STEAM PUMPING ARRANGEMENTS IN SCREW STEAMERS

No. II.

Ir seems to be a well established principle that all bilge suction pipes may be made of lead, whereas such pipes which will the donkey sea suctions and the ballast tank filling and emptying pipes must be made of stronger material. Copper is used for the one purpose and cast iron for the other, the only exception being that the bends of the ballast pipes are frequently made of lead-copper found that they sometimes fracture if made of cost iren Flanges are generally cast on the ends of these pipes, and the bolted joints of the rough metal are made water tight by india-rubber insertions. The ends are rarely machined or recessed, as is done for hydraulic pressure pipes on shore, but as the number of bolts to be used could be
reduced the slight extra labour might lead to a saving. Some years ago a practice had crept in of making socket

joints as shown in Fig. 7, an india-rubber ring I being slipped over the end of the right-hand pipe, which was then forced into the left-hand pipe, as shown by the arrow, making a perfectly water-tight, and at the same is that it is impossible to remove any one length of pipe without disturbing the others, and trouble is also said to have been experienced due to the "working" of the joints, towards the aft end of the vessel, until one of the forward joints opened and led to leakages of water into the hold while filling the tank, and it also admitted air while emptying the tanks. This could, of course, only happen when the ends of the various pipes did not butt properly. Lead fillings as used for water-mains, are still more objectionable than india-rubber rings, and do not appear to have been used.
In small steamers wrought iron pipes-gas pipeshave sometimes been fitted with the ordinary thimble screw joint, but these are almost as objectionable as
socket joints; besides, all such pipes have to be bent hot, which adds greatly to the expense of such a system. Copper pipes are so expensive that they are rarely used, except in men-of-war or in small vessels, when the diameters are small, say less than 2in. They are much Flanges are brazed on their ends, and the joints are made water-tight, either with india-rubber or red lead insertions. water-tight, either with india-rubber or red lead insertions. them with pitch, so as to preserve the round section; but as this is a somewhat expensive process, the bending is as this is a somewhat expensive process, the bending is frequently done without any filling, and the oval shape at the bend is
Lead pipes are, as has been said, almost exclusively used for the bilge pumping arrangement; they are bent just been described for copper pipes, and lead flanges are
 but as these are far too ends; but as these are far too plastic to withstand the pressure of the bolt heads and nuts which draw them together, a pair of iron rings, having four or six boltholes forged into them, are slipped over each pipe before the flanges are soldered on. cut into the lead flanges exactly cut into the lead flanges exactly
under the holes in the iron under the holes in the iron
rings, and bolts are then inrings, and bolts are then in-
serted, as shown in Fig. 8. serted, as shown in Fig.
The lead and solder is shown white in section, and the iron rings are shown shaded. The lead of the flanges being sufficiently plastic to make a water-tight joint when the bolts are screwed up hard, it is not necessary to introduce any insertions. Instead of
these flanges, plumbers' joints are sometimes made, but these flanges, plumbers joints are sometimes made, but
they are very objectionable, for the pipes would have to

be cut if they get choked, and there are few sea-going engineers who could re-make such a joint. One of the worst troubles with lead pipes is that they are so easily
damaged, nor are sufficient precautions taken, particularly damaged, nor are sufficient precautions taken, particularly
in the engine room, to guard them from injury. They in the engine room, to guard them from injury. They
ought, if possible, to be encased in wood, as is frequently ought, if possible, to be encased in wood, as is frequently
done in the holds, but in the engine-room it is thought
sufficient to hide them away under the lower platform. Whooden er they pass over a sharp corner a rounded fitted, but ships' plumbers gewerall in such cases with interposing a thin sheet of lead. In which vessels even such provisions are entirely wanting, being partially or entirely being partially or entirely closed up, as shown in Fig. 10, which represents a lead pipe carried through the
and resting on the sharp edges of their web plates. The ends of the sharp edges of their web plates.
The ends of the bilge suction pipes are provided with strums; these used to be of lead, but are now made of galvanised cast iron. They consist-as shown in Figs.
11 and 12 -of a box with perforated sides and top. In

the one pattern the top has a hinged lid, which permits choked. In the other pattern the sides can be lifted out and cleaned. The latter arrangement has the disadvantage that the pipe cannot be cleared while the pump is at work; for if any one side is removed, waste and other obstructions which float about will at once be drawn in; whereas if only the top of the box is opened, as in

Fig. 11, when the water is low enough, there is no danger Fig. 11, when the water is low enough, there is no danger.
The advantage of clearing the suction while the pump is The advantage of clearing the suction while the pump is drawing is that the objectionable matter is just then colbody, instead of having to be "fished " for in the moving bilge waters. On the other hand, it is easier to clean the out. The bottoms of these boxes need not be perforated, out. The bottoms of these boxes need not be perforated,
because they rest on the cement. Near the end of the bilge pipe, where it enters the box, a flange is soldered bilge pipe, where it enters the box, a flange is soldered on-as shown in Figs. 11 and 12 on which it rests, while its lower end is one-quarter of its diameter above the bottom of the strum, the section of the pipe and of the open circumference being equal. With large pipes, such as are used for ballast tanks, which may be 6 in. or even 8 in . in diameter, the height of the pipe above the cement would have to be about 2 in ., and as this is considered too much, the ends of these pipes are sometimes made trumpet-shaped, which allows them to be lowered to within lin. of the bottom, and yet to retain the full sectional area of the pipe. Strums are rarely fitted to ballast pipes. It is very essential that those suctions which are situated in the engine-room should be quite accessible; yet on account of the number of auxiliary engines on the lower platform, and on account of bunkers and store
rooms, there is generally so little floor space for venient trap doors over the strums, that these are almost out of reach when the engines are at work. Thus in Fig. 13, which represents the thrust block, aft bulkhead and engine bed-plate and seating; the aft centre strum is placed underneath the main engine turning wheel, and cannot be cleaned by hand except by someone who has courage enough to descend bodily into a small pit, bounded at one side by the revolving turning wheel and even then, if the water has gained on the pumps, which
ever is the only reason for trying to clean a strum at sea, the engineer will be half immersed in water before he can

still be adopted. These

\qquad be cleared These pipes might perhaps also connection, if engine-room or holds, and should therefore not be used Another plan for clearing the pipes is to make them straight and accessible. Thus in Fig. 15 there is no

strum at the end of the pipe, but a perforated plate is fitted in the mud-box placed above the platform. Should the suction not work, and should this be due to the
pipe being choked, then a stick would easily clear a alve chests, but where cocks $-$ pipe being choked, then a stick would easily clear a
position the longitudinal vertical plates of the engine seating ought to have large manholes cut into them, at east over that frame space where the suction is to be found, so that it can be reached by crawling through this
hole. Now that most steamers are built with double bottoms, which extend over their whole lengths, only wing suctions are fitted, which are of course quite accessible. For some inexplicable reason-it cannot be for cheapness-some of these tanks are separated by so-called wells, in which a centre suction is placed, the water reaching it by running along the gutters, and then into he well. When, as is almost invariably the case, this well is close to the aft engine-room bulkhead, it is quite
impossible to clear the suction if the bilge water is at all impossible to clear the suction if the bilge water is at all high, for it is even less accessible than the one shown in Fig. 13, because of the tank top which extends over the well; and though there are manholes at the sides nobody dare venture in if the water has risen, which it does very quickly when once the suction is closed, as the well is comparatively small, and cannot hold much water. Some builders put both the centre and the two wing suctions into this confined space, and were it not for the available auxiliary pumping power, many a ship arranged on this plan would have foundered.
Wells are sometimes, but very rarely, fitted in the holds of vessels with double bottoms, the object being to provide a larger and deeper reservoir for the bilge water than is to be found at the two gutters, whereby the risk of partially damaging the cargo is reduced.
Another inaccessible position for a strum is in the wings under a bunker or storeroom. If the vessel has a mula this suction should get choked, the water accumulates as shown in Fig. 14, and if the ship is rolling ing of this water will most probably knock up the cellSuch an accident would entail the most serious conshould be spared to prevent it, for not only is the floating coal capable of choking all the bilge pipes, but, being
gradually ground down into a fine powder, or paste, it accumulates in the most inaccessible corners, from which it has afterwards to be removed at great expense. in this way were found on in this way were found on
examination to have the examination to have the
hollows of the bed.plate hollows of the bed - plate coal, and in one case, where the manholes in the tank tops of the engine-room had
been opened so as to utilise the ballast pump for removing the water, it was found, when the vessel ultimately reached port, that the mately reached port, that the
whole tank was filled with whole tank was filled with
small coal to the top. small coal to the top.
Amongst the devices which have been used for cleaning the insides of bilge pipes the insides of bilge pipes connection to the boiler. The connection to the boiler. The high pressure removed every obstruction, and the hot water washed and scoured away the
dirty coating of the inside. With modern high-pressures With modern high-pressures this practice has been disconinued for fear of bursting the
passage; while if the perforated plate is closed up, one can easily remove the obstruction by hand. The pro-
jection of the upper end of the vertical pipe high up into the mud-box is necessary, as otherwise the obstructing
objects-small coal, wood chips, waste, dc., which have objects-small coal, wood chips, waste, dc., which have
been carried up by the suction would fall back again into the bilges as soon as the mud-box is opened. This is a
 defect from which the com-
bined valve chest and mudbined valve chest and mud
box-Fig. 16 -suffers. A
hetter design is shown in better design is shown in
Fig. 17 , in which an overFig. 17 , in which an over-
flow weir is added, and the dirt which is drawn up collects between this weir and the perforated plate, and
can be lifted out by hand. The outside view of a still more convenient mud-box
is shown in Fig. 18. The perforated plate is placed perforated plate is placed dotted lines, while the door opening it, the dirt falls into a bucket placed below, or can easily be raked out.
The mud-box door joints consist of india-rubber bands, Which are let into recesses running round the edge o

LOCOMOTIVE BUILDING IN GERMANY

The earliest German railways-of which the first of any length was that from Leipzig to Dresden, opened in 1837 -were supplied with locomotives built in English workshops. These English engines were copied by one or two
enterprising German engineers between the years 1838 and 1841.
In 1841 several continental firms, which have since become well-known, began to make locomotives, amongst these must be mentioned the firms of Maffei of Munich, and Kessler of Karlsruhe, which copied exactly the English models, and of Λ. Borsig of Berlin. The latter are now perhaps the most important locomotive works in
Europe, and began by imitating the American type, Europe, and began by imitating the American type,
but soon followed the English examples as to main but soon
principles.

About the year 1845, three other important firms, those of G. Egestorff, near Hanover-now the Hanover Engine Works-of C. A. Henschel in Cassel, and of C. A. Hartmann in Chemnitz-now the Saxon Engine Works-all began the manufacture of locomotives, using for the most part English machinery in their shops, and copying the English locomotives pretty closely.
The year 1851 may be looked upon as the year in which continental engineers really began to form original types of locomotives suited to their own peculiar requirements, In 1849, as the railway joining Vienna and Trieste neared its completion, and the enormous difficulties of the section between Gloggnitz and Mürzzuschlag over the Semmering Pass had to be overcome, it became necessary to work traffic over lines having an incline of 1 in 40, and curves of 935 ft . radius. In order should be capable of working this line, in 1850 an open o beld the following year
when a suotion is produced by the pumps this joint is till further compressed and becomes perfectly tight. The valve spindles are made air-tight by gland packings, as in Fig. 19. A cheaper plan
is shown in Fig. 16, and is shown in Fig. 16, and
in section in FFig. 20. A tight-fitting leather washer
shown black in section, surounds the screw, and is pressed down by a nut.
As this arrangement is practically air - tight and cheap, it is now frequently adopted, but it is objec-
tionable because of the
 trouble it gives when the engineer is not certain as to which of his valves is open, or whether any one of the valves is partially open. Instead of trying each wheel, as he would do if glands were fitted, as in Fig. 19, he has first to unscrew each nut, and then try each wheel; but even then he can never be quite sure whether the valve
itself is down on its seat, because its under surface is lined with india-rubber-see Fig. 16 -which is always somewhat yielding, and if a chip of wood or other object should have got caught at the lip, and thus prevent a perfect closing, its detection might be very difficult.
Another objectionable feature of bilge valves in general
is that a whole system can always be made useless by

leakage past one valve; and some engineers go to the extra expense of having cocks fitted under each valve,
as shown in Fig. 19, guards being attached to the glands, as shown in Fig. 19, guards being attached to the glands,
so that the key which has to be used for turning the plugs cannot be removed unless the cock is closed. The
reason for having both a valve and a cock for each suction reason for having both a valve and a cock for each suction
is that the latter are rarely quite tight; but as this is largely due to lightness of design, the remedy is not far to seek, and on the East Coast substantial cast iron cocks are being used even for the ballast pipes.

The Nicaragua Canal report to the United States House of Representatives by the Committee on Interstate and
Foreign Commeroe, states that the committee believes the canal entirely feasible, and strongly recommends that the Government
assist tin the complotion of the work, even it it costs more than
E30,000, too . The difference of opinion between the engin
 wise the prasticability of the project. The committee believes that
the main question now is: Who shall build the canal and who shall
justified in recommonding that Congress should take immediate
antion to give such aid to the enterprise as may be necessary to
obtci obtain the funds which are requisite to complete the work.
oo beld the foll 125 year,
for locomotives capable of drawing a train of 125 tons over the steepest gradients on the line, with an average velocity of nine miles per hour. The first prize was gained by the Bavaria, an eight-wheeled engine with
cylinder 19견. diameter, and 29 in. stroke, built by Maffe of Munich. The second prize was awarded to W. Gunther, for his engine Wiener - Neustadt, an engine
which may be said to have been the forerunner of the four-cylinder compound engines now used on the St.
Gothard Railway, the North-eastern Railway of SwitzerGothard Railway, the North-eastern Railway of Switzerand, and elsewhere, for heavy traffic on steep inclines The third engine, the Seraing, built by Cockerill at the Fairlie System. The four engines which took part
thas the first example what is now known as in this competition were found on further trial not to be able to do all that was expected of them, and the problem set by the Semmering Railway continued to call forth new suggestions and experiments. Since that time a number of firms have taken up the manufacture of loco motives in all parts of Germany. The firm of Wöblert,
in Berlin, in 1850, the Vulcan Works, in Stettin, in 1859, L. Schwarzkopff of Berlin, in 1867, Krauss, of Munich, founded in 1866, and others, began successively to make locomotives, and there are at the present time some
fifteen firms of importance employed in this industry, and capable of turning out over 2000 engines in the course

of a yea

In order to give some idea of German locomotive manu facture as now carried on, it may be interesting to give a few particulars of a fairly typical establishment in North Germany. This firm gives employment to over 2000 workmen, and is one of the oldest and largest of its kind ; and, although not possessing all the newest improvements, in the competition able maintain a proreign orders. Although locomotive building occupies the greater part of the works, there is also a department for making stationary and pumping engines. To begin with the machine shop the older machine tools are of English manufacture; but those added within recent years, with very few exceptions, bear the names of German makers, and come mostly from the shops of Chemnitz, Karlsruhe, or Berlin. Their relatively high price appears to be fatal to the English tools which are, however-even in Germany-generally looked upon as superior to the home-made ones. The majority have been in use for many ye men spen in renewing them. It is, however, also evident that steps are being now actively taken to introduce new machinery and appliances, and so to remove this reproach. All the planing machines are driven by a straight rack and pinion screv the bed, instead of by the more exact and modern cylinder Amongst the tools recently introduced is cutting tools ; one for boring the cylinder barrel, and the other two
Next to the machine shop are the smithy and forge The steam hammers are of old-fashioned design, most of the smaller ones being fitted with an automatic valve than is the case with valyes moved directly by a bimp hand lever. Amongst the interesting operations to be seen in the forge may be mentioned the forging of the wrought iron axle-boxes, which are fitted to almost all German
engines. The wrought iron cross-heads for outside engines. The wrought iron cross-heads for outside
cylinder engines also form rather complicated pieces to forge. There was formerly a very fine wheel forge, fitted up with specially designed English steam hammers, for the production of iron wheels, for which the firm was
noted. This is now entirely dismantled, and is only used as a storage room, the use of steel wheels being now
universal in Germany. A department not usually found in English locomotive works is the file-cutting shop. The new files are all bought from the file makers, but they are re-cut in this shop after being used. This shop is also
found to be advantageous in enabling special files to be found to be advantageous in enabling
made at short notice for special work.
made at short notice for special work.
Taking the shops in the order in
Taking the shops in the order in which they stand, the erecting shop comes next. The erecting pits are situated at right angles to and on both sides of the line of rails traversed by a movable platform, on which the engines are moved when finished to the trial-siding and paint shop. The locomotive frames and tenders are put together over the pits on one side and the engines are erected over the pits on the other, there being about twelve pits on either side. There is, however, another similar set of pits at the far end of the erecting shop, which is now only occasionally used for repairs.
The system of erecting is, in outline, as follows :-The frames, cross-stays, and stretchers are riveted together in one part of the shop and then transferred to the erecting pit. The boiler is then at once placed between the frames, but is at first supported on trestles until the expansion angle-irons and the brass packing pieces used to support the barrel have been adjusted. When the boiler rests in its place, the first thing is to mark the face of the horn-blocks for machining; this has not been done before in order that any relative movement of the frames caused by the weight of the boiler may be allowed for in the machining of the horn-blocks. The cylinders are then bolted temporarily in place and are marked for planing on the surface, which is bolted against the frames and has been only roughly planed over beforehand. The olt-holes in the cylinder-flange are next marked off and bored. After the sylinder has been finally bolted in place he slide-bars and slide-bar bracket are put up, bored out, and the packing-pieces adjusted. While this has been oing on the clothing and cab-fitting "squads" have een doing their work. During the time that the motion is being put in place and the valves set the brake-fitters nd pipe-men are putting on the brake and the pipes and cylinder cock gear respectively. There is no single man resporation has a gang of fitters, who perform only this operation has a gang of fitters, who persively
It is worth noticing that all steam joints, both of pipes and boiler mountings, are made by means of brass pipes and boiler mountings, are made by means of triangular section, and made according to standard tables issued by the State Railway authorities. By this means much labour in adjustment and facing is aved, as a slight want of parallelism in two flanges does not signify, and the flanges themselves need only be roughly turned. Another saving-and in engines with outside steam chests this is a considerable one - is effected by the use of malleable iron for both the main steam and exhaust pipes. These pipes are ordered from pecial makers, bent accurately to the drawings supplied, and all that has to be done in erecting is to braze on the flanges made to suit the appropriate size of jointing ring. Behind the erecting shop are the tank and boiler shops,
where little of any special interest is to be seen. All where little of any special interest is to be seen. All
riveting is done by hand, and all rivet holes are drilled. riveting is done by hand, and all rivet holes are drilea.
Fire-box roofs are almost invariably supported by stays crewed into the outer fire-box shell, which is usually made of thicker plate at the top, in order to give it the equisite stiffness; roof bars are scarcely ever used. The copper fire-box stays have the thread turned off on he length between the plates, and are drilled with a 3 millimetre hole for a depth rather greater than the length of the thread left at each end. The stay ends are hammered to form a conical head, care being taken not to rivet over
the holes. Short pieces of tube are afterwards riveted into the holes. Short pieces of tube are afterwards riveted into the clothing opposite each stay, so that a fracture in the
stay can at once be detected. Plate flanging is at present stay can at once be detected. Plate flanging is at presebl done entirely by hand; but a hydraulic press will probably
be shortly set up, which will greatly lessen the amount be shortly set up, which will greatly lessen the amount as heavy castings for stationary engines are also made there. The locomotive cylinder patterns are usually divided into three transverse sections, the mould being made and cast vertically in three boxes. A heavy ring of metal is cast on to the upper end, to aid in producing a sound casting.
The shop containing the fine machine-tools used in making milling-cutters, twist drills, taps, and other fine work, deserves special notice. It is fitted with new made nery specialy designed for this kind of work, and drills and taps used in the works are made here, and a considerable saving in cost is the result.
In conclusion it may be worth while to allude to one or two points which affect the price of locomotives made in Germany. The state railways purchase all their engines from the possible to use old drawings and patterns with but few alterations in the execution of any fresh orders. Considerable care is taken in designing to use the cheapest materials and method of manacture which will anpest the purpose, and in carrying out the design, no more time and labour are expended than is sufficient to ensure that the result will work. Thus as few pieces as possible are left bright, handrails, reversing-rods, \&c., are painted. Another factor in the cheapness of German locomotives, added to the lowness of wages, is the thoroughness with which the system of payment by piecework is carried out in all departments. Through the pressure of this system the luners and planers have each to work several machines, in order to make suffient wages to support locomselves with. By these and other means, the German locomotive manufacturers must now be considered
have rendered themselves strong competitors with us in securing foreign contracts. This is proved by the fact that within the last few months German firms hav received orders for the Wladikawkas Railway of Russia, amounting to several hundreds of thousands of pounds for which English engineers had tendered in vain.

THE REGENT'S CANAL, CITY, AND DOCKS RAILWAY.
In The Engineer of July 10th, we referred, in passing, to the railway of the above company, Now, however, that a
portion of the company's Parliamentary powers is about to lapse, and as it is understood that the directors of the project have an application to Parliament for renewal under consideration, it becomes of interest to review the past history of
this railway project, which attracted so much attention in

Sheffield, and Lincolnshire London terminus, the engineers have constructed a space on the north side of the Regent's canal for the North Metropolitan line to run in, whenever its Lincolnshire crosses the canal on girders at a height of 16 ft . above the towing path. Here a new retaining wall has been put in on the outer side of the path, and the girder supports rising from the water are filled in between with lattice work. The space thus left beneath the Manchester, Sheffield, and
Lincolnshire will allow for one up and one down line.
sponding with similar openings in the casing, thus forming double-seated door. The globe is accurately fitce, an is fitted ined and adjustable seatings, upon which a packing rings being independent of the bulkhead, prevent the globe from becoming jambed, should the bulkhead be twisted or buckled during a collision. The globe is mounted upon a spindle or trunnions, on one side of which is secured a handie or lever for rotating it; so that by moving the lever in one
direction the passage is opened, while a movement in the

the engineering world and so little support from the public and to set forth its present prospects. The project had so dropped out of public notice during the last few years that sion that its scheme had been definitely abandoned. This, however, appears to be very far from the truth, and although as has just been said, a portion of the power-the Compulsory Purchase clauses-granted in 1881-2 has just lapsed, the construction powers have yet two years to run, and those two years may bring forth a great deal in this respect. Sooner or later, and probably sooner rather than later, the unchartered wilderness of houses through which the proposed line has been surveyed must have the railway facilities which it has always sorely lacked, and never so urgently as now, when the great terminus of the Manchester, Sheffield, and Lincolnshire Extension to London is being rapidy pushed forward, to bring in the near future a working-class population on this behind the other great termini of Euston, King's Cross, and St. Pancras.
The Regent's Canal, City, and Docks Railway Bill was introduced to Parliament in the Session of 1881-82. The map above will show the course it was proposed to take. B followed very closely all the way from Paddington as far as Victoria Park, where it continued beside the Hertford Union Canal to Old Ford, taking its way thence across the levels of West Ham to Victoria Docks. Stations were proposed at Maida Vale, St. John's Wood-road, Zoological Gardens, Camden Town, Caledonian-road, the Angel, Islington, New North-road, Kingsland-road, South Hackney, Victoria Park, Old Ford, Stratford, Barking-road, and Victoria Docks; while a spur line was proposed from Siving direct communication with the Midland Railway at St. Pancras and the Great Northern at King's Cross.
The Bill was hotly contested in Committee, no fewer tha seventy-six petitions being presented against it by railway companies, public bodies, and private individuals, who con Eastern and Metropolitan Railways were especially active against the scheme.

Yet it was one calculated to be peculiarly useful, both as a passenger and a heavy goods and mineral line. It joined the great trunk systems of the Great Western, the Midland, and the Great Northern Railways with the City and the Docks, and provided direct communication between the South Wales coalfields and the Port of London, via the Great Western. Coal could, with the construction of this line, be shipped direct, instead of, as at present, being
brought along the Great Western line to Southall and Brentford, there to be transferred to barges, and thence to come, by the tortuous course of the Thames, to the Docks. A similarly large traffic would have come from the Midiand and the Great Northern Railways; while those lines, serving as they do, the vast northern suburbs of London, wherein lives a population largely clerkly, and desirous of journeying between their homes and the City on six days of every week, would have welcomed this outlet for their congested traffic, already straining to their utmost the carrying capacities of both lines. The Regent's Canal, City, and Docks Railway would thus, in fine, have performed the office of a railway truly metropolitan, snd the directors were well advised when they recently altered the title of their projected line to that of the "North Metropolitan Railway and Canal Company." For its construction a capital of $£ 5,722,400$ was authorised by For Acts the company obtained, and renewed in the Sessions of 1882 and 1892. The Acts provided forthe formation of the company and for the purchase of the existing canal from the Regent's Canal Company. Thus the present company have in view two undertakings-the proposed railway, and the canal which was taken over, and is a concern paying interest at the rate of 23 per cent. per annum. The capital of the canal part of the company, already created, including loans amounting to $£ 425,000$, is $£ 1,783,100$. The railway capital has not, however, been issued, for investors, made shy perhaps by the story of the District and the East London Railways, have not responded to the prospectus issued by the promoters, although the prospects of such a line have always seemed to be good.
is interesting, in connection with this railway, to note that in the works now in progress on the Manchester,

CASEY'S SPHERICAL WATER-TIGHT BULKHEAD DOORS.
Numerous as have been the attempts to devise a simple and thoroughly effective door for closing the compartments of ships separated by bulkheads, it is a matter for regret that ments, namely, that of being readily closed in case of emergency, and any meritorious attempt to supply the means to

SULKMEAO OOORANOBULKHEAD.

BACK VIEW OF BULKHEAO DOOR.
reverse direction closes the connection between the two compartments. This handle or lever may be connected to another lever on deck, in the chart-room, or on the bridge of the emergency. This arrangement has one important advantage over the rack and worm arrangement so largely used at present, namely, that the passage can be closed almost instantaneously by a simple movement of the lever through the arc of a circle.

effect this end will be sure to meet with encouragement frcm steamship owners. The latest aspirant to favour is a globular
device invented by a marine engineer of considerable experidevice invented by a marine engineer of considerable experi-
cnce, Mr. James Casey, 10, Philpot-lane, London, E.C., and cnce, Mr. James Casey, 10, Philpot-lane, London, E.C., and
certainly has the merit of being entirely original. The

accompanying illustrations will enable the construction and in form, fitted in a bulkhead, and is provided with a through opening corre-

We recently witnessed the operation of one of these doors fitted in the engine-room of the Carron Company's steamship Thames. The door was operated by a lever on deck, and an electric bell arrangement was provided whereby the operator could give an audible signal to any person who might be in par of the communicating compartments below that the below informed the operator that all was clear before pulling over the lever and closing the door. The whole proceedings occupied only a very brief period, certainly much less than that required for operating an ordinary bulkhead door working by means of a worm and rack in vettical slides. It was also shown that the operation of the globe was not impeded by placing a block of coal in the openin or the casing, several blocks being sheared completely through by the closing of the door. Although some slight objection may be raised to the system of audible signalling fitted with the apparatus on the Thames, on the ground that this might be productive of delay in closing the door at a precarious
moment should the return signal not be given, this does not affect the general principle underlying the invention, and it affect the general principle underlying the invention, and it door was perfectly satisfactory.
A further important advantage which Mr. Casey claims for his globbular door is that it can readily be operated, should the ship be suddenly thrown into darkness owing to the lights going out, which is usual with electrically-lighted ships upon a collision occurring. Under these circumstances the officers and crew might experience much difficulty owing to the darkness in finding the gear for closing the doors from the 'tween decks, whereas with the present apparatus it would be a comparatively simple matter to put the hand on the levers in the chart room, or on the bridge, and upon the receipt of the " all clear" signal from below, close the passages communicating with the compartment or compartments whence the danger arises. This form of door may also be fitted to deck openings for bunkers, transit, or ventilation.

The effect of electricity on projectiles while in flight has been illustrated by some recent trials of the Swiss army rifle. The Journal de Genere states that during this trial strange deflections of the bullets were noticed that could not be accounted for until it was discovered that an electric line paralleled the range. Experiments were made by building a line of four steel cables the
full length of the range, 780 ft , and about 120 ft from it When hese cables carried a heavy current of electricity the lateral deflec tion for this distance was about 70 ft . For a longer range the deflection was much increased ; with artillery, and a range o 9000 ft ., the deflection from the true line is claimed to reach the enormous amount of 14 deg . It is not stated whether the deviation
is toward or away from the electrical cables.

Fith the west coast "Flyer."

By Charlbs Rous-Marten,

A grbat deal of mischievous nonsense has been written in the daily papers about the lamentable accident which ". Flyred at Preston on the 12th inst. to the West Coast "Flyer." There has been the usual ignorant assumption
without proof that "excessive speed "was the cause of the without proof that "excessive speed" was the cause of the
mishap. Much reference has been made to the run made mishap. Much reference has been made to the run made
by the same train in the previous week of 105 miles in by the same train in the previous week of 105 miles in
105 min ., and it has been taken for granted that this was 105 min ., and it has been taken for granted that this was abnormal and perilous. No idea could be more absurd.
As a matter of fact, that same run, from Wigan to Carlisle, was surpassed a day or two later by one which a trustworthy friend timed for me in full detail. In that case the $105 \ddagger$ miles from Wigan to Carlisle occupied only 103 min . net. And it should be remembered that the same distance-from passing Wigan without stoppingwas done several times last year in less than 100 min.once in 94 min . with the ordinary train.
Excess as to speed is purely relative in these cases, and the only way in which the point arises in connection with the Preston disaster is from the view of suitability to the passage through that station and over its curves and crossings. A rate of 40 miles an hour might possibly be
more "excessive" there than 80 down the Shap bank. But often as I travelled by that train during last year's "race," a speed of 20 to 25 miles an hour through rience. It has also been asserted, without the smallest foundation, that sufficient time was not given to the run from Wigan to Carlisle, and that only 105 min . allowed was 112 min ., and when the mishap occurred the train had still 94 min. left in which to run the remaining ninety miles, which same distance had repeatedly been done in 8 to 89 min., and once in $80 \frac{1}{2}$ min. with perfect
safety, and with a similar load per engine. It is, theresafety, and with a similar load per engine. It is, there-
fore, clear that in no respect was the accident due to fore, clear that in no respe
insufficient time allowance.
Another mistatement which has been published is to the effect that the London and North-Western Company had admitted their error in timing by allowing " 19 min.
additional to Carlisle." No extra time has been allowed, but the Bletchley, Rugby, and Wigan stops have been taken out, a course had been resolved upon, before the accident happened had been resolved upon, before the accident happened. ctually done on the fastest lengths of the West Coast journey, I recently made a special trip to Aberdeen and journey, I recently made a special trip to Aberdeen and add, was done with the full knowledge-except as to
date-and courteous assistance of the London and NorthWestern and Caledonian Railway authorities.
It may be interesting to explain in limine that it had been found necessary to divide the train, and run the first part to Carlisle with only a single stop. The schedule
speed was consequently higher on the earlier part of the speed was consequently higher on the earlier part of the
way, but lower from Crewe to Carlisle, as will be seen by the following comparison :

Former Time.

New Time

Starting from Euston we had a train of seven vehicles, viz., two sleeping cars, 4 eight-wheel W. C. . . S. coaches,
and a van, the total weight being about 161 tons, excluF. W. Wivgine and tender. The engine was one of Mr , Greater Britain class, having two high-pressure cylinders, 15 in. by $24 \mathrm{in} . ;$ one high-pressure cylinder, $30 \mathrm{in}$. . by 24 in .
and four driving wheels, not coupled, 7 ft . 1in. diameter.
The weather was fine and calm throughout, and the rail dry-except on the Caledonian in the early morning
after a heavy dew and mist. Excellent work was done by the big compound, which ascended the bank to Tring ($31{ }_{3}^{3}$) in 36 min .5 sec ., covered $57 \frac{1}{4}$ miles in the first hour, passed Rugby ($82 \frac{1}{2}$ miles) in 86 min . 40 secs., Nuneaton
(97) in 1 h .44 min .10 sec ., and Tamworth (110) in 1 h .57 min . Then being in advance of time the driver eased down, and Crewe was easily reached three minutes
early. Here a 6 ft. 6 in . coupled engine, of the same class as the racing celebrities.Hardwicke and Vulcan, came on. A very smart beginning was made, Warrington
(244) being passed in $24 \frac{1}{2}$ minutes, and Wigan (36) in $37 \frac{1}{4}$. Then this driver, too, eased down, having plenty of time on hand. At Preston Station there was almost an excess
of caution. It took fully five minutes to pass through the station and yard, including two stops. There was, howeasily nearly all the way to Carlisle. The speed did
not fall below thirty miles an hour up the bank to Grayrigg averaging 1 in 130 , and the five and a-half mile
length from Tebay to Shap Summit, including the steep bank of 1 in 7 , was done in 104 min . The descent of
$31 \frac{1}{2}$ miles to Carlisle occupied 32 min ., going easily, with $31 \frac{1}{2}$ miles to Carlisle occupied 32 min., going easily, with
a frequent touch of the brake, and Carlisle was reached
a minute early, in just under 2 hours 47 min , from

[^0]change of engines. One of Mr. J. F. M'Intosh's
coupled, with cylinders 18 łin. by 26 in .-came on, and it soon became evident that the driver meant to keep time. The run to Stirling was certainly most remarkable The distance of $117 \frac{3}{4}$ miles was covered in 116 min 53 sec . from start to stop with a load of 161 tons.
Beattock ($39{ }^{3}$) was passed in 37 min .50 sec ., the Summit $\left(49 \frac{1}{4}\right)$ in $53 \frac{1}{2}$ min., and Carstairs ($73 \frac{1}{2}$) in $72 \frac{3}{3}$ min., the lowest speed up the long stretch of 1 in 75 being 36 miles an hour. The downhill speed from the Summit to passing Carstairs was very high, the 233 miles being run in 19 min .13 sec .
The 68 miles from Beattock Summit to Stirling took only 63 min .20 sec . to cover. From Stirling to Perth (33 miles) was done in $34 \frac{3}{4}$ min., the engine making nothing of the steep bank past Dunblane up to Kinbuck (1 in 78,1 in 84,1 in 88 , and 1 in 90), the five miles up these grades being done in little over 6 min . The downhill run from Crieff Junction to Perth was exceedingly From
From Perth to Forfar the timing is by far the fastest ever seen in Bradshaw, viz., $32 \frac{1}{2}$ miles in $32 \mathrm{~min} .=60^{\circ}$ miles per hour. It starts too, with a nine mile climb,
much of which is at 1 in 123 and 1 in 125 . Another Mr. M'Intosh's Dunalastair class relieved the Carlisle engine, and a fresh start was made with a very slippery rail, but nothing could keep back the engines or 101 mane them lose time. The load was now reduced 101 tons, and with this weight the distance was run
30 min .51 sec . start to stop. Up 1 in 123 the speed did not fall below 50 miles per hour, and on the descending or level lengths no exceptional velocity was attained. It was a case of evenly rapid work throughout. The timing from Forfar to Aberdeen is relatively so slow that it is not easy to fill up the large allowance given. After a very steady and even run the train arrived at the Aberdeen ticket platform a few seconds before 6.12, and with the intervening needless delay, a final halt was made in the Aberdeen Station at 6.15, or ten minutes before time. It was a remarkably rapid, safe, and pleasant run which reflected the highest credit alike on the company their officers, their road, and their rolling stock, nothing could be smoother or more easy than the travelling of the train at the highest speeds attained.
The following are the "logs" of this remarkable run and of a subsequent one by the same train:-

$\begin{gathered} \text { Miles } \\ \text { (ex } \\ \text { Euston. } \end{gathered}$	Stations.	No. 1. Actual times.	No. 2. Actual times.
	${ }_{\text {Euston }}$, 11	dep. 8 8 $\begin{aligned} & 0 \\ & 8\end{aligned}$
17\%	$\underset{\text { Watford }}{\text { Willesden .. }}$... .. ${ }^{\text {a }}$.. ...pass	911 2145	-9 ${ }^{9} 105$
${ }_{40}^{31}$	$\underset{\text { Tring }}{\text { Tietchioy }}$.."	3649 5041 0.4	
${ }^{42}$		- 564	
829	Roado.. .. Rugby R		
${ }_{97} 9$	Nuneaton.."	4	". $0^{47} 0^{42}$
${ }_{110}^{110}$	Limmorth	$10 \begin{gathered}5745 \\ 353\end{gathered}$	" 1000
133i	staftord	${ }_{22} 45$	2446
${ }_{158}^{1474}$	${ }_{\text {Whitmore.. }}^{\text {Crowe.. }}$.. ${ }^{\text {a }}$.. air	4047 5040 54	
		1129	dep. 11.15
$\begin{aligned} & 1824 \\ & 184 \end{aligned}$	Wigran $_{\text {Warington }}^{\text {a }}$.. ${ }^{\text {a }}$..pass	2630 3918	- 4059
209	Prestonarr.		
${ }^{230}$	Lancesterpass	$12.26{ }^{26}$	deass der
${ }_{249}^{2369^{2}}$		${ }_{4}^{32} 24$	31 47 47
${ }_{264}^{2064}$	Grayrigg),	- 6948	
${ }_{267}^{2027}$	Shay Summit),	$\begin{array}{r}1 \\ 16888 \\ 1688 \\ \hline\end{array}$	1535
${ }_{281}^{277}$		26 80 80	25 29 29 17
${ }_{290}^{294}$	$\underset{\substack{\text { Wray } \\ \text { Cralisle }}}{\text { an }}$	42 4854	", ${ }^{\prime \prime}$ 4258
	Carlisledep.		
${ }_{4}$	Rockeliffo..pass	050	0
${ }_{8}^{6}$		236 445 48	
13	Kirkpatrick	916	8
${ }_{20}^{161}$	${ }_{\text {Kirclebridge }}^{\text {Ecclefechan }}$..	138 168 168	1318 163 16
${ }^{259}$	Lockerbie.. ,"	${ }^{21} 46$	${ }^{21} 51$
${ }_{81}^{281}$	${ }_{\text {Netherclough }}^{\text {Dinwoodio }}$	${ }_{26}^{24}{ }^{7}$	2416
34.	Wamphray	2859	2920
${ }_{40}{ }^{39}$		3387 4920	${ }_{49}^{34} 84$
52	${ }_{\text {Clvanfoot }}$	5210	${ }^{53} 0$
${ }_{5}^{57}$	Crawrord:.	${ }_{56}^{54} 23$	${ }^{58}$
${ }_{63} 6$	${ }_{\text {Lamington }}^{\text {I }}$..	3031	113
${ }_{685}^{67}$	$\underset{\text { Symington }}{\substack{\text { Shnkerton } \\ \text { a }}}$..	- $\begin{aligned} & 3 \\ & 4 \\ & 450 \\ & 450\end{aligned}$	${ }_{47}^{25}$
73	Carstairs	833	", ${ }^{941}$
${ }_{8}^{815}$	Braidwood	${ }_{10}^{16} 47$	41
${ }_{89}^{84}$	${ }_{\text {Holytown }}^{\text {Law }}$.. .. ${ }^{\text {a }}$..		20 250 20 47
94	Coatbridge"	${ }_{30} 0$	3030
${ }^{1097} 1$	Sarbertarr.		
			dep. ${ }^{5950}$
1201		${ }^{4} 185$	
134	Crieff..,	1814	2035
137	Auchterardor ,	200	17
${ }_{150}^{145}$	Puming ar \%r	${ }_{31}^{2329}$	
			dep. 6919
${ }_{162}^{158}$		4912 530 5	$\begin{array}{ll} \text { pass } & 1810 \\ 22 & 15 \end{array}$
171		${ }^{5} 18$	
	Forfar urr.		423
	Guthrieppass	2056	
2017		3158 47 48	90
	Stonchaven	55	
2404	Aberdeen Tickot Platiorm., arr.	61141	
	Aberdeen stationarr.	${ }_{815} 15$	air. 74415

[^1]in 1 h. 59% min., Crewe being reached a few seconds Farl
From Crewe, one of Mr. Webb's 8 -wheeled compounds brought the train on to Carlisle. The schedule allowance-
2 h .50 min - is quite excessive on this length, and the 2 h .50 min . - is quite excessive on this length, and
drivers must be hard put to it to fill up the time. Preston Station was passed through at a slow walking pace, the passage occupying 3 min . The speed fell to 36 miles a hour up the Grayrigg bank and to 25 miles an hour up the Shap incline, there being no object to be gained by pushing the engine, as the train was in ample time, Similarly, the falling gradient to Carlisle was descended, as a rule, at a very moderate pace; but, nevertheless,
Carlisle was reached a minute before due time. Carlisle was reached a minute before due time.
It was at Carlisle, as before, that the really hard work began. One of Mr. M'Intosh's already-famous new engines, of the Dunalastair class, came on, and a magnificent per-
formance again ensued. Lockerbie was gained in formance again ensued. Lockerbie was gained in
25 min . 50 sec., Beattock in 38 min . 23 sec ., the Summit in $53 \frac{1}{2} \mathrm{~min}$., and Carstairs in $73 \frac{3}{3} \mathrm{~min}$., Stirling being reached in 117 min .40 sec . from Carlisle. This, it will be observed, was 47 sec. slower than on the previous occasion, but still exceeded the "mile-a-minute" average, though with a heavier load. Such a performance would have been deemed utterly improbable, if not impracticable, little more than a year ago. The heavy length of 33 miles from Stirling to Perth, was run in almost exactly the same time as before, notwithstanding the extra load. A special feature of both trips was the splendid steam generation of the engines. Mr. M'Intosh's large boilers are evidently capable of making steam to an exceptionally large extent.
At Perth I changed into the postal express, which is timed to run thence to Aberdeen without a stop in $97 \mathrm{~min} .$, the distance being nearly 90 miles. This was accomplished with the utmost ease, with 2 min . to spare, speed feat was in no respect remarkable start to stopseeing that on the previous occasion the distance had been done in $89 \dagger$ min., with an intermediate stop at Forfar. In this case, however, the load was somewhat heavier, consisting of three bogie postal vans, one bogie coach, two six-wheeled coaches, and a brake $=$ about 130 tons. I may mention incidental of Mr. M'Intosh's Dunalastairs ran with a load of 233 tons from Forfar to Perth, start to stop, $32 \frac{1}{2}$ miles, in exactly $32 \frac{1}{2}$ min.
Apart from their general excellence of design and construction, the special merit about these fiche engines, work, is their ample boiler power. This is the great secens and reasonbly expres ous dines. With abundant With insufficient boiler power the most skilful, and even perfect construction in other respects, will not avail to avert failure.
As before, the running throughout was perfectly smooth, steady, easy, and safe, whether the speed were low or high.

Notes.

(1) Bad slacks, two stops passing Preston, slight slacks passing Rugby, Stafford, Carstairs, Law, Holytown and Guthrie Junctions. Engines: London and NorthWestern, eight-wheeled compound-Greater Britain class
-to Crewe; 6 ft . 6in. coupled-Precedent class-to Carlisle. Caledonian, 6 ft . 6 in . coupled-Dunalastair classthroughout. Weather fine and calm, a little mist in Scotland and heavy dew ; rails wet during latter part of journey.
(2) Very slow-three miles an hour-through Preston Station and round curve. Slight slacks through Rugby, Carstairs, Law, Coatbridge, and Guthrie Junctions. Engines: London and North-Western 6 ft . 6in. coupled to Crewe; 8 -wheeled compound thence to Carlisle. Cale-
donian, Dunalastair class. Weather fine and calm; dry rail throughout.

MR. PICKARD'S NEW PROPOSALS TO THE COAL OWNERS.
Once a year Mr. Benjamin Pickard, M.P., in his capacity as secretary of the Yorkshire Miners' Association, addresses is also the president of the Miners' Federation for Grea Britain, his pronouncements possess an importance and an interest beyond the district of its production. The member
for the Normanton Division means that it should do so. It is, in fact, not so much the report of the Yorkshire Miners' Association, extensive as that would be in its bearing, but a formal statement of the position taken up by the whole body when Mr. Pickard "rises," he rises like the Nile, overflowing the newspapers as the Egyptian river does its banks. over about a page of space. Mr. Pickard, the most pro.
ond mine and powerful personalty of miners' leaders in the minent and powerful personalty of miners' leaders in the sheer dogged force. In the report before us that quality is again in evidence. He has insisted all along that the
troubles of the English coalowner were troubles of his own creation. He insists upon that still. The low values ruling
for coal, he urges once more, are owing to ruinous competition and the underselling of coalowners amongst themselves. They have, he says, permitted the gas and railway companie to be the dictators of the coal market, with the result that the
coalowners have been literally giving away their output.
"If you give away your coal," he tells the employers " "that "If you give away your coal,", he tells the employers, "tha
is no reason why we should give away our labour." That ha is no reason why we on Mrud. give a away our for years, ever since the highwater mark which followed 1888 began to be "left high" and why by drooping business. He nails his colours to the mast for what he calls " a minimum living wage," not merely for his "I have colliers, but for the sake of the coalowners themselve. once get on the down grade, unless we have something to stop
reductions in wages, the gas companies avd the reductions in wages, the gas companies and the other trading companies would literally pull the owners to pieces, so far as
any concession that we might give them is concerned; and any concession that we might give them is concerned; and
instead of any roal benefit accruing to the workmen or the
miner, we would remain in exactly the same condition, so far
GREAT EASTERN RAILWAY WIDENING WORKS—THE PRIMROSE-STREET BRIDGE (For description see page 186)
F/G. 2.

as trade is concerned, at the end of 1896, as we are at the end going to other localities, Mr. Pickard attributes the reduced output in the federated area to the fact that several large firms have not been working, and that thousands upon
thousands of men have been laid idle by the month, six
weeks, two months, and even three months together, weeks, two months, and even three months together,
which has had a tendency to limit the output in the federated area. Here Mr. Pickard is in rather shallow
water. He is too shrewd a man not to know that there water. He is the shrewd a man not to know that there
is a reason for the men being idle. If the coalowners could
make a profit by employing these men they would do so. The make a profit by employing these men they would do so. The
fact that they cannot do so accounts for their being idle. He admits one cause of the reduced employment, and ignores the
other. The cause he admits is the nearness of the Northern
coalfields to the seaboard, which gives the coalfields to the seaboard, which gives the coalowners in
Darham, Northumberland, South Wales, and Scotland, easier facilities for commanding an export trade than there is
in the Midlands. That cause he concedes-he could not well do otherwise-for there is getting round that awkward corner;
but, he asked, are the miners in the Midlands to be bound by but, he asked, are the miners in the Midlands to be bound by
results arising from that condition? "Are they to work two results arising from what condition, in order to counterbalance
or three days a
the geographical and geological condition connected with a the geographical and geological condition connected with a
particular class of mines?" This is clever, but it isnot convinc-
ing. The fact that these distant coalowners can get their coal ing. The fact that these distant coalowners can get their coal Midlands simply tells in their favour, and enables them to
take the trade. The one thing explains the other. Mr. take the trade. The one thing explains the other. Mr.
Pickard's impeachment of certain coalowners for not em Pickard's impeachment of certain coalowners for not em
ploying "thousands upon thousands of men" is sheer nonsense, because these men are idle through no fault of the
coalowner. He cannot compel the foreign or the metropolitan consumer to give him 1s. a ton extra for his coal ton of coal he brings to bank. If it is absurd to ask the coal getter "to work for two or three days a week for nothing" surely equally absurd to rail at the coalowner for not working
pits for less than nothing, for a positive loss, which Mr pits for less than nothing, for a positive loss, which Mr. case. Now for the second, that of wages. Is it not a fact
that the men in the other districts-those outside the that the men in the other districts-those outside the within the federated area ? When to that is added the
facilities of cheaper transit, which Mr. Pickard admits, surely facilities of cheaper transit, which Mr. Pickard admits, surely
there is no marvel in trade going to other localities. The marvel would be if it did not go. There is no sentiment in
business. People buy where they can get best value, and the Yorkshire coalowner, doubly handicapped by distance from the seaboard and higher wages, loses his trade, which
naturally fails into the hands of those more favourably circumstanced. Nor does Mr. Pickard make mention of another vital point. His anxiety for a minimum living wage Is it the amount a miner receives per ton or per day,
or the amount he takes home at the week-end? Of or the amount he takes home at the week-end? Of
course it is the latter. Tested by that standard, the miner
who has not had Mr. Pickard to fight for him, and to give who has not had Mr. Pickard to fight for him, and to give
him the minimum wage, is better off than the miner who has. him the minimum wage, is better off than the miner who has
"To the victor belong the spoils." But though Mr. Pickard
is the victor, his followers have not the spoils. The spoils are is the victor, his followers have not the spoils. The spoils are in the Midland counties. The employers outside the federated area have the work; the employed outside the federated area worse off than those who did not fight at all not suspiciously
akin to that of which the winner exclaimed, "Another such akin to that of which the winner exclaimed, "Another such
victory, and I am undone?" How long will men find comfort victory, and I am undone?" How long will men find comfort
in a doctrine, even with such a tempting name as the " minimum living wage," when it brings the Dead Sea fruit of miserable wages, getting gradually less through business drifting to other districts ?
It is impossible to d
Pickard's voluminous documents ; but his paragraised in Mr what the workmen propose is worth notice. Wages he finds to be between 10 s . and 15 s . per week, which is noglowing testimony outcome. We will go further than Mr. Pickard, and say that the collier ought to earn double that amount and more Seeing that 10 s . to 15 s . a week is all that his efforts have
brought his constituents, he does well to prepare another plan. He puts forth as the basis of an agreement for five years plan. He puts forth as thine and a maximum wage. That conceded, he
would have wages regulated thus. - " (a) The to determine the rate of wages once in every six months, 5 per cent. either up or down, as the case may be. (b) Take the
output of coal within the federated area on December 31st output of coal within the federated area on December 31st
$1895-\mathrm{viz}$: (c) When the output decreases 1 per cent. the wages shall be reduced 5 per cent. from the minimum.
(d) and for every other decrease or increase of 1 per cent.,
wages shall be raised or lowered 5 per cent., between the wages shall be raised or lowered 5 per cent., between the
minimum and maximum rates agreed upon by the owners and
workmen." Although Mr. Pickard uses the word "mini workmen, "Although
mum," he possibly means "basis." Of course, a minimum
wage once settled cannot be reduced, unless the whole principle of an irreducible minimum is surrendered, and that would be giving up everything from Mr. Pickard's point
of view. It will be interesting to see what the employers think of this scheme. Its essence, it will be noted, is restriction of output, the logical effect of which would be raising of
values. But, then, all the new collieries recently opened out or being opened out, in the virgin coalfields of Yorkshire, Derbyshire, Nottinghamshire, and elsewhere, are on the
principle of a great output to lessen the cost per ton. Only
in that way, with the double disadvantages in that way, with the double disadvantages already noted-
distance from the seaboard and dearer labour-can coaldistance from the seaboard and dearer labour-can coal
getting be made to pay. Mr. Pickard's plan puts a premium
upon restricted output. Precisely as the less coal, the coal-getter is to receive less for getting it. But and that is exactly what is being done in the Yorkshire and other coalfields, with the result that many old pits are being
set down. Mr. Pickard's principle is directly in the teeth of set down. Mr. Pickard's principle is directly in the teeth of
the economic law that the price of an article shall govern
the cost of its production-or, to put it shortly, in the the cost of its production-or, to put it shortly, in the ably expect his innovation to be taken au serieux, or, if so that it would solve the problem-the protracted and perplex-
ing problem- of capital and labour in England's coalfields
But whe their objections to it, if they have any, and put forth
have their thinking done by deputy; that is a growing class with whom chiefly rests the hope for the future. Even if
there were no independent minds amongst the miners, there remains that great body, the general community, who are so
little consulted in the disasters of the coal industry. They have a right to know what is the owners' answer to the new plan of campaign. Their feeling, if it could be got at, would your houses," for those who suffer most from coal war are
the people who have no voice in the making or the ending of them. But the moral right to be considered remains, and the owners would do well to make known as soon as possible
their views of Mr. Pickard's latest proposals. heir views of Mr. Pickard's latest proposals

LETTERS TO THE EDITOR.

(We do not
be barker's graphical calculus.
SiR, -Professor Greenhills letter on this subject seems to make
some furthor reply from your reviewer desirable. In Mr. Barker's Ioter he complains that the review "speaks of the glaring error
of his mothod of graphic integration."
What not this at all, but, on the contrary, Mr. Barker's special method

 work in hand. The error spoken of may be exprosesed das that du
to calculating in your ounation the increment
lof ris on on
and

 down to-or towards- the limit zero, this error also goes down to
-or towards-zero. Thus in the theoretical anal tyical troantment
 angent ; although 1, along with many otherst think that the
differenco is amost important one in principle. But in the graphic construction on maper the stont lentth does not go down the, or
even near the limit zero and therefore, overyone who usee

 true mean tangent throughout the short length dealt with, but in general one has no meons of finding this true mean until atter the
drawing of the curve has been effected. drawing of the curve has been effected.
 and end of the short length; otherwise expressed to to use the
arithmetio
 Which your reviewer characteri
insination of druughting error
The method dadrocoted
The method advocated by your reviewer was to halve the diffor
ence of the tangents of inclination at beginning and end of the

 important in leading students to become familiar with the true fundamental meaning of the whole proceeding; secondly, in the
great bulk of actual cases it
gives a oxact truu result i and thirdy, , it is in a a very grant degreo simplor,
easier, more rapid, and in especial does not farour draughting
arror the familiar graphostatic constructions of "moment surves,"
Ideflection curves," des, in, let tas say, 90 per cent. of the inte. deflection curves," "e., in, let us say, 9 per cent. of the inte.
gration curves actually and frequently drawn out in the engineors drawig-office, this arithmetic mean agrees exactly with the true
mean ; and, therefore, it is always used in these constructions
 and quite properly, follow the same mothod in dealing on the drawing board with curves not parabolic. When the curve is
parabolic tho stort lengths "t aken may be os long as you like by this method without any inexactness more the nature of the curve difers trom the parabolic character
istio the shorter must be the lengths used in the integration in order to avoid gross or glaring error
The superionty or, if you
ike, the
parabolic approximation to the short ineremental length of the integral curve in, of course, due to the fact that the second differ.
ential coe-fficient is constant. Prot. Greenhills remers to suspect that he he either did not rend the review or eliese died one not
road
did read the part in question of the book criticiesed. His remark
deal with the relative advantages of circular and parabolic arcs as approximative means of drawing in long lengths of eomplex
curres ind they have therefore no bearing on the point under curves ; and
discussion,
The reviewer has studied closely the methods of facilitating the good drawing of mathematical and experimental curves, and would be the last to depreciate the value of Mr. C. V. Boys' and other
aids in this direction. His somewhat extensive experience has proved, to his complete satisfaction, that neither circular nor parabolic templates are those that give most aid in this way. The excellent and weighty reasons.
Professor Greenhill misses the point that the draught neither on the loco. drawbar, nor on "the couplings between any pair of arriages, can be given as a fund of the load running in front of the coupling in question. For a its driving effort may no doubt be given as a a erably complicated
function of the velocity, independently of all loads: but the portion of that driving effort transmitted back to any such coupling as above depends not only on the velocity, but also upon the accel
ration of velocity and upon the load in front of the coupling. Professor Greenhill's closing remark that the "freshness and
novelty" of Mr. Barker's treatment has evidently my review, "stirred up the prejudices of supporters of oldread the routine, amply justities the suspicion that he has not fashioned routine."
August 17 th, 1896.

enables me to say two things: (1) that to say that a radial axle
an compare with a bogie is sheer humbug; and (2) that Mr.

 [TV
[Tho Brighton Company has only within the last year built some
bogie engines; all the Stroudloy engines are without them. The

 The double curres at strood and
severe in the country. - ED. . .]

 momem $=4=$ xawawiw wix

 5imemin
London, Chatham, and Dover Railway, \quad R. R. R, SURTEEs,
Locomotive Department, Wandsworth- Chief Draughtsman. comotive Department, Wand
road, S.W., August 17th.
[The figures given by Mr. Surtees confirm our remarks as to
single leading-axle engines, although the company has now also a

 "w

 vequmazix
m: =an
 2utwouewisione

SUBSTITUTE FOR Steamers' Ropes,

SIR, - The use of ropes in mooring steamers at pierd seems
rather an awkward arrangement. Why not have a couple of small
 timaty wimi
H.M.S. Dreadnought. - This battleship is to haveall her thirteen oilers replaced. Ten of them will be made at Chatham, where it is probable her refit will be carried out. It is estimated that her
efit will cost over $£ 50,000$, and that she will be in dockyard hands or

Trade and Business Announcements.- Sir Christopher Fur-- $\pi=$
为 2
 Bros. and Co., of the Styrian Steel Works, Sheffield, inform us ment of Mr. A. J. Henderson, at 2, Lombard-court, Gracecharch-
ment.-Messrs. McKie and Baxter Gol street.-Messrs. McKie and Baxter, Govan, have recently com-
pleted new engineering and shipbuilding works in convenient proximity to the 130 -ton crane in the Cessnock Docks, Govan, as
well as the graving and wet docks of the Clyde Trustees. The
works have been built by Sir Willim and embrace all the best modern practice in construction. The columns, girders, roof couples, and ties, forming the main buildings
are built entirely of mild steel ; the columns are throughout spaced 25 ft . apart, giving the maximum of floor and head room between the various shops, and the roofs are entirely of glass, the shops
being as light inside as if they were in the open air. Special ven-
tilation arrangements have been adopte tilation arrangements have been adopted, and the comfort of the
workmen has been particularly studied. Most of the machines have been specially constructed under the directions of the prin-
cipals, and are from the best mainers. The works are specially laid cipals, and are from the best mahers. The works are specially laid
out for the building of the smaller class of passenger and cargo steamers, yachts and fast launches, and a high class of marine machinery for shipment abroad, engines for factories, pumping
engines, high-speed engines, and McKie's patent water-tube
boilers. We understand that the firm have in hand a set of engines for Burmah, and another set for a Clyde
yacht.-We are informed that the Acetylene Illuminating Com-
pany, London, have concluded arrangements with the pany, London, have concluded arrangements with the British
Aluminium Company by which they will be able to erect works of
several thousand carbide, using water-power. Temporary carbide piant is now
being erected at Foyers, which, it is expected, will be in full work during the month of October next. It appears that the Acetylene
Company has been making calcium fairly large experimental scale since the early part of 1895, but as so much had to be learned in the details of manufacture and as to
the behaviour of acetylene gas under various conditions, it has not
until now felt justified in erecting large works, until now felt justified in erecting large works. The company has
now succeeded, we are told, in regularly making a crystalline
metallic carbide, free from dangerous impurities, such as exist in metallic carbide, free from dangerous impurities, such as exist in
some specimens of foreign carbide which found their way to this
country.- Notice is given that the transfer books of the first debencountry, - Notice is given that the transfer books of the first deben-
ture stock of the Brush Electrical Engineering Company, will-in
view of interest payable on the lst September, 1896-be closed vrow August 19 th, 1896 to September 1st, 1896 both inclusive. The
Trees-side Bridge and Engineering Works announce that they
have acquired the business of the Tees-side Iron and Engine Works
Company, so far as relates to the Bridge and Constructional Engi-

RAILWAY MATTERS.

The half-yearly statement of train mileage of the North London Railway shows that the passenger trains have run
928,148 miles, and goods and mineral trains 138,702 miles, a total of
$1,066,850$ miles. The coal account amounted to $£ 17,808$, and the 1,066,850 miles. The coal account a
Ar the half-yearly general meeting of the proprietors of the London and North-Western Railway, the mileage of
passenger trains for the half year was given as $10,774,503$, and
goods and mineral trains $9,886,576$, as against $10,278,073$ and goods and mineral trains $9,886,576$, as against $10,278,073$ and
$9,510,925$ miles respectively in the corresponding period last
year The extension passenger line through West Durham, seven and a-half miles, was opened on the North-Eastern Railway seystan this week. The new railway serves several important
system
collieries and affords extra travelling facilities for a large mining and steel-working community
At the Midland station, Nottingham, on Tuesday night, an engine which was engaged in shunting operations in
connection with the flsh traffic, fouled the points and came into
contact with one of the iron columns supporting the roof. The contact with one of the iron columns supporting the roof. The
foundation of the structure covering the passenger platform being partially disturbed, a heavy mass of ironwork and glass fell, a rent
being caused in the roof to the extent of about 60 ft . Soveral very
narrow escapes are reported.

The following table
rails into Russia for the single years since 1886 :-Tons. Millions I
 Tons. $\begin{gathered}\text { Millions } \\ \text { of } \\ \text { marks. }\end{gathered}$ The following list in order of the sixteen leading Rechen

Prince Khilkoff, the Russian Minister of Ways of Communication, has been specially deputed by the Tsar to make an official tour in the United States, and will probably meet the
Emperor in England, says the Times, before returning to Russia in
November. The object of the Minister's trip round the world is to secure the best information as to American and English rail-
way practice, to inspect the latest development in machinery and way practice, to inspect the latest development in machinery and
manufacture pertaining to railways, and to study the navigation of manufacture pertaining to railways, and to study the navigation of
inland waterways. Prince Khilkoff had a varied experience in
the capacity of blacksmith and fitter in his early years in South America.

Her Majesty's Secretary of State for Foreign Affiairs has received a despatch from her Majesty's Agent and ConsulMinistry of Public Works before October 19th next for the
Rustchuk-Nova Zagora Railway, and before November 5th for the Saramby. Nova Zagora Railway. It appears that the respective cahiers de charges" are open to inspection at the Ministry
in question, and that copies may be bought there for 20f. each.
Such particulars as her Majesty's Government has received on the subject may be viewed at the Commercial Department of
the Foreign-office between the hours of $11 \mathrm{a} . \mathrm{m}$, and $6 \mathrm{p} . \mathrm{m}$ daily. On the line from Paris to Saint Germain, founded more than fifty years ago by Sir Edward Blount as the beginning
of the Great Western system, there has been running since Tuesday a carriage which, says the Daily Ners Paris correspon-
dent, has been nicknamed the "Bistro Car," Paris and Saint
Germain. "Bistro" belongs to the Germain. "Bistro" belongs to the language of "argot," and renders the English slang or rather abridged expression of "Pub." The
"pub.car" is designed to allow business men to take their cafe az
aut, with perhaps a boiled egg-a Frenchman never has anything lait, with perhaps a boiled egg-a Frenchman never has anything
more in the morning-on their way up to town. There is accom-
modation for first and second class ppassengers and a bar for the
use of persons who are ordered by their doctor to take stimulants. use of persons who are ordered by their doctor to take stimulants.
The Western of France Railway, which serves nearly all the race
courses and all the fashionable places around Paris, is building
refreshment cars to put on all its suburban lines, to run to all refreshment cars to put on all it
places within forty miles of Paris.

The vast blocks of artisans' dwellings erected by the Manchester, Sheffield and Lincolnshire Railway Company near
the site of their great London terminus are now nearly completed. Situated at the junction of Grove-road, Grove End-road, and St, ohn's Wood-road, they cover an area of not less than four and a-
half facres, and will cost, from first to last, a sum of $£ 250,000$. They are in six blocks of about
height, being built of yellow stock bricks with red-brick facings.
The roofs are finished off with flat asphalted spaces, for use as drying The roofs are finished off with flat asphalted spaces, for use as drying
grounds. An item of engineering interest is found in the arduous
work which went towards building the extremely heavy retaining wall bordering Regent's Canal for a length of 550ft. Constructed of
concrete, it is 35 tt high, and broadly based on an 11 ft . foundation.
A ccommodation will be provided in these buildings for 2690 persons displaced by the Lisson-grove and Princess-street clearances, and a
new Lisson-grove will thus be formed in the near future amid the
groves and secluded villas of St. John's Wood.
Lieut.-Colonel G. W. Addison, R.E., has reported to the Board of Trade the result of his inquiry into the accident
that occurred on June 27th, at York, on the North-Eastern Rail-
way. It will be remembered that as a Lancashire and Yorkshire Company's excursion train from Todmorden to Scarborough was
standing at Waterworks cabin advance signal, at about $9.13 \mathrm{a} . \mathrm{m}$. standing at Waterworks cabin advance signal, at about 9.13 a.m.,
it was run into in the rear by a pilot engine with eight empty
carriages and two vans attached. No one was killed, but four

 officials, and where every thing might be expected to be thoroughly up to date. An additional starting signal, properly interlockec
with the other signals and with the points, should be provided with as little delay as possible.

NOTES AND MEMORANDA.
Mr. R. Forbes Carpenter, Chief Inspector of Alkali Works, in his first annual report, gives the following figures re-
lating to the production of sulphate of ammonia in the United
. Kingdom in 1895 production of sasworks, 119,645 tons ; ironworks, 14,588 tons shale works, 38,335 tons; producer
works, 7083 tons; total, 179,651 tons.
Some time ago, says the Electrical Engineer, we noted believed were communicated through the jet from a fire engine hose. Considering what a particularly good earth a fire engine
must have in its suction pipe, it seemed unlikely; but it appears that, so far as alternating currents are concerned, the matter has been already determined experimentally by Professor Slaby, of
Berlin. The overhead conductors of a 10,000 volt power transnected between the metal mouthpiece of the water-hose and the earth. On turning the water on
current to earth was noticeable.
The refractive indices of a number of substances for A. Lampa. The experiments, which form the subject of a commagnetic radiations of 8 mm . Wave-length; this number being ascertained both from the dimensions of the exciter and by dif fraction observations.
to the frequency $\mathrm{N}=37 \cdot 500 \times 10^{6}$, and Dr. Lampa gives the fol
lowing values for the index n : Paraffin, $1 \cdot 524 ;$ ebonite, 1.739 lowing values for the index $n ;$ Paraffin, $1.524 ;$ ebonite, 1.739
crown glass, $2.381 ;$ flint glas, $2.899 ;$ sulphur, $1.802 ;$ benzole,
$1.767 ;$ glycerine, $1.843 ;$ oil of turpentine, $1.782 ;$ oil of vaseline
$1.626 ;$ oil of almonds, 1.734 ; absolute alcohol, 2.568 ;

In the June number of the Annalen der Hydrographie there is an interesting discussion, by H. Haltermann, of the occur-
rence of St. Elmo's Fire at sea, based upon observations in the log. books received at the Deutsche Seewarte,
details as to position, conditions of weather, \&c. During more than 77,000 days of observation the phenomenon was observed 164 times, eighty-seven times in north and seventy-seven times in
south latitude. Its occurrence differs very considerably in different parts of the ocean, e.g. in the 10 deg. square lying between the equator and 10 deg . N. lat., and between 20 deg . and 30 deg .
W. long., St. Elmo's Fire was observed three times per 1000 days,
while in the two squares lying between 50 deg, and 60 deg, S lat while in the two squares lying between 50 deg , and 60 deg. S lat
and 60 deg. and 80 deg. W. long. it occurred six times per 1000
days. The days. The more frequent occurrence at sea than on land is
attributed to the fact that the accumulating electricity is more
easily conducted by the numerous objects projecting into the air easily conduct
over the land.
Mr_{d} A. J. Rossi has contributed to the Engineering and Mining Jowrnal the results of experiments made by him to iron ores in the blast furnace, more particularly to find out if the weakening influences of the phosphorus on the metal, when
obtained from the latter ore alone, might in any way be counter acted. With phosphoric ore a grey metal was obtained containing
2.862 per cent. of phospherus and which broke 2.862 per cent. of phosphorus, and which broke easily, whereas
with the mixed ores a grey large-grained metal containing 3.98 per cent. of earbon, nearly alf graphitic, $3 \cdot 229$ per cent. of
phosphorus, and 0.4 per cent. of titanium, was produced, which phospstood several blows before breakage. It would also appear from these experiments that whilst titanium in an iron ore has a
tendency to throw the carbon in the metal produced therefrom into the combined state, the united effect of phosphorus and titanium is to produce a metal in which nearly all the carbon is in
the graphitic state, this effect being the greater as the quantities of phosphorus and titanium in the mixtures increase.
In the Journal of the Society of Chemical Industry, a calcined ores by bringing them into contact with molten lead, and it is stated that a plant has been set up at Amador City capable of
working ten tons per day, and giving yields of over 90 per cent working ten tons per day, and giving yields of over 90 per cent.
extraction with gold-bearing sulphides and base ores. The fine ore,
after roasting to get rid of sulphur, arsenic, antimony, \&c., whilst after roasting to get rid of sulphur, arsenic, antimony, \&c., whilst
at a temperature above the melting point of lead, is automatically
fed in a steady stream to the bottom of the bath well. It at once fed in a steady stream to the bottom of the bath well. It at once
attempts to rise through the bath of molten lead of over five tons,
but is met in its upward course by circular perforated plates with $==4=4 \mathrm{max}$
 Mixamumided
A rapid and sufficiently accurate volumetric method of estimating the quantity of lime in raw Portland cement, consists
in calcining 2 grms. of the raw material under examination-powin a smooth platinum crucible for ten minutes in the full flame of a Paquelin blowpipe. After cooling for five minutes and weighing, anativequ 4.wamex

 experiments.
Death has just deprived Yale University of the
services of Professor Hubert A. Nowton, the well-known mathe-
 mawasuaty

 Tumatatamat awawaiawayatu matimeami maza

MISCELLANEA

The approximate traffic return on the Manchester Ship Canal for
$£ 12,504$.
The Secretary of State for Foreign Affairs has received a despatch from her Majesty's Minister at Bucharest statiog con maritime service of that country. Such particulars as her Majesty's Government have received on the subject may be viewed
t the Commercial Department of the Foreign Office any day at the Commercial Department of the
between the hours of $11 \mathrm{a} \cdot \mathrm{m}$, and 6 p.m.
Heavy ordnance is being placed in position to command the entrance to New York harbour. At Willit's Point, Long
Island, the work of mounting two of these large guns is in progress, powder. Each gun can bo fired at intervals of threo minutes, reloadin
The Bulletin of the Société d'Encouragement pour Industrie Nationale contains a list of the medals and prize in 1897 and 1898 . Amongst these, the following prize
warder are proposed for 1897. In the mechanical arts, for improved
methodsin milling of grain- 2000 f .; for a motor weighing less than 0 kilos. per horse-power developed for use in aërial navigationof an aieriri a study of the coefficients necessary for the calculations ise-2000f.; for improvements in machine tools-2000f.
Mr. Charles M. Turrell, of 40, Holborn-viaduct, bas the distinction of being the last to be prosecuted under the old ob
structive Road Locomotives Acts. He was summoned before the borough justices at Margate, on the 19th inst., to answer two
charges of driving a motor-car in the public streets of Margate at greater speed than regulated by the Highway Act. Police ovi greater speed than regulated by the Highway Act. Pol driving at more than two miles an hour. A telegram was put in addressed to Mr. Boarrel, to the effect that the Bill had received the Royal Assent. The magistrates thought it as well to dismiss the summons, draw the second summons,
The Secretary of State for Foreign Affairs has received nary tenders for a supply of electric lighting stating that prelimiillumination, on the most approved modern plan, of the privato
houses, \&c., in the town of Cadiz, are invited by the "Sociedad houses, \&c., in the town of Cadiz, are invited by the "Sociedud the tenders should be sent in by September 15th to the aboveFirms wishing to obtain the contract for the supply of plant are advised by the Consul to send representatives to treat personally reached her Majesty's Government on the subject may be ay between the hours of 11 am and 6 pm .
Replying to a question asked in the House of Commons n Thursday, the 1 th inst., Mr. Goschen, the Mord of the During the run preliminary to the commencement of the second of the contractors' trials, it became evident that certain adjustments were necessary to the slide valves of some of the cylinders.
The contractors were in charge of the machinery, and at their request the vessel entered Plymouth Sound in order that an ex-
amination might be made. As the result of that examination, and at the request of the contractors, the Terrible has returned to Portsmouth, where the necessary defects will be made good by the explained, no question arose as to the sufficiency of the meehanical appliances at Devonport Dockyard.
The Admiralty have ordered the stern torpedo tubes to be taken out of all ships of the Royal Sovereign class, and these
vessels will now carry only the submerged tubes. There are two very substantial reasons for this course. Experiments have been whiskers of a torpedo by means of quick-firing guns while the weapon is in the tube, and thus hoisting the engineer with his own
petard. Then, says the Naval and Military Record, it has been reasonably near the water-line, the seas in rough weather fill
the tube, and if the torpedo is there collapse the balance chamber. The trials of the Eclipse were especially directed to
elucidate this point, but though no accident occurred in that
cruiser, owing to her tube being well out of the water, an immunity cruiser, owing to ser tube being well out of the water, an immunity
from accident is not guaranteed to ships less favourably con-
structed. Hence the necessity that has arisen for removing the
In our impression of May 15 th last we published an illustrated description of the rolling or wheel steamer designed by
M. Bazin. This remarkable boat was launched at St. Denis on
W. for his new boat complete seaworthiness, and contends that seas sickness on board will be reduced considerably by its comparative
stability. Others think the opposite to this will occur. The drum wheels, wich are convex-sided, and are 3 metres 60 centimetres thick at their axis, being hollow, naturally act as buoys
and will, when laden with the superstructure, engines, coal, The motive power of the vessel is 750 -horse power. Euch of the also the screw. An ordinary vessel of the same tonnage, with the
same motive power, would ste hour, whereas M. Bazin calculates his rolling boat will attain a
speed of between 18 and 22 knots. About 550 -horse power will be employed to propel the screw and the remaining 200 -horse power
for the rotation of the wheels. According to M. Bazin, his rolling
boat will be able to steam at the same speed as the quickest Channel boats at less than half the cost in coal, and by consuming
the same quantity of coal the speed will be doubled. He proposes
to cross the Cbannel shortly with it.
The new tariff of tolls for the North Sea and Baltic
Canal, which comes into force on September 1st next, provides that laden vessels of not more than 400 tons register passing through letween 400 and 600 tons 40 pfgs., those between 600 and 800 tons 30 pfgs , and those exceeding 800 tons 20 pfgs . The present rate 40pfgs. for all those above that amount. The minimum charge is
fixed at ten marks as before. The tax on small German coasting 40 pfgs . per ton. An important reduction is made in the case of paying as at present 40pfgs. per ton, will be allowed a 20 per cent.
rebate on the scale of dues for laden vessels. The minimum
charge for this class and for the coasting vessels will be six marks instead of ten. The towing dues remain unaltered. The original tariff provided that during the six winter months all rates should
be subject to a 25 per cent. increase. This clause was regarded as a special hardship, and the Government have wisely yiegrded to
public feeling, and have reduced the increase to 10 per cent.
Finally, it is enacted that for vessels engaged in the North Sea
traffic the above rates shall include pilot fees from the North Sea
to Brunsbiuttel, the Finally, it is enacted that for vessels engaged in the North Sea
traffic the above rates shall include pilot fees from the North Sea
to Brunsbüttel, the southern end of the canal.

AN ELECTRICALLY WORKED DREDGER

Mr. A. F. SMULDERS, ROTTERDAM, ENGINEER

AN ELECTRIC DREDGER.

5. The accompanying engraving represents a dredger of novel construction, which has recently been built by Mr. A. F. Smulders, Rotterdam, to the designs of M. Bunau Varilla, and is intended for use on the river Esla, in Spain. The principal feature in connection with this dredger is that the motive force, in the form of electrical energy of high tension may be generated on shore by any convenient means, the laid under the water. In the by overhead wires or cable laid under the water. In the particular installation under notice the central station is situated on the river bank, and
furnishes current not only to the dredger, but also to work an elevator which returns, the material dredged into lighters and ballast wagons. All the motions are controlled by one man in the cabin, shown. When once in position a heavy metallic pile situated on the central line abaft the chain is allowed to fall, and penetrates by its own weight the bed of the river, forming a pivot around which the dredger can be made to describe circles, the movement being effected by two screws situated near the bow, and operated by electric motors in such a manner that the boat may be rotated in either direction. When all the material lying in the circle of operations, of which the fixed pile is the centre and the end pile at the stern, but not on the centre line of the a second pile at the stern, but not on the centre line of the dredger,
is allowed to fall, and the first one is raised. The second pile now forms the pivot around which operations are conpile now forms the pivot around which operations are con-
ducted, and it will be readily understood that when the necessary depth has been dredged by dropping the first pile necessary depth has been dreaged by dropping the first pile a new area for dredging is reached. The winches for operating the bucket chain and raising the piles are operated by electric motors controlled in the cabin. The motor for operating the bucket chain is capable of developing 45 -horse power when making 600 revolutions per minute, the reduction of speed being effected by intermediate pulleys and belting in the usual way. The average power required to work the dredger is equal to about fifteen horses, and as the motor is equal to
45 -horse power in normal working, a good margin is left for ${ }^{45 \text {-horse po }}$ emergency.
The dynamo machines chosen by M. Varilla are of the three-phase alternating type, giving 2000 volts, which pressure is transformed on the dredger to 200 volts. Besides operating he motors for driving the screws, driving the dredge chain,
raising the dredge frame, and lifting the piles by electrical energy, there is also a centrifugal pump, which is worked by electric motor

HOLE GRINDING MACHINE.

The machine illustrated by the above engraving has recently been designed by Messrs. Neilson and Co., Hyde Park Locomotive Works, Glasgow, for grinding or lapping round holes or eyes in valve motion gearing, brake gear, and coupling rods for locomotives, and making them true after the eyes have been case-hardened.
The grinder spindle has a combined rotary and vertical reciprocating motion. The rotary motion is conveyed to the spindle by bevelled friction wheels driven by belting, and the frame or slide carrying the spindle receives its reciprocating motion from a lever worked by a crank, variable in throw to suit different depths of eyes. It is driven by a shaft fitted the dead centres, and thus give an approximately crank at rate of reciprocating speed Top approximately constant provided for the spindle, so that there is no overhang of the grinder when lapping the deepest eyes the machine is capable of dealing with. Efficient means are provided for quickly withdrawing the spindle when desired, for the purpose of gauging the hole which is being lapped
The work to be operated on is fixed to the upper bed of a compound slide, carried on the table of the machine, and is moved in a circular path, so as to bring every part of the circumference of the hole in successive contact with the grinder which passes through it; the speed being such that the revolutions of this circular path do not synchronise with the reciprocations of the grinder spindle, so that the grinder passes successively over every part of the surface of the
\qquad The circular movement of the upper slide referred to is effected by a revolving upright spindle, driven by a worm and wheel under the table of the machine, the centre of
which is concentric with that of the grinder spindle, and This centre spindle revolves with the worm-wheel spindle which carries a hollow pin or driver on a slido at the top. but is accelerated or retarded by differential gearing This hollow pin works in a bearing on the bottom of the brought into action by a handle, and clutches driven by pper side of the compound slide, and it is by moving the
centre of this pin excentric to that of the revolving worm
The machine is now at work, and, we are informed, giving wheel spindle above mentioned that the circular motion is great satisfaction, the work produced by it being very superior in character, owing to the steadiness of the grinder spindle in having top and bottom bearings. A heavier feed can also be able, or even possible, with able, or even possible, with the spindle.

LIVERPOOL - STREET STATION WIDENING.
EXTENSION of PRIMROSE STREET BRIDGE.
Wherever public road bridges existed over the tracks running into the terminus at Liverpool. street, it is obvious that in
the lateral extension of the same station it became hecessary to lengthen or add new spans to those tructures. The bridge over the Great Eastern line at Primrose - street, repre . sented in the accompanying elevations and sections, is an example of a work of this description. It will be seen from the general plan of the briage in Fig. 1, fare of the extension or new fare of the extension or new part intersecte both abuting angles of 64 deg. and 83 deg. respectively with each face, which is inclined towards the other. As a result, the faces of the abutments are not parallel, and the spans of the two principal girders are different, the north one being 94ft., and that on the south ide ive total lengths 105it. 4in. nd 131ft. Forthe purposes of description and illustrarestrict our attention to the longer of the main girders, as the design and construction of both are similar. These trusses are virtually of the Pratt type, although the end panel lengths are designed a little differently. There are twelve cross girders placed 9 ft , apart, of the plate type, resting at both extremities on the main girders, which are and apart from centres, and one short cross girder cesting at one end on the given to the upper slide, and the work fixed to it, and the The width of the bridge between the parapets, or rather surface of the hole brought in contact with the grinder. screens-for the former are not supposed etymologically The adjustment of this eccentricity, that is, giving more to be more than breast high-is 35 ft .2 in ., and the rolled or less feed to the grinder, is effected by a centre spindlewithin the worm-wheel spindle-and mitre-wheels turning a screw,
driver.
longitudinal steel joint runners connecting the cross ${ }^{\text {a }}$, rolled Fig. 1 , are spaced at distances of 4 ft . 4 in . to 4 ft . $8+\mathrm{in}$.
An elevation of the south or longer main girder is given in
Fig. 2, and is of the form which is also known as the N tross,

LIVERPOOL-STREET STATION WIDENING-PRIMROSE-STREET BRIDGE
mr. john wilson, m. inst. c.e., engineer

although the designation strictly applies to only the left half of the elevation. Similarly to the girders of the WorshipApril bridge, described and illustrated in our impression of April 24th last, the upper boom is curved, but the truss is of
a different character. There is but one set of diagonal bars, which are ties in this instance, and the vertical members are struts, although this disposition of the members composing the web is sometimes reversed, not, however, in our opinion to advantage, when the girder is constructed wholly of steel or iron. American engineers, who, it may be fairly stated, are factle princeps in every matter relating to the d sign and construction of open web or trussed girders, prefer
in similar instances to make the vertical members struts, and
braces is redundant, as the central pa iels are indeformable with
one of them, but practically both are required. The plates composing the upper flanges are eight in all, 1 ft . 9 in . broad by $\frac{1}{2}$ in. thick, including the outside cover plate, and their greatest length is 30 ft . 2 in ., thus bringing up the weight of a single plate to half a ton. The angle irons in the flanges are $4 \frac{1}{2} \mathrm{in}$. by $4 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2} \mathrm{in}$., covered with wrappers at the joints 3 ft .4 in . in length, of angle iron 4 in . by 4 in . by $\frac{1}{2} \mathrm{in}$. A similar number of horizontal plates and angle irons of the same scantlings compose the lower boom. The cross girders are placed at the lower apices, that is at every point of intersection of the lower boom, and the vertical and diagonal bracing
of the web.
the last or end panel lengths, and their scantlings are 2 ft . by $1 \frac{1}{2} \mathrm{in}$. Corresponding to the same longitudinal positions in the main girders the dimensions of the diagonal tie bars vary from 10 in . to 1 ft .6 in . by $1 \frac{1}{2} \mathrm{in}$., and they all terminate 1 com-posed-Figs. 3-5-of four vertical plates, two of which are placed transversely to the main girders, and two in the same longitudinal plane, and terminate like the diagonal tie bars flush with the vertical plate of the booms. Where the two former plates, which are uniform in thickness, in each twin girder nearly meet at the centre space of 1 in . between them, a couple of plates are riveted along the vertical joint, and the
double struts thus united form a complete diaphragm between

the diagonal bars ties. It is true that in the Howe truss these conditions are reversed, but then that truss is a composite one, and partly of iron or steel, and partly of timber. all of which are 9 ft , in length between the centres of the vertical members, except the last bays at the ends of the girder, which are 11 ft . 6 in . long each Consequently the girder is symmetrical in elevation, about a centre line drawn ertically through the axis of the strut separating the two middle bays, which are both counterbraced, that is provided ments of a rolling load. Theoretically one of these counter

In Figs. 3, 4, and 5 are given details of the construction of the main girders, from which it will be seen they are built up of twin girders, as was the case with respect to the bridge
at Worship-street. At the centre the girders are 12 ft . in depth from inside to inside of tho plates, forming the booms In addition to these plates and angle irons, the upper and lower booms of each of the twin girders have a vertical plate riveted in between the angle irons, with rivets 1in. in diameter, with a pitch of 4 in . These vertical plates-Figs. 3.5 -have a uniform depth of 1 ft . 6in., and a thickness varying from $\frac{1}{2}$ in. at the central bays to $1 \frac{1}{8}$ in. towards the end. The depth and thickness of these vertical plates are increased in
the twin girders, as shown in Fig. 4. The two other vertical plates at right angles to these are 5 in . by $\frac{1}{2} \mathrm{in}$, at the central panel of the maingirders, and increase in the end ones to 7 in by $1 \frac{1}{2}$ in. Four vertical angle irons, each 3 in. by 3 in. by $\frac{1}{2}$ in., diameter up component parts of the struts with rivets sin. in web to the booms are effected by struts and ties of the ecting plates, the dimensions and thicknesses of and con proportioned to those of the members forming of which are unction, as shown in Figs. 3 and 4 The bearings of the main girders mbined rocker and roller syster. One end of each
the main girders is fixed and the other free to move-Figs.
$6-8$ - on rollers arranged as follows. Beneath the bearing $6-8$ - on rollers arranged as follows. Beneath the bearing is riveted by countersunk rivets passing through the end plates and angle irons a wrought iron plate 13 in. thick, 5 ft . down to the upper half of a pivoting block or rocker-Figs.
and $8-$ by sixteen bolts $1+\frac{1}{2}$. in diameter, the heads and 8 - by sixteen bolts whin. in diamet dip under the top flange 3in. thick of the rocker, an the nuts are tightened up over the longitudinal end plate of the
lower boom. The upper half of the rocker, which is exactly lower boom. The upper half of the rocker, which is exactly
similar to the lower, rests upon a steel pin 6 in. in diameter which bears in its turn upon the lower half. Underneath
the rocket, which is 4 ft .6 in . long, 3 ft . 6 in . broad, and 1 ft . 5 in . the rocket, which is 4 ft .6 in . long, $3 \mathrm{ft} .6 \mathrm{in}$. broad, and 1 ft .5 in . deep, is placed the roller frame of wrought iron bars
thick, 5 ft . long, by flt in. wide, and 2 t in. deep. Seve rollers, spaced 8 in. apart from centres, and each 4 in . in
diameter, work in this frame on bearings 1 in. in diameter diameter, work in the tollers are free to move on a partly hollow cast iron bed plate 5 ft .6 in . in length, 5 ft . in breadth, and 10 in . in
height, of which an elevation and section are shown in Figs. 6 and 8 .
The general cross section of the bridge on the square and two footpaths 7 ft . 7 in . wide each. A substratum of concrete 1 ft . in depth carries the asphalt surface of both road and footways, that material being used in place of the wooden
setts laid down over Worship-street bridge. Arched plates cast iron support the concrete, and rest upon small longigirders and riveted to brackets connected to the webs. The depth of the cross girders is 3 ft. between the flange plates, 28 ft . Bin. in length, 2 ft . in breadth, and tin . in thickness : second, 26 ft. long, 1 ft . 6 in . in breadth, and also lin. thick;
and a third, 23 ft . in length, and with the other dimensions the same as the second plate. A pair of \angle irons $31 \mathrm{in}$. . by
31 in . by fin. are riveted to the main girders and the strut diaphragms, as shown in Figs. 9 and 10. The details of the manner in which the connection of the principal and cross girders, that of the cross girder and of the longitudinal stringers, and the whole of the arrangement of the iron plat-
form of the bridge is effected, is shown in Figs. 10 and 11 . The junction of the cross girders with the main girders is accomplished by extending the web of the former for its full depth through the whole cross section of the twin girders. In this position it constitutes the lower portion of the vertical diaphragm between the struts in tescribed. The necessity for this strong vertical already described. The necessity for this strong vertical
attachment of the cross girders arises from the fact that the
cross girders have but cross girders have but a very small bearing on the main
girders. This is inevitably the case in all "t through" bridges cross
girders. This is inevitably the case in all "through"" bridges
in which the cross girders rest upon the inner edge of the lower in which the cross girders rest upon the inner edge ofthe lower
flange of the main girders. The strong vertical attachment
serves to render nugatory the objection that has been raised serves to render nugatory the objection that has been raised
against the one or lop-sided bearing of the cross girders upon
the main the main girders. The horizontal joints between it and the
upper part of the diaphragm are covered by wrappers, upper part of the diaphragm are covered by wrappers, 8in.
broad by gin. thick-see Figs. 10 and 11. This extended part of the web of the cross girder is riveted to the vertical angle irons of the strut diaphragms, both of which are bent over at the extremity to form a connection with the lower flange of
the cross girders to which they are riveted. In addition to the cross girders to which they are riveted. In addition to
this compact and substantial mode of attachment to the main girders, the cross girder is provided with a bed or bearing. A short plate, 1 ft . long and + in. in thickness, is riveted to angle iron. To this bed-plate, which is of the same width as that of the flange resting upon it, is bolted by eight rivets the lower flange of the cross girders.
The material of which the footpaths are composed is retained in position at the sides by cast iron earth plates, or
iron ballast boards, as they might be termed, indicated in Figs. 9 and 10 by the letter B , and shown in elevation
section, and detail in Fig. 12. The plates are of a length of

9 ft .4 in ., of a depth of $2 \mathrm{ft} .10 \mathrm{in} .$, and Fin . in thickness, with a moulded upper edge and stiffening fillet pieces on the out-
side they are lap-jointed in the thickness of the material, side ; they are lap-jointed in the thickness of tr
and bolted together by six bolts in. in diameter
It will be seen, on referring to Fig. 13, that the web of the longitudinal wrought iron bearers is prolonged to the exten of 4in. beyond the angle irons which form the upper flange,
and that the sides of the cast iron arched plates are bolted and that the sides of the cast iron arched plates are bolted
to these prolongations by bolts sin. diameter, so that the
web, which is $\$$ in. in thickness, fits in between the arched web, which is gin. in thickness, fits in between the arched
 a uniform thickness of in., and are 4 ft . 3tin. Yong, and
$3 \mathrm{ft} . \mathrm{S}^{3} \mathrm{in}$. broad. Over the longitudinal bearers the cast iron arched plates are connected by a simple lap joint 3in. in
width, and fillets are cast on to strengthen them. The longitudinal bearers are 1 ft . deep, and are built up of equal upper and lower flanges consisting of a pair of angle irons
3 jin. by 3 in. by by fin., and a web plate ${ }^{3}$ in. in thickness.
Where the upper flange of the bearer girder, as shown in Fig. 14, the angle irons constituting the
 girder, which is 2 ft . by tin., and has already been referred
to. The bearers themselves are carried on small angle iron girders. It will be observed that in Fig. 13 the side flange webs of the longitudinal bearers. The open space on each
side of the will We are indebted for the drawings accompanying our article
to the courtesy of Mr. John Wilson, M. Inst. C.E., Engineer-
in-Chief of the Great Eastern Railway, and for the photograph
which represents one of the girdersin course of erection, and for which represents one of the girders in course of erection, and fo
some further particulars to Mr. H.A. G. Sherlock, M. Inst. C.E who acted as resident engineer to the company during the con-
struction of the works. The contracts were carried out fo struction of the works. The contracts were carried out for
this bridge by the same firms whose names we have men tioned in connection with our description of Worship-stree bridge, and also in our previous articles relating to
general widening and extension of the metropolitan terminus general widening and extensio
of the Great Eastern Railway

THE AIMS OF TECHNICAL COLLEGES.

The following abstract of an address by one of the very same time an engineer practising with distinction, and by this means in constant touch with the practical working requirements of engineers and of manufacturers, the fact that the modern craze for mixing up colleges and workshops is a dangerous one, and Germany is finding that the more she workshop becomes the most important training ground Consequently, she is reverting more to the old British practice. The German technical colleges have developed in the been tast decades remarkably quickly, but quicker still ha the growth of the demands made on technical education. If these demands are to be met, a reform of technical instruc tion is unavoidable.
"Knowledge of reality is the basis of technics, and with this, knowledge of nature, insight into physical things, not however
mathematics, the tre element of the engineer. This does not al ways receive
even in the highest grades, must be obbective and yet combined with
scientific acuract ecentifo accuracy. Here the prevailing shchool fails. How much
tho scholar has to learn in words and conceptions, how much is described to him in words, how much he has to describe, and how little is shown to him that he can see and observe, that he must
himself represent in drawings or sketches ! himself represent in drawings or sketches
Such way of instruction deceives as to the difficulties of reality
and the consequence is fear and flight from reality. must develope the sonse of observing accurately ; exercise in this respect, the developed powers of observation and imagination must
be brought to college just as the knowledge of languages, mathebe brought to college
matics, and drawing
But for technical activity knowledge alone without the capacity to put it into use is not sufficiont. The practical application
necessary to complete the theoretical step in knowledge, general theoretical knowledge being the first. Knowledge without practical application is the cause of the
growing disinclination of youth to do detail work, and at the same time of the increasing uselossness of those who have only scientific, decrease in self-education by independent work. The formal doing of the full amount of school work and passing the necessary
oxaminations contributes its quota in keeping back youth from selfeducation.
The consequences are known : the mere acquiring of privileges,
mighty crowding, especially of the most talented, to get high a mighty crowding, especially of the most talented, to get high
positions where there is little work, to get an office attractive on positions where there is little work, to get an office attractive on
ancount of the support and social position which it affords, holy horror of the struggle for existence,
sibility and of all
Less serious porrosons are conceited, consider what they have learned sufficient for all active life, confuse self-made suppositions
with reality, and so superficiality, contempt of experience with reality, and so superficiality, contempt of experience, over-
estimation of what they have learned, flourish. All their mental
 superiority over all who bave not reached the same rank in the same way of advancing
The entire rearing must be permeated by the practical spirit. The Germans tend by nature to the dogmatical, to dreaming while the Anglo-Saxons take hold of everything from the very
beginning practically and technically. Impractical sense is beginning practically and technically. Impractical sense
German hereditary and educational mistake. On this account wo must avoid excess of learned training; for this reason we need
before all other things technical training, which teaches to think practically and put into use, which trains a practical and not learned youth.
The point of view of economy must receive more attention than
heretofore in technical instruction. The knowledge of economics heretorere in techical is well as of foreign countries, is becoming
of one's own country
to o-day niore and more necessary. We live in a time when mistakes
in economy weigh the heaviest, and when nations bleed to death more easily by them than on battlefields. With us the state and its officials exercise an unhealthful influence on the practical and economical sense, because all higher studies are arranged specially
for the training of state officings. A great hindrance is the age
that our students reach before they enter into active life. The gymnasial examination, f. i., occurs often in the twentieth year the builder's examination (Baufiuhrerpriufung) in the twenty-fifth year; in the meantime our competitors in foreign countries have
been already from five to seven years in active life. Since a military year is unavoidable, a shorter and more suitable prepara
tion, and only a three years', but practical, fruitful college course must be the aim. The refo
directions.
The training previous to technical instruction must also lay stress on the special capacities needed for technical activity of representing the objects of imagination by drawing, and before demand is not filled at present.
The scientific preparation in the colleges should not consist in which arise in actual experience, and the application which alone leads to to complete mastery of the elements. The scholar can
only put into use that of which he is master, that which he has
digested. This temands the utmost limitation of the matter, and time for assimilation.
The instruction in all the sciences must therefore for the average
of the students be brought down to the necessary minimum, but this minimum be fully mastered and put into use.
The stuay of the rechnical sciences has not for its aim to turn out perfect ongineers, but il must so develope the capacities tha it must train practical, responsible helpers, teach the varied con ditions of re
special case
Alse oche technieal sciences have to teach for the average of the
studonts only the fundamental principles, the amount that is abso lutely necessary, but to demand complete mastery of that. Th
particular learning of engineering begins in practice. Necessary are: more thorough knowledge by means of practical application,
and teachers who understand such application and work in the
The teachers of the technical sciences must be acquainted with the actual facts from their personal activity and must be master of and know how to put into practice, the art which they under-
take to teach.
On the other hand, opportunity for the highest special scientific
tion of numerous technical questions; such training, however,
ought to be offered only to select students ought to be offered only to select students
Arrangements for examinations equal value with those for public service, but which correspond to equal value with tecencal activity, admit of the the developmentent which individuality, and and
tecent
prevent the abnormal crowding into state offices and the privileged prevent the abnorm.
course of education.
In the tech
In the technical colleges a lively mental competition of the
teachers ought to be produced by parallel eachers ought to be produced by parallel 'professorships, and
by attracting teachers from practical life. The suceess of the colleges and of the national producticale activity is dependent upon college teachcr who is not capable of doing his work, or whom a 'alse or outlived reputation surrounds, is much greater than the
damage which dozens of dismissed army officers would have been
Professor Riedler elsewhere draws attention to the mistaken appreciation in which some British talkers speak of
German technical college training, such as the remarks of Lord Rosebery at Epsom. Germany sees her error, but our colleges and harmful scholarships and enticements to undercolleges rate workshop hard work

CATALOGUES

Ln Manufacture Francaise d'Armes, St. Etienne, Loire. Guns and all manners of sporting outtits.- This book contains nearly 600
pages, and is illustrated by many hundreds of engravings and some excellent specimens of the colour printer's art.
Holden and Brooke, Limited, Manchester. Anti-primers an The D. P. Battery Compans information for steam users. Condon, S.W.- Sttorage batteriies and accessories.
Green and Boulding, London. The Buffalo injector, Shipman engine, metallic packing, valves, cocks, \&uff.-This injectar, Shipman mends itself to us on
arrangement.
T. Cooke and Sons, London and York.-An illustrated catalogne of theodolites, tacheometers, levels, sextants, planimeters, and
other surveying instruments. The book is well printed and is provided with a stiff cover.
J. Bagshaw and Sons, Limited, Batley.-Besides being an illustrated price list of wrought iron pulleys, shafting, and friction couplings, this book contains useful rules and tables for ongineers
and architects, and is, moreover, of convenient size and bound in cloth cover.
C. W. Bur ists with on, Grifiths, and Co., London.-A number of separate makers. The tools are the manufacture of the Garvin Machine
Hayward-Tyler and Co., London.-This is an illustrated cataloguu of pumps and pumping machinery and pump specialties, and has as an appendix a section devoted to useful notes and tables.
In point of get up the book is worthy of a place in any engineer's In point
book-case
Wind
William Rose and Co., Manchester.-Messrs. Rose's catalogue
contains every imaginable requisite for fire-stations, from steam fire-engines to firemen's belts. It is well printed on good paper.
C. Challenger, traffic manager to the Bristol Tramways and Carriage Company, Limited, sends us a treatise written by himself on self-acting rain-proof seats for tramcars and 'buses, A tramway
seat should not be dificicult to describe, but we have read Mr. Challenger's streatise and are still ignorant of the general construc-
tion of this seat, nor is there an illustration of it from which some idea can be gleaned.

rice list of accumnlators

Darling, Brown, and Sharpe, Providence, U.S.A.-Steel rules.
Hardy and Padmore, Limited, Worcester.-The "Ideal" gas
ongine. Pescatore, Manchester.- This is a price list of the Tudor
A. B. Pes
accumulators, with instructions for charging, discharging, and supervision. Henry Gwynne, Hammersmith, London.-This is a
John and wir alvage pumping plant. The illustrations are half-tone repro-
ductions of photographs of wrecks and stranded vessels which have been floated again by the use of Messrs. Gwynne's plant. The book is worthy of a better cover.
Fairburn and Hall, Manchester.-Injectors, water elevators, Frank, silent heaters, valves, fittings, \&c.
Frank Pearn and Co., Limited, Manchester. Pumping machinery. logue. The engravings and typography are alike excellent.
Bolling and Lowe, London.-Portable railway plant, weigh bridges, locomotives, and trucks.
The Safety Tread
tair treads Tread Syndicate, Limited, London.-Non-slipping John Abbot and Co., Limited, Gateshead-on-Tyne.-A nicely rranged catalogue of brass and metal work,
The Union Gas Engine Company, San Francisco.- This catalogue comprises some forty pages of illustrations and particulars of the
Union oil engines and launches. The engravings are particularly
The General Electric Company, Limited, London.-This is a very excellently appointed book, containing in its thousand pages
illustrated particulars of every conceivable device useful to the electrical engineer. The section devoted to motors and their application is interesting and up to date. There is in this section a very full explanatory text, in which the principle, construction,
action, and efficiency of the electric motor, of both direct and action, and efficiency of the electric motor, of both direct and
alternating current types, are amply explained by the aid of excellent diagrams and tables. Al eonstructive portion also estimating for it. Direct current, alternating, three-phase and polyphase motors of various powers are shown applied to fans,
launches, drilling machines, lifts, cranes, coal cutters, tram cars, autocas, factory equipments, lifts, and domestic machinery. The catalogue is well bound, but would be improved if the firm's were printed on the Royle, Manchester.-This is a sectional catalogue
John J. Rome
devoted to the "Row" tube and its applications. The "Row tube is formed by indenting or flattening a circular tube in such manner that the indentationssoformed intersect each other atrigh and diverted into contact with a large amount of impingin
surface. portable, and stationary engines, road rollers, and sawing ma
The Maunesmann Tube Company, Limited, Landore.- Weldless steel tubes for all purposes.
regarding tests of tubes, \&c.
regaraing tests of Salvage Patent Appliances Syndicate, Liverpool.-Salvag The United Asbestos Company, Limited, London.-A complete catalogue of the manufactures of this firm, interspersed with passes
trations showing the processes through which the material parser in the works.
Dorman, Long, and Co., Limited, Middlesbrough.-Catalogue of
steel sections. This book is a nice size, nicely bound, well printed

THE EFFECT OF RETARDERS IN FIRE TUBES OF STEAM BOILERS
By Jay M. Whitham, M. Am. Soc. M. E
THR trials wore conducted on a 100 -horse power horizontal tubu-
the boiler at the Sutherland Avenue Station of the Philadelphia lar boiler at the Sutherland Avenue Station of the Philadelphia
Traction Company, Philadelphia. The purpose of the trials was to ascertain under what condition, if any
would add to the efficiency of the boiler.

Boiler set with a return pass over the top. Ten such boilers are
connected to a brick stack 10 ft . diameter by 175 ft . bigh. During the tests from four to seven of these boilers were run in connection with the boiler tested. On certain tests retarders were used in the tubes. These were made of loosely fitting strips of No. 10 sheet
iron, running the whole length of the tubes, and twisted to a pitch The tests were conducted according to the methods advised by this society, and all instruments used were standardised. L. Kenboiler tubes were clean at the beginning of each test, while the
boiler was fairly clean on the water side. Several of the tests were duplicated in order to make sure that no error existed.

Results of the Trial.
Coal. - The coal was practically uniform in quality on all the
tests. The percentage of ash and refuse varied from 8.72 to $4-25$ per cent.
Draughts. - The draught was measured in the furnace, in the
front connection, and in front of the damper at the rear end of the front connection, and in front of the damper at the rear end of the
return pass over the top of the boiler. The damper was manipulated so that the draught would be just sufficient to burn coal for the power desired to be developed on each test.
Table I. compiled from the results obtained in the tests should be valuable in predicting the draughts needed for any rate of com-
bustion from 5 lb . to 40 lb . an hour per square foot of grate with bituminous coal, natural draught and horizontal tubular boilers, while it should be of use also with water-tube boilers
Table I.-Draught Required for Boiler with Various Rates of

Pounds of dry coal burned an hour per 8q. ft . of grate.		Resistance due to.				Total draught.			
							$\begin{aligned} & \text { With retarders ; no } \\ & \text { return pass. } \end{aligned}$		With top pass and retarders.
		inch	inc	inch.			inc	inch.	$0 \cdot 10$
8	$\because \quad$;	0.94 0.11	0.04 0.05	0.02	0.04 0.04	$0 \cdot 16$	0.08 0.18	0.20	$0 \cdot 12$ 0.22
10	..	$0 \cdot 13$	0.07	$0 \cdot 03$	$0 \cdot 05$	$0 \cdot 20$	$0 \cdot 23$	$0 \cdot 25$	$0 \cdot 28$
12		$0 \cdot 17$	0.07	0.04	0.05	0.24	0.28	0.29	0.33
14	..	0.19	$0 \cdot 10$ 0.11	${ }^{0} 0.03$	- 0.05	0.29	0.32	0.34	${ }^{0.37}$
15 16		- $\begin{aligned} & 0.20 \\ & 0.21\end{aligned}$	0.11 0.12	0.03 0.03		0.31 0.33	0.34 0.36	0.36 0.38 0	
16 18	\because.	($\begin{aligned} & 0.21 \\ & 0.23\end{aligned}$	0.12 0.13	0.03 0.06	0.05 0.05	$0 \cdot 33$ $0 \cdot 36$	0.36 0.42	0.38 0.42	0.41 0.48
20	.	$0 \cdot 24$	$0 \cdot 16$	0.08	0.06	0.40	0.48	0.46	$0 \cdot 54$
22	..	0.26	0.18	${ }^{0} 1.12$	0.06	0.44	0.56	0.50	0.62
${ }_{28}^{25}$	\because.	0.27 $0 \cdot 29$	0.22 0.24	0.19 0.27	0.06 0.07	0.49 0.53	0.68 0.80	0.55 0.60	0.74 0.87
30	...	$0 \cdot 30$	0-27	$0 \cdot 31$	0.07	0.53	0.88	$0 \cdot 64$	$0 \cdot 95$
34	..	$0 \cdot 32$	$0 \cdot 31$	$0 \cdot 38$	0.08	$0 \cdot 63$	1.01	0.71	1.09
36		0.33	0.34	$0 \cdot 40$	0.08	0.67	1.07	0.75	${ }_{1} 1.15$
40	..	0.36	0.38	$0 \cdot 46$	0.08	$0 \cdot 74$	$1 \cdot 20$	0.82	1.28

Quality of steam. -The steam was practically dry for every con-
dition of the tests, however much the boiler was pushed in capacity. This is due to the large liberating surface in boiler and the use of dry pipes.
Economic evaporation. - Table II. shows tests with and without
the use of retarders. The advantage due to retard the use of retarders. The advantage due to retarders is as high
as 18 per cent. when the boiler is greatly forced. The tempera-

Diagram Showing Fuel Saving due to the Use of Retarders
Conclusions.-(1) Retarders in fire tubes of a boiler interpose a sult in reducing the temperature of the waste gases, and in increasing the effectiveness of the heating surface of the tubes.
(3) Retarders show an eccnomic advantage when the boiler is (3) Retarders show an eccnomic advantage when the boiler is
pushed, varying in the tests from 3 per cent. to 18 per cent. (4) Retarders should not be used when berilers are run very gently,
and when the stack draught is small. (5) It is probable that retarders can be used with advantage in plants usiog a fan or steam blast under the fire, or a strong natural or induced chimney draught,
when burning either anthracite or bituminous coals. (6) Retarders when burning either anthraciteorical as are economisers, and will not, in general, interpose as much resistance to the draught. (7)
Retarders can be used only with fire tubular boilers. (8) The economic results obstained on the boiler tested are ideal, showing
that it was clean, the coal good in quality, and the firing skilful, that it was clean, the coal good in quality, and the firing skilhou.
With retarders the tubes are more effectively cleaned than without their use. (9) The tests prove that the marine practice of using retarders is good, and that the claim, often advanced, that they
show from 5 per cent, to 10 per cent, advantage, holds, whenever the boiler plant is pushed and the draught is strong.

Charles Whiting Baker: It is rather a curious fact that while
Charles Whiting Baker: It is rather a curious fact that while
"retarders," as they are called, have been used more or less for several years, and in some instances with very notable advantage,
Mr . Whitham's paper, so far as I am aware, is the first extended Mr. Whitham's paper, so far as I am aware, is the first extended technical literature, although of course allusions to their use in connection with various steam plants have been made in various
papers. Another curious fact is that the action of retarders in papers. Another curious fact is that the action of retarders in name. The retarder does, of course, obstruct and retard the flow of gas through the flue, but this is by no means the purpose for
which it is placed there. If it were desired simply to make the hot gases flow more slowly through the tubes, the simplest and best
way is to check the draught by dampers in the way is to check the draught by dampers in the chimney or at the increase the amount of heat transmitted to the tube surface from action upon the gas in the tube. The friction upon the surface of
and the retarder aids in stirring up the gas in its passage through the
tube and mixing the hot gas at the centre with the cold film next tube and mixing the hot gas at the centre with the cold film next
the surface of the tube. Also in every horizontal tube there is a
 Clark in his treatise on the stean ngine, page 68, et seq. The radiators possess the advantage over the
spiral retarders described by Pro-
fessor Whitham, obstract the draught to so great an extent, and they interfere less with the cleaning of tubes with the steam jet blowe Experiments on actual boilers indicate that either device is most wseful on boilers with short tubes of not too small diameter, and face must be kept clean, otherwise the increased efficiency will soon disappear, as is the case with the Serve ribbed tubes when care is not taken in this respect. It appears likely that either of these devices may be used with especial advantage, therefore, where a clear fuel like gas or oil is used. Another application of vese devices which appears to have promise is to the tubes of these otherwise excellent types of boilers is the very high hea room that is required to get in tubes long enough to extract the heat from the gases with reasonable completeness. By the use of shorter tube should be permissible, with a consequent reduction in shorter tube should be p

Table II.-Resulls of a Series of Trials on a 100 -I.P. Horiontal Tululuar Boiler, to Determine the Value of Retarders in the Tubes

emperaturo of freerom, dege. Fahi. Faĭ

From and at 212 deg. Fah.

Herein lies the advantage of retarders. Their use renders more
ficient the heating surface of the tubes, enabling the gases to be efficient the heating surface of the tubes, enabling the gases to be
reduced in temperature, and the same capacity of boiler to be reduced in temperature, and the same
developed with a less expenditure of fuel.
The accompanying cut shows at a glance the usefulness of at once a decrease in the coal consumption, as follows:-

52-H.P.,	duced	20 deg .	Fah.,	el saving	0.0 per cent.
75-H.P.,	"	53 deg .	Fah.,	,	0.0 per cent.
10C-H.P.,	"	32 deg.	Fah.,	"	3.2 per cent.
125-H.P.,	"	46 deg .	Fah.,	"	$4 \cdot 0$ per cent.
150-H.P.,	"	19 deg.	Fah.,	"	$3 \cdot 3$ per cent.
170-H.P.,	"	59 deg .	Fah.,	"	$3 \cdot 6$ per cent.
2)0-H.P.,	"	36 deg.	Fah.,	"	$4 \cdot 1$ per cent.
225-H.P.,	"	26 deg.	Fah.,		$8 \cdot 6$ per cent.
239-H.P.,		123 deg .	Fah.		18.4 per cent

Variation of economy with capacity.-By Table II. we see that heating surface to the horse-power could easily develope over heating surface to the horse-power could easily develope over
200 -horse power. At its rated power 3.03 lb . of water, from and at 212 deg. Fah., were evaporated per hour, yet there was no
difficulty in evaporating 7.26 lb . to 1 square foot, or in getting a horse-power on 4.76 square feet of heating surface. The cost in
fuel of a horse-power was as follows for the tests made without the fuel of a horse-po
Boilor, horse-power :
$\begin{array}{lllllll}\text { Dry coal per horse-power, lb. } & 150 \cdot 0 & 169 \cdot 6 & 199 \cdot 7 & 217 \cdot 4 & 239 \cdot 0\end{array}$
$\begin{array}{lllllllll}3.30 & 3.21 & 3.25 & 3.30 & 3.24 & 3.22 & 3.3 & 3.51 & 3.82\end{array}$
These results show that there is practically no change in the

- Condensed by Engineering Nocs from a pape presented a ${ }^{\text {on }}$ the St .
Louis meeting of the American Society o Mechanica Engineers,
tendency for the gases to be cooler in the upper part of the tube
and hotter in the lower, for the upper half of the tube extracts heat far more readily from the tube than the lower half. The
twist of the retarder bas the effect of repeatedly "turning over" twist of the retarder has the effect
the gas in the tube as it flows along.
In the second place the retarder acts by direct radiation of heat to the tube surface. While this action may not be apparent at first sight, it is of such importance that it should be clearly under-
stood. To this end the fact should first be realised that the temperature of the tube surface exposed to the fire in any stean it, no matter what the temperature of the gases on the contact with We, of course, suppose the tube surface to be clean. The reason is that water absorbs heat many times as rapidly as gas. As water I have often seen dew collect and stand in beads upon the fire side of the tube when a current of gas at a temperatue of ove
1000 deg . Fah. was passing through the 1000 deg. Fah. was passing through the tube.
The rate of absorption of heat by boiler heating surface, then,
depends almost entirely on how much heat we can impart to this surface on the fire side. In the ordinary boiler tube heat imparted to the surface of the tube only by the contact of the hot gases. Now, suppose we place in the tube any solid body, of any
shape whatever, manifestly, as it is surrounded and bathed on all sides by gases at a temperature of, say, 1000 deg., it will, if it loses no heat, soon become of the same temperature as the hot
gases. Suppose the surface of the tube is at a temperature of inch or two apart, and a difference of temperature between them seven times as great as exists between a very cold winter day and
the maximum heat of summer. Under these circumstances, of the maximum heat of summer. Under these circumstances, of
course, the hot body at the centre of the tube will energetically radiate heat to the walls of the tube, and will materially increas The amount of rodiation

The economic gain by the use of either radiators or retarder depends entirely on the temperature at which the boiler is discharging its hot gases. In general it may be assumed that every
100 deg. reduction in the temperature of the waste gases represent from 5 per cent. to 10 per cent. saving in fuel. In general it wil not usually be found worth while to introd in the either retarders or its hot gases to be discharging at a temperature of over 550 deg
Fah. I notice among Mr. Whitham's conclusions the statement that:-"Retarders can be used only with fire tube boilers." Thi doubtless refers to the proposition to place retarders inside the water tubes, which is absurd on its face to any one correctly under-
standing the action of the retarders. The use of radiating of extended surface, however, in the gas passages between th tubes of a water-tube boiler, should in theory at least give the
same advartage as in the case of fire tubes. Two methods fo effecting this radiating action devised by the writer may be found effecting this radiating action devised by the writer may be found
by reference to United States patents Nos. 529,997 and 559,021 .

Death of a Midland Engineer.-Mr. J. W. Gray, M. Inst. C.E. Mis residence, Leamington, on the 17 th inst., in his 68 th year.
Mr. Gray was at one time employed in the New River Company, and subsently in that of the Fast London Waterworks Company. In 1865 he obtained the post of
engineer to the Birmingbam Waterworks Company, which wg engineer to the Birmingbam Waterworks Company, which was
taken over by the Birmingham Corporation in 1876. The growth of the city was so rapid that the question of the wate supply was always a source of anxiety to the committee, and finally it wa seek additional supplies in North Wales at a cost of the millions. Mr. Gray was to have taken charge of the sectio failed, and in the autumn of 1894 he sent in his resignation. Thi

CATCHWATER, LOOKINQ WEST

tunnel outlet, lower bye-wash, and gauge basin

general view of reservoir

FOREIGN AGENTS FOR SALE OF THE ENGINEER.

SUBSCRIPTIONS.

Tae Evatwese can bo had, by order, from any newsagent in town
country, at the various, railway stations; or it can, if preferred,
supplied direct from the office on the following terms (paid advance):-

$$
\begin{aligned}
& \text { Half-yearly (including double number) } \\
& \text { Yearly (including two double numbers) }
\end{aligned}
$$

If credit occur, an extra charge of two shillings and sixpenee per annum
will be made. Trae Exarker is registered for transmission abroad. will be made. Tre Exorsers is registored for transmissio
A completo set of Tare Exorsers can be had on application. In consequence of the reduction of postage on nowspapers to one uniform
rate for any destination outside the United Kingdom rate for any destination outside the United Kingdom, Foreign Sub-
scriptions will, until further notice, be received at the rates given scriptions will, until further notice, be received at the rates given
below. Foreign Subseribers paying in advance at these rates, will Post-ofice Order must we meompanied by letter of adrice to the Publisher.

Thin Paprr Copies

Yearly
en 18s. od.
El 1 l 16s. od.
hick Papre Copirs -
Hear-rea
Yearly
$\begin{array}{lll}\ell 1 & 08 . & 8 \mathrm{~d} . \\ \mathrm{E}_{2} & \text { Os. } & \text { od. }\end{array}$

Readxa Cases-The Publisher has in stock reading case
hold thirtsen copies of TaE Ewounger. Price 2s. od. each.

ADVERTISEMENTS.

\leqslant The charge for advertisements of four lines and under is three shillings, for every two linee sterwards one hhiling and sixpence; odd
lines are charged one shilling. The line averales seven words. When an advertisement measures an inch or more, the charge is 10 s . per inch. All single aivertisements from the country, must be accompanied by a Post-office Order in payment. Alternate advertisements will be insorted with all pratical regularity, but regularity cannot be guaran-
teed in any such case. All except weekly advertisements are taken teed in any such case.
subject to this condition.
Prices for Displayed Advertisements in "ordinary" and "special" .
dvertisements cannot be inserted unless delivered before
Six o'clock on Thursday evening; and in the necessity for going to press early with a portion of the arrive not later than Three o'clock on Wednesday afternoon in each week.
Letters relating to Advertiements and the Publishing Department of the
paper are to be addresed to the Pubbisher, Mr. Sydney White; all other
Telegraphlc Address, "ENGINEER NEWSPAPER, LONDON."

CONTENTS.

 The ADise or
Catatoves
The Efrects
the Bory Waterworks. (Illustrated.)
Wo Arricless-The Locomotives on Highways Act-Pröposed
Wharnge in the Lower Thames-The South Wales Sliding
Projected Water Supply for Paris-Fast Train Runniog in France

PARAORAPRS-The Effect of Electricity on Proiectiles while in Filight,
181-Trade and Business Announcements, 184 -H. M. S.

TO CORRESPONDENTS.

scaling lancashire boilers.
Sir,-Can any reader give us any information of any machine for
removing the scale from the tubes of a Lancashire boiler at those places to which a man cannot get with a chippiog hammer? We understand
that there is a machine made for working by ar or water which acts as hammer, chisel, or caulking tool. Probably the same firm might make a
tool like that which we require. Or is there anything in the way of a
rapidy revolving cutter which would do our work? The place are
between the shell and the outside of the furnace tubes from which we between the shell and the outside of the furnace tubes from which we
wish the sale removed.
H. O. M.

THE ENGINEER

A UGUST 21, 1896.

the locomotives on highways act.
Ir is with unfeigned satisfaction that we write the above title; we are, at last, able to substitute "Act" for
" Bill." We rejoice that the efforts we have made during the past few years to procure the removal of the restrictions on the use of light road locomotives have been successful, and we cannot refrain from congratulating the vast number of engineers, manufacturers, and others throughout the country, who, by signing our memorial to the President of the Local Government Board strengthened the hands of the Government and contri-
buted so largely to the success with which our efforts buted so largely to the success with which our eftorts
have been crowned. The Act differs in some respects have been crowned. The Act differs in some respects
from the Bill as originally introduced. It was intended that a locomotive within the purview of the Act should that a locomotive within the purview of the Act should
not weigh more than two tons, and should not draw another vehicle. Now it may not exceed a weight of
three tons, and may draw one vehicle-the two together not to exceed four tons unladen. Originally it was proposed absolutely to prohibit the emission of smoke or
visible vapour ; now the words of qualification, "except visible vapour; now the words of qualification, "excep
from any temporary or accidental cause," are added Such a locomotive is to be subject to the usual carriage
duties plus an additional duty, the whole varying from duties plus an additional duty, the whole varying from
$£ 22 \mathrm{~s}$. to $£ 44 \mathrm{~s}$. per annum according to weight. The $£ 22 \mathrm{~s}$. to $£ 44 \mathrm{~s}$. per annum according to weight. The
penalty for breach of the Petroleum Acts, or the regupenalty for breach of the Petroleum Acts, or the regu-
lations to be framed presently, is raised from $£ 2$ to $£ 10$. These are the principal changes which have been made during the passage of the Bill through Parliament. It only remains now for our designers and builders to turn
out vehicles which will at once commend themselves to out vehicles which will at once commend themselves to
the public. If they do their best, we are satisfied that they will be abundantly rewarded by the growth of a new and most important industry.
proposed wharfage in the lower thames.
In our issue of June 12th last we dealt with the aspects of the question in dispute between the London dock companies and the shipping trade. When doing so, we pointed right to terminate the existing agreement with the latter as to the conditions of berthing and cargo discharge, there was a probability that measures of a retaliatory
character would be adopted. For some time past it has been known that these were in contemplation, and we
have now learned that, no offers in the direction of compromise having been made by the dock companies, the
Peninsular and Oriental Company has concluded its Peninsular and Oriental Company has cond on the Thames bank between the Albert Docks and Tilbury, on the Essex shore
These arrangements at present affect, we believe, only the company named; but we understand that they form but a part of a general scheme to serve a much wider
interest in the shipping trade. We are informed that negotiations have been concluded for the acquirement of some 13,000 lineal feet of river bank at the locality above named. Of these, 8000 ft . are on the Essex shore, the remaining 5000 ft . facing them on the Kentish side. If
we are rightly informed, the requirements of the we are rightly informed, the requirements of to a frontage of 5000 ft . only, the balance of 8000 ft . being available for other steamer lines. The intention is to build wharves throughout the entire length stated, the river bottom being dreaged to admit of vessels of large tonnage lying alongside of them. At the time of our writing no particulars as to the full scheme have been made generally public ; but the land having been secured, it only needs the co-operation of the shipping trade to secure its realisation. In this the directors of the Peninsular and Oriental Company have taken
the lead, and, we presume, have fully committed themselves to the new line of action. It is certain that the Docks Association has for some time been aware that some such measure as that we have described was in contemplation. At the meeting lately held of one of the dock companies, its chairman made reference to this scheme. He, however, appeared to regard the threat it held out as view of bringing pressure upon them to induce retirement from the position they had taken up with respect to the shipping interest. He regarded the cost of constructprohibitory. As to this, the speaker had evidently reckoned without his host. No more capable judge of what can or cannot be afforded could be found, perhaps, than Sir Thomas Sutherland, the chairman and Company. That gentleman has, we are informed, gone thoroughly into the question in all its aspects; and, having convinced himself of the entire practicability of the proposal, has been the first to enter upon the brean Into the effects of this new departuse that we should here enter. We named in our former article what the result of a wholesale withdrawal of the greater shipping lines must be to this. It may be computed whar frontage would afford accommodation for an average of twenty-six steamers of from 3000 to 10,000 tons burthen. if two rows could be accommodated, as is often the case
at dock wharfage, a maximum of fifty-two vessels of such a class would be provided for. What the withdrawal of such an amount of tonnage would mean to the several Thames docks will be readily realised; and should this take place, the last financial state of the companies owning these must prove to be greatly worse than the first.
We are not yet in a position to give any details as to that it is to be of a very permanent description. Experience in several large rivers, and especially in some of those on the Continent, has amply demonstrated the feasibility of such arrangements as those now proposed for the Thames. The width of that river in the reaches of that it is proposed to occupy, is so great that there will be more than ample space for
even four lines of vessels, two on each bank, to find berthage without injurious interference with the cus tomary navigation of the river or its channels. The
area that will be occupied is now entirely a muddy fore shore that is exposed at low water. Nothing, therefore, is to be abstracted from the present navigable area of the arrangements have been made for bringing out a company arrangements have been made for binging out a company we presume that now the Peninsular and Oriental Company has taken the initiatory plunge that must separate its future proceedings from all connection with the doc companies, no time will be lost in developing it
It is asserted that other large steamship lines are only withheld by one consideration from immediately follow
ing the lead now given them. "What," they ask, "is to ing the lead now given them. "What," they ask, "is to
be done during the lengthy interim before these new be done during the lengthy interim before these new
wharves can be made ready for our ships?" Perhaps, wharves can be made ready for our ships? Perhaps,
whink, they dread the vengeance that the dock companies might propose to take while yet retaining power to inflict it. Or perhaps they deem that the single pronounced witharaw now made may suffice to induce way we may be sure that, should it hereafter be proved way we may be sure that, should it hereafter be proved
that the Curtius of the movement has obtained con siderable financial benefit by its action, this last will no long remain without its imitators. When we last wrote on
the subject of this dispute we referred to the possibility of some of the lines removing their headquarters to Southampton or to other outports. As regards the Peninsular and Oriental Company, however, we learn
that the advantages it possesses in the Thames could that the advantages it possesses in the Thames could
not be obtained for it elsewhere. It is for this reason, doubtless, that it has been the first to give support to the new proposals, the effect of which, if fully carried out must prove momentous.

the south wales sliding scale

At a time when the Northern miners have discarded the Sliding Scale arrangement, and while the Conciliation Board appears to have been abandoned in the English part of the coalfield, it is pleasant, and almost encourag ing, to read that the Joint-Committee of masters and men in the South Wales district are making preparations to celebrate the twenty-first anniversary of their pact of
is a moot point whether South Wales was the first to
experiment in an automatic adjustment of colliers' wages
according to the selling prices of experiment in an automatic adjustment of colliers' wages
according to the selling prices of coal at the ports. Some
efforts were made as long ago as 1871 to bring coalowner efforts were made as long ago as 1871 to bring coalowner
and collier closer together in what was then a discontented and occasionally turbulent district; but it was not until
four years later that a basis of agreement could be four years later that a basis of agreement could be
settled. The historical fact is that in 1875 a Board
of Conciliation was established, which has survived all the of Conciliation was established, which has survived all the
changes of the subsequent years ; and from this Board proceeded the existing Sliding Scale Agreement adopted
in 1879. The agreement was that there should be a periodical examination of the coalowners' books by auditors
representing both parties; and that the two auditors were to representing both parties; and that the two auditors were to
report on the percentage the fluctuations in selling prices
represented to the colliers' wage-rate as measured by a represented to the colliers' wage-rate as measured by a
common and accepted standard, which is the frequently
quoted, but ill-understood, standard of 1879 . The periods quoted, but ill-understood, standard of 1879. The periods
of the audit have been more than once altered. The men have naturally asked for a more frequent audit when
they thought the market was improving, and it is at their request that the joint auditors now make their reports at
two months' intervals, although by the turn of events the two months' intervals, although by the turn of events the
market has, until a month or so ago, been declining. market has, until a month or so ago, been declining.
These and kindred questions involved disputes which for
a while threatened to be critical ; but, nevertheless, it a while threatened to be critical; but, nevertheless, it
stands on record that since 1879 the majority of the
South Wales colliers have said and done nothing to South Wales colliers have said and done nothing to
challenge or impeach the principle of a Sliding Scale. For a moment it is worth while recalling the condition
of things prevailing before the Board of Conciliation came of things prevailing before the Board of Conciliation came
into existence. Less than a quarter of a century ago the men in the ironworks formed a larger and better organised labour factor than the more numerous body of miners. The ironworkers - puddlers, or rollers, or
furnacemen, it scarcely matters-had a dispute with the manager, and forthwith struck. At Dowlais, or Ebbw Vale, or at Plymouth Works, the temporary stoppage of
the ironworks-it was before steel nianufacture had been so generally resorted to in South Wales-really compelled a cessation of labour at the pits which kept the works
supplied with fuel. The miners got into an utterly unsupplied with fuel. The miners got into an uttery un-
settled and disaffected mood, and followed the example of the ironworkers, and indeed improved upon it from
their own point of view. Strikes were frequent in all the their own point of view. Strikes were frequent in all the
coal valleys. There was no Coalowners' Association; there was no semblance, nor, indeed, is there now, of
a general Colliers' Union. There was nothing but unia general Colliers jnion. There was nothing but uni-
versal rivalry and jealousy, pit by pit, valley by valleey,
and alike among masters and men. Did the rumour reach them that higher wages had been granted for
working a similar seam in the Rhondda Valley, the working a similar seam in the Rhondda Valley, the
Aberdare or Merthyr colliers would threaten to bring up Aberdare or Merthyr colliers would threaten to bring up
their tools unless they were recompensed at an equal
rate. A general strike the coalowners would probably rate. A general strike the coalowners would probably they had experience of before the institution of the Sliding Scale, they met with a lock-out. The chief source of
irritation was, to colliery proprietors, to the colliers, to irritation was, to colliery proprietors, to the colliers, to
railway shareholders whose interests were concentered
in the continuity of traffic, the all-round in the continuity of traffic, the all-round grievance was
the uncertainty of affairs. A colliery manager might be the uncertainty of affairs. A corkmen one day; the next he would be told of a successful strike in an adjoining pit,
and that his miners must have the same terms before and that his miners must
This retrospect will remind many colliery managers,
north and west, of some of their early troubles and north and west, of some of their early troubles and
anxieties. From 1879 most of them would admit that, to use the French phrase, we have changed all that.
There have been schisms on proposed amendments There have been schisms on proposed amendments of possibly they meant nothing; at any rate, they ended in nothing. The only serious labour dislocation we re- re-
member of recent years was caused by the hauliers They struck work, and thus threw the colliers out of work, not so much for higher wages as for the acknow-
ledgment of an equal status. The underground haulier claimed to be as good and as necessary a man as the hewer of coal. The trained collier, who is an under-
ground aristocrat in his way, said the idea was preposterous. The haulier, notwithstanding, proved his power; and his power of mischief is curtailed, if it is not ex-
tinguished, by the admission of a member of his order to the delegation which meets the coalowners' representatives on the Joint Committee. It is in this way, by
reasonable compromise on both sides, that the South Wales Conciliation Board, with its Sliding Scale arrangement, has pursued its peaceful way to the
age of a man's majority. A compromise involves
two parties, and it may be as well just now to
emphasise the fact that the admirable influence of the Conciliation Board in Glamorganshire and Monmouthshire is attributable to concessions on the one side as
much as on the other. We have good reason to have
confidence in the South Wales system of confidence in the South Wales system of avoiding wages
disputes and the other questions affecting labour. That may be said in full remembrance of one of the para-
graphs in the letter of our South Wales correspondent the
other week. There have been meetings held, he informed us, to discuss whether the Sliding Scale ought to be
abandoned or amended. He wrote in particular reference abandoned or amended. He wrote in particular reference
to an Aberdare meeting of miners. There has since been
one or two conferences of the whole of the representatives of one or two conferences of the whole of the representatives of
the coalfield at Cardiff. It is noteworthy that not one of
the legitimate delegates of the Welsh colliers said a word the legitimate delegales of Conciliation Boards or Sliding Scales. What the colliers-shall they be called the
reforming colliers?-want is an amendment of the Sliding Scale Agreement, to provide for the appointment of an
umpire in cases of differences between the two sections of the Joint Committee, and the establishment of
a minimum beneath which wages cannot fall under the a minimum beneath which wages cannot fall under the
scale. They ask also for a conference with the coal-
owners to discuss the means of preventing underselling
and keeping prices above a certain price. These may
be dreams; but it illustrates the amicable relations the

Sliding Scale has established in the South Wales Coal meet the men on some convenient day to discuss the latter and some cognate questions.

yrojected water supply for paris.

Ir is difficult, upon reflection, to avoid coming to the conclusion that there must exist some cause, some reason,
why the numerous projects and schemes recently put prominently forward for the execution of engineering enter-
prises in France of considerable magnitude should one prises in France of considerable magnitude should one
and all have fallen to the ground. It may just be pos sible that the disastrous collapse which attended the las great undertaking in Central America is still fresh enough in the minds of our neighbours to act as a powerfu
deterrent for some time yet against all large works of somewhat similar character. To whatever cause it may be due, the fact remains, and at present there is another scheme seriously mooted which appears to us to have less
chance of ever passing the ideal stage than any of its chance of ever passing the ideal stage than any of its
hitherto abortive predecessors. This latest project con templates the accomplishment of a task which shall bring the waters of Lake Leman to the gates of Paris. While it may be admitted that there is absolutely no pressing urgency, no driving necessity, for an immediate fresh water
supply, for the Irench capital, it is equally certain
that, in the opinion of excellent authorities, the outlook for the future-and a somewhat near future too-is by no and the Marne have all been drawn upon to supplement the supply afforded by existing sources, and although the water so obtained is of a very impure description, it is Another misfortune is that, owing to the small river pressure, good and pure water from the best of sources, which
should be used solely for domestic consumption, has do the duty of flushing and cleansing the sewers and drains in certain quarters of Paris, for which a very inferior fluid would sumce. If, as already stated, the limited resources a further supply, the situation becomes grave and imperative as well.
In the present exceedingly incipient stage of the proceedings it may be conceded that the data, or at least some o scheme of this nature, are sound and valid. It may per haps be taken for granted that the Lake of Geneva, which is fed by the Rhone, by some smaller confluents
and by liberal contributions from glacial waters, has and by liberal contributions from glacial waters, has a
sufficient, and probably always will have a sufficient, quantity, even to comply with the fairly exorbitant
demands proposed to be made upon it. We are disposed also to allow the purity of the water to be up to the usual
standard, as the people of Geneva have used it from standard, as the people of Geneva have used it from a
very early age. At the same time the fact must not be lost sight of that the habitual drinking of glacial and snow-melted water seriously affects the health of indi-
viduals. To the consumption of it is attributed, rightly or wrongly, that peculiarly disagreeable and unsightly complaint termed goitre. There is also a distinct class of
idiots, "crétins," which are met with in the Alpine valleys, who are generally afflicted with goitre. It is the large admixture of river water, and of water from othe sources, which has no doubt contributed to the purity of
the contents of Lake Leman, a condition which by the additional purifying influence of air and light during the long journey of three hundred and fifty miles from the
Alpine frontier to Paris, will ensure, \dot{a} fortiori, the purity of the supply at the walls of the metropolis. Fortunately, in order to obtain the water, it is not necessary for France
to go outside her own territory either for the "take off" trom the lake or for the placing of the canal, aqueduct, pipes, or other constructive details of the undertaking.
Both France and Switzerland have joint interests in the waters of Lake Leman. Both are riverain proprietors, and have each a claim to a fair share of the contents of the lake, the proportion, nevertheless, being largely in
favour of Switzerland. While, therefore, France could, favour of Switzerland. While, therefore, France could,
if she chose, prosecute the proposed scheme without in any way consulting the interests or views of her trans Alpine neighbour, it is extremely unlikely that such course would be adopted. As it is, the Swiss have already established a powerful hydraulic installation in connection with the supply, and the probability is that in the even of the enterprise assuming a more tangible form, mutually satisfactory arrangements would be arrived at between the two nations, and the entente cordiale maintained. If
it be taken for granted that there are no engineering diffiit be taken for granted that there are no engineering diffi-
culties to be encountered in carrying out the project, then so far there would appear to be nothing unreasonable nor But there remain a few more points and details
to be considered which will be found to throw a strong to be considered which will be found to throw a strong
chimerical halo over the undertaking. In the first place, the cost is put at the sum of $£ 22,000,000$, to
which it would be prudent to add twenty-five or thirty per cent., as the estimated original expenditure required character, is invariably below, and frequently very much below, the actual amount spent on their execution. But apart from the question of cost, there ander standregarded, and one which, as our readers are aware, wasfatal to a great international undertaking between France and altogether, forbade the one, and as the same reasons obtain with even greater force with respect to the Parisian wate realisation. It is true that the whole work from one end to the other is in French territory, but it would be impossible to safeguard, in the event of a hostile invasion, a
water supply over three hundred miles in length. It would inevitably be cut in more places than one, and to
expose the inhabitants of the capital, as well as possibly
a terrible calamity as the failure of their water supply is a proposition which is self-condemnatory.
fast train running in france.
IT appears from the statement of one of themselves that wiss engineers, whose train services are regulated on more modest and, perhaps, on more prudent rates of speed than heir foreign confreres speak of "seventy-five miles an hour as by no means an extraordinary velocity. Possibly with the Schweizerische Bauzeitung gives a description of scme from which we extract some interesting information and
fremally undertake in French expres trains, particulars. The first journey was made from Paris to Amiens, a distance of eighty-two miles, in a train drawn by ne of the forty compound locomotives built at befirt from the design of M. de Glehn. There is no necessity for describing these engines to our readers, but it may be mentioned
that the Western, Midland, and Paris-Lyons-Mediterranean Companies have adopted them as the type of an express locot a 56.25 miles per hour Creil was next passed. It is at a speed of $56-25$ miles per hour, Creil was next passed. It and Cologne. It is over the latter.track that the journey from Paris to St. Quentin is accomplished by the ordinary express
trains in two hours, at the rate of 47.62 miles perhour. Between Creil and Amiens a speed of $65 \cdot 62$ miles was several times reached. The whole route from Paris to Amiens was achieved at the rate of fifty miles the hour, the maximum gradient being 6\%on, and the sharpest curve having a radius of 2310ft. As
Amiens the locomotive was changed, and the royageur pays the English engineers a compliment in describing it as a one of the handsomest of its kind, having been built in
ccordance with the best English type and style. Between Boulogne and Calais the physical features of the route resemble in form a donkey's back, and the gradients of 8%
reduced the speed to $37 \cdot 5$ and thirty-five miles per hour reduced the speed to 37.5 and thirty-five miles per upon a similar gradient, from Guinnes to Calais, when the high similar gradient, from Guinnes to speed of eighty miles per hour was attained without any sign
of danger. It is stated that upon this part of the line, over which trains are said to run daily at seventy-five miles an hour and more, the permanent way consists of rails 66 lb . per yard 27 ft . in length, and supported each by ten cross sleepers. The Northern Company of France lays down no generally fixed rate of velocity, but indicates by sigails the maximum peed allowed along certain parts of the track. In Switzer land hail reason permits engines-presumably running single-to reason permits engines-presumably running single-to
attain 56.25 miles. There is no reason why on such
favourable and well-laid line as that between Laua favourable and well-laid line as that between Lau-
sanne and Bienne, a speed of fifty miles should not be attained. A still higher speed of sixty miles per hour perfect safety. On the return journey from Calais to Paris, only one stop was made for a briter five minutes at
Amiens. Between Abbeville and this latter station a speed of 62.35 miles was reached, and intermediate stations, prudently or imprudently, were run through at fifty-six miles per hour. A fresh engine was attached at Amiens, so we may now sum up the result of the journey. The total distance from Calais to Paris, 18625 miles, was run in $39 \cdot 47$ hours min, which gives an are time at Amiens be $49 \cdot 47$ miles, which, if edue stoppage fore to fifty-one for the real mean velocity. Two other trips were made with express trains on the Eastern Railway of France, which compare exceedingly well with the record achieved by the Northern Company The journey from Paris to Reims, $97 \cdot 5$ miles in length, wa accomplished in two hours, with an average speed mileage of $48 \cdot 75$. The maximum velocity attained was 62.5 miles, the weight of the train being 150 tons. All these averages are very good running, and compare favourably with our own efforts in the same line, but our neighbours are still some-
what behind us in the matter of total distances without any what behis
stoppages.

ADMIRALTY INSPECTION
There appears to be a desire on the part of the Admiralty to something towards reducing one source of friction holding the rank of constructor at one of the dockyards has been appointed to act as head of all overseers who ar Admiralty vessels building at private yards. This constructo will, of course, be considerably more in touch with dock yard officials than the resident overseers, and this alone will might save friction, but it is not, in our opinion, through junior officials being sent out as overseers to private yards These officials should, from an official point of view, merely act as an intermediary for the Admiralty as far as forwarding details to headquarters for approval is concerned, their wor being to see that approved details are actually carried out
but this does not always quite agree with overseers' ideas, and they will not sometimes submit tracings which they ma or may not be right in assuming will not meet approval
If the builder takes upon himself to attend at the Admiralty-practically his only resource if he thinks the more smoothly with the overseer afterwards; and, generall speaking, he prefers to allow the overseer to be in the right themselves that a certain detail was altered to suit the firm seer's own ideas before being forwarded to the Admiralty, and was modified at headquarters to the original form in which kind have no doubt occurred. Again, it has very often hap pened that certain things have been altered by the overseer's號, and when the ship has been delivered at the dockSimilar remarks apply to auxiliar machinery which may be passed by the overseer attending a the maker's works, but this inspection in itself is no guarante that the work will be passed at the dockyard. Keeping these points in view, it would be worthy of consideration by the Admiralty, whether one or more officials ranking with the chief constructors of the principal dockyards should not be
appointed as chief overseers for contract work, and a similar
line adopted by the engineering branch. Any doubtful point
looked upon as passing over the resident overseer, and
where a detail or modification was approved by the chief overseer it should not be open to refusal at the dockyard,
except under very unusual circumstances. except under very unusual circumstances.
american ratlways.
Oncy now, in a complete form, have the official statistics of
the various United States railways for the year ending the various United States railways for the year ending is instructive, especially lines from that date up to the present time experience of the as materially to alter the general position. Translating the American into English money, the total amount of railway capital on the date named is returned by the Interstate
Commerce Commission as somewhat over $£ 2,197,000,000$, some eleven thousand million dollars, or $£ 12,666$ per
mile for the 180,657 miles then open. The aggregate capital was an increase on the previous year of not
far off $£ 38,000,000$, and the increase in the length was 1948 howed a decline of 111 per cent. The passenger revenue revenue, which amounted to nearly $£ 146,000,000$, increased by 43 per cent. The gross earnings for that year were previous ; and the expenses are somewhat over $£ 145,000,000$ than in the previous year; but, taking a five years' period expenses are evidently on the upward grade on American railways, for the "percentage of operating expenses to with the lesser figure 1895 is returned as $67 \cdot 48$, as compare total outstanding railway stock at the close of June, 1895 more than 70 per cent. paid no dividends, and of the funded debt nearly 17 per cent. paid no interest. We hardly think British railway engineers, or shareholders, w
with such a result on this side the Atlantic.

LITERATURE

Petroleum and its Products. By Boverton Redwood, assisted by G. T. Holloway and other Contributors. Royal 8vo
Two Volumes, together 900 pages. With numerous Illus Two Volumes, together 900 pages. With numerou
trations. London : Charles Griffin and Co. 1896. In these volumes, which represent the accumulated experi ence of twenty-five years' consulting practice in connectio with the petroleum industry, the author has brought together an immense mass of information concerning mineral oil and its uses, which from its comprehensive character and systematic arrangement cannot fail to be of permanent value as an authority upon this important
branch of mineral industry. The work is divided into branch of mineral industry. The work is divided into
eleven sections, each as far as may be complete in itself an arrangement which, although it may cause some repeti tion of matter, is decidedly convenient for reference. In the first section the historical development of the
petroleum i.adustry is noticed under the heads of the petroleum iadustry is noticed under the heads of the ties from Herodotus and Jonas Hanway down to Colone Drake and the Standard Oil Company, which may be said to be pretty much the beginning and ending of the subject.
Section II., which is one of the longest, and in many respects one of the most important, deals with the geological and geographical distribution of petroleum and natural gas, the structural characters of the different regions being described in geographical order, from observations partly by the author and, to a greater extent, by numerous other authorities in all parts of the world, whose assistance is acknowledged in the preface in a manner which is highly commendable, their names and the nature of their contributions being set out at length. Much assistance was rendered in this section by the late Mr suddenly shortly before the completion of the work
Section III., on the chemical and physical properties of petroleum and natural gas, contains a large amount of original information on the density and other properties of mineral oils, \&c., which form a valuable addition to the knowledge previously available. The same may be said of the other sections specially representing the author's work, such as testing and its uses, and the conveyance of petroleum in bulk in tank steamers, and the precautions sive vapours in the tanks, when the oil has been removed. in a latter subjects, it will be remembere, were treals " of the Institution of Civil Engineers, about two years since, the substance of which is reproduced, with additions, in The theoretical aspects of the subject are but briefly to the inorganic and organic origin of petroleum being presented without any particular support being given to either. In connection with this we notice that on page piegeleisen, by the action of acids, is attributed to Cloez in 1877 , but no mention is made of the much earlier investigation of the same subject by Dr. Percy and Mr. C The operations of drilling oil wells, pumping, and other treated in Section V., typical examples being given from treated in Section V., typical examples being given from
he United States, Canada, Galicia, Russia, and elsewhere, the illustrations being mostly from American sources. The section on refining is also general in character, the The section on refining is also general in character, the leading principles of the operations being first noticed in characteristic of different districts. As necessary subjects of importance, although not perhaps strictly coming within the title, accounts are given of shale olised in Scotland and near Autun in France, and oil gas manufactures, which add to the complete character
of the work. A few pages are given in Section X. to the consideration of petroleum motors, but these are mainly valuable as references to more complete accounts
elsewhere. This, however, cannot be said of Section XI. on the statutory, municipal, and other regulations relating to the testing, storage, transport, and use of petroleum,
which covers nearly a hundred pages, giving the regula-
tions adopted by national and local authorities for the handling and use of this much protected or persecuted substance in all parts of the world, which are remarkable
for their variety, or as the author puts it, their regrettable absence of uniformity. With the over stringent character of many of these regulations the author is decidedly out of sympathy, as will be seen from the following extract: "Moreover, when petroleum was first introduced it wa often carelessly and improperly handled, and the accidents which occurred led to an exaggerated estimate being formed of the risk involved in the use of oil as an
illuminant, with the result that legislative restrictions of needlessly stringent description have been placed upon to be said.
The compilation of this section and of the elaborate satistical appendixes following it represent an amount of resolution on the part the outhor his cond esomplish, the or arator he result of their labours, which will probably take the eading place as anthority for a long time to come It is unfortunate that the illustrations have not been better cared for, as, although they are many in number a very large proportion are executed in a manner that is
a quite unworthy of the text.

Metallic Structures: Corrosion, Fouling, and their Prevention.
By John Newman. 8vo. pp. 374 . London: E. F. and N. Spon. 1896.
In this volume the author, whose attention has been specially directed during many years to the subjects of corrosion, fouling, and their prevention, has placed on he world, with the intention of supplying concise pracfical information on a matter of much importance to all who have to do with the design, construction, or mainThe ince of metallic structures, whether floating or fixed ical hints, such as recommending the removal of scal from ironwork, and drying it before painting; the use of a small number of coats of paint of good quality in preerence to a more abundant allowance of an inferio quality, even although the latter may be cheaper; the anger of bringing unprotected woodwork into surface ssect with iron, and similar points of advice which are essentially sound and practical, if not very novel ; but oncise, the practical parts being scarcely be calle ncrustations of popular science of the guide-to-knowledge order, poetical quotations from Milton and Darwin oggrel verses of the author's own production, and othe dds and ends, put together in a manner worthy of Mrs Nickleby, Mr. Snagsby, Albert Smith's engineer, and similar traditional masters of inconsequential narrative. The chemistry is especially funny; for instance, the use of white lead upon iron is considered questionable-" for cid, \&c carbonate or lead, it is a compound of carbonic and, as far as we can see, rust and ferric-oxide are every where considered as synonymous, which they certainly are not.
The second part, on the prevention of fouling in ships, ontains a chapter on " Anti-fouling Paints, Compositions, ons have, from which we gather that many composihe object of protecting the fouling of ships' bottoms are given of the appearance of ships' bottoms when plates, which varied, with notes on the condition of the Nothing, however, is stated as to the nature of the prest servative agents used in the different cases, the author' object apparently being to indicate that there are differences among the compositions in use rather than to specify which is the best among them.
In fact, he considers it improbable that a new and fficient anti-fouling and anti-corrosive ship paint will be ledge of, unless those possessing considerable know lical chemist, the botanist, the mineralogist, and the engineer act more or less in unison. Pending the result of the united action of these different talents, the con umer cannot go far wrong if he consults some of the whom eginning and end of the volume

The Spectator Mathematical Tables. Actuarial. Royal 8vo. cards in portfolio. Compiled by J. W. Gordon. London
Crosby Lockwood and Son, and W. J. West. 1896.
These tables, which are due to the initiative of the nsurance Spectator of London, include some novel and to abridge the labours of the calculator when a long series of computations has to be gone through. They nclude a complete set of four-place logarithms, coloarithms, antilogarithms, and reciprocals, the whole of whichever one may be sought for a given number the ntry is always made four distinct kinds of type distinguishable by the use of is pleasant in use. The cologarithm table, which now ap pears for the first time, though perhaps a superfluity, may in many cases prove convenient. The table of reciprocals also calculated upon a new plan, so as to give additive instead of subtractive proportional parts. The precautions necessary to be taken in consequence of these other useful hints, in the accompanying pamphlet by Mr. Gordon
The principal tables are printed on the front of a series of cards, which are united together by tapes at the edges,
in the fashion of an Oriental manuscript, the backs being
devoted to supplementary tables, which in this instance
are actuarial in character ; but other series containing physical, engineering or astronomical constants are in preparation. We hope that the present venture may be speedy appearance of the companion series.

BOOKS RECEIVED,

The Peoples. Palace, East London, Te hnical College Caladar.
Session 1896.7. London: George Reynolds. 1896 . Price 1d.

 Jourraal of the Chemical Societly, conlaining Papers read bffore the

The Durham College of Sieince, Narcastle-vpon-Tyme Calender, Sassion 1896.97. Also Prospectus of Day Claszese and of the Eracaing
Department, and of tie Special Saturday Oloses. Sosion 1896.97 . London and Newcastle-on-Tyne: Andrew Reid and Co., Ld.

 1896.

Administration Report on the Railuays in India for 1895.96 .
By Colonel T. Grace, R.E., Director-Gearal of By Conen T. Grace, R.E., Director. Geseral of Raillyys.
Part I Submitted to the Gooernment of India on the 1oth June,

 the Vestry Hammersmith, London: Printed by Andrew Church-
man. 1896 .
railway extension in paris.
Ax important extension to the Paris-Orleans Railway is projected with the object of bringing its terminus to
within a few paces of the Place de la Concorde. The plans and memoranduam prepared by the railway company hanse Works Ministry, and the Ministry aproved by, the Publio gathered together all such matters as particularly affect it The reports of the two administrations are to be at once
submitted to a Council of Ministers and the Government will then open an ing the decree which alone is necessary preparatory to com mencing the undertaking.
The site of the new terminus is to be on that of the miles from the present station in the south.eastern limits of the city. Passing under the block of buildings of the administration, forming the facade of the old terminus, the
line will be laid in an open cutting line will be laid in an open cutting along the low quays of
St. Bernard, in front of the wine market, and, following the river, continue in tunnel behind the high quays to the that no connecting the Champ ce Marro station with the Esplanade des Invalides at a short distance from the proposed new dOrsay, and facing the Rue de Bellechase; but as the area of the Cour de Comptes is of itself insufficient, the aquracms onts of the troop nor the laws of hygiene, will be
quiremen acquired from the War-office. The gradients, very apparent,
will not, howeer, exceed 1 in 167 . junction, wherere, they will amount to to in in 67 . The cost of read construction is estimated at esso,000, to which must be added the sum required for the buildings-in all about
18 millions-which would bo advanced to the Orlens pany under the State subvention and guarantee of interest. will result, either as regards the vehicular traffic or the accomplishment of the work, which may be terminated in
time for the 1900 Exhibition. It may be mentioned her that it was the Paris. Orleans line which, by the prolongato throm the old circular terminus in the south of Paris
to ground railways within the, city, and that, too, against the strenuous opposition of interested persons. The plans are
arranged by the company in no wise to clash with the in terests or the execution of the Metropolitan Railway vottd

li hung chang among the locomotives. His Execllency Li Hung Chang, the minister who has done so
nuch to encourage China to recognise the importance of railwass

 which drew up in Hyde Park Locomotive Works alongside a tem
porary platatorm which had been erected for the occasion. He wa
 Neilson and Co. The party was first ocnducted to the hydrauit
flanging press, where the operation of flanging g fre-box throatplate was performed for his edification The Thisiors were
then taken thirough the boiler-shop, where his Excellency seomed then taken through the boiler-shop, where his Excellency semed
much interested in the operation of punching heavy frame plates,
and in the hydraulic riveting. The interest was maintain
 details of what was presented. At the moment the arge steam
hame was.
Crossir was to thaged toring a
 various departments, and Li Hung Chang's interest was apparently
maintained throughout, uidging by the continuous run of of uestions
 aithough his Excellency. seemed to be in no hurry to close his
inspection. After lion at the eleotrical drils in the erectigs shop
the party was shown an engine in course of being tested under inspecion. was show an an enine in ocurse of being toested oudor
the party
steam, and this led to very pertinent questions from his Excelleney

American, and German engines, and the comparative immunity of seen, and his two brothers are one on the left-hand and the other

A New Proogss $\overline{\overline{\text { Fon the Extractio or Gold-in }}}$

BURY WATER WORKS-EMBANKMENT AND BYE-WASH SECTIONS

MR. J. CARTWRIGHT M. INST. C.E., BURY, ENGINEER

Datum line $990^{\circ} 0$ above Ordrance Datum.

Datum line 920.00 above Ondnance
"The Emomeer"

THEIBURY WATERWORKS.

On page 168 of our last impression we published an account of the new Clough Bottom reservoir and its connected works recently completed under the direction of Mr. J. Cartwright M. Inst. C.E., for the extension of the water supply of Bury We now complete the illustrations of the new reservoir, com mencing with the above longitudinal section of the valley at the line of the dam or embankment, and with a longitudinal section in three lengths of the bye-wash, of which other engravings are given on page 190. On page 195 will be found erical sections showing the arrangemer or the pipes and page 108 ante bing taken on lines shown in these vertical page sections.

THE PRESENT EUROPEAN PRACTICE IN RE GARD TO SEWAGE DISPOSAL.*
By Allen Hazen.

The countries of Western and Central Europe have a denser population than is the case with the greater part of the United states, and although their citiesare growing, in many cases, almost as rapidly as ours, there have been for many years in Europe centres of population which compelled attention to various sanitary
questions long before corresponding issues were raised in the United States, and processes of sewage purification have been in common use in Europe, particularly in England, for the last quarter of a century, which are just beginning to be seriously considered and adopted in the United States.
It is, of course, true that a certain amount of work, particularly experimental work, has been done in the United States which is o
as high a grade as that which has been done anywhere, and some of the information which has been secured in America in regard to sewage purification processes, and the disposal of sewage by dilu tion in streams and lakes, is of great value to us, and could not be replaced by any amount of European experience obtained under other conditions of climate and geology ; but, on the other hand, the continued experience of European cities for a long series of
years with many of the problems which are now seriously confront ing American cities has resulted in the accumulation of a fund of information which deserves to be most carefully studied by all who would be proficient in the art and science of sewage disposal. There are in reality two sewage disposal problems, which are radically different from each other in their natures, and whic of the discharge of seware into bodies of water, either lakes or rivers, from which water is taken for domestic supply from points which may be reached by the discharged sewage. The problem presented in this case is to so completely purify the sewage, that
*Read before the Boston Society of Civil Engineers, October 16, 1895.

When mixed with the water it will not be injarious to health. Years ago, before the germ theory of disease was established, the possibility of purifying sewage in this way would hardly have been
admitted, but thanks to the more recent German and English investigations, as well as to the experiments of our own [Mass.] State Board of Health it is now well known that it is entirely possible to accomplish this through the wonderful purifying power that the effluents from certain European sewage works, as well as from some of the purification fields in Massachusetts, are prefer ber of large American cities.
The second problem in sewage purification is that of so purifying sewage that it will not cause a nuisance in the water into which it lows. When a small quantity of sewage is discharged into a large volume of pure, or comparatively pure water, the organic and
polluting matters of the sewage are oxidised and destroyed by the oxygen of the air which is ordinarily contained in solution in the water into which the sewage is discharged. In case, however, the quantity of sewage becomes greater than can be oxidised at once by this oxygen, the last part of the decomposition of the organic of products which are given off into the air causing objectionable of products which are given off into the air causing objectionable
odours, and the whole body of the liquid becomes foul. The condition becomes still worse when the water is still, or has so low a velocity that it allows the heavier matters from the sewage to be deposited upon the bottom, where they accumulate as masses of mud, which decompose with the most objectionable results. This
condition of affairs may often result, even though the quantity of sewage is not great enough to render the whole body of the water offensive, and is thus likely to occur in sluggish streams which would otherwise remove the sewage without nuisance.
It is undoubtedly a fact that sewage has been purified much more frequently to prevent the production of a nuisance of this kind than to protect the purity of drinking water supplies, perhaps
because a black dirty stream, giving off sulphuretted hydrogen gas, is more obviously a nuisance than is a polluted water supply, the relation of which to the health of the community is too often but imperfectly realised even by those having such matters in direct charge, and much less by the mass of voters and tax-payers whose possible.
The p
divided into processes which are used for purifying sewage may be processes, although a combination of both of them is frequently used. The principles involved in purifying sewage by applying it to land are essentially the same whether it is applied to soils and loams at a very low rate, and with a growth of crops under the
name of "broad irrigation," or whether it is applied to specially prepared areas of favourable materials at much higher rates under the name of "intermitting filtration;" and even the filtration at very high rates with forced ventilation, which has recently been proposed, but has not as yet been carried out on a large scale, involves exactly the same principles. The other class of processes are those which by chemical and mechanical means attempt to
remove from the sewage in concentrate form a portion of it
impurities, and although the numbar of procasses which might be achieved practical success except such as can properly be called One of the most inter
prevent the pollution of public water supplies, is furnished by the cities and towns upon the watersheds from which the water supply of London is drawn. Conservancy Boards have control of the rivers, and it is their duty to see that they are not polluted so as
to affect the quality of the water supplies drawn from them or to affect the quality of the water supplies drawn from them, or
become otherwise injurious to the people upon their banks. The Conservancy Board of the river Thames has control of the main river for its whole length, and of its tributaries within ten miles of the main river measured in a straight line, but curiously enough, it bas no control of the tributaries beyond that distance. The Con-
servators of the river Lea have control of the entire watershed servators of the river Lea have control of the entire watershed.
There are thirty-nine places upon these two rivers which iving their sewage systematic treatment, and, so far as known, no crude sewage is ordinarily discharged into the rivers at any point. Of these thirty-nine places, thirty-eight treat their sewage by
applying it to land, while, one of the smaller places, Hertford, applying it to land, while, one of the smaller places, Hertford,
uses chemical precipitation. The Conservators do not regard the uses chemical precipitation. The Conservators do not regard the
chemical precipitation as satisfactory, and have recently conducted an expensive lawsuit against the local authoritios to compel them to further treat their eflluent; but this suit was lost, as the court
held that no actual injury to health had been shown. It is worth held that no actual injury to health had been shown. It is worth
noticing, however, that the water into which the effluent is disnoticing, however, that the water into which the effluent is disThe Conservators require where land treatment consumers. sofficient area shall be provided to allow all of the sewage to percolate thr ugh it in ordinary weather, and they strongly object to allowing any sewage to flow over the surface of the land into the streams. The land used for this purpose, however, is, as a rule, much less porous than the land commonly used for sewage treatment on Continental Europe and in this country ; and at
times of heavy storms there is often as much water from the rain aione as the land can take without becoming unduly flooded, and it is then incapable of receiving even the ordinary quantity of sewage, and much less the storm flow, as the sewers are generally, if not always, on the combined system. At such times the ewage either flows over the surface of the land with the very grass and osiers or perhaps more frequently it is dischiter ine directly into the rivers without even a pretence of treatment. The conservators apparently regard this as an unavoidable evil and do not vigorously oppose it, as it is their theory that at these times the increased dilution with the high water in the rivers is such that there is no great danger from the sewage, although it would or the matters to reach the waterworks intakes would in a targe measure, counterbalance the increased dilution The water companice the increased dilion.
capacity for unfiltered water that they will not be obliged to take in water at times of flood ; but, as a matter of fact, it is believed re kept either of the times wer at these times although no records
when the sewage is discharged without treatment. This is one of the cases which one so often finds in England and elsewhere, where
it is regarded safer to have no information than to keep records It should be said, however, that no evidence has been found that the health of the inhabitants of London is in any way affected by this discharge of sewage into the water courses from which their water is drawn; but this favourable condition is believed to be largely due to the great care with which all of the water is filtered. The cases of the other class where sewage is purified to prevent its
becoming a nuisance, but without regard to possible pollutions of becoming a nuisance, but without regard to possible pollutions of
water supplies, are very numerous. Many years ago England took the lead in works of this nature, and has at the present time probably a larger number of works than are to be found in all the rest of the world.
England has a very dense population, but it is far from being equally distributed over its entire area. Near the south-east corner, on the tidal estuary of the Thames, is that enormous aggreEate of population known as "Greater London"; and in central is a small area which has become perhaps the most densely populated of any region of its size on the face of the earth, due to the harbour and to the deposits of coal and iron ore which there occur. Within a distance of forty miles from Manchester are Liverpool, Salford, Boiton, Preston, O.dnam, Blackborn, Huddersield, Bir hundred smaller places, which so completely fill the intervening spaces that parts of the region have almost the aspect of one great extended city. A large part of the area is a broken hilly country, with steep, although not high hillsides, between which are narrow valleys, in which are the raiiroads, mines, and factories. The rivers, diately back of the cities, and many of them would hardly be dignified with the name of river in this country.
With the great development of manufacturing, the sewage and wastes were at first discharged directly into the streams until they became excessively foul, and the sewage problem was forced upon them in perhaps its most difficult form. There were but limited use for sewage purification, and even these areas were often cecupied by mills, or held at high prices in expectation of such use and the land itself was, as a rule, compact, impervious, and but poorly adapted to sewage purification. The conditions in thi egion were probably more favourable for chemical precipitation as against land treatment, than at almost any other place, and of treatment, Leeds, Sheffield, Bradford, Manchester, Salford, and Huddersfield among the larger places using it. Chemical precipitation, however, although great improvements have been made in the form of settling tanks and in the methods of managing them, removes scarcely more than one-half of the organic matters
in the sewage and never more than two-thirds, and effluents generally carry on an average from two to five parts per hundred thousand of suspended matters capable of forming deposits in the streams ; and it has been found that effluents purified to only this extent are very apt to produce more or less trouble when dis charged into such small streams as exist in this region, and it is cess will be required before the problem can fairly be considered solved. Already much has been done in this direction. At Sheffield the effluent is taken through coke filters at a very high rate, and a portion of the suspended matters in the effluent is thus removed, although the purification obtained is far from what might point in its fare the the becomes dirty it can be burned with the matters accumulated in it under the boilers that are sure to be in use at the works. At Huddersfield, the effluent is filtered through sand and a patented substance called "polarite, with the result that most of the suspended matters are removed although the dissolved organic matcors loyed At Bradford and at Salfor experiment
considerable scale with rapid filtration through been made on and forced aëration has also been experimented with in the and capable for yind a process which is at once very rapid obtained from land treatments. This question of further puri fication for chemical precipitation effluents is now heing everywhere discussed, and experimental filters are to be found with a surprising frequency, and we may confidently expect that the treatment years will witness great changes in the methods of sowage district is Birmingham, Areat manufacturing city which treat its sewage first by chemical precipitation, and afterwards applies small river into arge area of meadow land on both sides of the miles to the east, uses substantially the same process.
At London the sewers from a large metropolitan dis been gradually combined into one great system or raict have Thames, both for the north and one for the south side of the river Council. The conditions here are in many respects different from those of almost any other large city. The sewage is carried down by intercepting sewers to poins some miles below the city, and is currents in addition to the natural flow of fresh water from the river. Formerly the sewage was discharged without treatment at these points, but it caused so great a nuisance in the river, both to below the sing and to the residents upon the banks of the river, both works have been built to treat the whole of it by chemical pre for its rain, except the storm overflows. Although London is noted cipitation is more apt to come in the form of a slow drizzle, wbich the sewers are capable of removing, and the sewage which goes to case iver through the overflows ${ }^{\text {s much }}$ less than would be the of the London Sewerage Works, has estimated that in the charge gate only about 4 per cent, of the sewage is discharged untreated discharge.
a ruie, more favourable than is the case in England, and chemica precipitation has gained but a slight foothold, only one large city at a considerable number of smaller places and is being considered commonly. In the early days of chemical precipitation lime was tains a large amount of iron and acid from wire works, as is the botter theeds, shetneld, and Birmingham, lime answers as well or recommend it ond prosually been auperseded either by ittle to or by sulphate of alumina, although it is necessary to use with tion. At London copperas is employed while other English cities have varied their precipitants from time to time. One of the is the disposal of sludge with chemical precipitation of sewage necessary to consider not only the purity of the effinent which can be obtained, but also the quantity and character of the sludge pro-
duced by it. At London several tank ships are employed, which carry the sluage out to sea, each ship making two trips daily and reduce cabrying about 1000 tons, of which 90 per cent. is moisture. To from the settling tanks into another set of smaller tanks, pumped settled over again, reducing it to one-third of its original volume From these the supernatant liquid flows back into the incoming chambers in their bottoms to give them sufficient buoyancy, so that the sludge will flow out through the openings in thei

BURY WATER WOBKS-VALVES AND DRAW-OFF PIPES IN SHAFT

bottoms when they reach the point of discharge, fifty miles from
the works. $\begin{gathered}\text { At Birmingham the sludge is run upon and dug into several } \\ \text { hundred acres of land with fairly good results. At Sheffield and }\end{gathered}$

BURY WATER WORKS—METER HOUSE

Section at A B
other places it is simply piled up on unused land and given away
for a fertiliser when possible, and by sprinkling it with lime and for a fertiliser when posssble, and by sprinkling it with lime and churiac or although this practice can hardly be recommended. Manchester and Salford have hoped to carry their sewage out to sea, as is done at London, by means of the Manchester Ship Canal, but I do not know that they have commenced to do so. Hudders-
field and many of the newer works press the sludge in filter presses field and many of the newer works press the sludge in filter presses
to solid cakes, which can be easily handled, and which can be applied to land or stored without creating a nuisance. The putre-
faction, which make sewage and sludze offensive seems to require faction, which make sewage and sludge offensive, seems to require
the presence of an excess of moisture, and when the moisture is the presence of an excess of moisture, and when the moisture is
absent, as in pressed sludge and in land unsed for sewage treatment, this putrefaction did not occur, but the changes which take siderable, and it is this which probably prevents it from being more generally adopted.
The shape of the settling tanks for chemical precipitation has been changed somewhat in the course of years. The earlier tanks
were nearly square, and were often used intermittently, being filled Were neary square, and were often used intermittently, being filled
with sewage, allowed to stand, and afterwards emptied, and then filled up again. This was known as the intermittent process, and has been almost everywhere abandoned, although still in use at
Sheffield. In the continuous process, now generally used, the tanks are connected with each other, and the treated sewage is run into a series of them, passing from one to another until finally it
is discharged. The newer works, however, as a rule consist of long narrow tanks so arranged that a portion of the treated sewage passes through each of them and is then discharged, so that each tank is entirely independent of the others. These tanks are ordinarily from 30 ft . to 60 ft . wide, but are occasionally much wider, and in length range from one or tho hundred to six and ten hunmiddle, and the middle slopes slightly from the outlet end of the tank toward the inlet, and there is usually a sludge channel in the middle a foot lower than the bottom, to ensure a rapid removal of
the sludge when the tanks are cleaned. All of the earlier tanks the sludge when the tanks are cleaned. All of the earlier tanks
were open to the sky, but in 1884 Lindley built precipitation tanks were open to the sky, but in 1884 Lindley built precipitation tanks
at Frankfort covered with a vaulting with soil above, laid out as a garden. This arrangement prevents any possible interference grten. This arrangement prevents any possside also makes a much more attractive appearing place than the open tanks.
The settling tanks at London are also vaulted. On the The settling tanks at London are also vaulted. On the north
side of the river the tanks are only 32 ft . wide, and there is an side of the river the tanks are only 32 ft . wide, and there is an
arched spandrel wall half-way between the sides, and the roof is arched spandren
made of two continuous arches covered with earth and with manholes to furnish light. It is stated that it was quite as cheap to build the tanks in this way as it would have been to build them open, because the walls between the tanks, being supported at
the top, are very much thinner than would have been necessary the top, are very much thinner than would havo been necessary
with open tanks, and the excavated material was placed above the vaulting without expense for removing it, and the economies thus constructed settling tanks on the south side of the river are of the same general construction, but the manholes were omitted ; and it is found that there was both a great saving in the cost of construction, and the work of cleaning the tanks can be better done by
artificial light throughout than by the very irregular light artificial light throughout
admitted through manholes.
Vertical settling tanks, like those used at the World's Columbian Exposition at Chicago, are occasionally used in Germany, particularly in small places, and are in some respects sonvenient, although the sedimentation is probably less complete than is the case with
properly constructed horizontal tanks. The famous tanks at properly constructed horizontal tanks. The famous tanks at
Dortmund are being replaced by broad irrigation. In other parts of England, where the population is much less dense than in the easily secured, chemical precipitation works are the exception easily secured, chemical precipitation works are the exception
rather than the rule, and sewage farming is generally employed where sewage requires to be treated.
On the Continent, Paris first adopted land treatment for sewage many years ago, but selected an anea quite near the city, a. The process was entirely satisfactory as far as purification
was concerned. No nuisance was created, and some return was obtained from the crops on the capital invested. There was, mainder of the sewage without going some miles farther down the river, and for many years the system was not extended. In the seventies, Berlin took the matter up, and adopted substantially the same system which was then in use at Paris, and has since extended it from time to time, until for many years all
of the sewage of Berlin has been treated. Berlin, with its immediate suburbs, has at the present time a population of nearly tw millions, and is growing almost as fast as Chicago; but the popu-
lation is very compact, and the surrounding country for many lation is very compact, and the surrounding country for many
miles consists of sandy land in every way suitable for sewage treatmiles consists of sandy land in every way suitable for sewage treat
ment, but too poor to repay ordinary cultivation. Under these ment, but too poor to repay ordinary cultivation. Under these
circumstances there has been no object in economising in the area of land used, and the city has taken large areas of land, and is extending the mains to irrigate as large an area as possible with sewage. In $1893,10,800$ acres were in use, receiving on an average
4100 gallons per acre daily. The sewage is all pumped and treated 4100 gallons per acre daily. The sewage is all pumped and treated,
except when in thunder storms more rain falls than can be carried except when in thunder storms more rain falls than can be carried
by the sewers. The Spree flowing through the heart of the city said to have been as dirty as the Chicago River is at the present
time, before the works were commenced, but it has been so thoroughly cleansed that one would hardly suspect it of having once been polluted with sewage. The irrigated land is cultivated
with sen with some profit to the city, and in good years 2 per cent. net
profits on the capital of about $6,000,000$ dols. have been earned After Berlin adopted land treatment for her sewage, Dantrig and Breslau adopted substantially the same process, and more recently Magdeburg has been preparing land to be used in the same way while Cologne, Hanover, and other cities are talking of doing so. The German cities, as a rule, are situated upon much large been so pressing a problem with them; but, on the other hand the conditions for disposing of the sewage upon land are much more favourable than in England, and the expense ef carrying out the process is less ; and now that the process has been demon strated by many years' trial in the three cities mentioned to be a
practical success, the Imperial Board of Health which has practical success, the Imperial Board of Health, which has grea
power in these matters, is insisting upon the adoption of sewage purification in almost all cases where important extensions or changes in the sewerage systems are adopted. Aseverywhere else, it is difficult to prevent a city which has been discharging its sew age into a river from continuing to do so, particularly where the river is large enough so that nogreat nuisance is caused. But when
a city wishes to extend i its sewerage system, or increase the size a city wishes to extend its sewerage system, or increase the size of
its sewers, and the project is sent to Berlin for examination and approval, then the Board can take the position that the sewage
spould be purified, and it usually does so. Some of the leading should be purified, and it usually does so. Some of the leading
cfficials in Berlin having charge of the German rivers were of the cfficials in Berlin having charge of the German rivers were of the opinion that all sewage should be treated without regard to the
size of the rivers into which it is discharged although the rivers, such as the Rhine, the Elbe and the Oder are so large that from our standpoint it is hardly possible to conceive of any appreciably injurious results from the discharge of sewage into
The soils used for sewage purification in Germany are invariably sandy, pervious materials, and the natural surface of the ground is The areas are usually divided into separate beds by low earth embankments, quite similar to those at Framingham and Marl. borough in this State. The surface of these beds is always culti-vated-grass, beets, cabbages, wheat, rye, oats and apple trees being the leading crops. Wheat and oats when they are irrigated grow very rankly, and as the farmers say, run to straw, and good crops
are seldom obtained. Our American corn or maize cannot be successfully grown, because the summers, and particularly the summer nights, are not warm enough, and the grain will not ripen. Germany is some degrees farther north than New England, and the winters are of about the same severity, but the winter nights are
much longer and the days shorter, and it thus happens that in the much longer and the days shorter, and it thus happens that in the
darker months of the year it is impossible to distribute all, or even the greater part, of the sewage over the land by daylight, and it
having the distribution in charge will not properly perform their work at night. To provide for this contingency, certain areas are surfaces and surrounded by embankments much higher than the ordinary embankments - that is, 8 ft t. to 10 ft . high. The areas are also much greater, often containing ten or twenty acres in one lot. During the long dark nights of the fall and winter, sewage is run
into these basins, often filling them several feet deep. Of course ittle purification takes place under these circumstances, but owing to the cold weather the sewago is retained pretty nearly in its riginal condition, or at least without offensive decompositions, enerally covered with an ice sheet during the winter.
As soon as the days become longer, in early spring, all of the used. The ice melts and the pond of sewage soaks away in the course of a few weeks, and the surface of the land covered with the organic matters which have been strained from the sewage, is exposed to the air and becomes dry, and soon afterwards it is
ploughed under, and the matters are destroyed, as in the ordinary ploughed under, and the matters are destroyed, as in the ordinary in these basins in the seo are obtained. No sewage is ever put upon them except in winter
Paris has for many years treated a portion of her sewage as mentioned above, by intermittent filtration upon the sandy soil of bends in the ends in the river Seine, just below the city. The sewage has
been pumped to this land from the main outfall sewer as needed by the crops, and when the crops did not require it, the seware has been discharged untreated into the river. In recent years, only about 20 per cent. of the sewage has been treated ; in rainy weather and winter a much smaller proportion, while at dry seasons a larger quantity was taken. We condition of the become extremely foul, and the city has recently voted to construct an outfall sewer down to another and larger area of land in the next bend of the river below that now used, and to treat the rest of its sewage there. This outfall sewer involves the construc tion of three syphons under the Seine, and the purchase of which to purify all of its sewage. The estimated cost of this worl is $6,000,000$ dols. At Paris, as in the English sewage farms, the embankments between the beds are a much less conspicuous feature, and one of the most common methods of applying sewage
is to have the land in ridges and furrows, the sewage being turned into the furrows, while vegetables and other crops are raised upon the ridges, which are never covered by the sewage. Of course it is necessary at certain points to have embankments to prevent the sewage from running
reduced to a minimum
There are some unusually interesting sewage disposal problems in some of the Dutch cities. Rotterdam is situated on the Maas which is really the main outlet of the River Rhine, with its
enormous flow from the mountains in the sonth of Germany France and Switzerland, and in addition there are strong tida currents, so that the city has no difficulty in disposing of it sewage. Amsterdam and The Hague, however, are not situated upon rivers, but only upon the intricate system of canals which intersects a large part of Holland. Streets, as a rule, are 3 ft . or
fft. higher than the water in the 4 ft . higher than the water in the canals, and the houses are buil collars. There is often a canal betwe steets, and there are no the few cases where it is omitted, it is in any case but a short dis tance from any part of the city to some canal. It has been the custom ever since the memory of man to discharge all sewage, garbage, and other wastes into the canals direct. This has resulted in the canals becoming extremely foul and sources of much complaint
The conditions have been somewhat improved by constructin siderable reservoirs, which, regulated by means of gates and used in connection with the tides, allow considerable currents to bo maintained in most of the canals, and in this way the conditions have been maintained without becoming excessively bad. The limits of this system of flushing bave, however, been nearly
reached, and it is apparent that some further treatment will be reached, and it is apparent that some further treatment will be
required. Several of the leading Dutch engineers are exerting

 In Amsterdam a portion oft tho eotata, parat of the oity has boen

 the tom of streams at the pontst where tho peas sarious eities are tions under wiich the gangrings wroto obtained, and as to whetehe

 nod its ditstribution throughout the different easenseof the earan

 obtained or an itho numerous poins in whides wo are intereseded dites

 charged into them, and in tholist ol olum the arasas of tho draingo

clitr.	nsme		\%	
	tment	comem		
	, Afimm	a,amid		
		,	\%	
䢒		綬	\%	
mim	coick			

Manchester and Salford, on the opposite sides of the Irwell, dis-
charge their sewage into it at nearly the same point, after treating

 with the Aire tot thecharged into a brook just above its junction win ine Aire, but tho dramangorea, given ibtatot tho Aroa beow

Mhe ivers mentioned abore have been among the motet groand Polated fiversin surope, and notwiustandig the eiffrte thal

 sitions that would be expected in a hotter dimato and drie

 no trat their sewge, but probathly will apply it to the land ind in th natit turue

showing the discharge of crudd sewago without nuisanoo into
rapid monntian
 into pinluer streams proportionaly hasalyays reaulted in the pro. fat pririci country and with sluggish fows have beomemoffensively

 the onatruction of settivg tanks and in the mothods of applying
 to bo dischargad into the smalar rivers without oreating moro o o

 organic materar to become oxidised.

was generally easier than on the narrow, and that it might be possible to run the fastest upon it. The former we know
now to be more a matter of wheel base and of design and weight in the rolling stock than of gauge, whilst the latte has never been conclusively proved. On the two most im portant matters, viz., which was the most convenient for the
usual loads of goods, and whether the increased outlay for usual loads of goods, and whether the increased outlay for worth it Exit
It was estimated at this time that one million sterling would have sufficed to convert all the broad guage
then existing-about 274 miles-to narrow gauge, and well
would it have been for the Great Western if of their have been for the Great Western if they had repented ment had sanctioned the mistake, so it ought to find th means of rectifying it. As a matter of fact, Parliament probably understood the merits of the question in 1835 no better than the Great Western directors themselves, and it naturally The broad spend public money chiefly for priat a troubl of their own making as best they could, steps being taken by the Gauge Act to localise the evil and prevent its spreading The ch
The chief provisions of the Gauge Act were that except in certain specified cases, no new passenger railway should be made in Great Britain of any other gauge than $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$., or
in Ireland of 5 ft . 3 in . It did not apply to any line which should in entirely south of the Great Western (i.e., between London and Bristol), nor to any which might be made in Cornwall, o be made on the broad euge were not interfered with. The chief of these were the South Wales Railway, the Oxford and Rugby, and the Oxford, Worcester, and Wolverhampton 872, the Oxford and Rugby, when it got to Fenny Compton was altered to go to Birmingham and Wolverbampton instead and was soon converted to "mixed gavge," broad and narrow the mixed gauge was laid from the first, but the broad gauge rail was never used. Any gauges other than those authorised
by the Act might be removed by Government authority, at the expense of the company owning or controlling the line ; or it
exp might be fined $£ 10$ per mile per day whilst the illegality con-
tinued. Although the evil of numerous breaks of gauge would probably have remedied itself in course of time without benefit in bringing it to an end with the minimum of friction and within a reasonable period of time.

TECHNICAL EDUCATION AND WASTE OF TIME. Ir is satisfactory to find that British people are finding out now
in a practical way before the lives of more than a generation of in a practical way before the lives of more than a generation of
certain classes of young men have been more or less spoiled that
the the the technical education craze is a thing harmful to about 70 per
cent. of all who are led to believe it is a short and easy way to
technical knowledge and usefulness. Those who take the technical college after school instead of the works postpone to too late a
day that which is the most important part of their education,
namely, the workshop and out-door part of it. They also postpone namely, the workshop and out-door part of it. They also postpone
until too late the discovery that they are not fitted for an engineering or architectural building or special industries. The education in a technical college is easy, and all is so different to the realities of the work that is done for a commercial purpose and for a paying result, that the student does not know thatheisunsuited
for the real thing. If he went into the works early he would find this out, and if he is of the proper stuff he could make use of the
technical colleges or schools in the evening. Judging from the following, we shall be saved yet from the sterilising influence of the technical school :-To ardent advocates of technical, or
polytechnical, education much of the correspondence between the Board of Trade and representative societies of shipowners and engineers on the subject of apprenticeship for
marine engineers will be disappointing reading. The quali-
fications proposed by
JUBILEE OF THE GAUGE ACT.
Fifty jears ago, on August 18th, 1846, a short Bill of only British rilways since that, and has had a lasting effect upo cap. 57, otherwise, "An Act for Regulating the Gauge of Gauge Commissioners appointed fourteen months before. In the main, of course, this legislation was brought about by the Great Western Company's depa:ture from the gauge adopted by George Stephenson on the Stockton and Darling on Railway, and which, early in the forties, had obtained a start the broad gauge was never able to overtake. The Bil had the strong approval of the military authorities. It was a favourite idea of the Duke of Wellington, then Commander-n-Chief, that railways would enable a small army to do the concerned. In this he was no doubt right, and in those days, when riots of the most alarming kind were not strongly than, perhaps, it would now. It was obvious that perfectly unnecessary breaks of gauge might cause fata delay in the movement of troops, and, in fact, would do away with much of the advantage of conveying them by rail. The Gauge Commissioners examined a great number of railway officers, engineers, locomotive superintendents,
traders, in fact, persons of all classes who were concerned with the making, maintenance, or utilisation of railways. The bulk of evidence obtained was overwhelmingly in indeed it might have been expected to be. Of the engineering experts a few considered that a slightly wider gauge than $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. might have been employed with advantage, but the me needs of the opinion that gauge would admirably serve nected with the Great Western Railway, advocated so wide a gauge as 7 ft . In commercial circles the testimony against or pilfering caused by break of gauge was almost unanimous All sorts of expedients for minimising these objections were but brought the question no nearer solution. Telescopic axles, which could be lengthened or shortened to suit either
gauge, were a favourite idea; also that of carrying goods in removable boxes, three of which should go on a broad gauge
truck and two on a narrow gauge one. But it was felt that these half measures could but palliate an evil which existed The Gauge Commissioners themselves could only say for
class engineer's certificate included the following :-"In calcu
lating the five years of artisan service which are to constitute the required apprenticeship, time spent at a technical school where here is an engineering laboratory may be taken into account and years in the technical school to two in artican service, provided hat the applicant was over fiftcen years of age and can produce he master's certificates for regular attendances and satisfactory progress; and provided also that in such case the remainder of the time was not spent in a drawing-office. Considerable objection is raised to this by railway and shipping companies. The Castle training-with for example, rewinering laborntorrusion of technical school is open to question. What is wanted in the mercantile marine is frst-rate tradesmen with as much technical education super-added as practicable. Young men from engineering colleges have, in our experience, not proved the best fitted for a seagoing engineer's
life." Still more emphatic are the Peninsular and Oriental Company, who consider that "the results of training such as indicated cope with the work expected of an engineer at sea, or to be of any practical use in the engine-room in cases of emergency." The London, Chatham, and Dover Company think that training in the rawing-office or at a technical school should not count; and the that " time spent in a technical school is not of great use in giving real practica
known alway

Naval Exgineer Appoiniments - The following appointments have recently been made at the Admiralty:-Staff engineer: George
B. Alton, to the Talbot. Chief ergineer: Semuel Godbeer, to
the Pembroke, additional, for efrvice in dockyard. Engineer : Gilbert C. Nicholson, to the Taltot. Assistant engineers : Henry Bell, to the Talbot; Albert G. V. Salter, to the Alexandra; Alfred The Scheme of Caversham Drainage.- On Wednesday last, at aversham, Oxfordshire, the member for South Oxfordshire
Division of the county, Mr. R. T. Herman Hodge, M.P., formally oned the mayor of Reading and and Outfall Work in the presenco ength of sewers is about $11 \frac{1}{2}$ miles. The chairman of the icholson Lailey, C.E., of Westminster, for although they bad water, the leakage was inappreciable. The sewage on reaching the outfall works is dealt with on the International system, the
sewage after precipitation passing on to polarite filters. Sludge
pressing machinery is provided, and the tanks and filters are built on arches considerably above the grourd in order to be above flood
level. Great satisfaction was expressed with the scheme, which level. Great satisfaction was expressed with the scheme, which
has been carried out with far more expedition than was at first
anticipated, and for a sum well within the amount of the toan

A RELIC OF THE ATMOSPHERIC RAILWAY.

 WE mentioned, in our article on the jubilee of the London,Brighton, and South Brighton, and South Coast Railway, some slight vestiges that
still remain of the atmospherio system that tives on that line. There is, however, a much more striking survival of this obsolete system still remaining on the Great
Western main line outside the little wayside station of Starcross.
When Brunel was laying out the route of the rail-
way between Exeter and Plymouth the atmospheric way between Exeter and Plymouth the atmospheric
system was still on its trial, and it was thought that here,

against steadily increasing costs on electric systems, of whatover
kind they may be. One after anothor new inventions in eloctric
traction have sor kind they may be. One after anothor new inventions in electric
traction have sprung nep, run their short course, and disappeared
to make room for others, foredoomed to the same fate ; but the to make room or odilers, foredoomed to the same fate, cable has kept steadily on, and held its ground and survived them
all. Why, then, has it not beon more largely adopted
The ruin on everything electric is partly responsible for this The rum on everything electrio is partly responsible for this.
Electricity is an effective word with which to conjure money out Electricity is an effective word with which to conjure money ous
of pooples pockets, and company promoters have recognised this of pooplo s pockets, and company promoters have recognised soar
Electric belts and hair brushes, electric sugar, electric soar
electric blue, and electric traction, all "tatch on., The general electric blue, and electric traction, all catch on
public cannot look into the innermost recesses of the subject.
It is a case of the "ignotum pro magnifico." They are attracted pubic cannot the "ignotum pro magnifico." They are attracted
It is anything in the nature of the marvellous, and easily become
by any by anything in the nature of the marvellous, and easily become
victims of the craze. That is one reason. Another reason un
doubtedly doubtedly bas been the high initial cost of the cable system, and
what is perhaps more serious still, the terrible obstruction of the streets during the construction period, which local authoritie cannot contemplate without dread, and would do much to avoid. Having been long convinced of the advantages of the cable system in actual working, Thave been for some time past endea vouring to devise methods for overcoming these objection
as to initial cost, and to reduce the interference with the streets during construction to a minimum. The deep excavation for the conduit, on the existing method, involving serious blockage of the
street for a prolonged period, and frequent interference with service pipes, was evidently the point that would have to bo tackled. If we could reduce the depth of the conduit, so as to
avoid breaking through the concrete foundation on existing lines, that would accomplish all we want, as, of course, in the construc tion of a new line we should need no deeper excavation tban would be required for the ordinary laying of the tramway, and for the conversion of an existing line to cable traction, we should only have to remove the setts Letween the rails and prepare the bed
for the laying of the conduit. It was while engaged on this Mr. Wilson, of Belfast, and he made several practical suggestions as to the form and construction of the gripper and the arrangement of the supporting and guide pulleys in the conduit, which have resulted in the development of his shallow conduit system.
sity sity was to have a form of gripper which would occupy the mini-
mum of space in the conduit. The form we have adopted is shown in Fig. 1. It is the modification of the form of gripper used in the

Fig 4

Geary-street cable road, San Francisco, with jaws opening downward, but instead of the jaws being hung on two separato centres, and the closing bars approaching the centres wo a lossening centre and so arranged that the closing bars recede from the centre with an increasing leverage as the jaws close in. This also
enables the contour of the gripper in cross section to follow the enables the contour of the gripper in cross section to follow the
shape of the sloping sides of the conduit. The nearer the gripper is got to the top of the conduit, and the shorter the stem, the is got to the top of the conduit, and liese shorter the stem, the
better, as it will be much stiffer and less in passing round curves.
The wear is
The wear is taken on the two end-pieces, which are easily renew-
able. We bave not thought it worth while to apply friction roller able. We have not thought it worth while to apply friction rollers
to the gripper, as they would have complicated the conduit and o the gripper, as they would have complicated the conduit and
made it deeper, and the interest on the increased cost would have come to more than the probable cost of renewals of the gripper-end pieces. Moreover, the wear of the rollers, their centre pins, and the surface they run against, would rapidly take up the small clearapply fixed rollers round the curves, should it be found worth while apply fixed rollers round
dong so. The gripper is hung from the axles of the car, so that
its vertical position in the conduit will be practically unaltered its vertical position in the conduit will be practically unaltered, as
therewould be norise or fall with the spring. It is raised and lowered there would be norise or fall with the spring. It is raised and lowered
by means of parallel motion bars, and can be lifted up clear of the by means of parallel motion bars, and can be lifted up clear of the
roadway, so that the car may be drawn by horses or other power. roadway, so that the car may be drawn by horses or other power.
As the jaws open downwards, they can readily drop or pick up the As the
cable.
The
cable. next point was to avoid the depth taken up by the vertically
The
running support pulleys, which practically controlled the depth running support pulleys, which practically controlled the depth
of the conduit. This has been accomplished by the application of horizontal support pulleys, arranged in pairs, of the shape
shown in Fig. 2, the cable being supported between the two pulleys. The centre pins run in oil wells, and the driving bell formation of the pulley prevents water and dirt being washed over into the bearings in case of the flooding of the conduit.
These arrangements enable the conduit to be made of the form
and construction shown in Fig. 3, which represents and construction shown in Fig. 3, which represents a cross
section of the road. This conduit needs no separate drain, as its section of the road. This conduit needs no separate drain, as
form is such as to serve as a drain in itself, branch connections being made into the adjacent gullies wherever needed. The system in most of its leading features has been applied with marked success
on the Sydney tramways by Mr. Gustav Fischer, the Government on the Sydney tramways by Mr. Gustav Fischer, the Government
engineer. ongineer. be obvious from an inspection of the diagrams that
It will be
there will be a material reduction in initial cost, as compared with the deep conduit, as well as reduction in the time required for con the deep conduit, as well as reduction in the time required for con-
struction, most of the work being of a kind that can be prepared beforehand in the workshops, gauged and fitted together, in readi ness to lay down as soon as the foundation is prepared for it. These modificat ons entirely remove the only valid objections to the cable
system, and enable it to compete in initial cost with the least costly system, and enable it to compete in initial cost with the least costly no other form of traction, de
power, can approach near it

ON IRON SLEEPER PERMANENT WAY.*

By J. Schuler.

In reviewing the descriptions of various forms of iron sleepers which have appeared in the "Organ" during the last year, the must fulfil the following conditions:--First, it must ensure fastening of the rail with a sufficient capacity for resistance, and must be capable of being advantageously packed ; and secondly, it must secure for the permanent way a firm and fixed position in the ballast. None of the systems at present known fulfils tho latter condition, because in consequence of the rigid connection
between the rail and sleeper, the sleeper is forced to yield more or
" Minutes of Proceedings," Inst. C.E.-Abstracts.

Abstract

less to the forces which act upon tho rail, and tho amount and direction of the movements of individual sleepers are unequal and rather to rotate around its longitududinal axiospor wioh is the thoncost hurtful motion to which a sleeper is subjected, and it is therefore of the forces acting on a sleperer, and the conclusions ba nanalysis Fractures of rails, sleepers, wheels, and springs increased on thes ines. means of which the oload always, ate at the centro line of the sloepor, the tho atter not only replaces the elasticity of the vooden into consideration. An elastic bed.plate answering to these require. ments was doseribed by the author in an earlier number. + Th supports, and the ballast and rails are maintained much bettor in position, without tincresing the weight or amount of expenditure, a greater security in working, and higher speods are oattained with a reduction of working oxpenses. The author is of opinion that the employment or metal sloeppors wouls they wwore supplied dith elastic seatings. then

LAUNCHES AND TRIAL TRIPS.

In viow of the forthcoming launch of H.M. Grrst-lass crriser have commonced pile-driving operations at the end of the., soipwny,
on which the vessol is being guit, to bind the soil and prevent landslipping during her transit to the water. The Diadem is the
largest warshii ever built at Fairfeild, her total weight in seangoing
 The other three. which are named duropg, ivo be, and Andromeda,
are building at Clyde Bank, Barrow-mant Furnes, and Pembroke

 be encased, is being rapidly adjusted, fully on-e-aal the thequired

 Mesers. Clarke, Chapman, and Co's make, with their dorricks

 The ocfocion ot Chatham Dockyard have transmitted to the
Admiralty reports of the steam trials of the Venus and Spitifre.

 charactera and practically extended oovpr tenen sive and oxhaustive
stipultated
and the enjines developing 8000 indicated horse.power ; and the resesilt

 reach the Eddystonery Lighrthoo ad ad mirably, before the sho who wable able to
menced

 satisfactory, being only $1 \cdot 61 \mathrm{~b}$. per indicanamped tion of fuel was vor
 most successful trial trip recently on the Firth of Clyde, when the
conditions of the contract were fully implemented. The La Plata
col hand for the horal satel Mail Com steamers. Mossrs. Napier have or

all for-and-aft, and is constructed in accordance with the recommendations of the Bulkhead Committee, and the ventilating
arrangements throughout the ship are exceptionally complete arrangements throughout the ship are exceptionaly completet,
The machinery consists of a set of triple-expension ongines
cyla
 most modern appliances for officiency and economy, including
Howden's system of forced draught. THR Croole passenger and freight steamer, built for the Cromwell
teamship Company by the Nowport Nows Shipbuiding and Dry Dock Company, from the designs and wowder the ine idingong and Dry was launched on the 8th inst. Her principal dimenesions are: :-

 Creole is the frrst vessel sailing out of New York in the coastwise
trade to be ffted with a water botton, which is not ouly a con
tenien venienco but also o very great sateguard, as it itives her an innoer
and outer shell. Besides this ber hull is sul-divided into a number
Ber of water tight. compartments by means of transeresso bulkhearss
Ifer outsidg Her outside plating has vertical lap joints below the water-line.
She is riggod with two stoel pole masts and the neeessary booms Tor

 If the dock-house. The general arrangement of the pasenger
accommodation is, in many respects, a new departuro from the
the lisual type of coastwise passonger stacemers, and in more on the
lan of the modern Transatiantio steamship. There are two large obbies, one on upper deck and one on promenade dock, connented
y the main companionway. The deck accommodation is large nd well protected by bawnigs. The main engine is of the vertical
riplee expansion type with cylinders 28in., 44in, and 74 in.
 varity, worked by the Seo.Marshall valve gear, each valve re-
coiving its motion from a s separate oxcentric.
Steam is
ournished by three cylindrical doublo-ended steel boilers, each having six corrugated furnaces with a common combustion chamber. The
working steam presuru is 1801 lb . The cirest

AMERICAN NOTES.

(From our oron Correspondent.)
THE commercial situation has not improved. Railroad earnings
are unfavourable. Crop reports are right. General business flags. Prices aro weak, and a restriction of production is general.
Political anitations continue, and even in the Eastern manufacturing sections there is a silver sentiment, which newspapers dare not
dmit, and pretend to not know about. The ouiet drain of gold must conituoe nder the circumstances. Rairoad building for

 November. The silver circus has not developed far enough yet to
properly size it up.

HEE IRON, COAL, AND GENERAL TRADE OF BIRMINGHAM, WOLVERHAMPTON AND OTHER DISTRICTS.

(From our ovon Correspondent.)
The improved trade reported from the North of England on 'Change at Birmingham to-day, Thursday, helped to strengthen the market.
The works in this district are well provided with orders, and the Pig iron is in quiet sale

 Derbyshire, 41 s . to 42 s , and Northamptonshire, 40 s .
In finished iron, marked bars are steady at $£ 7$ to
and merchant bars have a moderate sale at $£ 6$ to $£ 610 \mathrm{~s}$. Common bars are in good call at $£ 510 \mathrm{~s}$. to $£ 515 \mathrm{~s}$. Black sheets are still in strong demand, owing to heavy orders for the galvanisers.
Doubles are $£ 617 \mathrm{~s}$. $6 \mathrm{~d} . ;$ and lattens, $£ 717 \mathrm{~s}$. 6d.; stamping sheets are $£ 910 \mathrm{~s}$.; and galvanised sheets of 24 gauge, $£ 1010 \mathrm{~s}$.
$£ 10$
15 s ., delivered Liverpool. Gas tube strip is $£ 57 \mathrm{~s} .6 \mathrm{~d}$. o $£ 510 \mathrm{~s}$. ; angles are $£ 515 \mathrm{~s}$. ; hoop and thin strip, $£ 6$; and nail
rod, 10 s , to $£ 615 \mathrm{~s}$. Steel is active at $£ 45 \mathrm{~s}$, to $£ 47 \mathrm{~s} .6 \mathrm{~d}$. for Bessemer blooms and billets. Bars are $£ 517 \mathrm{~s}$. 6d.; angles and girders, $£ 512 \mathrm{~s} .6 \mathrm{~d}$.; and boiler plates, $£ 65$ s.
An order for steam pump engineering requirements has been
placed in South Staffordshire by Japan, and is the largest order of he kind yet received from that country,
It is announced that Messrs. J. Lysaght, sheet iron manufac-
urers, have decided to remove the whole of their Wolverhampto works, employing about 1500 men, to a situation nearer the coast. The removal will be gradual, extending over two or three years.
Much satisfaction is being expressed in this district at the Locomotive on Highways Bill of 1896 having become an Act. In a
letter which has appeared in the Midland and other papers, Sir David Salomons, President of the Self-Propelled Traftic Associaof any reasonable man that this Act will be productive of great
changes, and that if all those who have an interest in modern progress will strive to improve self-propelled traffic, and those who no direct interest in the movement, it will be giving the English entailing, as I hope and
Another matter which is a cause of gratification in the Midlands is the progress which is being made with traction engine reform,
as shown by the fact that the report of the Select Committee on raction Engines on Roads has now been completed and issued.
Business men in the Midlands are pleased to find that the Compower to prohibit the use of engines for specified hours through
heir county or county boroughs. It is understood that there are bout 8000 locomotives in use on the highroads of the United Sanitary engineers in this district are generally agreed that
omething ought to be done to stop the pollution of the river
Tame, which is becoming decidedly detrimental to Tamworth and Tame, which is becoming decidedly detrimental to Tamworth and
is neighbourhood. As the result of a conference between the sub-
committee of the Sanitary Committee of the Staffordshire County
and Rea Drainage Board, the Birmingham authorities have decided to appoint a surveyor to report jointly with Dr. Reid, the county
medical officer, as to the whole area, causes of pollution, \&c., with view to agreeing upon what is necessary to provide a permanent
emedy. A joint meeting of the Tamworth Town Council and the Rural District Council bas been held, and it has been resolved to ask the other authorities named to add to the investigating body The directors of the Oldbubyr Railway Carriage and Wagon Company report that the result of the year's working, after deducting
the avverse balance, is a profit of $£ 14,707$, with which they prohe adverse balance, is a profit of $£ 14,707$, with which they pro-
pose to pay the two years
dividend
duu to the 30 th of June on the preference shares, and a do the reserve fund, and to carry y the balance
shares, to place tors to to
formard. The works are filled with orders, but, unfortunately, here is a scarcity of skilled labour, which prevents the directors aking full advantage of the improved condition of trade. Owing o pressure of work, the directors decided not to stop the works
or the purpose of taking stock, and to adopt the figures as shown The company's stock books, The directors of Muntz's Metal Company have declared an
interim dividend for the half- year ended June 30th last at the rate of 5 per cent. per annum on the preference shares and 5 per cent.
por annum on the ordinary shares. In the anchor forging trade of the Cradley Heath district an Heath and District Small-anchor Smiths' Association. The men state that some time ago, owing to the depression in trade, the
operatives' wages were reduced 1 s . per cwt. Since then 6d. of that amount has been restored, and the operatives now consider
the time has arrived when the remaining 6 d . per cwt , should be the time has arrived when the remaining 6 d . per cwt. should be
conceded, so that the wages may be brought up to old rate. The
foreg seen what reply the employers may put forward. Meanwhile the seecretary of the Association has been iinstructed to communicate
with the masters, with the view of securing, if possible, the advance of 6 d , per cw
Birmingham on Monday Master Brassfounders' Association met in pied the chair, and most of the leading brass foundry firms were represented, including Messrs. T. Pemberton and Sons, Tonks,
Limited, Evered and Co., J. Collins, R. and C. Harcourt and Sons,
Pettord Petford and Pountney, W. Hopkins and Son, Showell and Sons, \&c. The rules as drafted by the committee appointed at the recen
meeting of the trade were presented. These stated that the objects of the Association were to afford to members of the trade an opportunity for interchange of views, and for the discussion of any questions generally affecting the trade; the adjustment of
difficulties between masters and men and when they arise ; to appoint the masters' representatives to act upon a Conciliation
Board ; and to assist the men in obtaining bonus. Any manufacturer of cabinet or art, naval and penera brassfoundry, is eligible for membership. The amount of the sub scription is optional, but 5s. is to be the minimum, General The rules were adopted, and a large number of additional firms The thirtieth annual report of the Birmingham Trades Counci ithsta pleasing to note that trade geneerally had been exceptionally good
dring theor aring the same period, and as far as present indications served
they seemed to have entered upon a new period of prosperity. In
view of the desirability long expressed of having working men the magisterial bench, a memorial was drawn up by a committee together with the names selected by the Trades Council. The receipt of the memorial was duly acknowledged, and since then
several appointments had been made, but the labour nominees were not accepted.

NOTES FROM LANCASHIRE

(From our oron Corresbondents.)

Manchester.-In my previous notes I have referred to the possi with some English brands, and although in well-informed quarter the successful compentition of American iron here is regarded as
too much dependent upon temporary and special conditions to like the character of a permanent or establishe trade, theresting ig iron from the United States in consider able quantities to this district. One of the conditions which render such a trade possible is that the cotton-laden ships coming
to Liverpool and up the Manchester Ship Canal have to carry a解 exportation of American iron into the Lancashire district just now being stimulated by the depressed condition of the iron trade in America, and
of the iron it is proposed to send over here would come from Alabama, where, I believe, an export trade is the only outlet unde Manacturing companies in the above district bas been on the ing up direct negotiations with merchants here, and, subject to specialy low ballast rates being obtainable, a fairly large weight
of business is under consideration. It has been stated that the American pig irgers are propare, if these special ballas which they are anxious to get rid of at under cost price, but to actually make iron for regular delivery at competitive prices consumers. If this is actually the position, and considerin moderate return upon current rates, this threatened competitio解 part of their present high rates of charges for carriage. I understand ton on the rates for Middlesbrogress ton on the rates for Middlesbrough iron, which at present costs
8s. 4d. for carriage to Manchester, whilst district nuakers, who Derbyshire to Manchester, as the rate at which American pig iron has recently been shipped from Mobille, would, no doubt, also claim American pig iron presents a disturbing outlook in the trade of this siderable interest.
Only a slow sort of business continues to be reported on the Man fering tone, however, is healthy, and notwithstanding a good deal o underselling by merchants, makers' quoted prices are general
steady at late rates. In pig iron a moderate business is doing,
with quotations for local and district brands unchanged found quaities still averaging 46 s . 6d., less $2 \frac{1}{2}$, for Lancashire ; 42 s .
net cash for Lincolnshire, and 45 s . up to 47 s . net cash for
Derbyshion aring 44s.
Lincolnshi
is a good deal of low selling by merchants, but makers are
holding to late rates. For good foundry brands of Middlesbrough
makers still quote 45 s . 10d. to 46 s . 1d. net cash, delivered by rail
Manchester, but there are merchants who would sell as low as
45 s . 3d. Scotch iron is obtainable through merchants at 45 s .9 d .

THE ENGINEER

The position in the steel trade is just now anything but satis-

 engineering establishments, which, in many cases, have placed
large orders for delivery immediately on the re-starting of work.
Prices are firm at late list rates. With regard to the engineering trades of this district, except
that the usual annual holidays just now going on in many of the principal industrial centres of Lancashire, are for the time being putting a temporary stop to operations, the position continues of
much the same satisfactory character as I have reported for some time past, and although there is perhaps not quite so much presthe cause above referred to. In all branches work continues
plentiful, and the returns issued by the trade union societies afford vidence of the of parable condition of trade in the exceptionally percentage being the lowest recorded for a considerable number of yarar phast
 Works, Wett Gorton, have madod apociaity, and the othor dayl

 travelling crane of their latest design, which they have installed in most recent advances in this class of work. In this crane a separate
reversible motor combined with spur gearing is employed for each

 $\underset{\substack{\text { avergo } \\ \text { portbil } \\ \text { ontin }}}{ }$
 Suaron- Tho demand for Beasemer ganitioe of pigirion it

 hoops and bil

 Coal is still in quiet demand and prices are low. Coke is steady at old rates.
Shipping is busier. The exports from West Coast ports during
the past week represent 10,875 tons, and of steel 8054 tons, as com pared with 4038 tons of pig iron and 2552 tons of steel in the corre sponding
and 5502 have reached 198,400 tons of pig iron and 318,355 tons of steel, a
compared with 186,260 tons of pig iron and 224,749 tons of steel in the corresponding period of last year, an pig iron and 93,606 tons of stee
Much interest
Envoy, Li Hung Chang, to Barrow this week. His Excellency Werks, and the Naval Construction and Armaments Company works. He was especially interested in the weight of rails which ought to be put down on the new Chinese railways, and was advised
by Mr. Aslett, the general manager of the Furness Railway Company, to put down rails not less than 85 lb . per yard, i
traffics, heavy locomotives, and heavy rolling stock.

THE SHEFFIELD DISTRICT

(From our ouen Correrpondent.)

ThE pits in the South Yorkshire Colliery district are making and in a fow instances a full week's work is given. This satisfactory condition of affairs is chiefly attributable to the certainty of peace being maintained throughout the area of the Miners
Federation of Great Britain, all the threatening symptoms having apparently died away. Several sentences in the yearly statement
by Mr. Benjamin Pickard, M.P., the president of the Federation by Mr. Benjamin Pickard, M.P., the president of the Federation,
who is also secretary of the Yorkshire Miners' Association, are a littlis dissuaieting, but they are not taken au séricux, and are not
likely to disturb the prevailing feeling of confidence in the districts. It is noteworthy, however, that in spite of the improvement in the general coal trade, no attempt is made to restart the colineries
which were Thich were recently closed. The coalowners have made up their minds to limit operations
the seams which can be worked without loss, and this in no small measure accounts for the brisker business in the larger pits. Mr .
Pick Peasurd intimates that there may be trouble if too many pits are
Phe shut up; but this appears to
working under conditions which handicap them in competing against ocalitios enjoying theadvantage of sea tricod of the wages.
being op
places ow The miners in the neighbourhood of the large pits just
opened will receive more pay; the others, resident in the
where the seams have been found to be thin or where the thicker beds are giving out, will have to seek other quarters; and in any case there will not be adeequate work for the whio of them.
This is what Mr. Pickard anticipates, for none know better than himself that the drain for support of the unemployed miners will
in that case be too severe for the funds of the Miners' Unions, and if that relief is withheld on the ground that it is not strike pay, there will be trouble all the same.
Although the weather has been unusually chilly, with northeast winds dominant, the house coal trade has been by no means
vickened. Householders laid in supplies prior to the expiry of the
 country pits, from which the market is reached by sea. For best silkstones the quotations range from 88, to 9s. per ton, ordinary
ualities making from 6 s . 6 d . per ton ; Barnsley house, from 7 s . to 8s. per ton; thin seam, from 5s. 6d, per ton. A very good busi-
ness is bieng done in steam cooi, fully an average tomnage being Several of the collieries are delivering more freely to the continental markets. Blieries are deivering mord remain at 6 s . 6 d . to 7 s .; secondary
nualities from 5 s . 9 d .
quant gas coal values are maintained, from 6s. to 7s. per ton being
readily
increasen. Manafacturing fuel iol is beigg largely ordered the the
incements for coking purposes keeping quotations
 from 1s. to 2s. per tor. The output of core is daily increasing
fost makes, 12s. per ton, while ordinary qualies aro to be had
from 8s. .fd.to 10 . per ton. New ranges of coke ovens are being
laid down in some directions. The iron and steel trades are well maintained, and prices are arm at recently quoted igures, with the higher grades in weight
Swedish steel the dificulty is to get the
zuficicient to meet requirements. Prices are going up steadily suftiont to meet requirements. Prices are going up steadiy
$£ 1$ 10s. per ton in best qualities and $£ 1$ per ton in seond being
the advance of a single week. This advance is attributable mainly to the abnormal demand from the United States and Birmingham district for steel for cycling and other tubing. Charcoal has also 54s. to 57 s . per ton, according to brand, delivered in Sheffield
-and forge irons are also quoted at previous figures 39 s . ter ton, also higher. The general heavy trades are in
their going hal
satisfactory condition, especially as regards railway material,
thich is still being freely ordered, chiefly on home account. The shich is still being freely ordered, chiefly on home account. The
wastern markets have of late yielded a good deal of important
Eatrk, but not to the weight expected. It is a local disappoint
wor work, but not to the weiggt expect been able to visit Sheffield, for
ment that Li Hung Chang has not
he would bave seen much here that would have exercised an important influence on the future of his country. Still, whatever
he does elsewhere is certain to favourably affect Sheffield, which provides the specialities in railway, marine, and military material,
to say nothing of the extensive range of tools required in the
Chinose arsenals. A gratifying feature of business this season is the steady improvement reported from the Australian markets.
Tho orders at present are principally for tools, cutlery, and plated goods, the latter mainly in the secondary grades. At one time
Australia was a great market for the best classes of silver ware.
The tendency is now to take lower qualities. Makers of tools are
excedingly busy. $£ 195,147$, as compared with $£ 179,222$ for July of 1895. The
increasing markets were Sweden and Norway, Denmark, Holland
France, British East Indies, Australasia, and British North Mnance,
Aneric. Decreases wore shown by Ruspia, Gritmany, and
United Stare
 Belgium, France, Spain and Canaries, United States, Foreign
West Indies, and Brazil.

THE NORTH OF ENGLAND
HoLDDAYs have somewhat interfered with business in this district
this week, but nevertheless there is no doubt of the fact that the 1on market has improved, and that producers have hood reason
to expeect a busy autumn with better prices. Makers of pigiron iron
report a largo number of inquiries during the last fow days, chiefly
from the Continent, and it is evident that consumers have made
up their minds that they will not be able to satisfy their requirements for the rest of the year on more favourable terms than now
prevail. As yet, the brisker inquiry has not resulted in much extra business, because the prices that have been offered by buyers was offered for forward than for prompt deliveries, and producers have grounds for expecting that they
stantially higher prices next month when the autumn demand has fully set in. Most makers have preferred recently to put iron into stock rather than sell it at the prices that have been ruling, and some producers have never sold any No. 3 Cleveland pig iron under
37 s . 3d. As compared with last week, No. 3 has advanced 3d. per ton, the lowest figure quoted either by producers or merchants
being 37 s . for prompt f.o.b. deliveries, and very little has this
week been sold under that price, while 37 s , 3d. is the minimum for noxt month. Cleveland warrants have improved in value, and
there is a larger demand for them, as on account of their being so much cheaper than makers' iron, consumers have been buying for the heavy reduction in the stock of Cleveland iron in Connal's warrant stores. On five days this month has the reduction exceeded a thousand tons, an almost unprecedented occurrence. On Wednesday night, 184,627 tons were held, the decrease for the
month being no less than 9166 tons. Seeing that warrants have been 4 d . to 6 d . per ton cheaper than make
demand for them is what might be looked for.
There is this week a reduced consumption of pig iron in the foundries, and indeed all establishments consuming pig, have been
idle since Tuesday ovening, and will remain so till the commencement of next week, the holiday being what is usually given in
Stockton race week. But this decrease in consumption is counter balanced by a decrease in the make, so that stocks are not likely to be much augmented this month. No 4 and mottled and white
is quoted at $36 \mathrm{~s} . ;$ grey forge at 35 s . 6d. ; adile
at 35 s . 3d., and more of these forge qualities are available for sale than has been known for a long time. Mixed numbers of Cleve as long as rates of freight keep up, and they will probably not be reduced until after the autumn. Blast furnace coke does not change in price, for though in this district the consumption has
been reduced by the blowing out of furnaces, this has been counter balanced by the relighting of others on the West Coast
The production of pig iron in the North of England has been
reduced this month by the stoppage of blast furnaces last Friday in order that the men might demonstrate in favour of the eight
hours' day, a concession which they are not likely to obtain, seein that th introduced. Out of the twenty-four pig iron manufacturies in the ments were kept at work where the eight hours had been conceded and operations were continued at the Linthorpe and Redcar Iron The two furnaces making spiegeleisen at Messrs. Bolckow, Vaughan and Co., Middlesbrough Works, and a furnace producing ferro
manganese at Messrs. Gjers, Mills, and Co., Ayresome Ironworks, were kept going, as they could not be stopped without seriou results following. It is estimated that the holding of this demon diminution of production is not confined to the day alone for diminution of production is not confined to the day alone, for were stopped ; and besides this, the quality would be poorer, maker in consequence being consideratle losers, as they would produce less of the quality which is most in request-No. 3, and more o
the lower qualities which are not so readily saleable, but which cost just as much to produce as the highor quality. Ever sice Iron Company have damped down a furnace for repairs, which wil take three weeks or a month to execute.
As a result of the blast-furnacemen's demonstration two furnaces
bave been altogether blown out, and others may have to be stopped also. Messrs. Bell Brothers have blown out a furnace at Port Clarence, and the North Eastern Steel Company one at Acklam company intended that it should run until they had one of the two new furnaces, now in course of construction, ready to take its place, which might be in six or seven months. But in order to that it should be run without interruption, and a stoppage for of affairs was represented to the men working at the furnaces,
but consequence is that instead of having continuous work for six
months till a new furnace is ready they will be idle over that period. Such action as this cannot well be credited, but neverthethree furnaces to the four now existing, so as to supply themselves
with basic iron, and two of the furnaces are already in course of construction.
There is no lack of orders in the finished iron and steel trades, and prices all round are wel maintained with rather a tendency
to advance. In Cleveland and South Durham some of the finished iron and steel works, the foundries and engineering shops, the
shipyards, \&c., have been idle all the week, but most establishments closed on Tuesday evening for the week on account of the only important exceptions, are Messrs, Bolckow, Vaughan, and
on.'s Eston Steelworks, and the North Eastern Company's Works at Middlesbrough. The fact that they have been kept in full
operation over the holidays affords evidence of the activity of the rail trade. Other establishments would have been kept at work if venience when the manufacturers are in arrear with the execution
of their contracts. It was finally decided on Monday that the Darlington Steel and Iron Company should be wound up volun
tarily. It is found impossible for that inland rail-making estab-
lishment to compete successfully with works which where shipping facilities are good. Mr. W. Barclay Peat, of
London and Middlesbough, has been appointed liquidator.
The shareholders of Jno The shareholders of Jno. Abbot and Co., Park Works, Gateshead-
on-Tyne, will receive a dividend for the last financial year of $5 \frac{1}{2}$ per ent. A profit of $£ 11,986$ was made during the year. The directors
report that in the first half of the year the demand increased, but prices remained stationary; in the second half a larger
business was done, and at slightly improved prices. Chains and
anchors were in greater request, and freedom from labour disputes allowed of profits being made. The sum of $£ 9964$ has been spent
during the year in repairs and renewals, and this sum was taken
out of revenue. New machinery has been added in several depart out of revenue. New machinery has been added in several depart
ments, and other additions aro contemplated. The North-Eastern Railway between Darlington and Barnard
Caste has been doubled from Barnard Castle East Junction and
Broomielaw, and the new line was opened on Sunday last ally the whole line between Darlington and Tebay is being doubled Plain and Blackhill, an extension of the line from Birtley Junction
and Annfield Plain, which was opened in the and Annfield Plain, which was opened in the early part of 1894 ,
The length of line brought into use this week is 6 miles 69 chains,
and has been constructed partly by Messrs. Nowell and Sons,
Victoria-street, Westminster, ictoria-street, Westminster, and Mr. T. D. Ridley, of Middles
brough. The route of the railway is that of an old line brough. The route of the rail way is that of an old line, long
used for minerals. The line will shorten the distance from several
points of the North-Eastern system to Consett, and may be used

Abstract

makers and Shipbuilders reports that there is an increasing demand or the members of the society, and the number of the unemployed 8 becoming "beautifully less." The present improvement in trade is not, in his opinion, likely to assume the same dimensions as the shipbuilding boom of $1881-3$. Ironfounders, shipbuilding boom of 1881-3. Ironfounders, particularly those producing pipes, are doing well, and prospects are satisfactory. The coal trade is on the whole less depressed than for some con siderable time and the demand has improved appreciably both siderable time, and the demand has improved appreciably both for steam and gas coals, while the prices have stiffened. Shipand coal shipping places, more especially at Tyne Dock and Dunston. But Northumberland steam coal is steady at 8 s. $4 \frac{1}{2} \mathrm{~d}$. per ton f.o.b., and steam smalls are at 3s, 6d. Best Durham gas Intelligence has been received that Mr. Joseph Proud, who was In and who is now in New Zealand, has been appointed by the Government to act along with Judge Ward and Sir James Nector, F.R.S., on a Royal Commission to inquire into the cause of the Brunner Colliery explosion

\section*{NOTES FROM SCOTLAND.

(From our ona Correspondent)

(From our ona Correspondent)

THE Glasgow pig iron market has been unsteady this week, in The circumstances connected with this affair are somewhat peculiar In one of the Glasgow engineering shops there is a workman who
objected on principle to become a member of the Union. His
fellow-workmen sought to compel him to join by calling upon his employers to dismiss him, unless he consented. This the employers
declined to do, and the rest of the men all came nut on strike. The matter has been referred to the executive of the Engineers Society who have advised the men to return to their work. At the time o
writing, however, they still remain out in defiance of instructions and the, gravity of the case consists in the fact that the action of
the firm is supported by the united masters of Scotland and the the firm is supported by the united masters of Scotland and the
North of England. It is felt that a dispute like this might cause a rupture between employers and workmen generally, were not
wise counsels to prevail. The subject has been under the consideration of a conference of the masters held at Carlisle, and there is
no probability that they would consent to relinquish their liberty to employ a competent workman whether he belonged to the union or not. Some authorities on 'Change are, however, of opinion that
too much importance has perhaps been attached to this incident. At the san
at 45s. 6l was cash in Scotch pig iron warrants early in the week price fell about 3 d . per ton, and a large quantity of warrants changed confined to professional circles. The interest in the market on the part of the outside public is very small. Cleveland warrants
have met with a slow sale at 36 s . 61d d , cash, and 36 s , 36s. 9d. one month. Transactions have occurred in Cumberland
hematite at 46 s . 3 d . to 46 s . $3 \frac{1}{2} \mathrm{~d}$. cash, and 46 s .6 d . to 46 s .5 d . one month.

Since last report there has been some re-arrangement of blast furnaces, the result of which is that there is one furnace less
making ordinary pig iron and one more producing hematite, the making ordinary pig iron and one more producing hematite, the this time last year there were seventy-six furnaces in operation.
The weekly output of ordinary pig iron is about 1500 tons less than at this time last year, while the production of hematite is about
3000 tons per week larger than in August, 1895 . This 3000 tons per week larger than in August, 1895 . This state of matters indicates pretty clear
in the manufacture of steel.
The stocks of pig iron in Glasgow stores show a slight reduction, and there is a growing impression that stocks everywhere are light
in comparison with the amount of raw iron now going into consump. in comparison with the amount of raw iron now going into consump-
tion. This belief is certainly having its effect as regards the market for makers' iron, which is firm in comparison with that for
warrants. One or two brands are indeed being quoted 3d. to 6d, advance during the last few days. The prices of Scotch makers' pig-iron are as follows :-Govan and
Monkland, f.o.b. at Glasgow, No. 1 , 46s. 6d.. No. 3 , 45s. 3d.;
Carnoroe and Wishaw, No. $1,46 \mathrm{~s}$. 9 d. No. $3,45 \mathrm{~s} .6 \mathrm{~d} . ;$ Clydo, No. $1,48 \mathrm{~s} .6 \mathrm{~d} . ;$ No. $3,46 \mathrm{~s} .6 \mathrm{~d} . ;$ Gartsherrie and Calder, No. 1 ,
$49 \mathrm{~s} .9 \mathrm{~d} ;$ Nos. 3 , $47 \mathrm{~s} .6 \mathrm{d}$. ; Summerlee, No. 1, $50 \mathrm{~s} . ;$ No. $3,47 \mathrm{~s} .6 \mathrm{~d}$.
Coltness, No. $1,52 \mathrm{~s} .6 \mathrm{~d} . ;$ No. 3 , 48 s , Glengarnock, No. 1, 49s. $6 \mathrm{~d} . ;$ No. 3 , 45 s . $6 \mathrm{~d} . ;$ Eglinton, No. 1, 47s.; No. 3, 45 s .; Dalmellington at Ayr, No. $1,46 \mathrm{~s} .6 \mathrm{~d}$.
Leith, No. $1,52 \mathrm{~s} .6 \mathrm{~d} . ;$ No. $3,48 \mathrm{~d} .6 \mathrm{~d}$
The consumption of hematite pig
quite as large as before the polite ig iron is now believed to be Scotch-made hematite is being used, The tendency seems to be
rather to displace Cumberland iron. This does not occur on account of any prejudice against the latter, but simply because the conditions are favourable to the cheap production of hematite in Scotland from imported ores. Merchants quote
493. 6d. per ton, free on trucks at the steel works.
It is worthy of special note that the shipments of Scotch pig
iron have recently been improving. Those for the past week amount to 8474 tons, compared with 7903 tons in the corresponding week of last year.
The business in finshed iron is on a moderate scale, the foreign
demand being rather slow, while the consumption at home is well demand being rather slow, while the consumption at home is well
maintained. Prices are without change. The steel works are now maintained. Prices are without change. The steel works are now variety of purposes,
of the shipbuilders.
The coal trade is at length, after long months of dull uniformity
and low prices, showing indications of an improvement. This appears to arise from a variety of carses. Just at the time
when holidays are pretty general in some of the mining districts, the when holidays are pretty general in some of the mining districts, the
demand for manufacturing purposes, chiefly in connection with the iron and steel trades, has been expanding. The export trade with now more doing from East Coast ports with the Continent. At the same time, the miners in several districts, under the advice and influence of their leaders, have been restricting the output. The week, and 173,373 in the same week last year. There is a total
increase ncrease in these shipments for the present year to date of
234,422 tons. The prices f.o.b. at Glasgow are:- Main, $6 \mathrm{~s} . ;$; plint,
$6 \mathrm{~s}, 6 \mathrm{~d}$. to $6 \mathrm{~s} .9 \mathrm{~d} . ;$ ell, 6 s .6 d. to $7 \mathrm{~s}, ;$ steam, 7 s . 6 d. per ton. In Ayrshire the demand is good, both for home use and export, and
the prices there are, for best house coal delivered at the ship's
side, 6 s . 9 d .; steam and main, 6 s ; ; triping, 5 s , 3 d ; dross, 3 s , to There is a good deal of interest among working men in various
branches of the iron and certain concessions are being made by employers either in the
 miners are entitled to an advance of wages, and advising the men
to strengthen their organisation with the object of obtaining such to streng
advance.

WALES AND ADJOINING COUNTIES. (From our oun Correspondent.)

Company to form an important branch, or, it might more properly
be called, a duplicate concern on the Cardiff Moors. At one time a rumour was afloat that an English establishment had selected Vale Works was being directed towards the coast. Now I am told
that even if the Barry step has not yet been perfected, unquesthat even if the Barry step has not yet been perfected, unques
tionably Llanelly and Newport, Mon., have been selected as sites fo
works works in connection principally with steel. With regard to Nowpor
I now learn that Messrs. Lysaght and Co., iron manufacturers on
Wol Wolverhampton, have entered on a lease for seventy acres near
Newport, on condition that works are erected in five years. They have also obtained four acres from the Corporation, which will give
them an outlet to the river. When the works are complete
Wen 1000 men will be employed. At Llanelly the directors of the new
steel
works
works. lill likelihood there will be further developments of this kind In allikeinood there will be further developments of this kind,
consequent upon improving times in iron and steel, though some
delay has occourred owing to the long drought. This week it was reported that serious stoppages are impending. Even at Cyfarthfa,
reat
where the supply of water has been much greater than at Dowlais where the supply of water has been much greater than at Dowlais,
a belief prevails that another week of water famine must cause a a belief prevails that another week of water famine must cause a
serious hitch. Mid-week it was reported that at Dowlais one
thousand men were idle and a relief fund is to be started At serious nditch. Were idle, and a r releief fund is to be started. At
thousand men wand
Llanelly a serious condition continues, and, more or less, this is the report from all quartors in Wales. A local authority cites
the fact that the closest attention is now being directed to water supplies, and a busy time in engineering, plans and "seeking
for powers" is coming on. It is calculated that it will take two years for the Welsh springs to regain their normal condition. The pig iron market has slightly recovered the late drop, and on masters are satisfied that an improvement is at hand, as the supply and demand are more equalised. The rail inquiries are encreasing,
and projected railways in Burmah and Uganda are likely to give furtber curtail the supply of tin bars, and lead to improved prices in that manufacture. Last week it was a novel and gratifying oxceptional quality. There was also a fair make of tin bar sen away last week. The coke trade keeps up a vigorous front, with good local and rices, 13s. to 19s. 6d., Cardiff 10s. to 10s. 3d.; Swansea, 9s. 9d. to 10s. Pitwood, Cardiff, is weakening, co
Prices,
iss.
id
General iron and steel quotations, Swansea, this week, were a

 £59.18. 3d.
Mid-week a quiet feeling prevailed in the seam coal trade, an
 best
best
sorts
 doing, and local businoss is improving, buyers beginning to la
in tho first stocks for the lengthening nights. Signs of improve
prices are evident. Latest prices Cardiff are:-Best

Mr. Bailey, the is freed in the district of Plymouth collieries that Mr. Bailey, the general manager, has resigned his appointment.
There can be no question of Mr. Bailey's great ability and the
South South pit may be named as one where than in any colliery in th district. The works have been managed with great immunity from accident, but labour questions have been very prominent there.
The workmen, over 2000 in number, include a number of Staffordshire and Welsh colliers, and the Irish element is considerable
The proprietors of the collieries since the death of Mr. Hanke The propriewrs olly the colineripally the sons, who for some time have had a tem son., aro principally the sons, who for some time have had a ten
porary residence at Penarth, Cardiff, making periodical visits to the collieries.
The inquiry into Neath Colliery accident has been the subject
of keen examination and cross-examination, and has again been of keon examination and croses-axamination, and has again been
adjourned, partly in the expectation that one of the sufferers will
be nffciently recorered to be sufficiently recovered to attend. One of the points elicited so
far is that an wind, may permit gas to be forced throve flame. This admitted, even the "Davy," which is used by the firemen to test the working places, may not be proof.
About forty members of the Bristol Channel contre of Marine Engineers visited the Forest of Dean on Saturday last from Cardiff. During the proceedings an interesting paper was read by Processo
Elliott on "Iron and Steel : Old and Now," touching particularly upon the Roman ironworks, remains of which still exist in the Forest.
Swan
Swansea Harbour returns of last week are eminently satisfactory, showing an increase over the corresponding week of last ycar of
30,000 tons. Coal shipments were above the average, and one 30,000 tons. Coal shipments were above the average, and one
steamer-the Osborne--took 4750 tons of anthracite to San Francisco. Imports of pig have been large, mililions siguring prominently
In all Swansea imported 2789 tons of pig, 1820 ons iro ore, and
153 tons rails. In tin- plate there was not a large difference between make and export, 56 , 491 boxes coming from works, and 59,421 boxes
 plaints exist with regard to the short supply of tin bars; and it is
oxpected that this will lead to an improvement in price both of bars and tin-plate, or as some assert, lead to more mills being stopped.
Ad accident occurred a few days ago at one of the anth-
recite collieries Ystalyfern, racite collieries, Ystaryedera, called Hendroforgan. This is worked
by a drif 1800 yards in length, falling on an average 8 in. ride in the trams to the surface, but a number of boys, taking advantage of an upset due to an accident, jumped into a train of
trams, and were nearing the surface when the hitching plate of the injury to seven others.
At Powells sit, Llancarach Collieries, the men have been out for
the some little time, consequent upon the objection of the propriotary
to pay for small coal. The latest statement was that both sides or The colliers still cling to the impression that it is the strength lifts it or keeps it ownan, and that the excess of supply over demand has nothing to do with it. On Saturday the workmen's section of
the sliding scalo met in Cardiff for the purpose of preparing a
scheme to of coal. Mr. Abraham-Mabon-was in the chair, Mr. D. Morgan,
vice, and a number of intluential members were present One
scheme, it transpired, debated was an alliance between coalowners scheme, it tr
and workmen,
was carried
as carried.
Steel chests for tea packing are
I hang if he comese Newport way.
hear good reports of the elect

NOTES FROM GERMANY
(From our oon Correspondent.)
No material alteration can be reported in the iron businoss
enerally; both the raw and the finished iron trades are bus, Sonerally ; both the raw and the finisfed iron trades are busy, and

 Doliveries in the heavier artioles of iron
nd to Rossia have increased in weight. The plate and sheet dopartment is at present very favouraly
ituated, the ordiers received being, as a rule, heanv, while foreigg

 position,
freely.
On the
of the Austro.Hungarian iron market the satisfactory condition
of former weeks has been well maintained all throu this.
 works, strs is expected to take place. All sorts of railway materia are likewise in good call, and there are prospects of a continved brisk activity in the railway department Negotiations have
aready been carried on between the Austrian State Railwy Ad ministration and the Austrian wagon factories regarding next
 about million fiorins, The locomotive shops also come in for Conders are to be supplied within the noxt two years, tho sum Tpent for these being estimated at 24 millition horisus. and healthy The blast furnace works of the Nord raised the basis price or bare

 on foreign account an active demand is experienced. Doring the
first two quarters of present year, 423,800 t. t ig iron were prouced in Belgium against 4088465 t for the corresponding period last

 In blow on the 1st of July. Although the position of the Belgial
oal marke tis, on the whole, antisfactory, the restrictions in out put which have recently taten place, owing to fonanceial difificulties
re attractiog general attention. First the colliery Midi do Mons stopped altogether, and all the hands employed were dismissod;
now the collieries of Paturages and Wasmes have announced their
 report.

 tteel must be considered as decidediy satisifactory numerous order
 iively inquiry, and the bar mills are contemplating a further ad vance of M.5. S.t. Hoopshavenot tollowed in the general uppard movement,
and are still rather weak in quotation ; angles and l light sectional iron aro very brisk of sale, and the mills, ongaged in the prodoction of
these artieles continue very busy. Girders are so well inuuired tot that production can hardyly keep pace with consumption. In spite of the heary output of the mills in Rheinland-Westphalia and in motorily, a dast which is rather astonishing when the oxtremely
and Koon compotition among the different mills is taken into consideration. The plate and sheot mills are becoming more antive
from week to weok; but the state of the wire business remains faw rom satisfactory, and, what is worse still, there are no symptoms of a shassactory, and, wha
of chang for the better.
For many months the employment of the tabe mills has been
oxceptionall good, and prices-that is, those for home require ments-leave a fair proft. ${ }^{\text {on }}$ foreign account a small butines

List suotations for the different articles of iron and steel are as
oollows :-Good merchant bers follows ang - Good merchant bars, M . 1255 in some instances M. 130 ;
angles, M .129 to $130 ;$ girders, M .113 to $115 ;$ heary plates for

 The oollierieos of the Sarr district produced in July of present
year $671,565 \mathrm{t}$. coal, consumption being $631,260 \mathrm{t}$ t. durng the same month last year $533,710 \mathrm{t}$. were produced, and $539,335 \mathrm{t}$.
sold.

THE NEWPORT HARBOUR COMMISSIONERS

 WEEKLY TRADE REPORT.The demand for stoam coal keeps fairly good, with prices same firm. Tin-plates are in fairly good request. The iron and stee works continue to be well employed.
 Cumberland; Middlesbrough No. 3, 36s, 8d. prompt; Middlesbrough
hematite, 44s, 4d. Iron ore : Rubio, 12s.; Tafna, 11s, 6d. Stee Rails, heavy sections, $£ 412 \mathrm{~s}$. 6 d . to $£ 415 \mathrm{~s}$; ; light ditto
$£ 512 \mathrm{~s}$. 6 d. to $£ 515 \mathrm{~s}$. f.o.b.; Bessemer steel tin-plate bars, $£ 45 \mathrm{~s}$. to $£ 47 \mathrm{~s}, 6 \mathrm{~d}$. ; Siemens tin-plate bars, best, $£ 47 \mathrm{~s}$. 6 d . to $£ 410 \mathrm{~s}$.; all $9 \mathrm{~s} .9 \mathrm{~d} . ;$ Siemens, coke finish, 10s.; ternes, per double box, 28
by $20 \mathrm{c}, 19 \mathrm{~s}$ to 20 s . 6 d . Pitwood, 15 s . 9 d . to 16 s . London
Exchange Telegram: Copper, $£ 477 \mathrm{~s}$. $6 \mathrm{~d} . ;$ Straits tin, $£ 5913 \mathrm{~s} .9 \mathrm{~d}$. Freights stead

THE PATENT JOURNAL.

The Illuatrated oficial Journal

Application for Letters Patent. When inventions have been "communuteanted. the
name and
printed in in itross of the communicating party are printed in italics.
nate

6th August, 1896.
17,978. STorpres for Borker Toues, w. W. Carney and
E. G. Sevenoakes, Norwich.

 London.
Thisiva or Reproodveriva Proors, T. J. Perrett,
Tondon. 9. Elen.
 London.
17, Sind Air
London.
 Tomin, London
17, 34. Tine for Bicyeles, Theycless, \&c., R. Westley,

7.396 Corrs, N. M. . shakowr, London.
7, 397. PxEv.
London. London.
Lond Con.
Lere Pedals and Attachments, H. S. Hafford, London.
Li, Locorisa
London. London.
Thiod Diogr Tins, G. J. Hone and A. F. Hills,
Londem. London.
Tr, ind. Tratarent of Sacchasixe, \&c., c. Fahberg,
London. London
itan
inuryer
Ton

 chester
it, tos. Fimbra Cakrs,
Hope, Liverpool.

 Liverpool.
17,4og Packiva, \&e, Provisioss, J. C. Blanchfower,
London. 17, Alo. CVCLE HaxDLE-BaR, C. R. Stevens and S. S.
Bromhed, London. 7,411. Cyvole SADDLEs, F. W. Golby.-(A. : Richter,
 London Rallway and othor Car Brakes, P. Erb,
Lones for Prroontin Pat 17, tond Mis Michines for Perforativa Paper, A. Krah,
London.

London. 17,420. Prockes of Treatino Leather, r. Widemann,
,ITondon. 17,421. Hitar Lotions, J. Herbst, London.

74 A Aupust, 1896.
17,422. TAp Splie for Beers, \&e., H. F. Searby,
17, London. Biarkels, H. Berrer, London.

 ${ }^{17,4.0 . \text { L. Lith for Cellisos and Walls, G. H. Walters, }}$ Bristol.

Mirfeld.
7,434, Biovele Bra Krs, E. H. Rossand A. E. Hodder,

 7,48. Cosetruction of Artificial Limis, J. Stubbs
sheffield.
 Glangow.
Winves or Buxos for Barkess, \&c., E. Ball,
Walenll

 ${ }^{17,445 \text {. Crcle Makers' Tool, J. H. Bury, Oswald- }}$

 London.
17,45. PRodecrsa Costintous Vacuens, A. Dauber,
Germany.

 1746
17,46
mi
17.46
17,4
17
17
17
 17,472. Cosstruccroon of Boxse, J. Mills, London.
17, i43. Evvelope, C. N. Bintelife and J. Walkor
 ndon. Hindis-BRes of Cycurs, A. Blochynden and
F. Cruwford, Londoul

 Corpuiso Machinss, C. D. de Forest, w. F. and
Kenna, London.
 les, London.

HELMEIS, \&c., N. Knowles and D. Baxter, | London. |
| :---: |
| $\substack{\text { Th37. } \\ \text { London } \\ \text { Lond }}$ | E. Schenttentration of Salts, A. Kumpfmiller and L,489. Conskectiso Boller Tubss, J. R. da Costa,

London. London.
Bri. APA
Bri tol.
 London. d93. Gold Recoveny, C. w. H. Güpner and H.
 , 495. Biovcurs, W. P. Thompson.-(II. E. and J. F.
 Biovdous, W. E. Rowlands, Liverpool,
SEwLza MAchins, R. Brown and J. Quim

 17,503.
T.504d
1,504

 L. Lond L.Ondon.
Lond
London.
 L. London. Workixa Stowe into Polurs, K. Hergenhahn,
 London.
7, Listachable Pseviatic Tires, J. Favets,
Lond. London-
17,516 Borrte Sroppres, A. J. F. Gunning.-(E. T.
J.entin

 London.

so7, Fut Poor and Husomo
2,527. Fuat Roor and Hasoiso The, J. Padbury,
Bearborough. 17,525 . Sconkws, E. R. Kirkpatrick and W. J. Hamilton,
Belfast. 17,529. Centrifuanl Punps, W. and F. Marsh, Manchester.
c, ,hes. Heativa Gas Retrorts, \&c., G. Helps, Man-
 D. Smith, Sleaford.
77, 332. HRTrino of Bonses and Kuss, T. Nicholson,
Rochanle.
 Hastings. 17, Rest Brushes for Cleanixa Cyclus, G. H. Fisher,
 Suseor.
7.,.33. Fonnation of Solunle Colloms, E. J. Mills,
Glagow.
 McMe ekin, Haliffax anss, T. Haworth, Halifax. pitil Jointivo Sasitan Ry Pipes, J. Jarvis, Long. 2. Biovele Wherl Thre, J. J. Warty, LiverHonsssiog, W. Robinson, London.
 CCina.)
17.,47. Rulsa of Paper, W. Jamieson and W. Howard,
London. 17, OS. Pon. Pumuyiva Butrer, J. H. Hunter, County
Dublin. Dubyin. nasuracture of Tuarsa, F. A. Walton, Bir-
 77, 551. Brazaso Hrantus, E. F. and G. W. Goodyear,

17, Loss. Borixa Appasatvs for Demp Borinas, A. Raky, LT,54. Scarewisa MAchise, J. F. and R. H. Shaw, 17,56g. Romary mis Cycuss, A. Littlehales, Bir-

 London
17, sso
Swain 17, S50, ADvegrisisa Books, H. Allwright and E.

 17,592. Heads of Carbiaor Lasirs, H. Salsbury,
17,593. Cupolas and Blast Furnaces, I. A. Timmis,
 London.
 598. Morors, L. P. Maréchal, L. Yomet, and F.

 ${ }_{\text {Lit }}^{\text {Lon }}$ Lon
$1,7,03$
17,604
17 h. Drawrideoss, J. T. Knowles.-(J. Coup
Status.)
Coatina Alominive, E. Edwards.-(H.

 B7. Buse, Hyndon. 1

 London.
17.60. Siowiso Facsimues of Diamonds, E. Fellows
 Li, cindon. Tor in form of an AIR Balloov, M. Badorffif
cologne.

 17,615. Petroleva Motor Mechanisy, C. Moreau,
London. 17.616. Playing Strisoed Isstruarats, s. Hey.-
(W. S. Reed, Unitel Statea.)

10th August, 1896.

17,617. Taps, The Patent Rotary Solf-measuring Tap
Company, Lh., and H. E. Brice, Birmingham.

 Thetford. Th. Thit Nox.slipisa Honss.shoss, \&c., R. Skelton,

 17, ,631. Shivitus 0 , 17, 632. CrcLss, J. D. Tomlinson, Manchester.
17,683 . Ovess for BAKINa Pokcelais, de., w. Dall, LIondon.
17, ,34. Ovele Driviso Grar, T. and O. J. Meacock,
Londow Lo T. Wood, United Stata.) Brick, A. Easterbrook.-(T.
 H. and A. J. Lawson, Bristol. W. Golby. - (P. Loct

17,600. Onons Elverbic Pskumatic Action, E. Smith, Blackburu.
17, Chll Crcce and other Braskes, D. and W. S. Provand,
Glagow.
 ford. Elzecract Lasp, R. A. Smith and F. G. B. Green,

 Rasisixo and Lowzeiso Blisde, E. C. Buik, CAmrra Front and View Finder, e. S. Ullmer, Rillway Brakes, G. I. Root and A. Begg, Bikisa Frame, J. Lacroix and F. e. Searll, Pulverasks, J. C. Clark, London.
FExves Posst, A. Davison, London. Fexoe Posts, A. Dayison, London, W. Woisey, Fris Alaras and Ispicators, w. H. Short, Bonew Stopperisa of Botriles, B. Turner, Tine for Cycuss, T. Muller and G. Hoyer,
 Red.
Recitacle for Electric Wires, E. F. Jones,
on.

Den.
Venicle Brakes, L. Barreau and E. Guinau, London. Tickuatic Tirss, E. L. Parker and J. Luckock,
 Taradle Mrchanisa, A. Lindigkeit, London,
Drivisa GEar for Cycles, de., J. Byrd, don. on.
Hatr Curlur, w. H. Murray, London.
Oarainiso Porous Mestals, L. Hoepfacr,
 PRo
PRoccturss for RivLes, H. H. W. Gabbett. Fnirfiax,
on. menes for Supportino Abticles, w. t. Colser,
 ${ }^{\text {LIT, Ond. Con. }}$ Cosstruction of Traps, A. W. Johnson,

 17 chester.
ches.
chester Bands for Hats, J. Taylor, Man-
 London.
Lisstio Suportice
London.

 Rninwar SIowals, F. Davis, London.
Rotany Exoines, N. Marewski, Lond Londoverino Cardboard Boxes, w. k. and J. Gose, Loondon. Gear Cases for Velociredes, P. Hunaeus,
London. London.
 17,7odin. Rotriny Exainses, B. Damont, London.
 Edmunds London.
17,7.2. Dis.
Cevion.) Coylon.)
ITond Proplenva of Cycless, \&c., H. E. Welb,
Lond
 11th August, 1896.

 ham.
h7, 7 ches.
chester.,
 17,7r10. Mox. Mivery Foncers, E. E. T. B. Groville,
Sheffield.
 Hastings
17,7nt
fild. Lire Beur, R. Sutclife, Horbury, near Wake, 17,713. A New Brake for Cycless and the like, J. Lang,
Halifax. 77,714. Acervyegse Gas, A. J. B. Ligé and A. D. Pen-
 17,710. Doont Cuntariss, J. H. Hunter, Newceastlo-on17, Whit. Cuemical Compound, F.J. and G. W. Jones, T, Trocecetiorshire.
London. 19. Thinles, S.E. Paine, London.
 chester. Firze, J. Armstrong and W. Hoywood, Man.

 17,730. Crecte Whexis, E. F. Elliot and W. B. Lake, ${ }_{17,731}^{2}$ London. Gioves, F. Gouty and J, Grunhut, Leiceiter,

17,732. Evonses, R. L. Weighton and D. B. Morison,
Hartlepool. 17,732. Evonses, R. L. Weighton and D. B. Morison,
Hatilepool.
heas. FLuEs for Steam Bollers, 0 . Meredith, Birken-
 Reagan, London.
17.73. The Cowsumption of Smoke, A. A. Stevenson,
 17.738. Wishino MAchinge, J. Savery and R. Barbour,

 17,74don. CLorurs Horsk, J. Savery and R. Barbour,
Cheitenham 17,743. Onastetric Calendar, F. H. Collins, Bir-
 17,745, ABsorbert PADs of Mops, H. D. Fitzpatrick.
 Ward, Birmingham.
17,747, RArr. Joivrs,
Mair, United States. 17.74is. Crited States) Cows, G. Platner and A. Muller,
ind

 son, London. Ashiey, Fercyrridge. Yorks.

 S. Wells, London.
17, Fice. VALVES for PNEUMATIC Tries, F. W. Gostick, 17, W.ind VAlves for Pneumatic Tires, F. W. Gostick,
17,764. Securina Tribs to Wheris, F. W. Gostick,

 L. Dove, London.
17,7 Ros. Mountisos of Seats for Boats, G. C. Coate.
 Londonap BuckLes, A. Watson and N. Buxton,
177.7. Disciso Apparatus, H. T. Bellerby and G.
 B. Whitworth, London.
17,73. MxEveratic Tress for Cycles, w. A. G. Birkin,
Lodon. 17,774 Firs.anates of Furnaces, W. H. Sharp, Bush
Hil Park, Middesex.

 Gridley, London.
17, 800

 17.7.7. LI. Loom Shutrie Operatina Devices, E. Gates,
London.

 London.
17,793. Diviso Gear for Breycless, \&c., w. Wanliss,
ITondon.
 17,7a5. Repriogratina
Foucher, Liverpool
Bottle or Dganter, E.

 17, sond. Mouldixo SoAp. E. G. Scott, London.
17,so4. Vatve Gexa, P. A. Nowton. (The Angersoll
 LIondon. Divina Gear for Velocifedes, J. Kennedy,
17, Bon. Dind

 Gabbett-Faifax, London.

 4. A. Ar. Amstrong, United States.).

 Robininon, London.
77, S22. FIIILE Borties, T. B. Booth and A. Robinson,

 and G. F. Jenkins, Ascot.)

12th August, 1896,

7, 826. Cont, M. Holzer, London.
7, .827. PNEUMATIC TIRES for VELocIPEDEs, \&c., C. de

 7, ,833. Inanimate Bird or Taroet, W. P. Jones, Bir-
mingham. 7, ,S34. Hinass for Fail Down Doors, H. Hyde and
I. Adey, Sheffield. . A. Adey, Sheffield
 Halifax.

 7. S4t. Antormatic Gaff Hook, R. R. Beard.-(c. Intrie Unitel Slates) Hoor, Il, R. Beara-(c. pool. Anvosinale Sterbina-rod for Cycles, A.
 S46. Tfleproove Switchion R Pluos, The Telograph
Manufacturing Company, and \mathbf{J} Taylor, Helsby,
 T7,848 Preorecrive Zotropic Prictures, J. Peschek,
G. H. Chard and H. Akermann. Lond G. H. Chard, and H. Akermann. Londo.
7, 849 . PAINT BRushrs, W. Callaghan. London

 Sheffield.
77.853 B. Biccers and Tricyoles, H. J. C. MeGroarty,
sheffield.
 $\min ^{\operatorname{mingham}}$ Divina Gear for Cycles, c. b. Lawson,

 sion Mutonatric Stop Safety Valves, F. Honnebisble, AuTomatic Relier Valves, F. Henneböhle,
London.

 | $\substack{7,884 . \\ \text { Lond } \\ \text { Lond }}$ |
| :---: | London Rss. Whrest of Creles and other Vemicles, A.

Blick. Ghaspow.
 Tay Sor. London. Tirse for Cycures J.
 London.
tr, mice. Beycle Rack for Luagaor Vans, E. S. Cope-
 17, Lon2. Air Braee Operatina Device, D. Bentley,

 London
Los. Cvele Brake, W. S. McCay and J. M. Barr,
London.

 son, London.
17895. Covstrioction of Cyole Frames, A. Shelton,
17,896. GARMEnt for SAvino Lifk, S. P. Bremmell, 17, ondon. TEsting Botrte, W. P. Thompson.-(A. Legrand,
France) France.)
17, Sinina Instrumants for Vehioles, E. G. Dor-
chester, London.

7,909. Nraative Printino Holder, I. Rochdale. 17,910. Pneveatio Tires for Vehicles, J. H. Barty,
London. 17,9n1. Prich Chanss, H. S. Bishop and C. Salmon, 17.912. Menas for Propelining Vehicles, T. Browett,
 (7,95.5. Miniplountion of Lasps, A. J. Ireland and C.

ifit. Liftino Gere for

 Manchester.
17. 920 G GAmivent for Ladres, \&c., T. H. Brown,

 ton, London. Guide Carrier for Cvoles, A. Batr, Glasgow Moore, Manchestor.
17,930. Srups, M. Nathan, Manchester.
7 Thas. Mavcracture of HAMEs, J. Moseley, Birming. hay. Catridoe belt Manufacture, P. A. Martín,

 Shefield
$17.937 . \mathrm{H}$ Held. Controluiso Horses, H. de Garrs ham. Fiun Ars, \&c., A. Littlehales, Birming Dewsbury. Scoors, C. W. Lyon and G. Deighton, 17,939 Vesil Veses for Holdina Gux, R. Bell and w. T 17, Hall, Applon. Lince for Rassino Obagcts, F. Hughes, 17, Ond. ARon. Arenio Elinixation, B. and J. W. Thomas, London. ${ }^{\text {Li.942. }}$ Ous CAS, H. Hudson, London.

Rekd oroans, F. Jennings 17,944.0n: Chin Drivino Gear Wherls, H. Mortison, 17.945. Hiampers, C. Cox, London.
 London
17 94. APPARATUs for Recordino Sperd, J. H. Cromp. ton, London.

 London

 Li, Lond. Improved Drawino Compasses, A. J. Gormand,
 Craydon.
17,956. Cosino the Mouths of Borties, R. R Etiehler,
Lond

SELECTED AMERIOAN PATENTS

558,943. Vapoor Moron, L.S. Gardner, Nevo orleans

Claim - (1) In a gas or vapour motor, the combina-
tion with two cylinders arranged adjacent to each tion with two ceylindars arranged adjacent to each
other and pistons working therein, of to common pit-
man connected to man connected to and carried by both pistons, said
pitman connected with the crank shaft and having no pitman connectec with the crank wart and having no
connetion or bearing excep with the crank shaft and
pistons, subustantinly pistons, substantially as described. (2) In a gas or
vapour motor the combination of two vertical vapour motor the combination of two vertical
cylinders, ech hhing a piston head, a gas inlet and a
burned gas ountlet for
 each piston head to a common crank and crank shaft
and means for ignitiog the gas in each end of each
cylinder and means for ignitiog the gas in each end of each
cylinder, sad parts os arrage that the gas in one
end of one cylinder will explode slighty in
eds end of one cylinder will expl., ed slighty the in gavancenco of
the explosion in the corresponding end of the other
col the explosion in the corresponding end of the other
cylinder, substantially as doseribed. (3) In a gas or

vapour motor, the combination with the cylindor,
having inlet and outlet ports for the fresh and burned

engaging the excentric groove, a rod to which the
excentric rod is engaged, said rod operatitg the thas excentric rod is engnged, said rod operating the gas
pump piston at one ond and the water pump piston
at the other, substantially as described.
 Claim- -In a hlowing engine or compressor the com bination of the tub, a discharge valve, a link valve
motion, means for communicating motion from said motion, means for communicating motion from said
valve motion to the valve, a cylinder as U, a piston V
558.944

moving in said cylinder, and connected to mechanisn or varying he hinion from the recei er of the engine to the e clinder, and a constantly acting force as spring arranged to act on piston V in the opposite direction
to that in which the air from the receiver moves it
 Mich. - Filed August 7 th, 1 s9b.
Claim.- (1) The herein described process for purify metal in a thin sheet chamber in which it is exposed to the products ϕ combustion from a furnace in a manner to heat th
metal and maintain the subjecting it therein to the action of a concentrated current of superheated steam and air, and thin
thoroughly eliminating the impurities and dearb thoroughly elimininating the impurities and dearbo-
nising the metal by puddling the molten mass to

[558,947

point less than balling, substatatially as deseribed. iron, the combination with a capola or furnace
of a puddling furnace provided with the re verberatory heating chamber F^{*} intermedint
between the
bridge wall and puddling chamber, and into which the heated pro.
ducts o combustion pass, the hot wel D having discharge spoit com wing with the furnace or cupola and
and steme the steam and air tuyeres so for producing a concen-
trated urret of of superheated stoam and air, substan-
tratl trated current of
tially as described.
559,372. TAp, C. Blterich, Neav York, N. Y.-Filed June Clain - A tap constructed with a thread composed of alternating struaght and taper sections of constant
diameter at its bottom; the top of the thread being
[559.372.

\square

reduced at the entering end of they tap, and gradually
increasing in diameter toward the finishing ond, sub. stantially as described. . . W. Hunt Weat Navi Brigh
559,384 . Cosursa Tob, C. W.
 coal or other materomian, of two halif buck kets, an biil hav.
ing rigid arms at its ends extending out laterally in opposite directions and wisthin the tub, pivots connecting the half buckets near their centres of gravity to
the arms, and two toggle bars connected together in the middie and pivets connecting the ends of the
toggke bars with the upper edges of the half huckets
for holding such half buckets closed when the togkle 559.384.

$$
\begin{aligned}
& \text { bars are in line with each othor, substantially as sot } \\
& \text { forth. (2) The combination ha tub for cooll or other }
\end{aligned}
$$

 liberate the hall fuockets and allow them to open, sub-
stantially as set forth.

[^0]: Here the real stress of the journey began, the Cale
 donian timing on to Forfar being of a most severe
 character, averaging 56.8 m.h., with two stops and a
 change of engines. One of Mr. J. F, M'Intosh'

[^1]: A second experimental journey by the same train as far as Perth gave curiously similar results. The load
 was slightly-perhaps nine tons-heavier, and the time of each inter-stational run was slightly longer. Substantially the locomotive work accomplished, allowin
 difference of weight, was identical in its excellence.
 difference of weight, was identical in its excellence.
 From Euston to Crewe the train was taken witho
 stop, and with only a partial slack at Rugby, by one of
 Mr. Webb's 6ft. 6in. coupled engines. On reference to
 the "log" it will be observed that with a load of 170 tons behind the tender, the Tring summit was passed in
 37 min .12 sec ., Rugby in 89 min .50 sec ., and Tamworth

