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Figure 11: Schematics depicting models that are more complex. (a) Using the
output of a temporally symmetric (TS) neuron as sole input to another neuron
results in a temporally symmetric (TS) neuron (see equation 3.17). (b) Feedback
from such a temporally symmetric neuron whose sole source is the first tem-
porally symmetric neuron is still self-consistently temporally symmetric (see
equation 3.19). (c) Multiple examples of feedback and feedforward: The initial
neuron TS 1 provides temporal symmetry to all other neurons in the network
due to its role as sole input for the network. All other neurons inherit the tempo-
ral symmetry, and the feedback is also self-consistently temporally symmetric.

feedback:

hTS
1 (t, x) =

(
M∑

m=1

(kAm (t)gCm (x)) +
N∑

n=1

(
kθn

An
(t)gDn (x)

))

∗ kA(t) + hTS
2 (t, x)

hTS
2 (t, x) = hTS

1 (t, x) ∗ k2(t). (3.19)

Neural Modeling!

Neural Signal Processing!
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Introduction

• Magnetoencephalography (MEG)

• Auditory Objects

• Neural Representations of Auditory Objects in 
Cortex: Decoding

• Neural Representations of Auditory Objects in 
Cortex: Encoding



Functional Brain 
Imaging
= Non-invasive 
recording from 
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Magnetoencephalography
• Non-invasive, Passive, Silent 

Neural Recordings

• Simultaneous Whole-Head 
Recording (~200 sensors)

• Sensitivity
• high:  ~100 fT (10–13 Tesla)
• low:  ~104 – ~106 neurons

• Temporal Resolution: ~1 ms

• Spatial Resolution
• coarse: ~1 cm
• ambiguous      



Magnetic Field Strengths

Earth’s field

Urban noise

Contamination at lung

Fetal heart

Heart QRS
Muscle
Spontaneous signal (α-wave)

Signal from retina
Evoked signal

Intrinsic noise of SQUID
Biomagnetic Signals



MEG SQUIDs
SQUID
Magnetometer

SQUID
Gradiometers

Noise reduction from
Differential measurement

Planar Gradiometer Axial Gradiometer

5 cm
baseline



MEG = “Squid head”



Neural Signals & MEG

tissue

CSF

skull

scalp
B

MEG

V
EEG

recording
surface

current
flow

orientation
of magnetic
field

Magnetic
Dipolar
Field

Projection

•Direct electrophysiological measurement
•not hemodynamic
•real-time

•No unique solution for distributed source

Photo by Fritz Goro 

•Measures spatially synchronized 
cortical activity

•Fine temporal resolution (~ 1 ms)
•Moderate spatial resolution (~ 1 cm)



MEG Auditory Field
Flattened Isofield Contour Map

Instantaneous
Magnetic
Field Sink Source

40 fT/step t = 98 ms



MEG Auditory Field
3-D Isofield Contour Map

Sagittal View Axial View

Chait, Poeppel and Simon, Cerebral Cortex (2006)



Time Course of MEG Responses

Pure Tone

Broadband Noise

Auditory Evoked Responses

• MEG Response Patterns Time-Locked to 
Stimulus Events

• Robust

• Strongly Lateralized



Phase-Locking in MEG to 
Slow Acoustic Modulations

Ding & Simon, J Neurophysiol (2009)
Wang et al., J Neurophysiol (2012)
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MEG Responses

Auditory
Model

to Speech Modulations



Ding & Simon, J Neurophysiol (2012) “Spectro-Temporal Response Function”

(up to ~10 Hz)

MEG Responses
Predicted by STRF Model

Linear Kernel = STRF



Ding & Simon, J Neurophysiol (2012)
Zion-Golumbic et al., Neuron (2013)

Neural Reconstruction of 
Speech Envelope
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stimulus speech envelope
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Auditory Objects

• What is an auditory object?

• perceptual construct (not neural, 
not acoustic)

• commonalities with visual objects

• several potential formal definitions



Auditory Object 
Definition

• Griffiths & Warren definition:

• corresponds with something in the 
sensory world

• object information separate from 
information of rest of sensory world

• abstracted: object information generalized 
over particular sensory experiences



Alex Katz, 
The Cocktail Party

Auditory Objects at 
the Cocktail Party
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Alex Katz, 
The Cocktail Party

Auditory Objects at 
the Cocktail Party



Experiments

Ding & Simon, PNAS (2012)



Experiments

Ding & Simon, PNAS (2012)



Speech Stream as an 
Auditory Object

• corresponds with something in the sensory 
world

• information separate from information of 
rest of sensory world
e.g. other speech streams or noise

• abstracted: object information generalized 
over particular sensory experiences
e.g. different sound mixtures



• neural representation is of something in 
sensory world

• when other sounds mixed in, 
neural representation is of auditory object, 
not entire acoustic scene

• neural representation invariant 
under broad changes in specific acoustics

Neural Representation 
of an Auditory Object



Selective Neural 
Encoding



Selective Neural 
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Unselective vs. Selective 
Neural Encoding



Unselective vs. Selective 
Neural Encoding



Selective Neural 
Encoding



Stream-Specific 
Representation

grand average 
over subjects

representative 
subject

Identical Stimuli!

reconstructed 
from MEG

attended speech 
envelopes

reconstructed 
from MEG

attending to
speaker 1

attending to
speaker 2
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Single Trial Speech 
Reconstruction



Single Trial Speech 
Reconstruction



Invariance Under 
Acoustic Changes
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Invariance Under 
Acoustic Changes



Invariance Under 
Acoustic Changes
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✓ neural representation is of something in 
sensory world

✓ when other sounds mixed in, 
neural representation is of auditory object, 
not entire acoustic scene

✓ neural representation invariant 
under broad changes in specific acoustics

Neural Representation 
of an Auditory Object



Forward STRF Model

Spectro-Temporal 
Response Function 
(STRF)
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STRF Results

•STRF separable (time, frequency)
•300 Hz - 2 kHz dominant carriers
•M50STRF positive peak
•M100STRF negative peak

TRF

•M100STRF strongly modulated 
by attention, but not M50STRF
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Neural Sources

RightLeft

an
te
rio
r

po
st
er
io
r

medial

M50STRF
M100STRF
M100

•M100STRF source near 
(same as?) M100 
source: 
Planum Temporale

•M50STRF source is 
anterior and medial 
to M100 (same as 
M50?): 
Heschlʼs Gyrus

5 mm



Cortical Object-
Processing Hierarchy

0 100 200 400
time  (ms)

0
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•M100STRF strongly modulated by attention, but not M50STRF.
•M100STRF invariant against acoustic changes.
•Objects well-neurally represented at 100 ms, but not 50 ms.



Summary

• Cortical representations of speech found here:

✓ consistent with being neural representations 
of auditory (perceptual) objects

✓ meet 3 formal criteria for auditory objects

• Object representation fully formed by 100 ms 
latency (PT), but not by 50 ms (HG)

• Not special to speech



Thank You



Reconstruction of 
Same-Sex Speech
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Speech in Noise: Stimuli



Speech in Noise: Results
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Speech in Noise: Results


