THE DELIGNE-ILLUSIE THEOREM

PIOTR ACHINGER

1. INTRODUCTION

The aim of this note is to discuss the now classical result of Deligne and Illusie [1] on "lifting modulo p^2 and decomposition of the de Rham complex". Before stating the theorem, let us explain the main motivations behind it.

1.1. Algebraic geometry over \mathbb{C} . Let X/\mathbb{C} be a smooth proper complex variety of dimension d. To this data (the scheme X together with the morphism to $\operatorname{Spec} \mathbb{C}$) we can associate a complex manifold X^{an} together with a morphism of ringed spaces $\tau: X^{an} \to X$. Then the following results hold.

1.1.1. Holomorphic Poincaré lemma. The complex of sheaves on X^{an}

$$0 \to \underline{\mathbb{C}} \to \Omega^0_{X^{an}} \xrightarrow{d} \Omega^1_{X^{an}} \to \ldots \to \Omega^d_{X^{an}} \to 0$$

is exact. Therefore the singular cohomology groups $H^*(X, \mathbb{C}) = H^*(X, \underline{\mathbb{C}})$ equal the hypercohomology of the de Rham complex $H^*_{dR}(X/\mathbb{C}) = H(X, \Omega^{\cdot}_{X/\mathbb{C}}) = H^*(X^{an}, \Omega^{\cdot}_{X^{an}})$. The last equality follows from GAGA and the spectral sequence below. Therefore, the singular cohomology groups of X^{an} can be defined in a purely algebraic way.

1.1.2. *Hodge to de Rham spectral sequence*. We have the hypercohomology "Hodge to de Rham" spectral sequence

(1) $E_1^{ij} = H^j(X, \Omega^i_{X/\mathbb{C}}) \Rightarrow H^*_{dR}(X/\mathbb{C}).$

If moreover X is projective (hence Kähler), Hodge theory allows us to prove

1.1.3. (DSS). The spectral sequence (1) degenerates at E_1 . That is, its differentials on all pages are zero.

Proof. Since all E_1^{ij} are finite-dimensional over \mathbb{C} , it suffices to show that

$$\sum_{i+j=k} \dim E_1^{ij} = \dim E_\infty^k.$$

This follows from the discussion above and the Hodge decomposition

$$H^{k}(X^{an}, \mathbb{C}) = \bigoplus_{i+j=k} H^{j}(X^{an}, \Omega^{i}_{X^{an}}).$$

1.1.4. (KV). We have the **Kodaira-Akizuki-Nakano vanishing**: for every ample line bundle L on X, we have

$$H^j(X, \Omega^i_X \otimes L) = 0$$
 for $i+j > d$.

However, (DSS) and (KV) fail in characteristic p > 0 (with counterexamples first found by Mumford and Raynaud, respectively). We could also wonder whether we can find algebraic proofs of (DSS) and (KV).

1.2. Algebraic geometry in characteristic p > 0. Now let X/k be a smooth proper variety of dimension d over an algebraically closed field k of characteristic p > 0. Instead of $X^{an} \to X$ as above, we should now look at the relative Frobenius $F : X \to X'$. Instead of the holomorphic Poincaré lemma, we have the

1.2.1. Cartier isomorphism. We have isomorphisms

$$C^k: \mathscr{H}^k(F_*\Omega^{\cdot}_{X/k}) \simeq \Omega^k_{X'/k}$$

This means that the de Rham complex $(\Omega^{\cdot}_{X/k}, d)$ and the "Hodge complex" $(\Omega^{\cdot}_{X/k}, 0)$ have the same cohomology. We can therefore ask the following question:

1.2.2. (QI). Does there exist a quasi-isomorphism $\psi^{\cdot} : (F_*\Omega_{X/k}^{\cdot}, d) \simeq (\Omega_{X'/k}^{\cdot}, 0)$ inducing the Cartier isomorphisms C^i on cohomology?

1.3. Preliminary observations.

Lemma 1. (QI) implies (DSS) and (KV).

Proof. To prove (DSS), observe that

$$\begin{split} \sum_{i+j=k} \dim E_1^{ij} &= \sum_{i+j=k} h^j(X, \Omega_{X/k}^i) = \dim \mathsf{H}^k(\Omega_{X/k}^{\boldsymbol{\cdot}}, 0) = \dim \mathsf{H}^k(\Omega_{X'/k}^{\boldsymbol{\cdot}}, 0) \\ &= \dim \mathsf{H}^k(F_*\Omega_{X/k}^{\boldsymbol{\cdot}}, d) \\ &= \dim \mathsf{H}^k(\Omega_{X/k}^{\boldsymbol{\cdot}}, d) = \dim H_{dR}^k(X/k). \end{split}$$

For (KV), let *L* be an ample line bundle on *X*. Recall that the Picard groups of *X* and *X'* are canonically isomorphic, let *L'* be the line bundle on *X'* corresponding to *L*. Then

$$\begin{split} \sum_{i+j=k} h^j(X, \Omega^i_{X/k} \otimes L) &= \dim \mathsf{H}^k(\Omega^{\cdot}_{X/k} \otimes L, 0) = \dim \mathsf{H}^k(\Omega^{\cdot}_{X'/k} \otimes L', 0) \\ &= \dim \mathsf{H}^k((F_*\Omega^{\cdot}_{X/k}) \otimes L', d \otimes id) \\ &= \dim \mathsf{H}^k(F_*(\Omega^{\cdot}_{X/k} \otimes F^*L'), d \otimes \nabla_{can}) \\ &= \dim \mathsf{H}^k(\Omega^{\cdot}_{X/k} \otimes F^*L', d \otimes \nabla_{can}) \\ &= \dim \mathsf{H}^k(F_*(\Omega^{\cdot}_{X/k} \otimes L^{\otimes p}), d \otimes \nabla_{can}) \\ &\leq \dim \mathsf{H}^k(F_*(\Omega^{\cdot}_{X/k} \otimes L^{\otimes p}), 0) = \sum_{i+j=k} h^j(X, \Omega^i_{X/k} \otimes L^{\otimes p}). \end{split}$$

(More generally, for any locally free sheaf E on X', we have $h^k_{Hodge}(X', E) \leq h^k_{Hodge}(X, F^*E)$ where $h^k_{Hodge}(E) = \sum_{i+j=k} h^j(X, \Omega^i_{X/k} \otimes E)$. It remains to observe that since L is ample, By Serre vanishing we have $h^j(X, \Omega^i_{X/k} \otimes L^{\otimes p^n})$ for $n \gg 0$.

Recall that the inverse of the Cartier operator on one-forms is

$$C^{-1}: \Omega^1_{X'/k} \to \mathscr{H}^1(F_*\Omega^{\cdot}_{X/k} \quad C^{-1}(dg) = [g^{p-1}dg].$$

Here $,g^{p-1}dg$ " is not really a well-defined cycle, but its image in cohomology is. Finding a quasi-isomorphism (QI) should in particular solve the problem of defining $,g^{p-1}dg = \frac{1}{p}dg^p = \frac{0}{0}$ ". The idea here is that $\frac{1}{p}dg^p$ should make sense ,modulo p^2 ".

More precisely, assume that we have a smooth lifting $\widetilde{X}/W_2(k)$ of X/k, together with a lift of the Frobenius $\widetilde{F}: \widetilde{X} \to \widetilde{X}'$, where $\widetilde{X}' = \widetilde{X} \times W_2(k)$ (pull-back of X along the canonical lift of the Frobenius of k to $W_2(k)$) is a smooth lifting of X'/k. Given a local section ω of $\Omega^1_{X'/k}$, extend it to a section $\widetilde{\omega}$ of $\Omega^1_{\widetilde{X}'/W_2(k)}$. Then since $F^*: \Omega^1_{X'/k} \to F_*\Omega^1_{X/k}$ is zero, $d\widetilde{\omega}$ lies in $p\Omega^1_{\widetilde{X}'/W_2(k)}$ which is isomorphic to $F_*\Omega^1_{X'/k}$ as \widetilde{F} is flat.

Lemma 2. The map $\Omega^1_{X'/k} \to F_*\Omega^1_{X/k}$, associated to a smooth lifting of (X, F) to $W_2(k)$, discussed above, is well-defined and induces the Cartier isomorphism after passing to cohomology.

2. The Main Theorem and its corollaries

Let k be a perfect field of characteristic p > 0 and let X/k be smooth of dimension d.

Theorem 1. Any smooth lifting of X/k to $\widetilde{X}/W_2(k)$ induces a quasi-isomorphism

(2)
$$\varphi: \tau_{< p}(\Omega^{\cdot}_{X'/k}, 0) \longrightarrow \tau_{< p}(F_*\Omega^{\cdot}_{X/k}, d)$$

which induces the inverse of the Cartier isomorphism on cohomology.

Corollary 3. If X lifts to $W_2(k)$ and dim X < p then (QI) holds.

Corollary 4. (DSS) and (KV) hold for X/K smooth and proper over an algebraically closed field K of characteristic zero.

Proof. We need to reduce X to positive characteristic in such a way that the new variety lifts modulo p^2 .

To do this, first find a model \mathscr{X}/A of X/K where A is a finitely generated domain (over \mathbb{Z}). We can pass to an affine open of Spec A over which \mathscr{X}/A is smooth and the sheaves $R^j \pi_* \Omega^i_{\mathscr{X}/A}$ and $R^k \pi_* \Omega^i_{\mathscr{X}/A}$ are locally free (hence commute with arbitrary base change, so their ranks are $h^j(X, \Omega^i_{X/K})$ and $\dim H^k_{dR}(X/K)$, respectively).

The second step is to reduce to a situation which is étale over $\operatorname{Spec} \mathbb{Z}$. For this, we reduce to a finite flat case by picking a homomorphism $A \otimes \mathbb{Q} \to \overline{\mathbb{Q}}$ and letting *B* be the image of *A* in $\overline{\mathbb{Q}}$. Then *B* is a quotient of *A* which is quasi-finite and torsion-free (hence flat) over $\operatorname{Spec} \mathbb{Z}$. There exists an affine open $\operatorname{Spec} B'$ of $\operatorname{Spec} B$ over which the projection to $\operatorname{Spec} \mathbb{Z}$ is étale.

PIOTR ACHINGER

In the third step, we pick maximal ideal \mathfrak{m} of B' with residue field k of characteristic p > d. Since $\operatorname{Spec} B' \to \operatorname{Spec} \mathbb{Z}$ is unramified at \mathfrak{m} , we have $B'/\mathfrak{m}^2 \simeq W_2(k)$. Therefore $X_0 := \mathscr{X} \times_A k$ is of dimension > p and has a smooth lift to $W_2(k)$ (namely, $\widetilde{X}_0 = \mathscr{X} \times_A B'/\mathfrak{m}^2$). By the Theorem, X_0 satisfies (QI), hence (DSS). But the Hodge and de Rham numbers of X and X_0 are the same, so by the usual argument we get (DSS) for X.

For (\mathbf{KV}) , we follow the above procedure for the pair (X, L) for an ample L (we have to ensure further that the sheaves $R^j \pi_* \Omega^i_{\mathscr{X}/A} \otimes \mathscr{L}$ are locally free and that \mathscr{L} is relatively ample over A).

3. PROOF OF THE MAIN THEOREM

Lemma 5. Assume that there exists a morphism (in the derived category of X') $\varphi^1 : \Omega^1_{X'/k}[-1] \to F_*\Omega^{\cdot}_{X/k}$ inducing C^{-1} on \mathscr{H}^1 . Then the Main Theorem holds, that is, φ^1 can be extended to a quasi-isomorphism (2).

Proof. We exploit the multiplicative structures on both the source and the target, defining φ^i , i < p to be the composition

$$\Omega^{i}_{X'/k} \xrightarrow{a} (\Omega^{1}_{X'/k})^{\otimes i} \xrightarrow{(\varphi^{1})^{\otimes i}} (F_{*}\Omega^{\cdot}_{X/k})^{\otimes i} \xrightarrow{prod} F_{*}\Omega^{\cdot}_{X/k}.$$

The map a is the antisymmetrization

$$a(\omega_1 \wedge \ldots \wedge \omega_i) = \frac{1}{i!} \sum_{\sigma} (-1)^{\sigma} \omega_{\sigma(1)} \otimes \ldots \otimes \omega_{\sigma(i)}$$

which makes sense only for i < p. (This is the only place where we use the assumption that i < p).

Proposition 6. Under the assumptions of the Theorem, there exists a map (in the derived category) $\varphi^1 : \Omega^1_{X'/k}[-1] \to F_*\Omega^{\cdot}_{X/k}$ inducing the Cartier isomorphism C^{-1} on \mathscr{H}^1 .

We sketch three proofs of this statement.

Original proof. By Lemma 2, we know that φ^1 exists locally on X, since the pair $(U, F|_U)$ lifts to $W_2(k)$ for all U affine. We would like to glue the various φ^1 obtained this way to a global φ^1 . This is tricky because we have to glue in the derived category.

Recall that a morphism $C^{\cdot} \to D^{\cdot}$ in the derived category can be represented as a "roof" of honest maps of complexes $C^{\cdot} \to E^{\cdot} \leftarrow D^{\cdot}$ with $D^{\cdot} \to E^{\cdot}$ a quasiisomorphism. In our case $C^{\cdot} = \Omega^{\cdot}_{X'/k}$ and $D^{\cdot} = F_*\Omega^{\cdot}_{X/k}$. Since we know how to construct our morphism locally on an affine open cover $\mathfrak{U} = \{\bigcup U_i\}_{i \in I}$, it makes sense to take for E^{\cdot} the Cech complex

$$F_*\mathscr{C}(\mathfrak{U},\Omega^{\cdot}_{X/k}) = F_*\operatorname{Tot}(\mathscr{C}^{\cdot}(\mathfrak{U},\Omega^{\cdot}_{X/k}))$$

where $\mathscr{C}(\mathfrak{U}, \Omega^{\cdot}_{X/k})$ is the bicomplex with

$$\mathscr{C}^{ij} = \prod_{s_1, \dots, s_j \in I} \iota_{s_1 \cdots s_j *} \iota^*_{s_1 \cdots s_j} \Omega^i_{X/k}$$

(here $\iota_{s_1\cdots s_j}$ is the inclusion of $U_{s_1}\cap\ldots\cap U_{s_j}$) and with one differential coming from $\Omega_{X/k}^{\cdot}$ and the other the simplicial one.

The natural map $F_*\Omega^{\cdot}_{X/k} \to F_*\mathscr{C}(\mathfrak{U}, \Omega^{\cdot}_{X/k})$ is a quasi-isomorphism. Now we need to construct a map $\Omega^1_{X'/k}[-1] \to F_*\mathscr{C}(\mathfrak{U}, \Omega^{\cdot}_{X/k})$ inducing C^{-1} on cohomology. Note that

$$F_*\mathscr{C}(\mathfrak{U},\Omega^{\cdot}_{X/k})_1=F_*\mathscr{C}^1(\mathfrak{U},\mathscr{O}_X)\oplus F_*\mathscr{C}^0(\mathfrak{U},\Omega^1_{X/k}).$$

The obvious idea is to let the map $\Omega^1_{X'/k} \to F_* \mathscr{C}^0(\mathfrak{U}, \Omega^1_{X/k})$ be formed of all the maps $f_i: \Omega^1_{X'/k} \to \Omega^1_{U'_i/k} \to F_* \Omega^1_{U_i/k}$. We need to find the second component of this map, $\Omega^1_{X'/k} \to F_* \mathscr{C}^1(\mathfrak{U}, \mathscr{O}_X)$ so that the image has zero differential. This means that we need to $h_{ij}: \Omega^1_{U'_i \cap U'_i/k} \to F_* \mathscr{O}_{U'_i \cap U'_j}$ such that

$$dh_{ij} = f_i - f_j$$
 and $h_{ij} + h_{jk} + h_{ki} = 0$.

On $\widetilde{U}_i \cap \widetilde{U}_j$, we have chosen two lifts \widetilde{F}_i and \widetilde{F}_j of Frobenius. Their difference is then a derivation $d_{ij} : \mathscr{O}_{U'_i \cap U'_j} \to F_* \mathscr{O}_{U_i \cap U_j}$, hence giving a map h_{ij} as required.

Proof due to Srinivas [3]. Let $\xi \in \text{Ext}^1(\Omega^i_{X'/k}, F_*B^1_X)$ be the class of the extension

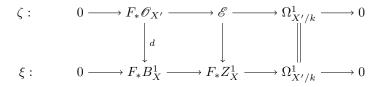
$$0 \to F_* B^1_X \to F_* Z^1_X \to \Omega^i_{X'/k} \to 0.$$

The short exact sequence $0 \to \mathscr{O}_{X'} \to F_*\mathscr{O}_X \to F_*B^1_X \to 0$ gives, after applying $\operatorname{Hom}(\Omega^1_{X'/k}, -)$, the long exact sequence

$$\ldots \to \operatorname{Ext}^{1}(\Omega^{1}_{X'/k}, F_{*}\mathscr{O}_{X}) \xrightarrow{\alpha} \operatorname{Ext}^{1}(\Omega^{1}_{X'/k}, F_{*}B^{1}_{X}) \xrightarrow{\delta} \operatorname{Ext}^{2}(\Omega^{1}_{X/k}, \mathscr{O}_{X'}) \to \ldots$$

It is not difficult to check that ξ equals the obstruction $o(X, F, W_2(k))$ to lifting (X, F) to $W_2(k)$, and that $\delta(\xi)$ is the obstruction $o(X, W_2(k))$ to lifting X to $W_2(k)$.

The latter class vanishes by assumption, hence there is a $\zeta \in \operatorname{Ext}^1(\Omega^1_{X'/k}, F_*\mathscr{O}_X)$ with $\alpha(\zeta) = \xi$. If ζ corresponds to an extension $0 \to F_*\mathscr{O}_{X'} \to \mathscr{E} \to \Omega^1_{X'/k} \to 0$, we have a push-out diagram:



The top row is a quasi-isomorphism $\Omega^1_{X'/k}[-1] \to \{F_* \mathscr{O}_{X'} \to \mathscr{E}\}$ and the vertical maps give a morphism $\{F_* \mathscr{O}_{X'} \to \mathscr{E}\} \to F_* \Omega^{\cdot}_{X/k}$ inducing C^{-1} on \mathscr{H}^1 as required. \Box

Proof by Ogus and Vologodsky [2]. This proof relies on a construction of a vector bundle with integrable connection (\mathscr{E}, ∇) on X, fitting into a short exact sequence (of bundles with an integrable connection)

$$0 \to \mathscr{O}_X \to \mathscr{E} \to F^*\Omega^1_{X'/k} \to 0.$$

The *p*-curvature of \mathscr{E} is 0 on \mathscr{O}_X and 0 on $F^*\Omega^1_{X'/k}$ and the part $F^*\Omega^1_{X'/k} \to \mathscr{O}_X \otimes F^*\Omega^1_{X'/k}$ is the identity.

PIOTR ACHINGER

The bundle $\mathscr{E}'=\operatorname{Sym}^{p-1}\mathscr{E}$ has an induced connection. We can build a double complex

$$\mathscr{C}^{ij} = \mathscr{E}' \otimes_{\mathscr{O}_X} \Omega^i_{X/k} \otimes_{\mathscr{O}_X} F^* \Omega^j_{X'/k}$$

with vertical differentials $d_H^{ij}: \mathscr{C}^{ij} \to \mathscr{C}^{i,j+1}$ coming from the *p*-curvature and the horizontal ones d_V^{ij} coming from the connection. Then the total complex $\operatorname{Tot}(\mathscr{C}^{\cdot\cdot})$ is quasi-isomorphic to both complexes $\Omega_{X'/k}^{\cdot} = \ker d_V^{0\cdot}$ and $\Omega_{X/k}^{\cdot} = \ker d_H^{0\cdot}$.

REFERENCES

- [1] Pierre Deligne and Luc Illusie. Relèvements modulo p^2 et décomposition du complexe de de Rham. Invent. Math., 89(2):247–270, 1987.
- [2] A. Ogus and V. Vologodsky. Nonabelian Hodge theory in characteristic p. Publ. Math. Inst. Hautes Études Sci., (106):1–138, 2007.
- [3] V. Srinivas. Decomposition of the de Rham complex. Proc. Indian Acad. Sci. Math. Sci., 100(2):103-106, 1990.