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Summary 
 

We evaluate the probability Pr that the RNA of the first cell was 
assembled randomly in the time available (1.11 billion years 
[b.y.]). To do this calculation, we first set a strict upper limit 
on the number of chemical reactions nr which could have occurred 
before the first cell appeared.  
 
In order to illustrate the consequences of the finite value of nr, 
we make some extremely minimalist assumptions about cells. We 
consider a cell composed of Np = 12 proteins, each containing Na = 
14 amino acids. We refer to the minimum (Np , Na) set as a (12-14) 
cell. Such a cell is smaller than some modern viruses.  
 
The ability to perform any of the basic tasks of the cell is not 
necessarily limited to a single protein. Many different proteins 
among all those which were available in the primeval soup may have 
been able to perform (say) waste disposal.  In order to allow for 
this in estimating Pr, we include a factor Q to describe how many 
different proteins in the primeval soup could have performed each 
of the basic tasks of cell operation. The larger Q is, the easier 
it is to assemble a functional cell by random processes. However, 
there is a maximum value Qmax that is set by phase space arguments. 
 
The hypothesis that life originated by random processes requires 
that Pr be of order unity. We estimate how large Q must be (Qra  : 
subscript �ra� denotes �random assembly�) in order to ensure Pr = 1 
in the time that is available (1.11 b.y.). We find that Qra must be 
so large as to exceed the maximum permissible value Qmax in the 
phase space of proteins comprised of a set of 14 distinct amino 
acids. Such a large value of Qra would have serious consequences 
for biology: if Qra were truly as large as Qmax in the primeval 
soup, then essentially all 14-acid proteins must have possessed 
the ability to perform each of the fundamental tasks in the cell. 
That is, there was no task specificity among the proteins: a 
protein which was able (say) to maintain the membrane in a cell 
would also have been able to control (say) the replication 
process. 
 
In such a situation, the very concept of a cell, as a well-
organized factory in which the task of each department is 
regulated, and each department must coordinate dependably with all 
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others, would no longer be valid. A cell would quickly be reduced 
to an unpredictable entity which lacked robust properties.  
 
In the �real world�, where a cell must be able to preserve itself 
and replicate faithfully from generation to generation, it seems 
inevitable that the various proteins must be prevented (by nature) 
from performing multiple tasks. That is, there must be a certain 
amount of specificity to the task that any given protein can 
perform: of all available proteins, only a fraction F should be 
capable of performing the task of (say) membrane repair. In a cell 
where the number of proteins is Np, the restraints of specificity 
require that the value of F can certainly not exceed 1/Np. But F 
might be much smaller than this upper limit. This leads us to 
introduce a �protein specificity index� m such that the actual 
value of F in the primeval soup is usefully written as (1/Np)m. In 
the modern world, the value of m ranges from 1 to a maximum value 
between about 10 and 20. 
 
We find that, even assigning the minimum possible specificity (m = 
1), the probability Pr of assembling the RNA of a (12-14) cell by 
random processes in 1.11 billion years using triplet codons is no 
more than one in 1079. And if the protein tasks are even marginally 
specific (with m = 2-3, say), the chances of random assembly of 
RNA for the first cell decreases to less than one in 10100. 
 
In order to improve the chances of random assembly of the first 
cell, we consider a situation which might have existed in the 
young Earth. We suppose that proteins could be constructed using a 
smaller set (numbering Naa) of distinct amino acids: we consider 
the case of Naa = 5 (instead of the modern 20). If, in these 
conditions, the number of bases in DNA remained as large as 4, 
then doublet codons sufficed to encode protein production with the 
same amount of error protection as occurs in the modern (triplet) 
genetic code. In such conditions, the probability of randomly 
assembling the RNA for the first cell in 1.11 b.y. improves. 
However, it is still small: the optimal probability is no more 
than one in 1063. 
  
To improve the probability even further, it is tempting to 
consider the possibility of singlet codons. But we point out that 
these are not relevant in a realistic biology. 
 
In the context of doublet codons, we can improve the probability Pr 
of random assembly by considering a larger set of distinct amino 
acids. The number of distinct amino acids for which doublet-codons 
can encode ranges from 5 to 14 (allowing for start and stop 
codons). As Naa increases above 5, there is a marked improvement in 
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Pr for a (12-14) cell: in fact, Pr may approach a value of order 
unity when Naa = 11 provided that the specificity index m is 
smaller than 1.3. (This is far below the average value of m, and 
represents very marginal specificity.) And Pr formally exceeds 
unity for Naa in the range from 12 to 14, provided that m does not 
exceed 2.5. This value of specificity is still well below the 
average value. It is not clear that a functioning cell could 
survive for long with such low protein specificities. 
Nevertheless, the fact that Pr formally reaches a value as large as 
unity suggests that we may have found a window of opportunity for 
random assembly of the first (12-14) cell. 
 
However, these cells face a potentially fatal problem: even with 
11 amino acids to be encoded by 16 codons in the RNA, there is 
little redundancy in the genetic code. And for Naa = 14, the 
redundancy vanishes altogether. As a result, there is a much 
reduced error protection in the code which translates the 
information in RNA to proteins. In the limit Naa = 14, there is no 
error protection at all: transcription from RNA to protein then 
has no immunity against noise. Moreover, in the limit Naa = 14 
(plus a start and stop), proteins would be equally able to encode 
for RNA, in violation of the Central Dogma of biology. Therefore, 
although the probability of randomly assembling the RNA for a (12-
14) cell in such a world may approach unity in a mathematical 
sense, it is not clear how useful such a cell would be for 
biology.  
 
We stress that our assumptions about a (12-14) cell are minimalist 
in the extreme. In the �real world�, it is not obvious that a 
protein containing only 14 peptides will be able to fold into a 
stable 3-dimensional shape at the temperatures where water is 
liquid. And in the �real world�, a cell probably requires as many 
as 250 proteins to function. In such case, even if Naa = 14, Pr 
approaches unity only if the specificity index m lies in the very 
restricted range between 1.0 and 1.17. We identify this as a 
narrow window of opportunity for random assembly of primitive 
cells. But even this narrow window closes altogether if our 
estimate of the number of chemical reactions is too large by 
several orders of magnitude (as it may well be).  
 
Our calculations refer only to the assembling of a cell in which 
the genetic code is already at work. We do not address the origin 
of the genetic code itself. 
 
We conclude that, even if we assume that the genetic code was 
already in existence (by some unspecified mechanism), conditions 
in the early Earth must have been �finely tuned� in order to 
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�squeeze through� the narrow window of opportunity and assemble 
the first cell on Earth in a truly random manner. 
 
1. Introduction 
 
Evolution theory claims that all species of animals and plants 
that now exist on Earth came into existence as a result of random 
variations in pre-existing species. It is presumed that life on 
Earth began as a single cell. An essential aspect of evolution 
theory is that the first living cell originated in the early Earth 
also as a result of random processes. 
 
When Darwin proposed his theory of evolution, he did not know the 
chemical make-up of a cell. Therefore, when he appealed to random 
processes at work in nature, he could be excused for not knowing 
what exactly was entailed in such processes. But in our day and 
age, advances in microbiology and biochemistry have opened up to 
us the molecular details of the processes that occur in living 
cells. For example, we now know the make-up of proteins and DNA. 
In fact, we will need to describe these in some detail in order to 
proceed with our discussion of the probability of random 
formation. (We will return to these details below.) 
 
We are now in a position to spell out the chemical processes that 
must have occurred if the first cell was indeed put together by 
chance. 
 
2. The challenge of creating the first cell 
 
The question we wish to examine here is the following. If the 
process of assembling the first cell occurred in a truly random 
manner in the early Earth, what conditions would be needed? 
 
To address this question, we need to answer two more basic 
questions: (a) how much time was available before the first cell 
appeared? And (b) how many chemical reactions of the correct type 
could have occurred in the time available? The aim here is to 
answer these questions as quantitatively as possible. 
 
The answer to question (b) will set a limit on the properties of 
the first cell that would have been created by random processes in 
the early Earth. 
 
We turn first to the question of how much time was available for 
the development of the first living cell. 
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3. The earliest life forms on Earth 
 
The fossil record indicates that the first life forms to appear on 
Earth existed some 3.45 billion years ago. These are cyanobacteria 
(formerly called blue-green algae) which are found in rocks from 
Apex Chert, Australia. ). The first life forms on Earth were 
single-cell organisms. (See http://www.uni-
muenster.de/GeoPalaeontologie/Palaeo/Palbot/seite1.html 
 
It is hardly surprising from an evolutionary standpoint that the 
earliest forms of life on Earth were single-cell organisms.  
Presumably it is easier for random processes to give rise to a 
single cell first, before bringing forth a multi-cell organism. 
 
4. How much time elapsed before the first cell appeared on Earth? 
 
The age of the Earth, based on radioactive dating of rocks, is 
estimated to be 4.56 billion years old. Comparing this with the 
cyanobacteria ages, we see that the first living cells appeared 
within a time interval of 1.11 billion years of the formation of 
the Earth.  
 
Therefore, the time tfc required for the development of the first 
cell on the Earth is certainly no longer than 1.11 billion years. 
 
Actually, the value of tfc might be much shorter than this. 
Astronomers who calculate the internal structure of the Sun find 
that the Sun has not always been as luminous as it is today: the 
young Sun is calculated to have had a luminosity that is some 20-
30 percent fainter than it is today. Therefore, the mean 
temperature on the early Earth might have been considerably colder 
than it is today, so cold that the water on Earth's surface was 
frozen. (This is the �faint young Sun problem�: Sagan and Mullen, 
1972, Science vol. 177, 52). 
 
It is likely that the development of life requires water to be in 
liquid form. The solar structure calculations suggest that the 
energy provided by the Sun to the Earth might not have become 
sufficient to melt the ice until the Sun was about 700 hundred 
million years old. This means that the first living cell appeared 
no more than about 400 million years after liquid water became 
available. 
 
Moreover, the early Earth would have been subject to a more or 
less heavy bombardment by the debris of the proto-planetary disk 
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before the latter was finally cleared out. The impacts of 
planetesimals (such as that which destroyed the dinosaurs some 60 
Myr ago) would have interrupted the processes which were �trying 
to form� the first cell. Large impacts might have reduced the 
interval for assembling the first cell to even less than 400 
million years.  
 
However, in order to improve the chances of evolution, let us 
grant a full 1.11 billion years and ask the question: could the 
first cell have developed by random processes in 1.11 billion 
years?  
 
The number of seconds of time in 1.11 billion years is 3.5X1016. We 
will need this number in what follows. 
 
 
 
5. Some essential constituents of cells 
 
Now that we know how much time is available, we move on to the 
main question that we wish to address: how was the first living 
cell formed? Evolution theory asserts that it was formed by random 
processes. We wish to assess the probability of such processes. 
 
To assess realistically the chances of assembling the first cell 
by chance, we need to know certain fundamental properties of the 
components that go to make up a cell. Let us first summarize 
these. 
 
5.1. What do we need to know about proteins? 
 
There are three levels of structure within a protein which are 
relevant to us here. 
 

(a) Primary Structure  
 

A protein consists of a series of amino acids that are linked (by 
peptide bonds) into a chain in a specific order. The change of 
even a single amino acid in a chain of dozens or hundreds of amino 
acids may in certain cases disrupt the functioning of the protein.  
 

(b) Secondary structure 
 

In order that proteins may function, the primary structure (i.e. a 
chain of amino acids) is not sufficient. Certain segments of the 
amino acids in the chain group themselves together into sub-units 
known as alpha-helixes, beta-sheets, and beta-turns. For example, 
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an alpha-helix consists of a chain of consecutive amino acids 
arranged in a twisted three-dimensional structure (including 3.6 
acids per turn of the helix) with well-defined angles between 
neighboring acids in the chain.  
 
These well-defined sub-units form the secondary structure of the 
protein: they are stable and rigid, like �lego� blocks which can 
be �fitted together� into a larger structure.  
 

(c) Tertiary structure 
 

Once the �lego� blocks are available, the stage is set for the 
protein to go beyond the secondary structure: using available 
thermal energy, the protein twists and folds itself into a certain 
3-dimensional structure with specific bumps and hollows. These 
bumps and hollows, which are referred to as the tertiary structure 
of the protein, determine where electric charge builds up, and 
these localized charges control the protein's function, including 
the reactions that it can catalyze (if it is an enzyme). For 
example, insulin (one of the shortest proteins in the human body, 
with 51 amino acids) folds itself naturally into a wedge-like 
shape which enables groups of six insulin molecules to pack 
themselves tightly into spherical clusters. 
 
The sequence of amino acids in a particular protein may be highly 
specific at certain locations. There are certain sites in the 
protein (�invariant sites�) where even a single alteration in the 
sequence can lead to drastic changes in the shape of the folded 
protein, thereby disabling the protein. For example, human 
hemoglobin, the protein that carries oxygen through the blood, 
contains Na = 574 amino acids arranged in four secondary sub-units, 
with an overall spherical tertiary structure. Two of the invariant 
sites in hemoglobin have attracted widespread attention because of 
the drastic consequences they may have in a certain segment of the 
population. If one of the amino acids (glutamic acid) in a certain 
position in two of the sub-units of the hemoglobin molecule is 
replaced by another amino acid (valine), the result is the painful 
and deadly disease known as sickle cell anemia. Although it would 
seem that switching only 2 out of 574 amino acids ought to have an 
insignificant effect, this is not the case for these two 
particular sites. Just by changing 2 amino acids and leaving all 
the remaining 572 as before, the process of folding the molecule 
is altered so much that the 3-dimensional shape of the hemoglobin 
changes is no longer spherical. Instead the molecule takes on an 
elongated structure resembling a sickle. 
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There are some proteins in which essentially all sites are 
invariant. For example, histones which have at least 125 amino 
acids in the peptide chain, have 122 invariant sites. Such 
proteins are therefore exceedingly specific in the arrangement of 
amino acids. 
 
However, not all sites in all proteins are invariant. In many 
proteins, there are sites where the amino acid can be replaced by 
a number of other amino acids without affecting the functioning of 
the protein. Yockey (Information Theory and Molecular Biology, 
1992, Cambridge Univ. press, 408 pp; Table 6.3) discusses the 
example of a particular protein (iso-1-cytochrome c, with 110 
amino acids), with a list of all amino acids which are 
functionally equivalent at each site. Some sites can have up to 13 
different amino acids and still the protein retains functionality, 
whereas others (the invariant sites) must contain one and only 
particular amino acid in order to protect against protein 
dysfunction. 
  
At the primary level, the linear sequence of amino acids in a 
protein is important to the proper operation of a living cell. But 
in order to reach the final operating stage (which is fully three-
dimensional), the creation of the �lego� blocks (i.e. stable and 
reproducible secondary structure) is an essential intermediate 
stage.  
 
 
 
 

(d) How long are the secondary structures? 
 

A central question in the present context is: what is the minimum 
requirement for the �lego� blocks to be formed? What does it take 
to be able to create the rigid sub-units which are used in making 
the final protein? The answer is found in the quantum chemistry of 
an alpha-helix and a beta-sheet: in principle, a sequence of at 
least 4 amino acids is required in order to make the smallest 
alpha helix (this allows for one complete turn of the helix). The 
minimum size of a beta-sheet may be comparable.  
 
However, the minimum size is not the only factor that is at work 
in creating the �lego� blocks in proteins: the question of 
stability also enters, because it is a fundamental requirement for 
living cells that the secondary structures must be rigid. 
Otherwise, the shapes of proteins in a cell would be subject to 
chaotic fluctuations. Studies of reproducible structure of sub-
sequences in proteins suggests that chains of at least 7 amino 
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acids are required in order to create a stable and reproducible 
�lego� (Sudarsanam and Srinivasan, 1996, abstract E0274, IUCR 
Seattle meeting). It therefore seems unlikely that stable �lego� 
blocks can be constructed with a chain that is less than 7 amino 
acids long.  
 
Now, the tertiary structure of a protein comes into existence only 
if at least two stable �lego� blocks are joined together in a 
reproducible 3-dimensional structure. (Many proteins require more 
than 2 secondary structures: e.g. hemoglobin contains 4.) Thus, 
the bare minimum requirement for a protein is that Na should be at 
least twice the bare minimum needed for rigid and stable secondary 
structure. According to the estimates of Sudarsanam and 
Sreenivasan, this requires Na = Nmin  = 14.  
 
We emphasize that this assumption of a mere 14 amino acids in a 
functioning protein is extreme. A protein with only 14 amino acids 
is very short in terms of the proteins that exist either in the 
modern world (e.g. insulin, with its 51 amino acids, and 
hemoglobin, with its 574 amino acids), or even in ancient 
proteins. For example, bacterial ferrodoxins, with at last 56 
amino acids, �are believed to date nearly to the time of the 
origin of life, and the histones which are also believed to be 
ancient and have at least 125 amino acids� (Yockey, p. 143). Even 
in the earliest stages of life on the planet, before the so-called 
�breakthrough organism� had appeared, the proteins that might have 
been operational back then have earned the title of �mini-
proteins� because the number of amino acids they contained was 
�perhaps 20 or shorter� (Maniloff, Proc. Natl. Acad. Sci. USA, 
vol. 93, p. 10004, 1996).  
 
Computational attempts to �construct� proteins which are capable 
of folding into a certain unique and stable tertiary structure 
have been made by several groups. Dahiyat and Mayo (Science vol. 
278, p. 82, 1997) found that, using only amino acids which occur 
in modern nature, the shortest protein without sulfides or metals 
that folds into a stable tertiary structure contains 25 amino 
acids. An earlier computation (Struthers et al., Science vol. 271, 
p. 342, 1996) had obtained a stable tertiary structure with a 
chain of only 23 amino acids: however, one of the 23 was a non-
natural amino acid. It seems that polypeptide chains with fewer 
than 23-25 amino acids can probably not create the tertiary 
structure which is key to protein function unless they are 
assisted by sulfides or metals.  
 
How far below the 23-25 limit can a functional protein go when 
assisted by sulfides and metals? The answer is not clear. However, 
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it seems unlikely that the limit will be reduced below 14, which 
is our limit based on the stability properties of at least two 
�lego� pieces (alpha-helices and beta-sheets). In fact, in terms 
of the thermal energy which is available, it is not clear that a 
protein as short as 14 amino acids will be �foldable� or 
�bendable� at temperatures where water is liquid. 
 
Nevertheless, in the spirit of optimizing probabilities, we assume 
that polypeptides in the primeval soup could indeed function as 
proteins while containing no more than 14 amino acids.  
 
 
5.2. What do we need to know about DNA? 
 
DNA is a molecule that has the shape of a long twisted ladder (the 
"double helix"). In this ladder, there are "rungs" connecting the 
long "sidepieces". The "sidepieces" are long linear chains of 
sugars and phosphates, while each "rung" is composed of two 
interlocking bases. The four bases consist of two purines and two 
pyrimidines. The bases in the ladder are arranged in a definite 
order, just as amino acids are arranged in a definite order in a 
protein.  
 
When a cell wishes to reproduce a certain protein, the section (or 
"gene") of DNA that is responsible for that protein must undergo a 
well-defined process. First, the two bases that are interlocked in 
each rung of the ladder in that section must be "unzipped" so as 
to expose a sequence of bases. The exposed sequence then creates a 
strip of RNA whose task is to assemble amino acids from the cell 
medium in the correct order. 
 
The order of the bases along the DNA �ladder� (or along the RNA 
strip) is highly specific, just as the order of acids in the 
protein is crucial for protein function. The change of even a 
single base inside a gene may result in the creation of the wrong 
protein, and the organism may die as a result. This indicates the 
need for serious error-protection in the process of replication of 
a cell. 
 
 
6. Cell structure: high information content 
 
Even a �simple� cell is a complicated system where chemicals of 
various kinds operate in a synergistic way to provide various 
functions that are essential to cell viability. 
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The outer wall (or membrane) provides the cell with its own 
identity, and separates it from the rest of the world. Apart from 
the membrane, i.e. inside the body of the cell itself, there are a 
number of sub-systems that must run cooperatively in order to keep 
the cell in operation. The most important chemicals are proteins 
and the DNA that has the capacity to reproduce those proteins. 
 
Some proteins provide the structural characteristics of the 
different components of the cell. Some proteins serve as catalysts 
in the various chemical reactions that keep the cell running. 
There are also regulatory proteins which ensure that each protein 
performs its function only in its proper location within the cell: 
it would not do, e.g., to have energy generation occurring in the 
cell membrane. In a multi-cell organism, these regulatory proteins 
ensure that (e.g.) kidney cells do not grow in (say) the eye. 
 
It is amazing that there is enough information in a linear object 
(a DNA strand) to determine a three-dimensional object (a 
protein). How is it that the sequence of bases in DNA instructs 
the cell to make proteins, each of which is a �sentence� composed 
of a specific sequence of various choices from a �vocabulary� of 
the 20 (or so) amino acids which occur in modern proteins? (There 
are many more amino acids in nature, but they are non-proteinous, 
and we do not consider them here.) The beginnings of an answer 
were first proposed by Gamow (1954: Nature 173, 318): there exists 
a code which translates the information in the bases in DNA into 
the amino acids in protein. This was an amazing insight on Gamow�s 
part. As Yockey says (p. 4): �The idea�of a code is so 
unconventional that had Gamow�s paper been submitted by almost 
anyone else, it would most certainly have been rejected�. 
 
The eventual identification of the code at the heart of biology is 
a triumph of human ingenuity. The bases in DNA are now known to be 
grouped into 64 �code words�, and the sequence of these words 
contain the information which is eventually translated into the 
20-letter vocabulary of proteinous amino acids. 
  
A more difficult question to answer is: how do the amino acids 
�understand� the �language� of the �words of information� that are 
contained in the DNA? (For example, a string of letters may mean 
one thing to a Frenchman, something else to a German, and nothing 
at all to an Englishman.) It is not obvious that an answer has yet 
been given to this question. It may in fact be the most difficult 
question of all to answer. For example, Yockey (2000: Computers 
and Chemistry 24, 105) argues that the answer may simply be beyond 
the powers of human reasoning. In the present calculation, we do 
not address the issue of the origin of the code. We merely assume 
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that the code is already in existence as a result of unspecified 
processes in the early Earth. 
 
Returning to a question about the links between DNA and protein 
that can be answered, the distinction between 64 and 20 is 
noteworthy and essential for living cells. In terms of coding 
theory, the fact that 64 greatly exceeds 20 means that DNA code 
has a lot of built-in redundancy: there are more code words (or 
symbols) at the source (DNA) than at the destination (protein). 
Coding theory proves that this redundancy of source relative to 
destination is an essential feature of a code in order to protect 
from errors in transmission. One of the theorems of coding theory 
(Shannon�s channel capacity theorem) makes a strong statement 
which at first sight appears counterintuitive (Yockey, p. 8): even 
if there is noise in a message, the proper use of redundancy 
allows one to extract the original message �with as small a 
probability of error as we please�.  
 
Therefore, if we were to attempt to construct a biological system 
based on a code where redundancy is absent (and we shall mention 
one such attempt in Section 19 below), the process of cell 
replication would inevitably be prone to errors in transmission. 
Since even a single error may prove to have mortal consequences 
for a protein (and its host organism), it is hard to see how cells 
that are subject to serious errors in replication could be 
regarded as �living� in any meaningful sense. 
 
The code words in DNA in the modern world consist of a series of 
triplets of bases. Each triplet (written as ACG, or UGA, etc, 
where each of the letters A, C, G, and U is the initial letter of 
one of the 4 bases) encodes for a particular amino acid. There are 
64 such triplets available as a source code. (We will consider 
below the possibility that triplet codons were not necessary in 
the primeval soup, but that doublet codons might have sufficed 
then.) 
 
If a cell contains a particular protein that is a chain of Na amino 
acids in a certain sequence, then the DNA of that cell contains a 
corresponding segment containing 3Na bases also arranged in a 
sequence that exactly parallels the Na acids in the protein.  
 
However, this is not all that is required for a gene. Since the 
DNA consists of a long chain of bases, we need to ask: how does 
the RNA know where to start �reading� the code for a particular 
protein? The answer is: in the DNA itself, associated with each 
gene, there must be a �start code� and a �stop code�. In fact, a 
triplet of bases serves to encode START and another triplet to 
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encode STOP. (E.g., in modern cells, the triplet AUG encodes for 
start, while stop has three possible codons: UAA, UAG, UGA.). 
Therefore, although a strip of RNA needs to have 3Na bases in a 
particular order, the gene (i.e. the corresponding piece of the 
DNA) must have 3Na+6 bases in a particular order.  
 
As an example, we note that among the shortest proteins that exist 
in human beings, insulin contains 51 amino acids in a particular 
order. Such a protein requires a sequence of 153 bases in human 
DNA in a specific order, plus 6 bases for start and stop. 
 
 
 
7. What does a cell need in order to function? 
 
To determine the probability that the first cell was assembled 
randomly, we first need to answer the following general question: 
what is required in order to make a functional living cell? 
 
In other words, what is the bare minimum number of proteins for a 
cell to function at all? If we can answer this, it should help us 
determine what the very first cell might have looked like. 
 
As a first step in answering this, it is worthwhile to consider 
the simplest known cell that exists in the world today. This is an 
organism called "Mycoplasma genitalium" (MG) whose genetic 
information is many times smaller than the information in the 
human genome: the number of genes required for the functioning of 
MG in its natural state is only 517. (Humans have tens of 
thousands of genes.) 
 
Recently, researchers have raised the interesting issue: are all 
517 of these genes really necessary for MG to function properly? 
The answer is No. By removing genes one at a time, researchers 
have been able to show that the cell continues to function with 
fewer than the total complement of 517. By eliminating more and 
more of the genes, it has emerged that MG continues to function 
normally as long as there are between 265 and 350 protein-coding 
genes (see Hutchison et al., Science vol. 286, p. 2165, 1999). An 
earlier estimate of the minimum cell size in nature had suggested 
that the minimum number of proteins for cell operation might 
indeed be about 250 (J. Maniloff, Proc. Natl. Acad. Sci. USA Vol. 
93, p, 10004, 1996). 
 
It appears, then, that the simplest cell in the modern world 
requires at least 250 proteins in order to survive in viable form. 
Many of the 250 (or so) essential proteins in MG have identifiable 
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functions. Hutchison et al. list 13 categories of identified 
functions in the MG genome: (1) cell envelope, (2) cellular 
processes, (3) central intermediary metabolism, (4) co-factors and 
carriers, (5) DNA metabolism, (6) energy metabolism, (7) fatty 
acid metabolism, (8) nucleotides, (9) protein fate, (10) protein 
synthesis, (11) regulatory functions, (12) transport/binding 
proteins, and (13) transcription. Each of these 13 categories 
contains multiple genes, so that (e.g.) protein synthesis does not 
depend solely on a single protein for its operation: there are 
backups and multiple redundancies in each category. For example, 
some 19 proteins are used for membrane maintenance (category (1)). 
About 150 of the MG proteins can be assigned with some confidence 
to one of the 13 categories. 
 
However, more than 100 of the MG genes perform functions that are 
currently unidentified. Nevertheless, the cell certainly requires 
them: without them, there is empirical proof that the cell fails 
to function. 
 
 
8. The first cells to appear on Earth: reducing the requirements 
to an absolute minimum 
 
It might be argued that the first cells to appear on Earth were 
smaller than the simplest cells (such as MG) that exist in the 
world today. Those primitive cells might have been able to operate 
with many fewer proteins than the 265 needed by MG. 
 
Although we will use this argument below, it is actually difficult 
to substantiate. The mathematician John Von Neumann estimated the 
bare necessities which are necessary in order to construct what he 
referred to as �a self-replicating machine� (Theory of Self-
Reproducing Automata: Univ. of Illinois press, 1966). It has been 
a popular exercise among science fiction writers to use this idea 
in connection with how a civilization might colonize a galaxy by 
sending out machines. Von Neumann concluded that the number of 
parts in one such machine must be in the millions. Other authors 
have reduced this estimate somewhat, but even according to the 
most optimistic estimate, the numbers remain very large: the best 
estimates suggest that there must be between 105 and 106 parts in a 
self-replicating machine. This means that the genome needs at 
least 105 bits in order to metabolize and replicate (Yockey, p. 
334). Using the information content in a typical modern protein, 
Yockey concludes that the original genome must have been able to 
specify at least 267 proteins. The fact that this is close to the 
minimum number required for a modern cell (such as MG) suggests 
that one is not necessarily permitted to assume that the original 
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cell contained significantly fewer proteins than the smallest 
modern cell. 
 
Nevertheless, other authors have argued that the Von Neumann 
approach is overly restrictive. E.g., Niesert (1987, origins of 
Life 17, 155)) estimates that the first cell might have been able 
to operate with as few as 300-400 amino acids. 
 
Which of these various estimates of minimum requirements for the 
first cell should we consider? There must be some absolute minimum 
requirements for making even the simplest cell. For example, one 
might argue that, among the 12 non-regulatory categories of gene 
functions listed by Hutchison et al., one representative protein 
should be present in the first cell. And each of these 12 proteins 
should have an accompanying protein to serve in a regulatory role. 
This line of reasoning would suggest that 24 proteins are a 
minimum for cell operation. 
 
Can we reduce this to an even barer minimum? Examples of minimum 
cell requirements have been summarized by the paleontologist 
George Gaylord Simpson. Of the 13 categories listed by Hutchison 
et al, Simpson narrows down the bare minimum to the following: (i) 
energy generation, (ii) storing information; (iii) replicating 
information; (iv) an enclosure to prevent dispersal of the 
interacting sub-structures; (v) digestion of food; (vi) waste 
product ejection (Science vol. 143, p. 771, 1964).  
 
In view of these bare-bones requirements, it is hard to imagine 
how any cell could function without at least the following six 
types of proteins: (i) those that help to digest food, (ii) those 
that generate energy for cell operations, (iii) those that carry 
away waste products, (iv) those that preserve and repair the cell 
membrane, (v) those that determine when reproduction is to occur, 
and (vi) those which actually catalyze the tasks of reproduction. 
Corresponding to each of these six, there must be a regulatory 
protein which ensures that the corresponding protein does not 
�express itself� in the wrong location in the cell. 
 
It is hard to imagine how a living cell would exist at all if it 
failed to contain at least these 12 proteins. 
 
The fact that the simplest cell in the modern world (MG) requires 
265 proteins as a bare minimum in order to function makes our 
estimate of 12 proteins look ridiculously small. But since it is 
possible that the first living cells may have been much simpler 
than those we find in the world today, let us make the (perhaps 
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absurdly reductionist) assumption that the first cells in fact 
were able to operate on the basis of the bare minimum 12 proteins. 
 
As an illustration of how reductionist our assumption is, we note 
that in the first cell, we are assuming that a single protein is 
responsible for ensuring proper functioning of the lipid membrane 
of that cell. In contrast, the smallest known cell in the modern 
world (MG) uses 19 genes to encode for lipoproteins (Hutchison et 
al. Science vol. 286, p. 2166). The use of 19 genes in the modern 
cell is an example of the large amount of redundancy that nature 
uses to ensure that the membrane survives. But the first cell may 
not have had the luxury of redundancy: it may have been forced to 
survive using only one gene for its membrane. It would have been a 
precarious existence. 
 
We have argued that each protein must contain at least 14 amino 
acids: thus our bare minimum cell, with 12 proteins and 14 amino 
acids in each, contains 168 amino acids. This is even smaller than 
the bare minimum of 300-400 amino acids described by Niesert 
(1987, Origins of Life, 17, 155). The DNA of our minimal (12-14) 
cell would contain only about 500 bases. This is 10 times shorter 
than the genome of a certain virus (PHI-X 174) which transmits 9 
proteins. It is widely believed that a virus cannot be regarded as 
a �living cell� (it has no self-contained replication system), so 
this again indicates the extreme nature of our assumption that the 
first cell could have as few as 12 proteins. But let us proceed in 
the spirit of optimizing the probability that the first cell 
appeared by chance. 
  
8.1. The first cell: putting the proteins together by chance 
 
In the early Earth, the commonest concept of conditions back then 
is that the primeval "soup" consisted of various chemicals that 
were stirred up and forced into contact with one another as a 
result of the forces of nature (including rain, ocean currents, 
lightning). Simple chemical reactions in the soup were easily able 
to create amino acids: these molecules are so small (containing no 
more than 10-30 atoms each) that random processes can put them 
together quickly from the abundant C, O, N, and H atoms in the 
soup. As a result, we expect to find in the primeval soup, in 
abundant supply, all of the 22 amino acids that occur in modern 
life forms. (For the number 22, see Nature vol. 417, 478, 2002). 
In fact, there are more than 100 amino acids in modern nature, but 
only 22 are used in proteins. And of those 22, numbers 21 and 22 
are rare. Most living material relies on only 20 of these amino 
acids, and we will use that number here. 
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To be sure, the �primeval soup� hypothesis is not without its 
opponents (e.g. Yockey, pp. 235-241). Laboratory experiments which 
claim to replicate conditions in the primeval Earth generate not 
only amino acids but also a tarry substance (as the principal 
product). This substance should have survived as a non-biological 
kerogen in ancient sedimentary rocks, but no evidence for this has 
been found. It should not be surprising that, in the primeval 
soup, other amino acids, not currently used in life forms, could 
have been formed. (This would include the acids that are used in 
nylon.) And each of the amino acids which are created randomly in 
the primeval soup would be created in two forms: the D-variety and 
the L-variety. (These varieties refer to the ability of the 
molecule to rotate the polarization of light either right or left: 
this ability depends on the chirality of the molecule, i.e. on the 
handedness of its 3-dimensional structure.) For reasons that are 
not yet obvious, only one of these varieties (the L-variety) is 
actually used in present-day life forms. However, the basic 
property of amino acids, that they polymerize, operates only 
between L alone or D alone: when an L and a D amino acid combine, 
their opposite chirality has the effect of locking out any  
possibility of further polymerization.  
 
Another difficulty of a very different nature has to do with 
reactions in an aqueous solution. The very process of assembling 
amino acids into a polypeptide chain (so as to make a protein) 
requires the removal of H from the amino radical and the removal 
of OH from the acid radical: it is not obvious how these 
constituents of a water molecule can be removed in an aqueous 
solution.  
 
Despite these difficulties with the primeval soup hypothesis, the 
idea of the soup is so widespread in textbooks that it is a 
natural starting point for an optimized estimate of probabilities. 
In the spirit of the present approach (where we do whatever we can 
to optimize the chances of assembling the first cell randomly), we 
will simply go along with the textbooks. We shall assume that the 
formation of the first cell in the early Earth began in liquid 
water where only 20 L-amino acids need to be taken into account.  
 
Other simple chemical reactions in the soup also give rise more or 
less quickly to the four bases (two purines and two pyrimidines) 
that form the "rungs" of DNA. Why are these formed relatively 
readily? Because each base consists on no more than 13-16 atoms, 
random processes can also assemble these bases rapidly from the 
abundant C, O, N, and H atoms. It was probably more difficult to 
form pyrimidines than purines, but the principle is robust: 
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formation of small molecules is essentially inevitable in the 
early Earth.  
 
In order for the first cell to come into existence, at least 12 
proteins, each with Na amino acids in a specific order, had to 
emerge in the same patch of the "primeval soup". To be sure, 
individual proteins were probably emerging at random at many 
places around the world. But if our aim is to form a complete 
living cell, it will not help if the membrane protein emerged (at 
random) in China, the energy protein in Russia, and the 
replication protein in South America. That will not do: the only 
way to have the first cell develop is if all 12 proteins emerge in 
close enough proximity to one another to be contained within a 
single membrane. 
 
How might this have happened in random processes? By way of 
example, let us consider one particular protein, in which the 
chain of amino acids happens to be denoted by the series of 
letters ABCDEFGHIJKLMN. In order that this protein be made by 
chance, amino acid E (say) (one of the 20 commonest in nature) 
might have started off by entering into a chemical reaction with 
amino acid F (another of the 20), such that the two found it 
possible to become connected by a peptide bond. Then amino acid D 
might have had a chemical reaction so as to join onto the EF pair 
at the left end, forming DEF by means of a new peptide bond. Note 
that it is important to form DEF rather than EFD, which would be a 
very different protein. This process presumably continued until 
the entire 14-unit protein chain ABCDEFGHIJKLMN was complete. 
 
8.2. The first cell: putting the DNA/RNA together by chance 
 
It is not enough to assemble 12 proteins to have a functional 
living cell: the cell must be able to reproduce, and for that 
the cell needs DNA (or at least RNA). In order to ensure  
reproduction of the cell, there had to be (also in the same patch 
of the primeval soup) at least 12 genes on an RNA strand, each 
containing 3Na+6 bases in a specific order. 
 
Thus, in the very same patch of "soup" where the protein 
ABCDEFGHIJ formed by chance, a strand of RNA must have been formed 
where the three bases that encode for amino acid A were joined in 
a specific order along the RNA strip by a series of chemical 
reactions. Then the three bases that encode for amino acid B had 
to be added in a specific order to the sidepieces, right next to 
the three bases that encode for A.  This process must have 
continued until the triplets of bases that encode for each of C, 
D, E, F, G, H, I, J, K, L, M, and N respectively were assembled in 
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a specific order into a chain of 30 bases. There would also be one 
triplet at each end of the 30-base sequence to serve as markers 
for start and stop. This 36-base sequence would then form the gene 
for the first protein in the first cell.    
 
Now that we know how the first proteins and RNA/DNA were put 
together, we are in a position to estimate the probability that 
this will occur by random processes. 
 
9. Probability of protein formation at random 
 
In the example given above, we recall that amino acid (say) E is 
only one of 20 amino acids that exist in living matter. Amino acid 
F is also one of 20. Therefore, a process that successfully forms 
the sequence EF at random out of a soup where all amino acids are 
present in equal abundances, has a probability p2 which is roughly 
equal to (1/20) times (1/20) = 1/400. 
 
Actually, however, pre-living matter contains not only the L-
variety of each amino acid, but also the D-variety. Therefore, a 
better estimate of the probability p2 that the correct pair of L-
amino acids be formed is (1/40) times (1/40), i.e. p2 = 1/1600. 
However, once an L-acid unites with a D-acid, the opposite nature 
of their chiralities leads to a �lock-out�: no further 
polymerization is possible. So we will optimize probability by 
assuming that only the L-variety is present. We therefore take p2 = 
1/400. 
  
Another way to state this result is that if we wish to create the 
combination EF (both L-variety) by chance, the number of chemical 
reactions that must first occur between amino acids in the 
primeval soup is about 1/p2, or about 400. That is, if we allow so 
much time to elapse that 400 reactions can occur in the primeval 
soup, then there is a high probability (close to a certainty) that 
the combination EF will appear simply at random. 
 
This argument assumes that the only amino acids in the primeval 
soup are the 20 which occur in modern living organism. However, 
there were certainly other non-biological amino acids available. 
As a result, many more than 400 reactions was almost certainly  
required before the combination EF appeared at random. However, we 
will optimize the chances for random assembly of the first cell by 
ignoring the non-biological amino acids.  
 
After creating EF by random processes, the next step is to have 
the next amino acid to join the chain be the L-variety of (say) G, 
i.e. only 1 out of the 20 types available. Then the probability 
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that the three amino acids EFG will be assembled in the correct 
order is about (1/20)3. 
 
Continuing this all the way through a sequence of Na amino acids 
in a protein, the chance f1 of correctly picking (at random) all 
the necessary amino acids to create one particular protein is 
roughly equal to (1/20) raised to the power Na. This corresponds to 
f1 = (1/10)x where x = 1.3Na. Actually, to the extent that some 
amino acids may be replaced by others without affecting the 
functionality of the protein, the above expression for f1 is a 
lower limit. (We will allow for this later in this section.) 
Yockey (p. 73) shows that instead of 20N for the value of 1/f1, a 
more accurate estimate is 2NH where H is the mean value of a 
quantity known as the Shannon entropy of the 20-acid set (see 
below). In the limit where all amino acids have equal probability 
of being encoded, and are equally probable at all sites in the 
protein, 2NH turns out (from the definition of H) to be equal to 
20N . In all other cases, 2NH is less than 20N. This returns us to 
the previous conclusion: the above expression for f1 is a lower 
limit on the true value. 
 
Suppose that the particular protein with probability f1 has been 
formed in a particular patch of the primeval soup. Then in order 
to form a single cell (with at least 12 proteins as a bare minimum 
to function), eleven more proteins must also be formed in the same 
patch of soup, in close enough proximity to one another to be 
contained within a single membrane. Each of these proteins also 
has a certain number of amino acids: for simplicity let us assume 
that all have length Na. 
 
The overall probability f12 that all twelve proteins arise as a 
result of random processes is the product of the probability for 
the twelve separate proteins. That is, f12 is roughly equal to f112, 
i.e. f12 is roughly (1/10)y  where y = 15.6Na. 
 
We can now quantify the claim that the first cell was assembled by 
random processes. If the first cell consisted of only the bare 
minimum 12 proteins, and if each of these proteins was uniquely 
suited to its own task, the probability that these particular 12 
proteins will be formed by random processes in a given patch of 
primeval soup is f12. 
 
Now let us turn to the fact that a protein may remain functional 
even if a certain amino acid is replaced with another one. 
(Obviously, we are not referring to invariant sites here.) For 
example, it may be that the protein which we have specified as the 
one that is responsible for (say) energy generation in the cell is 
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not unique. There may exist other groupings of amino acids which 
also have the shape and properties that enable the task of energy 
production for the cell. Maybe the others are not as efficient as 
the first one, but let us suppose that they have enough efficiency 
to be considered as possible candidates for energy production in 
the first cell. Then we need to ask: how many energy-producing 
proteins might there be in the primeval soup? 
 
It is difficult to tell: in principle, if Na has the value 14 
(say), then one could examine the molecular structure of all 14-
amino acid proteins (of which there are some 2014 , i.e. 1018.2 if 
all amino acids are equally probable) and identify which ones 
would be suitable for performing the energy task. Presumably there 
must be some specificity to the task of energy production: 
otherwise, a protein which is supposed to perform the task of 
(say) waste removal might suddenly start to perform the task of 
(say) membrane production in the wrong part of the cell. 
Therefore, it is essential for stable life-forms that not all 
available proteins can perform all of the individual tasks.  
 
Suppose the number of alternate energy-producers Q is written as 
10q. In a world where all proteins have Na = 14, the absolute 
maximum value that q can have is qmax = 18.2. This is the total 
number of discrete locations in the �14-amino acid phase space�.  
 
In the real world, a more realistic estimate of qmax would be 
smaller than the above estimate. First, not all amino acids have 
equal probability of being encoded: there are more codons in the 
modern genetic code for some amino acids than for others. (E.g., 
Leu, Val, and Ser have 6 codons each, whereas 10 others have only 
2 codons each.) When these are allowed for in the probability 
distribution, it is found that the �effective number� of amino 
acids in the modern world is not 20 but 17.621 (Yockey, p. 258). 
Thus, with Na = 14, a more accurate estimate of qmax(eff) is 17.4 
(rather than 18.2).  
 
As a result, in the real world, qmax(eff) may be considerably 
smaller than 18.2. However, in the spirit of optimizing 
probabilities, let us continue to use the value 18.2. 
 
The requirement that some specificity of task persists among 
proteins requires that the value of q must certainly not exceed  
qmax. At the other extreme, in a situation where each protein is 
uniquely specified, q would have the value qmin = 0 (so that one 
and only one protein could perform the task of energy production).  
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Now we can see that our estimate of f12 needs to be altered. We 
were too pessimistic in estimating f12 above. Each factor f1 needs 
to be multiplied by 10q. For simplicity, let us assume that q has 
the same value for each of the 12 proteins in the cell. Then the 
revised value of f12 is 1/10z where  
 

z = 15.6Na - 12q .                    (eq. 1) 
 

This result applies to a cell with 12 proteins, each composed of 
amino acids chosen from a set of 20 distinct entries. 
 
10. Random formation of DNA/RNA 
 
The first cell could NOT have functioned if it consisted only of 
proteins. In order to merit the description living, the cell must 
also have had the ability to reproduce. That is, it must also have 
had the correct DNA to allow all 12 proteins to be reproduced by 
the cell. 
 
In order to estimate the probability of assembling a piece of DNA  
by random processes, we can follow the same argument as for 
proteins, except that now we must pick from the available set of 4 
bases. 
 
Repeating the arguments given above, we see that for each protein 
which contains Na amino acids in a certain sequence (plus one start 
and one stop), there must exist in the DNA a strip of B = 3Na+6 
bases in a corresponding sequence. If we pick bases at random from 
a set of 4 possibilities, the probability of selecting the correct 
sequence for a particular protein is (1/4)B. Therefore, the 
probability of selecting the correct sequences for all twelve 
proteins, if each protein is unique, is (1/4)D where D = 36Na + 72. 
Writing this with the symbol fRNA, we see that fRNA is equal to 
(1/10)E where  
 

E = 21.7Na + 43.3.                          (eq. 2) 
 
Again, however, if instead of unique proteins for each task, there 
are 10q proteins available to perform each task in the cell, then 
we must increase the above value of fRNA to 10-G where  
 

G = 21.7Na + 43.3 - 12q.               (eq. 3) 
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11. Probability of random formation of a complete cell 
 
Since both the RNA and all 12 proteins have to be formed in the 
same patch of primeval soup in order to form a viable cell, the 
probability fcell that random processes will perform both tasks in 
the same patch of soup will be the combination of the separate 
probabilities. That is, fcell is roughly equal to fp X fRNA, i.e. 
about 10-J where  
 

J = 37.3Na + 43.3 - 24q.                     (eq. 4) 
 
Therefore, once enough time elapsed in the primeval soup to 
allow the chemicals there to undergo a certain number of 
reactions, R12p = 1/fcell, there would be a high probability (in 
fact, a near certainty) that the proteins and the requisite DNA 
for a (12-14) cell could indeed have been assembled by chance in 
the primeval soup. 
 
In order to optimize the chances of forming the first cell, we 
ask: is it possible to find ways to make R12p smaller than the 
above estimate? The answer depends on the theory that one adopts 
for the development of the first cell. 
 
Suppose one were to theorize that the only thing one would have to 
provide to get the first cell going was the RNA containing the 
genetic code for the 12 proteins. (It might be beneficial if the 
RNA could catalyze its own replication: however, this is not 
altogether desirable, since it leads to possibilities of ``error-
catastrophes� [Niesert et al. 1987, J. Mol. Evol., 17, 348].) 
According to the "RNA-first theory", one would not have to "wait 
around" for proteins to be constructed by random reactions in the 
primeval soup. Instead, once strips of RNA were formed (as a 
result of random processes), DNA could be assembled from the RNA 
strips. At that point, proteins should be reproduced more or less 
automatically, apart from the necessity of certain enzymes 
(proteins) to catalyze the "unzipping" of the DNA itself, and to 
catalyze the collection and assemblage of the amino acids.  
 
In order to optimize the chances of cell formation at random, let 
us assume that the unzipping can be done with the help of a single 
protein, and that the collection and assemblage of amino acids can 
also be done with a single protein. (This is a far cry from the 
modern world, where multiple proteins exist in even the simplest 
cell to perform each task.) Then the first cell will require the 
RNA to be assembled by chance (with probability fRNA, as given 
above) plus just two proteins (with probability f2) also assembled 
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by chance. If this theory is correct, then R12p(RNA-first) would be 
equal to 10K where  
 

K = 24.3Na + 43.3 � 14q.                     (eq. 5) 
 
This may provide a substantial reduction below the original 
estimate of R12p. 
 
Should we also consider the obvious alternative to the RNA-first 
theory? That is, should we also consider the �protein-first� 
theory? The answer is no, provided that the modern genetic code is 
at work. The structure of the modern genetic code is such that, 
according to the Central Dogma, proteins do not pass on 
information to DNA: the flow of information goes only from DNA (or 
RNA) to protein, and not the reverse. As Yockey (2000) puts it, 
�The origin of life [as we currently know it] cannot be based on 
�protein-first�.� However, the �protein-first� theory may need to 
be considered when we consider a certain �window of opportunity� 
in the early Earth (see Section 19). 
 
Because we now know how many reactions are required in order to 
create the first simplest possible cell, we are in a position to 
test the evolutionary claim that the first cell was assembled 
randomly. To do this, we proceed to the crucial question that is 
at the heart of the present argument. This question, and its 
detailed answer, is the subject of the next section. 
 
 
12. How many reactions occurred in the primeval soup? 
 
Is random assembly of the first cell possible? To address this, we 
need to answer the following question: How many chemical reactions 
(of the sort we are interested in) actually occurred in the 
primeval soup during the first 1.11 billion years? 
 
We will not be surprised to find that the number of reactions nr  
is a "large" number (in some sense). Nevertheless, nr is a finite 
number.  
 
Once we obtain nr, we can then estimate how large the value of q 
must be in order that the probability of randomly assembling the 
first cell of order unity. That is, we will equate nr to 10J (or to 
10K, if we accept the "RNA-first theory"), and solve for q, 
assuming that Na is at least as large as 14. The value of q which 
we obtain from this estimate will be labelled qra to denote that 
this is how large q must be in order that random assembly of the 
first cell in the primeval soup becomes essentially certain. 
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We are interested in chemical reactions involving amino acids or 
bases. To proceed with this discussion, we need to consider in 
detail what happens during such a reaction. The most basic 
requirement of a chemical reaction is the following: the two 
reacting molecules must at the very least come close enough to 
each other to have a collision. However, the very fact that two 
molecules collide does not guarantee that a reaction will occur. 
The reaction is controlled by many factors, e.g. the energy 
involved, the angle of the encounter, the removal of by-products, 
etc. As a result of these factors, many collisions may occur 
before even a single reaction occurs. This explains why it is so 
difficult to manufacture (e.g.) nylon: the creation of the peptide 
bonds that hold nylon together (exactly equivalent to those which 
hold proteins together) requires careful quality control. The 
quality control which the DuPont engineers are forced to impose in 
order to create nylon was certainly not available in the primeval 
soup: therefore, the efficiency of the reactions which led to 
peptide bonds (i.e. proteins) in the primeval soup was almost 
certainly very small. 
 
In view of this, we can derive an absolutely firm (and probably 
very generous) upper limit on the number of two-body reactions n2 
that occurred between two amino acids during any time interval by 
calculating the number of collisions ncoll that occurred between 
those two amino acids during that interval. In practice, n2 is 
probably orders of magnitude smaller than ncoll. The purpose of a 
catalyst is of course to increase n2 as much as possible: however, 
even with a “perfect” catalyst, n2 can never exceed ncoll .  

 
So let us turn to estimating ncoll. This number, which is �large� 
but finite, will provide us with a firm piece of quantitative 
evidence that will allow us to test the assertion that the first 
cell was assembled randomly. 
 
 
 
 
 
13. Collisions between amino acids in the primeval soup 
 
We begin the calculation of ncoll by estimating the mean time tc 
that elapses between successive collisions of molecule A with 
molecule B. The general formula for tc is straight-forward. Let us 
consider molecule A as the projectile, and molecule B as the 
target. If projectile A moves with mean speed v cm/sec through an 
ambient medium where there are nt target molecules per cubic 
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centimeter, then tc equals 1/(v nt A) seconds. Here, A is the area 
(in square centimeters) presented by the target molecule. 
 
13.1 Mean time interval between collisions 
 
Let us now estimate the three quantities that enter into tc. 
First, the area A. Amino acids and bases in nature have linear 
dimensions of a few Angstroms (where 1 Angstrom = 10-8 cm). 
Therefore, a typical amino acid or base molecule has A equal to 
about 10-15 sq. cm.  
 
Second, as regards v, there is a standard formula for the mean 
speed of the molecules in a medium at temperature T: v2 = RgT/m 
where Rg is the gas constant (= 8.3 X 107 ergs/degree/gram) and m 
is the molecular weight. Amino acids and bases have m = 100 or so. 
Moreover, living cells require liquid water in order to survive: 
this means that T must be in the range 273-373 degrees Kelvin. 
Taking an average value for T of about 300 K, we find that v for 
the molecules in which we are interested here is about 104 cm/sec. 
Even if we consider the extremely hot conditions at the ocean 
bottom, near the hot thermal vents, where temperatures may be as 
large as 1000 K, this will increase our estimate of v by a factor 
of no more than 2. This will have no significant effect on our 
conclusions below. 
 
Third, as regards nt, we note that at the present time, the total 
mass of living organisms on Earth is Mliving = 3.6 X 1017 grams (see 
http://www.ursa.fi/mpi/earth/index.html). In the early Earth, 
before the first cell appeared, the mass of living material was by 
definition zero. But there were amino acids and bases present in 
the primeval soup. So in order to optimize the chances of cell 
formation, let us make a second gross assumption: let us assume 
that all of the mass that is now in living organisms was already 
present in the primeval soup in the form of amino acids (if we 
wish to assemble proteins) or bases (if we wish to assemble RNA). 
 
With a molecular weight of about 100, each amino acid (or base) 
has a mass maa of about 1.7 10-22 grams. Therefore, the total number 
ntotal of amino acids (or bases) in the primeval soup was of order 
Mliving/maa. With this assumption, we find ntotal = 2 X 1039. 
Naturally, this estimate is quite uncertain. Other estimates of 
this number are larger. E.g. Bar-Nun and Shaviv (Icarus 24, 197, 
1975) estimate 5.4 X 1041, while Shklovskii and Sagan (1966 
Intelligent Life in the Universe) estimated 1044.  We shall see 
that our results are only slightly affected by these 
uncertainties. 
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Finally, to derive nt in the primeval soup, we need to divide ntotal 
by the volume of the material where living material existed on the 
early Earth. In the present Earth, the volume of the biosphere is 
of order 1019-20 cubic cm. However, life probably started in 
particular locations, and so the relevant volume of the primeval 
soup was probably much smaller. Let us suppose that the early 
Earth had a biosphere with a volume that was 10-100 times smaller 
than it is at present. (This putative decrease in volume will help 
to speed up reactions.) That is, let us suppose that all of the 
amino acids which now are present in living matter on Earth were 
concentrated in the primeval soup into a favored volume of only 
1018 cubic cm. Combining this with our estimate of ntotal, we see 
that the mean density of amino acids in the favored volume of the 
primeval soup nt could have been about 2 X 1021 per cubic cm. 
 
Is this a reasonable value? To answer this, we note that this 
value of nt corresponds to a mean mass density of 0.34 gram/cubic 
cm for the amino acids in the primeval soup. This density is very 
high (the molar concentration is about 0.1): it is questionable 
whether such a high density of amino acids could ever have been 
dissolved in water. This estimate of mass density is certainly 
close to the upper limit possible: it could hardly have been any 
higher. In order to remain dissolved in water (with mean density 1 
gram/cubic cm), the mass density of amino acids can certainly not 
exceed the density of water. Therefore, our estimate of the upper 
limit on nt is not unreasonable as we try to optimize the chances 
of randomly assembling a cell. (If we were to use Bar-Nun and 
Shaviv�s estimate of the total number of amino acids, we would  
need to dilute them by dissolving them in at least 100 times more 
volume than we used above in order to keep the mean density less 
than that of water. With Shklovskii and Sagan�s estimate, the 
volume must be larger still by a further factor of 200.) The 
actual value of nt in the primeval soup was probably orders of 
magnitude less than the estimate given above. Maximum molar 
concentrations of amino acids in the primeval soup have been 
estimated to be as low as 10-7 or 10-8 (Hulett 1969 J. Theor. Biol.  
24 56; Dose, 1975, Biosystems 6, 224). Thus, our estimates of nt 
are probably too large by 6 or 7 orders of magnitude. However, in 
the spirit of optimizing the chances of making a cell, let us use 
the above upper limit as the value of nt. 
 
Now we have all of the ingredients we need to calculate tc, the 
mean time between collisions in the primeval soup. We find tc = 5 X 
10-11 seconds. 
 
13.2. Number of collisions by a single amino acid in 1.11 b.y. 
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Now that we know the mean interval between collisions, we see that 
in the primeval soup, a given amino acid experienced 2 X 1010 
collisions every second as an upper limit. Therefore, each amino 
acid experienced no more than 2 X 1010 reactions every second with 
other amino acids. 
 
How many collisions did an amino acid experience in the primeval 
soup in the course of a time interval of 1.11 billion years, i.e. 
in the 3.5 X 1016 seconds before the first cell appeared on Earth? 
The answer is straightforward. Multiplying the above reaction rate 
by the number of seconds available, we find that each amino acid 
in the primeval soup experienced at most nr(1) = 7 X 1026 reactions 
with other amino acids before the first cell appeared on Earth. 
 
13.3. Total number of collisions between amino acids in 1.11 b.y. 
 
Finally, we ask: what was the total number of reactions between 
amino acids that occurred in the primeval soup before the first 
cell appeared? The answer is again straightforward: since each 
amino acid experienced nr(1) in that time, and since there were   
ntotal amino acids in the primeval soup, the total number of 
reactions nr between amino acids was about 1065 before the first 
cell appeared.  
 
This is a "large" number. But it is finite. 
 
Moreover, we have artificially forced nr to be as large as possible 
by making four extreme assumptions. (i) Every collision produces a 
peptide-bonding reaction. (ii) The mass of pre-biotic material was 
as large in the primeval soup as it is in today's biomass. (iii) 
The entire biomass in the primeval soup was in the form of amino 
acids (or bases). (iv) All amino acids were concentrated in pools 
where their mass density could build up to the maximum permissible 
value.  In the real primeval soup, conditions might have been such 
that any or all of these assumptions could have failed by several 
orders of magnitude. (In particular, (iv) almost certainly failed 
by 6-7 orders of magnitude, and (i) almost certainly failed by 
several orders of magnitude because of reaction kinetics.) 
Therefore, it is highly likely that the actual total number of 
collisions which occurred in the primeval soup before the first 
cell appeared could have been 10 or more orders of magnitude less 
than 1065. 
 
Of course, our estimates refer to our estimates of the biomass 
only, and also to binary collisions only. If we were to use the 
estimates of Bar-Nun and Shaviv or of Shlokskii and Sagan, the 
number densities per unit volume nt cannot exceed the value we have 
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already used above. Therefore, there will be no change in the 
number of collisions per second. But the total number of 
collisions would increase by 2-5 orders of magnitude above our 
estimate.   
 
For the sake of argument, let us assume that these other processes 
compensated for orders of magnitude deficits associated with the 
extreme assumptions (i)-(iv) above. That is, we will assume in 
what follows that nr was indeed of order 1065. This appears to be a 
very generous estimate of the total number of reactions in the 
primeval soup.  
 
 
 
 
 
14. Random production of the first cell 
 
We are now in a position to estimate probabilities for randomly 
assembling the first cell.  
  
Let us return to our estimate of the number of reactions that were 
necessary to create the first cell by random processes. In order 
to create a cell containing 12 proteins with chains of N = Na amino 
acids each, we recall that R12p was required to be 10J (where J is 
given in eq. (4) above) if proteins and RNA were both assembled at 
random. 
 
However, if we accept the "RNA-first theory", we recall that the 
number of reactions R12p(RNA-first) was "only" 10K (where K is given 
in eq. (5) above). 
 
Now that we know how many reactions actually did occur in the 
primeval soup before the first cell appeared, we can equate nr 
to the above values of R12p in order to determine how large qra must 
have been in order to have reasonable probability of assembling 
the first cell at random.  
 
Setting R12p equal to nr, we find that the value of qra required for 
random assembly of the first cell must satisfy the equation  

 
37.3Na +43.3 -24qra = 65                     (eq. 6) 

 
if proteins and RNA were assembled together. On the other hand, if 
we accept the RNA-first theory, then we find  
 

24.3Na +43.3 -14q(RNA)ra = 65.               (eq. 7)  
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As mentioned above, the value of Na is no less than 14. Inserting 
Na = 14 in eq. (6) and (7) leads to qra = 20.8 or q(RNA)ra = 22.8. 
The numerical value of qra increases linearly with the value of Na, 
increasing by 1.7 for each unit increase in Na. However, qra is not 
sensitive to the number of proteins in the cell. Moreover, qra is 
not sensitive to errors in our estimates of the number of 
collisions in the primeval soup: even if our estimated number of 
collisions is wrong by factors of (say) one million times too 
large or too small, our estimates of qra would change by only plus 
or minus 0.4.  
 
The above estimates of qra emerge from the two basic points of our 
argument: (i) a finite time was available for chemical reactions 
to operate, and (ii) a cell cannot function as a truly living 
organism with less than the bare minimum of 12 proteins.  
 
However, as we saw in Section 9 above, the total number of all 
available proteins in the Na = 14 world is such that q has 
certainly a maximum value qmax = 18.2. (The actual maximum would be 
smaller than this for the reasons discussed in Section 9 above, 
but let us continue to optimize the case for random assembly and 
retain qmax = 18.2.) We see that the value of qra that is required 
to ensure random assembly of the first cell is larger than qmax.  
 
However, it is formally impossible for q to have a value in excess 
of qmax: qra cannot exceed qmax even in optimal conditions. If qra is 
equal to, or larger than, qmax it implies that every available 
protein in the primeval soup must have been capable of performing 
the task of every other protein. This indicates a serious lack of 
specificity of tasks in the cell.  
 
This conclusion does not depend sensitively on the choice of Na. If 
functioning proteins actually require Na to be as large as (say) 20 
(such as the mini-proteins referred to by Maniloff), we would find 
q(RNA)ra = 33. However, the total number of proteins in an Na = 20 
world would be of order 2020 , i.e. qmax = 26. The value of q(RNA)ra 
again exceeds qmax, and so the conclusion about non-specificity 
still applies. 
 
 
 
15. Do proteins in the primeval soup have specific tasks? 
 
The result that qra has a value in excess of qmax has significant 
implications. It implies that there are no distinguishing 
properties between proteins: each protein would have had the 
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ability to perform the task of all the other functional proteins 
in the first cell. If that were to be the case, then there would 
be no way to regulate the various distinct groups of cell 
operations: replication could occur in the membrane, or membrane 
generation could occur in the energy generation sites. 
 
However, the nature of a cell requires that proteins have clearly 
defined and distinctly specific functions. That is, not all 
proteins must be capable of (say) membrane production: only a 
fraction F (<1) of the proteins must have this capability.  
 
What is a likely value for F? At one extreme, the smallest value F 
can have is Fmin = 1/Qmax. Writing F = 10-f, this means that the 
maximum possible value of f is fmax = qmax. In this limit, protein 
specificity would be maximized: there would then be one and only 
one protein out of the Qmax distinct proteins which could perform 
any one of the basic tasks of the cell. In such a case, all 14 
amino acids in each protein would be an invariant site, forbidding 
any substitutions.  
 
This extreme specificity is not true of most modern proteins: 
typically, only a subset of sites are invariant. E.g., Yockey 
(Table 6.3) discusses a 110-acid protein in which only 14 sites 
are invariant. At the remaining 96 sites, a number of other amino 
acids (from 2 to 19) may be substituted without degrading 
significantly the functioning of the protein. The amino acids 
which are functionally acceptable at a site are those which do not 
impede the folding process or the biochemical requirements of the 
protein. Because of these possibilities for substitution, the 
probability of randomly �finding� a functional protein in �amino-
acid phase space� may be much improved over what one might expect 
on the basis of the value of Qmax alone. Yockey (p. 254) describes 
in detail how to compute the probability factor 2HN when one knows 
how many different amino acids can be substituted at each site. 
For the 110-acid protein discussed by Yockey, the improvement in 
probability is enormous (from 1 in 10137 to 1 in 1093). It is not 
clear how much improvement will occur in a small protein, where 
there are only 14 amino acids. For the latter, the phase space is 
limited to 1018.2. The 3-dimensional folding of such a small protein 
might be quite sensitive to amino acid substitutions, more so than 
for a larger protein. If this is true, then the improvement factor 
might be quite small.  
 
At the opposite extreme, F can certainly not exceed Fmax = 1/12 if 
we are to preserve the distinction of 12 separate proteins for 
each of the cell�s tasks. The limit F = 1/12 represents the 
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minimum possible protein specificity. This means that f cannot 
have a value less than 1.08 in a cell with Np = 12 proteins.  
 
In fact, it is probable that F is much smaller than 1/12. If F 
were as large as 1/12, the prognosis for cell survival would be 
slim: a single point mutation could convert (say) a membrane-
producer in any particular cell into (say) a waste management 
protein. If this were to happen, the cell and its progeny could 
hardly expect to survive for long.  
 
This suggests that, in order to ensure long life for the cell, the 
value of F should be much smaller than 1/12. How small might F be? 
Let us introduce a �protein specificity index� m such that 
F=(1/12)m, i.e. f = 1.08m. With this definition, the minimum value 
that m can have is mmin = 1 (the minimum permissible specificity). 
Values of m in the range (say) m = 3-4 represent conditions where 
protein functions are only marginally specific. The maximum value 
that m can have is mmax = qmax/1.08: in the example given above where 
qmax = 18.2, mmax would have a value of about 16.9. In the limit m = 
mmax, every protein performs a unique task.  
 
With this well-defined range of the m parameter, we may usefully 
refer to an �average specificity index� mav = (mmin + mmax)/2. With 
the values just cited, we find mav is about 9. High specificities 
can be considered as those with m values in excess of mav. Low 
specificities are those with m values less than mav. 
 
 
16. What are the chances of creating the first functioning cell 
randomly? 
 
The fact that the factor F departs from unity has the effect that 
the Q factor which we used above in estimating the probability of 
random formation of the first cell must be replaced by the product 
FQmax. The quantity q in our earlier estimates must be replaced by 
qmax-f where f cannot be less than 1.08. 
 
In view of this, if we adopt the �RNA-first� theory, the necessary 
number of reactions for random assembly of the first cell is 10L 
where  

L = 24.3Na + 43.3 �14(qmax - f).                  (eq. 8) 
 

Setting Na = 14, the chance Pr of random assembly of the first cell 
in the first 1.11 billion years of Earth�s existence (during which 
time there were at most 1065 reactions) is one in 10b where  

 
b = 14(f - qmax + qra ).                      (eq. 9) 
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With f=1.08m, and qra � qmax = 4.6, the chance Pr is about one in 
1015m+64.4. Since m cannot be less than 1, Pr is certainly less than 
one in 1079. If m takes on its average value mav  = 9, Pr decreases 
to 1 in 10200. Even if m takes on values that are much smaller than 
mav (say 2-3), the probability Pr amounts to only one in 1094-109. 
 
Note that the exponent b increases rapidly as Na  increases: both 
qra and qmax are proportional to Na. As a result, if we increase Na 
to (say) 21, we would find that qra � qmax would increase from 4.6 
to 6.9. Then even with m = 1 (its lowest value), exponent b 
exceeds 100. 
 
Even if we were to allow for a much older Earth, with an age of 
(say) 100 billion years, the number 65 in our formula for qra would 
increase only to 67. This would lead to a reduction of only 0.14 
in qra in the �RNA-first scenario�. This would increase the chance 
of random cell assembly, but even in the best possible case (m=1), 
Pr would still be no better than one part in 1077. 
 
The result Pr < 10-79 applies to a cell consisting of only the 
absolute minimum set of Np = 12 proteins. Such a cell is extremely 
small compared to the smallest known cell in the modern world 
(where Np = 250). What if the minimum number of proteins in a 
functional cell is 30 or 50 or 100? In such cases, the requirement 
of specificity of protein function has the effect that the factor 
F must be smaller than 1/Np , i.e. the exponent f must exceed 
log(Np). In terms of the protein specificity index m,  

 
f = m log(Np),                         (eq. 10) 

 
where m cannot be less than 1. In view of this, the probability of 
random assembly of the first cell is one in 10b where  
 

b = (Np+2)[mlog(Np) � qmax + qra ].                (eq. 11) 
 
Therefore, if the first cell required (say) 30 proteins to become 
operational, the chance of assembling its RNA at random in the 
primeval soup after 1065 collisions is less than one in 1047m+147. 
The exponent in this result rapidly becomes large even if we allow 
for only marginal specificity. For example, if m has a value of 2, 
Pr is less than one in 10240. And if m is set equal to its average 
value mav  = 9, Pr falls to less than one in 10570. 
 
If the modern genetic code was operative in the first primitive 
cell (much smaller than the smallest cell in today�s world), the 
above numbers are mathematical statements of the chances that the 
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RNA for the first cell was assembled by random processes. It is 
clear that the probabilities are extremely small. We stress that 
we have optimized a number of parameters in estimating the above 
probabilities. 
 
 
17. What about doublet-codons? 
 
We can improve the situation for random assembly of the first cell 
by considering the following possibility: suppose that, by some 
means, the proteins in the first cell were assembled from a 
smaller set of distinct amino acids than the Naa = 20 which exist 
in nature today.  
 
To be specific, let us suppose that the number of distinct amino 
acids which were used in the first cell was as small as Naa = 5. It 
is not obvious that functional proteins could actually exist with 
such a small �vocabulary� of amino acids. However, it has been 
claimed that protein folding is possible with as few as 5 distinct 
amino acids (Riddle et al. 1997). Therefore, consideration of this 
case probably does not violate any of the constraints of physical 
chemistry. It also does not violate any of the limitations of 
information theory: the quaternary genetic code might have begun 
as a �first extension� using doublet codons (Yockey, p. 188). 
(Vestiges of this early code might still exist in modern 
mitochondria.) Doublet codons might have encoded for as few as 4-5 
proteins (see Yockey, Table 7.1).  
 
The major change in our calculation in this case is that the 
codons in the RNA would no longer need to consist of triplets of 
bases. Assuming that there are still 4 bases to use for RNA 
coding, doublets would suffice to provide unique encoding for all 
5 amino acids (plus a start and a stop code). Of course, one might 
suspect that in a world where the number of useful amino acids has 
been reduced from 20 to 5, there might also be a reduction in the 
number of useful bases. For example, if there were only 2 useful 
bases (i.e. if the genetic code were ever binary consisting of one 
purine and one pyrimidine, a possibility discussed by Yockey (p. 
184), then triplet codons would still be needed even to encode for 
Naa = 5. In this case, we would return to the estimates derived 
above for the triplet codon world. If there were 3 useful bases 
available, doublet codons would suffice to encode for up to Naa = 7 
(plus a start and stop code).  
 
However, to optimize chances for random assembly, let us assume 
that all 4 of the modern bases are available so that we can 
exploit the possibility of doublet codons for the case Naa = 5.  
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In this case, the probability of assembling the RNA for a cell 
consisting of 12 proteins, each with Na amino acids, would be fRNA = 
(1/10)M where  
 

M = 14.4Na +28.9 � 12q.                     (eq. 12) 
 
We still need two proteins to allow DNA to do its work: with only 
5 different amino acids to choose from, the chances of assembling 
these two proteins at random are (1/5)P X 10-2q  where P = 2Na. 
Therefore fRNA in the 2-codon world would be equal to (1/10)R where  
 

R = 15.8Na + 28.9 � 14q.                    (eq. 13) 
 
In order that RNA for the first doublet-codon cell could have been 
assembled at random in the first 1.11 billion years of Earth�s 
existence, we must satisfy the equation  
 

15.8Na +28.9 �14qd = 65                     (eq. 14) 
 
where subscript d denotes that we are dealing with doublet codons.  
 
What is the minimum size of a protein in a world with Naa = 5? In 
our previous discussion of our modern world where Naa = 20, we have 
argued that proteins with Na = 14 are the smallest functional 
units. Does this argument remain valid when Naa is reduced to a 
value as small as 5? The answer is not obvious. For lack of 
alternatives, we will assume that Na cannot be less than 14 in a 
functional protein in the Naa = 5 world.  
 
With this assumption, we find that qd cannot be less than 13.2. 
This is many orders of magnitude smaller than the value of qra 
which is required in the three-codon world. At first sight, this 
might appear to represent a large increase in protein specificity. 
However, results from the three-codon world are not relevant here. 
Instead, we need to compare the new estimate of qd with the total 
number of distinct proteins that are possible in the primeval 
soup. With 5 distinct amino acids in the soup, and with each 
protein containing 14 amino acids, we see that there are some 514 
distinct possible proteins. Therefore, in this case, Qmax = 109.8 , 
i.e. qmax = 9.8. In view of the requirement that Q be at least as 
large as 109.8, we see that the qd required for random assembly of 
the RNA for the first cell again exceeds its maximum permissible 
value, this time by 3.4. That is, once again essentially all 
proteins are required to perform the task of all other proteins. 
We are faced once again with the problem of lack of protein 
specificity. 
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To satisfy the demands of specificity, we again introduce the 
fraction F = 10-f of all available proteins which are able to 
perform the task of (say) energy production. As before, we write f 
= m log(Np) where m lies between 1 and qmax/log(Np). (With the above 
numbers, mmax = 9.1, and the average specificity mav takes on a 
value of about 5.) In view of this, we see that the probability of 
assembling RNA for the first cell by chance in the 2-codon world 
becomes one in 10c where  
 

c = (Np+2)[mlog(Np) � qmax + qd ].            (eq. 15) 
 
Since the difference qd - qmax is now �only� 3.4 (as opposed to 4.6 
for the 3-codon case), we see that the probability of random 
assembly of the RNA for a (12-14) cell has increased in the 2-
codon case by at least 16-17 in the exponent. This is a great 
improvement indeed relative to the 3-codon case.  
 
However, even with absolutely marginal specificity of protein 
tasks, i.e. m = 1, the probability Pr of assembling RNA randomly in 
the primeval soup for a (12-14) cell which uses only Naa = 5 
distinct amino acids is no better than one in about 1063. If the 
specificity has its average value mav = 5, then Pr = 10-123. Even if 
the value of m is much smaller than mav (say m = 2-3), and with 
more realistic numbers of proteins in the cell (say Np = 30), the 
chances of randomly assembling the RNA for the first cell in the 
primeval soup using doublet codons is no better than one in 10200.  
 
 
 
18. What about singlet codons? 
 
We might (in principle) improve the chances of randomly assembling 
the first cell if the genetic code were able to operate with 
singlet codons (instead of doublets or triplets). However, it 
seems unlikely that such a world can exist. It is known that 
folding of a protein simply cannot be achieved using an amino acid 
set that is as small as 3 (Riddle et al. 1997): on the other hand, 
folding can be achieved if the set of amino acids is as large as 
5. For the sake of argument, let us make the extreme assumption 
that folding CAN occur with an amino acid set consisting of only 4 
species in the primeval soup. In this case, a singlet codon (one 
of the four bases for each amino acid) would in principle suffice 
for the RNA to encode for the amino acids, although with zero 
redundancy (and therefore no error protection). 
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However, in order to assemble an accompanying DNA molecule, we 
also need to have start and stop codons. That is, we must encode 
not merely for the 4 amino acids, but also for the start/stop 
codons. This means that the DNA is required to encode for at least 
6 elements. This cannot be done with singlet codons (if only four 
bases are available.) 
 
We conclude that the doublet-codon world is as simple as we can go 
and still have access to the flexibility of the genetic code.  
 
 
19. A window of opportunity 
 
When we considered what was probably the simplest example of a 
doublet-codon world, with Naa = 5, we found that random assembly of 
the first cell turned out to be more probable than in the triplet 
codon case with Naa = 20. But still, the probability Pr is very 
small.  
 
However, this is not the only example we might consider. Doublet 
codons with 4 useful bases can in principle encode for a 
�vocabulary� of proteins made with Naa in the range from 5 to 14 
(allowing for start and stop codes). And if proteins still consist 
of Na = 14 amino acids, then the maximum available number of 
proteins Qmax increases from 514 to 1414 as Naa increases from 5 to 
14. That is, qmax increases from 9.8 to 16.0. The corresponding 
values of mmax in a 12-protein cell are 9.1-14.8 (with mav = 5.05-
7.9). 
 
Returning to the expression we obtained for the probability Pr of 
random assembly of RNA for the first cell in a doublet codon 
world, 1 in 10c, we recall from eq. (15) that  
 

c = (Np+2)[m log(Np) + qd � qmax]  
  
where qd = 13.2 (for proteins with 14 amino acids each) and m has a 
value of at least 1. Inserting qmax values in the range from 9.8 to 
16.0, we see that the difference qd-qmax is no longer in all cases 
positive definite. In fact, when Naa grows to a value as large as 
9, the value of qd-qmax becomes for the first time negative (-0.2). 
This will certainly improve the probability of random assembly. 
 
However, if we insert numerical values, and set the specificity to 
its average value (mav = 7.2), we find that in a (12-14) cell, the 
value of the exponent c for the case Naa = 9 becomes 106. If we 
allow the protein specificity to fall to a very small value, say m 
= 2, then c becomes 28. That is, the probability that the RNA of 
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the first cell with Naa = 9 was assembled by chance in the first 
billion years of the primeval soup might be as large as 1 in 1028. 
These represent large improvements over the probabilities we have 
considered above. 
 
Moving on to even larger values of Naa, the formal probabilities of 
random RNA assembly become even larger. In fact, with Naa = 11, the 
probability Pr approaches unity if m has a value less than 
1.4/log(Np). Thus, in a (12-14) cell, a value of m less than 1.3 
would ensure that Pr could have a value of order unity if Naa = 11. 
Such a cell could have had its RNA assembled randomly with high 
probability in the primeval soup in an interval of 1.11 billion 
years.  
 
In the limiting case Naa = 14 in the doublet codon world, a (12-14) 
cell could be assembled randomly with high probability (in fact, 
with near certainty) in 1.11 billion years as long as mlog(Np) does 
not exceed the numerical difference between qmax and qd (i.e. 16.0-
13.2 = 2.8), i.e. as long as m does not exceed 2.5. This 
represents the widest opening of the window of opportunity for the 
random assembly of the RNA for a (12-14) cell.  
 
We note that a specificity of less than 2.5 is much smaller than 
the average mav: for the case Naa = 14, mav has the value 7.9. If 
the protein specificity index in the primeval soup was indeed as 
large as the value mav, the probability Pr of assembling the first 
(12-14) cell randomly in a doublet codon world is no more than one 
in 1080. 
 
The window of opportunity in the doublet-codon world has an 
interesting property that is relevant to the modern world. For a 
14-acid cell where the number of proteins is as large as in the 
smallest known modern cell (Np = 250), the probability of random 
assembly Pr could have approached unity as long as m is in the 
range 1.0-1.17. This is a very restricted window: but it is a bona 
fide window. It indicates that, provided all of the various 
optimized conditions are satisfied, random assembly of a (250-14) 
cell might have occurred with high probability in the young Earth 
with Naa = 14.  
 
However, the restricted window for the Np = 250 cell closes 
altogether if we have overestimated by too much the number of 
collisions in the primeval soup. As was mentioned in Section 13.3, 
our choice of 1065 for the value of nr (the total number of 
reactions experienced by bases or amino acids in the primeval 
soup) may be too large by 10 or more orders of magnitude. If nr is 
in fact equal to 1058 (or less), then qd increases to 13.7 (or 
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more). In this case, the probability Pr (= 1 chance in 10c) falls 
far below unity even if m has its minimum possible value (m=1): 
the exponent c takes on the value 24.7 (or more).  
 
Values of m as small as 1.17 or 1.3 (or even 2.5) represent  
marginal specificities; they are far below the average 
specificities, and are close to the absolute minimum value of m 
(=1). Whether living cells could in fact survive (and replicate 
faithfully) in the present of such marginal specificities is not 
known. At the very least, it is a cause for concern in the context 
of cell robustness.    
 
The above calculation suggests formally that random assembly of 
the first cell could have been achieved in the primeval soup if 
certain conditions were satisfied. The requirements are: (i) at 
least 11 distinct amino acids were available for use in the making 
of proteins; (ii) 4 distinct bases were available for the DNA; 
(iii) the protein specificity index m did not exceed 2.5 (for a 
cell with 12 proteins); (iv) the number of amino acids in the 
polypeptide chain of each protein equals 14; (v) the total number 
of reactions between bases or amino acids in the primeval soup was 
1065 ; (vi) we accept the RNA-first theory of cell assembly. 
 
If any of these conditions was violated in the young Earth, the 
probability of random assembly quickly falls to very low values.  
 
 
20. Entropy constraints on the window of opportunity 
 
At this point in the argument, we need to ask: is the mathematical 
scenario described in Section 19 relevant in a robust biological 
world? 
 
In order to address this, we need to consider a certain aspect of 
coding theory (Yockey, p. 5). The Central Dogma of biology states 
that DNA encodes for protein assembly but proteins do not encode 
for DNA assembly. To ensure this, coding theory states that the 
�vocabulary� at the source (e.g. DNA) must have significantly more 
symbols than the �vocabulary� at the receiver (amino acids).  
 
In the modern world, there is no problem with this requirement. 
With 64 codons in the DNA, and only 20 amino acids in (most) 
proteins, there is a large excess in the �mutual information 
entropy� of DNA compared to amino acids. The maximum information 
content of a DNA sequence is 5.931 bits per codon, whereas the 
information content of an average protein sequence is 4.139 bits 
per amino acid (Yockey, p. 175). (These numbers are close to the 
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definition of Shannon entropy for the source log2(64) and receiver 
log2(20) respectively: the slight differences arise because not all 
modern amino acids are encoded with equal probability.) The 
difference dH between 5.931 and 4.139 (dH = 1.792 bits per codon) 
is (in the language of coding theory) a measure of the difference 
in Shannon entropy between source (DNA) and receiver (proteins). 
(Shannon entropy has nothing to do with the Maxwell-Boltzmann-
Gibbs entropy of thermodynamics). Because of this difference in 
entropy, DNA can communicate information to amino acids, whereas 
amino acids cannot communicate information back to the DNA.  
 
The large amount of redundancy (represented by the ratio of 64 to 
20) in the modern DNA �vocabulary� relative to the amino acid 
�vocabulary� allows for error checking in the course of cell 
replication. With the proper use of redundancy, the channel 
capacity theorem (Yockey, p. 115) indicates that the error rate in 
a code can be kept below any specified level. This is essential 
for cells to ensure reliable and consistent replication in the 
course of many generations. 
 
As one possible measure of the level of error protection in a 
code, we may refer to some results obtained by Yockey (p. 73). It 
turns out that in a protein with N amino acids, the number of 
high-probability states N(h) in parameter space is 2NH where H is 
the Shannon entropy per amino acid. In the event that all sites 
have equal probability of occupation by each and all of the Naa 
distinct amino acids, the value of N(h) becomes equal to NaaN, as 
expected from the probability arguments we have used in this 
paper. In view of the formula for N(h), it seems reasonable to 
use, as a measure of error protection in the translation from DNA 
to proteins, the number E = 2NxdH. In the case of a modern protein 
such as insulin (with N=51), E has a value of 3 x 1027, and we 
interpret this to mean that insulin is extremely well protected in 
the modern world from errors in transcription. 
 
Now let us return to the doublet codon option in the primeval 
soup. A world containing 14 distinct amino acids in the proteins 
(plus one start and one stop code) would correspond to a doublet 
code in which the source has 16 symbols but the receiver also 
contains 16 symbols. In this situation, where dH = log2(16/16) = 0, 
there is zero entropy difference between source and receiver. As a 
result, E = 1, and the measure of error protection for (say) 
insulin would be some 27 orders of magnitude smaller than it is in 
the modern world. Replication of insulin in such a situation would 
be subject to intolerable uncertainty.  
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Moreover, the Central Dogma of biology would break down: a protein 
(such as insulin) would be able to control DNA just as much as DNA 
controls proteins. This hardly seems like a prescription for hardy 
life forms: there are too many options for lack of 
reproducibility. 
 
However, the break-down of the Central Dogma in the Naa = 14 world 
suggests that in such a world, one might consider not only the 
RNA-first theory, but also a �protein-first� theory. The numerical 
factors entering into our estimates of the probability of random 
assembly would then change. Thus, the value we have used above for 
qd (=13.2) (obtained from eq. (14)) would have to be changed to a 
value determined from a modification of the expression for z in 
eq. (1). We recall that eq. (1) refers to the case where the set 
of distinct proteinous amino acids contains 20 entries. Here, we 
have only 14 entries in the set, and as a result, z changes to 
13.8Na � 12q. Setting z equal to 65 and Na = 14, we find qd = 10.7. 
The window of opportunity now widens somewhat: for the case Naa = 
14, the value of Pr approaches unity as long as the specificity 
index m does not exceed 4.9. This is still well below the average 
value mav (= 7.9). Thus, we are still forced to confront the 
requirement that protein specificities are quite small. 
 
A doublet codon world, if it is to be of interest to biology in 
the context of error-free replication, must certainly contain less 
than 14 distinct amino acids. How much less than 14 should we 
consider? We have seen that there is a good probability that RNA 
can be assembled randomly as long as Naa has a value of 11 or more. 
Including a start and a stop codon, this means that the genetic 
code must use 16 symbols at the source to encode for 13 (or more) 
amino acids. The difference in Shannon entropy between source and 
receiver for this case is log2(16/13), i.e. dH = 0.3. With such a 
value of dH, the error protection E of insulin would fall to 4 x 
104, i.e. some 23 orders of magnitude weaker than the protection 
which exists in the modern genetic code. And for the cases Naa = 12 
and 13, the values of dH are 0.19 and 0.09 respectively. The 
corresponding values of E for insulin would be 826 and 24, i.e. up 
to 26 orders of magnitude less protection than in the modern 
world. 
 
Although it is sometimes claimed that error protection �must have 
been� less in the early genetic codes than in the modern world, 
this is not necessarily true. On the contrary, to ensure that 
reliable replication occurs among millions of cells of even a 
single species, it appears that the earliest genetic codes �must 
have been nearly as accurate as those of today, otherwise even 
short proteins could not have been transmitted in sufficient 
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numbers� (Yockey, p. 338). In other words, if the earliest genetic 
codes were error prone, biology would not have been possible.  
 
In order to ensure the same error protection between source and 
receiver which exists in the modern world, there should be similar 
redundancy to what exists in the modern world. That is, the ratio 
of the number of codons in the DNA to the number of symbols in the 
amino acids should be comparable to the modern value (64/20 = 
3.2). This suggests that, at an epoch when there were 16 codons in 
the DNA code (if there was indeed such a �doublet-codon epoch� in 
the early Earth), the value of Naa should have been 5. This is 
precisely the case we considered in the Doublet Codon section. The 
Central Dogma would be just as robustly valid in such a world as 
it is in today�s world. However, the chances of randomly 
assembling such a cell is (as we have seen) only 1 in 1063. 
 
 
 
21. Window of opportunity? or bottleneck? 
    
There is a further constraint on the world of doublet codons in 
which Naa lies in the range from 11 to 14. This has to do with how 
well protected the genetic code is from noise-induced mutations. 
Cullmann and Labouygues (1983, BioSystems 16, 9: hereafter C&L) 
have discussed this issue in numerical detail.  
 
In order to understand the results of C&L, a brief summary of 
their terminology is necessary. In a doublet code, with 4 bases, 
there are 16 possible codons. Of these, only a certain number (the 
�sense codons�) are used to encode for proteinous amino acids. The 
remainder are �non-sense codons� which serve to terminate the 
translation. Mutations of various types can occur as a result of 
noise. There is one class of mutations which causes a sense codon 
to switch to a non-sense codon. In a second class of mutations, a 
single mutation causes a sense codon to switch to another sense 
codon. In the latter case, the protein may still function if there 
are synonymous code entries. But if we dealing with an invariant 
site, then the protein function is disabled, and C&L refer to a 
�mis-sense� codon.  
 
C&L have systematically analyzed all possible doublet codons in a 
world where the number of amino acids being encoded varies from Naa 
= 0 to 16 (thus including all numbers of interest to us here). In 
each case, they count up how many single mutations N lead to non-
sense codons, and how many single mutations D(1) belong to 
synonymous and mis-sense codons. C&L point out that the optimal 
code (as far as immunization from noise is concerned) is one which 
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minimizes N and which simultaneously maximizes D(1). Codes which 
have N not too far from its minimum value also possess significant 
immunization against noise. C&L find that, starting with Naa = 0 
and increasing Naa in steps of unity, there is at first a growing 
number of doublet codes which satisfy the optimal condition.  
 
In the present context, it is important to note that this growth 
in available codes continues up to Naa = 8, at which point there 
are thousands of codes which are not far from optimal. But for Naa  
= 9 and larger, the number of available codes begins to diminish 
rapidly. For Naa = 12, the number of codes has decreased to the 
hundreds, and as Naa approaches 16, the numbers drop off towards a 
value of 1. Thus, as a doublet-codon system attempts to encode for 
more and more amino acids, there are less and less options the 
closer Naa approaches 16. 
 
Yockey (p. 190) refers to this as a �bottleneck� which has 
evolutionary significance. He suggests that doublet codons might 
have been successful in operating biology as long as Naa was 
smaller than 16. But as more and more amino acids became available 
for inclusion into proteins, and Naa eventually increased above 16, 
it eventually became necessary to go to triplet codons. However, 
before this happened, and as Naa increased upward through values of 
9, 10,�16, the shrinking size of parameter space in which noise-
immunized codes can exist would have exposed the organisms of that 
time to an increasing lack of immunization against genetic noise. 
 
Now, we recall that, in our discussion above, the probability of 
randomly assembling the RNA for the initial (12-14) cell first 
rises to large values when Naa is as large as 11. Using the results 
of C&L, we now see that this value of Naa has a significant 
property: it is already past the peak in available numbers of 
doublet codes. Thus, we are already approaching the vicinity of 
Yockey�s �bottleneck�. This makes it increasingly difficult for an 
immunized genetic code to handle the large variety of proteins 
which one might expect to find in a flourishing biosphere.   
 
 
 
22. Overview on the window of opportunity 
 
Let us now take an overall look at the window of opportunity in 
the light of our discussions of the �bottleneck� (Section 21), the 
entropy (Section 20), and the requisite marginal specificities of 
proteins (Section 19). Taken in combination, these discussions 
suggest that what appears as a window of opportunity for random 
assembly of the first cell (in a formal mathematical sense) may be 
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subject to several classes of difficulties in the biological 
context.  
 
It is true that a scenario in which the doublet-codon window opens 
up to its widest extent describes a system which is interesting 
from a mathematical perspective. But from a biological 
perspective, this system suffers from three serious drawbacks. 
First, in the encoding process between DNA and proteins, error 
protection is many orders of magnitude weaker than it is in modern 
organisms. Second, the phase space of permissible genetic codes 
shrinks to smaller and smaller volumes. Third, a huge number of 
the available proteins must be able to perform each and every task 
in the cell: the number is so large that there would have been 
almost no specificity in protein tasks within a cell. That is, 
there is a good chance that a protein which is supposed to be used 
for (say) membrane repair, may switch to one whose function is 
(say) enabling reproduction. 
 
Any one of these features could be considered as posing 
significant difficulties for cell survivability. The combination 
of all three exacerbates the problem. It is difficult to see how a 
cell (even of the primitive kind we consider here, no bigger than 
a modern virus) could have survived. For the first robust cell to 
have developed randomly in the doublet-codon phase of the 
primitive Earth, conditions must have been �just right� to allow 
survival in the presence of the above serious drawbacks. 
 
 
 
 
 
23. Conclusion  
 
We have numerically evaluated the probability Pr that, in the first 
1.11 billion years of Earth�s existence, random processes were 
successful in putting together the RNA for the first cell. In 
estimating Pr, we initially assumed that the first cell follows the 
rules which guide modern life-forms. That is, we assume there are 
Naa = 20 distinct amino acids in proteins, and triplet codons in 
the genetic code. 
 
In calculating Pr, we consider only the random assembly of RNA: we 
assume that once the RNA is present, it will generate the proteins 
for the cell. (Thus, we are not requiring that the proteins be 
assembled randomly: if we were to impose such a requirement, the 
probabilities of random assembly of the first cell would be even 
smaller than the results we obtain here.) Furthermore, we consider 
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a cell which is much smaller than those which exist in the modern 
world. The latter contain at least 250 proteins. By contrast, we 
have reduced the requirements of the first living cell to a bare 
minimum: we assume that that cell was able to function with only 
12 proteins. Compared to the smallest known living cell, our 
choice of 12 proteins seems almost absurdly reductionist. Our 
�cell� looks more like a modern virus (which cannot reproduce 
itself) than a bona fide cell. But we proceed anyway.  
 
Moreover we also assume that each protein consists of a chain of 
no more than 14 amino acids. We refer to this as a (12-14) cell. 
Again, a chain with only 14 amino acids is considerably shorter 
than the smallest known protein in the modern world (which 
contains a few dozen amino acids). It is not clear that a protein 
with only 14 acids would be subject to the 3-dimensional folding 
which is essential to protein functioning. Nevertheless, we make 
these reductionist assumptions about a cell with the aim of 
optimizing the probability of assembling the first cell. 
 
In this spirit, we start with the assumption that the only amino 
acids which existed in the primitive Earth were the 20 (or so) 
distinct types of amino acids which occur in the proteins of 
modern living cells. Also in the spirit of optimization, we assume 
that the entire pre-biomass of the Earth was in the form of 
proteinous amino acids. We specifically exclude the non-biological 
amino acids (numbering more than one hundred) which may have been 
produced in the primitive Earth. Moreover, we also assume that all 
20 of the proteinous amino acids were present solely in the L-
isomer form so that the growth of a protein chain is not ended 
prematurely by unintentional inclusion of a D-isomer. Furthermore, 
we assume that the initial cell occurred in the physical 
conditions which are most commonly cited in textbooks, i.e. in a 
�primeval soup�. This allows us to obtain a firm (and generous) 
upper limit on the number of chemical reactions which could have 
occurred before the first cell appeared on Earth. 
 
With all of these assumptions, we find that the probability of 
assembling the RNA required for even the most primitive (12-14) 
cell by random processes in the time available is no more than one 
in 1079. 
 
In order to improve on the probability that random processes 
assembled the RNA for the first cell, we make the (unproven but 
likely) assumption that proteins in the earliest cells were 
constructed from a smaller set of distinct amino acids than those 
which occur in modern cells. In order to ensure that the primitive 
life forms had a similar level of error protection in their 
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genetic code as that which exists in the modern world, we consider 
a case in which the early proteins consisted of only Naa = 5 
distinct amino acids. For these, the genetic code can operate with 
doublet codons. In such a world, the probability of randomly 
assembling the RNA for the first cell in the time available is 
certainly larger than in our modern (triplet codon) world. But the 
probability is still small, no more than one part in about 1063.  
 
We have identified a region in parameter space where, once the 
genetic code exists, the probability of random assembly of the 
first cell could have reached formally large values in optimal 
conditions. These conditions include the following: (i) the first 
cell contained 12 proteins; (ii) each protein in the cell 
contained 14 amino acids; (iii) there were 4 bases in DNA; (iv) 
the protein specificity index was no larger than 2.5 (far below 
its average value); and (v) conditions in the primitive pre-
biosphere were such that chemical reactions occurred at their 
maximum possible rates. (The last of these conditions almost 
certainly involves an optimization which is unrealistic by as much 
as 10 orders of magnitude.)  
 
(Note that we have said nothing about how the genetic code came 
into existence. We merely assume that it is already in operation. 
The origin of the code is a more formidable problem than the one 
we have addressed here.) 
 
If mathematics were the only consideration, our conclusions would 
suggest that the RNA for the first cell could have been assembled 
randomly in the primeval soup in 1.11 b.y. once there was a code 
and abundant supplies of between 11 and 14 distinct proteinous 
amino acids. However, when we take into account considerations of 
coding theory (especially the necessity to protect the proteins 
from errors of transcription), it appears that this region of 
parameter space is hostile to protein production. And the genetic 
code has to pass through a �bottleneck� in order to enter into the 
modern world, with its 20 proteinous amino acids. As a result, the 
first cell might have had serious difficulties surviving as an 
autonomous biological system.  
 
Finally, the extreme nature of our assumptions regarding the first 
cell (12 proteins, each containing 14 amino acids) can hardly be 
overstated. If a cell is to fulfil even the minimum requirements 
of a Von Neumann self-replicating machine, it probably needs at 
least 250 proteins. Even with multiple optimizations in our 
assumptions about the primeval soup, the window of opportunity for 
creating such a cell in 1.11 b.y. narrows down to a very 
restricted region in phase space: (I) there must have been exactly 
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14 distinct amino acids in the cell proteins, (II) the protein 
specificity index must have been between 1.0 and 1.17, and (III)  
at least 1058 chemical reactions must have occurred between the 
bases (or amino acids) in 1.11 b.y. The �fine tuning� of such 
conditions presents a problem. However, there are more serious 
problems than fine tuning: error protection in the genetic code 
fails altogether in these conditions. Even the Central Dogma of 
biology breaks down. A cell formed under these conditions would 
truly be subject to serious uncertainties not only during day-to-
day existence but especially during replication. The cell could 
hardly be considered robust. 
 
Nevertheless, as Yockey (p. 203) points out, the possibility that 
an organism from the doublet-codon world might have survived the 
�bottleneck� may have some empirical support. According to the 
endosymbiotic theory (L. Margulis 1970, Origin of Eukaryotic 
Cells, Yale Univ. Press, New Haven CT), mitochondria might have 
been at one time free-living bacteria which now survive in a 
symbiotic relationship with the cytoplasma of other cells. In 
mitochondria, the genetic code differs somewhat from the code in 
other cells. Perhaps mitochondria are representative of organisms 
which originated in the doublet-codon world, but which could not 
survive on their own because of the difficulties associated with 
the hostile zone of parameter space where they originated.  
 
In summary, if the first cell actually originated by random 
processes, the genetic code must already have existed, and 
conditions must have been �finely tuned� in order to trace a path 
through a narrow (and hostile) region of parameter space. The idea 
that some of the constants of the physical world have been subject 
to �fine tuning� in order to allow life to emerge, has been widely 
discussed in recent years (e.g. in the book by J. D. Barrow and F. 
J. Tipler, The Anthropic Cosmological Principle, Oxford University 
Press, 1994, 706 pp). If we are correct in concluding that �fine 
tuning� is also required in order to assemble the first cell, we 
might regard this conclusion as a biological example of the 
Anthropic Principle.  


