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Introduction

Magnetoencephalography (MEG)
Auditory Objects

Neural Representations of Auditory Objects in
Cortex: Decoding

Neural Representations of Auditory Obijects in
Cortex: Encoding



Functional Brain Imaging

S AT T YT PP SR SN ot A
,' 3
-2
o

]

Functional Brain
Imaging

= Non-invasive
recording from
human brain

Hemodynamic
techniques

Electromagnetic
techniques

fMRI & MEG can
capture effects in single

subjects na

oS-

A‘.,.
¥ | A

| EEG 1 [E
¥ electroencephalography 3 - |

na-

3y : ]
<00 N9 0 /0

Maaa. e - ron S g o g i S
Y o s oo sl e e e e e s e
3
1.9

)

magnetoencephalography

Excellent
Spatial
Resolution
(-1 mm)

Poor
Temporal
Resolution

(-1s)

Poor
Spatial
Resolution
(-1 cm)

Excellent
Temporal
Resolution

(-1 ms)




Functional Brain Imaging

Excellent
Spatial
Resolution
(-1 mm)

S AT T YT PP SR SN ot A
,' 3
-2
o

]

Poor
Temporal
Resolution

Hemodynamic
techniques

(-1s)

Functional Brain
Imaging
= Non-invasive fMRI & MEG can \ A

capture effects in single

subjects na
= Poor

49~

recording from
human brain \

,. Sty SR Ty, ,' HERE - i = ‘ - : ! . p S atial
: EEG ’ 1 AL TV T Resolution
¥ electroencephalography - rs- (-1 cm)

na-

3y : ]
<00 N9 0 /0

Excellent
Temporal
Resolution

(-1 ms)

Maaa. e - ron S g o g i S
Y o s oo sl e e e e e e e
3
1.9

)

Electromagnetic
techniques

magnetoencephalography




Functional Brain Imaging
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Magnetoencephalography

Non-invasive, Passive, Silent
Neural Recordings

Simultaneous Whole-Head
Recording (~200 sensors)

Sensitivity
e high: ~100 fT (107! Tesla)
e low: ~10%*—-10° neurons

Temporal Resolution: ~I ms

Spatial Resolution
* coarse:~|l cm
* ambiguous



Intensity of magnetic signal (T)

Magnetic Field Strengths
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MEG SQUIDs
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“Squid head”
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Neural Signals & MEG

Photo by Fritz Goro

*Direct electrophysiological measurement

*not hemodynamic
°real-time
*No unique solution for distributed source

ontat Magnetic
orientation .
recording | \ of magnetic Dlpolar
surface field Field
g PN Projection
sz =
current
flow ‘ *

*Measures spatially synchronized
cortical activity

*Fine temporal resolution (~ 1 ms)

*Moderate spatial resolution (~ 1 cm)



MEG Auditory Field

Flattened Isofield Contour Map
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MEG Auditory Field

3-D lIsofield Contour Map

Sagittal View Axial View



Time Course of MEG Responses

Auditory Evoked Responses

e MEG Response Patterns Time-Locked to

Stimulus Events

e Robust

e Strongly Lateralized
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Phase-Locking in MEG to
Slow Acoustic Modulations

AM at 3 Hz 3 Hz phase-locked response

AMAAAAAAAL > MAMAWA

Ding & Simon, J Neurophysiol (2009)
Wang et al., J Neurophysiol (2012)



Phase-Locking in MEG to
Slow Acoustic Modulations

AM at 3 Hz 3 Hz phase-locked response
AAAAAAAAAA > MWW

response spectrum (subject R0747)

3 Hz
—)

MEG activity is precisely o
phase-locked to temporal ’

modulations of sound M I ”M

0 10

Frequency (Hz)

Ding & Simon, J Neurophysiol (2009)
Wang et al., J Neurophysiol (2012)
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MEG Responses
Predicted by STRF Model

Linear Kernel = STRF
. . . ¢¢ o ’
Ding & Simon, J Neurophysiol (2012) Spectro- Temporal Response Function



Neural Reconstruction of
Speech Envelope

Speech Envelope MEG Responses

Decoder \A\A/\/\N/W
PV = B =T
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Neural Reconstruction of
Speech Envelope

stimulus speech envelope
reconstructed stimulus speech envelope

Yl

2S

Reconstruction accuracy comparable to

Ding & Simon, J Neurophysiol (2012) single unit & ECoG recordings
Zion-Golumbic et al., Neuron (2013)



Speech Envelope MEG Responses
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Decoder
T

(up to ~ 10 Hz)




Auditory Obijects

® What is an auditory object!?

® perceptual construct (not neural,
not acoustic)

® commonalities with visual objects

® several potential formal definitions



Auditory Object
Definition

® Griffiths & Warren definition:

® corresponds with something in the
sensory world

® object information separate from
information of rest of sensory world

® abstracted: object information generalized
over particular sensory experiences



Auditory Obijects at
the Cocktail Party

_ W
'Rl ]

Alex Katz,
The Cocktail Party



Auditory Obijects at
the Cocktail Party

_ W
'Rl ]

Alex Katz,
The Cocktail Party



Auditory Obijects at
the Cocktail Party

e




Auditory Obijects at
the Cocktail Party

ERSE e
| . N |

-

“ f
\q\“‘g l «

Alex Katz,
The Cocktail Party




Auditory Obijects at
the Cocktall Party

Alex Katz,
The Cocktail Party



Auditory Obijects at
the Cocktail Party
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Experiments

Ding & Simon, PNAS (2012)



Speech Stream as an
Auditory Object

® corresponds with something in the sensory
world

® information separate from information of
rest of sensory world
e.g. other speech streams or noise

® abstracted: object information generalized
over particular sensory experiences
e.g. different sound mixtures



Neural Representation
of an Auditory Object

® neural representation is of something in
sensory world

® when other sounds mixed in,
neural representation is of auditory obiject,
not entire acoustic scene

® neural representation invariant
under broad changes in specific acoustics



Selective Neural
Encoding
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Selective Neural
Encoding
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Unselective vs. Selective
Neural Encoding




Unselective vs. Selective
Neural Encoding
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Stream-Specific
Representation

grand average
over subjects

reconstructed
_ / from MEG
attending to
speaker 1
p \ attended speech
\ /envelopes
attending to Y\ b 4 Ll
speaker 2 WL %
P \i o\ | « reconstructed
Vv from MEG

|dentical Stimuli!



Stream-Specific
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Single Trial Speech
Reconstruction

Attended Speech Reconstruction
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Single Trial Speech
Reconstruction

Attended Speech Reconstruction Background Speech Reconstruction
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Invariance Under
Acoustic Changes
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Invariance Under
Acoustic Changes
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Object-Based

Stimulus- Based

Stream-Based
Gain Control!?

Gain-Control Models
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Object-Based
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Object-Based

Stimulus- Based

Stream-Based
Gain Control!?

Gain-Control Models
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Object-Based

Stimulus- Based

Stream-Based
Gain Control!?

Gain-Control Models

correlation
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correlation
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Neural Results

correlation
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*Stream-based not stimulus-based
*Neural representation is invariant to
acoustic changes.



Neural Representation
of an Auditory Object

v neural representation is of something in
sensory world

v when other sounds mixed in,
neural representation is of auditory obiject,
not entire acoustic scene

v neural representation invariant
under broad changes in specific acoustics
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Spectro-Temporal
Response Function
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STRF Results
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*M100sTtRrF Negative peak



STRF Results

*STRF separable (time, frequency)
*300 Hz - 2 kHz dominant carriers
*M50sTRF positive peak

*M100sTtRrF Negative peak
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STRF Results

*STRF separable (time, frequency)
*300 Hz - 2 kHz dominant carriers
*M50sTRF positive peak

*M100sTtRrF Negative peak

*M100sTtrF strongly modulated
by attention, but not M50strF
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Neural Sources

*M100strF source near | eft Right
(same as?) M100 S ,
source: § - M50sTrRF
Planum Temporale % | M1 00sTRF

*M50sTRF SOUrCeE IS . IM100
anterior and medial _CCD -
to M100 (same as [¢ I 5mm
M507?): 3 - >
Heschl’s Gyrus o~

medial



Cortical Object-
Processing Hierarchy

Attentional Modulation Influence of Relative Intensity

0 J\ /f\*\/ '

— attended
background <
. . . . . . , Y | , L
0 100 200 400 0 100 200 400 == clean
time (ms) time (ms)

*M100sTRrF strongly modulated by attention, but not M50sTrr.
*M100sTRF Invariant against acoustic changes.
*Objects well-neurally represented at 100 ms, but not 50 ms.



Summary

® Cortical representations of speech found here:

v consistent with being neural representations
of auditory (perceptual) objects

v meet 3 formal criteria for auditory objects

® Object representation fully formed by 100 ms
latency (PT), but not by 50 ms (HG)

® Not special to speech
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Reconstruction of
Same-Sex Speech

Attended Speech Single Trial Decoding Results
Reconstruction 0.4 .
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Speech in Noise: Stimuli

Mixtures of Speech and Spectrally Matched Statonary Noise B
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Speech in Noise: Results

A Neural Reconstruction of B Reconstruction Accuracy C Correlation with Intelligiblity
Underlying Speech Envelope
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Speech in Noise: Results

Temporal Response Function in Each SNR Condition
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Speech in Noise: Results

A Stimulus Spectrum B Response Spectrum C Response Cutoff
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