THE DELIGNE-ILLUSIE THEOREM

PIOTR ACHINGER

1. INTRODUCTION

The aim of this note is to discuss the now classical result of Deligne and
Illusie [1] on , lifting modulo p?> and decomposition of the de Rham complex”.
Before stating the theorem, let us explain the main motivations behind it.

1.1. Algebraic geometry over C. Let X/C be a smooth proper complex vari-
ety of dimension d. To this data (the scheme X together with the morphism to
Spec C) we can associate a complex manifold X" together with a morphism of
ringed spaces 7 : X" — X. Then the following results hold.

1.1.1. Holomorphic Poincaré lemma. The complex of sheaves on X"

d
0—=C— Q% = Qhen = ... 2 Q% =0

is exact. Therefore the singular cohomology groups H*(X,C) = H*(X,C) equal
the hypercohomology of the de Rham complex H,(X/C) = H(X,Q /c) =

H*(X ", Qan ). The last equality follows from GAGA and the spectral sequence
below. Therefore, the singular cohomology groups of X" can be defined in a
purely algebraic way.

1.1.2. Hodge to de Rham spectral sequence. We have the hypercohomology
,,Hodge to de Rham” spectral sequence
1) EY = H/(X,Q%c) = Hip(X/C).

If moreover X is projective (hence Kahler), Hodge theory allows us to prove

1.1.3. (DSS). The spectral sequence (1) degenerates at E;. That is, its differen-
tials on all pages are zero.

Proof. Since all E are finite-dimensional over C, it suffices to show that
> dim B = dim B,
itj=k
This follows from the discussion above and the Hodge decomposition
Hk(XanaC): @ Hj(Xana g(“")' D
itj=k
1
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1.1.4. (KV). We have the Kodaira-Akizuki-Nakano vanishing: for every
ample line bundle L on X, we have
HI(X,Q%®L)=0 for i+j>d.

However, (DSS) and (KV) fail in characteristic p > 0 (with counterexamples
first found by Mumford and Raynaud, respectively). We could also wonder
whether we can find algebraic proofs of (DSS) and (KV).

1.2. Algebraic geometry in characteristic p > 0. Now let X/k be a smooth
proper variety of dimension d over an algebraically closed field k of characteristic
p > 0. Instead of X°* — X as above, we should now look at the relative
Frobenius F : X — X'. Instead of the holomorphic Poincaré lemma, we have
the

1.2.1. Cartier isomorphism. We have isomorphisms
CF: AF(FSx ) ~ Oy

This means that the de Rham complex (2 Ik d) and the ,,Hodge complex”

(2, 0) have the same cohomology. We can therefore ask the following ques-
tion:

1.2.2. (QI). Does there exist a quasi-isomorphism ¢ : (F. Dy d) ~ (QX'/k’ 0)
inducing the Cartier isomorphisms C*? on cohomology?

1.3. Preliminary observations.
Lemma 1. (QI) implies (DSS) and (KV).
Proof. To prove (DSS), observe that
> dimEY = Y W(X, Q) = dimH*(Qy 4, 0) = dim H*(Qy, ., 0)
iti=k itj=k
= dim H*(F,. QY ., d)
= dim H*(Qy /., d) = dim Hjjr(X /).
For (KV),let L be an ample line bundle on X. Recall that the Picard groups

of X and X’ are canonically isomorphic, let L’ be the line bundle on X’ corre-
sponding to L. Then

> WX, Q) © L) = dimH¥(Qy ), @ L,0) = dim H* (., @ L', 0)
i+j=k
= dim H*((F, Qy ) ® L' d ®id)
:dlmH ( ( X/k®F L) d®vcan)
= dimH"(Qy ), ® F*L',d ® Vean)
(
(

“11

ZdlmH *( X/k®L®I) d®vcan)

() ® LF9),0) = Y W(X, Q%) ® LEP).
i+j=k

ﬁj

< dim H*
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(More generally, for any locally free sheaf E on X', we have hf;,,,.(X', E) <
Wt oage(Xs F*E) where hiy,,.(E) = 32, W (X, QY ), ® E). It remains to ob-
serve that since L is ample, By Serre vanishing we have 17 (X, Q% /e ® L®r") for
n > 0. O

Recall that the inverse of the Cartier operator on one-forms is
ct: Qﬁ(,/k — %I(F*Qk/k C~Y(dg) = [¢*'dg].

Here ,,g° 'dg” is not really a well-defined cycle, but its image in cohomology is.
Finding a quasi-isomorphism (QI) should in particular solve the problem of

defining ,,g""'dg = ;dg” = §”. The idea here is that dg” should make sense
,;modulo p?”. _

More precisely, assume that we have a smooth lifting X /W, (k) of X/k, to-
gether with a lift of the Frobenius F' : X — X', where X’ = X x W (k) (pull-back
of X along the canonical lift of the Frobenius of k to W>(k)) is a smooth lifting of

/ . . 1 . . ~ 1
X'/k. Given a local section w of Q% ;> extend it to a section w of QX'/WQ(IC)' Then
since F* : Q}(,/k — F*Qﬁ(/k is zero, dw lies in pQ}E,/WQ(k) which is isomorphic to
F*Qﬁ(/k as F is flat.

Lemma 2. The map Qﬁ(,/k — F*Qﬁ(/k, associated to a smooth lifting of (X, F)

to Wy (k), discussed above, is well-defined and induces the Cartier isomorphism
after passing to cohomology.

2. THE MAIN THEOREM AND ITS COROLLARIES

Let k be a perfect field of characteristic p > 0 and let X/k be smooth of
dimension d.

Theorem 1. Any smooth lifting of X/k to X /Wa (k) induces a quasi-isomorphism
2) @ Tap(Qxr 1y 0) — T<p(Fully i, d)

which induces the inverse of the Cartier isomorphism on cohomology.
Corollary 3. If X lifts to Wa(k) and dim X < p then (QI) holds.

Corollary 4. (DSS) and (KV) hold for X/K smooth and proper over an
algebraically closed field K of characteristic zero.

Proof. We need to reduce X to positive characteristic in such a way that the
new variety lifts modulo p2.

To do this, first find a model 2" /A of X/K where A is a finitely generated do-
main (over Z). We can pass to an affine open of Spec A over which 2" /A is smooth
and the sheaves R/m, Q') /A and R’“mQ'% /4 are locally free (hence commute
with arbitrary base change, so their ranks are b/ (X, Q% and dim f, ke (X/K),
respectively).

The second step is to reduce to a situation which is étale over SpecZ. For
this, we reduce to a finite flat case by picking a homomorphism A ® Q — Q and
letting B be the image of A in Q. Then B is a quotient of A which is quasi-finite
and torsion-free (hence flat) over Spec Z. There exists an affine open Spec B’ of
Spec B over which the projection to SpecZ is étale.



4 PIOTR ACHINGER

In the third step, we pick maximal ideal m of B’ with residue field %k of
characteristic p > d. Since Spec B’ — SpecZ is unramified at m, we have
B’ /m? ~ W (k). Therefore X, := 2~ x 4 k is of dimension > p and has a smooth
lift to W (k) (namely, Xo = 2 x 4 B’ /m2). By the Theorem, X, satisfies (QI),
hence (DSS) . But the Hodge and de Rham numbers of X and X, are the same,
so by the usual argument we get (DSS) for X.

For (KV), we follow the above procedure for the pair (X, L) for an ample L
(we have to ensure further that the sheaves R/m, Q') /4 ©Z are locally free and
that Z is relatively ample over A). |

3. PROOF OF THE MAIN THEOREM

Lemma 5. Assume that there exists a morphism (in the derived category of X')
o' Q% [-1] = FiQy )y, inducing C~" on . Then the Main Theorem holds,
that is, o' can be extended to a quasi-isomorphism (2).

Proof. We exploit the multiplicative structures on both the source and the
target, defining ¢?, i < p to be the composition

i a Ql i (LPI)@i) QO ®1i prod Q
o = (Qxr ) —— (Bl )™ — Fillx .

The map « is the antisymmetrization
1 g
alwi Ao Aw;) = q Z(—l) Wo(1) @ -+ @ We(s)

which makes sense only for i < p. (This is the only place where we use the
assumption that i < p). O

Proposition 6. Under the assumptions of the Theorem, there exists a map (in
the derived category) ¢' : Q}, k=1 = F.Qy , inducing the Cartier isomor-
phism C~'on .

We sketch three proofs of this statement.

Original proof By Lemma 2, we know that ¢! exists locally on X, since the
pair (U, F|y) lifts to Wa(k) for all U affine. We would like to glue the various ¢!
obtained this way to a global ¢!. This is tricky because we have to glue in the
derived category.

Recall that a morphism C° — D’ in the derived category can be represented
as a ,,roof” of honest maps of complexes C° — E" + D" with D" — E" a quasi-
isomorphism. In our case C" =Y, , and D" = F.Qy ;. Since we know how to
construct our morphism locally on an affine open cover { = {|J U, }ics, it makes
sense to take for £ the Cech complex

F. 24, Q.X/k) = F, Tot(%" (4, Q}(/k))
where ¢ (8, 0y ;) is the bicomplex with
Cgij = H LSl"'Sj*L:yuszé(/k
81,...,S]'€I

(here Lsy.-s; 18 the inclusion of Ug, N ... N U, s;) and with one differential coming
from Q' Ik and the other the simplicial one.
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The natural map F.Q e F.E U,y / «) 18 a quasi-isomorphism. Now we
need to construct a map Y, /k 1] = . (U, Qy /x) inducing C ~1 on cohomology.
Note that

FE (8, Qg = BEH U, Ox) ® FLE° (U, Qx )

The obvious idea is to let the map Q., k= F. 69U, Q% y ,.) be formed of all the
maps f; : Q%, e Qs e F*Q}] /- We need to find the second component of
this map, Q. , — F.%" (4, Ox) so that the image has zero differential. This

means that we need to h;; : Q. i = FOuinus such that
dhij = fi — [ and hij + hjk + hg; = 0.

On U; N U;, we have chosen two lifts F; and F; of Frobenius. Their difference is
then a derivation d;; : Ouin v = F.0y,nu,, hence giving a map h;; as required.
U

Proof due to Srinivas [3]. Let £ € Extl(ng o P B%) be the class of the exten-
sion

0= F.Bx = F.Zyx — Q% — 0.
The short exact sequence 0 — Ox/ — F.Ox — F.B% — 0 gives, after applying
Hom(Q2%,, /x> —), the long exact sequence

co Ext' Q) FOx) % Ext! (4, FoBY) 5 Bxt®(QY 1, Ox0) = ...
It is not difficult to check that £ equals the obstruction o(X, F, W2 (k)) to lifting
(X, F) to Wy(k), and that §(¢) is the obstruction o(X, W5 (k)) to lifting X to
Wa(k).

The latter class vanishes by assumption, hence thereisa ¢ € Ext'(Q}, /e P Ox)
with a(¢) = £. If ( corresponds to an extension 0 — F.0x: — & — Qﬁ(,/k — 0,
we have a push-out diagram:

CZ O%F*ﬁxl & Q%(//k 0
d |
¢: 0 F.BY F.Z% %%k 0

The top row is a quasi-isomorphism Q}(,/k[— 1] = {F.0x — &} and the ver-
tical maps give a morphism {F.0x, — &} — F.Q , inducing C~!on s7" as
required. O

Proof by Ogus and Vologodsky [2]. This proof relies on a construction of a vec-
tor bundle with integrable connection (&, V) on X, fitting into a short exact
sequence (of bundles with an integrable connection)

0= 0x =& = F* Q%) — 0,

The p-curvature of & is 0 on Ox and 0 on F*Q}X,/,C and the part F*Qﬁc,/k —
Ox ® F*Q&,/k is the identity.
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The bundle &’ = Sym?” ' & has an induced connection. We can build a double
complex - ‘ ‘
€ =& Qoy Vi), @0y 'Yy,
with vertical differentials d . €' — €I coming from the p-curvature and
the horizontal ones di} coming from the connection. Then the total complex
Tot(¢"") is quasi-isomorphic to both complexes ', k= kerd); and k=
ker d3. [
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