
THE DELIGNE-ILLUSIE THEOREM

PIOTR ACHINGER

1. I N T R O D U C T I O N

The aim of this note is to discuss the now classical result of Deligne and
Illusie [1] on ,,lifting modulo p2 and decomposition of the de Rham complex”.
Before stating the theorem, let us explain the main motivations behind it.

1.1. Algebraic geometry over C. Let X/C be a smooth proper complex vari-
ety of dimension d. To this data (the scheme X together with the morphism to
SpecC) we can associate a complex manifold Xan together with a morphism of
ringed spaces τ : Xan → X. Then the following results hold.

1.1.1. Holomorphic Poincaré lemma. The complex of sheaves on Xan

0→ C→ Ω0
Xan

d−→ Ω1
Xan → . . .→ ΩdXan → 0

is exact. Therefore the singular cohomology groups H∗(X,C) = H∗(X,C) equal
the hypercohomology of the de Rham complex H∗dR(X/C) = H(X,Ω·X/C) =

H∗(Xan,Ω·Xan). The last equality follows from GAGA and the spectral sequence
below. Therefore, the singular cohomology groups of Xan can be defined in a
purely algebraic way.

1.1.2. Hodge to de Rham spectral sequence. We have the hypercohomology
,,Hodge to de Rham” spectral sequence

(1) Eij1 = Hj(X,ΩiX/C) ⇒ H∗dR(X/C).

If moreover X is projective (hence Kähler), Hodge theory allows us to prove

1.1.3. (DSS). The spectral sequence (1) degenerates at E1. That is, its differen-
tials on all pages are zero.

Proof. Since all Eij1 are finite-dimensional over C, it suffices to show that∑
i+j=k

dimEij1 = dimEk∞.

This follows from the discussion above and the Hodge decomposition

Hk(Xan,C) =
⊕
i+j=k

Hj(Xan,ΩiXan). �

1



2 PIOTR ACHINGER

1.1.4. (KV). We have the Kodaira-Akizuki-Nakano vanishing: for every
ample line bundle L on X, we have

Hj(X,ΩiX ⊗ L) = 0 for i+ j > d.

However, (DSS) and (KV) fail in characteristic p > 0 (with counterexamples
first found by Mumford and Raynaud, respectively). We could also wonder
whether we can find algebraic proofs of (DSS) and (KV) .

1.2. Algebraic geometry in characteristic p > 0. Now let X/k be a smooth
proper variety of dimension d over an algebraically closed field k of characteristic
p > 0. Instead of Xan → X as above, we should now look at the relative
Frobenius F : X → X ′. Instead of the holomorphic Poincaré lemma, we have
the

1.2.1. Cartier isomorphism. We have isomorphisms

Ck : H k(F∗Ω
·
X/k) ' ΩkX′/k.

This means that the de Rham complex (Ω·X/k, d) and the ,,Hodge complex”
(Ω·X/k, 0) have the same cohomology. We can therefore ask the following ques-
tion:

1.2.2. (QI). Does there exist a quasi-isomorphism ψ· : (F∗Ω
·
X/k, d) ' (Ω·X′/k, 0)

inducing the Cartier isomorphisms Ci on cohomology?

1.3. Preliminary observations.

Lemma 1. (QI) implies (DSS) and (KV) .

Proof. To prove (DSS) , observe that∑
i+j=k

dimEij1 =
∑
i+j=k

hj(X,ΩiX/k) = dimHk(Ω·X/k, 0) = dimHk(Ω·X′/k, 0)

= dimHk(F∗Ω
·
X/k, d)

= dimHk(Ω·X/k, d) = dimHk
dR(X/k).

For (KV) , let L be an ample line bundle on X. Recall that the Picard groups
of X and X ′ are canonically isomorphic, let L′ be the line bundle on X ′ corre-
sponding to L. Then∑
i+j=k

hj(X,ΩiX/k ⊗ L) = dimHk(Ω·X/k ⊗ L, 0) = dimHk(Ω·X′/k ⊗ L
′, 0)

= dimHk((F∗Ω
·
X/k)⊗ L′, d⊗ id)

= dimHk(F∗(Ω
·
X/k ⊗ F

∗L′), d⊗∇can)

= dimHk(Ω·X/k ⊗ F
∗L′, d⊗∇can)

= dimHk(F∗(Ω
·
X/k ⊗ L

⊗p), d⊗∇can)

≤ dimHk(F∗(Ω
·
X/k ⊗ L

⊗p), 0) =
∑
i+j=k

hj(X,ΩiX/k ⊗ L
⊗p).
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(More generally, for any locally free sheaf E on X ′, we have hkHodge(X
′, E) ≤

hkHodge(X,F
∗E) where hkHodge(E) =

∑
i+j=k h

j(X,ΩiX/k ⊗ E). It remains to ob-
serve that since L is ample, By Serre vanishing we have hj(X,ΩiX/k ⊗ L

⊗pn) for
n� 0. �

Recall that the inverse of the Cartier operator on one-forms is

C−1 : Ω1
X′/k →H 1(F∗Ω

·
X/k C−1(dg) = [gp−1dg].

Here ,,gp−1dg” is not really a well-defined cycle, but its image in cohomology is.
Finding a quasi-isomorphism (QI) should in particular solve the problem of
defining ,,gp−1dg = 1

pdg
p = 0

0 ”. The idea here is that 1
pdg

p should make sense
,,modulo p2”.

More precisely, assume that we have a smooth lifting X̃/W2(k) of X/k, to-
gether with a lift of the Frobenius F̃ : X̃ → X̃ ′, where X̃ ′ = X̃×W2(k) (pull-back
of X along the canonical lift of the Frobenius of k to W2(k)) is a smooth lifting of
X ′/k. Given a local section ω of Ω1

X′/k, extend it to a section ω̃ of Ω1
X̃′/W2(k)

. Then
since F ∗ : Ω1

X′/k → F∗Ω
1
X/k is zero, dω̃ lies in pΩ1

X̃′/W2(k)
which is isomorphic to

F∗Ω
1
X/k as F̃ is flat.

Lemma 2. The map Ω1
X′/k → F∗Ω

1
X/k, associated to a smooth lifting of (X,F )

to W2(k), discussed above, is well-defined and induces the Cartier isomorphism
after passing to cohomology.

2. T H E M A I N T H E O R E M A N D I T S C O R O L L A R I E S

Let k be a perfect field of characteristic p > 0 and let X/k be smooth of
dimension d.

Theorem 1. Any smooth lifting ofX/k to X̃/W2(k) induces a quasi-isomorphism

(2) ϕ : τ<p(Ω
·
X′/k, 0) −→ τ<p(F∗Ω

·
X/k, d)

which induces the inverse of the Cartier isomorphism on cohomology.

Corollary 3. If X lifts to W2(k) and dimX < p then (QI) holds.

Corollary 4. (DSS) and (KV) hold for X/K smooth and proper over an
algebraically closed field K of characteristic zero.

Proof. We need to reduce X to positive characteristic in such a way that the
new variety lifts modulo p2.

To do this, first find a model X /A of X/K where A is a finitely generated do-
main (over Z). We can pass to an affine open of SpecA over which X /A is smooth
and the sheaves Rjπ∗ΩiX /A and Rkπ∗Ω

·
X /A are locally free (hence commute

with arbitrary base change, so their ranks are hj(X,ΩiX/K and dimHk
dR(X/K),

respectively).
The second step is to reduce to a situation which is étale over SpecZ. For

this, we reduce to a finite flat case by picking a homomorphism A⊗Q→ Q̄ and
letting B be the image of A in Q̄. Then B is a quotient of A which is quasi-finite
and torsion-free (hence flat) over SpecZ. There exists an affine open SpecB′ of
SpecB over which the projection to SpecZ is étale.
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In the third step, we pick maximal ideal m of B′ with residue field k of
characteristic p > d. Since SpecB′ → SpecZ is unramified at m, we have
B′/m2 'W2(k). Therefore X0 := X ×A k is of dimension > p and has a smooth
lift to W2(k) (namely, X̃0 = X ×A B′/m2). By the Theorem, X0 satisfies (QI) ,
hence (DSS) . But the Hodge and de Rham numbers of X and X0 are the same,
so by the usual argument we get (DSS) for X.

For (KV) , we follow the above procedure for the pair (X,L) for an ample L
(we have to ensure further that the sheaves Rjπ∗ΩiX /A ⊗L are locally free and
that L is relatively ample over A). �

3. P R O O F O F T H E M A I N T H E O R E M

Lemma 5. Assume that there exists a morphism (in the derived category of X ′)
ϕ1 : Ω1

X′/k[−1]→ F∗Ω
·
X/k inducing C−1 on H 1. Then the Main Theorem holds,

that is, ϕ1 can be extended to a quasi-isomorphism (2).

Proof. We exploit the multiplicative structures on both the source and the
target, defining ϕi, i < p to be the composition

ΩiX′/k
a−→ (Ω1

X′/k)⊗i
(ϕ1)⊗i)−−−−−→ (F∗Ω

·
X/k)⊗i

prod−−−→ F∗Ω
·
X/k.

The map a is the antisymmetrization

a(ω1 ∧ . . . ∧ ωi) =
1

i!

∑
σ

(−1)σωσ(1) ⊗ . . .⊗ ωσ(i)

which makes sense only for i < p. (This is the only place where we use the
assumption that i < p). �

Proposition 6. Under the assumptions of the Theorem, there exists a map (in
the derived category) ϕ1 : Ω1

X′/k[−1] → F∗Ω
·
X/k inducing the Cartier isomor-

phism C−1 on H 1.

We sketch three proofs of this statement.

Original proof. By Lemma 2, we know that ϕ1 exists locally on X, since the
pair (U,F |U ) lifts to W2(k) for all U affine. We would like to glue the various ϕ1

obtained this way to a global ϕ1. This is tricky because we have to glue in the
derived category.

Recall that a morphism C · → D· in the derived category can be represented
as a ,,roof” of honest maps of complexes C · → E· ← D· with D· → E· a quasi-
isomorphism. In our case C · = Ω·X′/k and D· = F∗Ω

·
X/k. Since we know how to

construct our morphism locally on an affine open cover U = {
⋃
Ui}i∈I , it makes

sense to take for E· the Cech complex

F∗C (U,Ω·X/k) = F∗ Tot(C ·(U,Ω·X/k))

where C ·(U,Ω·X/k) is the bicomplex with

C ij =
∏

s1,...,sj∈I
ιs1···sj∗ι

∗
s1···sjΩiX/k

(here ιs1···sj is the inclusion of Us1 ∩ . . . ∩ Usj ) and with one differential coming
from Ω·X/k and the other the simplicial one.
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The natural map F∗Ω·X/k → F∗C (U,Ω·X/k) is a quasi-isomorphism. Now we
need to construct a map Ω1

X′/k[−1]→ F∗C (U,Ω·X/k) inducing C−1 on cohomology.
Note that

F∗C (U,Ω·X/k)1 = F∗C
1(U,OX)⊕ F∗C 0(U,Ω1

X/k).

The obvious idea is to let the map Ω1
X′/k → F∗C 0(U,Ω1

X/k) be formed of all the
maps fi : Ω1

X′/k → Ω1
U ′i/k

→ F∗Ω
1
Ui/k

. We need to find the second component of
this map, Ω1

X′/k → F∗C 1(U,OX) so that the image has zero differential. This
means that we need to hij : Ω1

U ′i∩U ′j/k
→ F∗OU ′i∩U ′j such that

dhij = fi − fj and hij + hjk + hki = 0.

On Ũi ∩ Ũj , we have chosen two lifts F̃i and F̃j of Frobenius. Their difference is
then a derivation dij : OU ′i∩U ′j → F∗OUi∩Uj

, hence giving a map hij as required.
�

Proof due to Srinivas [3]. Let ξ ∈ Ext1(ΩiX′/k, F∗B
1
X) be the class of the exten-

sion
0→ F∗B

1
X → F∗Z

1
X → ΩiX′/k → 0.

The short exact sequence 0→ OX′ → F∗OX → F∗B
1
X → 0 gives, after applying

Hom(Ω1
X′/k,−), the long exact sequence

. . .→ Ext1(Ω1
X′/k, F∗OX)

α−→ Ext1(Ω1
X′/k, F∗B

1
X)

δ−→ Ext2(Ω1
X/k,OX′)→ . . .

It is not difficult to check that ξ equals the obstruction o(X,F,W2(k)) to lifting
(X,F ) to W2(k), and that δ(ξ) is the obstruction o(X,W2(k)) to lifting X to
W2(k).

The latter class vanishes by assumption, hence there is a ζ ∈ Ext1(Ω1
X′/k, F∗OX)

with α(ζ) = ξ. If ζ corresponds to an extension 0 → F∗OX′ → E → Ω1
X′/k → 0,

we have a push-out diagram:

ζ : 0 F∗OX′ E Ω1
X′/k 0

ξ : 0 F∗B
1
X F∗Z

1
X Ω1

X′/k 0

d

The top row is a quasi-isomorphism Ω1
X′/k[−1] → {F∗OX′ → E } and the ver-

tical maps give a morphism {F∗OX′ → E } → F∗Ω
·
X/k inducing C−1 on H 1 as

required. �

Proof by Ogus and Vologodsky [2]. This proof relies on a construction of a vec-
tor bundle with integrable connection (E ,∇) on X, fitting into a short exact
sequence (of bundles with an integrable connection)

0→ OX → E → F ∗Ω1
X′/k → 0.

The p-curvature of E is 0 on OX and 0 on F ∗Ω1
X′/k and the part F ∗Ω1

X′/k →
OX ⊗ F ∗Ω1

X′/k is the identity.
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The bundle E ′ = Symp−1 E has an induced connection. We can build a double
complex

C ij = E ′ ⊗OX
ΩiX/k ⊗OX

F ∗ΩjX′/k

with vertical differentials dijH : C ij → C i,j+1 coming from the p-curvature and
the horizontal ones dijV coming from the connection. Then the total complex
Tot(C ··) is quasi-isomorphic to both complexes Ω·X′/k = ker d0·V and Ω·X/k =

ker d·0H . �
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