
University of Alberta

Library Release Form

Name of Author: Douglas Jon Demyen

Title of Thesis: Efficient Triangulation-Based Pathfinding

Degree: Master of Science

Year this Degree Granted: 2007

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Douglas Jon Demyen
10820 - 78 Avenue, Apt. 109
Edmonton, Alberta
Canada, T6E 1P8

Date:

If you never fall,
you are not really trying

University of Alberta

Efficient Triangulation-Based Pathfinding

by

Douglas Jon Demyen

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2007

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Efficient Triangulation-Based
Pathfinding submitted by Douglas Jon Demyen in partial fulfillment of the requirements
for the degree of Master of Science.

Dr. Michael Buro

Dr. Hong Zhang

Dr. Farbod Fahimi

Date:

To my parents and my brother Jeff,
and also to my girlfriend Christina

Abstract

Pathfinding for commercial games is a challenging problem, and many existing methods use

abstractions which lose details of the environment and compromise path quality. Conversely,

humans can ignore irrelevant details of an environment that modern search techniques still

consider, while maintaining its topography.

This thesis describes a technique for extracting features such as dead ends, corridors, and

decision points from an environment represented using a constrained Delaunay triangulation.

The result is that the pathfinding task is simplified to the point where the search algorithm

need only decide to which side of each obstacle to go, while all features of the environment

are retained.

We present algorithms which search the triangles of the environment (Triangulation

A*) and the decision points identified (Triangulation Reduction A*). We also explore a

number of techniques which deal with finding paths for circular objects of nonzero radius

and enhancements to various aspects of the search.

Acknowledgements

I think it is a great privilege to be supervised by someone with as much passion and en-
thusiasm for his work as Michael Buro. Often seeming torn between his interest in games
and his duties as a professor, the twin desires of producing work with academic merit and
that which is “cool”, help his students achieve their goals while working on something they
enjoy and of which they can be proud.

During my time at the University of Alberta I have had much valuable input from
my professors, who were always willing to lend their help and advice, and fellow students
through many an exchange of ideas. I have found the environment here to be very much a
community, and the many events an excellent forum for both interaction and hearing about
many other exciting fields.

I am fortunate to have such great friends in Regina who have made the effort to visit me
when possible and see me when I am in town. I am glad that we could stay close despite
that our busy schedules do not allow us to talk as much as we would like.

To those of my friends who have moved to Edmonton, it was always nice to have a
familiar face to see, despite being so far from my hometown. It was good to know others
were going through the same change. And those who I have met since I came have helped
make this city my home.

Of course the largest portion of my thanks goes to my parents for not only influencing
who I am, but more directly by encouraging me always to better myself whether through my
studies or otherwise, and even helping me out when my education or other responsibilities
claimed most of my time. My brother Jeff also had a large part of my being where I am
today, whose respect means as much to me as that of anyone.

Finally, the support of my girlfriend Christina was likely most responsible for my move
to Edmonton which allowed me to follow my dreams. Her care has helped me though what
would otherwise have been a difficult transition and her love has encouraged me every step
of the way.

Contents

1 Introduction 1
1.1 Artificial Intelligence . 1
1.2 Pathfinding . 2
1.3 Example . 3
1.4 Approach . 6
1.5 Contributions . 7
1.6 Thesis Outline . 8

2 Previous Work 10
2.1 General Search . 10
2.2 General Abstractions . 11
2.3 Pathfinding Search . 12
2.4 Pathfinding Abstractions . 13

3 Environment and Representation 15
3.1 Environment Description . 15
3.2 Grid-World Representation . 16
3.3 Triangulation Representations . 18
3.4 Dynamic Constrained Delaunay Triangulations 20

4 Nonpoint Objects 27
4.1 Width Calculation . 30

4.1.1 Case 1: Angle CAB or angle CBA is Right or Obtuse 31
4.1.2 Case 2: Edge c is Constrained . 32
4.1.3 Case 3: Edge c is Unconstrained . 33
4.1.4 Complexity . 36

4.2 Arc Paths . 38
4.2.1 Definitions . 39
4.2.2 Proofs . 43

4.3 The Delaunay Property . 48
4.4 Funnel Algorithm . 52
4.5 Modified Funnel Algorithm . 58

5 Triangulation Search 62
5.1 Introduction to A* Search . 62
5.2 A* in a Triangulation . 63
5.3 Näıve Search . 64
5.4 Accumulated and Approximated Costs . 65
5.5 Triangulation A* (TA*) . 67

6 Abstraction 69
6.1 Types of Nodes . 69

6.1.1 Level-0 Nodes . 70
6.1.2 Level-1 Nodes . 70
6.1.3 Level-2 Nodes . 72
6.1.4 Level-3 Nodes . 73

6.2 Different Graph Structures . 74
6.2.1 Level-0 Islands . 74
6.2.2 Level-1 Trees . 74
6.2.3 Level-2 Rings . 75
6.2.4 Loops . 75
6.2.5 Multiply-Connected Nodes . 75

6.3 Information Contained . 76
6.3.1 Level . 76
6.3.2 Connected Component . 76
6.3.3 Adjacent Structures . 76
6.3.4 Choke Points . 77
6.3.5 Triangle Widths . 77
6.3.6 Lower Bound Distances . 77

6.4 Abstraction Algorithm . 78

7 Abstraction Search 86
7.1 Special Cases . 86

7.1.1 In Separate Components . 86
7.1.2 On a Level-0 Island . 87
7.1.3 From a Tree to the Root . 88
7.1.4 In a Level-1 Tree . 88
7.1.5 In a Level-2 Loop or Ring . 89
7.1.6 On a Level-2 Corridor . 90

7.2 Triangulation Reduction A* (TRA*) . 91
7.2.1 Moving onto the Most Abstract Graph 92
7.2.2 Accumulated Distance Measures . 93
7.2.3 Checking Channel Widths . 93
7.2.4 Corridor Lengths and Choke Points 94
7.2.5 Searching the Most Abstract Graph 94

8 Other Enhancements 96
8.1 Sector-Based Point Location . 96
8.2 Finding a First Solution Quickly . 98

9 Experiments 101
9.1 Experimental Setup . 101
9.2 Results . 103
9.3 Discussion . 115

10 Conclusion and Extensions 117
10.1 Conclusion . 117

10.1.1 Triangulations . 117
10.1.2 Base-level Enhancements . 117
10.1.3 Graph Abstraction . 118
10.1.4 Point Location . 118

10.2 Extensions . 118

10.2.1 Mobile Obstacles . 119
10.2.2 Group Pathfinding . 120
10.2.3 Multiple Objects . 122
10.2.4 Further Abstraction . 123
10.2.5 Size-Dependent Graphs . 124
10.2.6 Final Thoughts . 125

Bibliography 126

List of Figures

1.1 Environment for pathfinding example . 3
1.2 Dead ends of the restaurant cut off by dotted lines 4
1.3 Proceeding down a corridor . 4
1.4 Points at which the man must make a decision 5
1.5 Possible paths through the table area . 5
1.6 Walking partway down a corridor and having a seat in a dead end 6

3.1 Environment for representation example . 16
3.2 Grid-world representation of environment . 16
3.3 Possible moves for an object in a grid world 17
3.4 Imprecise representation of a non-axis-aligned obstacle 17
3.5 No path due to insufficient grid resolution . 17
3.6 Grid resolution increased to produce path . 18
3.7 Same environment with curves approximated by line segments 19
3.8 Environment represented by a constrained triangulation 19
3.9 Small obstacle imprecisely represented in a low-resolution grid 19
3.10 Grid resolution increased to better approximate small obstacle 20
3.11 Small obstacle added to (empty) triangulation 20
3.12 A collection of points to be triangulated . 21
3.13 A triangulation of this set of points . 21
3.14 A Delaunay Triangulation of the same set of points 22
3.15 A collection of segments including a bounding box 22
3.16 A Constrained Triangulation on this collection of segments 23
3.17 A Constrained Delaunay Triangulation on the same collection of segments . . 23
3.18 Adding a vertex on an existing edge . 24
3.19 Adding a vertex in a triangle face . 24
3.20 A segment being inserted into the triangulation 25
3.21 Intersection points between the new segment and constrained edges are inserted 25
3.22 Unconstrained edges crossing the new segment are removed 26
3.23 Final triangulation after new segment has been inserted 26

4.1 Nonpoint object in original environment . 27
4.2 Minkowski Sum of object on environment . 28
4.3 Path for point object among “grown” obstacles 28
4.4 Same path for nonpoint object in original environment 28
4.5 Part of a Constrained Triangulation . 29
4.6 Obstacles grown by Minkowski sum for a circular object, approximated by a

regular polygon . 29
4.7 Part of a triangulation . 30
4.8 Case 1: angle at vertex A is obtuse . 31

4.9 The closest distance of a line to a point . 31
4.10 Triangle with one obtuse angle . 32
4.11 Case 2: angles at vertices A and B are acute and edge c is constrained 32
4.12 Vertex B is the closest obstacle to vertex C 33
4.13 Edge b′ should not be considered because C ′AC is obtuse 34
4.14 Edge a is farther from vertex C than A, so it is not considered 34
4.15 Edge b′ becomes the closest obstacle to vertex C 35
4.16 Search for the width of a triangle overlaps on a triangle 36
4.17 Proof that at most one exterior edge of a triangle can form two acute angles

with a point outside that triangle . 37
4.18 Searching across all triangles to find the width of triangle T1 37
4.19 Finding the width of triangle T results in a branching search 38
4.20 A path that is always within r of T . 40
4.21 A path that is > r away from T at some points 40
4.22 Obstacle outside of triangle T interfering with a path inside of it 41
4.23 An example of an arc path . 41
4.24 Region R for triangle T when moving between edges a and b 42
4.25 An object crossing the boundary of region R below edge b 43
4.26 Using the triangle inequality to prove soundness 44
4.27 Partitioning of region R into 2 sub-regions . 44
4.28 An object trying to pass between C and p . 45
4.29 An object trying to pass below point p . 46
4.30 An alternate path departing from the arc path in the middle 47
4.31 One section of the alternate path . 47
4.32 Alternate path departing from the arc path on one side 48
4.33 Objects of certain radii can move between edges a and c, and edges b and c,

but not between edges a and b, of triangle T 50
4.34 Circumcircle around triangle T and arc around vertex C 50
4.35 Situation in which determining the width between edges a and b would result

in a search across multiple edges . 51
4.36 Half of the quadrilateral and triangle’s circumcircle 52
4.37 A series of triangles, start and goal points, and the resulting channel 53
4.38 The path, apex, and funnel during a run of the funnel algorithm 54
4.39 Wedges corresponding to the vertices in a funnel 54
4.40 Adding a vertex to the right side of the funnel 55
4.41 The new funnel after a vertex is added on the right 55
4.42 Adding a vertex to the left side of the funnel 55
4.43 The new funnel and apex and path after a vertex is added on the left 56
4.44 The modified funnel algorithm for an object of nonzero radius r 58
4.45 Case requiring another adjustment in the modified funnel algorithm 58
4.46 Unadjusted modified funnel algorithm run on the degenerate case 59
4.47 The desired result after dealing with the degenerate case 60

5.1 A path between midpoints of two adjacent triangles crossing other triangles
and being obstructed . 63

5.2 A path between triangle midpoints poorly estimating the length of the short-
est path through them . 64

5.3 The path to a particular triangle depends on where the path continues 64
5.4 A case where the distance estimate results in a suboptimal channel being chosen 65

6.1 An example of an abstract graph . 70

6.2 A triangle classified as a level-0 node . 70
6.3 A dead-end area classified as level-1 nodes . 71
6.4 An unrooted tree of level-1 nodes . 71
6.5 Corridors of triangles classified as level-2 nodes 72
6.6 A ring of triangles classified as level-2 nodes 72
6.7 Triangles classified as level-3 nodes . 74
6.8 A corridor of level-2 nodes both starting and ending at the same level-3 node 75
6.9 Three level-2 corridors sharing the same two level-3 endpoints 76
6.10 An example environment for the abstraction algorithm 78
6.11 The environment after the first step of the algorithm 79
6.12 The environment after the second step of the algorithm 79
6.13 The environment after the third step of the algorithm 80
6.14 The environment after the fourth step of the algorithm 81

7.1 The start and goal are in two different connected components 87
7.2 The start and goal are in the same level-0 island or otherwise the same triangle 87
7.3 The start is the root of a tree containing the goal 88
7.4 The start and goal are in the same level-1 tree 89
7.5 The start and goal are on a level-2 ring or loop 90
7.6 The start and goal are on a level-2 corridor 91
7.7 Abstract search starts with one state and has two goals 92
7.8 Abstract search starts with two states and has one goal 93

8.1 Point location from a fixed triangle . 97
8.2 Decomposition of the environment into sectors, and their midpoints 97
8.3 Sector-based point location . 98
8.4 Situation which hinders TA* and TRA* searches 99

9.1 Triangles, contraints, and level-3 nodes in environments tested 103
9.2 Preprocessing times divided into triangulation, reduction, and sector processing104
9.3 Percentiles of A* running times by path length 105
9.4 Percentiles of PRA* running times by path length 106
9.5 Percentiles of TA* running times by path length 107
9.6 Percentiles of TRA* running times by path length 108
9.7 Median ratio of execution times of PRA*, TA*(1), and TRA*(1) to A* 109
9.8 90th percentile of number of search states expanded by A*, PRA*, and TA* . 110
9.9 Calculation of the constant C to determine the “bound” line 111
9.10 Ratio of 75th percentile of TA* path length to TA*(10) 112
9.11 Ratio of 95th percentile of TA* path length to TA*(10) 113
9.12 Ratio of 75th percentile of TRA* path length to TA*(10) 114
9.13 Ratio of 95th percentile of TRA* path length to TA*(10) 115

10.1 Object steering around a mobile obstacle within its channel 119
10.2 Object finding another channel when blocked by a mobile obstacle 119
10.3 Group of objects travelling through a wide channel 120
10.4 Group of objects spreading out to go through a choke point 121
10.5 Group of objects splitting up into different channels 121
10.6 Object selecting a less crowded channel . 122
10.7 Graph of level-3 nodes . 123
10.8 Tree of doubly-connected components . 123
10.9 Abstract graph for a small object . 124
10.10Abstract graph for a large object . 124

Chapter 1

Introduction

1.1 Artificial Intelligence

Artificial Intelligence is a vast field of research, both in breadth and depth, so any definition
encompassing its many approaches and techniques would have to be suitably general. One
interpretation, however, is that the aim of Artificial Intelligence is to emulate human-like
behaviour when applied to various tasks. This is because we as humans view ourselves, by
and large, to be intelligent.

An auxiliary, if not just as important, goal of Artificial Intelligence is to use the above
process to gain further understanding into the way the human brain operates. Because many
applications studied by Artificial Intelligence are performed well by humans, successfully
directing a computer toward the same task can be an indication that the method by which
it is achieved is similar in some way to the human approach to the problem.

Games have emerged as a particularly interesting application area within Artificial In-
telligence. Here was an area where humans could perform well in the presence of a large
number of possibilities for play, they could look at a few details of a state of a game and
produce a summary of it, they could develop complex strategies and quickly learn insight
into that of their opponent. To even approach these abilities, a modern computer would
have to perform lengthy techniques despite continuing advances in technology.

This was an indication that despite their sequential speed and accurate storage abili-
ties, computers were not intelligent in the same ways as humans. Where computers would
consider a huge number of possibilities using only brute force, humans could easily discern
which had the most potential. While computers learned about their opponent over the
course of many games, humans could do it in few, if more than one.

Certainly this was an application area where learning about and applying methods em-
ployed by humans could only improve the play by computers. Indeed, it has been an active
area within Artificial Intelligence, with much progress being made in classical games like
checkers [43, 44], Othello [7, 8], card games like poker [4, 3], and more. More recently,
with great increases in computing power and the rise in popularity of computer and console
games, commercial games has become a popular area within games itself.

Originally, restrictions in both time and memory confined the “Artificial Intelligence”
used in commercial games to being predefined by the programmers during development.
Any perceived intelligence was simply a matter of these predefined (or scripted) behavious
being appropriate for the situation. Besides not being dynamic, much less truly intelligent,
this process could take a considerable amount of work on behalf of the developers.

Only recently has the hardware available to run such games had sufficient processing
speed and memory capacity to allow application of Artificial Intelligence. However, because

1

commercial games are constantly pushing the boundaries of modern computing, updates
to the game’s state are done many times each second and the vast majority of time and
memory are allotted to other areas such as graphics, sound, physics, networking, and so on,
and so Artificial Intelligence still receives very small amounts of resources within which to
work.

For this reason, Artificial Intelligence in commercial games must work within strict time
and memory requirements. This is often a point of contention between academia and the
commercial games industry, with academic solutions often requiring resources not available
in practice, and commercial approaches not having sufficient academic merit (often still
being based on scripted solutions).

1.2 Pathfinding

When implementing Artificial Intelligence in a commercial game, the first task is often
pathfinding. Pathfinding is the process of determining a set of movements for an object at a
particular position and orientation (collectively, configuration), which when applied, result
in the object being in another configuration.

This sequence of movements, or path, between the initial configuration (the start) and
the final configuration (the goal) must also have the property that at no point when the
object is on the path, should its configuration be invalid. In pathfinding, this often means
that the object must not collide with any obstacles in the environment in which the object
exists.

This is an intuitive requirement, since when deciding on a route to take to the store, a
human would not consider a path which goes through a building to be valid. This meets
well with the goal of simulating a human’s decisions given a similar situation. Obviously if
an object in a commercial game chose a path which brought it into collision with a wall,
one would not deem its actions to be very intelligent.

As a consequence of this, pathfinding is often considered the most fundamental Artificial
Intelligence task in commercial games. No matter what techniques are used to govern its
behaviour, a character in a commercial game cannot seem intelligent if it cannot move
around its environment reasonably and without colliding with obstacles.

This requirement for “reasonable” motion belies the complexity of another property that
is often desirable for pathfinding—optimality. What it means for a path to be optimal varies
by the application, however two of the most common definitions are that the path be as
short as possible, and that it take the least amount of time to travel.

Using a distance metric, an optimal path is the valid path between the start and goal
configurations whose combined distances between adjacent intermediate configurations is
no greater than any other. This is the most common measure of optimality, and is intuitive
as such. If someone is going from New York to Los Angeles, we would not consider a route
that passes though Miami to be intelligent, unless this person had some reason for going
there first.

Another common measure of optimality is the time required for the path to be traversed.
This type of optimality need be considered in situations where parts of the environment take
more time to traverse than others, if the object being moved takes time to turn or accelerate,
and so on. In most other cases, the shortest path is also the one which takes the least amount
of time to follow. One can imagine a situation where this is not the case: if travelling between
cities the fastest route is often along connecting highways, even if following dirt roads might
result in less distance, as one can only drive along dirt roads at certain speeds.

There are other possibilities for defining an optimal path, such as the path which involves
the fewest number of rotations, and some that consider additional constraints based on the

2

environment, like avoiding an enemy’s line of sight whenever possible. That said, not all
situations require finding an optimal path, and one can sometimes find a path that is nearly
optimal with a fraction of the resources required to find one that is exactly optimal.

In a commercial game, a character can often select a path that is not quite optimal while
still appearing intelligent. As long as the path selected does not move in a very unintuitive
way, the character can usually be forgiven for a suboptimal path, as humans very seldom
concern themselves with taking the absolute best path, so long as it is rational.

Now, in order for an object to appear to move around its environment intelligently, we
have the requirement of finding a collision-free path between the start and goal configurations
that is either optimal according to some measure, or at least very close to it. Again, the
application of commercial games imposes strict requirements on both time and memory
usage.

This problem has been studied extensively, but nonetheless this thesis presents a novel
approach, explained in Section 1.4, that meets all these requirements, as well as having
properties conducive to further applications and enhancements.

1.3 Example

In the spirit of Artificial Intelligence, we look at the pathfinding problem from the perspective
of a human to see what we can learn from the way a human goes about determining a path
between locations. Consider a man attempting to find the best path from the door of the
restaurant shown in Figure 1.1 to the table at which his friend is sitting.

The man will not plan his individual steps, he is instead likely to decompose the problem
to that of moving between small areas of the restaurant that are free of obstacles such as
tables and walls. On top of this, he will not consider dead ends. While it seems trivial
that he would not ponder going into corners, this also applies to going into the kitchen or
down the hallway leading to the bathrooms—if these do not lead to the table at which his
friend is sitting, he will not spend time thinking about them as possibilities. Figure 1.2
shows the areas of the restaurant eliminated by this technique alone. Current pathfinding
techniques do not avoid searching these places any more than they would any other part of
the restaurant.

Another problem common to current pathfinding techniques is that if the goal could be
in a small area or require the object to go through a small area, then the search will have to
consider moving between all such areas, and thus the restaurant will be made up of more,

men

women

kitchen

booth booth

booth booth

table

table

table

table

table

table

table

table

table

table table

table table

table table

man

friend

Figure 1.1: Environment for pathfinding example

3

men

women

kitchen

booth booth

booth booth

table

table

table

table

table

table

table

table

table

table table

table table

table table

man

friend

Figure 1.2: Dead ends of the restaurant cut off by dotted lines

men

women

kitchen

booth booth

booth booth

table

table

table

table

table

table

table

table

table

table table

table table

table table

man

friend

Figure 1.3: Proceeding down a corridor

smaller areas, forcing the search to make more decisions and thus use more memory and
time. In our example, however, the man will not take any more time to decide how to get
to his friend in a restaurant where the walls were zigzagged (creating several small nooks)
than if the walls were straight, and he can still represent the walls precisely in either case.

Let us say that upon entering the restaurant, there are booths to both sides of the man.
We know he will not sit down at either, since he will not consider dead ends. This again
seems trivial, but it reduces his decisions to either moving forward or moving backward.
Since backward would move him to where he has already been, that is not a very useful
option either. Thus, his options until reaching the other side of the booths are simply a
series of forward steps. Obviously he will not separate these conceptually, and consider his
first “move” to be going to the end of the booths. In other words, he will consider this to
be a corridor. This is shown in Figure 1.3.

Again, most pathfinding techniques will consider all these as moves, which result in
more decisions than realistically have to be made. Also, if the area between the booths was
wider than he man, some pathfinding techniques would consider lateral movement as well as
forward movement as shown by the multiple arrows in Figure 1.3. This is also unnecessary,
since the man will not consider at which side of this corridor he will walk when determining
a path—he only knows he will traverse it, and his exact path within it will be determined
by how he enters and exits the corridor.

At the other side of the booths is an area with tables sitting out from the walls, to which

4

men

women

kitchen

booth booth

booth booth

table

table

table

table

table

table

table

table

table

table table

table table

table table

man

friend

Figure 1.4: Points at which the man must make a decision

men

women

kitchen

booth booth

booth booth

table

table

table

table

table

table

table

table

table

table table

table table

table table

man

friend

Figure 1.5: Possible paths through the table area

the man can walk on either side. This is the first point at which the man must make an
actual decision. He may consider at this point different combinations of going around the
tables. Figure 1.4 shows the points where such decisions must be made. The number of
such combinations is exponential in the number of obstacles, however many resulting paths
are obviously too long, and he will quickly rule them out. When looking at the best such
combinations, he will finally consider the actual steps that would lead him to the chosen
side of each table. Some of the possible paths through the tables are illustrated in Figure
1.5.

With this information he can determine which of these combinations of decisions leads
to the shortest path through the tables. He will not consider how he will walk around
each table, because once the series of decisions is made, the best path adhering to this
combination of decisions can be determined quickly. Again, this shows how the man will
not consider individual moves, lateral moves in larger areas, or dead ends not leading to the
goal, as decisions.

At the opposite side of this open area of tables is a row of tables on each side of another
corridor. At one of these tables is the man’s friend. This time the man will not consider
going all the way through the corridor as this would take him past his goal, but will instead
stop at the table at which his friend is sitting. We see that while he has considered going
through earlier corridors as single moves, it has not hindered his ability to move partway
through this one. Figure 1.6 shows how the path does not traverse the whole corridor.

5

men

women

kitchen

booth booth

booth booth

table

table

table

table

table

table

table

table

table

table table

table table

table table

man

friend

Figure 1.6: Walking partway down a corridor and having a seat in a dead end

Similarly, when reaching his friend’s table, the man can sit down even though he did not
consider such a “dead-end” option at any other table in the restaurant. The man can then
follow his chosen path by moving to the end of the booths, going around the tables in the
open area in a manner which results in the shortest overall path, going partway down the
corridor of tables, stopping at his friend’s table and sitting down, also shown in Figure 1.6.

Finally at this point the man will consider his individual steps; once making the high-level
decisions about his route, he can easily plan these steps minimizing the distance travelled
while avoiding obstacles and adhering to the chosen route.

1.4 Approach

The approach taken to pathfinding in this thesis will be described in the context of the
above example, in this section. When looking at the decision process of a human, one can
see the improvements that are possible with the proper abstractions and representation.

First, we use a triangulation to represent the environment, which is described in terms of
line segment barriers (polygonal representation). This addresses the issue that a human will
consider areas of the environment (triangles) instead of individual steps when approaching
the pathfinding problem.

This also has the advantage that the number of triangles in the environment is not
sensitive to its size. A large area has no more triangles than a smaller area with the same
features; this number is only affected by the complexity of the barriers in the environment.

In addition, the triangles added to deal with more detailed areas of the environment do
not affect other areas. This is akin to how the man could consider small and complex areas
of the restaurant without taking longer to consider larger open spaces.

The approach taken in this thesis uses the properties of a constrained triangulation (one
formed around the aforementioned line segment barriers) to identify dead ends, corridors,
and decision points in a connected area of the environment. The result of this process is
a graph where the nodes represent where a decision must be made as to which side of an
obstacle to go. The implications of this technique are many, and fit well with the method by
which a human solves the pathfinding problem: only considering how to go around obstacles,
and considering every path which adheres to these decisions as one.

The pathfinding task then consists of reaching the adjacent such nodes from both the
start and goal points by moving to the adjacent corridor if the point is in a dead end, and
then considering the decision points at each end of the corridor if there. Only one decision
point need be considered for the start or goal if the point is on one already.

6

Now on the graph, the search need only consider decision points since the paths by which
the start and goal points connect to this graph have already been identified. This is similar
to how a human can ignore dead ends and move through corridors in one pass throughout
the search, even if the start or goal is in such a dead end or corridor.

Because these are the only points at which a decision must be made, it implies what was
described above how the man will only consider which corridors he will traverse, and not
the details of how he will traverse them. Once a succession of corridors leading from the
start to the goal (or between the decision points adjacent to them) is found, the best path
through these corridors can be found.

The process of finding such a path can be thought of conceptually as weaving a string
through the selected corridors and then pulling it at the start and goal points so that it
tightens around the obstacles and forms the shortest path through those corridors. Once
the length of this path is determined, it would be adopted as the best path if no shorter
paths have been found.

When one path is determined, we can determine which routes around obstacles may
provide a shorter path than the best found so far, and consider only those. This process
can be continued until an optimal path is found (this is guaranteed when no other routes
could yield a shorter path than the best one found), or at least one of acceptable quality.

The above assertion about “pulling the string” is not entirely accurate, since it is often
the case that the object for which the path is being found, is not a point object. In the case
of the man in the restaurant, he would obviously not appreciate a path which touched tables
or walls, since being centered on the path would cause him to collide with them. Again, a
main aim of pathfinding is to avoid such obstacles.

For the purposes of this thesis, objects are considered to be circular with some radius.
Conceptually, to keep an object of some radius from colliding with obstacles, we center
circles of this same radius around the corners of the obstacles around this route, and then
pull the string around them. This ensures that the resulting path stays at least the object’s
radius away from these obstacles, so that when the object’s center follows this path, it will
not collide with anything, as desired.

When creating the triangulation, we also determine what size of objects can fit through
the triangles. When dead ends are identified, we determine for each point in them how large
of objects can reach the connecting corridor. When identifying corridors, we determine for
each point the maximum object radius that can reach each connecting decision points.

We finally determine the sizes of the largest objects which can travel through entire
corridors connecting decision points, so that once searching between decision points, we can
determine valid paths for an object of a given size without considering any other structures.
While these size considerations are somewhat tangent to the rest of the work in the thesis,
they were necessary for applying the technique in the chosen application areas.

1.5 Contributions

Here we will quickly overview the parts of the work described above, as well as some others,
which are novel contributions. We will follow that with an outline of the structure of the
rest of the thesis.

The aforementioned methods for dealing with objects with nonzero area by measuring the
throughput of triangles, dead ends, and corridors has many benefits over existing techniques,
which will be described in its respective section.

Also the description above about “pulling the string” with circles around the corners
of obstacles was actually accomplished by creating a new version of an existing algorithm
called the funnel algorithm to deal with circular objects of nonzero radius. The original

7

and modified versions of this algorithm both run in time linear in the number of triangles
through which the path moves.

We then determined an anytime search algorithm for searching through a triangulation
which deals with the inherent uncertainty within a triangulation in order to find an optimal
path, while being as efficient as possible.

As mentioned earlier, the main work of this thesis is the technique by which the trian-
gulation is examined to find features such as dead ends, corridors, and decision points. This
has many advantages as will be described later.

Another anytime algorithm was created to deal with searching solely between decision
points after the above technique is performed. This algorithm must make the same consid-
erations as the first, but also deal with a number of possibilities that might exist due to the
placement of the start and goal points in the environment.

Other techniques employed include faster point location in order to find the triangle in
which the start and goal points reside, and a simple technique for finding the first path
quickly, thereby increasing the window of the anytime algorithms in which a solution is
available.

1.6 Thesis Outline

Chapter 2 This chapter will review work previously done in Artificial Intelligence in gen-
eral search techniques, pathfinding-specific search techniques, basic abstractions, and
abstractions applied to pathfinding.

Chapter 3 The thesis will here discuss the issues involved with environment represen-
tation in pathfinding, the common grid-world representation, general triangulation
representations, and the Dynamic Constrained Delaunay Triangulation representation
on which this work was based.

Chapter 4 Next we will describe considerations for pathfinding using objects which have
nonzero size. This includes a method for determining the maximum radius for a
circular object which can move through a particular triangle and an algorithm for
calculating it, and then the extension of an existing method for finding the shortest
path through a group of triangles (the funnel algorithm) from a point object to a
circular one of nonzero radius.

Chapter 5 This chapter describes searching within a triangulation starting with a simple
search which can find suboptimal paths, a discussion on the effects of approximated
path lengths in the search for an optimal path, and a search incorporating these
principles.

Chapter 6 Here the thesis covers the abstraction of the triangulation starting with the
different classifications for the triangles (analogous to dead ends, corridors and de-
cision points above), the consequences of these on the resulting graph, an algorithm
for creating this abstraction given a Constrained Delaunay Triangulation, and the
information that the abstraction itself contains.

Chapter 7 The thesis goes on to describe the procedure for searching the abstraction, the
special cases that can occur, the effects of approximated path lengths in the search
for an optimal path as it differs between the triangulation and the abstraction, and
finally the search algorithm resulting from these concerns.

Chapter 8 An explanation of other enhancements done for the search is given in this
chapter. These include point location based on sectors and other approaches, and

8

a minor modification to the earlier searches meant to produce an initial (possibly
suboptimal) solution quickly without affecting the ability for the search to find an
optimal solution.

Chapter 9 This chapter contains information from experiments which were performed with
the search techniques described earlier. This will include a discussion of the test
environments and other application areas, the experimental setup, its results and an
analysis thereof.

Chapter 10 The thesis will then conclude with a recap of what was covered and an explana-
tion of the many possible extensions and applications of the work covered. References
follow.

9

Chapter 2

Previous Work

The work presented in this thesis was originally intended for use in the Real-Time Strategy
(RTS) commercial game genre. This type of game puts the player in the place of a general
waging a battle. Objectives include gathering and managing resources, building and defend-
ing one or more bases, constructing vehicles and training troops for attacking the forces of
another army or accomplishing some other objective.

RTS games pose many challenges described in more detail in [10]. Of primary interest
here, however, is that in addition to the ordinary constraints of a commercial game to
perform computations many times per second, there are many objects (buildings, vehicles,
troops, etc.) to consider. The environment also tends to be large, with both wide open
areas such as fields, and small details such as a jagged line forming the base of a cliff.

The above requirements simply reinforce the constraints under which a pathfinding sys-
tem must run for such a game: it must find a path even faster than is normally required
because several paths may be requested at a time, and the representation should handle
both large areas and detailed regions efficiently.

The technique developed in this thesis also has other properties which could be useful
in RTS games, described in Section 10.2. The majority of the work, however, is applicable
to all pathfinding.

The goal of the techniques done here was to apply them in the Open Real-Time Strategy
(ORTS) game engine [11]. This is an ideal test bed for algorithms such as pathfinders because
it is an open source engine providing easy integration, is very general in its implementation,
and is not susceptible to compromise by its clients, among other advantages [9].

2.1 General Search

A domain in which some search is to take place can have one or several attributes associated
with it at any one time. An assignment of these attributes to particular values yields a
state, which represents a situation in this domain at some instance, possibly resulting from
a series of actions. Performing an action on some state usually results in some other state.
All possible assignments of values to the attributes associated with a domain produces all
possible states in that domain, also called a state space.

A search is performed to determine the series of actions which, when applied to a given
initial state, or start, result in a desired final state, or goal. A sequence of intermediate
states resulting from these actions is often another result which a search can yield. Either
of these is referred to as a path. A search is done by performing each possible action on the
start state, which yields a corresponding subsequent state for each action. If none of these

10

states produced is equivalent to the goal state, we then perform this set of actions on one
of these resulting states, and continue in this manner.

There are several methods for performing this general task. One such example is breadth-
first search. As indicated by the name, this algorithm first searches all states resulting from
a single action performed on the start state before searching those which require two, and
so on. This technique is usually implemented by means of a queue, and whenever the goal
state is found, it is found by the shortest possible sequence of actions. A drawback of
breadth-first search is that it is memory-intensive: by the time it reaches the goal state, all
states that result from fewer actions than the goal are stored in memory. Obviously, as the
state space becomes larger and the goal is farther from the start, the memory requirement
of this approach can quickly surpass the capacity of a computer.

In such cases, a technique called depth-first search can be used. These will search into
the space along one path at a time to find a solution. This type of search uses less memory,
but take longer to complete, hence their use when sufficient memory is not available for
breath-first techniques. However, often it was not desirable to search along each path as
far as possible before trying another, since this could yield a path much longer than the
shortest possible sequence. Also in many cases such a search is not even possible.

For these reasons, depth-first iterative-deepening (DFID) can be used instead, which
expands each path a certain distance, and if no solution is found, it will search each path
slightly further, and continue in this manner until a solution is found. While this technique
will return the shortest path to the goal, understandably it requires even more time to
complete than depth-first search due to the repeated search involved.

Originally, these search techniques were used mainly to traverse graphs, however even-
tually, larger state spaces began to be used, and more efficient techniques were required.
The techniques above effectively traverse the search space but do not search it intelligently.
In many cases knowledge about the structure of the search space could be applied to the
benefit of the search.

Thus, an algorithm called A* [23] was devised to incorporate such knowledge to search
the state space more efficiently. A* is based on a breadth-first search, but uses a heuristic,
which is a measure of how close any state is to the goal of the search. Its approach is not
only intuitive, but also has several properties desirable in many domains. These are explored
in more detail in Section 5.1.

Because of this, A* has enjoyed widespread use for decades. Despite its efficiency, how-
ever, one problem with A* is that as state spaces grow even greater in size and domains
become even more complex, the memory required by this approach stretches beyond that
available in computers.

So similarly to how A* introduces heuristics into breadth-first search, IDA* [33] intro-
duces them into DFID search. IDA* shares many of the same properties as A*, but also
works in settings where sufficient memory is not available for techniques such as A*, at the
cost of requiring more time because of repeated search. As with A* and breadth-first search,
heuristics allow IDA* to proceed in a much more intelligent fashion than DFID search.

Other search techniques followed which allow the use of such heuristics to intelligently
guide their progress, however those mentioned above are the most prominent.

2.2 General Abstractions

One question that might come to mind is the origin of the heuristics used by such algorithms
as A* and IDA*. Often, they are the result of human knowledge of the domain being
searched. In most cases, people develop explicit techniques to determine from a state in a
given domain, approximately how far it is to the goal.

11

However, there is another, more general method to provide these values: abstraction.
This involves producing from a given state space, a parallel space comprised of fewer states,
known as an abstract space. For any state in the search, a corresponding state can be
determined in this abstract space, where it is easier to get an estimate for the distance to
the goal. The actual distance between this abstract state and that corresponding to the
goal in the abstract space often forms a fairly accurate heuristic in the original space.

There are a number of ways to go about constructing an abstraction of the original
space. The most common is to form a partition over the original state space where all
states in a single partition correspond to the same resulting state in the abstract space.
This creates a significant reduction in the state space and often allows the exact distance
between the abstract states corresponding to the current state being searched and the goal,
to be calculated exactly. Once again, there are numerous approaches to obtaining these
values. Two such approaches are pattern databases [16] and Hierarchical A* [26].

Pattern databases associate each state in an abstract space with a value indicating the
distance they are from the corresponding goal. These are populated by determining the
state corresponding to the goal in the abstract space, and from this state, exhaustively
visiting the entire abstract space using breadth-first search, and recording for each abstract
state, the distance from the goal.

This way for each state in the original space, the corresponding state in the abstract space
can be found and the distance of this state from the abstract goal determined immediately
and used as a heuristic in the original space. This technique represents the end of the
spectrum where all values are calculated during preprocessing, and is useful if a number of
such searches are likely to be done.

Hierarchical A*, by contrast, calculates such values as the search is being performed.
To find a heuristic for a state in the original space, the corresponding state is found in
an abstract space. The distance between this abstract state and the goal in this space is
determined by a search, and this value is used for the heuristic of the original state. A
heuristic is also needed for the search in the abstract space, so each state here is mapped
to one in an even more abstract space, where the distance between this state and the goal
again becomes the heuristic for the state in the less abstract space.

This process continues searching more and more abstract spaces, until reaching a space
so abstract that it contains only one state, or some suitably abstract space where a domain-
dependent heuristic is used. These values are saved, and other useful figures are cached, so
that subsequent searches can benefit from these calculations. Searches using this method
take longer than those using a pattern database, but require no preprocessing, so it is more
suited to situations where too few searches will be performed to warrant constructing a
pattern database.

2.3 Pathfinding Search

In addition to the general search techniques that are commonly used for pathfinding tasks,
there are many, more specialized searches which exploit the properties inherent to this
problem. Indeed, pathfinding is so important to application areas such as commercial games
and robotics, that there are methods which address not just pathfinding as a whole, but
even subtasks therein. Unfortunately a complete treatise of pathfinding techniques is well
beyond the scope of this thesis, but we will give a synopsis of a few important results below.

The problem of finding a shortest path in a plane is well-studied [39]. The optimal
solution is given in [25], where execution time and memory usage is O(n log n), respective
of the vertices in the environment. In most cases, a more practical approach is more suitable.
Probably the most common type of solution uses a grid-based environment representation

12

[32], described further in Section 3.2.
However, other techniques such as visibility graphs [34] can be used as well. This involves

connecting the vertices of the obstacles to each other so long as an unobstructed straight line
can be formed between them. A search is then performed on this graph, which is guaranteed
to contain an optimal path for an object of zero size. The drawbacks to this technique lie in
the fact that the number of edges in the graph can be quadratic in the number of vertices
on the obstacles, which is detrimental in respect to both time and memory, and that in
the presence of a change in the environment, this graph can require extensive repairs, and
finally that it only provides paths for objects of a single size.

In addition to such deterministic methods, there are random techniques that have been
used to some degree of success. In higher-dimensional spaces, complete algorithms are
sometimes unwieldy and so algorithms such as Rapidly-exploring Random Trees (RRTs)
were developed [35]. Such trees quickly explore the space at random in an attempt, in this
case, to find a path between a start and goal. While sometimes useful in the case of an
unsearchably large or complex environment, these techniques are not guaranteed to find a
path except in their limit, and typically do not find an optimal path. In the application
areas for which the work of this thesis was targeted, both of these abilities are important
and so such techniques are not suitable.

Nevertheless, it was a primary goal to produce a technique that functioned effectively
in large and complex environments, so information specific to pathfinding in Euclidean
space was required. In particular, the techniques presented in this thesis are based on
the triangulation environment representation, or more precisely, the Constrained Delaunay
Triangulation representation presented in [28]. Because this work is so central to this thesis,
it is presented in more detail in Section 3.4. It should be noted that there are other popular
polygonal representations available such as trapezoidal decomposition [30, 29], however the
triangulation representation provided mechanisms for the abstraction procedure discussed
in Chapter 6.

2.4 Pathfinding Abstractions

A work with which that in this thesis is compared is the PRA* algorithm presented in [47].
While there are many pathfinding techniques which make efficient use of abstractions such
as HPA* [5], which decomposes an environment into “rooms” and caches the best paths
between the entrance and exit points of each to construct a complete path between points
quickly, PRA* is the most competitive algorithm at the time of writing.

PRA* (short for Partial-Refinement A*), performs pathfinding search in an abstracted
representation of the environment and then converts the solution from this space to one on
the original environment. It works by building layers of increasing abstraction, forming a
layer by abstracting neighbouring states of a layer into a single state in the more abstract
layer above. States at the top, most abstract level represent groups of states in the original
space which are reachable from each other. For pathfinding, these states equate to areas in
the environment, specifically, the cells in the grid, which is described further in Section 3.2.
When a path is requested, the start and goal are projected up through layers of abstraction
by determining at each layer, the state of the layer above which corresponds to that state.
This is continued until either they become the same state in some abstract layer, indicating
that a path exists between them, or they reach two distinct states at the most abstract level,
indicating such a path is impossible. This is similar to checking the component indices in
TRA* as described in Subsection 7.1.1.

If a path can be found, a suitably abstract layer is chosen on which to perform the search,
for example the layer halfway between the original graph and that at which the start and

13

goal met in a single state. The search is performed at this layer, and once complete, the
states forming the path are projected onto the layer below by determining which states on
that layer correspond to those in the solution path on the layer above. Then another search
is performed on this level, but only in the states corresponding to those in the solution on
the level above. This is continued downward through less abstract layers until a path on
the original environment results.

There are several advantages to this approach. The first and most obvious is the increased
speed which results from the search being performed on an abstract layer with a much smaller
state space than the original environment. Another advantage is that the existence of a path
between any two points in the environment can be quickly determined instead of requiring
a lengthy exhaustive search.

Finally, because a path is found on some abstract layer and the actual path must be
within the corresponding states in the original environment, this “concrete” path need only
be determined a portion at a time. For example, the actual path for the first few states in
the solution path on the abstract layer need only be determined for the object to start along
a path which we know will lead to a goal. This is useful in commercial games where a delay
before an object starts moving toward the desired location is should be avoided. Subsequent
portions of the path can then be determined at any time while the object moves along the
portion of the path already known.

Also, as seen in Section 9.2, the presence of the abstraction also makes this algorithm
less susceptible to increases in execution time as the distance between the start and goal
increases, and also more predictable. This is because the actual distance between the start
and goal can be predicted by the height of the layer at which they meet at the same state.
Thus, the resulting search is performed on a suitably abstract layer, meaning that both
complex and long paths are dealt with on a more abstract layer, reducing their negative
impact on execution times.

A disadvantage of this method is that creating the abstraction of the environment in
such a manner inherently loses details therein. Therefore, as long as the search is performed
on any abstracted layer, this method cannot guarantee the shortest path will be found.
Obviously if the initial search is done on a very abstract level, the resulting suboptimality
will be more likely and more pronounced than if it was performed on one which is closer
to the original environment. Luckily, performing the search on the layer at half the height
of that at which the start and goal become the same abstract state, results in both a very
efficient search, and a path which, with a high degree of probability, is very close to optimal.

14

Chapter 3

Environment and
Representation

The first question that one must ask when approaching a pathfinding problem is that of
how to represent the environment. This decision can depend on a number of factors such as
the nature of the environment and the pathfinding techniques that are applicable to each
representation.

In this section, we will discuss such concerns and give advantages and disadvantages of
a couple of the most common environment representations. The method selected for use in
this thesis will be described and justified.

3.1 Environment Description

In essence, an environment in pathfinding dictates which configurations between which an
object can and cannot transition in a single motion or time step. Typically, this is given in
terms of obstacles, with which the object must not intersect at any time, either on a time
step or in between them.

While this is the most common case in pathfinding and indeed in commercial games, it
is worthy of note that more complex situations are possible, such as ledges that the object
can move down but not up. Technically, situations such as “teleportation” where an object
moves farther than is normally possible in a period of time, are possible in this framework.
Indeed, such cases exist in some commercial games.

Such possibilities, however, can complicate the pathfinding task and distract from its
fundamental properties. We therefore adopt the convention that an object can move at
a constant rate in any direction of its current position, providing that neither the final
configuration from this motion, nor any intermediate configuration results in the object
overlapping with an obstacle in the environment (or another object).

To further simplify matters, this thesis will consider all objects to be radially symmetric
(circles in 2 dimensions). This implies that if an object in a particular configuration does not
overlap an obstacle, it cannot be made to through rotation. Similarly, an object intersecting
an obstacle always will unless its position is changed. Thus, an object’s configuration is
simply considered to be its position for our purposes. From this point on in the thesis, the
terms configuration and position are used interchangeably.

15

3.2 Grid-World Representation

The most common environment representation used for pathfinding is known as the grid-
world representation. This is where a grid (most often, of squares) is overlaid on the envi-
ronment and each cell of the grid is considered either traversable if no part of an obstacle
overlaps the cell, or obstructed otherwise. Figure 3.1 shows an environment which has some
obstacles. Its grid-world representation is shown in Figure 3.2, with the obstructed cells
shaded and traversable cells left white.

Figure 3.1: Environment for representation example

Figure 3.2: Grid-world representation of environment

The position of the object for which pathfinding is to be done is discretized to a
(traversable) cell, and each possible move for the object results in its position changing
to one of that cell’s neighbours (either 4- or 8-neighbours in the case of square cells) which
are traversable. Figure 3.3 shows possible moves for an object (depicted by a circle) into
traversable 4-neighbours (solid arrows) and 8-neighbours (solid and dotted arrows).

This representation is the most common in commercial games as it is easy to define an
environment as a number of cells on a grid, and because many pathfinding techniques are
made for this representation. A disadvantage of this is that if obstacles such as walls are
not axis-aligned, this results in imprecise representation. An example of this is shown in
Figure 3.4.

If the resolution is not sufficient, this imprecision can lead to the pathfinding algorithm
finding suboptimal paths or none at all. When the grid has sufficient resolution, especially

16

Figure 3.3: Possible moves for an object in a grid world

Figure 3.4: Imprecise representation of a non-axis-aligned obstacle

start

goal

Figure 3.5: No path due to insufficient grid resolution

17

in this situation, the number of cells can severely complicate the pathfinding process, mul-
tiplying the number of moves required for a path. In Figure 3.5, the imprecision causes
no path to be found between the start and goal cells. The resolution of the grid must be
increased to reduce this imprecision to the point where such a path can be found, as in
Figure 3.6.

S

G

Figure 3.6: Grid resolution increased to produce path

Similarly, the number of cells in an area is dependent on its size; a large area has a greater
number of cells than a small one, even if they are geometrically similar. For these reasons,
grid-world-represented environments, particularly more accurate or non-axis-aligned ones,
tend to have many more cells than other representations.

3.3 Triangulation Representations

A slightly less common representation is the constrained triangulation, a variation of which
is used in the work in this thesis. A constrained triangulation represents the borders around
the obstacles in the environment as line segments or constrained edges. Unconstrained edges
are then added between the end points (and points of intersection) of these constrained
edges, without such edges crossing, until no more such edges can be added, at which point
the environment is made up entirely of triangles.

Figure 3.7 shows the same environment as in Figure 3.1, but with curves approximated
by line segments (the reason for which is explained below). Figure 3.8 shows that envi-
ronment represented by a constrained triangulation with solid lines for constrained edges
and dotted lines for unconstrained edges (this is the convention adopted in diagrams of
constrained triangulations from this point forward). Traversable and obstructed spaces in
the environment are implicitly defined in that objects always originate in traversable space
and cannot move across constrained edges into obstructed space.

Triangulations have a number of advantages compared to the grid-world representation,
in that they can precisely represent any environment which contains straight obstacles (axis-
aligned or not), the number of triangles in any area is determined by the properties of that
area and not its size, and the necessity to include more detail in any one area does not
increase the number of triangles in others.

To illustrate, consider adding an obstacle to a grid-world-represented environment which
is smaller than any of the grid cells. In this case, either the obstacle would have to be
imprecisely represented, or the entire grid would have to be made up of more, smaller cells.
If a triangulation was used, this obstacle could be precisely represented (provided its shape

18

Figure 3.7: Same environment with curves approximated by line segments

Figure 3.8: Environment represented by a constrained triangulation

Figure 3.9: Small obstacle imprecisely represented in a low-resolution grid

19

Figure 3.10: Grid resolution increased to better approximate small obstacle

Figure 3.11: Small obstacle added to (empty) triangulation

is polygonal) while only creating smaller triangles in the vicinity of the obstacle, avoiding
modifications to and an increase in the number of triangles in other areas.

Figure 3.9 shows such an obstacle being added to a grid and imprecisely represented
due to the grid’s relatively low resolution. In Figure 3.10, the obstacle is more accurately
represented at the cost of increasing the resolution of the grid everywhere. This same
obstacle is shown added to an otherwise empty triangulation in Figure 3.11.

When borders of obstacles in a triangulated environment are curved, they can be ap-
proximated by line segments, using more for increased accuracy. This is why the circle
from the environment in Figure 3.1 is approximated by an octagon in Figure 3.7 prior to
triangulation. This only increases the number of triangles in the area of the curve.

For the above reasons, there are generally much fewer triangles in a triangulated polyg-
onal environment than there are cells in a grid-world representation with any reasonable
resolution. Also, there are a number of existing algorithms which use triangulations and
their inherent simplicity is helpful in the abstraction discussed in Chapter 6.

3.4 Dynamic Constrained Delaunay Triangulations

The particular implementation of a triangulation used in this work is the Dynamic Con-
strained Delaunay Triangulation (DCDT) developed by Marcelo Kallmann [28]. Below we
will describe different types of triangulations to familiarize the reader before describing this

20

Figure 3.12: A collection of points to be triangulated

Figure 3.13: A triangulation of this set of points

work. A more complete treatment of these and other geometric structures is given in [41].
A basic triangulation takes a collection of points like that in Figure 3.12, between pairs

of which edges are added such that these edges do not cross, until no more such edges can
be added. At this point, within the convex hull of these points, all areas are triangular,
as illustrated in Figure 3.13. A Delaunay Triangulation (DT) of these points adds the
edges in such a way that the minimum interior angle of all triangles in the triangulation, is
maximized. This is equivalent to other requirements described further in [28]. This property
implies that these triangulations tend to avoid “sliver” triangles wherever possible, which is
beneficial to the triangulation as a whole. An efficient algorithm for the computation of a
Delaunay Triangulation is given in [1]. As an example, compare the Delaunay Triangulation
in Figure 3.14 to the regular triangulation of the same points in Figure 3.13.

As described earlier, pathfinding in triangulations is normally done using some form
of Constrained Triangulation (CT), where constrained edges represent borders between
traversable and obstructed space. Often the convex hull is made using constrained edges
to specify that objects are not to exit the triangulated area. For instance in many games
this area might be a rectangle. A rectangular area enclosed by constrained edges contain-
ing barrier segments is shown in Figure 3.15, and a Constrained Triangulation of these
is shown in Figure 3.16. Specifying that a Constrained Triangulation be Delaunay (now
Constrained Delaunay Triangulation or CDT) again adds the requirement that the uncon-
strained edges be added in a way maximizing the minimum internal angle of any triangle

21

Figure 3.14: A Delaunay Triangulation of the same set of points

Figure 3.15: A collection of segments including a bounding box

in the triangulation, as long as none of the constrained edges are affected. A Constrained
Delaunay Triangulation of this same environment is shown in Figure 3.17; again, compare
the unconstrained edges to those in Figure 3.16.

A Constrained Triangulation with the Delaunay property better represents the structure
of the environment, especially for abstraction, as shown in Chapter 6. More specifically,
however, this property is used to ensure that whenever a valid path exists between two
points in the triangulation, one exists such that it does not pass through any triangle more
than once, which is no longer. The corresponding proof is given in Chapter 4. See [13] for
an optimal O(n log n) algorithm for computing a Constrained Delaunay Triangulation, and
[17] for one that works on-line.

The further specification that the triangulation is dynamic simply implies that in the
presence of a change in the triangulation (one or more constraints is added, deleted, or
moved), the triangulation can be repaired locally [28]. While this is not a requirement for
the research in this thesis, it is advantageous in the application areas.

For example, in an RTS game, it is often the case that the user will encounter previously
unknown terrain. In terms of the triangulation, this will result in constraints being added
(or removed). In order to perform pathfinding properly given this new information, these
constraints will have to be incorporated into the triangulation.

Obviously in the presence of the strict constraints of a commercial game as discussed ear-
lier, it would be more beneficial to only modify the triangulation in the region of the change

22

Figure 3.16: A Constrained Triangulation on this collection of segments

Figure 3.17: A Constrained Delaunay Triangulation on the same collection of segments

than to completely rebuild it. Kallmann’s DCDT provides a mechanism for modifying these
constraints with minimum changes to the triangulation.

Changes to the triangulation consist of the addition and removal of vertices and con-
strained edges; changes in location are done by removing the affected constraints and sub-
sequently adding them in their new position. Since for pathfinding, we consider vertices to
be obstacles, for the most part, these are added only as endpoints and intersection points
of constrained edges, however, they could form “light post”-like obstacles.

Adding a vertex is done by first locating it within the triangulation (this point location
process is described in further detail in Section 8.1), to see if it lies on another vertex,
an edge, or in a triangle face. If the vertex is incident with another, it does not need to
be added. If it lies on an edge, this edge is split into two edges consisting of the original
endpoints of the edge each leading to the vertex just added. Then the triangles incident
with the original edge are split by adding unconstrained edges between the new vertex and
the vertex of each triangle opposite the original edge. This situation is shown in Figure
3.18.

If the edge lies in a triangle face, unconstrained edges are added between the vertices of
this triangle and the newly added vertex. Figure 3.19 shows a vertex being added inside a
triangle face. When a vertex is added to either an edge or a face, the triangles surrounding
this are may have lost the Delaunay property.

Therefore we must check the edges surrounding the triangles involved with the insertion

23

Figure 3.18: Adding a vertex on an existing edge

Figure 3.19: Adding a vertex in a triangle face

(shown in bold on the right side of both figures) to see if they need to be “flipped”. We
check if the triangles forming the quadrilateral of which the edge forms the diagonal has lost
the Delaunay property. If so, the diagonal is instead made to join the other pair of opposite
vertices in this quadrilateral, restoring this property in the region.

However, doing this might cause other triangles to lose this property, and so the other
two edges of the original triangle not in the direction of the inserted point, are similarly
checked. In this way, the area affected by the insertion of the vertex expands as a star-
shaped polygon from this region. Although in the worst case, this could lead to flipping
every edge in the triangulation, the expected number of flips, no matter how the vertices
are distributed in the triangulation, is constant [21].

Inserting a constraint is done in several steps. A constraint often represents a single
obstacle, and could be comprised of several line segments, for example. Each such segment is
added as described below, and can correspond to multiple constrained edges in the resulting
triangulation. The process for adding a segment of a constraint will be illustrated here using
an example similar to that in [28]. First, point location is performed to find both endpoints of
the segment. These endpoints are added as vertices to the triangulation. Figure 3.20 shows
the triangulation after this step; the solid horizontal line is the segment being inserted.

Next, the intersection points between the new segment and existing constrained edges are
calculated and inserted. For each intersection point with a constrained edge, the constrained
edge and the new segment are split at the intersection point into two edges or segments each.

24

Figure 3.20: A segment being inserted into the triangulation

Figure 3.21: Intersection points between the new segment and constrained edges are inserted

This step is shown in Figure 3.21. After this, all unconstrained edges which cross the new
constraint are calculated, and removed from the triangulation, as shown in Figure 3.22.

The final step is the insertion of the segments of this new constraint as constrained
edges. Note that such a segment intersecting with another constraint on a vertex also splits
the segment into smaller segments, but the other constraint does not change. If a segment
of this constraint overlaps an existing edge in the triangulation, this constraint is simply
added to the edge. In this way, an unconstrained edge can become a constrained edge, or
a constrained edge could represent multiple constraints. Finally, the non-triangular regions
left by the previous step are triangulated, yielding the final result shown in Figure 3.23.

Removing a particular vertex from the triangulation is done by first removing all edges
for which the given vertex is an endpoint, and then the vertex itself. This leaves a non-
triangular area around where the vertex was removed, which must be triangulated. It is
assumed there are no constrained edges for which this vertex is an endpoint, and that the
vertex itself is not a constraint, otherwise, such a procedure would not be allowed.

Removal of a constraint is done by first locating the constrained edges which correspond
to this constraint. Once those are located, this constraint is removed from these edges.
Each constrained edge for which this represents the only associated constraint, becomes
unconstrained.

Finally, the endpoints of all edges which formerly comprised this constraint are checked
for whether they form an endpoint for any constrained edges, or themselves represent a

25

Figure 3.22: Unconstrained edges crossing the new segment are removed

Figure 3.23: Final triangulation after new segment has been inserted

constraint. The vertices that do not are removed from the triangulation using the procedure
above. Moreover, if a vertex which formed the intersection point between the removed
constraint and another constraint (as evidenced by exactly two constrained edges incident
with this vertex, representing the same constraint and being colinear), this vertex and the
incident constrained edges are removed from the triangulation and then a single segment is
inserted to replace the two smaller segments that were removed.

26

Chapter 4

Nonpoint Objects

In this section, we explore the implications of performing pathfinding for objects larger
than the simple point object case. As described earlier, we consider objects to be radially
symmetric so as to remove the orientation component of the configuration and are left only
with position (in two dimensions).

There are a number of ways to approach this problem, the most common one being
the Minkowski Sum operation. This consists of adding every element of the object’s shape
to every element of the obstacles in the environment. This results in the obstacles in
the environment being “grown” so that the object can be treated as a point object and
pathfinding done in this environment [36], then when the object follows this path in the
original environment, it will not collide with the obstacles.

Figure 4.1 shows an environment and nonpoint object and Figure 4.2 shows that same
environment with the object’s shape added to the obstacles via the Minkowski Sum oper-
ation. Figure 4.3 shows a path found for a point object in this environment, and finally,
Figure 4.4 shows the path for the nonpoint object in the original environment.

There are, however, several disadvantages to the use of Minkowski Sum for pathfinding.
The first is that there would have to be separate representations of the environment corre-
sponding to each size of object, all of which would require time to calculate and memory to
store. Also, we wish to perform pathfinding for objects of arbitrary size, and using this ap-
proach would either necessitate performing this calculation online—which may debilitating
in a real-time setting—or using a precalculated environment representation for an object of

Figure 4.1: Nonpoint object in original environment

27

Figure 4.2: Minkowski Sum of object on environment

Figure 4.3: Path for point object among “grown” obstacles

Figure 4.4: Same path for nonpoint object in original environment

28

Figure 4.5: Part of a Constrained Triangulation

Figure 4.6: Obstacles grown by Minkowski sum for a circular object, approximated by a
regular polygon

different size (risking finding invalid paths if the object is larger than that for which the
representation was constructed, and risking missing valid paths if the object is smaller).

Finally, because we are dealing with the situation involving radially symmetric objects,
representation of an environment grown with a Minkowski Sum becomes overly complex. As
discussed in Section 3.2, a grid representation of such circular detail would either be inaccu-
rate or require many cells, which increases the memory required to store the environment,
and slows the pathfinding process.

Triangulations are negatively affected by this operation as well. Refer to Figure 4.5 for
part of a triangulation of an environment. A circular object is approximated by a regular
polygon and added via Minkowski Sum to the obstacles resulting in the environment shown
in Figure 4.5. Again, there is a trade-off between accuracy and complexity in representation,
as adding more sides to the regular polygon to better approximate the object results in more
triangles in the resulting environment. The method of growing obstacles used in the work on
which this thesis is based [27] is presented in [37]. For further details regarding Minkowski
sums, such as how they are calculated and their properties, see [2, 22].

For these reasons we seek to avoid such an operation and instead wish to simply use
the original representation of the environment in order to calculate both the portions of
the environment that can be traversed by an object of arbitrary size, as well as a path for
that object which avoids obstacles and travels through a sequence of these areas. Using

29

triangulations, both of these can be exactly determined for circular objects.
We will begin with a description of a method used to calculate the maximum possible

size an object can be and still pass through a particular triangle in Section 4.1. Then we will
prove that this indeed provides the correct value in Section 4.2. Next, we discuss a technique
for determining the shortest path adhering to a sequence of triangles found through which
the desired object can fit. An existing algorithm for this problem using point objects is
shown in Section 4.4, and the modified version for use with nonzero-radius circular objects
is given in Section 4.5.

4.1 Width Calculation

As described earlier, we desire to find the diameter of the largest circular object that can
move between two (unconstrained) edges of a triangle in a Constrained (Delaunay) Trian-
gulation, for example, between edges a and b in Figure 4.7 (Subsection 4.2.1 describes more
formally what is meant by being able to move between two edges). Luckily this is equiv-
alent to finding the closest obstacle to the vertex joining these two edges (vertex C in the
diagram) in the region extending between the edges as shown. An obstacle, in this respect,
can be a vertex or a point on a constrained edge.

There are three cases possible within a triangle which can determine the closest obstacle
in this region. The first such case is that either 6 CAB or 6 CBA is a right angle or obtuse
(Subsection 4.1.1), the second arises when these angles are acute and edge c is constrained
(Subsection 4.1.2), and finally the last possibility is when 6 CAB and 6 CBA are acute and
edge c is unconstrained (Subsection 4.1.3).

In each case, the path for the object of maximum diameter is determined as an arc
hugging vertex C. While the object need not always follow this path to traverse the triangle,
it is true that an object could not successfully traverse some other path and not this one,
as is proven in Theorem 4.2.11.

In these proofs, we assume circular objects, but this could be extended to other shapes as
well. The maximum allowable size of a circular object through a series of adjacent triangles
could be used to determine the throughput of smaller objects, or the maximum allowable
size of a rectangular object, for example.

The techniques used assume that at the very least, each vertex in a triangulation rep-
resents a constraint. That is, if one was representing an environment, one would only add
a vertex to the triangulation either because it was an endpoint for a constrained edge, or

C

A

B

c

b

a

Figure 4.7: Part of a triangulation

30

if it were a point obstacle. This is intuitive because adding unneeded vertices would only
complicate the triangulation and slow down subsequent algorithms. If such vertices were
added, however, these methods might incorrectly determine the maximum diameter of an
object through a triangle in the case where a path for the true largest possible object would
pass through such an unconstrained vertex.

A brief discussion on the complexity of this algorithm is given in Subsection 4.1.4, and
the proofs that this technique is equivalent to finding the maximum radius of an object with
a valid path through this triangle are given in Section 4.2.

4.1.1 Case 1: Angle CAB or angle CBA is Right or Obtuse

C

A

B

c

b

a

d

Figure 4.8: Case 1: angle at vertex A is obtuse

The first, and simplest case to consider is that which occurs when either 6 CAB or 6 CBA
is right or obtuse. Assume, without loss of generality, that 6 CAB is right or obtuse. It
follows that edge b is shorter than edge a. Thus, the maximum allowable diameter d of a
circular object between edges a and b in this triangle is the length of edge b. See Figure 4.8
for a visual explanation. This follows from Lemma 4.1.1 below.

Lemma 4.1.1 The closest point on a line to another point is where a line passing through
the point intersects the line at a right angle.

p

dd’

l ab cc’

Figure 4.9: The closest distance of a line to a point

31

Proof In Figure 4.9, the point c is the point where a line passing through point p intersects
with line ab at a right angle. For any other point c′ on the line ab, it will be some positive
distance l away from c. Thus, if the distance from p to c is d, then the distance (d′) from p
to c′ is

√
d2 + l2 > d. Thus, c is the closest point to p on line ab, as desired.

P

C

A
B

a
b

c

Figure 4.10: Triangle with one obtuse angle

Similarly, consider Figure 4.10. The length of segment b is
√
|CP |2 + |PA|2. For any

point A′ 6= A along the segment between vertex A and vertex B, the length of the segment
between C and A′ would be

√
|CP |2 + (|PA|+ |AA′|)2 >

√
|CP |2 + |PA|2 since |AA′| > 0.

Thus, vertex A is the closest point on segment AB to vertex C, and since there can be no
obstacles in this triangle (any obstacles would have been incorporated in the triangulation),
it follows that the closest obstacle is |b| away from vertex C and this is the maximum
diameter of an object that can move between edges a and b in this triangle.

4.1.2 Case 2: Edge c is Constrained

In the case that both 6 CAB and 6 CBA are acute, the point on the line passing through the
vertices A and B that is closest to vertex C lies between A and B as shown in Subsection
4.1.1 above. In the case that edge c is constrained, this point is an obstacle. This situation
is shown in Figure 4.11.

C

A B
c

b a
d

Figure 4.11: Case 2: angles at vertices A and B are acute and edge c is constrained

32

As described in Subsection 4.1.1, since there can be no obstacles within the triangle,
the closest point on edge c to vertex C (when edge c is constrained) represents the closest
obstacle to vertex C in the triangle. Assuming the distance between vertex C and the point
P on edge c which makes the segment CP perpendicular to c, is d, the diameter of the
largest circular object that can traverse the triangle from edge a to edge b is d, as desired.

4.1.3 Case 3: Edge c is Unconstrained

In the case where edge c is not constrained and both 6 CAB and 6 CBA are acute, the
situation gets slightly more complex, as the closest point on edge c to vertex C no longer
represents an obstacle.

Vertices A and B are still obstacles, and thus the maximum object diameter that can
traverse this triangle from edge a to edge b is bounded above by both |a| and |b|. Figure
4.12 shows a case where the shorter of edges a and b is the distance to the closest obstacle.
However, since there may still be obstacles on the opposite side of edge c from vertex C
closer to C than either A or B, we must consider these possibilities.

C

A

B

b
a

c

C'

b'

a'

Figure 4.12: Vertex B is the closest obstacle to vertex C

What must occur then is a search that is bounded by the closest obstacle found so
far. Thus, this search begins by searching across edge c to the triangle opposite this edge,
bounded above by min{|a|, |b|} and continues as described below.

When the search enters a triangle via an edge, it checks the other two edges as follows.
We will say each edge is the segment between two vertices U and V . First of all, an edge
will only be considered if both angles 6 CV U and 6 CUV are acute, that is, if the closest
point on the line passing through U and V to vertex C lies between these two points. If
this criterion is not met, search along this sequence of edges ends.

Figure 4.13 shows how considering a segment that does not fit this requirement could
incorrectly determine the closest obstacle to vertex C. Here, if edge b′ were considered an
obstacle, the distance from vertex C to an obstacle would be incorrectly considered to be
its distance from the dotted arc. However, there is no obstacle at this distance, since b′ does
not extend past vertex A, and further it would not be in the area between edges a and b.

33

C

c
A

C'

B

a
b

b'
a'

Figure 4.13: Edge b′ should not be considered because C ′AC is obtuse

C

A
B

C'

b'
a'

b a

c

Figure 4.14: Edge a is farther from vertex C than A, so it is not considered

The actual closest obstacle to vertex C in this region is vertex A, and this distance is shown
by the solid arc.

Next, we consider the distance from vertex C to the closest point on segment UV . If this
distance is greater than the current upper bound, search across this series of edges returns
because further search will not yield a closer obstacle than the closest already found. This
situation is depicted in Figure 4.14.

If this distance is less than the current upper bound and segment UV is constrained,
then the current upper bound is updated to reflect this new distance, and search returns
from series of edges. A case where a constrained edge determines the closest obstacle to
vertex C is shown in Figure 4.15. Finally if the distance is less than the current upper bound
and UV is unconstrained, search continues across this edge into the adjacent triangle.

Pseudocode for the algorithm for determination of the width of some triangle T when
moving between two edges a and b is given in listings 1, 2, and 3. Next, we discuss the
complexity of the algorithm.

34

C

A

B

C'

c

b

b'

a

a'

Figure 4.15: Edge b′ becomes the closest obstacle to vertex C

Algorithm 1 DistanceBetween(Vertex C, Edge e) : Distance
1: A , B ← EndpointsOf(e)
2: if Ax = Bx then
3: return |Ax − Cx|
4: else
5: rise← By −Ay

6: run← Bx −Ax

7: intercept← Ay − (rise
run)Ax

8: a← rise
9: b← −run

10: c← run× intercept
11: return |a·Cx+b·Cy+c|√

a2+b2

12: end if

Algorithm 2 SearchWidth(Vertex C, Triangle T , Edge e, Distance d) : Distance
1: U, V ← EndpointsOf(e)
2: if IsObtuse(C, U , V) ∨ IsObtuse(C, V , U) then
3: return d
4: end if
5: d′ ← DistanceBetween(C, e)
6: if d′ > d then
7: return d
8: else if IsConstrained(e) then
9: return d′

10: else
11: T ′ ← TriangleOpposite(T , e)
12: e′, e′′ ← OtherEdges(T ′, e)
13: d← SearchWidth(C, T ′, e′, d)
14: return SearchWidth(C, T ′, e′′, d)
15: end if

35

Algorithm 3 CalculateWidth(Triangle T , Edge a, Edge b) : Distance
1: C ← VertexBetween(a, b)
2: c← EdgeOpposite(C, T)
3: A← VertexOpposite(a, T)
4: B ← VertexOpposite(b, T)
5: d← min{Length(a), Length(b)}
6: if IsObtuse(C, A, B) ∨ IsObtuse(C, B, A) then
7: return d {Case: 1}
8: else if IsConstrained(c) then
9: return DistanceBetween(C, c) {Case: 2}

10: else
11: return SearchWidth(C, T , c, d) {Case: 3}
12: end if

4.1.4 Complexity

Of course, we desire to know that this algorithm’s complexity will be reasonable if we wish
to use it in certain domains. One can note that in the worst case, determining the width of a
single triangle could require searching on order of all the triangles in the triangulation. Such
a search could not be any worse, because this would require searching triangles multiple times
when determining the width for a single triangle, which is not possible given our algorithm.

Figure 4.16: Search for the width of a triangle overlaps on a triangle

Refer to Figure 4.16. Here we show the search to find the width of the triangle at the
top of the figure, using arrows. This search goes into the triangle at the bottom right from
two different directions. However, one can note that entering this triangle from the left as
shown is impossible using the technique presented because the angle created by this segment
and the vertex at the top of the figure, is obtuse. Thus, this triangle would not be searched
from this direction.

This is true in general, as shown in Figure 4.17. Here we see that search for the closest
obstacle to vertex C could not enter triangle T through both edges f and d, because the
exterior angles of a triangle are necessarily greater than π, meaning either 6 DEC or 6 FEC
(or both) must be obtuse, so they would not be considered. If both these angles were acute,
then edge e would be closest to vertex C, and search would enter triangle T through it.

While this shows the worst case for searching to determine the width of a single triangle,
there are several reasons that in most cases, this value can be determined in much less time.
First of all, both cases 1 and 2 require constant running time. Case 1 occurs quite frequently

36

C

D

E

F

T
d

e

f

Figure 4.17: Proof that at most one exterior edge of a triangle can form two acute angles
with a point outside that triangle

T

T
T

T

T

1

2

3

4

5

Figure 4.18: Searching across all triangles to find the width of triangle T1

in triangulations, and when there are few or no point obstacles (triangulated vertices not
representing endpoints of constrained edges) case 2 will occur even more often.

Also one can notice that unless 6 ACB is close to π, case 3 cannot result in a very long
search. In most cases, the bound of the search (min{|a|, |b|}) will not exceed the value at
the start of the search (the distance of edge c from vertex C) by very much. For a search to
traverse many triangles, particularly when this difference is small, the triangles across edge
c would have to be very thin. This is uncommon to see in most triangulations and a very
rare case in Delaunay Triangulations. Such a case is illustrated in Figure 4.18.

Although searching a triangle can conceivably expand search across two other edges
resulting in an exponential search, we must remember that in the worst case, the search is
still limited by the number of triangles in the triangulation and thus could not be worse
than linear. Next one must note the conditions under which search could branch in such
a way. These conditions are rare to find in a triangulation, and impossible in a Delaunay
Triangulation, as proven later in Theorem 4.3.6.

As an example, observe Figure 4.19. In this case the algorithm for finding the width
between edges a and b in triangle T will result in a search across edge c and into triangle T ′,
and then across both edges a′ and b′. However, in a Constrained Delaunay Triangulation,
edge c would have been replaced by the edge shown in grey, and thus this effect would not
have occurred.

37

T

T'A

B

C

C'

c

b

a

b'

a'

Figure 4.19: Finding the width of triangle T results in a branching search

One could also conceivably bound the search of all the triangles if the maximum object
size is known a priori. If there are no objects with a diameter greater than a certain value,
one could bound the searches of all the triangles by this distance. That way, search would
not be performed on triangles that are wide enough to permit passage of all possible objects.

Finally, while a proof of the upper bound of this algorithm’s running time for all triangles
in a triangulation would be quite involved, we can make a number of observations to see
that it will not be unmanageable. Combining the above considerations affecting the length
of the search to determine the width of a single triangle, we see that when determining the
width for one triangle results in a search across several others, the properties of the other
triangles searched will are often such that they will almost or always fall under case 1 or 2
when their width is determined. For example, in Figure 4.18, finding the width of triangle T1

results in a search through triangles T2, T3, T4, and T5. However, the width of all the other
triangles can be determined without any search at all. Thus, the cost of finding the widths
of all these triangles is linear in the number of triangles. Because of this, the complexity of
running this algorithm on the entire triangulation is likely linear in the number of triangles
and not quadratic.

4.2 Arc Paths

In this section, we show that the distance of the closest obstacle to vertex C between edges
a and b is equivalent to the diameter of the largest circular object which can move between
these edges. In Subsection 4.2.1, we define what it means for an object to perform such a
motion, and go through some preliminary proofs that we will use in the following section.

In Subsection 4.2.2, we prove that whenever the closest obstacle between edges a and b
is at distance d from vertex C then the a circular object of diameter d can move between
these edges (Theorem 4.2.10) and that if there exists a circular object of a some diameter
that can move between these edges, there will be no obstacles within this distance of vertex
C between edges a and b, (Theorem 4.2.11). These combined prove the equivalence of
the distance between vertex C and the closest obstacle between edges a and b and the
diameter of the largest circular object that can move between these edges, thus that the
width calculation presented in Section 4.1 correctly finds the diameter of the largest circular
object that can move between these edges. Finally, Theorem 4.2.12 shows how to determine
the motion for an object of given radius between these edges, which is shortest. This result
will be used later on.

38

4.2.1 Definitions

The motion for an object takes place over time, and at any time the object is in exactly
one place in two-dimensional space. Therefore, we define an object’s motion to be a curve
in mathematical terms. A curve is a function γ, which maps a parameter indicating its
progress to a point in two-dimensional space, in particular, γ : [0, 1] 7→ <2.

A path is a curve which can be followed by an object. Because an object will have a
certain speed and is unable to jump between locations suddenly, we require that a path be
continuous.

For the purposes of this section, we need only consider the path of an object as it travels
through a single triangle at a time. First, we will add the conditions required of such a path
moving through a triangle T , and in particular, between two edges a and b.

Definition 4.2.1 A curve γ forms a path from edge a to edge b if it is a path, and γ(0)
is on edge a and γ(1) is on edge b.

A path between edges a and b is either a path from edge a to edge b or from edge b to
edge a.

Furthermore, we wish to constrain the path not to stray too far from the triangle through
which the object wishes to pass. Hence we define a path which travels through a triangle T
below.

Definition 4.2.2 A curve γ forms a path through triangle T for a circular object
of radius r if it is a path, and ∀x ∈ [0, 1], γ(x) is within distance r of some point in T .

Using this definition, if an object following a path between edges a and b in triangle T
completely leaves this triangle, for example by crossing edge c, we consider it instead as
separate paths going from edge a to edge c, continuing somehow through other triangles,
and then returning to triangle T going from edge c to edge b.

The reason it is not required for the path to stay entirely within T is because sometimes
a path might exist where the object is always partially within T but where the path itself
might cross edge c. Suppose the triangle opposite edge c is T ′. If we required the path to
be entirely within T , such a path would require finding a path from a to c in T , from c to c
in T ′, and then from c to b in T . This would complicate the problem unnecessarily and so
such a path is only considered to be going through triangle T .

In Section 4.3, we will prove the fact that not requiring the path itself to stay entirely
within T allows us to rule out paths which traverse any triangle more than once. This is
a useful result both in searching for a valid path, and avoiding complications in the funnel
algorithm described in Section 4.4. In addition, Section 4.5 illustrates how this does not
affect the calculation of a valid path for a nonpoint object through a series of adjacent
triangles whose widths are sufficient for the object.

An example of a path γ such that ∃x ∈ [0, 1] where γ(x) is not in T but 6 ∃x ∈ [0, 1]
where γ(x) is more than distance r away from any point in T , and thus is a path through
triangle T , is shown in Figure 4.20. An example of a path γ such that ∃x ∈ [0, 1] such that
γ(x) is not within distance r of some point in T , and thus is not a path through triangle T ,
is shown in Figure 4.21.

Another obvious requirement for a path is that it does not bring the object following it,
into collision with an obstacle. Here we will define again what exactly comprise the obstacles
in the environment for the purposes of further definitions.

Definition 4.2.3 Let O ⊂ <2 be a set of obstacles in the environment. In particular,
∀o ∈ O, o is either a vertex in the triangulation, or a point on some constrained edge.

39

C

A

Bb

c

a

pr

2r

Figure 4.20: A path that is always within r of T

C

A

Bb

c

a

>r

r

p

Figure 4.21: A path that is > r away from T at some points
u

With this defined, we can now describe exactly what corresponds to a collision, and the
characteristics of a path which will not result in one for the object.

Definition 4.2.4 A curve γ forms an unobstructed path for a circular object of radius
r if it is a path, and ∀x ∈ [0, 1], 6 ∃o ∈ O such that dist(γ(x), o) < r.

Furthermore, we can eliminate considerations of obstacles across the edges the path
connects, in this case, edges a and b. For example, when the object is crossing the edge
a—that is, for points on the path for which some segment of length r extending from it
intersects edge a—we do not consider obstacles in the region opposite edge a from triangle
T . Similarly, when the object crosses b, we do not consider obstacles in the region opposite
edge b from T . Thus, here we provide a definition for a path which is not obstructed by
obstacles that do not lie across those edges.

Definition 4.2.5 A curve γ forms an unobstructed path for a circular object of radius r
between edges a and b if it is a path between edges a and b, and ∀x ∈ [0, 1] and o ∈ O
such that dist(γ(x), o) < r, the segment between γ(x) and o crosses either edge a or edge b.

The reason for this requirement is because the ultimate goal of finding these paths
through individual triangles is to combine the paths through adjacent triangles together to

40

C

c
A

B

b

a

T
T'

B'

a'

c'

Figure 4.22: Obstacle outside of triangle T interfering with a path inside of it

r

2r

p

C

A Bc

b a

Figure 4.23: An example of an arc path

form a single path through a triangulation. Thus, obstacles on the opposite side of a will be
the considered when finding a path through the triangle which shares edge a, and similarly
for b. An example of such an obstacle across edge b interfering with a path in triangle T is
given in Figure 4.22.

We now have sufficient conditions that we can formulate what is required for a path to
be valid.

Definition 4.2.6 A curve γ forms a valid path through triangle T between edges a and b
if it is an unobstructed path between edges a and b through triangle T . When the context is
clear, we simply refer to such a path as a valid path.

Now, for the purpose of the proofs that follow, we will define a specific type of path
called an arc path.

Definition 4.2.7 A curve γ is an arc path for a circular object of radius r between edges
a and b in a triangle T if it is a path between those edges in that triangle, and ∀x ∈
[0, 1], dist(γ(x), C) = r, where C is the vertex at which edges a and b meet.

An arc path is so called because it forms an arc between these edges a and b of radius r.
Equivalently, we may refer to such a path as one which “hugs” vertex C. Figure 4.23 shows
an example of such a path. Arc paths are used because by their very definition, they have

41

C

A

B

c

b

a

R

T

Figure 4.24: Region R for triangle T when moving between edges a and b

only to be shown to be unobstructed to qualify as a valid path. For this final requirement
to be met for an object of radius r, the closest obstacle to vertex C must be at distance
≥ 2r from vertex C. We prove that this condition holds if and only if there exists a valid
path in the sections that follow.

We wish to further narrow the possibilities for obstacles that can cause an arc path to
become obstructed. Consider the region which exists between the rays extending from vertex
C toward A and from C toward B. This forms what is called a cone in two-dimensional
space, referred to here as region R. Figure 4.24 illustrates this region for a triangle.

Sometimes an obstacle outside of region R can interfere with a path through T between
edges a and b. If, at some point along a path, the object is crossing the boundary of R
outside either edge a or edge b, then those obstacles are not being considered by the paths
through the triangles sharing those edges and thus must be considered by the path through
T .

However, such obstacles will not interfere with an arc path, because an object following
an arc path will never cross the boundaries of the region R other than at edges a and b, as
we show here.

Lemma 4.2.8 A circular object of radius r following an arc path will not cross the boundary
of R other than through edges a and b.

Proof We will prove this by contradiction, by assuming we have a valid path which crosses
this boundary and showing it is not an arc path.

Consider an arc path γ for an object of radius r between edges a and b in a triangle T
that is valid. Without loss of generality, assume γ goes from edge a to edge b. Because γ
is valid and thus unobstructed, ∀x ∈ [0, 1], 6 ∃o ∈ O such that dist(γ(x), o) < r. And since
γ(0) is on edge a and γ(1) is on edge b, obstacles must be at least distance r from these
points. Now, ∀x ∈ [0, 1], dist(γ(x), C) = r), so since vertices are considered obstacles, this
means that dist(C,A) > 2r ∧ dist(C,B) > 2r.

Without loss of generality, we will simply consider the boundary of R by edge b. The
proof extends identically to the boundary by edge a. Assume, for some x ∈ (0, 1), γ(x) is
distance < r from the closest point to it w on the boundary of region R, that is, an object of
radius r on γ(x) will overlap this boundary. Furthermore, dist(γ(x), A) ≥ r, because vertex
A is an obstacle, and the segment joining γ(x) and w does not intersect edge b.

Thus, since the segment from w to γ(x) must be perpendicular to the boundary of R, then
dist(γ(x), C) > dist(w,C). Also we know that dist(w,C) > dist(A,C), and dist(A,C) ≥

42

C

b

a

c

A
B

2r

>2r

r

>2r

Figure 4.25: An object crossing the boundary of region R below edge b

2r. Thus, dist(γ(x), C) > 2r, which violates our definition that ∀x ∈ [0, 1], dist(γ(x), C) = r
for an arc path γ. A diagram of this proof is found in Figure 4.25.

Thus, an arc path will not cross a boundary of region R outside of edges a and b, as
desired.

Corollary 4.2.9 To verify that an arc path is unobstructed, we need only consider obstacles
within region R.

4.2.2 Proofs

Using the definitions from Subsection 4.2.1 above, we will prove the equivalence of the closest
obstacle in region R of a triangle being at a distance of 2r from vertex C and the existence
of a valid path between edges a and b of the triangle T for a circular object of radius r.

Theorem 4.2.10 If there is no obstacle within 2r of vertex C in region R, then there is a
valid path through triangle T from edge a to edge b for a circular object with radius r. In
particular, there is such a path hugging vertex C.

Proof Consider an arc path γ. By its very definition, an arc path is already guaranteed to
be a path in triangle T between edges a and b. It remains to prove that if 6 ∃o ∈ O such
that o is in R and dist(o, C) < 2r, in which case the arc path is unobstructed and thus a
valid path.

By the definition of an arc path, ∀x ∈ [0, 1], dist(γ(x), C) = r. Thus, for this path to be
obstructed, it must be that ∃o ∈ O such that dist(o, γ(x)) < r for some x ∈ [0, 1].

However, because of the triangle inequality, we know that 6 ∃o ∈ O, x ∈ [0, 1] such that
dist(o, C) ≥ 2r ∧ dist(o, γ(x)) < r ∧ dist(γ(x), C) = r. That is, an obstacle that is ≥ 2r
from vertex C cannot be < r from any point that is at distance r from that same point.
This is depicted in Figure 4.26 for clarity.

Thus, if there are no obstacles within distance 2r of vertex C in region R, there are none
within distance r of any point along the path from edge a to b in triangle T hugging vertex
C. Therefore, γ is unobstructed and qualifies as a valid path.

43

b

C

a

A B
c

p
r

>2r>r

Figure 4.26: Using the triangle inequality to prove soundness

A

C

B

b a

c
p

R

<2r

Figure 4.27: Partitioning of region R into 2 sub-regions

Theorem 4.2.11 If there exists a valid path γ between edges a and b in triangle T for an
object of radius r then 6 ∃o ∈ O such that o is in R and dist(o, C) < 2r.

Proof Assume ∃o ∈ O such that o is in R and dist(o, C) < 2r. Consider the point p where
p is in R and dist(p, C) ≤ dist(o, C)∀o ∈ O such that o is in R. That is, p is the closest
obstacle to vertex C in region R. Such a point must exist in region R because by Lemma
4.2.8, only obstacles in region R can interfere with an arc path from edge a to edge b through
triangle T .

For the remainder of the proof, we will consider this point to be the only obstacle in
region R. This is a relaxed constraint, and certainly, if no unobstructed path exists with
this single point obstacle, no path unobstructed exists with any set of obstacles including
p. We know that 6 ∃o ∈ O such that o is in T , because an obstacle would be included in
the triangulation as a vertex or constrained edge; all triangles are free of obstacles by the
triangulation’s construction.

Now consider the line segment going from vertex C to this point p. We know that the

44

A

C

B

b a

c

p
R

<r

<r

Figure 4.28: An object trying to pass between C and p

length of this line segment is < 2r. Similarly, consider a ray extending from p perpendicular
to and away from edge c of the triangle. One can see that these partition R into two sub-
regions. This partitioning can be observed in Figure 4.27. Thus, we can see that any valid
path travelling between edges a and b in region R must cross either the segment between C
and p, or the ray extending from p, since edge a and edge b are in different sub-regions of
R, and a path cannot leave R without leaving T and thus becoming invalid. We will cover
both of these cases below.

We will now show that any path γ between edges a and b is necessarily obstructed, or
leaves triangle T , in both cases, becoming invalid. First, assume γ crosses the segment
between C and p at some point u. That is, γ(x) = u for some x ∈ [0, 1]. Since the segment
between C and p has length < 2r, we know u must be at distance < r from either vertex
C or p (or both). Thus, if γ crosses any point on this segment, it comes within distance r
of some obstacle, and thus becomes obstructed. This can be seen in Figure 4.28 where the
above object is interfering with vertex C (its centre is distance < r from C) and the lower
object with point p.

Similarly, if γ crosses the ray extending from p perpendicular to and away from edge c,
it must cross at some point v on the ray. That is, γ(x) = v for some x ∈ [0, 1]. Furthermore,
dist(v, p) ≥ r, otherwise γ would be obstructed and become an invalid path. Figure 4.29
shows that since p is not in T , and the ray is perpendicular to c—the closest edge of T to
p—the point that is distance r away from v that is closest to triangle T is along that ray.
However, since v is at least r away from p, which itself is outside of T , it follows that at
point v, there is no point within distance r which is inside triangle T . Thus, γ is not a path
through T , and not valid.

Finally we conclude that since there is nowhere that a path from edge a can cross the
partition to edge b, or vice versa, and remain valid, no valid path is possible. Thus, if a
valid path exists for moving a circular object of radius r from edge a to edge b in triangle
T , there must be no obstacles within distance 2r of vertex C in region R, as desired.

Here we will prove that an arc path is the least distance valid path through a triangle.
This result will become useful when we begin searching for paths in Constrained (Delaunay)

45

A

C

B

b a

c p

R
r >r

Figure 4.29: An object trying to pass below point p

Triangulations.

Theorem 4.2.12 The arc path γ is the shortest valid path for a circular object with radius
r between edges a and b through triangle T .

Proof We know that for any valid path γ for a circular object with radius r between edges
a and b through triangle T , ∀x ∈ [0, 1], dist(γ(x), C) ≥ r, where C is the vertex joining edge
a and b, otherwise, γ would be obstructed and thus invalid. Again, we assume all vertices
in a triangulation are obstacles.

The path such that ∀x ∈ [0, 1], dist(γ(x), C) = r is indeed the arc path for a circular
object with radius r, so it remains to prove this path is shorter than valid paths ϕ such that
∃x ∈ [0, 1], dist(ϕ(x), C) > r.

There are two cases to consider for this proof: one for paths ϕ where dist(ϕ(0), C) =
r∧dist(ϕ(1), C) = r, that is, it meets edges a and b at the same points as the arc path, and
one for paths ψ where dist(ψ(0), C) > r ∨ dist(ψ(1), C) > r, that is, it meets these edges at
different points.

We will consider the former possibility first. We know that dist(ϕ(0), C) = r and
dist(ϕ(1), C) = r and ∃x ∈ (0, 1), dist(ϕ(x), C) > r, that is, ϕ departs from the arc path
at some point in between edges a and b. Let k = ϕ(x). Also, ∃w ∈ [0, x), dist(ϕ(w), C) =
r, that is, ϕ departs from the arc path at some point. Let i = ϕ(w). Also, ∃y ∈
(x, 1], dist(ϕ(y), C) = r, that is, ϕ rejoins the arc path at some point. Let j = ϕ(y).
This configuration is shown in Figure 4.30.

Consider a path ϕ′ that follows the arc path to point i, goes in a straight line to point
k, and then to point j, and continues following the arc path through the triangle. Because
the shortest distance between any two points is a straight line, we know that the length of
ϕ′ is no greater than that of ϕ. It remains to prove that the arc path between points i and
j is shorter than the path from i to k to j, since this is where ϕ′ differs from the arc path.

Take first the triangle formed by vertex C, and points i and k as shown in Figure 4.31.
Consider 6 iCk to be θ. We know the arc in this triangle has length rθ so we must show
dist(i, k) > rθ.

46

C

AB c

a b

i j
k

Figure 4.30: An alternate path departing from the arc path in the middle

C

i

k

r

>r

?

Figure 4.31: One section of the alternate path

We know that dist(C, i) = r and dist(C, k) > r, so we must find dist(i, k). We also
know that 6 Cik is either a right angle or obtuse, because otherwise segment ik would be
closer than r to vertex C at some points, making ϕ′ obstructed and thus invalid. Now, as
θ increases, dist(i, k) increases given we know dist(C, i) and angle θ. Thus, we will assume
6 Cik is a right angle, and the real length of segment ik will be at least that which we find
using this assumption.

This way, we can say that dist(i, k) ≥ r · tan(θ), so then we have r · tan(θ) ≥ rθ ⇒
tan(θ) ≥ θ, which is true for −π

2 < θ < π
2 , which is all we require. Thus, segment ik is

longer than the corresponding portion of the arc, and this applies identically to segment kj
as well. We have shown, then, that the arc path is the shortest of valid paths ϕ such that
dist(ϕ(0), C) = r∧ dist(ϕ(1), C) = r, that is, all paths that pass through points at distance
r away from vertex C on edges a and b.

The proof concerning paths that do not meet both edges a and b at distance r from
vertex C, follows similarly. Consider one side where the alternate path ψ and the arc path

47

ik

C

AB

a b

c

Figure 4.32: Alternate path departing from the arc path on one side

do not meet an edge at the same place. Without loss of generality, assume this is edge a
and that ψ goes from edge a to edge b, that is, dist(ψ(0), C) > r. We will also assume that
the arc path and ψ have at least one common point, that is, ∃x ∈ (0, 1], dist(ψ(x), C) = r.
The extension of this proof to alternate paths that do not meet the arc path at all will be
given afterward.

Let i be the closest such common point to edge a, or in other words, i = ψ(w) where
dist(i, C) = r, w ∈ (0, 1], and ∀x ∈ (0, 1] such that dist(ψ(x), C) = r, x > w. Also, let
k = ψ(0). This is shown in Figure 4.32. Now, consider the path ψ′ consisting of a straight
segment between i and k and then following the arc path to edge b. We know that the
length of ψ′ will not exceed that of ψ, because the straight line path between i and k cannot
be longer than any other path between those points, and the arc path is no longer than
any other path between i and edge b, as shown above. The proof that segment ik is longer
than the corresponding section of the arc path is identical to the proof above. This extends
equivalently to edge b and paths going from edge b to edge a.

Now we will show that this extends to any path ψ that does not share any common points
with the arc path. Consider w ∈ [0, 1] such that dist(ψ(w), C) ≤ dist(ψ(x), C)∀x ∈ [0, 1],
that is, ψ(w) is the closest point to vertex C on path ψ. We know dist(ψ(w), C) > r,
because if dist(ψ(w), C) = r ψ would have a common point with the arc path and the proof
above would apply, and if dist(ψ(w), C) < r, ψ would be obstructed by vertex C and thus
not be valid.

From the proof above, the length of ψ is greater than that of the arc path for a circular
object with radius dist(ψ(w), C). Since this in turn is longer than the arc path of radius r
(dist(ψ(w), C) > r ⇒ dist(ψ(w), C) · θ > rθ where θ = 6 ACB), we have that ψ is longer
than the arc path for a circular object with radius r.

Thus, we have shown that the arc path of radius r between two edges of a triangle is the
shortest valid path for a circular object of radius r between those edges of that triangle, as
desired.

4.3 The Delaunay Property

The requirement that our triangulation be Delaunay not only ensures that “sliver” triangles
are avoided as much as possible, providing triangular areas that better describe the environ-
ment, but also provides some results useful for searching the triangulation for a path and
assuring that the algorithm for determining a triangle’s width is manageable.

Theorem 4.3.4 states that when searching for a path through a Delaunay Triangulation,

48

those that pass through any one triangle multiple times need not be considered since shorter
paths are preferred to longer ones. Theorem 4.3.6 says that in a CDT, the search to provide a
triangle’s width will never cross both opposite edges of a triangle. Finally, we briefly discuss
how that the widths through different parts of the triangulation are identical regardless of
the placement of the unconstrained edges.

The ability to eliminate paths crossing a triangle multiple times is useful not only in
decreasing possibilities during search, but also avoids complication in the funnel algorithm
described in Section 4.4 and the alternate version described in Section 4.5. Determining the
shortest path through a group of adjacent triangles in time linear in the number of those
triangles, can be problematic if a triangle is included twice, effectively creating a loop in
this area.

Definition 4.3.1 For an object of radius r and triangles t1, t2, and t3 where t1 and t3 are
adjacent to t2 (via unconstrained edges), and t1 6= t3, define validr(t1, t2, t3) if and only if
the width of triangle t2 when moving between the edges shared with triangles t1 and t3, is
≥ r, that is, the object has a valid path from triangle t1 through t2 to t3 (and also in the
other direction).

Definition 4.3.2 Now, pathr(t1, t2, ..., tn−1, tn) ⇔ ∀i, 1 ≤ i < n − 1, validr(ti, ti+1, ti+2),
that is, an object or radius r has a valid path from triangle t1 through t2 and so on, in
sequence, arriving at triangle tn.

Definition 4.3.3 Let |pathr(t1, t2, ..., tn−1, tn)| be the length of the shortest path through
the triangles t1, t2, ..., tn−1, tn.

If two intermediate triangles were the same, say ti = tj for some 1 ≤ i < j ≤ n then
removing the triangles in between them from this sequence would necessarily shorten the
path, that is:

|pathr(t1, ..., ti−1, ti, ti+1, ..., tj−1, tj , tj+1, ..., tn)| > |pathr(t1, ..., ti−1, ti, tj+1, ..., tn)|

Obviously since we have a desire to find the shortest path possible, we would not consider a
path which visits the same triangle multiple times so long as this still results in a valid path.
However this is only possible if validr(ti−1, ti, tj+1), and depending on the triangulation,
this may not be true. Luckily, it is for CDTs.

Theorem 4.3.4 For a circular unit of radius r moving through a Constrained Delaunay
Triangulation with triangles tk,

validr(ti−1, ti, ti+1) ∧ validr(tj−1, tj , tj+1) ∧ ti = tj ⇒ valid(ti−1, ti, tj+1)

Proof Figure 4.33 shows the case where an object could travel between two of the three
pairs of edges of triangle T , but not the third pair. Here, if an object like that shown at
edge a wants to reach edge b, it would have to pass through edge c, then edge a′, somehow
return through edges b′ and c, then finally move to edge b.

In a Delaunay Triangulation, the diagonal, edge c in this case, should instead be between
vertices C and C ′. We will use the property of a Delaunay Triangulation that there cannot
be a point inside the circumcircle of any triangle [18]. Since there are no constrained edges
in this portion of the triangulation for such a situation, we can simply consider it a Delaunay
Triangulation, and disregard the exceptions to the above rule required for a Constrained
Delaunay Triangulation.

We will show that if this portion of the triangulation is Delaunay, that is, if there is
no vertex in the circumcircle of triangle T , then there will be a valid path between edges

49

C

A
B

C’

c

a b

b’a’

T

T’

Figure 4.33: Objects of certain radii can move between edges a and c, and edges b and c,
but not between edges a and b, of triangle T

C

B

A

A’

a
b

b’

c’
c

Figure 4.34: Circumcircle around triangle T and arc around vertex C

a and b for any object with a path between edges a and c, and edges b and c (an object
with radius r ≤ min{|a|, |b|, |c|}). Equivalently we wish to find that the arc around vertex
C with radius r = min{|a|, |b|} is unobstructed in region R between rays −−→CB and −→CA.

Refer to Figure 4.34. Here we have an arbitrary triangle, and a circumcircle around it.
Assume, without loss of generality, that we wish to travel between edges a and b, and that
|a| ≤ |b|. So then we have an arc centered at vertex C, extending to vertex B (the arc has
radius |a|). Since we know no vertices can be in the circumcircle, and we wish that there
are no obstacles in the arc, we will show that the arc cannot extend past the circumcircle
in the region R.

Obviously since the arc and the circumcircle intersect at vertex B and what we show
as vertex A′, which is the other point on the circumcircle at distance |a| from vertex C,
any extension of the arc past the circumcircle in region R (or as a relaxed requirement, the
region between rays −−→CB and

−−→
CA′) would happen at the opposite side of the circumcircle as

vertex C (the bottom of Figure 4.34).
However, any extension of the arc past the circumcircle would require the radius of the

arc to be twice that of the circumcircle, but the radius of the arc is known to be the length
of edge a, so if this were true, vertices C and B could not both be on the circumcircle, which
is a contradiction with the definition of the circumcircle. Thus, no vertex in a Delaunay
Triangulation can cause an arc path to be invalid.

50

Therefore in Figure 4.33, the diagonal would be between vertices C and C ′ instead of
A and B, and thus the path that the object would have to take again would only traverse
each triangle once. We now have that

validr(ti−1, ti, ti+1) ∧ validr(tj−1, tj , tj+1) ∧ ti = tj ⇒ valid(ti−1, ti, tj+1)

as desired.

Corollary 4.3.5 Thus, for any object of radius r such that

pathr(t1, ..., ti−1, ti, ti+1, ..., tj−1, tj , tj+1, ..., tn)

and ti = tj for some 1 ≤ i < j ≤ n, we can take the shorter pathr(t1, ..., ti−1, ti, tj+1, ..., tn)
equivalently, and so we do not have to consider a path which traverses any triangle multiple
times during search since it could just be replaced by a shorter path, as desired.

It is useful to know when determining the width of a triangle by searching across uncon-
strained edges, that the search will not cross two unconstrained edges of the same triangle,
since it is another indication that the search will not traverse an unwieldy number of trian-
gles. We prove that in a CDT, this situation is impossible.

Theorem 4.3.6 In a Constrained Delaunay Triangulation, determining the width of a tri-
angle will never result in a search across two unconstrained edges of the same triangle.

Proof Figure 4.35 shows a case in which search across multiple edges of the same triangle
is possible when determining the width between edges a and b.

If either edge a or b were constrained, one would not have to check if an object could
pass between them, and if any other edge were constrained, the search could not reach the
branching point since it would stop at the obstacle. So again we can use the properties of
a regular Delaunay Triangulation to show that this situation cannot happen.

Again we use that there cannot be a vertex in the circumcircle of any triangle in a
Delaunay Triangulation. For the width search to cross edge a′, 6 CBC ′ would have to be
acute, and similarly 6 CAC ′ must be acute for the search to cross edge b′. Without loss of
generality, we will consider half of the quadrilateral CBC ′A and the circumcircle of triangle
CBA, as shown in Figure 4.36.

Assume vertex C’s position is fixed to the “top” of the circumcircle, we must show that
when 6 CBA is acute, then vertex A cannot intersect the circumcircle on the same side

C

C’

B

A

a
b

a’

b’

c

Figure 4.35: Situation in which determining the width between edges a and b would result
in a search across multiple edges

51

C

B

A

a

b

c

Figure 4.36: Half of the quadrilateral and triangle’s circumcircle

of the circle as the bisector going through vertex C. This is because we know that since
triangle CBA is acute, the circumcenter must be inside the triangle [6].

Since this applies to both sides, it will prove that where these segments cross, forming
the fourth vertex of the quadrilateral, must be inside the circumcircle, making the triangle
illegal in a Delaunay Triangulation. Therefore in a Delaunay triangulation, the search to
determine the width of a triangle cannot cross two unconstrained edges of the same triangle,
as desired.

With all the results requiring the triangulation be Delaunay, it poses the question as
to whether the triangle widths are sensitive to the placement of the unconstrained edges.
Luckily this is not the case, which is useful due to the fact that there can be multiple
Constrained Delaunay Triangulations for a set of points and constraints (if four points lie
on the same circle).

To verify this, one can simply observe that the determination of each triangle’s width
between two edges is the distance between one of its vertices (considered to be an obstacle),
and the closest obstacle between those two edges. Obstacles, both vertices and edges, as we
know are required to be in the triangulation unchanged.

So it only remains to see that the regions formed between the pairs of edges of all
triangles cover the area of the triangulation, and that it suffices to measure the distances
between vertices and other obstacles. The former is trivial since the triangulation is made
of triangles and the region between each triangle’s edges at least covers that triangle. The
latter follows from the fact that obstacles are vertices and line segments, and the minimum
distance between two line segments is always equivalent to the distance between one of the
endpoints (a vertex in the triangulation) and somewhere on the other segment.

4.4 Funnel Algorithm

The object of pathfinding in a triangulation is to find a series of adjacent triangles inside the
first of which is the start point and inside the last of which is the goal. As stated in Theorem
4.3.4, whenever such a series of triangles contains any duplicates, the triangles between such
matching pairs can be removed to shorten the path, providing the triangulation is Delaunay.
Thus, we consider such a series of triangles to never contain a triangle more than once.

Obviously, as described throughout this chapter, we wish that the object have a valid
path between each of the edges of each triangle in this series. If the object has a valid path
between the edges of each triangle in such an adjacent series, it follows that there exists

52

start

goal

Figure 4.37: A series of triangles, start and goal points, and the resulting channel

a valid path that traverses all of these triangles. The most obvious such path consists of
the arc path within each triangle, with these paths through adjacent triangles connected by
straight segments.

Obviously for a path to be valid, the object must not overlap any obstacles when centered
on either the start or goal positions. We can usually assume that the start point is valid
since the object should already be positioned in an unobstructed position, however if the
start or goal point needs to be checked for validity, one can use a test similar to that for
determining the closest obstacle to a vertex.

We have left to ensure that there are unobstructed paths between the start and goal
point and the edge connecting the triangles containing them, to the rest of the series. Since
we know the positions themselves are unobstructed, obviously moving to a less restrictive
area would not result in further obstruction. And the most obstructed area in a triangle is
that between a vertex and its closest obstacle.

Therefore if the object must pass between a vertex and its closest obstacle, this width
must be at least the diameter of the object for this path to be valid. If the object is already
closer to the next triangle than this area, this test is unnecessary since the object is only
moving to a less obstructed area than its starting point, which was already checked.

Now that we know such a path exists, we look at a technique for providing the shortest
such path within this series [24]. We will define an interior edge to be unconstrained edges
in the triangulation which the object will cross when traversing a path through this series
of triangles. That is, it is one shared by two triangles adjacent in this series. Also, define
an interior triangle to be a triangle in the series not containing the start goal point. That
is, all triangles between and not including the first and last triangles in the series.

A channel is the simple polygon inside which we wish to find a valid path for the object.
The vertices of the channel consist of the start and goal points as vertices, along with the
vertices of all the interior triangles in the series. The edges of this polygon are those of the
interior triangles other than the interior edges. Figure 4.37 shows a start and goal point, a
series of triangles, and the resulting channel.

We use this channel and the interior edges in order to find the shortest path between the
start and goal points, within this channel. This can be done in time linear in the number
of triangles in the series, using what is called the funnel algorithm [12, 38]. This technique
works for point objects; we will discuss the extension to circular objects of nonzero radius
in Section 4.5.

The funnel algorithm considers three structures: the path, the apex, and the funnel.
The path is the series of line segments forming the portion of the shortest path known at

53

start

path

funnel

apex

(part of)
channel

Figure 4.38: The path, apex, and funnel during a run of the funnel algorithm

Figure 4.39: Wedges corresponding to the vertices in a funnel

the current point in the algorithm. The funnel consists of two series of line segments, one
turning clockwise and one counterclockwise, which represent the area in which all shortest
paths to the area not yet processed, must be. Finally, the apex is the point which joins the
path and the funnel. Figure 4.38 shows these structures.

At the start of the algorithm the path is empty, the apex is set to the start point, and
the funnel begins as the segments connecting the start point to the first interior edge. The
funnel is stored in a deque structure. Each interior edge is processed in turn, with the vertex
not already processed being added to the corresponding side of the funnel deque. Vertices
are popped from that side of the funnel until the wedge in which the current vertex lies is
discovered, at which point that vertex is added to the end of the funnel deque on that side.
These wedges are illustrated in Figure 4.39.

If the apex is popped off the deque in this way, the next vertex to be considered becomes
the new apex, and a segment connecting the old apex to the new one gets added to the
path. Once the final interior edge of the channel is added to the apex, we add the goal point
to the funnel on either side, say the right. Once this is done, we combine the path with the
right side of the funnel to form the entire path between the start and the goal. This process
yields the shortest path within the channel, as shown in [24]. Pseudocode for the funnel
algorithm is given in code listings 4 and 5.

Here we consider an example of adding the same vertex to each side of the deque. If the
object would cross the topmost edge of the new triangle, the vertex would be added to the

54

start

path

funnel

apex

(part of)
channel

next
interior
edge

vertex
being
added

wedge containing
 vertex

Figure 4.40: Adding a vertex to the right side of the funnel

start

path

old funnelapex

(part of)
channel

new funnel

Figure 4.41: The new funnel after a vertex is added on the right

start

path

funnel

(part of)
channel

next
interior
edge

vertex
being
added

wedge containing
 vertexapex

Figure 4.42: Adding a vertex to the left side of the funnel

55

start

path

old funnel

old apex

(part of)
channel

new apex

new funnel

Figure 4.43: The new funnel and apex and path after a vertex is added on the left

right side as in Figure 4.40. Here all vertices to the right of the one in whose wedge the new
vertex lies, are removed from the deque, and the funnel on that side changes to include the
segment between those two vertices. This is shown in Figure 4.41.

If the object would cross the bottom edge of the new triangle, the vertex would be added
to the left side of the deque, resulting in the situation in Figure 4.42. Here all the vertices
on the left side of the deque are popped off, and then the apex is popped, moving the apex
one vertex to the right and extending the path to include the segment between the old apex
and the new one. Then we reach the vertex whose wedge contains the new vertex, so we
stop popping vertices and replace the left side of the funnel with the segment between the
apex and the new vertex as in Figure 4.43.

Algorithm 4 Funnel(Channel c, Point s, Point g) : Path
1: p.Clear()
2: if NumEdges(c) < 1 then
3: p.Add(s); p.Add(g)
4: return p
5: end if
6: AddVertex(s, p)
7: f ← FunnelDeque(s)
8: vl ← LeftEndpoint(c0); Add(f , vl, Left, p)
9: vr ← RightEndpoint(c0); Add(f , vr, Right, p)

10: for i← 1 to NumEdges(c) do
11: v′l ← LeftEndpoint(ci); v′r ← RightEndpoint(ci)
12: if v′l = vl then
13: vr ← v′r; Add(f , vr, Right, p)
14: else
15: vl ← v′l; Add(f , vl, Left, p)
16: end if
17: end for
18: Add(f , g, Point, p)
19: return p

56

Algorithm 5 Add(FunnelDeque f , Vertex v, Type t, Path p)
1: if t = Left then
2: loop
3: if fLeft = fRight then
4: f .AddLeft(v); break
5: else if fLeft = fApex then
6: θ ← Angle(fLeft, fLeft+1)
7: φ← Angle(fLeft, v)
8: else
9: θ ← Angle(fLeft+1, fLeft)

10: φ← Angle(fLeft, v)
11: end if
12: if CounterclockwiseTo(θ, φ) then
13: f .AddLeft(v); break
14: end if
15: if fLeft = fApex then
16: ψ ← Angle(fApex, fApexType, fApex+1, Right)
17: AddVertex(fApex, p)
18: f .PopApexLeft()
19: end if
20: f .PopLeft()
21: end loop
22: else if t = Right then
23: {same procedure, with directions reversed}
24: else if t = Point then
25: i← 0
26: while fApex+i 6= fRight do
27: i← i+ 1
28: AddVertex(fApex+i, p)
29: end while
30: end if

57

4.5 Modified Funnel Algorithm

Now that we have a way to obtain the shortest path between the start and goal points inside
the channel for a point object, we desire to find such a path for a circular object of nonzero
radius r. Fortunately this can be done by conceptually attaching circles of equal radius
around each of the vertices in the channel (except the start and goal points) and performing
the funnel algorithm on those.

Both versions of the algorithm can be visualized as a rubber band being pulled through
the channel from start to goal. The original funnel algorithm snaps to vertices in between,
whereas this modified funnel algorithm bends around these circles. While the funnel algo-
rithm yields line segments between the start and goal points and vertices in between, the
modified funnel algorithm results in arcs of radius r around these vertices, and line segments
tangent to them.

start

path
funnelapex

(part of)
channel

Figure 4.44: The modified funnel algorithm for an object of nonzero radius r

apex (part of) channelpath

 funnel
(left side only)

Figure 4.45: Case requiring another adjustment in the modified funnel algorithm

Figure 4.44 shows the modified funnel algorithm being run on the same channel as before,
but for an object of some nonzero radius r. There is another modification that must be
made to the algorithm to deal with the fact that adding these circles around the vertices
of the channel changes the wedges in a way that would not occur in the original funnel
algorithm. This case is illustrated in Figure 4.45, where a vertex must be added to one side
which interferes with the opposite side of the funnel already constructed.

58

apex

(part of) channel
path

 funnel
(left side)

funnel (right side)

Figure 4.46: Unadjusted modified funnel algorithm run on the degenerate case

This does not occur in the original funnel algorithm because this would require the
boundaries of the channel to cross, forming an invalid channel that would not be considered
for such an algorithm. This situation is uncommon in Constrained Delaunay Triangulations,
but is included here both for completeness and because the algorithm can then also be used
in regular Constrained Triangulations. When looking at Figure 4.45, one might notice that
part of the channel is too narrow for the object in question (the same size as the circles
around the vertices). However, one must remember that the edges bordering the channel
could be unconstrained, and part of the object could venture outside this area so long as
part always remains inside.

If the modified funnel algorithm were to add the next vertex without the adjustment
required to deal with this situation, the result would look similar to Figure 4.46, with the
final path backtracking through the channel and probably intersecting an obstacle. Certainly
this is not the desired behavior. In order to fit with our expectations of this algorithm, we
would like the result of adding this vertex to look like Figure 4.47. The adjustment that
must be made for this situation, then, is that when comparing the angle of the funnel moving
to the new vertex to the angles of the funnel adjoining a vertex opposite the apex being
considered (equivalent comparing the new vertex to the wedge of the other vertex in the
original funnel algorithm), if the new vertex is not in this range but is closer to the apex
than the other, the apex should be moved to the new vertex (adding the corresponding
section to the path). This adjusts the funnel appropriately to produce the result seen in
Figure 4.47.

A path that follows such arcs requires that the object be capable of second-order, or
curved, motion. Sometimes, this may not be the case and it may have to approximate this
motion. For example, the object may only be able to turn in place and move in straight
lines. In this instance, the curved part of the path would have to be made up of straight
segments similar to the approximation of curved barriers in the initial triangulation.

If the object is navigated by use of waypoints, a similar approximation is necessary. If the
object is capable of steered motion such that its turning radius is at most its own radius, the
exact paths can be used, but if its turning radius is more than this, a form of “out-in-out”
cornering—where the object must approach the turn from farther away, touch the vertex in
the middle of the turn, and exit away from the vertex—may be required. Obviously objects
with holonomic motion could follow these paths exactly.

While these paths will be valid for a circular object, this technique should also be useful
for objects with other shapes. The simplest way to extend this to other object shapes is
to find a path using the bounding circle of the object. These paths would be guaranteed

59

apex

(part of) channel
path

 funnel
(left side only)

Figure 4.47: The desired result after dealing with the degenerate case

valid, however may miss some paths. For example, a rectangular object could fit through
some corridors that its bounding circle could not, however only considering the width of
the rectangle would result in collisions when the object would have to turn. Therefore more
information about the motion of the object would be required. While the scope of this thesis
is limited to radially symmetric objects, it may still be possible to test traversability of the
environment and find paths for objects of other shapes.

Code listings 6 and 7 contain pseudocode for adding a vertex conceptually encompassed
by a circle of radius r to a funnel deque, and the modified funnel algorithm described above,
respectively.

Algorithm 6 Funnel(Channel c, Radius r, Point s, Point g) : Path
1: p.Clear()
2: if NumEdges(c) < 1 then
3: p.Add(s); p.Add(g)
4: return p
5: end if
6: f ← FunnelDeque(s, r)
7: vl ← LeftEndpoint(c0); Add(f , vl, Left, p)
8: vr ← RightEndpoint(c0); Add(f , vr, Right, p)
9: for i← 1 to NumEdges(c) do

10: v′l ← LeftEndpoint(ci); v′r ← RightEndpoint(ci)
11: if v′l = vl then
12: vr ← v′r; Add(f , vr, Right, p)
13: else
14: vl ← v′l; Add(f , vl, Left, p)
15: end if
16: end for
17: Add(f , g, Point, p)
18: return p

60

Algorithm 7 Add(FunnelDeque f , Vertex v, Type t, Path p)
1: if t = Left then
2: loop
3: if fLeft = fRight then
4: f .AddLeft(v); break
5: else if fLeft = fApex then
6: θ ← Angle(fLeft, fApexType, fLeft+1, Right); l2 ← Distance(fLeft, v)
7: else if fLeft+1 = fApex then
8: θ ← Angle(fLeft+1, fApexType, fLeft, Left); l2 ← Distance(fLeft+1, v)
9: else

10: θ ← Angle(fLeft+1, Left, fLeft, Left); l2 ← Distance(fLeft+1, v)
11: end if
12: l1 ← Distance(fLeft, fLeft+1); v1 ← fLeft

13: if fLeft = fApex then
14: φ← Angle(fLeft, fApexType, v, t)
15: else
16: φ← Angle(fLeft, Left, v, t)
17: end if
18: if CounterclockwiseTo(θ, φ) then
19: f .AddLeft(v); break
20: end if
21: if fLeft = fApex ∧ l2 < l1 then
22: ψ ← Angle(fApex, fApexType, v, t)
23: AddVertex(fApex, fApexType, ψ, p)
24: AddVertex(v, t, ψ, p)
25: f .AddApexLeft(v, t)
26: else if fLeft = fApex then
27: ψ ← Angle(fApex, fApexType, fApex+1, Right)
28: AddVertex(fApex, fApexType, ψ, p)
29: AddVertex(fApex+1, Right, ψ, p)
30: f .PopApexLeft()
31: end if
32: f .PopLeft()
33: end loop
34: else if t = Right then
35: {same procedure, with directions reversed}
36: else if t = Point then
37: i← 0
38: t1 ← fApexType; t2 ← Right
39: while fApex+i 6= fRight do
40: if fApex+i+1 = fRight then
41: t2 ← Point
42: end if
43: β ← Angle(fApex+i, t1, fApex+i+1, t2)
44: AddVertex(fApex+i, t1, β, p)
45: AddVertex(fApex+i+1, t2, β, p)
46: t1 ← Right
47: i← i+ 1
48: end while
49: end if

61

Chapter 5

Triangulation Search

In this chapter, we will first review some basic properties of A* search in Section 5.1 and
then discuss what implications it has on searching in a triangulation in Section 5.2. Then we
will look at the advantages and disadvantages of a simple approach used in previous work
in Section 5.3, followed by considerations required for finding optimal paths in Section 5.4,
and finally we will discuss the search used in this work which incorporates these concerns
in Section 5.5.

5.1 Introduction to A* Search

Here we introduce some definitions used in search. We start with a state space S. For each
state s ∈ S, we have a set Succ(s) ⊂ S such that ∀s′ ∈ Succ(s), s′ can be reached by a
single action a from s. These states are called the children of s. Additionally, there is a cost
associated with this action c(s, a, s′) ≥ 0.

We will also define a state s as the parent state of another state s′ if and only if s′ is a
child of s. Also, an ancestor of a state s′ is any state s such that s is either the parent state
of s′ or an ancestor to the parent state of s′.

The g-value of a search state, also referenced here as the distance travelled so far, is the
cost associated with reaching the current state from the starting state via the states which
preceded it. For pathfinding in a triangulation, it is the length of the path from the starting
position, reaching some point on the triangle associated with the current search state. We
see already some of the uncertainty inherent in searching a triangulation; it is not clear
which point in the triangle to which this value should correspond. Here we assume it to
be the closest point to the start on the edge by which search entered the current triangle.
Implications of this are explored further in Section 5.2.

The h-value, or heuristic value of a state, also referenced here as the distance remaining,
is an estimate of the distance between the current state and the goal state via the least cost
path. We consider this to be the least distance between anywhere on the edge by which the
current search state entered the triangle, and the goal position.

The f -value is calculated for a state s as f(s) = g(s) + h(s). This is equivalent to the
cost of the entire path between the start and the goal, given that the path between the start
state and the current state is given by the states preceding the current state, and the path
between the current state and the goal is optimal. It is an underestimate of the distance
between the start and the goal positions along the current path.

A* is a widely-used search algorithm which works by using a priority queue which orders
search states by f -value. First the start state is put on the queue, and then at each step the

62

search state on the queue with the least f -value is removed from the queue (or expanded),
and its children are generated by the successor function, and put on the queue.

Since the h-value is an estimate, its value will not be exact. However if this value has
certain properties, one can make some claims about the behaviour of A* search when using
them. First, it is important that the heuristic is admissible, meaning no state’s h-value ever
overestimates the distance from that state to the goal. That is, ∀s ∈ S, h(s) ≤ h∗(s), where
h∗(s) is the true shortest distance between state s and the goal. This guarantees that A*
search is complete, and that the first time the goal is expanded, the path along which it was
expanded, is optimal [23].

A heuristic may also be consistent. This is a version of the triangle inequality which says
that for any state s ∈ S and its successor s′ ∈ Succ(s) ⊂ S, h(s) ≤ h(s′) + c(s, a, s′). This
means that by moving from one state to another, one cannot get closer to the goal by more
than the cost of moving between those two states. A heuristic with this property is both
intuitive, and guarantees that the corresponding A* search is optimal, and that whenever
any state s ∈ S is expanded for the first time, the path along which it was expanded, is an
optimal path to this state. In addition, all heuristics which are consistent are also admissible
[23].

5.2 A* in a Triangulation

The main advantage to pathfinding in a grid world over a triangulation is the fact that in
a grid world, as the pathfinding search is being done, the distance travelled to the point
corresponding to each search state is known exactly. This is because the object’s path is
assumed to travel between midpoints of adjacent cells, in straight lines. Since the cells are
small relative to the size of the object, this path can be very accurate.

By contrast, when pathfinding in a triangulation, assuming that the object will travel
along a simply-defined path, in straight lines between triangle midpoints for instance, is
problematic for two reasons. First, in several cases, this path may intersect an obstacle or
even cross one or more triangles other than those whose midpoints are being connected, even
though they are adjacent. Figure 5.1 illustrates this for such a straight-line path between
triangle midpoints.

Second, even when they do not produce invalid paths, usually such simple approximations
can form poor estimates in path length as shown in Figure 5.2. This is because the triangles

Figure 5.1: A path between midpoints of two adjacent triangles crossing other triangles and
being obstructed

63

Triangle midpoint based path estimate

Actual shortest path

Figure 5.2: A path between triangle midpoints poorly estimating the length of the shortest
path through them

Figure 5.3: The path to a particular triangle depends on where the path continues

are often large in comparison to the size of the object, and because their placement is a
result of the environment, generally forming a path between them in such an uninformed
manner results in an estimate which does not reflect the actual path of the object.

As shown in Figure 5.3, even if during the search we take advantage of a complex
technique such as the funnel algorithm (Section 4.4) or modified funnel algorithm (Section
4.5), we cannot be sure of the exact distance travelled to any particular triangle without
knowing where the search will continue. Obviously once we have enough knowledge of the
final path to determine this value, it is of little use.

Therefore, we need to perform search in the face of this uncertainty. Next, in Section
5.3, we explore the advantages and disadvantages of methods which deal with this simply
by assuming exact knowledge of the path length during search.

5.3 Näıve Search

Despite the drawbacks discussed in Section 5.2, assuming during the search that the exact
path length to the triangle associated with the current search state is known does have merit.
Such an approach is taken in [27]. Here the path is estimated to be straight segments between
the midpoints of each edge through which it travels. The midpoint of the (unconstrained)
edge by which the search enters a triangle is considered to be the point by which the

64

Actual path

Path estimated by edge midpoints

Figure 5.4: A case where the distance estimate results in a suboptimal channel being chosen

measurements are taken for the search state corresponding to that triangle.
The g-value for a search state is, as discussed above, the sum of the lengths of the seg-

ments between the midpoints of the edges crossed by that path so far. The h-value is calcu-
lated as the Euclidean distance between this point and the goal. In 2 dimensions, the Eu-
clidean distance d between two points p and q is calculated as d =

√
(qx − px)2 + (qy − py)2.

d is also the length of a line segment with endpoints p and q.
For pathfinding, the Euclidean distance is known to be both admissible and consistent

[36]. Thus, A* search is guaranteed that the path by which the current search state reached
its triangle is optimal whenever any triangle is expanded during search, assuming we know
the exact g-values of each state. Therefore, each triangle is only expanded once.

Of course since the g-values of each triangle are not known during the search, this isn’t
necessarily true. Thus, the search will never expand a triangle twice since under normal
conditions this could only result in suboptimal paths. Under these conditions, the search
may neglect to expand a triangle by a search state whose actual path is optimal but whose
estimated distance (here the length of the edge-midpoint path) was greater than that of
another search state.

Therefore assuming that the g-values for each search state are exactly known during
the search can result in suboptimal paths overall. Such a situation is illustrated in Figure
5.4. Here, the edge-midpoint distance between the start and goal points going through the
top of the environment is longer than that going through the bottom below the obstacle.
Thus, the channel corresponding to the bottom of the environment is chosen and the funnel
algorithm finds the shortest path traversing this channel. However, the globally shortest
path goes through the upper portion of the environment, but was not explored due to the
search expanding any triangle at most once.

5.4 Accumulated and Approximated Costs

The solution to the suboptimality problem of this approach is first not to eliminate expansion
of a triangle during search whether or not a potentially better path to this triangle was found

65

through another search state. Because we will not know exactly when we have found the
best path to a triangle during search, we cannot eliminate any of these paths since it could
potentially make up part of an optimal path.

Similarly, we are no longer guaranteed that the path by which the search first expands
the goal is optimal. Therefore, finding an optimal path between the start and goal in
a triangulation requires that the search continues after the goal is expanded, to consider
shorter paths whose estimated distances may have been greater than those of some longer
paths.

In this way we wish to search using the anytime algorithm paradigm, where an initial,
possibly suboptimal solution is found, and search continues finding better and better paths
until it converges on an optimal solution. Anytime algorithms are very flexible in that they
often find an initial solution quite quickly, and will yield a solution if stopped any time
between this point and when it completes the search, which is better the longer the search
has been running.

Each time the goal is expanded, the exact length of the path by which is was found can
be determined, in this case by a funnel algorithm. This path is retained if it is either the
first path found, or if it has a lower cost (less distance) associated with it than the best path
it had previously found. Search then continues in this way, finding progressively lower cost
solutions, until an optimal path is found, or more often, when it determines that its best
path is indeed optimal.

This approach is quite advantageous when working within the constraints of real-time,
because for various reasons, a given search may have more or less resources assigned to it, but
should still provide a solution. Also, in many cases, such a search actually finds an optimal
path long before it determines that the best path it has found is indeed optimal. Therefore,
stopping an anytime algorithm before it finishes can still yield an optimal solution.

This raises another concern: how the search can determine when it has found an optimal
solution. Basically we desire to know when no path corresponding to the states the search
has yet to expand could possibly yield a lower cost solution (shorter path) than the best
already found. The cost of the best path found is known exactly, so the search must
determine when the other search states correspond to longer paths.

The solution to this problem is to force the g-value to be a lower bound, or underestimate,
of its true value, during the search. That is, ∀s ∈ S, g(s) ≤ g∗(s), where g∗(s) is the true
distance between the start and state s via the path determined by that state. Then, we
have that ∀s ∈ S, g(s) ≤ g∗(s) ∧ h(s) ≤ h∗(s) ⇒ f(s) ≤ f∗(s), where f∗(s) is the shortest
path between the start and goal going through the path dictated by the state s.

Now let s∗ ∈ S be the search state corresponding to an optimal path. That is, ∀s ∈
S, f∗(s∗) ≤ f∗(s). Also, let s′ ∈ Q be the state on the front of the search queue Q ⊂ S, or
in other words ∀s ∈ Q, f(s′) ≤ f(s). Now, if f(s′) ≥ f∗(s∗), we have that ∀s ∈ Q, f∗(s) ≥
f(s) ≥ f(s′) ≥ f∗(s∗), or equivalently that the actual cost of the best path through all
states on the queue are at least as costly as that already found once the f -value of the state
at the front of the queue exceeds the actual cost of the best path found.

This extends from the states on the queue to the entire state space since all children of
the start state were put on the queue and all paths originating from the start state must
pass through its children and so there are no possible alternative paths to be considered.
This then gives us the criterion for stopping search with the knowledge that an optimal
solution has been found.

Therefore for the search to converge on an optimal solution in spite of such inexact
g-values, we must consider multiple paths to the same triangle and continue search after
the initial solution is found by way of the anytime algorithm described above. Also, to
achieve an effective stopping condition for this search, these g-values must be estimated as
a lower bound of the true values. Next we discuss a search algorithm which incorporates

66

these modifications to search for an optimal path in a triangulation.

5.5 Triangulation A* (TA*)

We develop a search algorithm Triangulation A*, or TA* for short, for pathfinding in a
triangulation. It works by first finding in which triangle the start point is located by a
technique further detailed in Section 8.1. A search state corresponding to this triangle
sstart is put on the search queue with values g(sstart) = 0 and h(sstart) being the Euclidean
distance between the start and goal points.

At each step of the search, the search state with the smallest f -value is taken off the
queue and expanded. The successor function generates a child state corresponding to each
triangle adjacent to the current triangle across an unconstrained edge. This edge is used in
calculation of the g- and h-values for these new states. The h-value is the Euclidean distance
between the goal point and the closest point to it on this edge. This heuristic is known to
be both admissible and consistent, and these properties are used in calculating the g-value.

The accuracy of the g-value has a considerable impact on the number of extraneous
states searched, therefore it is important to estimate it as well as possible, while avoiding an
overestimate. Therefore we calculate this estimate as the maximum of a number of known
lower bounds, resulting in another lower bound. The lower bound estimates for a state s′

with parent state s for an object of radius r, are described below:

• The first and simplest is the distance between the start point and the closest point
to it on the entry edge of the corresponding triangle. As with the h-value, this does
not overestimate the true value, and it satisfies the triangle inequality in that g(s) ≤
g(s′) + c(s, a, s′).

• The second is g(s) plus the distance between the triangles associated with s and s′.
We assume that the g-value of s is a lower bound, and so we wish to add the shortest
such distance to achieve another lower bound. Again, we take this measurement using
the edges by which the triangles were first reached by search. Since the triangles are
adjacent, this is the distance of moving through the triangle associated with s. In
Theorem 4.2.12, we proved that the shortest distance between two edges in a triangle
was an arc path around the vertex shared by these edges. Thus, if the entry edges of
the triangles corresponding to s′ and s form an angle θ, this estimate is calculated as
g(s) + rθ.

• Another lower bound value for g(s′) is g(s)+(h(s)−h(s′)), or the parent state’s g-value
plus the difference between its h-value and that of the child state. This is an underes-
timate because the Euclidean distance metric used for the heuristic is consistent. To
prove that with g(s′) = g(s)+h(s)−h(s′), g(s′) ≤ g∗(s′), we take that the parent state’s
g-value is an underestimate, or g(s) ≤ g∗(s) to get g(s′) ≤ g∗(s)+h(s)−h(s′), then that
the Euclidean distances used for the heuristic is consistent, or h(s) ≤ h(s′)+ c(s, a, s′)
to get g(s′) ≤ g∗(s) + h(s′) + c(s, a, s′)− h(s′), or g(s′) ≤ g∗(s) + c(s, a, s′), and since
g∗(s′) = g∗(s) + c(s, a, s′) by definition of the true g-values, we have g(s′) ≤ g∗(s′), as
desired.

The maximum of these values often provides a fairly accurate g-value for each state,
without overestimating the true value.

As a side note, a child of a search state will not be generated for a particular adjacent
triangle if a state corresponding to that triangle is already an ancestor of that state. This
exclusion can be done because it will never eliminate an optimal path, only one that could
become shorter by removing part of it, as stated in Theorem 4.3.4.

67

This is important since the fact that we can consider multiple states corresponding to a
triangle could otherwise lead to an infinite search space with the search continuing in cycles.
This elimination reduces the search space and speeds up the search.

These modifications to the method presented in Section 5.3 provide an algorithm for
finding optimal paths in a triangulation. They are fairly minor but allow the comparison
between algorithms for finding an optimal path in a triangulation against those for finding
one in a grid world, for example A*.

For this reason, TA* provides a base-line for comparison of triangulations to grid worlds
as an environment representation. Our predictions in Chapter 3 are confirmed by the results
in Chapter 9, where we see that TA* working on the base triangulation finds paths faster
on average than PRA*, which works on an abstraction of a grid world based on the same
environment.

68

Chapter 6

Abstraction

While using triangulations as an environment representation provides advantages in pathfind-
ing over grid-world-based methods in speed (as seen in Chapter 9) and accuracy, they also
afford possibilities for efficient abstraction. The fact that in a Constrained Triangulation,
triangles always extend to touch obstacles in the environment, is useful in reducing an
environment to a simplified graph reflecting its topology. A process for achieving such a
reduction is described in this chapter.

As introduced in Section 1.4, we desire to partition the environment into a set of useful
structures, in this case: decision points, corridors, dead ends, and to a lesser extent, islands.
We do this by classifying each triangle as a node whose defining characteristic is its level,
which is a number between 0 and 3 inclusive, indicating the number of structures on the
resulting graph to which this node is conceptually adjacent.

6.1 Types of Nodes

An environment represented by a Constrained Triangulation has a graph inherently associ-
ated with it, referred to here as the base-level graph. The vertices of this graph correspond to
the triangles in the triangulation and the edges join vertices whose corresponding triangles
are adjacent across an unconstrained edge. Such a graph reflects the topological structure
of the environment.

Another graph which we call the most abstract graph will be created as a result of the
abstraction process. To illustrate the structure of these abstract graphs and to introduce the
conventions used in the diagrams in this chapter, see Figure 6.1. This figure has the triangles
removed for clarity, these will be added to other diagrams with the established convention
of solid lines indicating constrained edges and dotted lines indicating unconstrained edges.

Here one can see various nodes and their classifications. There are some patterns of which
to take note: level-0 nodes appear by themselves—these are equivalent to the “islands”
mentioned earlier, level-1 nodes form trees and become the “dead ends” of the environment,
level-2 nodes appear in chains, forming the “corridors” in the environment, and level-3 nodes
appear where three such corridors meet, at a “decision point”.

For use with pathfinding, this most abstract graph will be considered the minimal rep-
resentation of these structures. On this graph, level-3 nodes form the vertices and chains
of level-2 nodes the edges. In this way, pathfinding decisions must only be made at points
in the environment we have determined are important and moving between them has been
reduced to a single step. Level-1 and level-0 nodes disappear as they are only become
necessary to the pathfinding task when the start or goal resides in such nodes.

69

Level-0 Node
Level-1 Node
Level-2 Node
Level-3 Node
Level-1 Tree
Level-2 Ring
or Corridor

Figure 6.1: An example of an abstract graph

Below, we will give more formal definitions and illustrative descriptions of each kind of
node and its role in the environment, pathfinding, and the graph resulting from this process.

6.1.1 Level-0 Nodes

Triangles which have all three edges constrained are classified as level-0 nodes. These are
equivalent to the “islands” mentioned earlier. They do not connect to any larger graph
structure. If either the start or goal position is within a triangle classified as this type of
node, the only possibility for a valid path between them is if they both are in this same
triangle.

Figure 6.2: A triangle classified as a level-0 node

See Figure 6.2 for an example of a triangle abstracted as a level-0 node. The shaded
areas, which indicate obstructed areas, will not be classified here for clarity, although in
practice these areas are implicit and would be treated the same as traversable space.

6.1.2 Level-1 Nodes

Level-1 nodes form conceptual “dead ends”. The base case for such a node is a triangle
with two constrained edges. This is obviously such a dead end because there is only one
triangle to which an object can move from it: the one across the single unconstrained edge.
However, this only classifies the very corners of the environment.

70

Figure 6.3: A dead-end area classified as level-1 nodes

Therefore we also define level-1 nodes as those which have two or more edges such that
either the edge is constrained, or across that edge is a triangle classified as a level-1 node.
In this way, the effects of the dead ends propagate to a series of level-1 nodes. Keep in
mind that only two edges of a triangle classified as a level-1 node could be constrained,
if all three were constrained, the triangle would be classified as a level-0 node. Graphs of
adjacent level-1 nodes form trees, which can have at most one “root”, which is a level-2
node adjacent to one level-1 node.

If the start or goal is in a triangle classified as this type of node, the goal can either be
in another level-1 node in the same tree, or elsewhere. In the former case we can search
for a path within this tree, and in the latter, we can move from the triangle containing the
start point to the root of this tree and begin searching from there, since we know the goal
is not in this tree.

In Figure 6.3, the leftmost and bottom-left triangles are immediate dead ends because
they have two constrained edges. These are classified as level-1 nodes. Now the triangles
adjacent to them have one constrained edge, and one level-1 node adjacent across an uncon-
strained edge, and so these become classified as level-1 nodes. This process continues until
all the indicated triangles in the diagram are classified as level-1 nodes.

Figure 6.4 shows a traversable region without “floating” obstacles, which are completely
inside and not touching the barrier which surrounds the region, and will hence be referred

Figure 6.4: An unrooted tree of level-1 nodes

71

to simply as obstacles. Every triangle in this kind of area will be classified as a level-1 node
since the dead ends will propagate through the entire region.

6.1.3 Level-2 Nodes

Triangles classified as level-2 nodes have exactly one edge that is either constrained, or across
which is a triangle classified as a level-1 node. Groups of adjacent triangles corresponding
to level-2 nodes indicate “corridors” in the environment and form conceptual edges between
vertices formed by level-3 “decision point” nodes, or alternately, can form “rings” without
level-3 nodes. They can serve as roots for level-1 trees and contain information about the
level-3 nodes (if any) at the endpoints on the corridor.

If the start and goal points are on level-2 nodes (or in trees rooted at level-2 nodes),
we check if the nodes are on the same corridor. If so, one path can be formed along this
corridor, and then further searching outside this corridor must be performed to see if it is
the shortest. If they are not on the same edge, search begins on the abstract graph using
the level-3 nodes connected to the start and goal.

Figure 6.5: Corridors of triangles classified as level-2 nodes

Figure 6.5 shows a triangulated environment with the triangles classified as level-2 nodes
indicated. Note that the blank triangles in the dead ends at the bottom left and right of the
diagram would be classified as level-1 nodes. The other blank triangles towards the middle
of the figure would be level-3 nodes.

Figure 6.6: A ring of triangles classified as level-2 nodes

72

While level-2 nodes often form conceptual corridors between two areas of the environ-
ment, sometimes a series of adjacent level-2 nodes have no start or end, as is the case in
Figure 6.6. This situation occurs when a traversable (or obstructed) area of the environ-
ment contains exactly one obstacle. In this case, level-2 nodes form a “ring” around it.
Pathfinding in such a component is reduced to deciding which direction around the single
obstacle the path should go.

6.1.4 Level-3 Nodes

Triangles classified as level-3 nodes have neither constrained edges, nor adjacent level-1
nodes. Triangles with this important designation represent the “decision points” in the
environment, and the vertices of the most abstract graph.

During pathfinding, if either the start or goal point is in a level-3 node or search reaches
one as described above, regular search can be done simply between level-3 nodes on the
most abstract graph.

The number of level-3 nodes in a connected component of a graph is linearly proportional
to the number of obstacles in that component, as we prove below in Theorem 6.1.1.

Theorem 6.1.1 There are 2n− 2 level-3 nodes in a component with n obstacles.

Proof Consider the most abstract graph of which the level-3 nodes are the vertices and the
level-2 corridors are the edges. The obstacles in the component are surrounded by level-2
corridors, and thus form the faces of the most abstract graph, along with the additional face
surrounding the entire graph. In other words, if n is the number of obstacles, F = n + 1.
Since we know that each level-3 node is incident with three level-2 corridors, and the number
of edges is half the sum of degrees of all the vertices, we can calculate the number of edges
in this component of the most abstract graph as

E =
1
2

V∑
i=0

Degree(Vi) =
1
2

V∑
i=0

3 =
3V
2

Then, by Euler’s Formula,
V − E + F = 2

V − E = 2− F

V − (
3V
2

) = 2− F

2V − 3V = 4− 2F

V = 2F − 4

V = 2(n+ 1)− 4

V = 2n− 2

Therefore, the number of level-3 nodes in a component of the most abstract graph with n
obstacles is 2n− 2.

Figure 6.7 shows which triangles in an environment are classified as level-3 nodes. Notice
that there are 4 for this component with 3 obstacles.

73

Figure 6.7: Triangles classified as level-3 nodes

6.2 Different Graph Structures

Unlike the base-level graph, the most abstract graph only has vertices with 3 attached edges,
hence being formed by level-3 nodes. This eliminates the dead ends formed by level-1 nodes
and collapses entire chains of level-2 nodes by simply considering the level-3 nodes across
these chains to be adjacent.

The main factor in the size of the search space—the number of vertices in the graph—are
significantly reduced as shown in Theorem 6.1.1. Thus, the search is no longer complicated
by the nature of the obstacles in the environment, such as shapes of the barriers or concavities
therein, only their number.

However, this definition of a graph warrants some discussion, since some structures can
result which are atypical in some domains. In this section, we briefly discuss these different
structures and their impact on the resulting pathfinding search.

6.2.1 Level-0 Islands

Level-0 nodes form a component of the base-level graph consisting of a single vertex. Tech-
nically, they do not exist in the most abstract graph. Obviously if the start or goal of a
pathfinding search occurs in a triangle classified as such a node, though, they will neverthe-
less have to be dealt with. This is covered by one of the special cases of searching the most
abstract graph, described in Section 7.1.

6.2.2 Level-1 Trees

If a traversable (or obstructed) component of the environment (also called a connected
component) contains no obstacles, then the abstracted version of this component will contain
only level-1 nodes in a tree, with no level-2 root. Such a situation is shown in Figure 6.4.
While this does not provide as much information as having level-2 and level-3 nodes, we can
note that in a tree, only one path between any two points exists, excluding those with cycles,
which unnecessarily lengthen the path, as stated in Theorem 4.3.4. Therefore, if both the
start and goal positions are within this tree, we can use a simple search to find any channel
between the two, and it will contain the shortest path. Also one can note that because of
the existence of a single acyclic path, the concern for searching any triangle multiple times
is not an issue.

74

6.2.3 Level-2 Rings

If a connected component contains exactly one obstacle, the abstracted graph will contain
level-2 nodes forming an edge as a ring with no level-3 endpoints. The result on the most
abstract graph is an edge with no start or end point, a case not seen in most graphs. In
this instance, when finding a path between start and goal points in different level-2 nodes
(or in level-1 trees rooted in different level-2 nodes), the pathfinding task is simplified to
checking whether it is shorter to join the points by travelling clockwise or counterclockwise
around the ring. Figure 6.6 depicts an environment where the traversable space has a single
obstacle around which a level-2 ring forms.

6.2.4 Loops

On the most abstract graph, there can be edges going from a vertex to itself. Such a situation
is caused by a single obstacle in one portion of the graph, for example on the right side of
Figure 6.8. When searching between level-3 nodes on the most abstract graph, following
such an edge would increase the resulting path length and is unnecessary (again, as stated
in Theorem 4.3.4). However, it is important when the start or goal is on this type of edge, to
consider paths going both directions to get to the level-3 node which forms both endpoints,
to reach the most abstract graph and continue searching.

Figure 6.8: A corridor of level-2 nodes both starting and ending at the same level-3 node

6.2.5 Multiply-Connected Nodes

Another possibility is there being two (or even three) edges between the same two vertices.
The case with three edges sharing the same endpoints is illustrated in Figure 6.9, while
the case with two can be seen in Figure 6.8 with the two leftmost level-3 nodes. The
consequences of this arrangement is that search might have to explore paths using both (or
all three) edges as part of a channel because the actual path lengths cannot be known until
the funnel algorithm is run on the complete channels. In the worst case, this could result
in the number of channels to be considered being exponential in the number of obstacles,
although a clever search algorithm should be able to prune most of these and still find the
shortest.

75

Figure 6.9: Three level-2 corridors sharing the same two level-3 endpoints

6.3 Information Contained

Obviously pathfinding cannot be done very well on the most abstract graph if the only
information stored is the level designation for each triangle in the triangulation. This section
discusses the information stored for each triangle, and the role it plays in the pathfinding
search described in Chapter 7.

6.3.1 Level

The level of the node to which a triangle is classified is the most fundamental characteristic
of the triangle. It relates whether the triangle forms an island, resides in a dead end, makes
up part of a corridor, or is a decision point. The level of the node determines the first steps
of the search, further described in Chapter 7.

6.3.2 Connected Component

Each node contains an index for the connected component of the environment to which
it belongs. This is used during search to check, in constant time, if a path can possibly
exist between the start and goal points. Obviously if the start and goal reside in different
traversable components of the environment, no path between them is possible.

Apart from this convenience, the connected component is necessary to determine whether
the start and goal are in the same unrooted level-1 tree, since there is no root to compare,
without having to do a complete search. Similar cases exist for level-2 rings and the level-3
search in general.

6.3.3 Adjacent Structures

The purpose of the abstraction is for the search to be able to move out of dead ends without
having to find its way out, get from anywhere in a corridor to the connected decision
points without needing to take several steps, and skip over corridors between decision points
without exploring them. For this to be possible, each node must store the nodes to which
it is conceptually adjacent.

For nodes in rooted level-1 trees, this is the level-2 node forming the root of the tree, for
those in a level-2 corridor, they are the level-3 nodes at both ends of the corridor, and for
level-3 decision point nodes, they are the 3 decision points at the other ends of each level-2

76

corridor to which it forms one endpoint. Level-0 islands, nodes forming unrooted level-1
trees, and those in level-2 rings do not have any adjacent structures.

Each node stores 3 adjacent structures corresponding to the edges of the triangle. If
the path to an adjacent structure is formed by crossing that edge, the value for that edge
is set to that structure. This is used in retrieving the triangles to form the channels for
calculating the actual length of each path found with the search algorithm.

Because of the possible graph structure discussed in Subsection 6.2.5, two (or even three)
of the adjacent structures for a level-3 node could be the same decision point. Also, because
of the structure discussed in Subsection 6.2.4, one structure adjacent to a level-3 node could
be itself, or both adjacent to a level-2 node could be the same decision point.

6.3.4 Choke Points

On the base-level graph, the search can check for each triangle it traverses, if that triangle’s
width allows for the object’s size to pass through. However, while searching the most
abstract graph, such information would not be available while still passing over triangles
when moving out of dead ends, corridors, and between decision points in a single step.

Therefore, what is needed is to record, for each structure adjacent to a node, the least
width between the triangle associated with this node, and those with the adjacent nodes.
This way, before deciding to move to that next structure, the search can know if that entire
distance can be traversed by an object of given size. This allows the search to find valid
paths for any size of object while still avoiding dealing with individual triangles.

Similarly to adjacent structures, values are stored for nodes in rooted level-1 trees that
indicate the diameter of the largest object that can reach the root of the tree. For nodes
in a level-2 corridor, these are the size of the largest object that can reach the respective
level-3 endpoints, and for level-3 nodes, they are the diameter upper bounds for reaching the
decision points that lie at opposite ends of the 3 corridors of which this node is an endpoint.
Again, level-0 islands, unrooted level-1 trees, and level-2 rings need no such values.

6.3.5 Triangle Widths

For convenience and to avoid having to calculate them multiple times, each node also stores
the widths of its associated triangle as decribed in Section 4.1. One width is stored for each
of the three pairs of edges, and corresponds to the diameter of the largest object which can
pass between these two edges.

This is calculated and stored even if one (or both) of these edges is constrained, because
even though and object cannot pass between these two edges, it may start or end on this
triangle, having to pass through its narrowest point (as described in Section 4.4), in which
case this value is needed.

6.3.6 Lower Bound Distances

As described in Chapter 5, search requires an estimate of the distance travelled between the
start point and the current triangle being expanded, and in our case we want this to be a
lower bound. For the search of the base-level graph, we used the maximum of a number of
lower bounds. Some were based on global information such as the position of the current
triangle with relation to the start and goal points. However, we also measured the shortest
distance to get through each triangle.

Similarly to the choke points, we want access to this value for all the triangles in be-
tween pairs of adjacent structures, however calculating this information from the individual
triangles themselves would eliminate the benefit of moving directly to the next adjacent

77

structure. Therefore we similarly measure the distance between the current triangle and
those to which it is adjacent during the abstraction process, and store them with the nodes.

As with the base-level graph, this is a measurement of the interior angle of all the
triangles between which the distance is to be measured. The lower bound distance given
by this value, then, is calculated as this total angle multiplied by the radius of the object
currently being considered.

6.4 Abstraction Algorithm

In this section, we present an algorithm which can convert a Constrained Triangulation into
the most abstract graph while providing the information necessary to perform efficient and
accurate pathfinding at that level of abstraction. Furthermore, this algorithm is linear in the
number of triangles in the triangulation, which is quite reasonable, especially when coupled
with how many fewer triangles there are in a triangulated environment compared to cells in
a reasonably-accurate grid. Below, we will walk through the application of this algorithm
in general terms, applied to an example environment. Pseudocode for the implementation
of this algorithm is given after, in code listings 9, 8, 10, 11, and 12.

Consider the environment in Figure 6.10. There are four traversable components—three
on the left consisting of a triangle which will be classified as a Level-0 node, one with no
obstacles which will result in an unrooted level-1 tree, and one with a single obstacle which
forms a level-2 ring—and one taking up the majority of space and more closely resembling
a typical component of an environment.

In the first step of the algorithm, we identify the level-0 nodes as the triangles with
all three edges being constrained. In the diagram, this is the traversable component at
the bottom left, but would also be the triangular obstacles in the component on the right,
however for now we are ignoring these. The component attribute of these triangles are all
assigned different values.

Here we also identify the triangles with two constrained edges. These are the most
obvious kind of level-1 dead ends. For each of these that are identified, we put the triangle
across the unconstrained edge on a queue, since these might now be classified as level-1
nodes.

All other triangles are put on another queue for processing as possible level-2 and level-3
nodes after the level-1 nodes are identified. Figure 6.11 shows the environment after this
step. Triangles marked with a “q” are those that are on the first queue awaiting evaluation

Figure 6.10: An example environment for the abstraction algorithm

78

q
q
q q

q

Figure 6.11: The environment after the first step of the algorithm

as possible level-1 nodes.
Then the triangles on the first queue are examined to determine if each is now a level-1

node. If the triangle being checked has two edges such that either the edge is constrained,
or across that edge is a level-1 node, then this triangle is a level-1 node and the triangle
across from the edge other than the two above is put on the queue for processing. In this
way, the effect of the immediate dead ends with two constrained edges, propagates outward,
filling the dead end with level-1 nodes as seen in Figure 6.12.

If a triangle being checked has three edges being either constrained or having a level-1
node adjacent, then the whole component is an unrooted level-1 tree. See the traversable
component to the right of the level-0 node in Figure 6.12 for an illustration. This component
should then be “collapsed”, which mainly involves setting the component attribute of all the
triangles therein to a unique value, to indicate it is not connected to any other traversable
regions.

At this point the first queue is empty and we turn our attention to the second, which we
filled with those triangles which had fewer than two constrained edges. These are candidates
for level-2 and level-3 nodes. We examine each triangle from this queue which has not yet
been classified as a type of node, and determine which are level-3 nodes. With all level-1
nodes identified, the level-3 nodes are those that have neither constrained edges nor adjacent
level-1 nodes.

Figure 6.12: The environment after the second step of the algorithm

79

Figure 6.13: The environment after the third step of the algorithm

When a level-3 node is identified, it is put on a stack for processing. Until this stack is
empty, we process the level-3 node on top of it by following each of the three corridors for
which the current triangle is an endpoint. Until this process reaches another triangle which
qualifies as a level-3 node, those in between are classified as level-2 nodes.

The distance along this corridor is accumulated as it is followed, and the choke point
is maintained as the narrowest triangle width in the direction of the original level-3 node.
These values for the level-2 nodes along the way, and their adjacent structure as the original
level-3 node, are set in the appropriate direction. Additionally, all triangles are marked with
the identifier for the current component.

Any level-2 nodes which have a level-1 node adjacent (across an unconstrained edge),
have this level-1 tree “collapsed” into the corridor. This means performing a stack-based
traversal of the tree, setting the component attribute of each triangle to that of the corridor,
the choke point to the narrowest point between the current triangle and the root, and the
angles to the sum of the interior angles of all the triangles between this one and the root.

Once the next level-3 node is reached along each corridor, it is put on the stack for
processing next. In this way, each corridor gets traversed once in each direction, setting
the values in the directions of the level-3 nodes at each end. Once the stack is empty, the
entire component has been traversed, and a new component identifier can be selected. The
processing of the queue then continues, finding and previously unclassified level-3 nodes.
Figure 6.13 shows the environment after this technique has been performed on one of the
level-3 nodes in the main traversable component.

When this process has gone through all the triangles in the queue, all components with
level-3 nodes have been identified. Together with identifying level-0 islands and unrooted
level-1 trees, this leaves only one kind of component yet to be processed: level-2 rings.

The queue is processed once more, this time removing triangles as they are visited. Any
remaining unclassified triangles must be part of a level-2 ring. Each time one of these is
found, a new component identifier is selected and assigned to all triangles in the ring as they
are visited one by one. Other information is not necessary as distances and choke points
become irrelevant without end points. However, if there are level-1 nodes adjacent to any
triangles in a ring, their respective trees are collapsed into the root node on the ring as
would be done on a corridor.

After this final process has completed, the result will look like in Figure 6.14. One can see
the island, ring, and tree identified on the left side while in the main component, dead ends,
corridors, and decision points have been correctly classified. More detailed pseudocode for
this algorithm is presented below, with AbstractLevel2 in listing 12 being the main algorithm

80

Figure 6.14: The environment after the fourth step of the algorithm

which one would run on a triangulation, which uses the others. Here subscripts refer to the
attributes of a particular variable and superscripts are used as part of the variables’ names,
for readability. Chapter 7 examines how the resulting structure of this most abstract graph
is exploited to create a search that is faster and more efficient than one on the base-level
graph.

Algorithm 8 CollapseUnrootedTree(Triangle t, Component c)
1: Stack s
2: s.Push(t)
3: while ¬s.Empty() do
4: Triangle tcurrent ← s.Pop()
5: tcurrent

component ← c
6: for i = 1 to 3 do
7: Edge e← GetEdge(tcurrent, i)
8: tcurrent

adjacenti
← NULL

9: if econstrained then
10: tcurrent

anglei
← 0

11: tcurrent
chokei

← 0
12: else
13: tcurrent

anglei
←∞

14: tcurrent
chokei

←∞
15: Triangle tnext ← GetTriangleAcross(tcurrent, e)
16: if tnext

component = NULL then
17: s.Push(tnext)
18: end if
19: end if
20: end for
21: end while

81

Algorithm 9 CollapseRootedTree(Triangle r, Triangle t)
1: c← rcomponent

2: Stack s
3: s.Push(t)
4: Stack a
5: a.Push(0)
6: while ¬s.Empty() do
7: Triangle tcurrent ← s.Pop()
8: tcurrent

component ← c
9: for i = 1 to 3 do

10: Edge e← GetEdge(tcurrent, i)
11: Triangle tlast ← TriangleAcross(tcurrent, e)
12: if tlast

component = NULL then
13: tcurrent

adjacenti
← r

14: tcurrent
anglei

← a.Pop()
15: if tlast = r then
16: tcurrent

chokei
← Length(e)

17: else
18: for j = 1 to 3 do
19: if tlast

adjacenti
6= NULL then

20: Edge eback ← GetEdge(tlast, j)
21: tcurrent

chokei
← Minimum(tlast

chokej
, WidthBetween(e, eback)

22: break
23: end if
24: end for
25: end if
26: Edge eright ← GetEdge(tcurrent, (i+ 1)%3)
27: s.Push(TriangleAcross(tcurrent, eright))
28: a.Push(AngleBetween(e, eright))
29: Edge eleft ← GetEdge(tcurrent, (i+ 2)%3)
30: s.Push(TriangleAcross(tcurrent, eleft))
31: a.Push(AngleBetween(e, eleft))
32: else
33: tcurrent

adjacenti
← NULL

34: if econstrained then
35: tcurrent

chokei
← 0

36: tcurrent
anglei

← 0
37: else
38: tcurrent

chokei
←∞

39: tcurrent
anglei

←∞
40: end if
41: end if
42: end for
43: end while

82

Algorithm 10 AbstractLevel0and1(Triangulation T , Component c) : Queue
1: Queue q, r
2: for all Triangles t ∈ T do
3: tlevel ← NULL
4: tcomponent ← NULL
5: CalculateWidths(t)
6: n← NumConstrainedEdges(t)
7: if n = 3 then
8: tlevel ← 0
9: tcomponent ← c

10: c← c+ 1
11: for i = 1 to 3 do
12: tanglei ← 0; tchokei ← 0; tadjacenti ← NULL
13: end for
14: else if n = 2 then
15: tlevel ← 1
16: for i = 1 to 3 do
17: Edge e← GetEdge(t, i)
18: if ¬econstrained then
19: q.Enqueue(TriangleAcross(t, e))
20: break
21: end if
22: end for
23: else
24: r.Enqueue(t)
25: end if
26: end for
27: while ¬q.Empty() do
28: Triangle t← q.Dequeue()
29: if tlevel 6= NULL then
30: n← NumConstrainedEdges(t)
31: m← NumAdjacentLevel(t, 1)
32: if n+m ≥ 2 then
33: tlevel ← 1
34: for i = 1 to 3 do
35: Edge e← GetEdge(t, i)
36: Triangle tnext ← TriangleAcross(t, e)
37: if ¬econstrained ∧ tnext

level = NULL then
38: q.Enqueue(tnext)
39: end if
40: end for
41: end if
42: if n+m = 3 then
43: CollapseUnrootedTree(t, c)
44: c← c+ 1
45: end if
46: end if
47: end while
48: return r

83

Algorithm 11 AbstractLevel3(Triangle t, Component c)
1: Queue q
2: q.Enqueue(t)
3: while ¬q.Empty() do
4: Triangle tbase ← q.Dequeue()
5: tbase

level ← 3
6: tbase

component ← c
7: for i = 1 to 3 do
8: Edge e← GetEdge(tbase, i)
9: ω ← Length(e)

10: θ ← 0
11: Triangle tcurrent ← GetTriangleAcross(tbase, e)
12: Triangle tlast ← tbase

13: loop
14: Triangle tnext ← NULL
15: n← NumConstrainedEdges(tcurrent)
16: m← NumAdjacentLevel(tcurrent, 1)
17: if n+m = 0 then
18: if tcurrent

level = NULL then
19: q.Enqueue(tcurrent)
20: end if
21: tbase

chokei
← ω; tbase

anglei
← θ; tbase

adjacenti
← tcurrent

22: break
23: else if n+m = 1 then
24: if tcurrent

level = NULL then
25: tcurrent

level ← 2
26: end if
27: Edge enext ← NULL
28: Edge elast ← NULL
29: for j = 1 to 3 do
30: e← GetEdge(tcurrent, j)
31: Triangle ttemp ← GetTriangleAcross(tcurrent, e)
32: if ttemp = tlast then
33: tcurrent

chokej
← ω; tcurrent

anglej
← θ; tcurrent

adjacentj
← tbase

34: elast ← e
35: else if ¬econstrained ∧ ttemp

level 6= 1 then
36: tnext ← ttemp

37: enext ← e
38: else if ¬econstrained ∧ ttemp

level = 1 then
39: CollapseRootedTree(tcurrent, tnext)
40: end if
41: end for
42: ω ← Minimum(ω, WidthBetween(elast, enext))
43: θ ← θ+ AngleBetween(elast, enext)
44: end if
45: tcurrent ← tnext

46: end loop
47: end for
48: end while

84

Algorithm 12 AbstractLevel2(Triangulation T)
1: c← 1
2: Queue q ← AbstractLevel0and1(T , c)
3: for all Triangles t ∈ q do
4: n← NumConstrainedEdges(t)
5: m← NumAdjacentLevel(t, 1)
6: if n+m = 0 ∧ tlevel = NULL then
7: AbstractLevel3(t, c)
8: c← c+ 1
9: end if

10: end for
11: while ¬q.Empty() do
12: Triangle t← q.Dequeue()
13: if tlevel = NULL then
14: Triangle tcurrent ← t
15: while tcurrent 6= NULL do
16: tcurrent

level ← 2
17: Triangle tnext ← NULL
18: for i = 1 to 3 do
19: Edge e← GetEdge(tcurrent, i)
20: Triangle ttemp ← GetTriangleAcross(u, e)
21: if econstrained ∨ ttemp

level = 1 then
22: if ¬econstrained then
23: CollapseRootedTree(tcurrent, ttemp)
24: end if
25: tcurrent

anglei
← 0

26: tcurrent
chokei

← 0
27: tcurrent

adjacenti
← NULL

28: else
29: if ttemp

level = NULL then
30: tnext ← ttemp

31: end if
32: tcurrent

anglei
←∞

33: tcurrent
chokei

←∞
34: tcurrent

adjacenti
← NULL

35: end if
36: end for
37: tcurrent ← tnext

38: end while
39: end if
40: end while

85

Chapter 7

Abstraction Search

In Chapter 5, we searched the base-level graph, and now, we wish to search the most abstract
graph to take advantage of the reduction afforded by the abstraction of the environment
from Chapter 6, while still finding an optimal path. This chapter explores the adjustments
that must be made to our original TA* algorithm in order to effectively utilize the additional
information afforded by the abstracted representation of the environment.

Before even performing a search of the most abstract graph, it is important to first check
for a number of special situations that exist because of the structure of the graph and the
placement of the start and goal positions. These are explored in Section 7.1 below. If none
of these cases are present, then the regular search of the most abstract graph can begin.
Section 7.2 deals with the actual search of the most abstract graph and how it differs from
our original TA* algorithm.

7.1 Special Cases

The first step of the search is to find in which triangle both the start and the goal points
reside. This is in contrast to only finding the surrounding triangle for the start point,
which was done in TA* (Section 5.5). Certainly if this process takes excessively long, any
advantage gained by searching the most abstract graph would be lost due to the extra point
location search. Thus, in Section 8.1 we discuss an improved method for performing this
process which increases its speed sufficiently to allow the efficiency of searching the most
abstract graph to materialize.

After the triangles in which the start and goal points are encompassed are found, the
information from their respective nodes is examined to determine the existence of one of the
following special cases. If such a situation exists, often no search is needed, and the shortest
path (or lack thereof) can be found even more quickly. These cases, how they are found,
and their resulting resolution, are described below.

7.1.1 In Separate Components

When examining the information contained by the nodes corresponding to the start and
goal points, the most fundamental requirement for a path to exist between them is that
they must be in the same component. If the component indices of the start and goal nodes
do not match, there can be no possible path between them, and the search can be halted
immediately. If these indices do match, the only possibility for the lack of a path between
the start and the goal would be due to the size of the object not being able to fit through
certain areas, as a point object could move anywhere in a component.

86

s

g

Figure 7.1: The start and goal are in two different connected components

Figure 7.1 shows a case where the start s and goal g are in different components and
thus no path exists between them.

7.1.2 On a Level-0 Island

Once we have established that the start and goal are in the same connected component of
the environment, finding that one is on a level-0 island implies that the other is as well.
Furthermore, all pairs of points in a triangle can be joined by a straight line entirely within
the triangle (since triangles are necessarily convex), and so such a path is valid, and since
the shortest path between two points is a straight line, it is also optimal.

The only possibility for a path not to exist would be for either the start or goal position to
be invalid due to being too close to the triangle’s constrained edges. However, this situation
should be found at the onset of the search using a technique similar to that of finding the
closest obstacle to a vertex in a triangle (Section 4.1) for both the start and goal points to
make sure they are valid. However, often we can assume that these points are valid simply
from the application. In many cases, this check could be omitted at least for the start point,
as the object is usually centered on this point, indicating that it is indeed valid.

This same logic applies when both the start and goal positions are located within the
same triangle—unless one or both points are invalid, an optimal path is given simply by a

s

g
s’

g’

Figure 7.2: The start and goal are in the same level-0 island or otherwise the same triangle

87

straight line between them. Figure 7.2 shows the start and goal s and g in the same level-0
island, and s′ and g′ are both in the same triangle. In each case, if the radius of the object
was large enough, the goal (and if it was even larger, the start as well) would be invalid and
the path would not exist.

7.1.3 From a Tree to the Root

If either the start or the goal is inside a rooted level-1 tree and the other point is in the
level-2 node forming the root of the tree, the shortest path between the two can be found
immediately. Since the group of level-1 nodes adjacent to the level-2 root form a tree, there
is a single channel of triangles between this root and any triangle in the tree, excluding those
with cycles, which was stated in Theorem 4.3.4 to unnecessarily lengthen the resulting path.

First the choke point value of the node in the tree is checked to determine if the single
channel linking it to the root is wide enough to accommodate the object in question. If it is
not, no path exists and the algorithm can be stopped. Otherwise, the channel is constructed
out of the triangle in the tree, the one opposite the edge indicated as the one adjacent to the
root (see Subsection 6.3.3), and continuing in this manner until reaching the root. A funnel
algorithm is then run on this channel, which yields an optimal path between the start and
goal points.

s
g

Figure 7.3: The start is the root of a tree containing the goal

Figure 7.3 shows a situation where the goal g is in a level-1 tree of which the level-2
node containing the start s is the root. The channel is constructed by “walking” from the
goal to the start through the tree. It is then reversed and used by the funnel algorithm to
yield the optimal path between them.

7.1.4 In a Level-1 Tree

If the start and goal point are both on triangles classified as level-1 nodes in an unrooted
tree (we know they are in the same tree by the earlier check of the component index), or in a
rooted tree with the same level-2 root, another situation exists. As mentioned in Subsection
6.2.2, there is a single channel in this tree which connects the triangles containing the start
and goal points and has no cycles, and this channel yields an optimal path between them.

This shortest path between the start and goal can be found by a simple search within
this tree, starting at one point and generating adjacent level-1 nodes at each step to avoid
leaving the tree unnecessarily. Because of the inherent simplicity of this space, we can take
some liberties in the search such as taking the distance measures from the triangle midpoints

88

s g

s’
g’

Figure 7.4: The start and goal are in the same level-1 tree

and assuming the distance travelled is the length of the straight segments between them.
We can do this because the existence of the single path means that the g- and h-values used
in the search are used solely as guides to find the only channel. Again, consideration of any
triangle multiple times is not an issue in this simplified search.

Once the channel is found connecting the triangles surrounding the start and goal points,
it is checked to make sure the object in question can indeed traverse it. If it cannot, no
other channel could, as stated in Theorem 4.3.4, and the algorithm reports the lack of a
valid path. If the object can indeed traverse the channel, a funnel algorithm is run on it to
determine the actual path for the particular object, which is guaranteed to be optimal.

If the start and goal are not in the same level-1 tree but one or both is in a rooted
level-1 tree, then we know there must be a path between the start or goal to the root of
their respective trees if a path between them is possible. For either the start or goal, if
the node associated with the surrounding triangle is in such a rooted level-1 tree, the choke
point indicating the diameter of the largest object which can reach the root, is checked. If
this value for either the start or goal is less than the diameter of the object in question,
then no valid path exists for this object between the start and goal points since the object
could either not get out of the level-1 tree in which the start point resides, or not get into
the goal’s tree (or both).

Figure 7.4 shows an unrooted level-1 tree on the left, with s and g, as well as the pro-
gression of such a search in that component. On the right is a rooted level-1 tree containing
s′ and g′ where this search occurs; notice the dotted arrow indicating that search is not
performed outside the tree.

7.1.5 In a Level-2 Loop or Ring

Another situation exists when both the start and goal are each on level-2 nodes or in level-1
trees rooted in level-2 nodes, that are on the same level-2 ring or loop. If they are on a ring,
both corresponding level-2 nodes will have no endpoints. They must be on the same ring
since they are in the same component, and there can only be a single ring in any component.
If they are in the same level-2 loop, both endpoints of each corresponding level-2 node will
be the same level-3 node.

In either case, as mentioned in Subsection 6.2.3, there exists two possible channels: going
around the obstacle in the center of the ring clockwise, and counterclockwise. Channels are
constructed for each, and the funnel algorithm is run on both, yielding an optimal path as
the shorter resulting path.

89

s’

g’

s
g

Figure 7.5: The start and goal are on a level-2 ring or loop

If the start point is in a level-1 tree, the method used in Subsection 7.1.3 is used to
construct the portion of the channel moving from the start point to the root of the tree. We
know from the test performed earlier (Subsection 7.1.4) that this portion of the channel is
valid.

The two possibilities for the center portion of the channel are constructed by following
the level-2 nodes forming the ring both clockwise and counterclockwise between the level-2
nodes associated with the start and goal points. If, while one of these portions is being
constructed, a triangle is encountered through which the object cannot pass, that portion
is invalid. If one portion is invalid, the other is the only candidate for a valid path between
the start and goal, and if they are both invalid, no valid path exists between them.

Finally, if the goal point is in a level-1 tree, part of the channel is constructed between
the triangle in which it resides, and the root of the tree. Again, we know this portion of the
channel to be valid for the current object. If both center paths were valid, complete channels
are constructed between the start and goal points, going each way around the channel, and
the funnel algorithm run on both to determine which is optimal. If one center path was
invalid, the other complete channel is constructed and the path calculated by running the
funnel algorithm on this channel is optimal.

Figure 7.5 shows a component that forms a level-2 ring on the left, and one that forms
two level-2 loops on the right. With s and g, both channels between the start and goal
triangles leave the level-1 tree in which the start lies and enter that containing the goal.
However, each goes a different direction around the obstacle in the center. The result is
that the path calculated from the channel going below the obstacle is shorter than from that
going above and thus it is optimal (provided the given object can fit through this channel).
Similarly, between s′ and g′ on the right, the path passing beneath the obstacle at the center
of the loop is shorter than that passing above.

7.1.6 On a Level-2 Corridor

If the start and goal are on level-2 nodes, or level-1 nodes in trees whose roots are level-2
nodes, such that they have the same two distinct endpoints, these corresponding level-2
nodes could be on the same level-2 corridor. This is still not certain because multiple level-2
corridors can have the same two endpoints as discussed in Subsection 6.2.5, so this possibility
must first be checked.

First the distances from each corresponding level-2 node to one of the level-3 endpoints
are checked against each other. If the two are indeed on the same edge, then when moving

90

s

g

s’

g’

Figure 7.6: The start and goal are on a level-2 corridor

from the one with the larger such distance to this level-3 node, we will pass other other
node. This is because the distance to this level-3 node will necessarily decrease along this
corridor by the way the abstraction is built.

Thus, we begin constructing a channel starting at the farther level-2 node and working
its way to the chosen level-3 endpoint. If this reaches the level-3 endpoint (or the distance
of the current triangle being processed from this level-3 node is less than that of the other
level-2 node), then the level-2 nodes corresponding to the start and goal points are not on
the same level-2 corridor, and the search should proceed as described in Section 7.2.

Otherwise, once this process reaches the other level-2 node, this channel is combined, if
necessary, with those which connect the triangles in which the start and goal points reside
to the roots of their respective level-1 trees, to form a complete channel between the start
and goal points along this corridor.

The funnel algorithm is run on this channel to determine the length of the shortest path
through this channel, however this may not be a globally optimal path. Therefore the path
found is stored and the anytime algorithm described later in Section 7.2 is run in an attempt
to find a shorter path. For this search, the level-3 endpoint of this corridor which is closer to
the level-2 node corresponding to the start than that corresponding to the goal is considered
the start of the search of the most abstract graph, and the other is considered its goal.

However, as always, if the channel linking the two edges along the corridor is not wide
enough to accommodate the object, this path is not considered. Similarly, if the corridor
between either of the level-2 nodes associated with the start or goal and the level-3 endpoint
in the opposite direction from the other level-2 node is too narrow, then the abstract graph
search cannot be done.

Figure 7.6 shows two cases where the start and goal are on the same level-2 corridor.
An optimal path between s and g on the left goes through the channel which traverses that
corridor, whereas on the right the search of the most abstract graph must be done in order
to find an optimal path between s′ and g′, shown here as a dotted line.

7.2 Triangulation Reduction A* (TRA*)

In this section, we introduce the algorithm Triangulation Reduction A*, or TRA* for short,
for searching the most abstract graph using the techniques developed thus far. After this
algorithm has started, and none of the special cases listed in Section 7.1 have been found
to exist (except that in Subsection 7.1.6, which still necessitates this search, although with

91

slightly different starting conditions), the actual search must be performed on the abstrac-
tion.

While incorporating the same basic principles as the search of the base-level graph de-
scribed in Chapter 5, there are still a few details to be covered. Here we describe the
remaining considerations for this search of the most abstract graph.

7.2.1 Moving onto the Most Abstract Graph

Since we wish to search on the most abstract graph, whose vertices are the level-3 nodes
identified by the abstraction, the search must first reach these vertices from the start and
goal point. For both the start and the goal, there are three cases which could result in a
search of the most abstract graph: the point could be on a level-3 decision point, along a
level-2 corridor, or in a rooted level-1 tree. These possibilities are covered below. All other
situations are handled in the special cases covered in Section 7.1 and would not result in
this search.

The possibilities for both the start and goal can result in either one or two vertices on
the most abstract graph. For the start position, this corresponds to the one or two level-3
nodes which would initially be put on the priority queue used by the search. For the goal
position, there would be accordingly one or two level-3 nodes at which the search would be
considered to have found the goal.

If the point in question resides on a triangle classified as a level-3 node, then there is one
start or goal vertex for the search of the most abstract graph, corresponding to that node.
If it is on a level-2 node, there are two start or goal vertices corresponding to the level-3
nodes which form the endpoints of the corridor of which this level-2 node is part. Finally,
if the point is on a level-1 node, there are again two resulting vertices, corresponding to the
level-3 endpoints of the corridor containing the level-2 root of the tree in which the level-1
node lies. Basically this equates to the vertex or vertices on the most abstract graph which
are conceptually adjacent to the triangle containing the start or goal point.

For an example of this process, see Figure 7.7. Here, the start point s lies on a level-3
node, so the search queue is initialized with a single state corresponding to this node. The
goal point g, on the other hand, is in a level-1 tree. The arrows indicate the “walk” from
the triangle surrounding the goal point to the root of its level-1 tree, and then to the level-3
nodes g1 and g2 forming the ends of the corridor containing this root.

Another possible situation is shown in Figure 7.8. Here, the start point s is on a level-2
node, so states corresponding to the level-3 endpoints of the corridor (s1 and s2) containing

s

g

g

g
2

1

Figure 7.7: Abstract search starts with one state and has two goals

92

s

g

g1

s1s2

Figure 7.8: Abstract search starts with two states and has one goal

this node are put on the search queue. Even though both endpoints are the same node, they
are both added. This is because depending on the rest of the path found, an optimal path
might go either direction around the obstacle in the middle of the loop. The goal point g is
also on a level-2 node, but only one of its level-3 endpoints (g1) becomes a possible goal for
the search of the most abstract graph. This is because we assume the object to be of such
size that it cannot pass through one of the triangles to the left.

7.2.2 Accumulated Distance Measures

In addition, when the starting point is inside a triangle classified as a level-1 or level-2 node,
the distance between the start point and the level-3 nodes which initialize the search is
included in the g-values of the search states corresponding to those nodes.

For a start point on a level-3 node, there is no additional associated distance. For one
on a level-2 node, it is the distance between the corresponding triangle and the ends of the
corridor, as stored in the node itself. For one on a level-1 node, it is the distance associated
with reaching the root of the tree as stored in the node, together with the distance from the
root to the adjacent level-3 nodes similar to above, plus the distance of travelling through
the root node, which is not incorporated in either measurement.

For simplicity, this was not done for the paths between the goal point and its adjacent
level-3 nodes, thus the measurements for the heuristic were still taken between the triangles
corresponding to each state, and the goal point itself. Alternately if this distance was
considered for the level-3 nodes adjacent to the goal point, the heuristic for each state could
be that to the closer of the two goal vertices, plus the distance from that vertex to the goal.

7.2.3 Checking Channel Widths

Similar to how the distances are considered, the widths must also be checked when the
start or goal point is in a level-2 node. This is done by checking the choke point value for
the section of the corridor between the current node and the level-3 node at each end. If
the corridor is too narrow for the object to get to one end, the abstract graph search only
considers the vertex associated with the node at the other. If the corridor leading to both
ends is too narrow, the search fails (or if the case in Subsection 7.1.6 found an initial path,
that one is returned).

We know from checking before that if the start or goal point is in a level-1 tree, the
width of the channel connecting the triangle around that point to the root of its tree, is
enough to accommodate the given object. The width between the level-2 root of this tree

93

and its adjacent level-3 nodes is checked in the same way as above, except that the width
must also be checked through the root node between the edge connecting the root to the
attached tree, and that connecting it to the rest of the corridor across which is the level-3
node in question.

7.2.4 Corridor Lengths and Choke Points

Searching the most abstract graph differs from searching the base-level graph in that in-
formation regarding the g- and h-values and triangle width cannot be taken directly from
the individual triangles without nullifying the benefit of the reduced search space. There-
fore this value must be extrapolated from the information calculated during the abstraction
process.

For any level-3 node generated by TRA*, its heuristic is calculated as before, as with
the distance travelled measurements relying on global information such as the placement of
the start and goal positions, but the one that increments the value of its parent state must
take advantage of the abstraction information. This value is determined by adding that of
the parent state, to a measure of the distance to get from the entry edge of its triangle to
that associated with the current state.

As with TA*, this is done by multiplying the interior angle by the radius of the object in
question, however, because we are now traversing an entire corridor, we use the accumulated
interior angle of the corridor as stored in the abstraction. On top of this, we add the interior
angle of the parent state’s triangle, to add the distance for moving from it’s entry edge to
the start of the corridor. This combined angle is then multiplied by the radius of the object
and summed with the distance value of the parent state.

Similarly the search must take advantage of the information provided in the abstraction
when determining which channels can yield a valid path for the object. Since we have already
determined whether there are valid paths for this object between the start and goal points
and their adjacent level-3 nodes, it remains to determine if the object can move through
and between the level-3 nodes searched.

The abstraction provides the width of the narrowest point along each corridor, so as
long as this value is at least the diameter of the object for which we are finding a path, the
channel traversing that corridor will yield a valid path. However, we must also check that
the object can move between the edges of each level-3 node which connect it to the corridors
being traversed. For this, the appropriate width of the level-3 node is checked.

If either of these checks fail, the search will not consider searching the level-3 node at
the opposite end of that corridor from this node. This guarantees that for any state in the
search, there is a valid path between the start point and the triangle associated with that
state, passing through the level-3 nodes specified by that state’s ancestors.

7.2.5 Searching the Most Abstract Graph

In other respects, the search proceeds similarly to TA* described in Chapter 5 by considering
any triangle multiple times, having the same anytime algorithm paradigm, and using the
same g- and h-values, with slight modification as described above. The key difference is
that the states in TRA* correspond to level-3 nodes, or vertices of the most abstract graph,
whereas the states in TA* correspond to individual triangles, or vertices of the base-level
graph.

In Chapter 9, we explore the speed of TRA* as well as TA* when compared with the
standard A* and PRA* searches performed on a grid-world representation of the same
environment. We also explore the behaviour of the anytime algorithms in how they converge
on optimal paths, and the times required for the preprocessing of the environments tested,

94

including the initial triangulation, the abstraction thereof, and the computation associated
with the improved point location described in Chapter 8. This chapter also describes a
technique we applied to both TA* and TRA* to make the performance more predictable
and suitable for the anytime algorithm paradigm and the application areas for which they
were designed.

95

Chapter 8

Other Enhancements

This chapter briefly describes two enhancements added to both TA* and TRA* which are
tangent to the main work of this thesis. The first such enhancement is a faster method of
point location in the triangulation introduced to keep the benefits of the triangulation-based
searches from being lost to a slower version of this task, and is described in Section 8.1.
The second is a minor modification made to the anytime algorithm associated with both
searches which decreases the time between the start of the search and when the first solution
is found, while at the same time retaining the convergence on an optimal solution, presented
in Section 8.2.

8.1 Sector-Based Point Location

To search for a path between two points in a triangulation, the first task is to find the
triangle in which one of the points is contained, and then search for a path to the other.
This first process is called point location. Point location is typically done in a triangulation
by “walking” from some start triangle towards the desired point [19]. See Figure 8.1 for an
example; here, the grey point is found by a walk indicated by the arrows, starting at the
triangle in the upper-left corner of the triangulation.

This can be done, for example, by checking each edge of a triangle if the point lies to
the left, when traversing these edges in counterclockwise order. If it lies to this side of all
three edges (or along one edge), then the point is inside the current triangle. If the point is
outside one of the edges, the triangle opposite that edge can be checked next. In this way,
the algorithm gets progressively closer to the point in question.

However, in [27], the point location was done starting at a fixed triangle, similar to in
Figure 8.1. On average, then, this process had to “walk” halfway across the triangulation
to find each point for which this process was done. Not surprisingly, this was determined to
take a large portion, if not the majority of the time required by the pathfinding algorithm.

This delay threatened to overshadow the benefits TA* received from using the triangu-
lation, and also those that TRA* received from using the most abstract graph constructed
from it, since this second algorithm requires that both the start and goal points be located
in this way, instead of just one. Because we wanted our triangulation-based methods to be
competitive with grid-based methods, an improved point location technique was in order.

There are a number of methods which offer improved performance: the triangulation
refinement method [31], the chain method [20], persistent search trees [42], persistency
using similar lists [15], and a randomized incremental method [40]. These techniques all
find points in O(n log n) time and require O(n) memory for the structures associated with

96

Figure 8.1: Point location from a fixed triangle

Figure 8.2: Decomposition of the environment into sectors, and their midpoints

them. However, these techniques would be difficult to update in the presence of changes in
the triangulation, and thus were not desirable.

While methods are available that deal with the changes possible in a representation such
as a DCDT, for example those summarized in [14], we desired a simple solution which was
both easily updated in the event of repairs to the environment representation, and did not
require complex structures to maintain. For this reason, we developed another method for
improved point location, which we detail below.

Our redesigned method consists of conceptually decomposing the environment into sec-
tors, in our case, forming a grid of rectangles over the environment, because points are
defined by their horizontal and vertical coordinates, thus allowing the corresponding sector
for a point to be calculated easily in constant time. Figure 8.2 shows the same environ-
ment as in Figure 8.1 with such sectors overlaid on it. Midpoints for these sectors can be
calculated easily as well, and appear in Figure 8.2 as grey circles.

When preprocessing of an environment, such as the abstraction process described in
Chapter 6, is being done, each triangle visited is checked to see if it overlaps any sector
midpoints. This is done by taking the bounding rectangle for the triangle and checking each
of the sector midpoints it overlaps, if they are within this triangle by using the same method
as described earlier. When the triangle enclosing each sector midpoint is determined, the
pointer corresponding to that sector is set to this triangle. These pointers are stored in a
two-dimensional rectangular array to allow constant time access.

97

Figure 8.3: Sector-based point location

Now, for each point for which the location process is to be performed, the sector in
which it is contained is calculated by its coordinates. With this information, the triangle
enclosing the sector midpoint is retrieved from the array of these values. Then, the same
“walk” process [19] is started, but from this triangle, resulting in a much shorter distance
to the point and fewer triangles visited. An example of this is shown in Figure 8.3, with
the active sector outlined and the midpoint shown, and the point being located indicated
by another grey circle. Notice how many fewer steps are required to find such a point using
this process.

Indeed, the “walk” is reduced in expected length to half the dimension of a sector. This
results in enough of a performance gain to allow the benefits of TA* and TRA* to become
apparent. For the experiments presented in Chapter 9, a modest 10 × 10 grid of sectors
was used on each environment. As shown in that chapter, the preprocessing time associated
with this technique is almost negligible, and the execution times resulting from TA* and
TRA* are impressive, despite performing point location once and twice, respectively, for
each path tested.

One can note that the repair of this array of pointers to triangles surrounding sector
midpoints can be easily repaired if the triangulation changes using the mechanisms described
in Section 3.4. Each triangle that was changed or added is simply checked, as all others, if
it overlaps any sector midpoints, and the pointers are set accordingly. The time required
for such a repair is minimal, as with the initial preprocessing. If, for some reason, there is
no triangle corresponding to the midpoint of the sector containing the point for which this
process is being performed, the point location “walk” can simply be started from some fixed
triangle as before.

8.2 Finding a First Solution Quickly

During an initial run of the experiments presented in Chapter 9, some cases appeared that
would be unacceptable for application in real time, despite that the vast majority of solutions
were found very quickly. In certain situations such as that shown in Figure 8.4, the fact
that any triangle in the case of TA*, or level-3 node in the case of TRA*, can be considered
multiple times during the search, creates a weakness for these algorithms which extends
their runtimes beyond even those of the standard A* algorithm.

The Euclidean distance heuristic draws these searches into a kind of “canyon”, at which
point it gets caught up in the many triangles or level-3 nodes therein. The many small
obstacles in the canyon pose a problem to both TA* and TRA*. For TA*, these obstacles

98

s g

Figure 8.4: Situation which hinders TA* and TRA* searches

increase the number of triangles in this region, which increase the state space for this
algorithm considerably. For both TA* and TRA*, these obstacles increase the number
of level-3 nodes in the most abstract graph. TRA* searches these nodes directly, so this
increases the size of its state space, but also for TA*, these points allowed the search to
overlap, so each one increased the number of times the triangles in the canyon could be
considered.

Because both TA* and TRA* will attempt paths going each direction around these
obstacles, the number of states searched will increase considerably. In the case of such small
obstacles, the distance measures, in avoiding an overestimate, will not increase by much
with each state searched. This causes many combinations of paths to be attempted inside
the canyon before these values finally increase enough for the search to venture out and find
a correct path.

In general, small obstacles pose a problem for these techniques. Their consideration of
triangles or level-3 nodes multiple times results in an exponential number of potential paths,
and the distance measures are required to prune the majority of these. However, when the
obstacles are small these distance measures can only increase slightly at each step, causing
many more combinations of these paths to be followed than would be with larger obstacles.

Interestingly, the abstraction technique harnessed by TRA* would simply disregard such
an enclosed area as a dead end if it did not contain obstacles. In this case, only abstracting
the environment to the point where it does not lose information about its topology, is not
enough to provide an efficient mechanism for dealing with such situations.

There were several possibilities for dealing with this drawback, however many simply
would reduce the effect of very specific such situations instead of addressing the overall
problem. A pathfinding system which completely solves this problem remains an open
question, however there are several possibilities for further abstraction of the environment
beyond the most abstract graph (losing some information about the topological structure of
the environment and thus unable to guarantee optimal solutions) discussed in Section 10.2.

For now, the focus was put on the anytime algorithm aspect of these searches, since
the spirit of such an algorithm is to return an initial path quickly and then converge on
an optimal solution. However, in doing so, we did not want to sacrifice the ability of these
algorithms to guarantee such convergence to optimal like many approaches would. Therefore
a simple adjustment was made to prevent them from searching any triangle or level-3 node
multiple times until the first solution is found.

This was done simply by checking, until the first solution is found, if the triangle asso-
ciated with each state about to be expanded by the search has been marked as previously

99

expanded. If so, the search state is put on a secondary search queue instead of being ex-
panded, and if not, the state is expanded as usual and the associated triangle is marked
as having been expanded. When the first solution is found, all the states in the secondary
queue are put back in the primary queue and search continues as normal without this extra
check at each state expansion.

This modification does not change the fundamental aspects of the search, only decreases
the time required by both algorithms to find the initial solution. In this respect, TA* and
TRA* become more useful for real-time applications, lengthening the window of time in
which a solution is available, producing an initial solution in even the degenerate cases
mentioned above, early enough for such time requirements. Of equal importance is the fact
that this technique does not affect the production of subsequent solutions, and thus still
guarantees the convergence of both searches to an optimal solution.

In Chapter 9, the paths for which these algorithms could not find the optimal path in
the time allotted, can be attributed to this type of exceptional situation. Since the searches
were stopped after a multiple of the time required to find their first solution, these cases will
not yield an optimal path since the first solution is found so quickly, and an optimal one
takes so long. These mostly occurred in the environments taken from WarCraft III maps,
which had many trees consisting of single tiles, and often resulted in the small obstacle
pathology mentioned above.

While only a small fraction of the paths tested resulted in such a situation, and TRA*
still being able to find such optimal paths eventually, it is important to develop solutions
for such cases when the target application works in real time. An occasional suboptimal
solution is far more desirable, in these conditions, than one that takes excessively long or
returns no solution at all.

100

Chapter 9

Experiments

This chapter covers the experiments done to validate and measure the benefit of searching
both the base-level graph (TA*) and the most abstract graph (TRA*) against both standard
(A*) and abstracted (PRA*) grid-based techniques.

Section 9.1 discusses the details of the experiments, including both how they were done
in the previous paper and how they were modified so that the techniques presented in this
thesis could be meaningfully compared to the others. The results given by the experiments
performed on our techniques are given in Section 9.2, and compared to the previous results.
The immediate implications of these results are also discussed in that section. Following
this, Section 9.3 further explores what these results could mean for further work.

9.1 Experimental Setup

For the experiments, we desired to test both TA* and TRA* against the benchmark A* and
recent PRA* presented in [47]. Thus, the setup for these experiments is identical to that in
this paper to allow a direct comparison of these methods. 116 environments were included
in the experiment: 75 maps from the game Baldur’s Gate and 41 from WarCraft III, which
were selected as being interesting for having sufficient size and complexity.

These environments were particularly useful in that they come from successful com-
mercial games, and therefore provided a unique opportunity to test these methods for the
very application for which they were designed. Providing sufficient performance to allow
pathfinding effectively in real-time in such environments would certainly indicate that the
methods developed in this thesis successfully accomplished their goal.

The Baldur’s Gate maps consisted of a grid of tiles, each marked either traversable
or obstructed. Each of these maps were scaled to 512 × 512 tiles without changing the
connectivity of the resulting graph. To convert these into a polygonal representation which
can be triangulated, each traversable region is traced by placing line segments between pairs
of traversable and obstructed tiles, in sequence to form a polygon around them. Similarly,
obstacles are added to the representation. In this way, constrained edges of the triangulation
equate to barriers between traversable and obstructed space in the environment. All paths
were found between two tiles in the same component of traversable space.

The WarCraft III maps were slightly different in that each tile had both a type of terrain
and a height value associated with it. Any tile could have a type indicating it was grass,
swamp, water, a tree, or outside the play area. Furthermore, a tile could be a ramp which
allowed paths to cross a height difference. These maps were also scaled to 512 × 512 tiles
while maintaining their structure. Similarly to the Baldur’s Gate maps, each component of
a different terrain type was traced by line segments forming a polygon around it. For this

101

purpose, grass and swamp tiles were considered the same type so paths could cross between
their respective tiles. After that, line segments were added between tiles of different height
values where the associated tiles were not ramps. In this way, tile type boundaries and
“cliffs”, or abrupt height differences with no ramps, could not be crossed by paths. Paths
in these maps were always within components of the same tile type (paths between two
positions in water were allowed, for example), with at least one valid path between the start
and goal (not separated by a cliff).

It is interesting to note that while the borders of the tiles were followed exactly during
the conversion from tile-based to polygonal environments, often it was apparent that the
tiles formed an inaccurate representation of the actual structure of the environment. For
example, there were several “staircase” patterns in the tiles, which if originating in a polyg-
onal representations could be represented by a single diagonal line. This would significantly
reduce the number of triangles in the triangulation while at the same time improving its
accuracy. Similarly if the tiles were arranged to approximate a curved barrier in the en-
vironment, this could be approximated more accurately in a polygonal representation and
result in fewer triangles in the resulting triangulation.

If extrapolating these structures was done, TA* would receive a significant performance
increase due to the reduction of the number of triangles in the triangulation, which in itself is
already low compared to the number of cells in the corresponding grid. TRA* would remain
unchanged for the most part, since such detail would not affect the number of vertices in
the most abstract graph which it searches, only the distance measures slightly.

On each map, pairs of points are used where the optimal path between them on the
grid is between 0 and 511 tile lengths, inclusive. Each pair is put into one of 128 buckets
numbered 0 to 127 based on this length. In particular, a pair of points whose optimal path
on a grid is l tile lengths, is put into bucket i, where i = bl/4c. 10 pairs of points were
generated for each bucket on each map, resulting in 1280 paths per map, or 1160 paths per
bucket, and 148480 paths overall.

For the results showing percentiles, the data point at any path length relates the data in
the corresponding bucket. A data point for the nth percentile is the value of the bn/100×
1160cth value, typically ordered from best to worst. Standard deviations were not used
because it was not certain that the data was normally distributed.

For the experiments involving TA* and TRA*, the radius of the object was taken to be
just less than half the length of a tile, so that the object would have to stay in the centers of
tiles unless moving through free space, keeping it from having too much advantage over the
grid-based methods in terms of path length. It was kept just short of half the width to avoid
floating-point calculation errors in the modified funnel algorithm, and the determination of
the object’s traversability through triangles or corridors.

In the experiments using the grid-based methods A* and PRA*, an object could move
to any of its 8-neighbours which were unmarked. However, cutting corners was disallowed,
that is, moving diagonally across a 2 × 2 block of times was only permitted if none of the
four tiles were obstructed.

The experiments were done on a computer with a Socket 754 AMD Athlon 64 3200+
processor and 2 sticks of 512 MB PC3200 CAS2-3-3-6 RAM and a motherboard with an
NVIDIA nForce3 250 chipset. The code was created and compiled in Microsoft Visual Studio
.NET 2003, and single-threaded.

To avoid having to re-implement the techniques used in [47], we simply took the exact
paths tested there for these experiments to compare the results directly. These results were
also single-threaded, and run on a dual-CPU Power-Mac running at 2 GHz with 1 GB of
RAM and compiled in gcc 3.3. To compensate for the difference in system speeds between
the two result sets, the running times for the original results were halved to facilitate more
accurate comparison.

102

9.2 Results

Here we will show and discuss the results found in the experiments described earlier. The
first thing to notice is the size and complexity of the environments in question. Since all
environments have been scaled to 512 × 512 tiles, there are 262,144 cells in the grid used
by both A* and PRA* for all 116 maps tested.

However, when the tracing operation is performed on the components of the environ-
ment to convert it to a polygonal representation, it is significantly simplified. Consider the
“constraints” line in Figure 9.1. Here the maps were ordered by the number of triangles in
the corresponding triangulation and given indices to arrange them from left to right.

There are more than 20 times more cells in a grid than there are constraints in the polyg-
onal representation of even the most complex environment, and for many environments, this
factor increases to above 100. This is a testament to the efficiency of polygonal represen-
tations over grid worlds, especially when one considers that often there would be far fewer
still had the original environment been represented this way, instead of forcing diagonal and
curved barriers to be “rasterized” to be represented by a grid.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 20 40 60 80 100 120

Map Id

Map Statistics (Counts)

Triangles
Constraints

Level-3 nodes

Figure 9.1: Triangles, contraints, and level-3 nodes in environments tested

Now, consider the “triangles” line in the figure. Again, there are far fewer cells in a
triangulation than a grid, with the grid-world representation having over 10 times more cells
than the most complex triangulation, and over 65 times more than the median. Since this
reflects the base-level graph searched by TA*, we can see already that it offers a significant

103

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120

T
im

e
(m

ill
is

ec
)

Map Id

Map Statistics (Preprocessing Times)

Total
Reduction

Triangulation
Sector

Figure 9.2: Preprocessing times divided into triangulation, reduction, and sector processing

advantage over the grid-based techniques.
Finally, and most importantly, notice the “level-3 nodes” line at the bottom of the

graph. Not only are there significantly fewer of these than there are grid cells, constraints,
or triangles, but their number hardly changes as the complexity of the environment forces
the numbers of triangles and constraints up. This is the benefit of the independence of the
most abstract graph from the nature of the obstacles in the environment and only their
number. Even the maps with the most level-3 nodes have only a few hundred of them, far
below the figures for other representations. Most maps have far fewer level-3 nodes still.
The fact that TRA* searches the most abstract graph of which these are the vertices, gives
it an even greater advantage.

Figure 9.2 shows the times required to perform the preprocessing of each environment.
Again, this uses the same system of indexing the maps by the number of triangles in the
resulting triangulation from Figure 9.1. While the times are long enough that this could
not likely be done in real time, it might be able to be performed if the computation is
spread out somewhat. This means it could be used if changes in the environment happen
occasionally, however it would not be suited to incorporating constantly moving objects,
such as other objects, in the environment. Possibilities for dealing with such situations are
given in Section 10.2. This process could easily be done as a map is loaded at the onset of
a level, for example, with the resulting wait being almost imperceptible.

It is important to notice that these times are indeed linear in the number of triangles

104

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

T
im

e
(m

ill
is

ec
)

A* path length

A* Execution Time

 95%
 75%

Median
 25%
 5%

Figure 9.3: Percentiles of A* running times by path length

in the resulting triangulation, so as the environments become more complex, these times
will not increase excessively. Given the results here, processing of a single triangle takes
approximately 20 microseconds. The total preprocessing time is fairly evenly split between
creating the Constrained Triangulation from the constraints using the implementation de-
scribed in Section 3.4, and creating the most abstract graph using the algorithm given in
Chapter 6. An almost negligible amount of time is spent doing the preprocessing for the
point-location technique described in Section 8.1.

Figure 9.3 shows the execution times for the standard A* algorithm on the grid represen-
tation of the environment. Such times are certainly prohibitive to a real time setting with
some of the longer paths taking over a quarter of a second. Something else to notice is the
way the time increases more and more the longer the path gets. Certainly this solution does
not scale well to longer paths, and on top of its long execution times, its behaviour can be
hard to predict, as evidenced by the spread of the percentile lines, which can be important
for application areas such as commercial games.

The execution times for PRA* (described in more detail in Section 2.4) are given in
Figure 9.4. Looking at the time scale on the left and comparing it to that in Figure 9.3
indicates how much of a significant performance increase PRA* has over the standard A*
algorithm. Considering that it works on a grid like A*, this algorithm performs quite well.
This can be attributed to the selection of a layer of abstraction on which to perform the
search, which reduces the search space significantly, but still provides sufficient details about

105

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

A* path length

PRA* Execution Time

 95%
 75%

Median
 25%
 5%

Figure 9.4: Percentiles of PRA* running times by path length

the environment to provide a high quality path.
In addition to the raw speed of this algorithm, the execution times increase in a more

linear fashion than those of A*, when presented with longer paths. This is because the
further the start and goal points are away from each other in terms of path length, the more
abstract the layer where they meet at the same state, and subsequently, the more abstract
the layer where the initial search is done.

Furthermore, the lines representing the percentiles are significantly closer together, indi-
cating that the running time is much more predictable than A*, which makes it more suited
to real time applications such as commercial games. Again, this is caused by many of the
details of an environment that can complicate the execution of a pathfinding search being
removed during the abstraction process.

This loss of information also has a negative effect on the lengths of the paths found
using this algorithm; since details of the environment are lost the further the layer being
searched is from the original graph, an optimal path on this layer can sometimes translate
into suboptimal paths on the environment. Luckily in practice, the paths returned by PRA*
are very likely either optimal, or very close.

Before looking at the execution times for the TA* and TRA* algorithms, some termi-
nology must be introduced. For both of these algorithms, we designate a parameter F to
denote the progress of the anytime algorithm. The value of this attribute designates the
multiple of the time required by the algorithm to find the first path.

106

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

T
im

e
(m

ill
is

ec
)

A* path length

TA* Execution Time (F=1)

 95%
 75%

Median
 25%
 5%

Figure 9.5: Percentiles of TA* running times by path length

For example, in Figures 9.5 and 9.6, the execution time with F = 1 indicates it is the
time required by the algorithm to find its first solution. Later, in Figures 9.10, 9.11, 9.12,
and 9.13, this value represents the multiple of this time at which the length of the current
best path is taken. We also use TA*(f) to denote TA* with F = f and similarly TRA*(f)
to denote TRA* with F = f .

The execution times for the TA* algorithm described in Chapter 5 with F = 1 appear
in Figure 9.5. Again, a glance at the time scale indicates the improvement this technique
makes over A* and even PRA*. Even though this algorithm only searches the base-level
graph, the benefit of the reduced number of triangles required to represent the environment
over the number of cells required by the grid-world techniques, results in shorter execution
times. This indicates how efficient a triangulation is for environment representation.

Despite its reduced execution times, however, the execution times of TA*(1) resemble
those of A* in how they increase as the corresponding A* paths get longer, and how much
the times for the different percentiles differs. Unlike PRA* and TRA*, TA* does not take
advantage of an abstraction, and as such, the number of search states expanded increases
significantly the farther the search must extend, especially considering that it is required to
consider multiple states corresponding to any triangle. Furthermore, this lack of an abstract
representation means that variations in the environment affect TA*’s performance more so
than that of PRA* or TRA*, which are not affected by such details, resulting in more
varied execution times than for those algorithms. Below we will explore the behaviour of

107

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500

A* path length

TRA* Execution Time (F=1)

 95%
 75%

Median
 25%
 5%

Figure 9.6: Percentiles of TRA* running times by path length

the anytime algorithm and how it converges on an optimal solution.
Figure 9.6 displays the execution times of the TRA* algorithm described in Chapter

7, with F = 1. The execution times of this algorithm are less than the other algorithms
tested, because it benefits from both the improved representation efficiency afforded by the
triangulation, and the reduced search space resulting from the abstraction process.

In addition to these short execution times, both the variation in these times and the way
they increase as the lengths of the corresponding A* path lengths change are more akin to
those features of the PRA* algorithm. Again, the abstraction reduces the details which cause
the variation in the execution times. There is more variation here than with PRA* because
the abstraction mechanism used by TRA* described in Chapter 6 reduces the environment to
the minimal representation which still contains the topological structure of the environment,
whereas the abstraction mechanism used in PRA* can reduce the environment further, at
the cost of the ability to guarantee finding an optimal path.

Similarly, the execution times for TRA*(1) increase in a slightly less linear fashion than
PRA* as the corresponding A* path lengths change, because of this inherent limit in the
abstraction used by TRA*. As the distance between the start and goal increases, PRA* can
simply perform the search on a more abstract representation of the environment, resulting
in a smaller increase in the resulting execution time, however TRA* has only a single layer of
abstraction at its disposal. The behaviour of the anytime algorithm associated with TRA*
and its convergence of an optimal solution is explored below.

108

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500

tim
e

ra
tio

A* path length

Median Speedup over A*

TRA*(F=1)
TA*(F=1)

PRA*

Figure 9.7: Median ratio of execution times of PRA*, TA*(1), and TRA*(1) to A*

We present a more direct comparison between the algorithms tested in terms of speed
and the number of node expansions in Figures 9.7 and 9.8, respectively. Figure 9.7 shows
the median speedup of PRA*, TA*(1), and TRA*(1) over A*. The speedup of PRA*, while
less than that of TA*(1) and TRA*(1), increases steadily with the A* path lengths, as its
abstraction allows its execution times to avoid the performance hit taken by A* with this
increase.

TA*, while offering a greater speedup than PRA*, shows a decrease in this benefit
as paths increase in length. Indeed, while the initial benefit of the reduced search space
offered by the triangulation of the environment creates a large initial speedup, the lack of
an abstraction to help it deal effectively with longer paths, makes it level off, eventually
becoming parallel to the horizontal axis, indicating only a linear increase in performance.

While such an increase is certainly beneficial, TRA* performs even better. The even
further reduced search space afforded by the abstraction process allows TRA* to gain a large
initial speedup over A*, moreso than the other algorithms. On top of this, however, this
speedup steadily increases as the corresponding A* paths get longer because, as mentioned
before, the abstraction removes many details which make searches such as A* expand with
this distance.

The results shown in Figure 9.8 echo these patterns in the 90th percentile of search state
expansions. As with its times, the number of states expanded by A* is significantly more
than the other methods, and only gets worse as the paths increase in length. PRA* again

109

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

no

de
s

ex
pa

nd
ed

 /
10

00

A* path length

Node expansions (90-th perc.)

A*
PRA*

TA* (F=1)

Figure 9.8: 90th percentile of number of search states expanded by A*, PRA*, and TA*

does not exhibit this behaviour, and shows much improvement over the number of states
expanded by A*.

TA* expands even fewer search states, being barely visible at the bottom of the graph,
showing again the benefit of triangulations as an environment representation. TRA*, com-
bining this benefit with that of its abstraction, expands even fewer nodes than TA* and was
not included in this graph because it would not be visible.

Another trade-off between pathfinding techniques such as PRA* which use abstractions
that can lose information about the environment, and those in this thesis, is the solution
quality. Of the algorithms compared in this section, A* returns a single path which is
guaranteed to be optimal, but which takes significant time and memory to find.

In contrast, PRA* returns a single path which, with a high degree of probability, is
very close to optimal. This algorithm itself provides the opportunity to trade-off execution
time and path quality by selecting the abstraction layer on which the initial search is given.
The fact that the first (and only) solution provided by this technique is likely very close
to optimal is an advantage, however, if the abstraction is used to any benefit (the search
is performed on any but the original representation), one cannot be guaranteed an optimal
solution.

The anytime algorithm format of the TA* and TRA* algorithms provides a different
trade-off between execution time and path quality. Neither the base-level graph utilized by
TA* nor the most abstract graph for TRA* provide options for differing levels of detail.

110

1/2

1/2

45

C

o

Figure 9.9: Calculation of the constant C to determine the “bound” line

The base-level graph presents the environment in complete form and the most abstract
graph provides as few details as possible while still retaining the topological structure of the
environment.

Thus, the time for these algorithms to find the initial solution and the quality of this
solution cannot be easily controlled, as with the time required to converge on an optimal
solution. However, at any time between these, the searches can be stopped and will yield
a solution whose quality is between these two. In this way, giving more time to TA* and
TRA* results in a better quality solution, which is a useful compromise, especially in a
real-time setting when such computation might have to be halted if resources are needed
elsewhere.

Figures 9.10, 9.11, 9.12, and 9.13 display the ratio of the length of the paths found by
TA* and TRA* with various values for the F parameter, to the length of TA*(10). While
most of the time TA* will converge on an optimal solution given 10-fold the time required
to find the first solution, in some instances this was not the case. To cover such possibilities,
we wanted to add a factor indicating how short an optimal solution could potentially be.

We know that the paths returned by A* are optimal, but because it is a grid-based
method, they are constrained to moving between centers of tiles and the paths returned by
the triangulation-based methods TA* and TRA* are not. Therefore, even suboptimal paths
given by these last two methods are capable of being shorter than the optimal path while
constrained to a grid. So we determined the maximum ratio of a grid-constrained path to
its arbitrary-motion equivalent.

This is shown in Figure 9.9, where half of the grid path (shown by a solid line) is axis-
aligned and the other half at a diagonal, and the arbitrary-motion path (shown by a dotted
line) moves between the same endpoints. One can check that modifying this configuration
necessarily increases the ratio of the length of the arbitrary-motion path to the grid one.

If we take the length of the grid path to be 1 like in the figure, we need to determine
the length of the corresponding path in free space. First we must calculate the verti-
cal and horizontal measurements of the diagonal section of the path (these will be equal
because the line is on a 45◦ angle from the horizontal and vertical axes). Using Pythago-
ras’ Theorem, these dimensions are 1

2 =
√
x2 + x2 ⇒ 1

2 =
√

2x2 ⇒ (1
2)2 = (

√
2x2)2 ⇒

12

22 = 2x2 ⇒ 1
4 = 2x2 ⇒ 1

8 = x2 ⇒
√

1
8 =

√
x2 ⇒ 1√

8
= x ⇒ x ≈ 0.3536. Now,

the arbitrary path is 1
2 + x in length along one axis and x in length along the other,

yielding a length of C =
√

(1
2 + x)2 + (x)2 =

√
(1
4 + x+ x2) + (x2) =

√
1
4 + x+ 2x2 ≈√

(0.25) + (0.3536) + 2(0.3536)2 =
√

0.25 + 0.3536 + 0.25 =
√

0.8536 ≈ 0.9239.
With this knowledge, a “bound” line was added to Figures 9.10, 9.11, 9.12, and 9.13

corresponding to the minimum length the optimal path with arbitrary motion could be. For
the graph of the nth percentile path length, this bound was calculated to be the (100−n)th

111

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 0 100 200 300 400 500

L
en

gt
h

R
at

io

A* path length

TA* Path Length Ratio (75. perc.)

A*
F=1
F=2

bound

Figure 9.10: Ratio of 75th percentile of TA* path length to TA*(10)

percentile of the A* path length, multiplied by this constant C.
We see in Figure 9.10 the 75th percentile length of the initial paths returned by TA*

(F = 1) and those returned given twice this amount of time (F = 2). Again, for the most
part, and especially on this particular graph, TA*(10) is optimal, and thus the line at ratio
1 represents roughly the optimal path length. This is less true for the longer paths on the
higher percentile graphs, where the optimal path length might be slightly less, moving this
line down slightly towards the right of the graph.

Here we see that most of the time, TA* finds an optimal path first (indicated by the
fact that most of the time, the line for TA*(1) lies on the ratio 1, meaning it is the same
value the algorithm would return given 10 times as long). For some paths whose A* length
is greater than 400 tile widths, the initial path returned is slightly longer than optimal,
although by small fractions of a percent. In these cases, the final path is reached before
F = 2, as this line lies entirely at the ratio 1.

Notice that the length of the path returned by TA*(10) is still within 4% of the minimum
length possible for the optimal path for the majority of these paths. Also, even when the
initial solution is longer than the final one returned, it is still much shorter than the optimal
path on the grid returned by A*.

Figure 9.11 shows the 95th percentile for the TA* path lengths. We see that in these
rare cases, the first path returned by TA* (F = 1) is longer than that returned by TA*(10)
on paths whose A* length is as short as 150 tile widths, and reaches roughly 5% longer than

112

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0 100 200 300 400 500

A* path length

TA* Path Length Ratio (95. perc.)

A*
F=1
F=2
F=4
F=6

bound

Figure 9.11: Ratio of 95th percentile of TA* path length to TA*(10)

TA*(10). Looking at the line for TA*(2), we see it yields the same solution as TA*(10) until
the A* length of the paths reach about 250 tile widths, and the path at this point can be
up to 3% greater.

Similarly we see how on paths with longer A* lengths, a greater multiple of the time
required to find the first path (or F parameter) is needed to provide an optimal path. In
this case we see that TA*(6) finds paths of the same length as TA*(10) for 95% of the paths
tested, for all but a few of the longest, where it deviates from this value slightly.

Now turning to TRA* for Figure 9.12, we see a slightly different situation. The initial
path returned by TRA* is only equivalent in length to TA*(10) 75% of the time for paths
whose A* length is less than 200 tile widths, whereas with TA* almost all tested paths found
initially were equivalent to this figure. Increasing F to 2 finds paths of the same length as
TA*(10), 75% of the time, up to an A* length of about 400 tile lengths, and a higher value
for this parameter (and thus more time) is required to yield this value for all paths.

This is because TA* has inherently more accurate g-values, which is possible because
visiting each triangle individually allows a better estimate, whereas TRA* skips entire corri-
dors of triangles, only having the opportunity to adjust these values a fraction as often. This
means that the initial solution returned by TRA* is often longer than that for TA*, and
TRA* also takes longer to converge on an optimal solution, in relation to the time required
to find its first solution. Note, however, that while TRA* requires a greater F parameter
value to find an optimal solution, its first solution is so fast that converging on an optimal

113

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 0 100 200 300 400 500

L
en

gt
h

R
at

io

A* path length

TRA* Path Length Ratio (75. perc.)

A*
F=1
F=2
F=4

bound

Figure 9.12: Ratio of 75th percentile of TRA* path length to TA*(10)

solution with TRA* still takes a fraction of the time that TA* requires to find arrive at the
same solution.

In Figure 9.13, we see this effect becomes even more pronounced at the 95th percentile.
Occasionally, the length of the first path found by TRA* is significantly longer even than
that of an optimal path constrained to the grid (A* path). The lengths of the paths returned
by TRA*(2) are fortunately less, with this figure decreasing as more time is allotted to the
algorithm.

Although in these rare cases, it takes TRA* several times longer to yield a path close to
that of TA*(10), than it took to find the first solution, these are likely the cases where TA*
requires a higher F parameter to find such a value as well, and the initial solution is returned
by TRA* several times faster than by TA*, so TRA* will still, in most cases, converge on
an optimal solution first. Thus, although the initial path returned by TRA* is often longer
than that returned by TA* and it takes longer in relation to the time to find this first path,
to converge on an optimal path, it still most often reaches this value long before TA* does.
The benefit of the smaller state space afforded by the most abstract graph, then, outweighs
the drawback created by the less accurate distance measures resulting from it.

114

 0.92

 0.96

 1

 1.04

 1.08

 1.12

 1.16

 1.2

 1.24

 1.28

 1.32

 0 100 200 300 400 500

L
en

gt
h

R
at

io

A* path length

TRA* Path Length Ratio (95. perc.)

F=1
A*

F=2
F=4
F=8

bound

Figure 9.13: Ratio of 95th percentile of TRA* path length to TA*(10)

9.3 Discussion

The behaviour seen in the anytime algorithms associated with TA* and TRA* could be
exploited using a clever algorithm. One can see that in most cases, when the first path
found by these algorithms is short or found in a very short amount of time, this path is
very close to optimal, if any longer at all. Conversely, when the first path found is quite
long or requires more time to find, this path is often farther from optimal and the algorithm
requires longer to converge.

Using this knowledge, one could devise an algorithm which takes the length of the first
path found or the time required to find it, and determines a multiple of this time at which a
solution very close to optimal is likely. Therefore in the case of short or quickly-found paths,
the algorithm could be stopped immediately and in the case of paths which are longer or
require more time to find, it could be given more time to converge.

This type of setup would be useful in cases where there is a certain, fixed amount of time
in which some number of paths must be found. Such a situation is common for example in
Real-Time Strategy games where a number of objects could be ordered to move somewhere
with a single command. This way less time is wasted on simpler paths allowing more for
more difficult ones, and providing better quality paths on average.

This also alleviates another problem common to anytime algorithms: the fact that an
optimal solution is often found long before the algorithm can determine that it has found one.

115

This approach halts the algorithm when it is likely that an optimal solution has been found,
which can sometimes result in a suboptimal path being returned. However, in commercial
games, a slightly suboptimal path is often more desirable than one which requires more
resources to find.

When comparing our algorithms TA* and TRA* to A* and PRA*, a number of patterns
emerged. First, the use of a triangulation to represent the environment gave TA* and
TRA* an advantage over the other methods, which used a grid. Even TA* found solutions
faster than PRA*, despite that the latter benefitted from an abstraction mechanism and the
former worked on the environment itself. TRA* performed the best of all the algorithms
tested, by having both the superior environment representation, and an efficient abstraction
thereof.

Second, an abstraction mechanism not only allowed the methods PRA* and TRA* to find
solutions faster than their counterparts with no abstraction, but also made these methods
more predictable and less hampered by the length of the path. PRA*, which searched an
abstraction of the grid-world environment, performed better than A*, which searched the
grid world directly. Similarly, TRA* performed better searching the most abstract graph of
the triangulated environment than TA* did searching its base-level graph.

The fact that PRA* was not as affected by the length of the path can be attributed to
the fact that the longer the path between these points, the more abstract the layer at which
they meet and therefore the more abstract the layer at which the search is performed, thus
keeping the number of states searched from increasing as much with this distance. These
layers of abstraction make PRA* the better of the two abstraction-based methods in dealing
with longer paths effectively. While the most abstract graph used by TRA* has a single
layer, its vertices again depend only on the number of obstacles in the environment, so an
algorithm searching this reduced representation of the environment is affected less by the
length of the resulting path by virtue of paths requiring fewer vertices.

Similarly, the abstractions allow these two methods to be more predictable (with less
variation in the times to find solutions) than their counterparts. In both cases, this is a
result of the details which complicate pathfinding tasks being lost to the abstracted version
of the environment. In the case of TRA*, such details as dead ends, long corridors, and
complexities in component barriers, are identified explicitly during the abstraction process.
For PRA*, these are removed as increasingly abstract representations of the environment
lose more information about the original environment.

To conclude, PRA* was the most predictable and least affected by path length, of all the
methods tested. Considering the grid-world environment on which it was based, it showed
vast improvement over A*, the other algorithm based on this representation. TRA* also
showed that it handled such increasing distances well, and its running times did not vary
as much as the methods which did not benefit from abstractions. The main strengths of
TRA* are first its raw speed, which was greater than any other method, and second, the
ability of its anytime algorithm to converge on an optimal solution.

TA* also offered significant speed, being faster than all but TRA*, and similarly afforded
convergence to an optimal path. While it did not handle distance as well as the abstraction-
based methods, it was still faster than both grid-based methods. TA* could still be useful
over TRA* in situations where the environment changes often enough that updating the
most abstract graph for each modification becomes prohibitive. In this case, the triangu-
lation could be repaired by the mechanisms provided by the DCDT technique described in
Section 3.4, and TA* can search on this environment directly, while still returning paths
quite quickly.

116

Chapter 10

Conclusion and Extensions

In Section 10.1, a number of the advantages apparent from the work done to this point are
discussed, while the many possible directions for further work and their expected benefits
are explored in Section 10.2.

10.1 Conclusion

In this section, we will discuss the findings and contributions of the work in this thesis. Sub-
section 10.1.1 will summarize the findings regarding using triangulations as an environment
representation and Subsection 10.1.2 will discuss the further work with regard to using
triangulations to efficiently find paths for nonpoint (specifically, circular) objects. Then
Subsection 10.1.3 will conclude the main contribution of this work—the reduction technique
applied to the triangulation graph. Finally, Subsection 10.1.4 revisits the work done in
terms of faster point location.

10.1.1 Triangulations

First we have seen the advantages of using polygonal representations for pathfinding. This
reduces the state space significantly, especially in cases of line segment obstacles, and more
so when these are not axis-aligned, forcing grid representations to either greatly increase
their resolution or risk missing paths. Even in tiled environments which are designed to
work with grid-based pathfinding solutions, polygonal representations have a smaller state
space, representing any area similarly regardless of size.

The benefits of this representation alone can be seen in the results of our experiments with
TA*. Triangulations in particular are an ideal polygonal representation for environments
for a number of reasons. First, they provide a simple, uniform interface for pathfinding,
second, there are fast algorithms for representing the environment in this way, third, they
are conducive to repair in the presence of changes in the environment, and finally, they have
useful properties for defining enhancements, which we will discuss next.

10.1.2 Base-level Enhancements

Because of the simple structure of a triangle, we have been able to introduce enhancements
to the triangulation to improve base-level search. Such an improvement was the elimination
of multiple representations of the graph and undesirable sliver-like triangles resultant from
applying the Minkowski Sum operation to “grow” obstacles. This was achieved by calculat-
ing maximum radius for a circular object to travel between any two edges of a triangle.

117

This idea was extended to allow calculation of the shortest path for such an object
through a channel of triangles in time linear in the number of triangles in that channel.
This was important because in searching for an optimal path for an object between two
points, it is often necessary to determine the lengths of the shortest paths through several
channels.

Another enhancement to which triangulations lend themselves was the main contribution
of this work: abstraction of the graph induced on the base triangulation. The results of this
are concluded next.

10.1.3 Graph Abstraction

The homogeneous manner in which triangulations represent the environment allowed for
the abstraction process to be performed on it. By identifying dead ends, corridors, decision
points, trees, rings, and other graph structures, the pathfinding task was simplified to de-
termining on which side of each obstacle to go. This is the most abstract graph one can
search when looking for optimal paths.

This abstraction allowed us to identify several situations where this path can be found
without using search, and when search was required, greatly decreasing the search space.
The main advantage of this approach was that pathfinding not only did not depend on the
size and orientation of areas, but it also did not depend on the properties of the individual
constraints, only the number of obstacles.

As we saw in our experiments with TRA*, this abstraction was very successful in provid-
ing an efficient representation for pathfinding. It also provided an excellent basis for further
research. This is discussed in more detail in Section 10.2.

10.1.4 Point Location

Finally, since the most time-consuming part of pathfinding was often found to be finding
the triangle in which the start or end point is contained, it was necessary to implement an
improved point location technique. This was doubly true due to the fact that pathfinding
on the abstract graph involved finding the containing triangles for both the start and goal
points and slow point location would threaten to overshadow the benefits of TA* and TRA*.

Point location was previously done by taking the “first” triangle in the triangulation and
crossing edges toward the desired point until arriving at the triangle containing the point.
This was prohibitively slow, taking time proportionate to the number of triangles in the
environment.

To combat this, a number of rectangular “sectors” were defined covering the environment
and whose midpoints were determined. When dealing with a triangle while either creating or
repairing the triangulation, the algorithm would check if it overlapped any sector midpoints,
and if so, would associate that triangle with the corresponding sector.

When point location was performed, the closest sector midpoint to the desired point
was calculated and the point location “walk” was started from the triangle associated with
that sector, which could be accessed in constant time. Even with a relatively sparse grid
of sectors, this technique improved point location considerably, effectively eliminating the
process as a bottleneck to pathfinding.

10.2 Extensions

There remain numerous possibilities for application of both triangulations and abstractions
thereof, to pathfinding, motion, and other areas. Nonstatic environments are an area of
particular interest. The three main situations in this area involve mobile obstacles, group

118

pathfinding, and multiple objects, which are discussed in Subsections 10.2.1, 10.2.2, and
10.2.3, respectively. Then we discuss possible extensions to this work other representations
for the graph in Subsection 10.2.4, concerns regarding maintaining multiple, size-dependent
graphs in Subsection 10.2.5, and finally offer some concluding remarks on the work in Sub-
section 10.2.6.

10.2.1 Mobile Obstacles

obstructed path
new path

Figure 10.1: Object steering around a mobile obstacle within its channel

obstructed path
new path

Figure 10.2: Object finding another channel when blocked by a mobile obstacle

Mobile obstacles is the situation involving either obstacles or other objects which may
move into the path of ours, but whose motion we can neither control nor know beforehand.

119

In this case, the fact that the result of our pathfinding efforts is a channel of triangles as
opposed to a single path can work to our advantage. If we predict that an obstacle will
enter our object’s channel about the time our object will reach that point, we have a few
options for what to do to resolve such a collision.

The first possibility is that the collision occurs in a very wide triangle, and our object
can simply move around the obstacle easily within the channel. Such a situation is shown
in Figure 10.1. If it occurs in a narrow triangle and such a trivial fix is not possible, it
may be that the obstacle will soon leave the channel or move to a wider triangle in the
channel so our object can continue within the channel without waiting long. Finally, if the
obstacle will block our channel and significantly hinder our object’s progress, we can search
the triangulation for a new channel and continue from there. A situation involving a mobile
obstacle blocking most of a channel, and an alternative path being found is illustrated in
Figure 10.2.

10.2.2 Group Pathfinding

Figure 10.3: Group of objects travelling through a wide channel

Group pathfinding is a situation common in Real-Time Strategy (RTS) games and in-
volves multiple objects all starting roughly in the same area and searching for a path to some
other area. In this case, our determination of choke points can greatly aid us in pathfinding.

Once a channel is found between the start and goal areas, we can easily determine the
narrowest point along the path. If this point is wide enough that our objects will not be
significantly slowed, we can allow the objects to travel between the start and goal areas
within the channel using some form of local control. Figure 10.3 shows such a case.

If the objects have varying top speeds, it would even be possible to send faster objects
ahead of the group before narrower points of the channel so fewer have to travel through it
once, as is shown in Figure 10.4, reducing congestion and speeding up the group as a whole.

If the narrowest point of the channel would slow the group of objects too much, one
could search for other channels, and split up the objects between the channels based on the
narrowest point of each. This way one could send more objects through wider channels,
and in the case of varying object speeds, faster objects through longer channels as shown

120

slower object

faster object

Figure 10.4: Group of objects spreading out to go through a choke point

slower object

faster object

Figure 10.5: Group of objects splitting up into different channels

121

in Figure 10.5. One could view this problem of the fastest path for a particular group as a
type of network flow problem.

Another consideration lies in the possibility of a group of objects being attacked when
in an RTS game. In such an occurrence, it is more advantageous that a group of objects
be close together so as to repel the attack more effectively. Thus, early in the game if the
terrain and enemy positions are not known, it might be better to sacrifice group speed and
keep the objects close together within one channel in case of an attack, whereas later in the
game when terrain and enemy positions are known, one could split up a group travelling
through unhostile terrain to get the objects to the goal sooner.

10.2.3 Multiple Objects

Finally, the problem of multiple objects is when we control a number of objects which all
want to move from their unique starting positions to different goals. An approach to this
problem in a discrete-time grid world [45, 46] can be applied to triangulations with minor
adjustments. Instead of reserving cells completely for a time step, objects could partially
reserve triangles for time intervals. This way a small object would only reserve a small
portion of a large triangle.

crowded path
valid path

Figure 10.6: Object selecting a less crowded channel

When an object is searching for a path, it would disregard triangles that were reserved
to a certain threshold based on that object’s size, at the time when the object would pass
through that triangle given the path. Figure 10.6 shows an object rejecting a channel
containing a crowded triangle in favour of one which is less congested. As each object
chooses a path, it reserves a portion of the triangles in the path (proportionate to the size of
the object and that of the triangle) for the time intervals that it would pass through them.

This would prevent triangles from being too congested at any one time, and some local
control should be sufficient to create valid paths for each object within its channel. Because
this is done in continuous space, one would have to adjust a threshold dictating when an
object would regard a triangle as too crowded for traversal, in order to retain as many paths
as possible while avoiding over-congestion.

122

10.2.4 Further Abstraction

There are other extensions that are possible for the graph and abstraction layers. Further
abstraction is possible if one collapses doubly-connected components of the abstract graph
into single nodes of a more abstract graph. Where on the abstract graph the nodes represent
decision points for which way to go around an obstacle, in this new graph, they would
represent “rooms” in the environment which contain multiple paths between their entry
and exit points.

Figure 10.7: Graph of level-3 nodes

This graph would then be a tree of doubly-connected components. Because it is a tree,
the highest level of the pathfinding problem would become trivial as there is only one path
between any two points in a tree. The best paths between each pair of entry points of each
doubly-connected component could even be cached, and then the search function would
only have to get from the start and goal points on to this new abstracted graph, after which
the pathfinding task would be simple. An abstract graph is shown in Figure 10.7 and its
corresponding tree of doubly-connected components in Figure 10.8.

This approach may find suboptimal paths since the pathfinding is being done in con-
tinuous space and the shortest path between points in two triangles can change depending
on where in those two triangles the points are. However, if the triangulation has certain
properties, this suboptimality may be negligible, and in large environments it may be a
welcome trade-off for faster searches. If this is not the case, the paths can always be refined

Figure 10.8: Tree of doubly-connected components

123

when needed on a less abstract version of the graph.

10.2.5 Size-Dependent Graphs

Another possible extension of this technique is apparent when considering that with certain
object sizes, some edges of the graph will not be traversable. This means that during the
search, some resources can be wasted searching dead ends, and the width must always be
checked when moving between nodes. A solution to this problem would be to have multiple
abstract graphs for different sized objects.

Figure 10.9: Abstract graph for a small object

Figure 10.9 shows an abstract graph for a small object, whereas Figure 10.10 shows the
abstract graph for a larger object in the same environment. This second graph is missing
edges corresponding to narrower corridors through which the larger object could not fit, and
therefore has fewer edges. Although this is not as general as simply recording the widths
through triangles, it would use less memory than creating multiple copies of the base-level
graph, and allows for more efficient searching at the cost of more preprocessing, which is
often desirable in commercial games.

If there are few different sizes of objects, the abstract graphs could simply be calculated
and stored for each size of object. However, if there are more sizes of objects than there are
different sizes of choke points in the environment, one could let the environment determine

Figure 10.10: Abstract graph for a large object

124

the abstract graphs. Thus, if all objects are within a certain size range, each time there is a
choke point of a new width in that range, we could create an abstract graph to reflect this
connectivity. Thus, only objects smaller than the width of this choke point would see an
edge crossing it. Then for any object, one would check into which range of sizes it fits and
use the appropriate abstract graph in the ensuing search.

10.2.6 Final Thoughts

Indeed, there are many possible extensions of both polygonal pathfinding using Constrained
(Delaunay) Triangulations and topological abstractions thereof. Hopefully these and more
techniques will find further merit in academia and eventually application in commercial
games and robotics.

125

Bibliography

[1] M. V. Anglada. An improved incremental algorithm for constructing restricted Delau-
nay triangulations. In Computer & Graphics, volume 21, chapter 2, pages 215–223.
1997.

[2] R. V. Benson. Euclidean Geometry and Convexity. McGraw Hill, 1966.

[3] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and
D. Szafron. Approximating game-theoretic optimal strategies for full-scale poker. Pro-
ceedings of IJCAI-03, (Eighteenth International Joint Conference on Artificial Intelli-
gence), 2003.

[4] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Opponent modeling in poker.
Proceedings of AAAI-98 (15th National AAAI Conference), 1998.

[5] A. Botea, M. Müller, and J. Schaeffer. Near optimal hierarchical path-finding. Journal
of Game Development, 1(1):1–22, 2004.

[6] C. B. Boyer. A History of Mathematics, 2nd ed. New York: Wiley, 1968.

[7] M. Buro. The Othello match of the year: Takeshi Murakami vs. Logistello. ICCA
Journal, 20(3):189–193, 1997.

[8] M. Buro. How machines have learned to play Othello. IEEE Intelligent Systems J.,
14(6):12–14, 1999.

[9] M. Buro. ORTS: A hack-free RTS game environment. In Proceedings of the Interna-
tional Computers and Games Conference, pages 280–291, 2002.

[10] M. Buro. Real-Time Strategy games: A new AI research challenge. In Proceedings of
the International Joint Conference on AI, pages 1534–1535, 2003.

[11] M. Buro and T. Furtak. On the development of a free RTS game engine. GameOn’NA
Conference, pages 23–27, 2005.

[12] B. Chazelle. A theorem on polygon cutting with applications. In In Proceedings of the
23rd IEEE Symposium on Foundations of Computer Science, pages 339–349, 1982.

[13] L. P. Chew. Constrained Delaunay Triangulations. In Proceedings of the Annual Sym-
posium on Computational Geometry ACM, pages 215–222, 1987.

[14] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proc.
IEEE, 80:1412–1434, 1992.

[15] R. Cole. Searching and storing similar lists. J. Algorithms, 7:202–220, 1986.

126

[16] J. Culberson and J. Schaeffer. Searching with pattern databases. CSCSI ’96 (Canadian
AI Conference), pages 402–416, 1996.

[17] L. de Floriani and A. Puppo. An on-line algorithm for Constrained Delaunay Triangu-
lation. In Computer Vision, Graphics and Image Processing, volume 54, pages 290–300.
1992.

[18] B. Delaunay. Sur la sphère vide. In Izvestia Akademii Nauk SSSR, volume 7, pages
793–800. Otdelenie Matematicheskikh i Estestvennykh Nauk, 1934.

[19] O. Devillers, S. Pion, and M. Teillaud. Walking in a triangulation. ACM Symposium
on Computational Geometry, 2001.

[20] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone
subdivision. SIAM J. Comput., 15:317–340, 1986.

[21] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of
Delaunay and Voronoi diagrams. In Algorithmica, chapter 7, pages 381–413. 1992.

[22] L. J. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational geom-
etry. In Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci., pages 100–111, 1983.

[23] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. on Systems Science and Cybern., 4:100–107, 1968.

[24] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy
class. Computational Geometry Theory and Application, 4:63–98, 1994.

[25] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the
plane. SIAM J. Comput., 28:2215–2256, 1999.

[26] R.C. Holte, M.B. Perez, R.M. Zimmer, and A.J. MacDonald. Hierarchical A*: Search-
ing abstraction hierarchies efficiently. In AAAI/IAAI Vol. 1, pages 530–535, 1996.

[27] M. Kallmann. Path planning in triangulations. In Proceedings of the IJCAI Workshop
on Reasoning, Representation, and Learning in Computer Games, pages 49–54, July
31 2005.

[28] M. Kallmann, H. Bieri, and D. Thalmann. Fully Dynamic Constrained Delaunay Trian-
gulations. In Geometric Modelling for Scientific Visualization, pages 241–257. Springer-
Verlag, 2003.

[29] K. Kedem, R. Livne J. Pach, and M. Sharir. On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles. In Discrete Comput.
Geom, volume 1, pages 59–71. 1986.

[30] K. Kedem and M. Sharir. An efficient algorithm for planning collision-free transla-
tional movement of a convex polygonal object in 2-dimensional space amidst polygonal
obstacles. In Proc. 1st Annu. ACM Sympos. Comput. Geom, pages 75–80, 1985.

[31] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12:28–35,
1983.

[32] S. Koenig. A comparison of fast search methods for real-time situated agents. AAMAS
04, July 19-23 2004.

127

[33] R.E. Korf. Depth-first iterative-deepening: an optimal admissible tree search. Artif. In-
telligence, 27(1):97–109, 1985.

[34] M. V. Kreveld, M. Overmars, O. Schwarzkopf, and M. de Berg. Computational Geom-
etry: Algorithms and Applications. Springer-Verlag, 2000.

[35] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query
path planning. In Proceedings IEEE International Conference on Robotics and Au-
tomation, pages 995–1001, 2000.

[36] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[37] J.-P. Laumond. Obstacle growing in a nonpolygonal world. In Information Processing
Letters, volume 25, pages 41–50. 1987.

[38] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear
barriers. In Networks, volume 14, chapter 3, pages 393–410. 1984.

[39] J. S. B. Mitchell. Geometric shortest paths and network optimization. In Handbook of
Computational Geometry. Elsevier Science, 1998.

[40] K. Mulmulney. A fast planar partition algorithm. Journal of Symbolic Computation,
10:253–280, 1990.

[41] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

[42] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Com-
mun. ACM, 29:669–679, 1986.

[43] J. Schaeffer. One Jump Ahead: Challenging Human Supremacy in Checkers. Springer-
Verlag, 1997.

[44] J. Schaeffer, Y. Björnsson, N. Burch, A. Kishimoto, M. Müller, R. Lake, P. Lu, and
S. Sutphen. Solving checkers. International Joint Conference on Artificial Intelligence
(IJCAI), pages 292–297, 2005.

[45] D. Silver. Cooperative pathfinding. In Proceedings of the 1st Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2005.

[46] D. Silver. Cooperative pathfinding. In AI Programming Wisdom. 2006.

[47] N. Sturtevant and M. Buro. Partial pathfinding using map abstraction and refinement.
AAAI, pages 1392–1397, July 2005.

128

