Cortical Encoding of Auditory Objects at the Cocktail Party

Jonathan Z. Simon

Department of Electrical & Computer Engineering Department of Biology Institute for Systems Research

University of Maryland

Jonathan Z. Simon

Neural processing of speech and complex auditory streams

Magnetoencephalography

Neural Un-Mixing of Speech

Neurally Inspired Algorithms

Neural Signal Processing

Advanced Neuroimaging

Acknowledgements

Grad Students

Francisco Cervantes

Alex Presacco

Krishna Puvvada

Past Grad Students

Nayef Ahmar

Claudia Bonin

Maria Chait

Marisel Villafane Delgado

Kim Drnec

Nai Ding

Victor Grau-Serrat

Ling Ma

Raul Rodriguez

Juanjuan Xiang

Kai Sum Li

Jiachen Zhuo

Undergraduate Students

Abdulaziz Al-Turki

Nicholas Asendorf

Sonja Bohr

Elizabeth Camenga

Corinne Cameron

Julien Dagenais

Katya Dombrowski

Kevin Hogan

Kevin Kahn

Andrea Shome

Madeleine Varmer

Ben Walsh

Collaborators

Catherine Carr

Alain de Cheveigné

Didier Depireux

Mounya Elhilali

Jonathan Fritz

Cindy Moss

David Poeppel

Shihab Shamma

Past Postdocs

Dan Hertz

Yadong Wang

Collaborators' Students

Murat Aytekin Julian Jenkins

David Klein

Huan Luo

Funding

NIH ROI DC 008342

Introduction

- Magnetoencephalography (MEG)
- Auditory Objects
- Neural Representations of Auditory Objects in Cortex: Decoding
- Neural Representations of Auditory Objects in Cortex: Encoding

Functional Brain Imaging

Hemodynamic techniques

Functional Brain

Imaging

= Non-invasive

recording from

human brain

fMRI

functional magnetic resonance imaging

PET

positron emission tomography

> fMRI & MEG can capture effects in single subjects

EEG

electroencephalography

MEG

magnetoencephalography

Excellent Spatial Resolution (~I mm)

Poor **Temporal** Resolution (~| s)

Poor **Spatial** Resolution (~I cm)

Excellent **Temporal** Resolution (~I ms)

Electromagnetic techniques

Functional Brain Imaging

Hemodynamic techniques

Functional Brain

Imaging

= Non-invasive

recording from

human brain

fMRI

functional magnetic resonance imaging

PET

positron emission tomography

fMRI & MEG can capture effects in single subjects

Electromagnetic techniques

EEG

electroencephalography

MEG

magnetoencephalography

Excellent
Spatial
Resolution
(~I mm)

Poor Temporal Resolution (~ I s)

Poor Spatial Resolution (~I cm)

Excellent
Temporal
Resolution
(~ I ms)

Functional Brain Imaging

Hemodynamic techniques

Functional Brain

Imaging

= Non-invasive

recording from

human brain

fMRI

functional magnetic resonance imaging

PET

positron emission tomography

fMRI & MEG can capture effects in single subjects

Electromagnetic techniques

EEG

electroencephalography

MEG

magnetoencephalography

Excellent
Spatial
Resolution
(~ I mm)

Poor Temporal Resolution (~ I s)

Poor Spatial Resolution (~I cm)

Excellent
Temporal
Resolution
(~I ms)

Magnetoencephalography

- Non-invasive, Passive, Silent Neural Recordings
- Simultaneous Whole-Head Recording (~200 sensors)
- Sensitivity
 - high: ~100 fT (10⁻¹³ Tesla)
 - low: $\sim 10^4 \sim 10^6$ neurons
- Temporal Resolution: ~I ms
- Spatial Resolution
 - coarse: ~ | cm
 - ambiguous

Magnetic Field Strengths

MEG SQUIDs

SQUID Magnetometer

SQUID Gradiometers

Noise reduction from Differential measurement

MEG = "Squid head"

Neural Signals & MEG

- Direct electrophysiological measurement
 - not hemodynamic
 - •real-time
- No unique solution for distributed source
- Measures spatially synchronized cortical activity
- •Fine temporal resolution (~ 1 ms)
- Moderate spatial resolution (~ 1 cm)

MEG Auditory Field

Flattened Isofield Contour Map

MEG Auditory Field

3-D Isofield Contour Map

Time Course of MEG Responses

Auditory Evoked Responses

- MEG Response Patterns Time-Locked to Stimulus Events
- Robust
- Strongly Lateralized

Broadband Noise

Phase-Locking in MEG to Slow Acoustic Modulations

Phase-Locking in MEG to Slow Acoustic Modulations

MEG activity is precisely phase-locked to temporal modulations of sound

response spectrum (subject R0747)

Frequency (Hz)

Ding & Simon, J Neurophysiol (2009) Wang et al., J Neurophysiol (2012)

MEG Responses to Speech Modulations

MEG Responses Predicted by STRF Model

"Spectro-Temporal Response Function"

Neural Reconstruction of Speech Envelope

Neural Reconstruction of Speech Envelope

2 s

Reconstruction accuracy comparable to single unit & ECoG recordings

Ding & Simon, J Neurophysiol (2012) Zion-Golumbic et al., Neuron (2013)

Auditory Objects

- What is an auditory object?
 - perceptual construct (not neural, not acoustic)
 - commonalities with visual objects
 - several potential formal definitions

Auditory Object Definition

- Griffiths & Warren definition:
 - corresponds with something in the sensory world
 - object information separate from information of rest of sensory world
 - abstracted: object information generalized over particular sensory experiences

Experiments

Experiments

Speech Stream as an Auditory Object

- corresponds with something in the sensory world
- information separate from information of rest of sensory world
 e.g. other speech streams or noise
- abstracted: object information generalized over particular sensory experiences
 e.g. different sound mixtures

Neural Representation of an Auditory Object

- neural representation is of something in sensory world
- when other sounds mixed in, neural representation is of auditory object, not entire acoustic scene
- neural representation invariant under broad changes in specific acoustics

Selective Neural Encoding

Selective Neural Encoding

Selective Neural Encoding

Unselective vs. Selective Neural Encoding

Unselective vs. Selective Neural Encoding

Selective Neural Encoding

Stream-Specific Representation

grand average over subjects

attending to speaker 1

attending to speaker 2

Identical Stimuli!

Stream-Specific Representation

representative subject

grand average over subjects

attending to speaker 1

attending to speaker 2

Identical Stimuli!

Single Trial Speech Reconstruction

Attended Speech Reconstruction

Single Trial Speech Reconstruction

Attended Speech Reconstruction

Background Speech Reconstruction

Stream-Based Gain Control?

Gain-Control Models

Object-Based

Stream-Based Gain Control?

Gain-Control Models

Object-Based

Stimulus- Based

Neural Results

Speaker Relative Intensity (dB)

Stream-Based Gain Control?

Gain-Control Models

Object-Based

Stimulus- Based

Neural Results

Stream-Based Gain Control?

Gain-Control Models

Object-Based

Stimulus-Based

Neural Results

- Stream-based not stimulus-based
- •Neural representation is invariant to acoustic changes.

Neural Representation of an Auditory Object

- ✓ neural representation is of something in sensory world
- √ when other sounds mixed in, neural representation is of auditory object, not entire acoustic scene
- ✓ neural representation invariant under broad changes in specific acoustics

Forward STRF Model

Forward STRF Model

STRF Results

- STRF separable (time, frequency)
- •300 Hz 2 kHz dominant carriers
- M50_{STRF} positive peak
- •M100_{STRF} negative peak

STRF Results

- STRF separable (time, frequency)
- •300 Hz 2 kHz dominant carriers
- M50_{STRF} positive peak
- •M100_{STRF} negative peak

STRF Results

- STRF separable (time, frequency)
- •300 Hz 2 kHz dominant carriers
- M50_{STRF} positive peak
- M100_{STRF} negative peak
- •M100_{STRF} strongly modulated by attention, *but not M50_{STRF}*

Neural Sources

- •M100_{STRF} source near (same as?) M100 source:
 Planum Temporale
- M50_{STRF} source is anterior and medial to M100 (same as M50?): Heschl's Gyrus

Cortical Object-Processing Hierarchy

- •M100_{STRF} strongly modulated by attention, but not M50_{STRF}.
- •M100_{STRF} invariant against acoustic changes.
- •Objects well-neurally represented at 100 ms, but not 50 ms.

Summary

- Cortical representations of speech found here:
 - √ consistent with being neural representations of auditory (perceptual) objects
 - √ meet 3 formal criteria for auditory objects
- Object representation fully formed by 100 ms latency (PT), but not by 50 ms (HG)
- Not special to speech

Thank You

Reconstruction of Same-Sex Speech

Speech in Noise: Stimuli

Speech in Noise: Results

3 Reconstruction Accuracy

C Correlation with Intelligiblity

Speech in Noise: Results

Temporal Response Function in Each SNR Condition

Speech in Noise: Results

