely in Ceylon, but it is exceptional in respect
out the length of the machine. A slow circular motion is imparted to these by the worm gearings at G G G, driven by so shafting H H. The prongs upon the radial arms I I are whole mass of beans should be repeatedly turned over during its travel to the point of its discharge at K, and so permit the free permeation throughout it of the heat from the pipes, ensuring uniformity in the drying. One of the drums ove which the band passes is driven at very slow speed by the screw and pinion gear at L upon the main driving shaft M the power being transferred to the drum by similar gearing a N. On the intermediate shaft is provided a coupling whereby it may be disengaged from the main driving shaf and the machine actuated by a handle worked by manual power. A circular fan is provided at 0 to withdraw the of drying.

of drying. As has

has been above remarked, the motion given to that four hours should bextremely slow. It is computed from the time of their falling on the band from the hopper E to that of their delivery at the other end of the machine This time is calculated as sufficient exposure to the heat of the hot-water pipes to thoroughly dry them. It is approxi mately estimated that each machine can so prepare two tons of beans per day, so that the output of the whole battery of six machines, equal to 12 tons daily, would suffice for the production of a very large estate indeed. The inventor prefers the use of hot-water pipes to that of heated air for a very sufficient reason, this being that having to trust largely this method than might result from the employment of that second-named. The power required to drive this seemingly heavy piece of machinery is singularly small. On trial we found this to certainly not exceed half a horse-power, and it was manifest that manual labour could be readily availed of if necessary. We believe it to be Mr. Gamarra's in-
tention to work the whole battery of six machines in line tention to work the whole battery of six machines in line,
motion to be given to the driving shafts when coupled up by mule whim
From what we heard, these machines are, relatively to their size, very inexpensive, though we have not obtained data
sufficient to enable us to estimate their cost with full
sectional elevation

to that island to have to resort to artificial heat for their preparation. Sun heat in the eastern colony is only inter-
rupted by rain at comparatively regular intervals, and the rupted by rain at comparatively regular intervals, and the posure of both the plants named can be safely given the ex rainfall, however darives efficiently Notably is this deprivation felt in some the adoving South America, wherein the cultivation of coffee provices of is widely carried on. None of these provinces, perhep suffer more seriously from this irregularity than does that of Ecuador, and it is a machine designed by a planter of that province that we were recently afforded an opportunity of seeing in action. Its object, as may be inferred from the foregoing remarks, is to cure the beans, both of coffee and cocoa, by artificial heat, so as to avoid the risk of damage
during the drying process which would arise from unanticiduring the dry
pated rainfall.
The machine illustrated is one of six that have been con structed in this country for shipment to Ecuador by Messrs Bowes, Scott, and Western, of the Phœenix Wharf Works, total length is 60 ft ., and its width 7 ft . In its main feature it is a box of these dimensions, built of light iron plates fastened on a framework of either wood or iron. This box is A A, and given motion to by them, passes an endless band B B B B of woven copper wire of the full width of the con taining box or casing. The band is supported at frequent intervals upon transverse rollers C C, while its edges pass along grooved slides extending for its whole length. These slides serve to keep the beans from falling off the band. Below this last a system of hot-water pipes D D is provided. The beans are fed on to the band while in motion through the transverse hopper E, which has its lower orifice so arranged as to ensure delivery of a uniform thickness of carrying this layer of $2 i n$. to $2 \frac{1}{2} \mathrm{in}$.-upon in. The band shown by the arrowe During its passege the bea dire kent stirred by the stirrers FF, there being six of these through
accuracy. The design appears calculated to afford a large amount of efficiency, while its freedom from any complicated machinery will ensure almost entire immunity from breakto be transported for the last twenty miles of it on mule back. It was this necessity, no doubt, that induced the doption of wood for the frames of these particular machine instead of iron. The light roofing shown is designed to guar against the cooling effects of the heavy rains we hav Eamed to be so constantly and unexpectedly experienced in

The Development of Field Artillery Fire,-Major Hughes, Royal Artillery Instructor in Field Artillery, read a paper o October 11th, in the theatre of the Royal Artillery Institution, a by a discussion, in which Colonel Marshall, Chief Instructor of Field Artillery, Colonel Ollivant, R.H.A., and others took part. Without going into the question of fire discipline, which has of late year oeen developed to an extent which makes artillery fire unde service conditions much more formidable than in former years, we
may notice one or two features. Success in hitting has bee naturally greatly increased, not only by competition and bee but by the adoption of various devices to enable the guns to be fired under known conditions as to range and length of force, such as the deliberate advance of officers and markers under favourable circumstances, to take up position for each gun, and ascertain al possible data before the guns come into action, as well as the use of for the benefit of the battery. On the whole, it has been, fut latterly that we have fallen into the mistake of giving too muct weight to the effect of infantry fire at long ranges. Tables showing
the results of experiments made as to modern infantry fire dummy guns experiments made as to modern infantry fire at ranges over a thousand yards it would be absurd for that at sacrifice any advantage obtained by exposing themselves to infantry fire. As compared with continental Powers, it appears that both own, owi and Itaian field artillery fire more quickly than ob own, owing to the circumstance that they carry shells forged, bu
in the still more important matter of sucess in hitting unde
service conditions we appear to compare favourably with them

GREAT NORTHERN RAILWAY WIDENING WORKS, KING'S CROSS (For description see page 342)

Fig. 5-VIEW OF STEEL TROLLEY AND ONE PUMP

fig 4-the eastern section being hauled into position

fig. b-hauling section of bridge to its bearings-showing trench prepared to reverse steelwork

Fig. 2-part view of gantry and section of flooring

THE MANCHESTER THIRLMERE WATERWORKS

 No. I.On the 13th inst. the inhabitants of Manchester, and of the district supplied with water from the Corporation reservoirs, entered into possession of the heritage for which they have been working for the last seventeen years. On that day the water from Thirlmere was turned on through a fountain in Albert-square, opposite the Town Hall.
Dr. Tatham, the late Medical Officer of Health, told the Corporation that, "if they would give the city a plentiful supply of water he would be responsible for the health of its inhabitants." Seeing that Manchester is now in a position to command at will a supply of water three times as large as she has hitherto enjoyed, the position of Medical Officer of Health must either be a very pleasant or a still more onerous one for the present holder; at any rate, the Council and ratepayers have placed the responsibility on his shoulders. To accomplish this an immense amount of work has had to be done. As is well-known to our readers, the late Mr. J. F. Bateman, F.R.S., was for many years the chief engineering adviser to the Corporation of Manchester on the question of water supply. He it was who designed and carried out the
obtained from the limited sources of the Manchester and Salford Water Company, who had works on the river Medlock, now one of the foulest streams in the kingdom. These works were obtained from Sir Oswald Mosley, formerly Lord of the Manor of Manchester, and were added to by the construction of works at Gorton, and augmented by a supply from the Stockport Canal. The cost of the above works, including land, reservoirs, pipes, \&c., has been £533,561; Longden Dale Works, £2,610,126; total, £3,143,126.
In 1851 the water was first delivered to Manchester from Longden Dale. The supply from the old works was about $3,500,000$ gallons a day; but need for a supply of purer water in ample quantities was soon manifested in a largely extended demand, so that in a few years three times as much water was required. So long ago as 1868 , Mr. Bateman sounded a note of warning, stating that the time during which a sufficient supply could be obtained from Longden Dale was limited. No action seems to have been taken until 1874, when, in a report, Mr. Bateman estimated that the annual increase and demand would be at the rate of $1,000,000$ gallons a day, and could not be procured in the Derbyshire district. The Waterworks Committee and the Town Council generally took the matter up vigorously in 1875. At
the lake. Hawes Water would have required raising 25 ft . It would not, however, have been necessary to interfere with Hawes Water until the supply reached $55,000,000$ gallons a day. The distance from Ullswater to Chorley is seventy-nine miles, the latter place being eighteen miles from the service reservoirs at Salford. No doubt it was the slight interference with the land on the margin of Ullswater that led Mr. Bateman to recommend this scheme instead of the Thirlmere one at the onset.
It was estimated that the works in the Lake district and as far as Chorley, for the ultimate supply of $80,000,000$ gallons a day, would cost $£ 2,210,000$. The half share to be incurred by Manchester would thus be $£ 1,105,000$, and the further works, to convey $40,000,000$ gallons a day for ten miles, and the first instalment of $10,000,000$ gallons a day was estimated at $£ 346,000$. Each additional $10,000,000$ gallons would require $29 \frac{1}{2}$ miles of pipes, at an estimated cost of $£ 352,000$. The area of the Ullswater Lake is 2243 acres, and of its drainage area 36,000 acres It is understood that the authorities of Liverpool and Manchester had this proposal for the joint water supply under consideration, but no agreement was reached. On economical grounds this is very much to be regretted, for works interval it has been necessary to construct large

MAP, in THREE LENGTHS, OF THE ROUTE OF THE MANCHESTER THIRLMERE AQUEDUCT
extensions to the waterworks, and made the Longden that time it was found that in dry weather the consump Dale Valley the chief source of supply. The Act for this scheme was obtained in 1847, and the works commenced in the following year. The original works have been added to from time to time, and a service reservoir in connection with them was completed only ten years ago.
The valley lies about twenty miles east of Manchester, and the drainage area covers 19,300 acres on the western slopes of the Pennine Range, varying from 500 ft . to 1900ft. above Ordnance Datum. From this source Manchester was enabled to draw some $25,000,000$ gallons daily, in addition to providing the compensation water demanded.
From these sources the city of Manchester has drawn its supply up to the present, and, in addition, has supplied the inhabitants of Salford and many other suburban towns, as well as the North Cheshire Water Company. The whole area, extending to upwards of eighty square miles, is supplied by gravitation. The total population provided for amounted to about $1,000,000$ persons. The authorities outside the city were charged 7 d . per 1000 gallons.
Prior to 1847 the water supply of Manchester was
that time it was found that in dry weather the consumpsupply could only be reckoned at from $24,000,000$ to supply could only be reckoned at from $24,000,000$ to before long the demand would exceed the supplycrease, before long the demand would exceed the supply. This was a serious matter, and required dealing with without dound that the districts east of Manchester report. He found that the districts east of Manchester had been absorbed to provide for the requirements of the populawhich could supply a sufficient that there was no district which could supply a sufficient quantity nearer than the Lake district of North Lancashire, Westmoreland, and Cumberland. He in the first instance recommended Ullswater as the head of the supply, and it being known that the town of Liverpool was in want of additional water, it was proposed that a single aqueduct should be constructed from Ullswater to Chorley, branching from thence to Liverpool and Manchester.
By adding the area of Hawes Water to that of Ullswater, it was estimated that a supply of $80,000,000$ gallons a day could be obtained. To provide storage capacity it would only be necessary to vary the level of Ullswater 12 ft ., viz , 5 ft . above, and 7 ft . below the ordinary level of
are second only to the Thirlmere Works of Manchester in the length of the conduit, and in both cases large costs have had to be incurred at once, in order that an increased supply may be obtainable in time to come when required Had this capital expenditure been divided between the two cities, the present saving to the ratepayers would have been considerable. When it was found that the scheme was required for Manchester only, Thirlmere was selected as being a more suitable lake, and in every respect better fitted for the purpose. It is 56 ft . higher than Ullswater, namely, 533 ft . above O.D., is 335 acres in extent, and has a drainage area of 11,000 acres.

Mr. Bateman's report states that the ground is "exceedingly steep, yields beautiful water, and lies close to, if not in the heart of the heaviest rainfall. In the same year in which 65 in . of rain fell at Hawes Water, $81 \frac{1}{2} \mathrm{in}$. fell at Thirlmere"-an increase of 30 per cent. The estimated cost of Thirlmere to supply Manchester only was $£ 170,000$ less than if the supply was drawn from Ullswater.
On this page we give a map of the route of the Thirlmere Manchester Aqueduct. Io enable us to give this map to a useful scale, it has been necessary to divide it
into three lengths. The three parts are accompanied by ardinal point indicators, so that the direction of the parts forming the ninety-five miles of aqueduct made of tunnel, pipe, and cut and cover work, may be seen. To
show the relative positions of the first, second, and third show the relative positions of the first, second, and third
parts the name of the towns Farleton and Grimsargh are parts the
The reservoirs in connection with Longden Dale are as follows:-

Collecting and Storage Reservoirs at Longden Dale.

Name of rescrvir.	Ares	Capacity.		Height of top water level Datum.
	'e's	Gallons	${ }_{\text {Ft }}$	Ft.
Woodhead	135	$1,181,000,000$ $1,474,000,000$	${ }_{84}^{71}$	782 65
Rbodes Wood	54	1,500,000,000	68	5746
Vale House	63	343,000,000	40	5030
Bottoms	50	407,000,000	48	
Arnfield	39	209,000,000	52	540
Hollingworth	13	73,000,000	52	554
Service Reservoirs Supplied from the Storage Reservoirs				
Name of reservoir.	${ }_{\text {trea }}$	Capacity.	吾	Height of top water level Datum.
	${ }^{\text {Ac's }}$	Gallo		
Denton, No. 1		$61,000,000$ $30,000,000$	${ }_{20}^{21}$	
No. 2		23,000,000	20	321
Audenthaw, No. 1	80	528,000,000	275	
, No. 2 ...	69	371,000,000	22.	3230
", No. 3 ...	102	542,000,000	22 2	
Gorton Upper	34	123,000,000	$2{ }^{-}$	259
Gorton Lower		100,000,000	29	
Prestwich	43	20,000,000	22	347
Total	8542	5,985,000,000		

A table was appended to the report giving the levels of
various English lakes as under :various English lakes as under

Lecels of English Lakess					
Haws Water					
H...					

Water-Tube Bollers. - Mr. James Howden, of forced draught reputation, has challenged ail makers of water-tube boilers to a
thirty hours trial, conducted by neutral experts, of the respective
merits of cylindrical and water-tube boilers. The points to be demerits of cylindiracal and water-tube boilesp. TTe point to be dee.
termined are :- (1) Weight; (2) space occupied ; (3) evaporative power, (4) econcmy, and 5tb, waste of heat. The chaplenge is
particularly directed at the Bellevile boilers. The stakes are to
be the be the expenses and cost of the boilers.
The Grgat Westrex Railway and the South-Wgst.-The Great Western Railway has arrapged to run on and from Thursday,
1st November-Wednesday midinight-a new train from London to Plymouth for the accommodation of passengers, parcels, borses
and carriages. The train will leave Paddington at 12.15 a.m. midnightdaily, , Sunday midnight excepted, and reach Exeter at 6.15 a.m. and Plymouth, at $8.25 \mathrm{a.m}$, calling at Reading, Dideot, Swindon,
Bath, Bristol, Taunton, and Newton Abbot, where it will connect with the 7.30 a.m. train, thence to Torquay and the Dartmouth
Branch. The facilities thus afforded will enable business men to reach the West of England with thed least possible expenditure of
valuable time, the jogrney being performed during the nitht, and valuable time, the joarney being performed during the night, and
the new train will no doubt be largely appreciated, particularly as the new train will no dount be largely appreciated, particuarly y class passengers. Passengers for Truro, Falmouth, and interme diate stations to Pezzance, will proceed from Plymouth at 9.25 a.m.,
and the time allowed at that station will enable them to bave
breakfast before completing their journey. A through coach for breakfast before completing their journey. A through coach for
Oxford will be provided on the new train from Paddington, and will be attached toa new train for Oxford, which will leaveDideotat 1.50a.m.
An additional train will leave Oxford at $1.10 \mathrm{a} . \mathrm{m}$. for Didcot, where it will connect with the new midnight train from Paddington for the West. On and from the 1st November, the company
will also run a new express merchandise train from Penzance London, which will provide for the delivery of merchandise traffic
from Cornwall in the metropolis on the day foll from Cornwall in the metropolis on the day following dispatch. The
new train will leave Penzance about 4.0 p.m. daily Sundays new train will leave Penzance about 4.0 p.m. daily, Sundays
excepted, and it will convey, either from the stations direct or
from Trore from Truro and Plymouth-to which places feeder trains
run-traffic from all intermediate stations and branches.
The Hull and District Institutg of Engiverrs and Naval
Architects.-The first meeting of the present session, 1894 was held on Mooday evening, the 1 15th inst., at the Parochial
offices, Bond-street, the President, Mr. F. H. Pearson, being in the chair. After the asual preliminary business, which included
the election of several new members, was completed, the President delivered a short inaugural address. During the course of his
remarks, Mr. Pearson alluded to the extensive adoption of watertube bilers for marine parposes, especially in vessels now being built for H.M. Nayy. Though this type of boiler bas only recently been introduced into British boats, it has been extensively nsed
by the French for some years, nearly 100 of their war vessels being and at the present time twenty-four morevessels for tha Navy, as well as nine for the Russian avy and seven new Messa
geries Maritime steamers are being fitted with them. The British Government has given orders for upwards of thirty of the new
vessels to be fitted with water-tube boilers, and several private firms are also trying them, so that tit almost seems as if this type had The use of aluminium in shiphbular or Scotch type will die hard but the present cost of production is almost procibititie. The pro-
longed and costly strikes that bave taken place in different parte of the country during the year, the changes that have recently taken place in Hull shipping firms, and the present condition on
the engineering and shipbuilding trades, were also dealt with. "The History of Hull Steam Shipping," the period being 1840 to 1850. The various descriptions of the vesselp, launches, accidents, tbis period being most interesting and in many cases amusing, the spent in research to secure such a coumplete record. The meeting
closed with a vote of address, moved by Mr. J. Spear and seconded by Mr. F. Somer

THE PARIS METROPOLITAN RAILWAY

There seems to be little doubt now but that the underground railway in Paris will soon be put in hand. After being discussed for twenty years past, it has become absothe facilities for passenger trangic in the be done to improve work is at once entered upon, it will be quite impossible to work is at once entered upon, it will be quite impossible to during the period of the Exhibition of 1900. So far, the difficulties have arisen chiefly from the conflicting interests which seemed to place the project beyond the pale of settlement. The Government was in favour of the railways in Paris being constructed and worked by the great companies
whose lines already serve the capital, while the municipal council insisted upon the metropolitan being taken over by a separate syndicate. It was only upon condition that the lines should be purely local that the council approved of the extension of the Sceaux Railway to the Place Medicis, which will be put in service in a few months, and the prolonging of the
Moulineaux line to the Esplanade des Invalides, of which the Moulineaux line to the Esplanade des Tinvaldes, or which the works are now being carried out. The council likewise ppoway from the Bor ramway from nission of the Chamber of considered by the Railway com nission of the Chamber Deputies. If understanding there was every probability of the scheme being carried out, and it seems, indeed, as if the difficulties in this respect have been overcome. After having examined the systems at work in England, M. Barthou, the Minister of Public Works, has drawn up a plan which has just submitted ody a free grant of land necessary for the building of the lines, and an exemption from octroi duty upon the material used in their construction. The project of M. Barthou seems
to be the more serious, as it is less ambitious than the schemes previously under consideration. He does not propose to carry out the whole scheme at one operation, but is in favour of constructing two lines, one from north to south, it is expected that no difficulty will be experienced in further extension of the system. The line traversing the city from north to south will leave the northern railway Which communicates with the Ceinture, and passing the
Nord and Est stations, will touch the Central Markets and will emerge from the tunnel at the Hotel de Ville; it will
then take an easterly direction to cross the Seine, and, after then take an easterly direction to cross the Seine, and, after
passing the Halle-aux-Vins, will enter the tunnel under the Boulevard Saint Germain, and on reaching Cluny will turn the right to join the Sceaux extension at the Place dc
Medicis, by which it will be again in communication with the Ceinture. The railway from east to west will utilise the high level line from Vincennes as far as the Gare de Lyon, and, passing by the Gare d'Orleans, will communicate with the north to south line at the Halle-aux-Vins. The section to Cluny will be used in common by both transversal railways, unnel to the Esplanade des Invalides, whence it will use the Moulineaux line as far as the Champ de Mars Station, at which point it will be connected with the Auteuil line near Muette. The total length of new lines to be constructed will bed in the system. The coung the existing lines that will be used in the system. The cost of carrying out this work is are to have control of those connecting lines that already exist, but a separate syndicate is to be formed for working the proposed system, it may be mentioned that since the Compagnie du Nord connected its terminus with the Ceinture nd the Ger of passengers travelling betweth Ceinture from 184,000 to 1,060,000.

London Assoclation of Forbien Exgineers and Draughts. IEN,-The usual monthly meeting of this society was held in the
K -room of the Cannon-street Hotel on Saturday, the 3rd inst, Mr. P., when, in the absence of the president, the vice-president Mr. R.J. Cook, oceupied the chair. After the usual financial and
general business was over a paper was read by Mr. H. A. Parker, past-president, on "The City and South London Electric Rail-
bristol Channel Institute of Marine Enginebrs.-A few years ago, mainly owing to the exertions of Prof. A. C. Powell, D.Se., Institute of Marine Engineers was established in Cardiff - the first branch, it is claimed, set up outside London of any of the profes shonal societies which have the metropolis for their bome. Unde members from New Cbannol centre, the new association gatier held periodical Meettingst, for thansea, andind tand discussion of papers
of the same character as those presented to the parent Institute of the same character as those presented to the parent Institute,
and in course of time succeeded in making itself a place among and in course of time succeeded in making itself a place among was opened with the annual dinner, at the Royal Hotel, and members and their guests reached the large and unexpected
number of 350 . Dr. Elliott, president of the Bristol Channel centre, was in the chair, and there were present the principal and of engineers, marine and mechanical, and representatives of the shipping interest, together with Board of Trade and Lloyd's surveyors, and Mr. James Adamson, hon. sec. of the Marine En-
gineers' Institute in London. Dr acount of the growth and prosperity of the local centre, in
responding to " The insting responding to "The Institute of Marine Engineers," proposed by
Dr. Maccormack, who claimed for this branch science that it had progressed fifty fer this branch of engineering department, and that with the diffucion of knowledge by the papers and discussion of societies like these, it was no longer
possible, as in 1867, for a man like Randolph, the maker of compound engines, to say to Mr. Denny, when asked for infor mation, "Go and find out for yourself, and pay for it." tribute to the services rendered to the Institute by the University
College was paid by Mr. Adamson, the London honorary secretory who mentioned that the local centre was increasing at such a rate that it was possible next year they would bave a home and dining hall of their own. Principal Viriamur Jones, who replied for the Colilege, claimed that technical education was being pressed forward of the kinner which would compare favourably with any other part was being rapidly developed, and the practice of the profession taught to a large number of students. Next week the College
would receive the great testing machine, which bad cost 4300 would receive the great testing machine, which had cost $£ 30000$,
and if only a fine building were given them, the authorities would soon chalenge comparison with anything that bad been done in
any part of the world. An adequate building would require a
naarter any part of a mee world. An adequate building would require a
quarter of and it and and it was their intention to ask
Government for a grant of $£ 100,000$.

BICYCLE MECHANICAL ENGINEERING.

THE makers of the modern "cycle" have afforded mechanical engineers some useful hints in the construction of wheels and small bearings, and perhaps on other points in the construction of ight machinery and the macke to
 bicycle tran theis tion mechanieions, and make much their heir repa Not as sincesome firms brought out an elliptical chain wheel for the crank spindle, and it wa said that somebody or some shareholders paid a good dea for the patent for this beautiful device for obtaining variable radius coincident with the variable push on the pedal. When we were explaining the fallacy of this thin to an ardent young cyclist but learner of mechanics at one the cycle exhibiticns, the exhibitor, who loudly claimed fo the invention the advantages of greater speed and easier work, seemed to think we were anticipating the adverse proo which was later to be afforded by experience. He did no like the explanation. The last new cycling invention, for which very great things are claimed, is also to secure greate speed with less labour. The claims appear to have abou mill to support the , would not mention this latest mechancal once were it no well accepted maios mention in connection with it and a pa-ent company is now to be formed for the developmen

and working of the patents for this thing. It is known as the Boudard gear, and our readers will be almost sufficiently ordinary ordinary single made for it, when we tell them that the to a pinion on a second an internally geared wheel which drives the still necessary chinin whel, ther end of which carre following diagrams will illustrate the difference. Fig. represents the ordinary simple errangement with a chain wheel B on a crank spindle C, and by the chain K driving a pimplicity and diriveng wheen hab. This is about as far a wants nor has either of these qualifications usually reinded as so desirable in mechanics. In this remarkable greater mechanical efficiency is obtained by adding to the mechanism by which a given end has hitherto been attained Fig. 2 shows the arrangement. The chain wheel B of Fig. is replaced by an internally toothed wheel B, which gearsint the pinion B^{2}, shown by the dotted circle in the diagram, Fig. 2. It is on a spindle which carries the chain wheel B Thus the friction of the internaltoothed wheel B and the pinion
B_{o}, and of the bearings of the spindle carrying the pinion B^{2} B_{2}, and of the bearings of the spindle carrying the pinion B^{2} and wheel B is all additional to that of the old common
patentless arrangement shown in Fig. 1. To acquire this patentess arrangement shown in Fig. 1. To acquire thi
extra friction, there are introduced as extra parts, the internal cog-wheel, the pinion gearing into this wheel, the separate extra spindle, and one extra bearing or pair of bearings or bal bicycl Why these additions are to make the propulsion of are made, none not shown, although numerous statemen usually used in the ordinary company prospectus. One ingenious supporter of the cause shows that internal gear of ex placernally cogged gearing, but as that which is to be disgear, and as the internal gears neithor internal nor external additional, the proposition as to more or less friction has no to be considered. It seems incredible that such things can be put forward, not only seriously but in the expectation of attracting large sums of money from the public.

GREAT NORTHERN RAILWAY.-WORKS IN CON NECTION WITH THE WIDENING OF THE
In consequence of the extensive alterations the company have made to their terminus at King's Cross in the way of extra platforms and offices, it has been found necessary
through the same occupying room used as sidings, to provide accommodation at Holloway for purposes of making up trains, storing and cleaning coaches, and other work incidental to the general passenger traffic formerly done at the tertrains of empty carces minus and returned, ofter bing sidings. This, as matter course, in the new number of trains going to and from the points mentione above. As the ordinary passenger service is already very heavy, any blocking of the line to enable a train to pass from the down to the up side on the same level would be a serious inconvenience to the working of the trains, and in misty weather, not unattended with some risk. To avoid any such inconvenience, the company have determined to cross from the one side to the other by means of a short subway, parallel with one already existing, which is used for the service It ween herh London and Great Northern Railways. tras dificult to construct this subway, and still keep the that part on the eastern side, and forming the approach to the goods and coal shunting sidings.
The means adopted to meet the different requirements were
platform of timbers, 8 in . by 8 in., with an average length of sidings directly over the line of the new abutment and also the pier, and some 15 in . square longitudinal timbers under each of the main lines. In addition to the longitudinals, cast iron girders were put between the roads with cross
on a side, and trussed bearers laid on the jack heads, to form a continuous bed for the steel flooring, as shown by the Figs. hydraulio pipe worked from one pump fixed on the end trolley-a view of one of these pumps is given in Fig. 5. The steelwork was then put together, and all riveted up, painted,
fast passenger lines, had also to be done quickly. These sections were put together by the side of the line, as shown by Figs. 7,8 , and 9 , and then transferred to their bearings, the lines being taken up and the ground being excavated, while each portion of bridge was being transferred from the site of

Existing Abutment
8
Sail 14.77
"The Engutzen
timbers under the 15 in . longitudes, placed 8 ft . apart, as in consequence of the angle of skew, the bearing of the timbers would have been 21 ft ., although the width of the trench on the square only measured 12ft. In executing the work this the lines.of way.was_required, thus enabling the walls, Fig. 1 ,

to be carried up to bedstone level without any stoppage. The trenches for the new abutment and strengthening the existing one were then proceeded with and the wall built to coping crete, the strengthening of the old one being all in briak They are both faced throughout with Staffordshire blue brick,

Section at A, A.
and all the work is set in Portland cement mortar. On the completion of the masonry, the timbers carrying the rails were packed on to the walls and all the cast iron girders removed and trenches cut to receive the permanent steelwork.
As the lines forming the approach to the shunting sidings could not be closed for many hours, and then only on Sunday, a gantry was constructed on the east side of the lige-as
shown on the plan between A and B. On this eight steel trollies, each carrying two hydraulic jacks, were placed, four
and asphalted. This portion has an average length of 110 ft . by 29 ft , wide, and weighs about 200 tons. The time for running it into its final position was fixed for a Sunday, between
$8 \mathrm{a} . \mathrm{m}$. and $5 \mathrm{p} . \mathrm{m}$. The heaviest part of the work was taking up the temporary timber flooring, which amounted to 1500 cubic feet, and excavating 300 cubic yards of earth, the materials to be removed representing 500 tons nearly, exclusive of permanent way. The new steelwork was drawn forward by three winches, the earth and timber being removed as the bridge came forward. When in position for lowering on to its bed the pressure was applied, the wedges on which it rested removed, and the whole thing lowered on to the bedstones. The ballast was then distributed, and the rails laid
erection. The remaining three sections, consisting of the up slow passenger and the two up goods lines, were put together in situ, but as the lines could not be stopped for many hours, being put on to their bearings on one Sundsy, snd the trough flooring in between fixed on succeeding ones. The cost per ton of steelwork fixed in the first portion was $£ 184 \mathrm{~s}$.; for the second, $£ 17$; for the third, fourth, and fifth, $£ 1612 \mathrm{~s}$.; and the sixth, seventh, and eighth, $£ 18$; so that building the bridgework by the side of the line and hauling it into position proved The less costly, and interfered with the traffic the least. being plate and I section. The flooring is made with corrugated

ready for the early Monday trains. The cost of this portion of the superstructure amounted to $£ 1816 \mathrm{~s}$. per ton of steel work fixed.
The remaining section carrying the eight main lines is constructed with ordinary plate girders, with flooring formed with steel troughing. Three methods of erection had to be resorted to in carrying out this part. The for some days without much inconvenience. The girders for this, togetherwith the flooring, were erected in situ- no specig feature in the operation presenting itself. The second line being a through goods could not be closed for many hours, therefore this section was put together by the side of the line at C, and when completed the lines were removed and the earth cleared away down to bedstone level, and the steelwork drawn into position and bolted to the part already fixed. This work was performed between 8 a.m. and 1 p.m. The third, fourth and fifth, being the down slow, down fast, and up
troughing, $8 \frac{1}{2} \mathrm{in}$. deep and $\frac{1}{2} \mathrm{in}$. thick. The troughs are filled in with asphalte concrete, with the upper surface covered with J. Oliffe's patent fibrous asphalte. All the bridge-work was made and erected by Messrs. A. Handyside and Co., of Derby. After passing through the subway described above the lines take a sharp curve to the south, and join the main lines on the up side where it crosses the Hornsey-road. To enable and raised-an elevation and section to to be strengthened and raised-an elevation and section of which is given in
Fig. The raised portion of wall is made with Portland cement concrete in the or wall of Thames ballast, and Froportion of one cement to eight Stafiordshire bricks, all set in Portland cement mortar. The banks and filling behind the raised retaining wall and ballasting of permanent way is made of burnt clay ballast obtained from surplus earth from the excavations in trenches, \&c
The whole of the work has been carried out under Mr. R Johnson, M. Inst. C.E., Mr. H. Lovatt being the contractor

GREAT NORTHERN RAILWAY WIDENING WORKS, KING'S CROSS

fig. 6-building section of bridge by side of line

Fig. 3-general view of eastern section ready for mooring to its final bed

fig. 7-hauling a section of the bridge to its bearings, first operation

Fig. 9-hauling a section of the bridge to its bearings, second operation

RAILWAY MATTERS.

Fifreen miles of the German railway at Zanzibar have een completed, and the line will shortly be opened for traffic.
The Brooks Locomotive Works have received an order for thirty freight and thirty passenger locomotives for the Central
Railroad of Brazil, fifteen of which will have Belpaire boilers. Rail have of Brazil, firteen of which will have Belpaire boilers. Al
will
steal tires. teel tires.
Two new strategic railways, which are to be shortly taken in hand, one leading from the Duchy of Baden into
France, and the other from Rufah to Seheim, are calculated
to faclitate the concentration of Germen to faclitate the concentration of German forcess opposite Belfort
which is regarded as a point threatening the whole of Sonth

The Port Talbot Railway Act, obtained last session in Parliament, provides for making a line of rail way sisteen miles
long and sorving three mineral valleys in Glamorganshire at pre-
sent served only by the Great Western Rail way. Miss Thiso Thet, the long and sorving three mineral valleys in Glamorganshire at pre-
sent served only by the Great Wentern Rail way. Miss Taluot, the
owner of the dooks at Port Talbot-which are to be considerably improved and enlarged -and of a large portion of the land for the
A short while ago the mail train on the Bengal and Nagpore Railway ran into a wild elephant which was straying
along the line near G Giilkhera Station. The engine having carried the animal about a hundred yards, then left the rails with the firs five carriages. The elephant was thrown down a bank bort. high
and was found dead at the bottom. No one in the train was
injured, and no damage was done to the rolling stock or to the line. This was "bad for the coo.
A contract has been placed with Mr. Woolley, o Wrexham, for the construction or about eight miles of the Vale of
Glamorgan Railway, which portion of the proposed line is at the
Bridgend side Bridgend side of the route, and will provide employment for a
year or two for a large staff of hands. Messr. Pethick Brothers, year or two for a large staff of hands. Messss. Pethick Brothers,
the main contractors, ara also approaching completion of the pre,
liminary work at Barry with a view of commencing the excavation liminary work at Barry, with a view of
of the large tunnel in Porthkerry Park.
Work on the proposed new line to compete with the Pennsylvania Railroad-the Loyalhanana and Youghiogheny-is to
be vigoronsly puhhed. The line, according to the Railuray Neus,
will run from Mehaffer, in the Clearfield coal region, to Sewickley
 Railroad, and will connect with the Butfalo, Rochester, and
Pitstrarg line at Punsxutawney, and with the Shenango and Lake
Erie road at Batler, and will make connection with Pittsburg over
trite Erie road at Butier, and will make connection with Pittsburg over
the Pittsburg and Erie, giving an outlet from the Connellsville
region to the seaboard, the Lakes, and Canada, A NEW carriage, of a class not in use before on the Great Northern (reeland Railway, or any other of the Irish lines,
has been comploted in the contral workshops, Dundalk, and tried.
It is constructed on the Pallman system, the outside framew the carriage being of mahogany, 45ft. in length, and resting upon
four couple of bogie wheels, with automatic brakes an all the wheels. The interior of the carriage is divided into five sections,
the largesi occupying about two-thirds of the space as a drawing room car, and is itted throungout in superber style. This carriage
is for immediate use on the Dablin and Belfast limited mail.
The new railway from Uppingham to Seaton, 32 miles long, on the Stamford, Peterborough, and Market Harborough
branch of the London and North-Western Railway, at last con-
nects the town of Uppingham, possessing an important public school, and having a weekly cattle marsket, with a rariltay suatem,
all traffic having hitherto been by road to Saaton Station on the all traffic having hitherto been by road to Seaton Station, on the
London and North-Western Railway, or to Manton, on the Stamford and Oakbam section of the Midland Railmay. Owing to the altitude of the town, many cuttings and embankments were unavoid-
abbe, and in one case a long viaduct has been built. The total
cost of construction was $£ 30,000$.
Anotrer cable tramway has been recently completed in Anstralia, namely, the Ocean-street Cabbe Line at Sydney.
communication from that tow, of August 25 th, mentions it about to be tested. The line was commenced in October, 1892 , line has many carves upon its 2 s miles of length, and it is con-
sidered to be one which tetsts st sesstem very serorely. The cables
altogether weigh 150 tons, and the working of the several lengths of cable, even without any car upon the lines, will require some
thing like 250.horose power. The enies have been bailt by
Messrs. Hudson Bros., of Granvile, and are horizontal compound Messrs. Hudson Bros, of Granville, and are horizontal componand
surface-condensing Spencer-Inglis Corliss engines. The cylinders are 24in, and 45in. diameter, with 55.ft. strokes. There are two of
these engines, one being a stand-by. The main shaft aarries a fly
wheel weighing 25 tons, and a rope drum, 7 ft . in diameter, with thirty-six grooves for 2in, octan ropes. The boilers are described
sit three multitubular under-fire boilers, each rated at 250 -horse as three multitubular under-are biiers, each rated at 2.0-horse
power, and working at 1501 b . per square inch pressure. Mr
Fischer, of the Department of the Engineer-in-chief for Railways, is the engineer of the undertaking.
Since the Dutch-Rhenish railways were transferred to chappii to Exploitatie van Staatspoorwegen warked by the Maats.

 dam, Utrecht-Leiden, Rotterdam-Venlo, Moerdijk-L. Zwaluwe's Bosch, Utrecth-s.s Bosch-Boxtel, Vlissingen-Breda, Nijmegen-
Tiburg, Nijeneg-Mastricht, Eindhoven-Luik, Nijmegen-Arnem
(voll. dienst), Arnhem-Zatphen-Deventer-Zwolle, Arnhem-Zuntphen-Zwolle-Leeuwarden, Meppel-Groninger, Groningen-Delfziil, Zut-phen-Salzbergen voll. dienst, Zwolle-Grona, Harlingen-Nieuwe-
schans. This company was founded in 1833 for working the Dotch ffice of Rijks Comme head offices and works are at U trecht. The present vacant; but the Assistant-Commissioner is Mijanheer P. J.
Breedveld. The general manager is M. J. L. Cluysenaer ; the secre. tary, M. J. N. Nivel. Superintendent of the line, M.E. J. B. H. M. IT is stated that there is now every prospect of the scheme for the construction of an electric railway to the summit of companies formed, and, as owner of the land, Mr. AsshetonSmith, will take a leading part in the promotion of the project.
The services of Mr. Duncan Fox, the engineer, have been secured, and his plans will probably be formed on the lines of those adopted for similiar railways on the Continent. Unless unforesseen circum-
stances arise, it is, says the Liverpol Pool confidently anticipated
that with the advent of next season this railway will be tan accom. plished fact, thus adding considerably to the importance of junction with this interesting project the suggestion is pretty generally made that the North Wales Narrow Guige Railway
Company should extend their line from Rhyddu to Beddgelert, so that people making the ascent of Snowdon on the Llanberis side
might descend on the Beddgelert side, and so have direct com-
munication with all places on the London and North-Western Railcay. A Bill for the extension of this line has already been promoteras to give to this picturesque district a a bon which both
the inhabitants and visitors have long looked forward to.

NOTES AND MEMORANDA.

A method of connecting metal to earthenware is given in The Scientific A American as follows:-The portion of the earthen-
ware with which connection is to be made being unglazzd or the waro with which connection is to be made being unglazad, or the
claze having been removed, it is coated with plumbago, and placed laza having been removed, it is coated with plumbago, and placed
in an electrolytic bath, whereby a firm metallic coating is obtained. The lead pipe is then soldered to this coating by a plamber's
"wiped" joint. By this means are avoided the imperfect joints wipe with india-rubber sleeves, washers or putty.
In order to obtain incandescent lamp filaments which -Organic a very bigh temperature, M. Baum proceeds as follows : -Ohlorate of ammonenia, calcium chloride and magnate ammonium, hathdro-
At ando.
At a known At a known temperature, the salts of ammonia are volatilised, and
the filament is formed of the precipitated porous phosphates of lime and magnesia. The filaments are afterwards strengthened
Mr. Mondit, of Caen, has published a process for bronzing copper, which is brieffly thus:--After the metal has been
coured, it is covered with the following mixture by means of a brush:-Castor oil, twenty parts; alcohol, eighty parts ; soft soap,
forty parts : water, forty parts; The mixture is left on till the forty parts; water, forty parts. The mixture is left on till the
required shade is obtained, then dried with hot sawdust, and coated with a very dilute varnisb. The depth of tone can be
regulated by the length of time the metal is exposed to the solution.
The new sextuple photographic telescope in the Yale Observatory, used in photographing meteoric displays, has six
cameras together covering a field equal to 2400 full moons. Each camera cornd and the fields are so arranged as to touch, each other the edges, so that the total field will cover 600 square degrees. It
will be used in connection with two single telescopes placed at a istance of two miles from the sextupie instrument, with electrica

A recent Austrian patent for insulating material is as Collows :-Ozokerite, asphalt, and amber are subjected to distillation in a closed still to a temperature of 400 deg. After the mass
has been heated until gases, vapour, or oils cease to escape, it is llowed to cool. In that condition it ir of pliable consistency, and
nay either be used alone or incorporated with other subetan nsslating cables, such as resins, fats, or oils, the proportions these being from 30 to 70 per cent. By this method those sub-
stances present in fossil resins which prejudice or deteriorate the asulating properties are removed.
In a paper which he recently read before the Scientific ongress at Paris, M. de Lapparent expressed the opinion that all
nountains will vanish off the face of the earth in course of time. He declared that, if the actual natural forces at work upon our
 Alps, but which had already shrunk to their present dimension at the outset of the Tortiary epoch. The Alps, he said, exemplified
the youth, the Pyrenees the maturity, and the mountains Provence the declining years of mountain, ranges, while the central

Two methods of covering aluminium with metalli
films are given as follows in the Journal of the Chemical Society:
"Aluminium becomes covered with a hard film of copper on rubbing it with tin dipped in coppper sulphate solution, the depopit
ncreases in thickness if the coated metal is suspended in a dilute opper salt solation. Aluminium is covered with tin by rubbing it mmoriam stannichloride, $\mathrm{SnCl}_{4} \mathrm{NHH}_{4} \mathrm{Cl}$; in this case, too, the eposit increases in thickness when the metal is suspended in a tin salt solution of saitable concentration. Aluminum which has
been cooted with copper as above described, when suspended in

At the Angleur Company's Steel Works at Sclessin, on the eft bank of the Meuse, the Amerracan Manufacturer says, coke
for smelting is made on the ground from the small coal of the neighbouring collieries, partly washed and partly in the rough
tate, in a battery of 100 Coppee Menier ovens, about 30ft. long
4 fitt. high, and 17 in. wide. The use of such very narrow ovens is
owing to the low proportion of volatile matters present, so that
high heat quickly applied is required to produce a coherent coke
De Nayer boilers of 200 -horse power each, which together with a
similar series of Galloway boilers with outside combustion chambers fired by blast furnace gas, supply the whole of the steam for the blast furnace and Bessemer blowing engines,
A METHOD of preparing hematite artificially is the introduction of Mr. H. Arctowski, who proceeds as follows :-" A A
current of ammonium chloride vapour when passed over oxide of iron, heated to dull redness, converts the oxide into crystalline
hematite. Ferric oxide heated at 350 deg. absorbs ammonium chloride vapour, and melts to a black mass, from which ferric hloride soon distils, The residue absorbs water from the air, and is a mixture of ammonium chloride and ferric chloride. At
600 deg. the ferric oxide is partially converted into small crystals, and then mechanically absorbs ammonium chloride without melting. At 700 deg. the ferric oxide becomes crystalline. The crystals are of fumaroles contain ammonium chloride, and the fissures in the vicinity are generally covered with crystals of hematite.
In an address delivered before the American Association or the Advancement of Science, at its Brooklyn meeting, Augus who are not familiar with practical astronomv may wonder why the solar parallax can be got from Mars and Venus, and not from
Mercury or the sun itself. The explanation depends on two facts - firstly, the nearest approach of these bodies to the earth is for $47,935,000$ miles, and for the sun $91,239,000$ miles. Consequently for us, Mars and Venus have very much larger parallaxes than
Mercury or the sun, and of course the larger the parallax the easier it is to measure. Socondly, even the largest of these
parallaxes must be determined within far less than one-tenth of a parallaxes must be determined within far ess than one-tenth of a
second of the truth ; and while that degree of accuracy is possible in measuring short arcs, it is quite unattainable in long ones measurement of parallaxes is that we shall be able to compare the
place of the near body with that of a more distant one situated in the same region of the sky. Tn the case of Mars, that can alway be done by making use of a neighbouring star, but when Venus is
near the earth she is also so close to the sun that stars are not near the earth she is also so cose to the sun tbat stars are not
available, and consequently her parallax can be satisfactorily measured only when her position can be accurately referred to that of the san ; or, in other words, only during her transits across the
sun's disc. But even when the two bodies to be compared are sufficiently near each other, we are still embarrassed by the fact that it is more difticult to measure the distance between the limb of a
planet and a star or the limb of the sun, than it is to measure distance between two stars ; and since the discovery of so many of the solar parallax. Some of these bodies approach within
$75,230,000$ miles of the earth's orbit, and as they look pre. $75,230,000$ miles of the earth's orbit, and as they look pre-
cisely like stars, the increased accuracy of pointing on them fully makes up for their greater distance, as compared with Mars o
Venus,"

The question of the formation of a Chemical Department for India will be submitted to the Secretary of State during

The torpedo-boat destroyer Rocket, the first of three building for her Majesty's Government by Messrs. J. and G. Tuesday last at Skelmorlie, on the Clyde, a mean speed of $28 \ddagger$
The sixteenth annual Brewers' Exhibition and Market opens in the Islington Agricultural Hall on the 22nd inst. Tbe number of exhibits will be exceptionally large, and will compriso ing the carrying on of the trade.
Three Sheffield firms, Charles Cammell and Co. John Brown and Co., and Vickers, Sons, aud Co., have received
orders for the citadel and barbette armour of the first-class battleships Mars, Jupiter, Hannibal, Victorions, and Prince George.
The total weight is 12,500 tons. The plates are to be Harveyed.
On Tuesday last Messrs. John I. Thornycroft and Co, lanched the new torpedo-boat destroyer Ardent. She is 200 ft , same type as those supplied by them to her Majesty's ship Daring

In accordance with the wishes of the late Mr. Henry Faija, ,rr. D. B. Butler will carry on the practice in his name for
the benefit of the family. Mr. Butler was formerly associated with Mr. Faija for ten years as his chief assistant, but had subsequently invitation and for the last three months of his life Mr. Batler ba 1 the entire charge and conduct of Mr. Faija's office and business.
Upon the completion of the defence works for the pro to also constract booms for the protection of Portsmouth and
Devonport Harbours. The gunboats Mistletoe and Firm, which are being utilised in connection with the boom at Sheerness, have besting a section of the boom as earrly as possible to be made for testing a section of the boom as early as possible, the boom being
constructed of wire hawsers and baulks of timber.
The upper reservoir of the Swansea Waterworks was formally opened on the 12th inst. This undertaking was com
menced in May, 1886, and completed by December, 1891, since which time the opening has been delayed by litigation. The water area of the reservoir is thirty-five acres, the content
being $305,464,770$ gallons, and the greatest depth 68 ft . This of the borough engineer, Mr. Wyrill, at a cost of $£ 101,185$,
In connection with the new American liners St. Louis and St. Paul, now building by Cramp Brothers, it was originally
intended that the boilers of these vessels should be fitted with The ships being. American sentiment, however, with regard to result that corrugated furnaces have been supplied by American makers at what must have been a losing price. On the other hand,
the St. Paul is to have Serve tubes, which appears to us a little

An application has been recently made to the Local Government Board for borrowing powers for some additions to the
Ossett Sewage Works. Their inspector, however, reported that the sewage was being merely treasted with lime, the land filtration
having been discontinued. Consequently the sanction to the loa was witheld, and the Ossett Town CJuncil were requested to The sewage is one of the very worst in the kingdom, being largely woollen trade refuse of a most changeable and refractory kind.
The Council have engaged the services of Mr. M. Paterson, of
Bradford, the engineer who nearly twenty years ago carried ont Bradford, the engineer who nearly twenty years ago carried out
the sewage works, with the main drainage of the dietrict. A meetrivg of the Consultative Council of the Building Trades Exhibition, 189 , was held on the
Fletecher, F.R.I.B.A., in the chair. The honorary secretary, Mr. T. Freeman, F.G. S, read the report on last year's exhi
bition, which was satisfactory, and the council agreed that the
forthcoming exhibition should forthcoming exhibition should be continued on the same lines. It was stated daring the course of the meeting that architeots were perfectly satistied with the display apiast yars sxhirition, and the
exhibitors were unanimously of opinion that their exhbibits had proved eminently advantageous from a business point of view. The t was confidently anticipated that next year wauld prove one of the finest exhibitions of the kind that hai been held
A USEFUL table, showing graphically the dimensions, equivalent conductors, resistances, and weigbts of pure copper
wires and cables, and the fall of potential and approximate rise of temperature of any wire, has been published by Messrs. W. T Glover and Company, ie, Mr. Heory Elmunds, accompany the tirection for is large enough for easy reading, with the necessary igures from the graphic diagram. Every direction seems to be perfectly clear, with perbaps the exception of that for the curve casings. The table is one which will save a great deal of calcu-
white lation
M. Hospitalier, a well-known French electrician and public documents relating to scientific matters. Tans, says the Slobe, in Acts relating to the sale of land, the superficies is given in metres instead of square metres; the Bareau des Longitudes body in metres instead of "metres per second." The word force the same confasion in the use of scientific terms, which are often mperfectly understood, even by so-called experts, and all nations adopt foreign exprossions instead of inventing their own. It is nevertheless true that in scientific language there should be no synonyms ; one word shonld be dedicated to one thing, and have
a perfectly definite meaning. It is opverty rather than wealth of ords that science demands. according to a strict rule, and required, they shonld be fors.
always used in their entirety.
After many breakdowns, H.M. cruiser Fox has at last made a successful trip under forced draught She indicated 9063 speed of 20 knots. During the run a trial was made of Mesirs. Catmore's system for effecting audible voice-pipe communication
hetween the bridge and the engine-room. The orders, notwith tanding the noise of the machinery, were distinctly heard. In this invention the sound is magnified first by means of a cone xed angle and bend of the vocondly by silver tongues placed in tions have been atilised, sach as by means of a commutator, whicb works on the pistol-revolver principle, converging orders from
twenty different points of the ship to the engine-room ; but the primary advantage of the apparatus is that the sound of the human voice can be transmitted with certainty. It is probable that this
system will now be generally adopted in H M. stips.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

 LEIPSIC.-A. TWIETMEVER, Booksellers.
NEW YORK. INTERNATIONA NEWS COMPANY, 83 and 85 ,

PUBLISHER'S NOTICE.

* With this veek's number is issued as a Supplement a Tvo-page
Engraving of the Victoria Bridge over Brislane RRiver. Every opyy
as issud by the Publisher includes a copy of the Supplement, and Engraving of the ictoria Bridge over Briskane River. Every copy
as susud by the Pubither incldes a copy of the Supplement and
subscribers are requested to notify the fact should they not receive it.

CONTENTS.

TO CORRESPONDENTS.

CORROSION OF BOILERS.

FISH HOOK MAKING MAOHINERY
(To the Bditor of The Enginer)

OHROME ORE.
(To the Bditor of The Enginer.)

What ores are the chief constituents in (a)
Wellington, New Zealand, August 27 th

meetings next wbek.

 Machines, for Cy. Chindrical Boller Shellis," by Mr. Samuel Dixon, of Man-
and

THE ENGINEER.

OCTOBER 19, 1894

rallways and the board of trade.
Rightly or wrongly, many persons traders and others, hold that the action of the Board of Trade in all that relates to railways, their construction and working, is prejudicial to commerce, oppressive and unsatisfactory.
Such charges are made by persons of sufficient influence Such charges are made by persons of sufficient influence
to give them importance. The railway companies and to give them importance. The railway companies and
their officials hold their peace and refuse to express an opinion. It is worth while to consider some of the facts which are more or less beyond dispute, and so arrive at the reasonableness or emptiness of the charges in
question. These charges imply that the Board of Trade question. These charges imply that the Board of Trade
or its inspectors insist on an unnecessary and costly or its inspectors insist on an unnecessary and costly
method of working branch and narrow gauge lines ; that hard-and-fast rules are applied without intelligence or discrimination; and that there is no sympathy between the Board on the one hand, and the railway companies and
trading community on the other. There are besides trading community on the other. There are besides
questions concerning bye-laws, terminal charges, rates, and other money matters, with which it would be to some extent beyond our province to deal. We propose to confine ourselves to the consideration of the action of
the Board of Trade in what may be termed matters the Board of Trade in what may be termed matters
mechanical, and we may say at the outset that while we are very far from echoing the complaints so freely made, not unfrequently by wholly irresponsible persons, we hold on the other hard, that it is advisable
that the position as it stands should be examined and that the p
revised.
The action of the Board of Trade is mainly exerted by its inspectors. A line cannot be opened for traffic until it has been passed by one or other of these gentlemen; and it seems to us beyond doubt that they demand for a small branch line the same general excellence that is needed on a main road. Dozens of examples of this mige was only one engine and train used on a branch line. This had been worked for years, without accident and with perfect success, with three trains each way per day, until one day an inspector insisted an elaborate system station shat a very considerable expense. When the signals were completed and had been passed, they were fixed at "danger," and no one ever troubled his head about them subsequently. Roads on which the speed is never intended to exceed nirly miles all the havy benditure needed on a main line over which express trains thunder at sixty miles an hour. The result is that the cost of a railway becomes pro-
hibitive. In other countries-notably in the United States-cheap lines are made which serve an excellent purpose; but there is no Board of Trade there to
interfere. It may be that the officers of the Board have no choice. On the other hand, it is possible that they exert their authority just as they please, without the smallest consideration for the wants of the country. They virtually tell farmers and traders, Whether a line is to cost $£ 5000$ a mile or $£ 15,000$ is all one to them. They care nothing for the outlay. All that they demand is the nearest approach to perfection. With nothing less will they be satisfied. In its way no excell thisis all very well, but it is curs. Government insisted that we should all use Turkey carpets or go without carpets altogether. Aft the ruly and the Acts of Parliament under which the Board of Trade discharges its functions, the whole ground is far from having been covered. Beyond question a great all intents and purposes they are all-powerful. No rail way company thinks of appealing against the decision of any one of these gentlemen-possibly because it is so Ultimately we sup to whom the appeal can be made ment, which is tantamount to saying that it cannot be made at all. Now it so happens that for some reason not very easily comprehended all the inspectors are Royal Engineers. They rank as majors, colonels, or tary training, and not possessed of any special knowledge of railways or railway working other than that which they pick up in the course of the discharge of their fanctions. It goes without saying that they are one and all highly honourable men. What they think, and the general nature of therir methods of reasoning about railway
matters and railway men, can easily be gathered from the published reports of inquiries into railway accidents. Reading them as they come out for a series of years them. We learn, for example, that whenever a railway accident occurs, some one must be in fault. The preconceived idea is that a species of crime has been
committed, and the criminal must be sought and found. In some of the reports we find it admitted now and then in a very hesitating fashion, that it is possible a man may make a mistake without being guilty of aggravated
manslaughter; but such a concession to public opinion is
rare. Again, it will be found that one inspector always takes it for granted when a collision occurs that an engine driver has been in fault; another throws reading a
on a signalman. We have, indeed, before read report gily to look at the signature to be able to say report only to look at the signature to be able to say
what the drift of the inquiry will be, and what what the drift of the inquiry will be, and what
the verdict. When it is obviously impossible to say that either a driver or a signalman is in fault, then the railway company must be blamed, and the blame is not infrequently absurd. Not long since a collision occurred of no great importance. It
arose from a number of small causes all contributing to arose from a number of small causes all contributing to
the same end. The inspector was hard up to find anythe same end. The inspector was hard up to find any-
one in particular to blame, so he laid the fault on a lofty one in particular to blame, so he laid the fault on a lofty
distant signal, which had been in work for more than twenty years, and "advised" its instant removal to another place. The fact that the existing position had been sanctioned by the Board of Trade, and that no complaint had been made for twenty years, went for nothing. Recently some of the inspectors found in long hours an excuse for everything. This long hour idea is worked in a most unintelligent way. An express driver takes his engine 120 miles down the country in the morning. The run accomplished, he has little or no further work to do until the evening, when he takes an up train to town with the same engine. From the time when he came on duty until he signs off is, say, ten hours, his actual working time is not five hours. If an accident occurs towards the end of the day we are told directly, or by implication, that it was brought about by the fatigue of the overworked brakes nothing regards be more unsatisfactory than the attitude assumed by the Board of Trade. The continuous brake is evidently still regarded, after twenty years of service, as something dangerous and untrustworthy, and an absurd regulation is in oree entering a terminal station. At first sight it seems that the Board of Trade inspectors believe that a hand brake on a tender, and two or three others in guards' vans, can do that
which the automatic brake applied throughout a train cannot do. This, however, is not really the belief of the inspectors. What they mean to say is that trains shonld not be allowed to enter terminal stations at high speed, but for some inscrutable reason they prefer to use the elliptical method of phrasing, and say that only the hand elliptical method of phrasing, and say tat only se hand
brake shall be used to stop a train in a terminal station. The railway companies assert, and not without reason we think, that the action of the Board of Trade is often vexatious, and that it entails a great and useless outlay We have no reason to doubt that the accusation is largely well founded. We do not see how it can be otherwise. Weflicers in the Royal Engineers however cotsiderable their professional attainments and keen their sense of duty, can scarcely be in touch with either traders' duty, can scarcely be Thoun ether traders insist on taking care of the public to an extent which is insist on taking care of the puycts. an extent which is impressed with the notion that impressed with the notion that a railway company is unless car fully watched, will destroy immense quantities of it of it own property by gross or even criminal carelessness. uney holess watched with precaution they will rather wreck a
unle train than lose their supper. Engine drivers are so depraved that they think nothing of running past signals, depraved that they think nothing of running past signals,
even though they thereby incur the imminent risk of a dreadful death. In a word, the theory of the railway dreadful death. In a word, the theory of the railway
department of the Board seems to be on all fours with that of the marine department, which holds that the that of the marine department, which holds that the
shipowner can do no good thing. We in no way blame shipowner can do no good thing. We in no way blame
the Royal Engineer officers who now look after our rallways. They represent a system, and the system is bad, but they are not in fault. They act conscientiously according to their knowledge and training. That their influence is repeatedly exerted for good is quite beyond question, but we hold that the time has arrived for inquiry into the relations of the railway companies and the Board of Trade. There is a clamour for greater facilities of transport, and it is asserted that the Board of
Trade stops the way. Trade stops the way. The trath or falsehood of
the statement ought to be made plain by inquiry and investigation. Select committees are the rule. Let us have one to inquire into the relations of the railways and the Board of Trade. For ourselves, we hold that a large infusion of the civilian element would prove of great advantage. In the natural course of events,
most of the officers now acting as inspectors will most of the officers now acting as inspectors will have to retire within the next few years, full of years and of honour. They should be replaced by those possessing experience in railway working, and able to discriminate
between what is necessary for the between what is necessary for the safety of the public and that grandmotherly carefulness which insists, as we have said, that it is better to have no railways whatever than incur such risks as no other nation on earth hesitates to face.
the inspection of railway bridges in india.
Last year the Government of India issued rules as to the strength and loading of iron and steel bridges, for the guidance of officers entrusted with the duty of inspecting new railways. These rules were adopted after prolonged onsideration, and were submitted for criticism to all the principal railway engineers in India as well as to the secretary of State's advisers at home. They deserve he attention of English engineers both because Indian bridgework will have to be built under these rules, and also because some move in the same direction will probably be made on the part of our Government sooner or
later. The present Board of Trade rules are so antiquated as to be practically useless. The new Indian rules are as follows:-(1) for any member of a rail way bridge of wrought iron or steel, the total working load is to be taken as the greatest moving load, multi(2) The coefficient to be used for this purpose is 2.0 in
all cases, except for the upper and lower booms of triangulated girders, for which a coefficient of 1.5 may be used. (3) The stress per square inch, either load thus calculated, is not to exceed the following :Wrought iron, 7 tons; steel, 9 tons. (4) The working stress per square inch given above, whether for tension or compression, is to be taken on the net available area which it is applied, after deducting all holes for rivets, pins, bolts, \&c. (5) For members in compression, the
working stress given above is subject to such reduction as may be necessary according to column formula. (6) For the purposes of this rule, "fixed load" is to be taken to mean the weight of the structure itself, with roadway, flooring, ballast, permanent way, \&c., complete. (See
also "wind pressure" below.) "Moving load to be taken as follows :- (a) A train load for each line of rails calculated as specified under "train load" below. (b) If there railway, an additional moving load of four tons per 100 sq. ft. of such road or footway. For the purpose of calcu-
lating the train load to be allowed for on each line of rails, the "type train "is to consist of two engines with a train, of the 5 ft wagons taken at a uniform weight per foot run
on 1.2 tons ; on the metre gauge, 0.8 on the $5 \mathrm{ft}$. .in. gauge, $1 \cdot 2$ tons; on the metre gauge, 08
tons. The engines are to be taken as running either in
the ordinary way or coupled head to head, and occupying the ordinary way or coupled head to head, and occupying
any position in the train. To facilitate the determination of the stresses which may be produced by the "type train," a diagram of a "type engine" is given in an
appendix. It is to be understood that this diagram engine so designed as to produce on a bridge the most engine so designed as to produce on a bridge the most
severe effect practicable under the specification. The amount of wind pressure on a railway bridge is to be calculated on the assumption that the maximum normal pres. sure may be one and a-half tons per 100 square feet of
surface exposed, the surface exposed to be reckoned as surface exposed, the surface exposed to be reckoned as of $13 \mathrm{ft}$.6 in . on the 5 ft .6 in . gauge, or 11 ft . on the metre
gauge, multiplied by the total length of the girder. gauge, multiplied by the total length of the girder. (b) of one girder which may be below rail level, or at a height
above rail level of more than 13 ft . 6in. on the 5 ft . 6in. above rail level of more than $13 \mathrm{ft}$. . 6 in . On the ft . 6 n .
gauge, or $11 \mathrm{ft}$. on the metre gauge. Aso (c) In the case of triangulated girders, the actual vertical surface-as seen in elevation-of rail level, or at a height above rail level of may be below rail evel, or at a height above rail ${ }^{\text {more thel of }}$ metre gauge. The total wind pressure thus calcu-
lated is to be provided for by a proper system of windbracing or floor-plating, and its effect taken into account as forming a part of the stress on the chords of the main girders. Proper arrangements to secure sufficient stiffiness to resist racking action, where diagonal stiffeners are not used. Wind
pressure is to be treated as "fixed load," and its effects on the different members of the structure is to be allowed for as provided in the rule for "Maximum Permissible Stress." In the appendices following the rules, particulars are engine is represented, which is to be used for the purpose ongine calculation. For the 5ft. 6in. gauge this engine has eight coupled wheels, with 15 tons on each axle; it
measures 32ft. over buffers. For the metre gauge the measures 32 ft . over buffers. For the metre gauge the axle, and measures 24 ft . over buffers. It would facilitate form load per foot extending over a given distance,
corresponding to the length of two prescribed instead of definite axle loads. Cross girders wreuld then have required a specification of the load they should be designed for to vary with the spacing. No one can say what the distribution of loads on engine wheels will be an exact distribution of the load on axles at definite distances. Assuming, for the moment, that it was the right policy to issue rules laying down hard-and-fast maximum rules had to be compressed within the compass of so many lines, we are inclined to think that the rules above quoted would allow. This, we take it, is the meaning of the approval expressed by a large majority of the engineers
consulted on the subject. We may observe, in passing however, that this approval should not be made too much of. A set of draft rules were drawn up by the Governcisms and proposed amendments were not, so far critiknow, submitted to the same body of engineers for consideration, but the approval of the rules as originally drafted was inferred from the fact that, taking the rules one by one, each rule was approved by a large majority.
It does not follow, however, that some of the amend. ments would not have been carried if they had been submitted in the same way. The most important questions raised by these rules, to our mind are, firstly,
whether it is wise to lay down definite limits of stress whether it is wise to lay down definite limits of stress and load applicable to all railways independently of the employed, and other circumstances; and secondly, whether, if such rules are necessary, they and not need, We do not intend here to enter on the very wide ques. tion of whether Government inspection of such structures
is a desirable thing. For good or evil it exists, and is is a desirable thing. For good or evil it exists, and is
likely to continue. We should like to see it made more of a real safeguard to the public, and less of a harassing
and expensive burden to railways of small traffic. These and expensive burden to railways of small traffic. These rules as these now in force in India serve neither one
purpose nor the other. A bridge might fully comply purpose nor the other. A bridge might fully comply
with these rules, and yet be dangerously weak in a dozen different ways. On the other hand, a bridge might be
absolutely safe for the traffic it was built to carry, and absolutely safe for the traffic it was built to carry, and
yet require a large additional expenditure to bring it up
to the standard of the rules. India is the last country in tifiable, and are extravagance in railway expenditure is jus equipped on a standard only really required by the most important roads involves extravagance of the most serious are . We quite admit, however, that inspecting offticers bridge to be left to their own devices in such a matter a securing the safety of the public would be to establish some such requirements as the following:-(1) Before a railway is opened for traffic, copies of the working draw copies of tests of materials, and all other necessary data shall be supplied to the Government, and certified as correct by the chief engineer of the railway, and shal
be verified by the inspecting officer, who shall also make be verinied by the inspecting officer, who shall also make
such tests as may be desirable. (2) Before the work on any bridge is commenced, the drawings may be submitted for approval, so that it will only remain, when the work is finished, to verify that it has been properly carried out missible loads and speeds on any new railway will be determined before sanction is given to the line; and for the guidance of the engineer in preparing bridge designs what stress, as a fraction of the breaking strength of the material, will be sanctioned for the various parts of maximum permitted speed.
For the purpose of carrying out these regulations the Government should have a competent officer specially deputed to the task of making a really effective and inde pen be his business to criticise or amend in any way, unless where there was actual demonstrable weakness. His task would be immensely simplified by being able to
call on the railway engineer to provide him with stress call on the railway engineer to provide him with stress afresh. If, however, each of the msy rail make them in India is to calculate the strength of each bridge on the line he inspects and certify to its strength, and if rules in our opinion, should go much more into detail appears to make the common mistake of confoundsome separate rules had been given for plate girders would the rules then have been less simple? be non-existent. The plategr inspecting triangulated girders. If the inspector had to carry these rules in his brevity, but we understand it on no other ground These rules govern the design of all railway bridges in Indiawhere bridgework forms a larger item in railway con have thought that the object of securing the most efficient bridges at the lowest cost was far more important than that of cutting down the rules to as few words as disadvantages of this process of compression, we observe, first, that nothing is said about the strength of fastenings. The inspector, we presume, will have to examine the examines the design at all. Why is it more necessary to give him a rule for the stress on bars than to give him rough-and-ready. It draws an unjustifiable distinction between, say, the end diagonal of a triangulated girder and the adjoining length of boom. The cross-girders and the end diagonals of the main girders are assumed by it of moving load, which is far from being the case. The materials of which the bridge is built are not alluded to at all except as "wrought iron " and "steel." To be such as is issued by an American railway company in rules would assist tenders for a bridge. Such detailed present rules may probably be regarded as a step in that direction.

coal mining machines.

In the reports of the State Inspectors of Mines for Illinois there are some facts given that should be of interest to this country, and that carry further forward the figures we gave mining machines in the coal mines of the State named Last year it appears that the number of the mining to 310 ine a ince us of 69 in the two last years increase seven kinds of machines in use, the Harrison type being by far the most numerous, and next the Ingersoll-Sergeant seems to be numerically preferred. These machines are in use in forty-one mines, so that there are on the average more than was just about one-fourth of the total produced in the Stateover $4,595,000$ tons in the year, so that there was an outpu
that is now large enough to give at least some idea of the
relative cost of machine mining. The first of the fact that are given is that the number of men employed at the machine-operated mines was last year 4314, and the per little over 12 per cent. of the total men employed in the coal mines of Hlinois were thus employed, yet the output, as we mave just said, was 25 per cent. of the total-a very striking contrast. A table is given of the average production o output from 6239 tons to 17,784 tons. But the number of the men employed in operating the machines varies-some kinds needing 6.4 men on the average, and others up to
$20 \cdot 1$ men each, so that the actual yield is not to be taken from the mere average only. For the whole
number of machines in Illinois, there is now need for an average of 14.2 men each, which is an increase on the number in the previous year, possibly due to the variation in
the types of the machines. It is to be observed that the the types of the machines. It is to be observed that the
yield of the machines was on a working that on the average
was a fraction over 250 each per year; and taking the mines where machines are exclusively employed, it is found that they vary in size, one producing only 21,000 tons in the year, whilst other collieries rise in output to as high as 304,000
tons, which is produced by 206 men in 255 working days, about eighteen Harrison machines being in use. Differences in the kind of seam, the nature and working of the coal, and other variations may influence the use of machine or hand
labour, but the facts that are above summarised are of interest, and may have value to those who have the oversight of coal mining in this country.

new water scheme for minburgh.

For many years an improved water supply for Edinburghand increase in population of the capital had been anything like as rapid as in the case of Glasgow, definite steps to this end nust have been taken long ago. As far back as Mary's Loch in Selkirkshire. A strong opposition to any utilitarian tampering with a lake of such historic and poetic interest
immediately arose, and speedily attained such strength that he scheme had to be abandoned ; and the whole matter of Water extension was allowed practically to rest. that a large extra supply of water must be obtained some where, and without much delay. The members of the Edinurgh and District Water Trust accordingly bestirred them is called the Tweed scheme. This practically means the utilisation of the water of a Dumfriesshire tributary of the Tweed, known as the Talla-waters. The only other source of supply through the Manor Valley in Peeblesshire and entering the
Tweed about two miles above Peebles. This was reported upon and strongly recommended in 1891 by Messrs. Hill, Gale, and Mansergh, as being ten miles nearer Edinburgh han the Talla, and as affording a remarkably pure supply.
However, borings with a view to the necessary embankments showed in some places a depth of 15 fft . before rock was tailed cansed the engineors to withdrawtheir recommendation, and finally they advised the Trustees to adopt the Talla supply, 28ft. The Talla water rises in three head streams in Dumfriesshire, and is also fed by the Gameshope Loch. After a course of seven miles in a northerly direction it runs into the Tweed at
Tweedsmuir Church. The stream will afford an abundant supply of excellent water, and the full scheme proposed by解 dueducts to convey 24 million gallons per day to the capita, distance of thirty-six miles. Application for parliamentary
powers accordingly will be made. As a first instalment it is proposed to lay pipes capable of oonveying 10 millions
gallons per day. This is estimated to cost about $£ 646,000$.

mild steel for structural engineering

Whilst, as we last week showed, Bessemer steel is gaining material for use in manuf teel. This, indeed, has been gaining ground in the steel race uring the last few years, and it has now passed its Bessemer 1894 butput of open-hearth steel in the first six month Bessemer steel he way that thas onbined, outputs. the two ay observe, by ate of 3673,722 tons per annum or higher then sny annue otal ever yet registered in the history of the British steel pen-hearth steel has for the first time gained the fact tha There has, in fact, lately been a greatly increased consump. tion of mild steel for all kinds of bridge and roofing, engineering, also in the machinery trades, and among the team boiler engineers, the tube firms of the kingdom, and ther large consumers. One of the drawbacks to the use of teeel in these trades is still asserted by some engineers to be particularly when exposed to the atmosphere or in damp or em reports of some of the railway on British lines afford further evidence in support of those ho have contended that this increased corrosion does occur and some engineers are also seriously opposed to puttin designed for high tensile stresses that this corrosion is said to be most rapid. This fact is being increasingly recognised foreign contracts, and this tendency to prefer soft steel is likely to become more marked.
the mitrabeau bridge.
$T_{\text {HE }}$ work of constructing a steel bridge across the Seine at Paris, between Grenelle and the Pont du Jour, is making
satisfactory progress. This bridge is interesting from the act that it is of an entirely new type, and is intended to vithout interfering with han without interfering with the passage of vessels underneath.
It is to be built level with the embankment on either side, and the centre of the bridge is to be 7.50 mote aber side, water level. Its total length is to be 170 metres, with central span of 100 metres. In building the two piers, a great deal of trouble has been met with owing to the shifting
character of the river bed at this point. The caissons employed in sinking the piers were supplied by the Compagnie
de Fives-Lille, whose system has been much improved since he accident which took place some years at antes, phen a workman was blown thrown through the discharge fin 20 metres, it was necessary to dig through layers of and and marl, and this work was made difficult by the prerial had to be raised before the foundation could be laid he present moment both piers are completed, and work he present moment both piers are completed, and work has
been in progress during the past three months upon the superstructure on the left bank of the river. The steel used Nord, and the Imphi Works, in by the Anzin Works, in the tons of this material will be employed. It is not expected wing to thige will be finished before the middle of 1896, The cost of the bridge is estimated at $£ 140,000$. Designed by M. Résal, chief engineer of the Ponts et Chausees, the of view, but is likely to prove one of the most picturesque
rections across the Seine.

RAILROADING IN AMERICA.

By An English Railway Engineer. CARS.
In my previous article comparison of English and Ameri can practice in locomotive building was avoided as being undesirable ; but when dealing with the subject of cars or rolling stock, one cannot help remarking the great
difference in the two prevailing systems, and at times difference in the two prevailing systems, and at times
comparing the comforts and conveniences of the relative comparing the comforts and conveniences of the relative
styles. The American car in its own country is a vastly styles. The American car in its own country is a vastly
different article to the "corridor "imitations attempted different article to the "corridor "imitations attempted
on this side of the Atlantic. and must at once be acknowon this side of the Atlantic. and must at once be acknow-
lodged superior in many respects; one of the greatest legged superior in many respects; one of the greatest
helps to its successful adoption in the States being, no doubt, the practical employment of one "class" only doubt, the practical employment of one "class" only. In America, as probably many of your readers are aware, the holder of an ordinary ticket has a free run of the entire train, notwithstanding the provision of the superior accom-
modation of the Pullman and Wagner Company. It is also modation of the Pullman and Wagner Company. It is also
pretty generally known that the ordinary fare is about pretty generally known that the ordinary fare is about
one penny per mile, or equal to our third class for one penny per mile, or equal to our third class for
accommodation in many cases equal to that given at accommodation in many cases equal to that given at home as first class, the additional charge for "sleepers,"
drawing -room cars, or limited trains, being about one drawing-room cars, or
farthing per mile extra.
It is often urged in this country that American cars are heavier and more costly than carriages for a given carrying capacity; but there are several points to be considered in favour of the cars which only become apparent upon closer acquaintance. For instance, in English trains the heavier carriages are usually hauled with few passengers, the first and second classes being often practically empty. With carriages, too, some may be crowded whilst others in the same train and of similar class lack passengers. In the American train all are utilised, and each car takes its fair proportion of passengers. Here lavatories are provided for first and second-class and perhaps a few favoured third-class passengers, but although there may be possibly a dozen lavatories in the train, they are only available to the occupants of twice as many compartments-unless fitted in corridor carriages -out of perhaps a total of over sixty. The lavatories, moreover, are awkwardly placed, are liable to affect the sanitary conditions of the compartments, and are rarely used when passengers of both sexes are present. Here then is a typical example of maximum weight and cost with the minimum of convenience. In the American cars seating sixty, and in some cases eighty passengers, two lavatories are provided, available for all the passengers, and being located at the ends of the car, and not under the continual notice of the passengers, more general use is made of them. Another important advantage of a continuous passage is apparent on "through " trains when a dining car is attached at meal times and run for those times only, being detached at the first convenient stopping place. In the carriage system, on the contrary, kitchen and saloons are run continuously, and form a useless augmentation to the weight of the train during a considerable portion of the journey, and in cases where the saloon is not connected by a gangway with the other carriages, the passengers in America have not the privilege accorded them universally of changing cars after dinner has been served. Before quitting this

Fig. b-general view of barr vestibule
part of the subject, I should like to say a few words on a point often urged in this country as being an advantage possessed by the carriage system over that of the cars, viz, that greater facility exists for ingress and egress by a door being provided for every ten passengers, against only one for thirty in America. This may be substantially correct in theory, but it makes no allowance for the only too familiar old lady who sometimes keeps a whole train waiting whilst she runs from one end of the platform to the other to select a suitable compartment, or for a group of passengers waiting at the wrong portion of the platform for the particular class of carriage they require. One trip on
were
age.
As
the Chicago Elevated Railway is sufficient to cause one to modify this opinion considerably. On this line the average speed attained is fifteen miles per hour from terminal to terminal, including stoppages at the rate of three per mile; while on the underground railway in London the average speed is only twelve miles per hour, including only two stops per mile, similar service engine requirements being involved in each instance. On the cars the passengers are directed by the conductors to alight at one end while newcomers enter at the other, thus preventing delay on the platforms by passengers in search for vacant seats, distribution taking place largely in route. There is, moreover, no alighting from or entering the train while in motion, as the conductors control the gates on the car platforms in a manner simiar to that employed on the South London Railway. There are, however, excepions to the car system, even in America. On the Brooklyn Bridge, and at Chicago during he Exhibition period on the Illinois Central Railroad, the carriage style was adopted. But in both these cases crowds had to be carried between two points only, and consequently the side doors were used to great advan-

As regards the construedion of American cars, these differ from our carriages in having no separate body and nderframe. The sides form wo girders strongly braced and trussed, resting on trucks at either end. In modern cars the framing is of timber and iron or steel combined. The sides peresent a flat furface about 10it. wide, and have no project. there are no raised platforms at main line stations, a minitare staircase is provided at each end, leading on to the platform. The plan, Fig. 1, gives the arrangement of an ordinary day car. The seats have reversible backs, usually reversed by the conductor or rain men, and locked, so that all passengers face the engine. They are comfortable, and when "reclining" chairs are used, are very easy. The seats are of braided wire, upholstered in brown or crimson plush. The windows are large, and are

Fig. 5-VIEW OF PULLMAN CAR "MAUD"
 invariably clean, many ingenious little contrivance ${ }^{\mathrm{S}}$ being employed for raising and lowering them. Each A train shown by the South Pacific Railroad Company car is provided with iced water, and also glass-fronted at Chicago had the Krebel vestibule. This is a conneccupboard containing a number of useful tools in case of
dion the full width of the cars, so that the train is practi-
call one width from end to end, with flexible joints mishap, such as an adze-saw, hammers, \&c.
Vestibules are rapidly becoming universal, and have received considerable attention. Apart from the convenience of affording a covered communication between the cars, doubtless a good vestibule as constructed in the States offers very considerable resistance to telescoping,
and this has been recognised to such an extent that in ally one width from end to end, with flexible joints Pullman cars appear to be run on nearly all "through " trains; and as they are well patronised, the attendance cuisine, and conveniences are excellent. Each car has five sections on each side, or seats for forty, and a stateroom for four-some without the state-room accommodate and this has been recognised to such an extent that in forty-eight passengers, berths being provided for the same
some cases a cast steel frame is placed at the rear of the number. The lower berths are formed by drawing out the engine tender to receive the first vestibule, thereby opposite seats-in the Pullmans all seats face each other ensuring a continuous connection throughout, and a few -and the upper are pulled down from above; these when words describing them may prove acceptable. The "strings," bolts, and catches of the English gangway are unknown features of the American vestibule. Two vestibules can be simply "bumped" together as they couple ap automatically, while one movement of a lever on the platform of the car is generally sufficient to uncouple hem. The framework of the car end has provision for our buffing springs. The spindles passing through these the connection between this frame and the car body being
made with a rubber bellows. The folding doors of the vestibule open on to a stairway on most cars, but as tramps have been found to make use of these for free transport, in later practice the vestibule is brought out to the full width of the car, and the steps are covered by a trap door opening upwards by means of a handle. sketch of such an arrangement is shown in Fig. 2 here with. In the Barr vestibule timber is used exclusively, the joints only being provided with a rubber cover. In Fig. 3 is depicted a general view of one of these vest bules, and Fig. 4 shows a plan thereof.
\qquad
 closed and occupying a slanting position have sufficient space to contain all the bedding for both upper and lower berths. A wooden panel fits in between the back of each seat and the car roof, and effectually divides the berths, whilst curtains are provided to secure privacy. Hooks are conveniently placed in each, and a net may be slung for loose apparel. At one end of the car a small smoking-room either adjoins the lavatory or forms one apartment, and at the other a ladies' dressing-room is provided. Fig. 5 shows a view of the Pullman car Maud.

Returning to the railway companies' cars, the New York Central have recently built for their famous Empire States Express some very large cars, 80 ft . long and 10 ft . wide, just over 9 ft . inside, on six-wheeled trucks with wheels 36 in . diameter. Seats are provided for eighty. four passengers, and the weight of each car is $95,400 \mathrm{lb}$.
trucks have wrought iron wheels. The cars employed by the Illinois Central Railroad for exhibition traffic were convertible into their standard freight cars, 35 ft . long, and supported on two four-wheeled trucks. They had seats arranged transversely, with panels and windows at the sides but no doors, sliding bars only being provided across
into the groove shown after the pressed iron body is dropped into position in the tire, and to remove the tire the wheel is placed in a lathe and this ring turned out. Couplers offer an immense field for invention, and the varieties appear to be legion. They are all made ts couple in the vertical plane, and have suitable arrange ments for working with a link and pin if required. A defect, however, is apparent on many roads where the coupler head takes all buffing as well as draft stresses. Some companies provide their cars with cast iron buffer blocks, so that as soon as the jaws are attached theso blocks come in contact.
In the description of the locomotives attention was called to the air communication means between the cara and engine in use on many of the chief trains. This com prises a small $\frac{3}{4} \mathrm{in}$. air pipe, which runs the entire length of the train, and is charged with air under pressure from the locomotive. On the latter is placed a "signal valve," which is so constructed that a reduction of pressure in the train pipe, caused by opening cocks in any of the cars, opens a passage leading to a miniature whistle, through which air is allowed to escape, thereby giving an audible signal to the attendants.
In no country, probably, has the heating of railway cars received more attention than in the States. On some of the small roads old-fashioned stoves prevail, but on trunk roads some form of steam heater is generally used In the Baker steam-heating system each car is rendered independent of its neighbours, a small stove being fed with coal from a hopper arrangement, and causes hot water to circulate through radiating pipes. In the Gold system, steam is conducted from the locomotive through storage heaters in the cars, charged with brine. These retain their heat for a considerable time after losing their steam supply.
In the external finish of the cars there is as great a variety as at home, the colours ranging from cream of the "ghost" train to dark blue of the Wagner cars. The Pullmans are uniformly painted a dark green and black, lined in gold, and each car is named for convenience of recognition. They are well kept, and present a fine appearance. The Pennsylvania Railroad favour a chocolate brown colour for their cars, but other roads use yellow and brown chiefly. The Canadian Pacific Railroad imitate English practice in adopting varnished wood.
Freight cars are of large size, usually running on two four-wheeled trucks, while $25,000 \mathrm{lb}$. to $30,000 \mathrm{lb}$. is a customary tare for a car of $60,000 \mathrm{lb}$. capacity. Box cars are more extensively used than in this country, but a "sheeted" truck is never seen. For mineral traffic open cars or "gondolas" are provided, whilst many roads having a large coal traffic provide hopper cars for this purpose. The Baltimore and Ohio Railroad have some purique cars, which require a few words of description. The body is made up of three intersecting cylinders, with hopper bottoms, on two four-wheeled trucks. All cars are furnished with brake blocks on each wheel. cars are furnished with brake blocks on each wheel.
These are operated by means of a hand-wheel on These are operated by means of a hand-wheel on he top of the car, or are brought up on a spindle sit. or 4 ft . long in the case of platform and gondola cars. The brakesmen under the orders of the conductor manipuate these brake. The travel in "when " inuous air brak - equivalent to has a kind of con of the opening on to the rais being provided for reaching this. When approaching down grades or upon the receipt or the eng a signal the crew of brake the eringe apper doors and arranged along. the centre lime of braking a certain numern curve For horses and cars are of gable pattern, not curved. Ior horses and cattle several car companies have specia on hire which have watering, and attending to the stock on route. The Burton Palace Horse Car Company provides very good equipment in this respect. The horses are placed across the car, as shown in Fig. 8, each horse being railed of rom its neighbour, while a manger running along the side of the car is accessible to the men in charge by a passage between it and the car side. Special cars are also provided for fruit, meat, \&c., the arrangements for refrigerating, \&c., being excellent. For ballasting purposes plain platform cars are used, which can be unloaded with mechanical unloaders, resembling a snow ploush drawn along the train of cars by the engine or by a winding appliance worked from it.

Public Works in Algeria and Tunis.-Five miles of a line constructed by a French society for working the phosphate bed have been recently opened for traffic. At this distance from its starting point it joins up to the existing branch line, which con neets Bône-Guelma with Ain-Kissah, the principal locus of the whole undertaking, although the greatest quantity of phosphate is procured at Ain-Dibah, to which place the present railway will be ubsequently extended. At Mustaphah, fifteen thousand pound premises attached to the Arsenal. Towards the end of las month the first line in Algeria, constructed by the company of Algerian railways, was inaugurated, and the first train run between El-Affroun and Marengo. Since then the traffic in both passenger and goods has been constantly and regularly maintained. It i
stated that notwithstanding the advanced condition of the marine works, the new town at Bizerta is not provided with any water supply, nor with any buildings of the character absolutely indispensable to the welfare of the place. The sources of the water supply of Ain-Bourras sink away into the sand. Public edifices, such as schools, post-office, law courts, town hall and others, promised since last April, are still in the clonds. Great delay
attends the sale of the lands belonging to the Harbour Compan attends the sale of the lands belonging to the Harbour Company and the period of stagnation presses severely upon all branches o the present state of uncertainty and indicision may exercise a ver injurious effect upon the future prosperity of the port. It is satisfactory to be informed that the inauguration of the Bizerta Djedeidah railway will probably take place at the end of the present month although that event in itself is a reason fo
hurrying up with the water supply,

LETTERS TO THB EDITOR.

(We do not

the port of manchester.

Sir, - In your issue of the 12 th instant you quote from "Fair
Piay" a series of questions which, you say, Baltic men and others Play" "a seriee of questions whicd, you say, Baltic men and others
have beee led to ask on consideration of circulars issued by the have been led to ask on consideration of circulars issud and the
Sbip Canal Company. The tone of these questions, and the
evidently hostile spirit in which they are propounded, might lead one unacquainted with the subject to suppose that they were
indeed very awkward posers for the supporters of the canal, and indeed very awk ward posers for the supporters of the capal, and
that it would bo impossiole to answer them save in the damaging sonse which is suggested by the quastions. Lest any of your
readers should be thus decived, allow me very briefy to deal readers should be thus deceived, allow me very brieny to deal
witt the "series" seriatim, with the ojbet also of imparting
to "Bultio men and others" the information of which they stand in need.
First, then, with regard to the saving to importers to Man-
thester direct, as compared with via Liverpool. It is ovident that chester direct, as compared with via Liverpool. It is evident that
in his remarks the questioner has in mind the cargoes of cotton
which arrive in the Manchester D.jeks in the early part of the in his remarks the questioner bas in mind the cargoes of cot on
which arrived in the Manchester DJeks in the early part of the
year. I mey remark that the canal was not open for traffic last year, so I am at a lose to understand what is meant by "the
freight last year."
It is quite true that on the cotton cargoes imported in January and February last there was not a very great saving as compared
with ootton brought from Liverpoo, owing principally to the
wail with cotton brought from Liverpool, owing principally to the
railway companies not having then fixed a shipping rate between
the Manchester Docks and inland towns, charging inland rate on the imported cotton, and owing partly to the backward state of the arrangements for storing and banding the cotton. Now,
however, these initial dificinties bave been overome, and
through rate has been fixed inclusive of all charges from the ship's hal to the masll, which shows a considerable saving on cotton
holought to Manchester direct, as compared with cotton ex
brought warehouse at Liverpool, in the case of over 90 per cent. of the stantial advantages in importing cotton to Manchester direct,
comes the fact that at the present moment steamers are loading cotton in Ameriax and the LLevant for this port, and this in spite
of the alleged failure of the experiment last season. As to gods other than cotton, of ins instanee will sutfica. The Wholesale
Co-operative Society, which has invested a large sum in the under Co-operativa Society, which has invested a large sum in the under
taking, stated within a few months of its opening that oven though is was never to see a penny of their investmen
again they would be no losers, in view of the amount they had saved by importing direct to Manchester.
Secondly, as to warehousing. The impression that Manchester
is unable to warehouse cotton and other cargoes is entirely
erroneons. erroneons. The canal
tion within easy reach of the doecks, to which cargoes are easil)
and chapply conveyed by barge from the ship's side, in addition to the extensive storebouses owned by private warehoosemen. Thes are equipped with every facility for handling goods in bulk.
Thirdly, "What cargoes which usually come in bulk has Man chester a market for? Timber, grain, and cotton perbaps,", Yes
timber, grain, and cotton ; and, to name only some of those whic, have already arrived in full cargoes in the few months during which the canal has been open: Ionen pyrites, ore, pig iron, boiler-
plates, stone, china clay, dyewoods, wrod pulp, paper, oil, green
trit fruit, dried fruit, and fish. An excellent wholesale market, second
to none in the country, exists in the city for cattle, dead meat, of the past months proves it a reasonable hope the experience cargoes will coment freely to her hocks dor for distribution amongst the the
enormous population of seven millions of which she is the natural centre and nearest seaport, and to serve which she is already provided with a system of raimay and canal communication with
parts of the kingdom which will bear comparison with that ondon itself.
Fourthly, as to outward business: Manchester can find coal
argoes for an unlimited number of vessels, being the nearest shipping port for the collieries of Lancashire, Yorkshire, and
Derbysbire; and coal can be hipped either in the Manchester
Docks or at the coaling basin at Partington more cheaply than either at Liverpool or Garston. There are already a number colliers tradivg regularly between the canal and Eng lish, Soctoh,
and Irish ports, besides numerous vessels which bring timber and other cargoes, and take out coal. Salt cargoes can also be readily obtained in the canal, one vessel having taken out an instance of bulk
mineral to Calcutta from Saltport, whilst as an cargoes of another kind, one of the continental lines running from
Manchester bas at present a contract for some 10,000 tons of arbon refuse.
Manchester, one of the greatest engineering centres in the world,
can find plenty of heavy cargo for the bottum of ships holds, and can fill them up with press-packed dales of octon goods, \&c., the the
most sought after and profitable eargo which shipowners can
obtain.
It bas been characteristic of the two cities during the past
decade, that whilst Liverpool has been bragging and scofting, lecade, that whilst Liverpool has been bragging and scofting,
and showing to her own satisfaction the utter impossibility of making a ship canal from Manchester to the sea, her elder sister has quietly gone to work and proved to the world that it could be
done, by doing it, osviuturambulando. Now Liverpool, trying to
forget ail the foolish things said about engineering impossibilities, still talks in a complacent way a bout the inevitabie failure of Manchester's efforts to create a traffic. The latter, however, is less
concerned to notice such windy verbosities than to disprove them bon raselts, and can alleady point, after nine months' work, to
established regular lines of steamers to British, European, Asiatic, estrican, and American ports, whose sailings aggregate over 100 per month, increases being announced nearly every week, and
this without taking into ocosideration the large number of specially
T. M. Y. chartered vessels which enter the canal weekly.
Manchester,
October
16th
the theory of the steam engine.
Sir, -It would be waste of time to discuss thermodynamics with
gentleman who holds that there is no difference between a aremanemt gas and stoan, so I take leave of Mr. Cherry
It is worth while to state more clearly the It is worth while to state more elearly than is usually done, the
reasons why so much is lost in the making of the working fluid,
steam. Dr. Lodge, I think, has even said that there is an
 to mislead. A namerical example goes straight to the root of the
matter. I shall take one pound of steam at 148 1b, absolute pressure,
and consider the work which it would do with expension bet and consider the work which it would do with expansion between
two limiting temperatures. Mrs. Glass told us long since that, before two limiting temperatures. Mrs. Glass told us long since that, before
you can cook a hare you must catch it in the same way, before you
年 ture of one pound of this kind of steam involves. I will assome that we make it from feed-water at 100 dep.; then we must supply
1122 units, representing 866,184 foot-pounds. The steam is caused to work a piston loaded to 1488 b . on the square ine inch. The piston
has 144 suare inches of area, and 1 le, of 1481 b , steam occupie has 144 equare inches of area, and
preeisely 3 cubic feet, consequently the piston 148 square foot in are must rise 3 ft , and $150 \times 144 \times 3=64,800$ foot-pounds. That is to
say, we get less than ra of the whole heat expended in making the steam returned.
In my last letter I showed that when the steam made under these conditions was supposed to expand down to 15 lb . on the
square inch, we got back about 21 per cent. of all the heat expended squareducing the steam. This, of course, includes the 1. mentioned and t of a pound of thon water, teft about two of a pound of steam
of the heat, and this is to all intents and
the condenser. It is the enormous quantity of heat expended in
converting water into steam that is the main source of loss in the steam engino.
I do not kno
I do not know what the latent heat of air is. I do not suppose that
any one does, but I imagine it must bs pretty high, because the any one does, but I imagine it must be pretty high, because the
volume of a vapour or a gas depends largely on the latent heat. volume of a vapour or a gas depends largely on the latent heat.
Thus the steam of other is small in volume as compared with that of water, but the latent heat of ether vapour is less than half that of water. Whatever it is, it is snpplied by Nature ready to our
hands. The weight of the workiuk flaid in a gas engine remains hands, The weight of the workiug flaid in a gas engine remains
the same throughout a stroke ; it diminishes as the stroke proceeds the same througho
in a stoam engine
in a stoam engine.
Two points occur to me here as claiming further elucidation. A correspondent of The Enginerr whose name I forget, raised question a year or more ago about the work done during the he meant. His idea was that as seam falls in pressure by expan sion, giving out work, so it must rise in pressure as it is made in
reverse curve, and the work expended by the heat in compressing it ought to be all got out
bave a diagram like this.

$\underset{\substack{15 \\ 0}}{15025}$

The area of A should be identical with that of C , and the fol result could only be got by starting with boiling water at D, and
say 15 lo. pressure, and ending with E 15 ib. and boiling water How this could be worked out in practice I do not quite see, nor does it matter. The only point I want to raise is tha
such a mode of working possess any advantage? And much more interesting, supposing that we generate steam under to steam? Its temperature runs up. I suppose that as it run ap some force of repulion is developed among the
Could this force be graphically depicted by a curve?
The other question of interest is this:--Supposing it was possible o generate a pound of steam at 150 lb . pressure, without doing
xternal work. Less heat would be required ths n is needed to generate it in the normal way. Is this taken account of in the
normal steam tables? Do the figures in the normal steam tables give the quantity of heat which can be got back by condensing pound of steam, or the quantity expended
Obviously, the two quantities cannot be identical.

Maurice Cross.
Sur, - Writers on thermodynamics are much to blame for mis
 Carnot intended bis " reversible cyele" "as one to be aimed at and
aproximated to in actual heat engines. That he did not so intend approximated to in actual heat engines. That he did not so intend is made quite clear by the following extracts from his work: - "The
question has often been raised whetber the motive power of heat is unbounded, whether the possible improvements in steam engines not allow to be passed by any means whatever; or whether, on the contrary, these improvements may be carried on indefinitely.
The phenomenon of the production of motion The phenomenon of the production of motion by heat has not been considered from a sufficiently general point of view. We
bave considered it only in machines the nature and mode of action cation of which it is sus us to take in the whole extent of applinon is, in a way, incomplote. It becomes difficult to recognise its principles and study its laws
In order to consider in the most general way the principle of the
production of motion by heat, it must be considered independently of any mechanism or any particular agent. It is necessary to imaginable heat engines, whatever the working substance, and whatever the method by which it is operated.
which have for a motor the force of men or of from heat, those an air current, \&c., can be studied even to their smallest details by the mechanical theory. All cases are foreseen, all imaginable movements are referred to these general principles, firmly esta.
blished, and applicablo under all circumstances. This is the character of the complete theory. A similar theory is evidently
needed for heat engines. We shall have it only when the laws of physics shall be extended enoung, generalised enongh, to make
known beforehand all the effects of heat acting in a determined manner on any body
This states quite plainly, that what Carnot proposed to do was to find out the theoretical principles of thermodynamics, not their
practical application to actual heat engines. His cycle of operations he uses as a new mathematical mode of investigation. What be near engines will be made quite clear from the fact that the
heperations of no actual heat engine can possibly be subject to the following conditions assumed in Carnot's cycle $:-(1)$ The working
body must, at every instant, bave the same temperature through body must, at every instant, bave the same temperature through
out all its parts. (2) The working body must, at every instant, have tore same pressure throughorions through which the working body paseses must take place so slowly, that the densities of all its parts may, at any instant, be
the same as they would be if the temperatures and pressures the same as they would be if the temperatures and pressures
the parts at that instant were constant. (4) The transformations body be so small as to be negligibl
These are quotations from page 26 of my treatise. It will there
fore be evident that the efficiency $\frac{\mathrm{T}-t}{\mathrm{~T}}$ of Carnot's ideal heat
engine cannot be attained to, nor even closely approximated to, by
any actual heat engine unless it be permitted to work so slowly any actual heat engine unless it be permitted to work so slowly a
to waste time of much more value than the heat we are attempt ing to economise.
With regard to the superheating of steam by free expansion,
Rankine-"Steam Eogine," section 253 -says that it bas been proved experimentally by Mr. C. W. Siemen
Glasgow, October 13th
Glasgow, October 13th. Peter Alexander.

governing electric light engines.

$\mathrm{SIR},-\mathrm{I}$ do not know whether there are any electric light engines
fitted with the Proell or other single-valve automatic trip expansion apparatus of like construction, but if there are, I fancy I can account for some of the difiticulties of governing likely
to be encountered in their use. There is a peculiar feature in the action of these apparatus that is never mentioned in tbe published stroke, these apparatus and that is, that for a cortain period of the
and "honting " of the governor is the only feature that makes regula tion of any sort possible.
I a am not aware whethe
proviously or not, but it will be easily understood from the follow-ing:-Supose the apparatus in its mid position, and that
triping takes places there. Then at the same instant the active
trip edges clear each other, the idle trip edges will line with each trip edges coear each other, the idle trip edges will line with each
other, and it it ionly a question of condition of the edges how far
the the apparatus will have passed its mid position bofore the falling
valve will be arrested by the idle edves, valve will be arrested by the idle edges, and only allowed to close
when these edges have travelled sufficiently far in that direction. If the edges are sharp and in good condition a movement past mid position of the apparatus equivalent to 3 or 4 per cent. of the stroke
may be the position at which, when tripping takes place, the fallng
valve will be arrested by the idle edges, and prevented from closing
until the period determined by the excentric motion. If, on the antil the period determined sy the ext blunted, 6 to 88 per cent.
other hand, the edges are somewhat onay represent the movement past mid position at which the valve
mat
is arrested, but the period of closing will be as before. When tripping occurs later than the period of closing by the excentric motion, the engine is again under control.
The extent of this lapse in the control
ascertained thus:-The angle of the crank from the commencement of the stroke until the trip apparatus is in mid position is equal to the negative advance angle, and the angle of the crank
from the arrested, closes by the excentric motion in that direction, is equal aparatus are generally stated to bave an automatic range of cutoff from 0 to of of the stroke, which allowing 6 per cent. for clearance of trip edges, is equal the mid position when 10 per cent. of the stroke is completed, and allowing 6 p 3 r cent. for condition of edges, \&., any trip that takes place at 16 per cent. of the stroke will not
be followed by a cut-off until $(2 \times 38+6)=43$ per cent. of the stroke is completed, that being the position at which the 16 per cent. and 43 per cent. of the stroke be followed by any other cut-off but 43 per cent. of the stroke, as between these positions the valve
will be arrested at every trip. Instead, therefore, of the range of automatic cut-off being from 0 to 3 of the stroke, it is only from
0 per cent. to 16 per cent. and from 43 per cent. to 75 per cent., and the "hunting" of the governor is relied on to cross the interval between 16 per
be exercised.
If the range of cut-off were limited to 55 per cent., and with the allowance of 6 per cent. for condition of edges, the negative break it at range may be obtained from a positive advance excentric, and it is questionable whether the extra 20 per cent. is worth an indepen-
dent negative advance excentric, when the positive advance slide valve excentric is ready at hand for the lesser range
240, Wallgate, Wiga
as. Dunlor.

Sir, -I have read with much interest what has appeared in THE Esgineer on this subject. The letter of Mr. Robinson may be which exists between the engine builder and the electric light engineer. Mr. Robinson evidently does not grasp what it is we want. A heary fly-wheel may belp us in some respects, but in
others it is just the thing we do not want ; everything depends on the system of working employed.
I know by experience that the average engine builder goes on
the "one man one vote" system, to have dynamo and work one circuit, and provision must be made for variations in the demand for current in that circuit.
devoutly wish that this was the case. Without details, I may give Mr. Robinson and others of your readers
dish it. There are two evgines and two dynamos; each will indicate, say During the daytime one of these supplies cur-
rent, and works. up to 250 or 300 -horse power ; as the night comes on more and more load is put on, until the power reaches 600 horse power. Then the second engine is started, and its dynamo such a speed that the voltage shall be the same in both. At the proper moment the switch is thrown over, and both engines ar now doing the work that a moment before was done by one. But the total work wanted from the two is for the time only 600 -horse power, not 1200 . Howat does Mr. Robinson suppose a
bas to do then? How would the heavy fly-wheel help?
Messrs. Robey and Co. are nearer the solution of the difficulty they have not quite got it. The use of current to regulate a
throttle valve has been tried over and over again, and it has nevar yet achieved permanent success. I think the best chance lies in type, using the magnet, in fact, to hurry up the governor, and also ish a definite relation between the engine, the current, and the number of revolutions. The centrifugal governor takes no I may vice in the
I may say incidentally that all your correspondents talk of
throttle valves. What about governing Corliss engines? something peculiar about their action which I do not quite under stand. There seems to be a considerable range of speed at certain
ratios of expansion when they do not govern at all. Thus governor will do very well at ranges between no admission and
14 or 15 per cent. and within 50 and 63 per cent., and very
badly indeed at other ranges. I should like to have this voint badly indeed at other ranges. I should like to have this poin
cleared up. It has something to do with the trip faces, I fancy.
Bolton, October 16th.

OIL-FIRED STEAMERS FOR HARBOUR USE.
Sir,-I have read with much interest your leader which appeared in your issue of 21 st ultimo in relation to "Oil-fired Steamers for
Harbour Use;" the only objection I take to it is that it stops, short at the advantages and utility to "steamers for harbour use," and therefore I now propose to demonstrate that this is only a very
restricted sphere for oil fuel, inasmuch as all that you have written is equally applicable to ocean-going steamers.
I proceed to analyse the possible objections which "vested
interests" may see in this assertion. Firstly, it will be asked by interests" may see in this assertion. Firstly, it will be asked by
those in opposition, Can the oil fuel be obtained in sufficient and easily procurable supplies at the respective ports of call? My answer is emphatically "yes;" for from the moment that a regular
demand for oil fuel manifests itself contractors for delivering the same at any desired point or points can be found in the same
manner as is done with coal now. Anybody who has studied the question of the possibilities of the oil production of the world
can determine for bimself that eventually the supply wonld equal to any demand the markets might make on it, subject only to ordinary trade fluctuations in price. It is a well-known fact that large tracts of country in various parts of the world are known to
be oil bearing, and only require the stimulus of a commercial demand to enable these new fields to come into actual working.
Secondly, it has been widely asserted that, so far no system on working has been discovered which would bear the daily wear and tear of a long ocean trip; ample proof to the contrary is available.
Now I come to the question - Will the enderwriters of the hull or the cargo raise any difficulties, or in any manner penalise the oil system as against coal
From all the inquiries I
From an with the inquiries 1 have made from responsible quarters, required is that the oil system of firing be carried out under proper
rules and regulations, which will be formulated by the recognised insurance authorities to meet the case; and, from what I bave adoption probibitive or in any way disadvantageous in competition with coal. Doubtless, on the other hand, at the first set-off, merto their cargoes from the new system of firing, and this factor, no
doubt, weighs heavily wit the shipowner, who otherwise has an I am confident that the prejudice existing on this score would very soon vanish by practical experience, inasmuch as it has already on various occasions been demonstrated that it has no
existence in fact. For example, it is well known to all concerned in the oil trade that oil tank steamers have carried cargo-such as
sago and other fine freight-in their empty tanks without any
damage or injury which would be ascribed to their mode of
carriage. The comfort of all on board, be they passengers or crow, would
under all conditions be greatly enhanced. As a professional man, under all conditions be greatly enhanced. As a professional man,
I can only hope that some far-seoing oommercial mind will grasp
and vitalise what appears to me so patent as this superseding of and vitalise what appoears to mee os opatent as as this mosuperseding of
coal by oil fuel in ocean steamers and in other important trading and industrial enterprises. That it must come about, notwith-
standing all opposition, I feel sure.
22, Great St. Helen's, London,
Edwin N. Henwood, N.A.

labour and luxuries

Sir,, I was much amused by the letter of your correspondent,
X. Y.," published in your issue of the $12 t h$ inst. In it be defines the science of podilitical economy, a science intimately connected with human affairs, as " knowing nothing of morals,
Such a science may be interesting as a curiosity,
f no practical value. It is as if an engineer were to it can be Cf no practical value. It is as if an engineer were to propound a
thoory of boiler furnaces which took no account of the draught.
Further, I would askk " X . Y " "t o consider whether it is Furtber, I would ask "X. Y." to consider whether it is employ-
ment that men desire, or whether it is food, clothing, and the ment that men desire, or whether it is food, clothing, and the
means of developing their minds and bodies to the full. I think means of developing their minds and bodies to the full. I think
he will agree with me that man cannot live by work alone. In
fact, all the tendency of recent improvements in machinery is to reduce the amount of human labour required by the world. If, then, food, clothing, and the development of mind and body is
what men want, any labour spent otherwise, which might bave what men want, any labour spent otherwise, which might have
been employed in obtaining these, is a dead loss to the community. Again, as to low wages. Let us for example, take a a collier
and a distributor of coal, each of whom receives one balf of price of the coal paid by the consumer. Now, suppose that the collier's wages are reduced by 50 per cent., thene cost of the coal to
the oonsumer, and therefore, arguing on the lines of " X. Y.," the cost of all. commodities to the colliier will
25 per cent. Thus the is very distinctly a loser
Finally, shall I be considered rude if I reco
careful study of the writings of Carlyle, Ruskin, and Solomo
 SIR,-It is difficult to reconcile "X. L.'s" views with the writings
of the authorities he names. Perbaps none of them use the actual noun benefactor, but in treating of a s imimiar quastion, Adam SSinith
uses the word generous. Ricardo speaks of sympathy with, and desire to benefit the working man, and Mill speaks of doing good
to the labouring elasses. Indeed, the Woolwich labourer might gather powerful arguments from Mill.
"For practical purposes, political economy is inseparably inter-
twined wwht many other branches of social pbilosophy. Except on
matters of mere matters of mere detail, there are perbaps no practical questionseven among those which approach nearest to the character of
purely economical questions-which admit of being decided on Osess sight of this truth-, And int Is because Adam Smith never 1 ned not extract the rest of
Mills praise of his pred Mill's praise of his predecessor from his eloquent preface, for no
more is needed to show that both regarded political economy as the study of man's well- being. So far nothing has been advanced may have been as to matters of fact.
October 16 th.

aluminium torpedo boats.

Sir, - Referring to the letter which appeared in your last iesue
regarding the aluminium torpedo boat, lately constructed by us for the French Government, in which a comparison is made with a similar type of boat also built by us-described in your issue of
December 11th, 1891 - we have the pleasure to explain what seems
to be a discrepancy in the results. The speed obtained in the to be a discrepancy in the results. The speed obtained in the
earlier.construted boat was 20.03 knots, being the mean of six
runs on the measured mile; and the trial was conducted in light trim, while in the case of the Fremeh boat a load of threed tons was carried, and the trial for speed was the mean obtained during a
continuous run of two hours, consequently the earlier boat was
tested under much shorter duration of the trial, and partly to the lhe lesser weight
carried. If the aluminium boat had been tested in the same manner as the earlier boat, as regards the load carried and duration
of trial, there woild have been no difficulty in obtaining 22 knots. The gain of 312 knots-referred to in your reme description-
has reference to a comparison between the latest boats of the same class built by us for the British Government, which were
furnished with locomotive boilers. These boats obtained 17 knots, under the same conditions of load and duration of trial as the
nluminium boat ; therefore, in comparing the two, the statement is quite correct that thereforen, in comparining the two, the statement is partly to the superiority of the wo the adoption of aluminum boiler, and partly to the correct balancing of the machinery. Wo
trust this explanation will make the facts clear to your readers. trust this explanation will make the facts clear to your readers.
Poplar, October 13th.
YARROW AND Co.
modern locomotives in the recent collision. SIR, -The statistics given as to weight of train in the recent
collision seem to show, either that the six-wheeled rolling stock collision seem to show, either that the six-wheeled rolling stook
still used by the East Coast lines run with more friction than
the bogie carriages as running all over the Great Western and Midland railwayses or that the ponderous compound locomotives nly fourteen coches over easy gradients without a pilot engine

There is no doubt whatever that one of Mr. Macdonnel's engines, weighing 39 tons, and tender with piek-up, weighing
15 tons, alitogether weiging 54 tons-equal to only 28 per cont. of carriage weight instead of 84
hauled the train in question.
I venture to think that some information from railway men as to the above question would be of interest, not only to shareholders,
who are annually met with the tale that increased working expenses have more than swallowed up all profits from increased
traffic, but allso to that constantly increasing class of travevlers who, the press as to railway developments, ,Lc.
34, Queen-street, London, E.C., October 15th. F. BowLEs.

french cruisers.

Sir, -The French cruisers you illustrate excel British cruisers of the same displacement in armament and armour. Surely there
is something per contra; is it such as a naval officer would is something per contra; is it such as a naval officer would prefer
to the heavier guns? Also, I note, comparing your notitese of the
Antwerp Exbibition with that of the late sea fight, that the Japanese had at least three very heavy gons. I presume that
they made worse practice than the Royal Sovereign did the other day. ${ }^{\text {October }}$.

THE IPSWICH SEWERS AND ELECTROLYTIC SANITATION
AT the meeting of the Ipswich Town Council, held on the
10th inst., the Sewerage Committee, in the course of report, remarked that to lessen the danger of the escape of dele terious gases from the sewers, they had been obliged to pursue a
policy of closing the old sewer gratings, and erecting at consider able expense ventilating shafts and columns. A report presented
on the lst of March last by the Borough Surveyor showed that the sum provided for flushing and ventilating the sewers, by a loan
raised in October, 1889 was exhausted, and that in all $£ 963$ bad been spent. The surveyor considered that it would still require some 200 or 300 shafts and columns to deal with those yet unen-
closed, at an expenditure of about $£ 1000$. Having these facts before them, the Committee deemed it desirable to make a trial of the Hermite process. The drain selected for the trial was the old bridge over the river approaching the main station, and running from the Cattle Market. This sewer has connected with it twenty-nine water-closets, and it also receives the drainage of
number of houses, the drainage and wasbing of the Cattle Market a slaughter-house, and a malting and brewer's store, besides the
condensing water of the Grey Friars'-road Foundry and the Mineral Water Co , s Works, At warious times and on each occasion a distinct improvement in the condition of
the sewer was traceable. unnecessary to continue the experiment further, the whole of the drain having been purged of offensive odour and disinfected. As
a result of the experiments, the Committee were able to state:a reshlit of the experiments, the Committee were able to state:-
(1) That the fluid known as electrolysed sea water has proved itself to be a most valuable ageney for the disinfection and deodo-
risation of sewase ; and (2) that it could be produced at cost than any other disinfectant or deodoriser
It was computed that the average daily dry weather flow of gallons, and it was estimated that it would be necessary, in order gallons of sea water to the strength of el 2.25 grammes of shlorine $=35$ grains of chlorine per gallo. This quantimy would, in fact, inhabitants at the rate of 1 gramme of chlorine $=15.5$ grains per
heado of the population per twenty-four hours ; but the population of the borough using the sewer was only estimated to be some actual head of population. The committee were of opinion that the
electrolysed sea water should be allowed to at all events for a few months, at different points along the line by means of pipes whicd can be laid within the sewer itself. It was
fully to be expected that after a a short period had elapsed, say six their germ, and consequantly gas-producing power, that the
chlorine of the solution would travel greater distances, and in time it might be unnecessary to bave more than one or two points of this process and its proper application, considerable adoption be saved which were at present expended on disinfection in other forms, and that the necessity for any further expenditure on the remored, and that the cost of water for fluashing by lessened con-
remption would be very sumption would be very largely diminished
The committee anticipate that the final
the solid matter at the outfall would be very cons of dealing wit by the adoption of this process. It weas believed that not only wil disagreeable odours not be traceable at the outfall tanks and works, but that, on the contrary, chlorine would be found to be
present there, and that all discharges into the river at the outfell will be absolutely inodorous within a reasonable e eriod. The quas-
tion of dealing with the solid matter had not escaped the committee's attention, and suitable screens are now in course erection to intercept it at the outfall. From experiments which
had been made it had been proved that the animal life in salt water could not be affected by the discharge into it of electrolysed

The committee reported that the total cost of the plant for Hermite disinfection would be £2000, the annual expenditure
would be $£ 443$, with an annual saving would be £443, with an annual saving under other hearngs of
£147, making the net annual expenditure $£ 296$. Mr. Napier prewage is instantly deodorised when mixed with a sufficient
seant
quatit quantity of Herrmite electrolysed solution. (2) Tbat the de composition of the sewage is retarded by tege said anixure
length of time, depending pupon the strength and quantity given off. (3) That if this solution, giving 40 gramsive smell arterial per minute, is discharged into the main and various manholes will be prevented, and the sewage made sterile-as far as consumption goos-for rosveral dayss, sufficient for it to get well
out to sea before becoming offensive. (4) That if the out to sea before becoming offensive. (4) That if the proposed
installation produces more active chlorine than is required to oxidise the sewage, a portion of the excess chlorine will be in the
form of gas, and, escaping into the air, will form an aërial
disinfeate disinfectant, and where sewers and drains are not properly
trapped, instead of offensive sewer gas going into houses, there Wi the processes fors gas acting as a disinfectant. at the outfalls, the object being to utilise the precipitates from the sewage, or to keep, say, a river free from pollution. A process
may be adopted at an outfall for precipitating objectionable matter, or for preventing pollution, but no benefit from that will is distributed in the arterial sewers, the disinfection the solutio there, and the sewage rendered inoffensive on its passage through
the town, and is kept so for a number of days, sufficient for it the town, and is kept so for a number of days, sufficient for it
get through the whole system of sewers into the Orwell. I am opinion that if this process is adopted, and a sufficient quantity of
solution manufactured, Ipswich will benefit greatly, because by baving the drains and sewers disinfected, and a flow of deodorised -perhaps sterilised-sewage through the town, the health of the Alderman E. R. Turner moved the adoption of the report, which
he said he did with very great pleasure and satisfaction. They he said he did with very great pleasure and satisfaction. They
had had a full report, he said, from the surveror as to other
systems but nope of them were thought as the Hermite process
Mr. Goddard was surprised that a matter which had previously provoked so much difference of opinion should have provoked so
little discoussion that morning. He supposed that the Council had come to the conclusion that the report. As to the cost, the previous information before the $£ 8000$ to $£ 9000$, and an annual expenditure of $£ 1200$, and the cost of the Hermite process was very considerably less. This process was
said to be a speculation, and it was to a certain degree said to be a apeculation, and it was to a certain degree a speculation,
but one which had been as highly tried as any system could be tried.
Fi First of all, it had been tried experimentally by many experts, and Chere were sheass of information by those experts. As a means of
dealing with sewage, he believed this process compared most advantageously with anything else that bad ever been suggested. He shonld be very sorry to lead anyone to expect that if they
adopted this process there would never be any unpleasant smell theirs was this was impossible. He thought this process had this great advantage over all other processes he had prockess had into,
namely, that of being a liquid process. Only a small labour would
ne be involved in removing what was caught on the screens at the
outfall. Besides dealing with the main sewer, the process would
give the advantage of providing the borough with a powerful dis
infectant which they could, at a small cost and very little trouble convey to any part of the town. The resolution was adopted.
convey to any part of the
East Anglian Daily Times.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, OTHER DISTRIOTS, OTHER DISTRIOTS.

A NEW application of steel in this district is just now being made
by Messrs. Lysaght Limited, of Wolvercampton. Thestep they have taken is considered hereabouts one of great importance, as signify ing the successful attempts which are being made to adapt stee to purposes which have hitherto been carried out by the utilisation of iron. For some time past it has been an open secret that a firm
who are who are one of the largest galvanised sheet producers in the
Midlands have been experimenting with the newer metal, with the result that in the future they will most probably entirely abandon the use of iron for galvanised sheet manufacture. To provide for the new departure, one of the finest steel rolling plants
to be found in the country has been laid down. It is found that greater economy is secured by the lower cost of the steel as comaccount of the closer grain and extra smoothness of surface Whether or not other galvanised iron concerns will generally
follow the example which has been set them by Messrs.. Lysaght remains to be seen. Certain it is, however, that ironmasters re cognise the increased prominence with which steel is now coming
to the front, and to keep abreast of the times it is not unlikely that they will consider it desirable to early alter their present mode of production.
Bosiness is unaltered on the week at last week's prices. The only new fact to communicate is, that proparations are being made
to restart some of the blast furnaces at the Corngreaves Ironworks to restart some of the
almost immediately.
An electrical engineering undertaking that bas cost between new electric lighting works which have been erected by the Worcester Corporation. Water power is derived from a fall on the Teme at Powick, and is developed by four inward flow turbines of the
Victor pattern, two 54in., one 48in., and one 30in., the total turbine power being 500 -horse power. There is also sufficient steam plant to generate the whole of the electricity, should the water supply fail. There are three vertical compound engines of the marine type,
the cylinders being 15in. and 25 in ., and the stroke 16 in., each of 290 indicated horse-power. The turbines and engines are connected by each having a capacity of 125,000 watts, and absorbing about 200 -horse power. The engine-room has a travelling crane, lifting 12 tons. In the boiler-house are four Babcock and wilcox water-
tube boilers, equal to about 900 -horse power, fed with the river解 by two pairs of copper mains, at a pressure of 2000 volts. The
Brush Electrical Engineoring Company is the contractor for the machinery and electrical platit, and Messrs. Rowbottom for the the
building of the generating station; Mr. Leonard Wigan, A.M.I.C. being clerk of tbe works. Mr. Preece is the expert who has
advised the Council. Worcester is the only municipal body supplying electricity by water power, and the no
water-generating station in the kingdom.
Railway engineering schemes continue to increase in number.
The latest is a movement to induce the Midland Railway to extend its system in the immediate neighbourhood of Birmingham, is suggested thorities at Derby bave before them a proposal. It Midland Company should from that place construct a line to skirt the town of Coleshill, and then proceed through Maystoke to
Meriden and Allesley, and enter Coventry on its western side. From
Wer Water Orton to Coventry is 21 miles, as asainst $18 \frac{1}{2}$ from
Coventry to New-street. It is proposed that the line should thence to Rugby and on to Northampton, where there are Midland branches, and that to Bedford coumptd be used as the line to London.
The Midland The Midland journey from Birmingham to London wonld thus be
shortened by 30 miles. The matter is, however, so far a suggestion only.
It is ru
tion, all of the l that a large consignment of guns and ammuniaway from the Midlands by a roundabout route to Japan, being irst consigned to another country in order to evade the Foreign
Enlistments Act. The same firm is said to have been approached by emissaries of China for a similar purpose almost at the very Messrs, G. Kynoch and Co. Witton, Birmingham, are understood to have obtained a contract from the Government for the
supply of 600 tons of cordite, the delivery to extend over three years. The firm have mills in Y Yorkshire, but will probably also has been manufactured exclusively at the Governmento cordite Waltham Abbey, and this obtaining of a portion of their supplies express satisfacion at the anouncement that the Government has decided to spend 520 lakhs of rupees this
year and 500 in each of the following two years on railwes year and
struction and irrigation works.
Birmingham manufacturers of copper wire have good reason for
their complaints this week of the rapid development of French competition in this country. Several leading French companies, Acting as a syndicate, recently effected extensive contracts with Fortified by this advantage, the agents of the syndicate's firms are now offering copper wire for telegraph and other parposes
wherever manufacturers can produce it, and contracts are being accepted for the whole of 1895

NOTES FROM LANOASHIRE.
 (From our oon Correspondents.)

Manchester:- A continued absence of any improvement in the position throughout the engineering and iron trades of this district sagain the general report, and any hopeful prospect would seem concorned. For the immediate future a slow dragging trade is all expectations torward to, but, there are apparently some sanguine revival of activity. In the meantime, makers and manufacturers of iron are finding it difficult to secure business to keep them even partially going at anything like remunerative rates, and the
present position is aboutas unsatisfatory as it could well be. The
coal trade also contines in the descri cerned, and the tendency as ral manufacturing purposes are conin the direction of even still lower prices, owing, not only to the districts. Only a very slow business continues to be reported on the
Manchester Iron Exchange, and although there was attendance at the market on Tuesday, a dull, depressed tone pre-
vailed generally. For pig iron business continues to be restricted vailed generally. For pig iron business continues to be restricted in most cases more than suffieiently bumers and merchants being ments, and the tendency of prices-where there is business offered makers still quote nominally on thewnward directicn. Lancassire for forge to. 42s. for foundry, less $2 \frac{1}{2}$ at the works; but the business
they are doing at these figures is
parcels, sold to regular customers. District makers are generally
in the position that their books are practically full for the next month or two ; but in some instances iron is being thrown upon
their hands, owing to customers not takiog their full deliveries,
and consequently and consequently they have to seek for orders in the market,
Makers who prefer to go on simply with contracts are, of course holding firmly to full recent quotations, but where they do come
upon the market they have to give way to secure orders, and $39{ }^{\text {. }}$. now represents the full average selling figure for forge Lincoln
shire, with foundry quoted about 40 s . 6 d . to 41 s ., and Derbyshire
foundry about 45 s , up to 46 s , net cash delivered Manchester foundry about 45s, up to 46s, net cash delivered Manchester Middlesbrough can now be bought readily at 44s. 4d., with good named brands quoted at 44s. 10d. net cash delivered Manchester
whilst as regards Scotch iron, it is difficult to get more than 48 s net prompt cash for Eglinton, delivered at the Lancashire ports.
The position in the finisbed iron trade still shows no improve ment, very few forges having work sufficient to keep them running
more than about four days per week, and although makers still quote late rates, these are dificult to maintain where new business market offer, however, no inducement to give way, but if any-
thing like good specifications were put forward there is little doubt in the Manchester or Liverpool district, quotations for Lancashire
and North Staffordshire bars remain at $£ 57 \mathrm{~s}$. 6 d . to $£ 510 \mathrm{~s}$.

 makers are using fair supplies, and are likely to want more ; in the
meantime, however, the trade doing is small, and the same inert-

 The

 some ordier in the markot stip.pplates ara at 557.6 . 6 d , angles

 and oginoering trades. shipownem aro

THE SHEFFIELD DISTRIOT.

THE variable weather we have had daring the last ten days has

 in tho Barasaley district has fuctatated considerably busines h Oow beome somewhat totadier, and a considerabio number od

 igations ard minily confond th the Silikstono bod. The motropoli.

 tinent but that or craibio stool is ropored foom the Coni

 materal brancoee aro about the ouly doparatmentit in which foul

 that busiones is not tas good ais it ought to be bei Bilemakerr,
 hind tof ilig yiar indutries both thesilver and dettory, trades are Nown \mathcal{Y} tar with th

 tho next returas of the United States consulato mill minintin, il Sop exceed, the atitatactory mincrase reported on tho 3 oth of
 bo but a atem porar that may of
 more than the expenasive brands, and thisis probibily accounts tor
 to hand amitior than in prorious yara:
In adidition to tho Antwerp anarid alroad anooneod, Meem. Stefefld, hatwo been amarided two iniver medals tor theirir puteni piston rings.

The Liverpool ivory sales have been held this week. There were only about seventeen tons on offer. The American buyer $£ 10$ to $£ 12 \mathrm{per} \mathrm{cwt}$

Mr. Emerson Bainbridge, J.P., of the Nunnery, Blackwell, and other collieries, and who is also chairman of the East to West Coast Railway, bas contributed a thoughtful and effective article to the Contemporary Review this month, bearing on the eight hours
question. Mr. Bainbridge, since its publication, has received a number of letters on the subject. One is from Mr. Bainbridge that amongst the instances which he gives of foreign, especially Belgian work, introduced into this country, there is omitted what he-Mr Simon-considers to be the most glaring instanciver this foreig competition, wis, he fact that time ago when there, "every pound of it Belgian iron." "What are produces the cheapest gets its station ironwork from Belgium? Mr. Simon adds that while his personal inclinations, wishes, and moral feeling are distinctively in favour of allowing the labouring olasses, and everybody else, the largest possible share of the
comforts of this life, he cannot but entirely admit, with Mr. Bain bridge, that the way in which this eight hours movement is now progressing is simply hastening the inevitable moment at which England's pre-eminence in trade will begin to rapidly decrease "All large strikes," he holds, "are so many invaluable helps to
foreign industries. Considered from a continental and humanitarian oreign industries, Considered from a continental and humanitarian sut do the working classes really intend thus unselfishly to help competitors ? Most people will think with him that the folly which they are perpetrating. They have some capable intelligent men amongst their leaders, and surely the time canno be far distant when the more thoughtful of these people will
declare the doctrine of sound business plainly to their constituents, whether it offend them or whether it please them.

THE NORTH OF ENGLAND.

(irrom our oren Correspondent.)
Mork cbeerful reports are this week given by iron and steel manufacturers relative to the state of trade, and certainly there is not that amount of pressure to sell that has been shown hitherto
this month and for a part of September. The speculative fraternity, who have been operating in iron, appears to bave prices by putting so much iron upon the market. It is pretty wel recognised that there has been no change in the condition of trade to justify the relapse in prices that has recently taken place, and prices might have been kept up. Trade is undoubtedly better than returns, and the production and shipments of pig ird it may be said that this year's production and exports of pig iron
exceed those of any previous year, while the increase of stock has been only small, and is very much less than it was in almost every North of England pig iron makers and the warrant stores held four times as much iron as they do at present-nearly 730,000 tons. The average quoted price of No. 3 Cleveland pig has also this year
exceeded that of last year by fully 1s. per ton, being this year has ruled in at least half of the last ten years. The figure that and steel trades have not been anything like so The fished iron they might have been if business had not been hampered by the strikes of the engineers, moulders, and patternmakers, which has
seriously affected the output of the shipyards, and consequently of the plate and angle mills, which in this district depend upon them that there four months or more
Sales of Cleveland pig iron have been more numerous this week
than they have been for some time past, the chief demand being for No. 3, which is scarce, and which is needed for export. In this month the shipping demand is always extra brisk, as it is the get their supplies through Baltic ports have to get in what they will need in the winter. But the exports are not nearly so good a they were last year; thus this month to Wednesday night the pig 37,915 tons last month, and 58,142 tons in the corresponding month 36s. per ton for prompt f.o.b. deliveries of No. 3 Cleveland pig asked and secured even 3d. fore. But merchants and some pro ducers have been selling at 35 s . 9d., and they were ready to accep largely offered, and the extent of the fluctuations in price this week has only been lid. per ton.
The stock of Cleveland pig iron held by Messrs, Connal and on Wednesday night was 89,067 tons, or 678 tons decrease this No. 4 Cleveland foundry pig has shown considerable improve requirements the price has advanced 3 d . per ton, thus restorin the ordinary difference between the prices of No. 3 and No.
foundry, which is 6 d . per ton, but which difference has not existe for a very considerable period, the commoner quality being qualities have not advanced becanse thenuply is in requirements, and these qualities have again become "a drug upon the market." Grey forge can be bought at 34s., and is thus 1s, 3 d . more than 6 d . The supply of East Coast hematite pig iron i dropped to 42 s .9 d . per ton, though ore prices are tending upwards and it does not appear likely that any reduction in the cost of pro At the quarterly meeting of the Middlesbrough Chamber of
Commerce a communication was read from Mr. Jeremiah Head, of Middlesbrough, which showed that in a certain district in th Cleveland, and was sold was being produced at less cost than in

Mr. Head has been in theing the lowest ever reported fo professional business, and has visited the region in question. It i cheap com, and Mr. Head says of it that it is the "Cleveland" the phosphorus that there is in Cleveland pig iron is bing hal there at a cost price at works, including all except debentar per ton 24. 2d. per ton, and is being sold at from 20s. to 29. allowed for sand. This pig iron is is finding its way into every part
of the United States, even into Pittsburg. As yet it has not been used for steel. Large cast iron pipes up to 60 in . diamet forwarded to all parts of at are finished as Ormesby pipes, but are good enough. Under circum stances like these there does tot appear much chance for England the more favourable Tariff Act that hised Skates, notwitastanding and steel better demand is reported by some of the finished iro Long, and Co. have this week recommenced operations at their West Marsh and Britannia Iron and Steel Works, Middlesbrough after a stoppage of about two months, during which they have
added considerably to their plant. On the other hand, the Dar
lington Steel and Ironworks bave been entirely closed, and the
direotors, at their meeting on Monday, stated that the condition of trade did not encourage them to look forward to an early resumption ing asesets of the company, without, however, disposing of any of works. Out of the money whus obtained the liabilitities will be met,
and the and the meeting was adjourned for a month to permit this to be
completed. Ship-plate makers are fairly well employed, notwithstanding the dulness in the shipbuilding industries. At the ship yards on the Tees and at Hartlopool at least 40 per cent. of the mon usaally employed at the shipyards are idle, and a hard winte now than there was in the early part of the year. Thus on the Wea

 65,170 tons; and at Hartlepool and Whitby, 13 vessels of 37,259
tonn, against 18 vessols of 47,630 tons. Still at present the steel-
plate and angle makers are fairly well employed, and maintain plate and angle makers are fairly well employed, and maintain
theor prices. The same figure is quoted for ron as for steel plate
 and fo.t., Hany steol rails are at $£ 3$.2s. 6 d . net at at works, and
and rather better have been on strike are still unemployed to find work for them, as orders have been driven to other
districts. A considerable unable to work.
season, being ironmasters are again, as is usual in the autumn the question bas been under the consideration of the Middlesbrough Chamber of Commerce, who have asked the firms to keep a record
of the short supplies, together with details of delay, loss, and expense incurred, so that definite evidence may be fortthcoming
in case an appeal has to be made to the Railway Commissioner firms to give them an idilway managers have asked some of the of goods wagons ver the next five years, and other questions as
to the probable lives of their collieries ese At the meeting of the North-East Coast Institation of Engineers that the number of members was 954. The President-Mr. Thomas with the question of economical pro foreign countries. Ho deprecated the doctrine which is so often
made use of, as to our superior capacity as handicraftsmen, and made use of as to our superior capacity as handicraftsmen, and
stated that the extended and univerasa adoption of machinery had so in the engineering ind ostry. The President also touched this the application of electric driving of machinery at home and abroad, and showed that there was a large saving in steam power
by the use of the electric system of working, as well as a considerThe coal trade continue
required for Scootland, but the export demand is strong there is less chants are anxious on get as much cooal awaya as possible this monthWages in the Northumberland coal trade are not to be changed
this quarter, as the Conciliation Board has found that though trade was so brisk last quarter, prices were not materially raised. The forthight, which is full time, and in Durbam there are very few pits
which are not in full which are not in foll operation.

NOTES FROM SCOTLAND,

There is a rather better feeling in the iron market, with still steady, with only a moderate business.. Buyers are acting with

 The blast furnaces are now being steadily. relighted, about
twenty having been added to the active list within the last ten days ; the number blowing is, however, still much smaller than at
this time last year. Several weeks must elapse before the furnaces now going in will. be in a position to make their tull the complemenent
of pig iron. Siveral brands continue very sarce of pig iron. Several brands continue very scarce, and the prices
of these are fairly steady, but the general tendenco of values is
downwards, some brands having fallen from 6d. to 2 s . 6d. per ton The course of a week.

 No. 1, 57s. 6d.; ; No. 3, 51s. 6d. 18s.; No. 3, 46s.; Shotts at Leith, The market for hematite pig iron is a little more active as far
as regards business done direct with the producers ; while there
seems no inducement to seems no inducement to specculation, it is evident that the require-
ments of consumers are bound steadily to increase trade in Spanish ore has been resumed, and freights are very
moderate, enabling smelters to obtain supplies at comparatively easy rates.
The pig
past week to only 1859 tons, compared with 3455 in the corresponding week. Of the total there was sent to A Astralia 155 tons,
Germany 128, United States 100 , Canad 80 , Italy 100 , Holland 50 ,
Bel gium 10, Spain 20, onther countries 30 , and coastwise 1186 , against 1022 same week of 1893 .
The finished iron and steel branches are getting into a rather more encouragig
more fully, and makers are preparing for any demand that may arrise;
nominal.
The export trade in manufactured goods is quiet. The past £256; other machinery, £5321; steel goods, £3943; and miscel laneous iron goods, $£ 13$,
Reports with reference
Cre favourable, the principal firme have hative engineering branch orders in hand both
for home and foreign railways. General engineers moderamely employed. In the tool making branchees business is
irregular, some houses doing next to irregular, some houses doing next to nothing, while others are
fairly busy. The strike of miners in the West of Scotland may now be said
to be over, for although companies of men here and there still hold out in expectation of obtaining support from the English Federation, the great majority of the men have given up the struggle as
hopeless, and made rush for employment. This many of them are unable to find, owing to to roads and workings of the collieries
being out of repair. While the quantity of coals raised is still
年 limitaction has taken place in prices. The fall in the retail price of reduction bas taken place in prices. The fourse
household coals in Glasgow in the course of the last taree weeks has been about 40 per cent. Of course, by-and-bye, the public
works will absorb much larger quantities, and the ehipping trade is likewise expanding gradually. A fair demand is springing up
for the Mediterranean from Glasgow, the clearances there in the
past weok amounted to about 22,000 tons. The loss in exports
owing to the strike, amounts to upwards of $2,000,000$ tons, and owing the the strike, amounts to upwards of 2,000 .
this, it need hardly be said, will never be made up.

WALES AND ADJOINING COUNTIES.

(From our ame Correrpondent)

A significant fact of the week is that steamers in the course of
a day or two will be loading no less than 5000 tons of tin-plates at a day or two will be loading no less than 5000 tons of tin-plates a
 iron and steel works, Ironmasters are quite satisfied that until
new countries are opened out rails must play a very secondary part ; and it is to tion-plates and to the increasing uses of steel in the terne platas adroitly used as garden fences, and reported to be cheaper than briek or stone masonry. The artisan placed the
himself, and saved the labour of mason. Last week the S Swansea shipment of tin-plates was 60,469 boxes make received from works 69,201 boxes, showing a good deal of
activity, and proving that a more settled condition of things oxists activity, and proving that a more settled condition of things exist
amongst the workmen. So far prices have not moved, but a few consignments such as will be recorded next week will leave stock
much below an ordinary level, and lead to improved quotations. In the Newport district a better tone prevails amongst tin-platers and I note that in the Briton Ferry district a good average make
is recorded. This week the Earlswood Tin-plate Works, Briton
Find Chesogive employment to 140 hands.
Dowlais steel works this wis
or some time, both the upper and lower works, and at Cardiff not only is a good make of pig maintained, but steady progress
made in completing the works.
Probably in two or three months There bas not been much doing in rails, with the exception o some despathest to Highbriridge. The make of steel bar bas been
moderately good. Blaenavon, Cyfarthfa, and Ebw Vale maintain fair activity in mills and furnaces. Tredegar and
Rhymney are putting forth their best efforts in coal development Rhymney are putting forth their best efforts in coal development,
and in the manufacture of coke ; and as I note this week but
fow few arrivals of pig iron-only one small one coming in from
Ardrossan-there is a prospect that the beavy stocks I saw lately at various works will bave a chance of being lessened. Swansea
imported this week 200 tons steel scrap, and 260 tons of iron mported this week 200 tons steel scrap, and 2600 tons of iron
ore. Of the latter Ebbw Vale and Dowlais also received large thos thesensea quotations this week are only slightly altered fron
tose of last week. Glasgow pig is a liftle improved 42 s , 5 d d
 $£ 315 \mathrm{~s}$, to $£ 317 \mathrm{~s}$. 6 d ; light, $£ 410 \mathrm{~s}$. to $£ 415 \mathrm{~s}$. Cardif quota-
tion for rails, heavy, is $£ 312 \mathrm{~s}$. 6 d .
 ganges; Bessemer steel bars, $£ 4$ to $£ 4$ 2s. $6 \mathrm{~d} . ;$ Siemens tin-
plate bars, $£ 4$ to $£ 4$ 2s. 6 d .; tin-plates, makers' quotations
 Block tin $£ 697$ s. 6 d . to to
12. $6 . \mathrm{d}$, according to qualit
The coal trad
siderable at trade all ports. pornes vigorous, and shipments have been con-
the the Newport district. Some labour troubles bave affected the out.
put of certain collieries, and

 sorts, 10 s. to 10. 3d.; small, 4s. 9d. to 5s. 3d. House coal has kep
up remarkably well, and now a god season is evidently before this
class of coal. Even now, before the autumn has disappeared

 Cardiff quotations for pitwood are 15 s . to 153.3 d ., demand good
 special, 21 s S. Swansea exports of patent tuel only moderate
principal cargoes last week were, 2470 tons to France, 1300 to
Italy, 1290 to Alg Aers.
Iron ores anieter prices romain 10 s . to 11 s , 3d., according to quality. Swansea to 12 s . men, not this thime againsty has cropped up amongst the tin-plate
who are agitating for ins incresed but against their doctors, who are agitating for increased fees. Present rates are, men,
8d. per month; boys, 4d The doctors now demand 1s. adults
and 6 d to settle the dispute
The prominent subject at Cardiff of late has been the probability
of the Bute Docks being accuired by the Corpoation and then of the Bute Docks being acquired by the Corporation and then of
the formation of a Harbour Trust. A leading official of the Docks is reprted to have said that the "one man rule is coming to an
end. With all respect for the official I do not believe it. The
Taft Taff Vale Railway objection to join has to be considered, and
leading authorities at Cardiff urge that the Bute Dooks Company is such that in borrowing money to meet
it no limited liability company conld float. A few weeks will see it no limited liability company could float. A few weeks will see
whether anytbing will come of it. The Barry Docks' directorate to to inquiro the particulars
The Birmingham water scheme continues to make good progress
amongst the Radnorshire hills. Over 600 men are amongst the Radnorshire hills. Over 600 men are now comfortably
butted for the winter, and in the spring this number is to be ne
the initiatory coniderably. The district is well wooded, and one which are very fine. Nantgwitt, where the principal engineer resides, was surrounded with a belt of wood, which is nearly a local contemporary has sugge theted that Bire of exinge, and we wee that
with her traditions- should atilise some of the timber in making with her traditions-sit.
mementoes of the poet.
Te dispute of the National Colliery Company, Wattstown, has twelve of its men for absenting themselves without notice. The men's
contention was, that the contention was, that the company had introduced new method of
screening, and the result was one thousand men left work. The summons of twelve of these was an initiatory step. On Monday
the trial took place before the stipendiary magistrate, Mr. Ignatius
Williams, at the were ably represented and at the close the magistrate ruled that he employers had violated a clause of the sliding scale agreement
No. 20 A -and that the men were entitled to refuse to wort under the new system. Verdict for men, with solicitors' fees and
Four bundred men at Rudry are at stop, but it is hoped that men, No. 2 seam, continue to refuse filling trams until there is revised price list.
The Llancriach Collieries Company bas been registered with a capital of $£ 15,000$ in $£ 10$ shares
The Institute of Marine Engin
had their annual gathering in Cardiff, Bristol Cbannel Centre, a large attendance, Professor A. C. Elliott in the chair Pomeroy, responding to the toast of the port of Cardiff, said
that imports and exports were advancing. The former now

NOTES FROM GERMANY

(From our onon Correspondent.)

A modrratr basiness continues to be done on the continental iron market, and pricess are fluctuasting, with a downward inclinal-
tion here and there. The position of the iron and steel trade in tion here and there. The position of the iron and steel trade in Silesia bas not in any degree improved apon the week. Offers are
being made at extremely low quotations, but still buyers show
ation little inclination to come forward with their orders. The bar trade forms an exeeption to the rule, beibl in comparatively good
activity, and there is also a tolerably fair business done in atives.
tuince
Sinco previous letters very slight changes only can be noticed
n the Austro-Hungarian iron market. on the Austro-Hungarian iron market. In pig iron prices have
stiffened a little, owing to the scarcity of that article. The rolling. mills are, as a rule, in fair employment, merchant bars meeting with a satisfactory demand. The girder trade is tolerably lively, while makers of steel plates and rails complain of a poor employ-
ment. Quotations for the different gorts of iron and steel are the same as last given
ally returns as to the condition of the French iron trade gene creasing demand coming in for most sorts of iron, though several large contracts which had been counted upon as quite certain have not been given out at all; but there is, nevertheless, a sufficient
amount of new work offering to keep the works in fairly regular activity. The tendency of prices is firm, but makers have, as yet a strong resistanco on the part of consumers. In the Depart ment Nord the situation of the iron business is less hopeful, and least for some articles. Hardware is generally neglected. In the pepartment Meurthe et Moselle pig iron is well maintained in with a particularly good inquiry, while foundry pig is but weakly Business on the Belgian iron market has slightly increased in rmness, pig iron, as well as as most sorts of malleable iron, meeting
with a tolerably fair request.
Prices of pig iron are rather easy on account of the large quantities of Luxemburg forge pig that is still thro
inished i One generally prevails.
Onthe Bel
Only in the Liege district an upward inclination was to be perceeived, ith regard to the Belgian coal trade during the first eight montb $569,079 \mathrm{t}$. this year year, import in coal is reported to bave bee before. Of these 397,082 t. were imported from Germany, agains
$366,462 \mathrm{t}$. in 1893. French and English import, on the othe and, has decreased. In coke, $214,862 \mathrm{t}$. were imported, against
$162,959 \mathrm{t}$ t. for tho same period the year before, which shows ncreasing import of of coke from Germany, which was $158,460 \mathrm{t}$. in
in 1893 , against $208,376 \mathrm{t}$. this year. Export in coal amounted to
$2,748,820 \mathrm{t}$., against $2,735,237 \mathrm{t}$. in 1893 of which $141,187 \mathrm{t}$. wer ent to Germany, against 149,877 t. in the year before $; 2,166,830 \mathrm{t}$. in previous year. In coke, $577,161 \mathrm{t}$. were exported, which,

There is no change, generally speaking, in the Rhenish-West-
phalian iron business.
The demand remains phalian iron business. The demand remains quiet, and quota
tions are still far from satisfactory, but makers show a fair hey can secure sufficient work to keep their concerns going. The position of the iron ore trade is not favourable, mos formerly quoted ; for spathose ore M. $7^{7} \cdot 40$ to $7 \cdot 70$ p.t. is given,
while roasted ditto is paid with M. 10 to $11 \cdot 20$. inferior sorts cost M. 9.80 to 10 p.t. net at mines, and for Nassau red iron ore the old price of M. $9 \cdot 20$ p.t.t is given. In Luxemburg
and Lorraine, minette, 40 p..c. grade, is still to be had at M. 3.20 p.t., while for minor quasities M . $2 \cdot 40$ to $2 \cdot 60$ p.t. is quoted.
On the pig iron market prices are, without exception, very
firm. In the Siegarland the demand for present quarter is pretty regular ; from abroad there has also been quite or fair inquiry experienced lately, and a large contract for forge pigb bas
already been secured for the first two quarters of 1895. Spiegeleisen,
 foundry pig, No. 1, M. 63 p.t., No. 3, M. 54 p.t. Basic is. stil
paid with M. 45 p. p.t. at works. Laxemburg forge pig costs M. 48 p.t. free Luxem-
burg. So far as prices are concerned, the sitaation of the malleable iron trade is 1ess favourable than that of the pig iron businoss not take place, it is simply because prices havereached the verylowest point, covering not even the cost of production. Some works will
have to suspend operations altogether unless an improvement in quotations sets in. The bar trade is in poor employment generally. be kept going. Girders are in tole hoops, for which a rising tendency in prices can be noted. Plates are still without improvement, and sheets have in some instance even decreased in demand. From abroad next to no orders are coming to hand. The state of the wire business continues ex and machine factories and machine aacories are in good employment, the majority of
the mills complaining of an almost total absence of fresh
orders.
The following are the latest list prices per ton at works :-Good
merchant wars merehant bars, M. 105 ; rivet iron, M. 125 ; angeres, M. . 120 ;
girders, M. 90 to 95 ; hoops, M. 108 to 115 ; billets in basic and Bessemer, M. 87 ; heavy plates for boilermaking purposes,
M . 150 tank ditto M. M. 130 to 135 ; treel plates, M. 125 ; tank
ditto $\mathrm{M}, 11$ th, ditto, M . 115 to 120 ; sheots,
M .125 to 130 ; iron wire rods, common quality, M. 115 to 120
 to 280 ; axles, M. 220 ; steel tires, M. 215 to 230 ; light section
rails, M. 95 .

Neiv Bridar ovkr the Wblland-An Engineerivg Fbat. Northern Rridal way which has been built for the Midland and Great the th inannia th inst., placed in position over the river Welland at Spalding in position for the working of the line up to the very last moment都 the side of the and it was then lifted by bydraulic jacks and moved bodily away in seven minutes. It was shifted in the direction of Spalding
Town by steam power, being run along a set of rails placed oo three steel lattice bar irders, The new stracture, which is position. The new bridge weighs over 200 tons, has a total span
of about 111 ft , is 34 ft wide, and was shifted into its prosen position in five minutes. The new bridge was tested by two full loaded engines, each weighing about 80 tons, and about 4.30 completed, and the roadway made good, within four hours. The erection was carried out under the supervision of Mr. C. A., Kirby
M.I.O.E., of Boston.

AMERICAN NOTES.

(From our oron Correspondent.)

New York, October 11th. THE business situation is discouraging. Bank clearings are 22 per cent. below last year at this
date, and 28 per cont below 1892 for same nine months. Daring the past three weeks there has been a fall io io iron, steel, lumber, cotton, cloth, wool, coal, and coke. Numerous wages reduc-
tions have been made. The banks are overloaded tions have been made. The banks are overloaded
with money, and speculation is at a standstill. Manufacturers are slow to contract for raw material. Consumera are covering present requirements, For iron there is increased aotivity at lower prices for girder rails, sheet and bar iron, but makers regard it only as a spurt. A steady
improvement is not anticipated until after improvement ${ }^{\text {is }}$ not anticipated until after
November 15 th. New work of all kinds is freely projected for prosecution next year, and money
is liberally subscribed under conditions. The improvement in trade and manufacturing will probably be slow during the winter, but an expansion of demand as the inevitable result of prolonged rostriction.

LAUNOHES AND TRIAL TRIPS.
On Saturday Messrs, Caird and Co., of Greenock, launched a large now passenger steamer, built to
the order of the Peninsular and Oriental Steam Navigation Company. The steamer, which is
named the Sima, is intended for their India, named the Simma, is intended for their India,
China, and Australia mail services. She has a gross register tonnage of nearly 6000 tons, and,
besides having accommodation for 145 saloon passengers, has a large cargo capacity.
On the . 15 th inst, hunched a steel screw steamer of the following dimensions :- Length steramer of the thel, 328 ft . browing vessel will be classed moalded, 100 Al at Lloyd. 1 's, and carry over 4000 tons deadweight on Lloyd's, freeboarry. Sho has been built off the part awning.decked rule, with break poop and raised quarter-deck; collulur bottom for water ballast. Her triple-
expansion engines are by Messrs. Thos, Richard. expansion engines are by Messrs. Thos. Riehard-
son and Sons, Hartlepool, of 1100 indicated horsepower, with two large steel boilers working at
160 lb . She bas been built for Bristol owners, and the name of Dovedale was given to her by Miss Ropper, of Preston Hall.
On Saturday last the steel screw steamer Kirk. Shipbuilding Company, of Blyth, for the Kirkwall Steamship Company, of Cardiff, Mesrrs. Stephens, Mawson, and Goss being the managiog owners, was taken to sea for her official trial trip.
On the speed trials the machinery On the speed trials the machinery gave every
satisfaction. The Kirkwall is designed to carry large cargo on a light draught of water, and is fited with the latest machinery for working both vessel and cargo. The Kirk wall will be com-
manded by Captain Heskleth, and has been under the supervision of Mr. Brewer, the supervision of Mr. Brewer, saperintendent
ongineer to the company, during construction, The engines are of the triple-expansion type, Marine Engineering Company, of Wallsend-onTyne. This is the fourth ship, the Blyth ShipMawson, and Goss.
There was launched on Monday afternoon from the West Yard of Messrs. C. S. Swan and Hunter, f Wallsend-on-Tyne, a fine cargo steamer of gpecial type and well-known design, being an
improved description of partial awning deck mproved description of partial awning doek
steamer. The dimensions of the vessel are 324 ft . by 41 ft . by 23 ft . 1 i in. moulded, and she has been designed by builders to carry a deadweight cargo
of 4350 tons on a moderate draugbt. She will also carry an exceptionally large measurement Indian trade. The steamer has been built to the order of Messrs. J. J. and C. M. Forster, of New-castlo-on-Tyne, and is the fourth vessel which has been built by Mossrs. C. S. Swan and Hunter for the same owners. On leaving the ways the
steamer was named th Nowlyn by Miss Dorothy
Forster, of Neweastle, and was then taken down to the works of the Wallsend Slipway and Engineering Company to receive her propelling madinery, which will be of the latest type, cylinders 23in., 38in., 5lin., by 39in, siroke. Daring the Construation the vessel has been surveyed by ogether with a large party, wituessed the launch.'
 Hartlepool, launched a steel screw steamer of about 4000 tons deadweight carrying capacity,
built to the order of Messrs. Evan Thomas, Radeliffe, and Co., Cardiff. The vessel will take pecial survey. Her dimensions are 315ft. by 42 ft . 6 in . by 20 ft . 9 in . The deck erections consist of poop, quarter-dock, and partial awning deck. The saloon and cabins for captain and
officers are fitted up in the poop. The enfineers are berthed in house at after end of bridge, and the crow at fore end. The hull is built on the web frame principle, and besides being fitted with ordinary, wator ballast tanks in celllualar
double bottom, she is fitted with a new arrangedouble bottom, she is ritted with a new arrange-
ment of deck water-ballast tanks, which is a patent of Mr. M. Hill's, of Newcastle-on-Tyne With this arrangement the difficulty of gotting sufficient ballast into vessels of this class, without displacing cargo space, is got over. The conructioa of of deck tanks also forms an effecbreak in their decks, and the top of the tank forms a means of communication between the ridge and poop, thereby obviating the necessity fitted, tive steam winches, steam stoways are fitted, five steam winches, steam steering gear
amidships, screw gear aft, one large multitubular midships, screw, gear aft, one large multitubular placed on beams overhead, and appliances will be specially fitted to comply, with the Grain Carrying Met. Engines of the triple-expansion type are
being supplied by Mossrs. Blair and Co. Stockto being supplied by Messrs. Blair and Co., Stookton-
on-Tees. The hull and machinery have been on-Tees. The hall and machinery have been
built under the supervision of Mr. Maxwell Hill, Newcastlo-on-Tyne. The vessel was named Ethel Radeliffe by Miss Clarice Radeliffe.

THE PATENT JOURNAL.

 condensed from "The Mastrated Oflcial Journal
Application for Letters Patent.

name patents have been "communtacated" the name and address
printed in in italics.

th october, 1894.

18,76s. Praralekl Ruler, w. H. L. Mariner.-(IV. 18,7ooth, RoLuLRB AxLE, J. Phelan, Mountrath,
 ${ }_{18,72 \text {. Rard }}$ Braf Cay Carriaos Doors, t. Hobson, Man18.inster.
Lever itre-curtung Machixery, w. G. Gass, Great Hot-watra Bolleks and Pass, R. Crowther, Wishino and Whisoiso Machines, J. Thornton Watrar Reoulator and Valve, H. Watson, Levz Guns, T. Staines, J. Leadbeater, and Pravedstin
Bristol
Iaproved Case for Pkecins, J, Great Stoppers for Bortces, E. O. Loach, Birming
Holver for Rolurr Wispow Busps, H. P

London.
is.75.
Lond.
Lon.

18.787. Nov-Twistima Rrbbon Bodisis, E. Yates,
$18,788$. Bion
Birm.
BAstexixas, J. G. Beddoes and T. Allen,
 Thago Mppluncces for Clippisa Hatr, W. Bown,

London.
Belfast.
Bisk
Scrkess, G. G. Ward and M. Cohn,
B.

${ }^{18,801 .}$ She Construction of Truxks, dc., w. H. Eyre

Ransom, London.

London.

88,812. Contron of Lirts, J. S. Stevens and C. G. Major,
L8, \%13. Run. Rurrs, A. Benda, London.

L8,82. Men Mriod of Stopperina Botrues, J. Spring,
London.
18,822. COTrisa PAttrans, H. H. Lako.-(C. B. Reel

18,824. © A Brataidonss, J. G. Accles and J. Pinfold,

18,828
18
18.829

18, 5

2l, and
and
18,83
18,832
$18, .53$
18,834
18,835

18,88
18,88
Lo

$18,839$. Lubricatimo Cups for $\Delta x l e s, ~ c . ~ W . ~ B r o w n ~$
London

 18,843. Skents for Crcles, G. Butwell and E. Robertes

 18,858. Uximankelus, Ceylon, Z. Wirt, London.

5th October, 1894.
 18.800. Avtosatic Consection of Condoctors, G. K.
Chambers, London.
18,801. Constructios of Padlock Cases, w. Wakelam,

8,862. Sarkty Appliance for Parafyin Lampg, F. A
Jackson, Leeds.
18, 8 , Ros. Roll-UP
mingham.
18,864. Charoino Liqum into Bortues, G. Dawson,
Barne
Barnsle
18,865. M
Dawso
Dawson, Barnsley.
18,866. Macoinses for Clennina Knives,
K. M. M. Sellers,
Keighley.
18,867. RAn
Manchest 18,869. Whetable Tre for Road Vehicles, A. Strange,
Chippenher, R. Heaton, Birmingham, Chippenham.
, Ino. Ie Manufacturino Machine, J. C. Parmínter,

Dublin. | che |
| :---: |
| 18872 |
| Bris |
| 18,873 |
| Lon |

 Exetor.
18, 875. Tga-pors, W. Wade, Burslem.
18876. HAND PRotkctor for Borties,
Wolverhampton Wolverhampton. 8,877. Invlator Clip for Cycles, L. Frankenburg,
Manchester. 18,878 . Hair Clasps or Binders, E. Moore, Birming-
ham.
8, 879. Grain-drying Apparatus, W. Holland, Birmingham.
Balifax.
Han Braces, G. Buckley and F. Buckloy, Halifax.
8,881. O. LAMPs, A. Eckford, Lelth.
8,882. SLidina School-Room DIVIBIoNs, Wakefield.
Wchool-Boom Divisions, W. F. S. Holt,
W8, 8, 8as. WAD, W. D. Hawdon and J. T. Hawdon, New-
castle-on-Tyne. 18,884. Castrinoe Cases, W. D. Hawdon and J. T.
Hawdon, Newcastle-on-Tyne. H8,885. Construction of PNeUMATIC Tiars, A. Maltby London.
18,86. Applinnces for Washino Clothes, F. J. Money,
London. London.
18,887. FIre-Arms, C. Stior, Glasgow.
18,888 . Clenning Tobacco Pires, C.
is,888. Cleanina Tobacco Pipes, C. R. Hughes, Longsight. Machinery for Makino Furli into Blocks, R.
Middleton, Leeds.
 and P. L. Renouf, Smethwick.
8, s91. Detrraent Compounds, R. Armstrong, Lanca-
shire. shire. Stand for Whrmine Stoves, J., J., and J. D. G.
Lind, Liverpool. 18,893, PiPE APPLIANCE, T. S. Forbes, Glaggow.
 Russell, and Fletcher, Russell, and Co., Manceester.
B. 897. Edoz. skitina Machinss, R. W. and L. H.
Bateman, Halifax.
8, sos, Sirik Wire Sprina Mattress, T. M. Hewit-
son, Birmingham. son, Birmingham.
18, 899. CEMKNT for DENTAL PURPoses, T. R. Reddeholm,
Derby.
18,9
18,9
 London.
18, 903. Cabinets, \&c., for Stationery, T. B. Vernon,
London 18, London.
Burke, Trating Fibidon. B, Ourke, Istendon. 18,906. Composition with India-bubeer, P. Mercier,
London. R.907. Arrangegment for Tires of Cycles, L. P. and
R. A. Vogt, Glaggow. 8,908. Fogk-ARMs, P. Sheckler, London.
8,909. TRAP for BEER-ENaINE NozzLEs, \mathbf{A}. London.
8,910. Vessels for Electrolytical purposes,
Jensen.-(H, and D Jensen.-(H. and D Cappelen, Norisay.)
18,911. Apparatus for Kntre Clening, F. W. R. Anderson, London. 18,912. Firtiva for Urbrellas, E. Dance and
Lambert, Birmingham.
Li,913. Crcles, T. Oresswell, Birmingham. Lambert, Birmingham.
18,913. CrcLEs, T. Oresswell, Birmingham.
18,914. RATCEET BRAEE, T. Bass, Loondon.
18,915. Horse ColLARs, A. J. Boult.- V.
and P. Michicels, Belgium)
18,916. APPARTUS for SETINo, \&c., TYPE, A. E.
Vorreiter and E. Millendorff, London 18,orreiter APARA ETUS Millendorff, London.
brook, Manchester. SWEEPINO STREETs, T. Glaze-
 18,920. SCARYFACTURE of STERL, B, Taibot, London.
London.

New Explosive, O. Imray. - (F. c. Glaser,
any)
Hydraulic Capstans, w. Carter and The Hydraulic Engineering Company, London.
8,923. Distrisu
Bear, London. Bear, London.
18,94. VkILCPEDSs, G. L. Morris, London.
Liondon. Electric Laskr
18,026. Gas and Air Burning Apparatus, J. Armstrong,

18,927. Mnunting the Gear of Oycles, J. Holcroft,
London.
18,928. Emulaifyino Machine, w. B. Cowan, Ontario,
Canada.
18,928. Emulaifyino Machine, W. B. Cowan, Ontario,
Canada.
18,929. Indicator for Railway Stations, G. Wehe,
Berilin. 18.930. Markisg Liden, T. ONeill, London.
18,931. Door or Gate Closina Device, A. Jenner,
London. 18,932. Eoo-carrying Roxzs, S. Cropper, London.
18,93, Breaking ELEGTRIO Corrents, H. T. Harriso
London.
London.
18,934. Economisino Power in Bicycles, G. Wilton,
London.
18,935. Rinoe Finder, H. H. Lake.-(The American
Kange Finder Company, United States.)
18,936. Driviso Mschinism of Oycles, H. H. Lake.-
(J. Marty, France.) (J. Marty, France.)
18,937. OYcLE SADDLx Sprisos, R. C. w. Duerre,
London.
 18,939. Triatiso Clays for Aluminiom, J. Y. Johnson.

- N. Baset and W. de Baranoft, France)
18,940. Brparation of Arskio, W. Whitehead and C. 9,941 STE, London.

188993. Prowrllers for Shirg, G. M. and E. A. Hoy.
land, London.

6th October, 1894.

18,94. Typs-skitiso Machines, G. C. Downing.-(J.

18,947. Removable Curtain Hooks, I. Robinson
London.
18,948. Crole Fitinos, J. M. and W. Starley, London.

Lendon. Screw Propellers, The Hon. C. A. Parsons, On.
Curtain Rods, E. Dorman, Stafford.
Advertibino on Unbrela Rigs, 952. ADVERTIIEDG on UyBELLA Ribs, R. S. Mason 18,953. ADVERTISIso, M. E. Steedman, Glasgow.
18,954, TTo STops for BHarts, H. H. ,955. Brake, J. Jackman, Bradford
,95. BRakE, J. Jackman, Bradford. Block, H. J 7. Box for Mineral Water Botrles, J. Samson, Boston. Seamless Metallic Tubes, R. F. Hall, Birmingham. Dublin.
mingaments, H. T. Parr and C. E. Parr, Birmingham.
Halifax.
Heatina and Coolina Buildinos, R. Pye, Halifax.
8,962. Traveller's Rest, F. S. Balls, Cambridge.
8,963. Lockina Grak for Hydravic Lirts, J. P. Annett, London.
8,96. Spisiva Maching, W. Fisher and W. E. Duckworth, London. Machine, W. Fisher and W. E. Duckworth, London. Hollow-ware, I. Ridge.-(E J. Smith, United Perpendicular Whistle, w. J. Rawson, RadForczd Dravobt Systex, A. M. Lawson, New-e-on-Tyno.
Turnise Lathes, R. Wagner, Glasgow.
Centrivoal Mchisk, F. Hugerahuff, Glasgow. Nals and othor Small Articles, G. B. Parkes,
Birmingham.
Birmin Birmingham. Taprino Barrels, M. Morton and E. Morton, Birmingham.
,ig4. Corbuoated Plates for Floors, S. Strickland,

WEAvivo, C. Borisford, D. Birchenall, H. Beris-
W. Gorton, and C. Wood, Manchester.
W. Gorton, and C. Wood, Manchester.
EYED Hooks, A. Morriss, Redditch.

EyED Hooks, A. Morriss, Redditch.
WATER WASTE PREVENTER CISTERNs, T. Atkins, Wolverhampton.
978. CANDLEsTICKE, J, and H. Smith and T. w.
Hemingway, Sheffield. Hemingway, sheffeld.
18,979. PNEvMATIC Tirs, J. Clinch, Manchester.
18,980. DETECTINO ImITATIO DiAMONDS, T. Thorpe, Whitefield.
28,981. ELEVATor Safety Applancoss, S. G. Bennett, Smethwick.
18,982. Foor Brakes for Velocipedes, N. E. Craig,
Plymouth. 983. Canson or Guns, F. L. Tulip and J. H. Link, London.
SS4. Previntic Tire, E. J. Delday and H. C. Adams, carborough. Manchester. mingham.
Lond. Hot-water Heating Apparatus, J. T. Softly, En.
Evelopes, E. S. and E. S. dodiardi and M. Scarrold - board Binder, J. M. Kimher, Chandeliers for Burning Oil, D. Lambden,

Calendars, H. Grueber, London. Sortenina Watkrs, H. L. Doulton
 Sortendirs, H. Grueber, London. Siters, H. L. Doulton and A. W.

 Manger, London. London. Cole HandLes, M. B. Ryan, London,995. PEN-WIPERs and PINcushions, W. H. J Civerpeol. Wipers and Piscushions, W. H. Jackson,
Cive Brush Mechanism for Dysamos, A. Ramsay, Rpool. Ralway Carriaes Windows, M. E. Elder and Evaporatino Soda Solutions, J. J. Crosfield E. Markel, Liverpool. Thompson. - (La Sociètè
Eporkno Fuszs, W. P. Tho
upillat and Co., France.) uepillat and Co., France.)
Colvapsible Bots, L. Hohnke, London.
Station Indicators, H. H. Leigh. - (J. F.
H, Canada)
Har Wavina and Curlina Pins, E, M. Gaskell HAIR WAvino and Curling Pins, E.M. Gaskell, Makina Illumisating Gas, A. W. Pickering, Buryer Gallertes of Lamps, O. Wollenberg, Slite Frame, J. H. Rudolph, London.
Flue Cleaners, D. W. Dart, London. Prevention of Lakp Explosions, J. Hall, Makina Mosaic Floorcloth, W. Mather, Makina Mosaic Floorcloth, W. Mather, Buyfer Sprinos, A. G. and A. Spencer,
n. ${ }_{\text {ail-carts and other Vehicles, W. Legge, }}$ Mensurino Curved, do., Lines, W. Ule, Wharing Fabrics, L. Crosset and J. Debatisso Stoveripe Elbow Machine, R. W. Barker.-
ix and W. N. Gunderson, United State.)
Window Fastenkes and Latces, T. R. Wing, Regulatina Furnace Draughts, w. MagoolagLondon.
RAL Jonts, J. W. Thomas, London.
FAstenino for Boots and BHoEs, C. H. Moulds, London.
London. Horse CoLlars and Saddless, D. S. Turner, London.
19,021. VELOCIPEDEs, J. Barratt, London. United States.)
19,023.TToy, E. Savor, London.
19,024 HoLDes, \&o., for Goly Olubs, T. Walters,
London Matrrial for Buldings, D, Young.-(La
Mgnie des Conatructions Demontables et Hygi-
 19,027. Aleum, J. Hutson.-(E. W. Smith, Unital
States.)
 8th October, 1894.

19,029. Hydradlic Intermittent Motors, G. Threlfall,

 19,030. Tcisilous Stenm Generutors, E. White, Isle 19,031. Hores. Bridles, J. Emmett acd H. Emmett,Dukinfield. 19,032. Ball. and Socket Castor, \&c., M. W. Dent,
Blackburn. 19,033. KETLEss for Lamps, J. E. Whiting, Bombay
Presidency. 19 O34. BRAID or Binding, A. Nicholson and J. Hall,
Leek.
19.035. Skirt Subpander, A. Nicholson and J. Hall,
Leek. 19,036. Music Holder, S. Liddiard and T. E. Rickerby, 19,007., Preventino Food Destavetion, J. Pumphrey,
Birmingham. 19,038. Traction Enoine Wheris, F. J. Burrell, Thet19.039. Sklf-butikning Vessele, C. Livesey and E. W. Banner, Southport
19,040. PANTooraphic Garvino apparates, W. Merl
Mand 19,041. Wagon Tarpaulin Cover, A. and W. Purvis, Glasgow,
19,042 Heat Now-conductors, J. C. S. McLay,
London. 19.013. Iskino Apparatus, A. Watkinson and F. W. 19.04. WATCH Kzys G. Bottely, Birmingham.
19015 GAME, F. G. Paynter Newrastle-on-Tyne. 19 015 Gaske, F. G. Paynter Nowcastle-on-Tyne.
19,06. Reoulatino Water Suprly, W. P. Theerman 19,017. HEATino Solderino Irons, \&c., G. Skinner, Lound. Method of Bzakino Cyoles, W. Saunders,
Bristol. 19,049. Tops, J. Linkleter, Tynemouth.
19,050. Mountino Trays, J. C. Bailey an
Longport. London,
19,052. Beakes for Wherled Vehicles, W. E. Kay Manchester.
19,053 Piverisic Tire Isflators, H. Frankenburg,
Manchester. 19 Oji. Chminey Water Heaters, \&c., J. Syme, Monastereven.
19055. Athemtic Horizontal Bars, T. B. Sharp, Bir19,056 . Curing Smoky Chimesys, W. J. and P. C. 19.057, Skelerino Fish-plates on Rails, J. T. Drew, 19 Ond. Pon. Piey Blocks and other Lifts, W. T. Eades,
London. 19, Los9. Bution Fastener for Clothing, W. Halliday,
 190.061. Orcle Handles, J. W. McEwen and T. B.
Richards, London. 19,062. UPPERs for Boots and Shoze, C. C. Eisenberg, 19,063. BLower for Fire-gratzs, R. Rose, London.
19,064. MiLk Steriliskrs, E. Leslio, London 19,064. Mik Steriliskrs, E. Leslie, London.
19.065. Producino Electricty , H. A. Tobias, w. Cadman, and R. J. Crowley, London. A.
19.066. Dovor Mixiso MAchine, J. T. O'Callaghan, 19.037. ANChors, W. T. Honess, London. London.
19,069 Hit Bands, F. W. and B. Franklin and P. E. Taylor, Birmingham.
19.070. VELCoctrows, E. A. Jeffreys, London.
19.071. Tobacco Prpe, W. B Wallace, London.
 Croydon.
19074. Mritod of Repairina Slating, R. J. Spreadbury, Bournemouth.
19.07. JEwRL FAssminos, E. T. B. Woodley and H. E. Humphry, London.
19, 076 . Bicyccess and Tricyoless, A. L. Bricknell,
London. London.
19,077. Knitino Machings, E. Buxtorf, London.
19,78 . Stoppering of Bottles and the ilike, J. Jones, London.
19,079. Domestic Water Supply Apparatus, J. Bark, 19,0so. Constructina Transparent Walls, G. Falconnier, London.
1901. Writiso Device for the Blind, D. Goldsmith, London. EAtina Buttered Baead, H. M. Conrad,
London. 100 083. Small-ABMs, J. Courrier, London.
19,084. BEARINas, H. Kirschbaum and
19,084. Bearinos, H. Kírschbaum and A. Schnitzer,
London. 19.085. Absorphon of Gases by Liquids, A. Muller,
London. 19,036. Implements for Coltivatino Land, J. E. Ran-
some, London. some, London.
9.087. APPARATUS for Pubifyino SulphUr, R. Tervet, jun., London.
19,088. Syphon Cistern, T. B. Jack, London.
19,089. EYE-BHADEs, H. Reichardt, London. 19,089. EyE-8HADEs, H. Reichardt, London.
19,090. WEDINO CKKE Boxes, \&c., E. Gutientag,
London. London.
19,091. Purification of Iron and Stekl, S. Trivick,
London.
 19.094. FIRRPLCAEs, J. Clemence, H. A. Leverett, and
 India. Fedina Bottle, F. W. Edridge-Green,
London. 9th October, 1891.
19,007. Garments, A. G. Brookes.- (M. M. Dunn United Statess)
19,098. Fuss for Prosectriss, A. G. Brookes.-(W. J.
Smith, United States) 19,099. WATER-LEVEL INDICATOR, R. H. N. Lindley
and F. J. Mudford, London. and F. J. Mudford, London.
19.100. Cors, J. E. Hoskins, Birmingham.
19 101. SToPPER or PLUQ for Bortiks, A. Portsmouth.
19 102. Abtificil Liahting Apparatus, G. Houghton, London.
19 103. RJBer Hose, T. Sutcliffe, Lancashire.
19.104. DIsH for Holdina MEAT, tc, F, G. Kettering.
10 105. Shield for Protectina Garments, F. Hughes, London.
10.106. Makino, dc.. Chains and Bridle Fronts, J. Richards, Birmingham.
19.107. Framings of VkLocipenes, R. F. Hall and R.
H. 19.108. Smple Crank Morion, H. W. Nickson and A. E. A. Edwards, Birmingham. mingham.
19,110. WHEELS for RAILWAY VEHicLes, J. A. Craven
and T. Foster, Sheffield. and T. Foster, Sheffield.
19,111. Tor 8, ING BANKs, R. B. Roll, South Shields.
19,112. On Moron Enomse, D. Clerk and F. W. Lanchester, London.
19,113. PPPER for Catchiva Flies, \&c , J. W. Dougal,
Glasgow. Glisgow.
19,114. Liping Apparatus, R. Mildleton, Leeds.
19.15k, O Coleman. Welford, near Rugby. 19,116. Woves Brltiso, W. M. Martin, Glasgow.
19,117. Firk- Extivouraino Appratus, H. B. Barlow - (C. R. Macomber, United States)
118. Employe's Time Recorder, J. s. Morse, London.
19.119. PUley Casing for Window Frames, J. H.
Footer Foote, London.
19,120. CLAMP for Pipss, C. Hall, London.
19,121. ELBCTRIC ARC LAMPs, J. E. W. Glasgow.
19, 22 . Skwo Machises, A. Anderson.- (The Singer Manulacturing Company, United States
19,123. LETER FILEs, W. O. Gotwals, Canada.
9,124. LETTER FIEEs, W, Gotwan
 19.126. Construction of GoLF, dc., BATs, B. J
Maloney, Fdinburgh.
19,127. PRoDvorioy of Ozons, J. T. Donovan and H. L
Gardner, London.

19,128. Hydrometres, W. Hood, London.
19,129. RALLWAY BIGNALLINO APPARATUS, London.
19.130. More Perrect Conbestion of Coal Gas, B.
 Milligan, London.
19,132 . Brick KiLss, w. A. Wilford, Birmingham. 19, 133 , Novel EYED FLY HoLder, J. Richardso
London 134. SEwino Machines, W. H. Harrop, London. 19,135. Tis, O. Cox, London.
19,136. Boors, C. Cox, London.
19,136. Boors, C. Cox, London.
19,137. Tox Shootino GaLLeries, A. W. Carley,
London. 19,13 Lo
19,13
19 19,139. Manuracture of Socks, H. T. Hines, London.
19,10. Sprocket Whekls, P. D. Murphy and E. Kolb,
London. London.
19.141. Apparatus for Cable Tramiways, E. Neil,
London. London.
19,142. HAT-strexohing Machinks, G. Atherton.-(R.
Bickemeycr, United States.) 19,142. Hat-stretohina Machings, G. Atherton.-(R.
Fickemeyr, United States.)
19,143. Machines for Dressina Type, W. W. Farmer London.
19,144. Esevrina the Corners of Boxes, A. A. Wood, 19,145. Valves, H. H. Lake, - (F. C. Weir, United States.)
19,146. Mzchanism for Looms, J. T. Bolton and G. Grime, London.
19,147. Advertigements, G. F. Zimmer and J. Hutson, London.
19,148. Exisitina
Vollmer, London. Vollmer, London.
19, 149. FAsteninos for Trouskrs, \&c., R. L. Weiss, 19,150. Elizctro-deposition of Metals, w. H. Beck -(C. R. Fletcher, United States.) Piss, \&c , R. Synge
1915. Fasteninas of Brooches, Pins
London 19,152. Sparid Appabatus for Swidmers' Use, L Pedrazzolili, London.
19,153. SprisNing MEChanism, J. Neale and W. 0 19,154. TobAcoo PIPrs, w. E. Trott, London. Belgium.)
LAMPs, A. J. Boult. $-($ P. Laminne 19,156. Pencil Sharpener, W. P. Thompson. - (19, 157, Electric Battery Plates, H. Le R. Bridgman London.
 United Slates)
19,161. CLLKINo Vessels, A. J. Brooks, London.
19,162. Cotron GLoves, \&c., J. E. Cowell.-(G. Neuhaus, Germany) 19,163. Cleandar Clocks, C. W. Feichtinger and S.
19,164. Oif Sondon. Shearer, London.
19, 164. OnL STovEs, E. Rippingille and W. Porter
London. 19,165. Apparatus for Cottino Coal, J. B. Alliott, London,
19.166. Treativg Peat, A. McLean, London.
19.167. Hooks and EyEs, A. Clorius and C. Sc
London. Looks ans, A. Cor and C. hwartz 19,168. Tootr Brushes, H. Besson and G. H. Kent 19,169. Preventing Incrustation in Boilers, G. L. F Edeline, London.
19,170. APPARATUS for Rousina Lievors, H. Prince 19,171. Textile Fabsics for Pegevacatic Tires, J. F. Palmer, London.
19,172. RETAININa Corks in Bottles, J. W. and F. H 19,173. TREE for Boots, The Honourable R. T. D Brougham, London.
19,17. Treatment of Natural Phozphates, D. Levat, London.
19,175. Paper Coated with Celluloid, A. Gray London. 19,17. Apron Holders, L. Byron-Peters and W McCaren, London.
19,178. Means for Clenina Rice, \&c, E. Kallsen
 19. Solbrig, London. 19,181. SUbmeraed Roads, \&c., M. A. de Palacio 19,182. PIPEs, \&c., for WATER-CLosETs, H. I. Dakin 19, 183. Latring, E. F. Stimson, London.
19, 114. Electric
Heitrrs J. R. Davis, London 19,185. ELEcTric Hecictrrs, J. R. Davis, London.
Resteven, London. 19,16. Eeve Electric Fire - alarms, L. G. Rowand 19,187. ALKYL-ETHRRS, J. Y. Johnson.-(C. F. Boch
ringer and Sochne, Germany.) 19,188. LACTYL-p-PHENETIDINE, J. Y. Johnson.-(c. F. 19,189. Chlorats of Sode, T. T. Best and G. Brock, 19, 190. Dust-trap, W. H. steel and w. H. Steel 19,191. SECURino Battery Wires, F. A. and N. vo 19,192. Fixima FAsteninos for Boots, J. G. Paterson 19,193. Floats for Fishino, \&c., J. R. Richardson London. 19,194. Brace Butrons, J. O'Rorke, London.
19,195. Sectring Laces of Boots, dc., W. Thomas, London.
19,196. Suspendino Hooks, R. D. Moody, London.
19allway Car Couplinas, R., D. Moody, 19,198. Nen. Match Holder, J. Richter, London. 19,198. New Match Holdre, J. Richter, London.
19,199. FERMENTINo APPARATUB, A. D. Currie
London. 19,200. Setirina Printina Typf, G. C. Downing.-(J. Salomon, Germany.)
19,201. Diotributivo
-(J. Salomon, Germanytino Type, G. C. Downing. -(J. Salomon, Germany.)
19,202. SYRYPINO AERATED Liquids, E. S. Chavasse
Birmingham. 10th October, 1894.
19,203. Prevematic Tires, T. R. Piner, London.
19,204. Cleansing and Polishino Soap, C. J. Good jand, Bridgwater.
19,205 . SkLF-CLOsina Bag Frame, P. B. Hollick, London.
19,206. Gbainino Machise for Oil Colours, H. J.
Probyn and T. Wood, Gloucester. Probyn and T. Wood, Gloucester.
9, B27. RELEASIING the Backs of WATCHEs, J. S. Wilday, 19,208 PMEVMATIC TIREs, A. Maltby, London.
19,209. CYELE GEAR, F. W. Brigzs. London. 19,209. Cycle Gear, F. W. Briggs, London.
19,210. Blitima Cotiar Pins, T. W. Lench, M. A. and T. Robson, Birmingham.
19,21. Profinco Machines, R. F. Hall and C. Taylor Birmingham.
19.212. Comakr
Manchester CliL Blottino-pad, T. M. Markham 19,213. Chiminey Ventilators, R. Morris, Gateshead on-Tyne.
19,214. Crines, B. B. Dadley, London.
19,215. Construecting Entree Dishes, R. Stevenson
Sheffeld 19,216. Lathes for Polishing, \&c, A. Davidsun 19,217. PNecmatic Tires for Carriages, J. Hopper,
London.

19,218. Flexible Hose Pipe, E. L. Pease, Stockton-onTees.
19,219. Fastening for Hats, W. Steverson, Nottiog ham. Electaic Ship Loas, W. D. Whyte and D 19,221. Protectina Pneumatio Tiris, J. Alverti, Cheshire. She Safety Hatr-curlina Pis, R. Glossop,
Rediditch. ${ }^{9} 9$, 223. Photooraphic Plate Carriers, A. J. Masod Birmingham.
19,224. BLLLAARD Table Cubhions, J. R. Jackson,
Manchester
 Halifax
19.226. Machinery for Dyeino Yarn, W. H. Thorpe, Halifax.
9,227 . FLrserina Appliances, J. Shanks and A. Burnside, Glasgow.
$9,228$. GAs Engine, \&c., Connectinc-Rods, J. Mills, Manchester.
 $\underset{19,231 \text {. Supportina Gas, \&c., Shades, w. Beal, Bir- }}{\text { Birmingham. }}$ milogham.
19,232. Air Valves for Pnevmatio Tires, J. Cockburn, Glaggow.
19,233. Heating and Ventilating Radiators, J. Keith Glasgow. Water Boilerrs, J. Keith, Glasgow.
199,234. Hoi Wyerna Mixed Woven FABRICs, T. Ingham, Manchester.
9,226 . WATER-TUBE Bollers, J. A. McKie, Glasgow.
 castle-on-Tyde. Calendar or Dats Case, H. Vereker, 19,240. Spring Mattresses, O Ransford, Glasgow.
19,241. Collaparble or Foldina Wardrobes, w. Vaughan, London.
19.242. Collapsible, \&c., Furniture, W. H. Vaughan London.
19,243. Preparation for Curlina Hair, G. H. Hill, London. Mudouards for Cycles, w. Cunningham,
London.

SELECTED AMERICAN PATENTS. From the United States Patent Ofice Oficial Gasette.
523,998. Dynamo-klectric Machine, G. Rennerjelt, LLynn, Mass.-Filed March 6ih, 1894,
Claim.-(1) The combination of a magnet with a Claim. - (1) The combination of a magnet with a
divided core, a series of rotatiog conductors inter-
posed between the parts thereof, and means for elecposed between the parts thereof, and means for elec-
trically connecting said conductors in series, substan.
tially as described. (2) The combination of a magmet tially as described. (2) The combination of a magnet
with divided core, a series of rotating conductors

interposed between the parts thercof, and means for
electrically connecting said conductors in series, consistring of a series of suitably connected liquid
collectors, substantially as described. (3) The combination of a magnet with a divided core, a rotating
conductor interposed between the parts thereof, and conductor interposed
annular vessels containing mercury suitably arranged
for collecting the current generated on said conductor, or collecting the current generated on said conductor
substantialiy as describei. 524,013. Pressure Accuaviator, C. C. Worthington,
ITvington, N. Y.-Filed Felruary 26 th, 1894. Claim. The combination with a steam ongine, of a
teaim accumulator forming part of the steam connce steam accumulator forming part of the steam connce-
tions between the steam supply and engine, and means tons between the steam supply and engine, and means
for varying the supply of steam to the engine in
acordance with the movement accordance with the mply orement steam to the accumulator
piston, substantially as described. piston, substantially as described. (2) The combina
tion with a p pressure accumulator having a differential tion with a pressure accumulator having a differential
piston I, I^{\prime}, the piston I^{\prime} being hollow of perforated
on oxhaust pipe L p passing through the piston I into the
hollow piston I^{\prime}, closed pipe I in said hollow piston I^{\prime}, hollow piston I^{\prime}, closed pipe 0 in said hollow piston I^{\prime},
nd a non-heat conduetting packing about said pipe O , substantially as described. (3) The combination with
a pressure accumulator connected with an elastic fluid a pressure accumulator connected with an elastic fluid
supply, of pipe E connectin3 with the aacumulator
chamber by a series of openiogs arranged in the line

of movement of and opened and closed by the accumu-
ator piston, substantially as described. (4) The combination with a pressure accumulator conncted wist
an elastic fluid supply, of pipe E , and exhaust pipe L connecting the accumulator chamber with the pipe E
and having a series of openings opened and closed by the moverent of the accumulator piston, substantially
as described. (5) The combination with a pressuro accumulator connected with an elastic fluid supply, of accumuar and perforated exhaust pipe L in the accumu-
pipe \mathbf{E},
lator chamber connecting with the pipe E and passing ator chamber connecting with the pipe E and passing
through the accumulator piston, whereby the perfora-
tions in the pipe are opened and closed by the piston, ubstantially as described.
524,020. DyNaso-glectric Machine, R. Bickemeyer,
Yonkers, N. \boldsymbol{Y}.-Filed October 7th, 1891.
Claim. - (1) In a dynamo-electric machine, the com-
bination with an armature, of separate electro-magnets
adjacent to each other, but separated by narrow
spaces, parallel with the armature winding, and spaces, paralle wish in circuit armathure winding, and
counterfeld coils
ing, but receiving electric current, in a direction ing, but receiving electric current, in a direction,
opposite to that in the adjacent portion of eaid wind. opposite to that in the adjacent portion of eaid wind.
ing, and having portions of said coils located at said spaces parallel with said addacont portions of the
winding, the air spaces affording reeistaice in those winding, the air spaces affording reeistance in those
magnetic circuits which are induced by said adjocent

coils inducing a magnetic flow, opposite to that which
is induced by said portions of the armature winding (2) In a dynamo-electric machine, the combination substantially as hereinbefore described, of an arma,
ture, separate U-shaped electro-magnets, each having ture, separate U-shaped electro-magnets, each havin
its own field coil or coils, and provided with appro priate cheek pieces, and having the several similarl magnetised cheeks located closely adjacent to cach
other, but separated by air spaces parallel with the other, but separated by air spaces paralle with the
armature winding, and a counterfield coil on eac magnet, in circuit with the armature winding, and
having portions thereof located in said spaces, and having portions thereof located in
parallel with the armature winding.
524,033. Device ror Securiso Piston-rods m
Crosshedse, C. G. Turner, Witmington, Del.-Filel
May 3rd, 1899. May 3rd, 189.
Clain. The combination of a crosshead having a Claim.-The combination of a crosshead having a
socket therein, of a piston-rod having a head \mathbf{A} and a
reduced portion \mathbf{A}^{1} behind the head whereby shoulders

B and E^{1} are formed, a nut N divided into two or mor B and E1 are formed, a nut N divided into two or more
segmental parts adapted to embrace the reduced por-
tion of the rod and engage with threads on the crors. tion of the rod and engage with threads on the cross.
head so that by screwing or unscrewing the nut the
head on the rod can be forced in or out of the socket head on the rod ca
in the crosshead.
 Claim, -In a machine for makivg axles, the combl-
nation with a pair of matrix dies for forming and nation with a pair of matrix dies for forming and
clamping the axle blank, of two piercing dies at

right angles to the matrix dies and arranged to enter right angles to the matrix dies and arranglaterner
the open ends thereof, and force the metal lateraly to
form the collars, and mechanism for operating said 524, 129. Skate Blade and Abt of Manuracturina
Bame, T. W. Bryant, Torrington, Conn -Filed March 24th, 1894. .
Claim. - (1) A skate blade having a cold rolled
polished outer skin of metal, which is exceedingly polished outer skin of metal, which is exceedingly
thin, formed on its opposite sides, which serve as

cutting edges for the intervening metal of the tread,
substantially as set forth. (2) The method of manusubstantially as set forth. (2) The method of manu-
facturing skato blades, which consists in cold rolling a metal plate, thereby forming thereon an exceedingly hard and smooth outer skin, then cutting or punch-
ing the blank from the plate, and finally finishing the
tread by grinding tread by grinding, substantially as specified.
524, 199. Apparatus for Forcino Screws, c. FairClaim, (1) In a screw - forging machine, two
opposed rollers each having on its face a narrow opposed rollers each having on its face a narrow
rassed annular band, containing spiral screw forming
grooves, and a flat feeding band concentric with and

adjacent to said raised groove band, substantially as
described. (2) In a screw-forging machine, a roliter described. (2) In a screw-forging machine, a roleer
having on its face a narrow raised annular band, containing spiral screw forming grooves and having
bevelled edges, and a fat feeding band concentric with
said raised band, substantially as described.

