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Abstract 
 
 The properties involved in a cracking whip are explored.  The goal is to provide a 
starting point for the exploration of this phenomenon.  Eventually, scientists would like to 
produce an equation which describes the shape of the whip with respect to space and 
time.  Some preliminary results are discussed in this paper. 
 
Introduction 
 
 When a whip is cracked, the user moves his or her arm back and forth, which 
imparts energy on one end of the whip.  This back and forth motion of the experimenter’s 
arm creates a kinetic wave in the material.  This wave propagates through the whip and 
by the time it reaches the tip of the whip, that tip is moving at supersonic speeds.  This 
may be curious to some since there is no way the user can move his or her arm at the 
speed of sound.  It may be known why the velocity of the tip is so much higher than the 
original velocity, but it is not quite known how the shape of the whip changes over time, 
and how this change is related to the initial velocity.  It is hoped that by studying related 
phenomena, some insight will be gained on how this occurs. 

 
 

 
Theory 
 
 One related phenomenon that is helpful for understanding why the whip cracks is 
demonstrated by a falling chain.  If one end of a chain is fixed at a certain height, and the 
other end is held at that same height, a U-shaped curve is formed(fig. 1.1).  One might 
expect that when the free end is dropped it will accelerate normally due to gravity.  
According to Newton, all free falling objects accelerate at the same rate, which is known 
to be 9.8 m/s 2 .  However, when this experiment is performed the free end reaches a point 
where it is actually accelerating faster than this (fig. 1.2 and 1.3).  This is because when 
an object is suspended it has initial potential energy mgh .  When it is dropped and 
reaches the bottom of its fall, it has zero potential energy and kinetic energy 2

2
1 mv .  This 

energy must be conserved, however, and in the case of the chain, the mass of the moving 
section is constantly decreasing.  To compensate and maintain the same energy, the 
velocity is higher than if the mass were constant, as in a free falling object. 

This is also why a whip cracks.  When the user initially lashes it, the whip has 
some curvature due to the motion of the arm (fig. 2 and 3.1).  The whip can be thought of 
as two parts, separated by a sharp curvature (fig. 2, fig. 3.1, and fig. 4).  The side toward 
the tip (fig. 2.2) has an initial energy, because of the upward motion placed on it by the 
user.  However, as the curve moves further toward the tip (fig 3.2, 3.3 and 3.4), that side 
has an decreasing mass, and compensates by an increase in velocity.  This is how it can 
reach supersonic speeds.   
 



 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
The following model of a whip comes from Szabo I (1972) Hohere Technische 

Mechanik. Springer, Berlin, Heidelberg, and New York, 5th ed., pp 131-132.   It models 
the whip in one dimension (fig. 4).  Assume an arbitrary length x, which represents any 

Fig. 1. Images from the chain-drop experiment.  1: Initial position 
of the chain.  2:  159 ms after release of the chain.  3: 214 ms after 
release of the chain.  An accompanying ball and the tip of the chain 
were released at same time.  It can clearly be seen that the tip of the 
chain falls faster than the free falling ball.

Fig. 2.  Diagram showing how the 
components of the whip are broken up. 
1.  The portion of the whip manipulated 
by the user.  2. The portion of the whip 
toward the tip.  As 1 becomes smaller, 
and 2 becomes larger, 1 must increase its 
velocity to conserve energy.  The whip 
“cracks” just before 1 reaches zero..   

Fig. 3.  Images of a whip being cracked.  1: The initial curve given by the user's rapid back and forth 
motion can be seen at 44.5 ms.  2:  The curve has moved out toward the end of the whip, and the 
portion of the whip that is on the outside of this curve has decreased at 56.5 ms.  3:  This is just before 
the curve reaches the tip of the whip at 62.5 ms.  4:  When the curve does reach the tip, supersonic 
velocities occur and the whip cracks 65.5 ms after the initial motion by the user. 



fixed portion on the whip, close to 
the handle.  There is also a 
changing distance y, which 
becomes longer as z becomes 
smaller.  In other words, as the 
curve moves further toward the tip, 
z becomes smaller and y becomes 
larger.  The total length of the 
whip, is represented 
by zyxl 2++= .  Kinetic energy is 
then calculated by 
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zxmzxzlE &&& +++−= µµ  where µ is the linear density of the material and m 

is a small mass placed at point B.  The second is more useful, because x and z are the 

coordinates of interest.  This is simply 2

2
1 mv , where mass is µ times the length.  The first 

half of the equation is the energy of the whip on the side of the curve closer to the handle; 
the second part is the energy on the side closer to the tip.  They must be handled 
differently since they are moving at different velocities.  Note that if m is zero, a 
singularity arises later in the equation.  Potential energy is given by ( )xtPU −= , where 
P(t) is the force pulling on the whip as a function of time.  The Lagrangian of this system 
is E – U, so using x and z as coordinates, the Lagrangian equation of 
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.  Plugging in the equations for kinetic and potential 

energy gives ( ) ( )[ ] ( )tPmzzzmlx =++++ µµµ &&&&& 22 , and ( )( ) 022 =+++ zxmzz &&&&& µµ .  For 
simplicity, it can be assumed that the velocity v at which the whip is pulled is constant, 
this makes the equations ( ) )(22 2 tPmzzz =++ µµ &&& , and ( ) 022 =++ mzzz µµ &&& , because 

the acceleration of x is zero.  By rearranging the second equation into 02 =+
+ z
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it can be seen as the time derivative of ( ) zmz &ln2ln ++µ , which is equal to zero.  This 
differential equation, combined with the initial conditions ( ) 00 =x , ( ) 00 yy = , ( ) 00 =y& , 
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Fig. 4.  A diagram of the simplified model of a whip.  
Point A represents the end of the whip that is pulled by the 
user with force P(t) at velocity v.  Point B represents the 
tip of the whip.  x represents a fixed point on the whip 
toward the handle.  y represents an expanding section of 
the whip from x to a point that is at the same position as 
the tip.  z represents a shrinking section of the whip that is 
the size of the arc from the tip to the curve.  The total size 
of the whip is x + y + 2z. 
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.  It is this function that will be examined in 

future research to determine how well the photographs match this function.  This function 
shows how fast the wave will travel through the whip, not how fast the tip moves.  In 
future work, a function for y& will be investigated to determine the speed of the whip.  
Also, the equations will be solved for P(t) to determine the force needed to maintain a 
constant velocity, or how things will turn out if velocity is not constant, but P(t) is given. 

The subject of this research is to study the shape and propagation of that curve.  
To do this, however, the initial velocity must be known.  For later research, it will be 
helpful to know what the initial curvature is.  To do this, a simulation is required.  A 
machine was designed to give reproducible results.  Thus, an initial curvature may be 
obtained, and the initial velocity known.  The machine that was designed to pull the whip 
used a rat trap.  As a result, a large part of the current research went in to studying the 
physics of a rat trap. 

 
Physics of the Rat Trap: 

 
The rat trap (fig.5) is 

comprised of two springs (B) 
that move a 'U shaped' bar (A) 
through a 180º rotation.  The 
initial goal was to find out what 
the velocity of the bar would be 
at any given point.  The 
conservation of rotational 
energy is what motivates the 
following discussion.  
Rotational kinetic energy is the 
sum of all torques, so if torque 
were known as a function of 
angle, it would be a simple 
matter of integrating that 

function to get rotational energy, 2
2
1 ωI . In theory, torque should be a linear function of 

angle, however in reality the springs buckle slightly, giving what would appear to be a 
curved function.  Instead, a chart can be set up, approximating the angular acceleration at 
each interval where torque is known to give a left or right sum.   
 The way torque was calculated at each point, using the equation rF=τ .  Then 

the angular acceleration at each point was calculated using 
I
τα = , where I is the moment 

of inertia.  Once an angular acceleration was calculated for each point, the angular 
velocity was calculated using the kinematic equation )(222

ifif θθαωω −+= .  In this 
way, the angular acceleration for each interval can be approximated by the angular 
acceleration at the beginning of the interval.  This gives a left sum approximation for the 
system at each point (see table 1.). 

Fig. 5. The rat trap.  A.  The U shaped bar.  B.  the two springs 
that power the rat trap.  C.  The ‘holding bar’.  The U shaped 
bar is pulled back 180 degrees, then the holding bar is attached 
to  the small rectangular fixture.  When the fixture is disturbed, 
the holding bar is freed, and the trap is sprung.



Once the kinematic equation is solved for angular velocity, it is a simple matter of 
multiplying by the length of the arm to get linear velocity at the tip. 
 Moment of inertia is calculated by assuming that the cross bar is a point mass, and 
the other two bars are rods rotating about an axis at one end.  This gives a formula for 
moment of inertia 22

3
2 LMLMI CrossLeg += . 

 
Methods 
 
 First, images were shot of a chain being dropped as described in the theory 
section.  One end of the chain was tied to the ceiling, and the other suspended next to it.  
There was a small free falling ball one or two centimeters in diameter dropped from the 
same level as the end of the chain.  They were both dropped at the same instant, so the 
difference in acceleration could be observed.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

To obtain images of the 
whipping action, a bar 3 
centimeters in diameter was fixed 
at about 2 meters off the ground, 
and different lengths of kite 
string ranging from 50cm to 150 
cm were used to simulate the 
whip.  The string was tied to a 
short handle at one end, to be 
manipulated by the experimenter 

and the other end was draped over the bar (fig. 6).  The user rapidly jerked the handle 
downward, and the upward motion of the free end created the crack.  In fact, the crack 

Fig. 6.  Initial 
method for 
performing  the 
string whipping 
experiment.  The 
user's hand can be 
seen holding a 
small handle, which 
was used to pull the 
string downward.  
The other end of 
the string moves 
upward rapidly, 
creating the crack.  
The 3-centimeter 
bar was drawn in 
for visibility.  The 
user imparts a 
downward velocity 
of about 10 to 12 
meters per second. 

Fig. 7.  Initial rat trap experiment.  The 
string was tied to the bar of the Rat Trap, 
and was wrapped around two other bars.  
This created the cracking action 

Fig. 8.  A 
modified Rat 
Trap.  The U 
shaped bar 
has been 
replaced with 
a single, 21 
cm bar.  A 
single spring 
was used. 



could even be heard from this string.  This data was captured in multiple high speed 
video files.  There were also several high speed videos taken with the rat trap propelling 
the string.  High speed videos of the actual whip being cracked were taken by 
illuminating the marker board with high powered lights, and having the human stand in 
front of the marker board and cracking the whip.  The camera captures the silhouette of 
the whip. These videos were all taken at rates of 1000 or 2000 fps, with shutter speeds 
ranging from 1/2000 to 1/8000.   
 At first, the rat trap was clamped face up on the table (fig. 7).  Two small 
horizontal bars about 1 centimeter in diameter were fixed near the trap.  The string was 

tied to the end of the rat trap, fed under 
the lower bar, and over the higher bar.  
When the trap was triggered, it pulled 
the string but because the rat trap was 
perpendicular to the bars, the resulting 
curve contained an artifact.  For this 
reason, the design was adjusted such that 
the trap was placed vertically and its bar 
moved toward the floor.  The trap was 
clamped to a solid metal plate, which 
was clamped to the leg of the table.  One 
bar was eliminated from the design (fig. 
9), and the shape of the curve was much 
better.  The design of the trap itself was 
also altered in an attempt to raise the 

velocity of the pull.  The U shaped bar, was replaced with a 
single rod approximately 21 centimeters in length, but only 
one spring was used to propel it (fig. 8). 
 
 
 
 
Methods for doing Rat Trap Measurements: 

 
 The force at each point along the path traveled by the bar was obtained by 
clamping the device to a table, and using a scale to measure how much force was 
required to maintain the arm at each angle.  A protractor was used to measure the angle, 
and all measurements were taken perpendicular to the bar, so a cross product was not 
needed.   
 The length of the bar was measured by placing a kite string against the bar, and 
measuring the length of the string.  The bar was weighed on a normal balance scale.  To 
obtain the mass of any section of the bar, the mass per unit length was known and could 
be multiplied by the length of that section.  The length of each unit was measured with a 
caliper. 
 The moment of inertia was calculated in this way.  When the mass of a leg was 
needed it was calculated by multiplying the mass per unit length times the length of that 
leg.  A similar method was used for the mass of the crossbar. 

Fig. 9.  
Alterations made 
to the mousetrap 
experiment.  The 
modified rat trap 
has been 
repositioned so 
that it now pulls 
parallel to the bar 
suspending the 
string.  This 
creates a 
whipping action 
with a better 
shape. 



 
Results 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 

 
 

 

 
 

 
 
 
 
 
 

Fig. 10.  This is the conventional rat trap in the process of being triggered.  The tip of the bar 
is traveling at about 15 meters per second, about 25 milliseconds after it was triggered.  By the 
time it reaches the shock absorber (left) at the end the tip will be moving about 30 meters per 
second. 

angle kg stress N stress tque(rF) alpha(t/I) d(angle) d(vel) vel(ang)^2vel(ang) v(lin)
0 3 29.4 2.41962 38751.1 0 0 0 0 0

75 2.3 22.54 1.85504 29709.2 1.309 77778.5 77778.5 278.888 22.9553
90 2 19.6 1.61308 25834.1 0.2618 13526.7 91305.2 302.167 24.8714

105 1.6 15.68 1.29046 20667.3 0.2618 10821.4 102127 319.572 26.304
120 1.4 13.72 1.12916 18083.9 0.2618 9468.69 111595 334.059 27.4964
135 1.25 12.25 1.00818 16146.3 0.2618 8454.18 120049 346.481 28.5189
150 1.1 10.78 0.88719 14208.7 0.2618 7439.68 127489 357.056 29.3893
165 1 9.8 0.80654 12917 0.2618 6763.35 134252 366.405 30.1588

Table. 1.  These are the calculated values for the velocity of the trap at different points throughout the 
rotation. 

Fig. 11. A graph of the 
torque of the rat trap.  
The torque of the rat 
trap was measured 
every fifteen degrees 
through π radians of 
rotation. 
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Fig. 13.  A graph 
of the whip’s 
velocity at the tip.  
The Square dot 
represents the 
speed of sound.  
While the data did 
not show it due to 
the low sampling 
rate, the whip 
reached the speed 
of sound at about 
211 milliseconds 
after the hand 
began moving. 

Fig. 12.  These are six images of the string being whipped, which nicely show the shape of the whip.  
The colors have been inverted for visibility, and the bar has been drawn in frame 1.  At this frame rate, 
any approximation for the velocity of the tip of this string would not be accurate, however in frame 6, 
the tip is probably moving at about the speed of sound.  These are taken at 21.1, 21.2, 23.1, 23.6, 24.1, 
and 24.6 ms after the string began to move. 



 
 
Discussion 
  

 When the string was first cracked using a 
human hand, the shape of the curve was very 
good, however, there was too much variation 
from one trial to the next in the speed the string 
was jerked.  In addition, it was difficult to image 
the appropriate section of the whip reproducibly.  
For this reason, the rat trap is needed for 
reproducibility and so the speed can be 
calculated.  At first, the shape of the curl was 
very distorted, and the results were not very 
valuable, however, after making several 
adjustments to the design, including adding a 
single bar, which is longer, and changing the 
angle at which the trap pulls the string, a very 
good result was obtained.  
 
 

 
Rat Trap: 
 
 The interesting thing about this rat trap was not how far the calculations were 
from the actual speed of the bar at the end, but rather how close they were.  The reason 
that they should not be close is that when the final speed of the rat trap was estimated, the 
method used was to calculate the angular acceleration at different intervals and to assume 
that acceleration is constant through the interval.  It should have estimated significantly 
low because the acceleration was not constant but increasing.   
 
Future research: 
 
 Now that reasonable quality images have been made of the string whip, further 
analysis should determine how well they fit into the equations.  This new work will take 
place beginning this summer will continue until completion. 
 The rat trap needs to be further analyzed to see if it more closely models the 
approximation if it is set off differently, namely without the ‘holding bar’. 
 Velocity of the rat trap needs to be determined as a function of time, instead of a 
function of angle.  This way when the video of the string is analyzed, it can be 
determined at each time interval what the velocity is. 
 
 
 
 
 

Fig. 14.  An 
analysis of a video 
clip.  This is one 
frame of a high 
speed video file of 
a string being 
cracked like a 
whip.  The farther 
apart the dots are, 
the faster it is 
moving.  This was 
taken at 2000 
frames per second, 
which means each 
dot represents the 
string’s movement 
in 1/2000 of a 
second 



 
 
 
Appendix A: 

Using High Speed Photography in Scientific Research. 
 
 An important part of doing this experiment well was knowing how to use the 
camera, lights, and computer software to capture the best images possible.  With such 
sophisticated equipment, learning to use it properly was no small task.  To do this, several 
images were taken of other high speed phenomena that didn’t relate to this particular 
experiment per se, but yielded very good, interesting results.  Several images were taken 
of a small rubber popper. This popper is placed on a table, and when it inverts the force 
causes it to leap off the table.  Also observed were fog rings produced by a small toy fog 
ring maker (fig. 15).   

 
Fig. 15. High 
speed images 
taken during the 
course of this 
experiment to 
understand high 
speed. 
 
 
 
 
 
 
 
 

 
 It can be very difficult to capture an image just right.  There are many factors that 
must be just right in order to capture good images.  The lighting has to be at the right 
intensity and angle so that the image can be seen, but glare is not present.  These lights 
are so powerful, that they can not be left on very long.  They will begin to burn or melt an 
object on which they are shining.  These bulbs also have a short life span, and must be 
preserved.  Also involved are setting the focus and aperture.  This must be done while the 
lights are on, so that the image can be seen, but as mentioned, the lights must be used 
extremely sparingly.  The considerable amount of time spent during the course of this 
experiment simply learning the techniques involved proved to be an invaluable part of 
collecting data for the actual experiment. 


