
Differential Topology
Forty-six Years Later
John Milnor

I
n the 1965 Hedrick Lectures,1 I described
the state of differential topology, a field that
was then young but growing very rapidly.
During the intervening years, many problems
in differential and geometric topology that

had seemed totally impossible have been solved,
often using drastically new tools. The following is
a brief survey, describing some of the highlights
of these many developments.

Major Developments
The first big breakthrough, by Kirby and Sieben-
mann [1969, 1969a, 1977], was an obstruction
theory for the problem of triangulating a given
topological manifold as a PL (= piecewise-linear)
manifold. (This was a sharpening of earlier work
by Casson and Sullivan and by Lashof and Rothen-
berg. See [Ranicki, 1996].) If BTop and BPL are the
stable classifying spaces (as described in the lec-
tures), they showed that the relative homotopy
groupπj(BTop, BPL) is cyclic of order two for j = 4,
and zero otherwise. Given an n-dimensional topo-
logical manifold Mn, it follows that there is an
obstruction o ∈ H4(Mn;Z/2) to triangulating Mn

as a PL-manifold. In dimensions n ≥ 5 this is
the only obstruction. Given such a triangulation,
there is a similar obstruction in H3(Mn; Z/2) to
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its uniqueness up to a PL-isomorphism that is
topologically isotopic to the identity. In particular,
they proved the following.

Theorem 1. If a topological manifold Mn without
boundary satisfies

H3(Mn; Z/2) = H4(Mn; Z/2) = 0 with n ≥ 5 ,

then it possesses a PL-manifold structure that is
unique up to PL-isomorphism.

(For manifolds with boundary one needs n > 5.)
The corresponding theorem for all manifolds of
dimension n ≤ 3 had been proved much earlier
by Moise [1952]. However, we will see that the
corresponding statement in dimension 4 is false.

An analogous obstruction theory for the prob-
lem of passing from a PL-structure to a smooth
structure had previously been introduced by
Munkres [1960, 1964a, 1964b] and Hirsch [1963].
(See also [Hirsch-Mazur, 1974].) Furthermore, Cerf
had filled in a crucial step, proving by a difficult
geometric argument that the space of orientation-
preserving diffeomorphisms of the three-sphere
is connected. (See the Cartan Seminar Lectures of
1962/63, as well as [Cerf, 1968].) Combined with
other known results, this led to the following.

Theorem 2. Every PL-manifold of dimension n ≤
7 possesses a compatible differentiable structure,
and this structure is unique up to diffeomorphism
whenever n < 7.

For more information see Further Details at the
end of this article.

The next big breakthrough was the classifi-
cation of simply connected closed topological
4-manifolds by Freedman [1982]. He proved, us-
ing wildly nondifferentiable methods, that such a
manifold is uniquely determined by
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(1) the isomorphism class of

the symmetric bilinear form

H2 ⊗ H2 → H4 ≅ Z , where

Hk = Hk(M4; Z) , together with

(2) the Kirby-Siebenmann invariant

o ∈ H4(M4; Z/2) ≅ Z/2.

These can be prescribed arbitrarily, except for

two restrictions: The bilinear form must have

determinant ±1; and in the “even case” where

x ∪ x ≡ 0 (mod 2H4) for every x ∈ H2, the

Kirby-Siebenmann class must be congruent to

(1/8)th of the signature. As an example, the

Poincaré hypothesis for 4-dimensional topological

manifolds is an immediate consequence. For if

M4 is a homotopy sphere, then both H2 and the

obstruction class must be zero.

One year later, Donaldson [1983] used gauge

theoretic methods to show that many of these

topological manifolds cannot possess any smooth

structure (and hence by Theorem 2 cannot be

triangulated as PL-manifolds). More explicitly, if

M4 is smooth and simply connected with positive

definite bilinear form, he showed that this form

must be diagonalizable; hence M4 must be home-

omorphic to a connected sum of copies of the

complex projective plane. There are many posi-

tive definite bilinear forms with determinant 1,

and with signature divisible by 16 in the even

case, which are not diagonalizable. (See, for ex-

ample, [Milnor-Husemoller, 1973].) Each of these

corresponds to a topological manifold M4 with

no smooth structure but such that M4 × R does

have a smooth structure that is unique up to

diffeomorphism.

The combination of Freedman’s topological re-

sults and Donaldson’s analytic results quickly led

to rather amazing consequences. For example, it

followed that there are uncountably many noniso-

morphic smooth or PL structures on R4. (Compare

[Gompf, 1993].) All other dimensions are better

behaved: For n > 4, Stallings [1962] showed that

the topological spaceRn has a unique PL-structure

up to PL-isomorphism. Using the Moise result for

n < 4 together with the Munkres-Hirsch-Mazur ob-

struction theory, it follows that the differentiable

structure of Rn is unique up to diffeomorphism

for all n 6= 4.

A satisfactory theory of three-dimensional man-

ifolds took longer. The first milestone was the

geometrization conjecture by Thurston [1982,

1986], which set the goal for what a theory

of three-manifolds should look like. This con-

jecture was finally verified by Perelman [2002,

2003a, 2003b], using a difficult argument based

on the “Ricci flow” partial differential equation.

(Compare the expositions of Morgan-Tian [2007]

and Kleiner-Lott [2008].) The three-dimensional

Poincaré hypothesis followed as a special case.

The Poincaré Hypothesis: Three Versions
First consider the purely topological version.

Theorem 3. The topological Poincaré hypothesis is
true in all dimensions.

That is, every closed topological manifold with
the homotopy type of an n-sphere is actually
homeomorphic to the n-sphere. For n > 4 this was
proved by Newman [1966] and by Connell [1967],
both making use of the “engulfing method” of
Stallings [1960]. For n = 4 it is of course due to
Freedman. For n = 3 it is due to Perelman, using
Moise [1952] to pass from the topological to the
PL case, and then using the Munkres-Hirsch-Mazur
obstruction theory to pass from PL to smooth. �

Theorem 4. The piecewise-linear Poincaré hypoth-
esis is true for n-dimensional manifolds except pos-
sibly when n = 4.

That is, any closed PL manifold of dimension
n 6= 4 with the homotopy type of an n-sphere is
PL-homeomorphic to the n-sphere. For n > 4 this
was proved by Smale [1962]; while for n = 3 it
follows from Perelman’s work, together with the
Munkres-Hirsch-Mazur obstruction theory. �

The differentiable Poincaré hypothesis is more
complicated, being true in some dimensions
and false in others, while remaining totally
mysterious in dimension 4. We can formulate
the question more precisely by noting that the
set of all oriented diffeomorphism classes of
closed smooth homotopy n-spheres (= topological
n-spheres) forms a commutative monoid Sn under
the connected sum operation. In fact this monoid
is actually a finite abelian group except possibly
when n = 4. Much of the following outline is
based on [Kervaire-Milnor, 1963], which showed in
principle how to compute these groups2 in terms
of the stable homotopy groups of spheres for
n > 4. Unfortunately, many proofs were put off to
part 2 of this paper, which was never completed.
However, the missing arguments have been
supplied elsewhere; see especially [Levine, 1985].

Using Perelman’s result for n = 3, the group Sn
can be described as follows for small n (Table 1).
(Here, for example, 2 · 8 stands for the group
Z/2⊕ Z/8, and 1 stands for the trivial group.)

Thus the differentiable Poincaré hypothesis is
true in dimensions 1, 2, 3, 5, 6, and 12, but
unknown in dimension 4. I had conjectured that it
would be false in all higher dimensions. However,
Mahowald has pointed out that there is at least

2The Kervaire-Milnor paper worked rather with the

group Θn of homotopy spheres up to h-cobordism. This

makes a difference only for n = 4, since it is known,

using the h-cobordism theorem of Smale [1962], that

Sn
≅
-→Θn for n 6= 4. However, the difference is important

in the four-dimensional case, since Θ4 is trivial, while the

structure of S4 is the great unsolved problem.
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Table 1

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sn 1 1 1 ? 1 1 28 2 2·2·2 6 992 1 3 2 2·8128 2 2·8 2·8

one more exceptional case: The group S61 is also

trivial. (Compare Further Details below.)

Problem. Is the group Sn nontrivial for all

n > 6 , n 6= 12, 61?

(Any precise computation for largen is impossi-
ble at the present time, since the stable homotopy

groups of spheres have been computed completely

only up to dimension 64. However, it seems possi-

ble that enough is known to decide this question

one way or another.)
Denote the stable homotopy groups of spheres

by

Πn = πn+q(Sq) for q > n+ 1 ,

and let Jn ⊂ Πn be the image of the stable
Whitehead homomorphism J : πn(SO)→ Πn. (See

[Whitehead, 1942].) This subgroup Jn is cyclic of

order3

|Jn| =




denominator
(
Bk
4k

)
for n = 4k− 1 ,

2 for n ≡ 0, 1 (mod 8) , and

1 for n ≡ 2, 4, 5, 6(mod 8) ,

where the Bk are Bernoulli numbers, for example,

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
,

B4 =
1

30
, B5 =

5

66
, B6 =

691

2730
,

and where the fraction
Bk
4k

must be reduced to

lowest terms. (Compare [Milnor-Stasheff, 1974,

Appendix B].)
According to Pontrjagin and Thom, the stable

n-stem Πn can also be described as the group

of all framed cobordism classes of framed man-

ifolds. (Here one considers manifolds smoothly

embedded in a high-dimensional Euclidean space,
and a framing means a choice of trivialization

for the normal bundle.) Every homotopy sphere

is stably parallelizable, and hence possesses such

a framing. If we change the framing, then the

corresponding class in Πn will be changed by an
element of the subgroup Jn. Thus there is an exact

sequence

(1) 0 → Sbp
n → Sn → Πn/Jn ,

3This computation of |J4k−1| is a special case of the

Adams conjecture [Adams, 1963, 1965]. The proof was

completed by Mahowald [1970], and the full Adams con-

jecture was proved by Quillen [1971], Sullivan [1974],

and by Becker-Gottlieb [1975]. Adams also showed that

Jn is always a direct summand of Πn.

where S
bp
n ⊂ Sn stands for the subgroup

represented by homotopy spheres that bound

parallelizable manifolds. This subgroup is the

part of Sn that is best understood. It can be

partially described as follows.

Theorem 5. For n 6= 4 the group S
bp
n is finite cyclic

with an explicitly known generator. In fact this

group is:

• trivial when n is even,

• either trivial or cyclic of order two when

n = 4k− 3, and

• cyclic of order 22k−2(22k−1−1)numerator(
4Bk
k

)
when n = 4k− 1 > 3.

(This last number depends on the computation

of |J4k−1| as described above.) In the odd cases,

setting n = 2q − 1, an explicit generator for the

S
bp
2q−1 can be constructed using one basic building

block, namely the tangent disk-bundle of the

q-sphere, together with one of the following two

diagrams.

Here each circle represents one of our

2q-dimensional building blocks, which is a

2q-dimensional parallelizable manifold with

boundary, and each dot represents a plumbing

construction in which two of these manifolds are

pasted across each other so that their central

q-spheres intersect transversally with intersection

number +1. The result will be a smooth paral-

lelizable manifold with corners. After smoothing

these corners we obtain a smooth manifold X2q

with smooth boundary.

For q odd, use the left diagram, and for q

even use the right diagram. In either case, if

q 6= 2, the resulting smooth boundary ∂X2q will

be a homotopy sphere representing the required

generator of S
bp
2q−1. (The case q = 2 is exceptional

since ∂X4 has only the homology of the 3-sphere. In

all other cases where S
bp
2q−1 is trivial, the boundary

will be diffeomorphic to the standard (2q − 1)-

sphere.)

The exact sequence (1) can be complemented

by the following information.

Theorem 6. For n 6≡ 2 (mod 4), every element

of Πn can be represented by a topological sphere.
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Hence the exact sequence (1) takes the more pre-
cise form

(2) 0 → Sbp
n → Sn → Πn/Jn → 0 .

However, for n = 4k − 2, it rather extends to an
exact sequence

(3) 0 = S
bp
4k−2 → S4k−2 → Π4k−2/J4k−2

Φk
-→ Z/2 → S

bp
4k−3 → 0 .

Brumfiel [1968, 1969, 1970] sharpened this
result by showing that the exact sequence (2) is
split exact, except possibly in the case where n has
the form 2k − 3. (In fact it could fail to split only
in the cases n = 2k − 3 ≥ 125. See the discussion
below.)

The Kervaire homomorphism Φk in (3) was in-
troduced in [Kervaire, 1960]. (The image Φk(θ) ∈
Z/2 is called the Kervaire invariant of the homo-
topy class θ.) Thus there are two possibilities:

• If Φk = 0, then S
bp
4k−3 ≅ Z/2, generated by

the manifold ∂X4k−2 described above, and every
element ofΠ4k−2 can be represented by a homotopy
sphere.

• If Φk 6= 0, then S
bp
4k−3 = 0. This means that

the boundary of X4k−2 is diffeomorphic to the
standard S4k−3. We can glue a 4k−2 ball onto this
boundary to obtain a framed (4k − 2)-manifold
that is not framed cobordant to any homotopy
sphere. In this case the kernel of Φk forms a
subgroup of index two in Π4k−2/J4k−2 consisting
of those framed cobordism classes that can be
represented by homotopy spheres.

The question as to just when Φk = 0 was the
last major unsolved problem in understanding the
group of homotopy spheres. It has recently been
solved in all but one case by Hill, Hopkins, and
Ravenel:

Theorem 7. The Kervaire homomorphism Φk is
nonzero for k = 1, 2, 4, 8, 16, and possibly for
k = 32, but is zero in all other cases.

In fact Browder [1969] showed that Φk can
be nonzero only if n is a power of two, and
Barratt, Jones, and Mahowald [1984] completed
the verification that Φk is indeed nonzero for k =
1, 2, 4, 8, 16. Finally, Hill, Hopkins, and Ravenel
[2010] have shown that Φk = 0 whenever k >
32. (Their basic tool is a carefully constructed
generalized cohomology theory of period 256.)

Thus only the case k = 32, with 4k − 2 =

126, remains unsettled. In particular, for n 6=
4, 125, 126, if the order |Πn| is known, then we
can compute the number |Sn| of exotic n-spheres
precisely. In fact, if we exclude 4, 126, and numbers
of the form 2k − 3 ≥ 125, then the group Sn can
be described completely whenever the structure

of Πn is known.4

4One also needs the fact that the kernel of Φk is always

a direct summand of Π4k−2 (at least for 4k − 2 6= 126).

Further Details

Here is a brief outline of the current knowledge

of Πn. Since the direct summand Jn is known

precisely, we need only look at the quotient Πn/Jn .

The most difficult part is the 2-primary component,

which has been computed by Kochman [1990], with

corrections by Kochman and Mahowald [1995], in

all cases with n ≤ 64. The 3 and 5 primary

components have been computed in a much larger

range by Ravenel [1986]. The primary components

for p ≥ 7 are trivial for n < 82. (In fact, for any

p, the p-primary component of Πn/Jn is trivial

whenever n < 2p(p − 1)− 2 and is cyclic of order

p when p = 2p(p − 1)− 2.)

Thus the stable stem Πn is precisely known for

n ≤ 64, and hence the group Sn is precisely known

for n ≤ 64 , n 6= 4. In Table 2 the notation bk
stands for the order of the subgroup S

bp
4k−1 ⊂ S4k−1,

whereas a notation such as 23 · 4 stands for the

direct sum of three copies of Z/2 and one copy of

Z/4. The trivial group is indicated by a heavy dot.

All entries corresponding to the subgroups S
bp
n

have been underlined. (Note that S
bp
4k−3 is cyclic of

order two, indicated by a 2 in the 1 or 5 column,

except in the cases k = 1, 2, 4, 8, 16.) Within this

range, the group Sn is trivial only in the cases

n = 1, 2, 3, 5, 6, 12, 61 (and possibly 4).

The corresponding values of bk are not difficult

to compute but grow very rapidly. See Table 3

(with approximate values for k > 5). Note that

those bk for which k has many divisors tend to be

somewhat larger.

In conclusion, here is an argument that was

postponed above.

Outline Proof of Theorem 2. It is not difficult

to check that the group π0

(
Diff

+
(Sn)

)
consist-

ing of all smooth isotopy classes of orienta-

tion preserving diffeomorphisms of the unit

n-sphere is abelian. Define Γn to be the quotient

of π0

(
Diff

+
(Sn−1)

)
by the subgroup consisting of

those isotopy classes that extend over the closed

unit n-disk. There is a natural embedding Γn ⊂ Sn
that sends each (f ) ∈ Γn to the “twisted n-sphere”

obtained by gluing the boundaries of two n-disks

together under f . It followed from [Smale, 1962]

that Γn = Sn for n ≥ 5, and from [Smale, 1959]

that Γ3 = 0. Since it is easy to check that Γ1 = 0

and Γ2 = 0, we have

Γn = Sn for every n 6= 4 .

Mahowald tells me that this is true in dimension 62, and

the remaining four cases are straightforward.
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Table 2

n 0 1 2 3 4 5 6 7

0 + − • • • ? • • b2

8 + 2 2 · 22 6 b3 • 3 2 b4 · 2
16 + 2 2 · 23 2 · 8 b5 · 2 24 2 · 22 22 b6 · 2 · 24
24 + 2 2 · 2 2 · 6 b7 2 3 3 b8 · 22

32 + 23 2 · 24 23 · 4 b9 · 22 6 2 · 2 · 6 2 · 60 b10 · 24 · 6
40 + 24 · 12 2 · 24 22 · 24 b11 8 2 · 23 · 720 23 · 6 b12 · 23 · 12
48 + 23 · 4 2 · 6 22 · 6 b13 · 22 · 4 22 · 6 2 · 24 2 · 4 b14 · 3
56 + 2 2 · 23 22 b15 · 22 4 • 2 · 12 b16 · 23

Table 3

k 2 3 4 5 6 7 8 9

bk 28 992 8128 261632 1.45× 109 6.71× 107 1.94× 1012 7.54× 1014

k 10 11 12 13 14 15 16

bk 2.4×1016 3.4×1017 8.3×1021 7.4×1020 3.1×1025 5.×1029 1.8×1031

On the other hand, Cerf proved5 thatπ0

(
Diff

+
(S3)

)

= 0 and hence that Γ4 = 0 (although S4 is com-

pletely unknown). Using results about Sn as

described above, it follows that Γn = 0 for n < 7,

and that Γn is finite abelian for all n.

The Munkres-Hirsch-Mazur obstructions to

the existence of a smooth structure on a given

PL-manifold Mn lie in the groups Hk(Mn; Γk−1),

whereas obstructions to its uniqueness lie in

Hk(Mn; Γk). (Unlike most of the constructions

discussed above, this works even in dimension 4.)

Evidently Theorem 2 follows. �

For further historical discussion see Milnor

[1999, 2007, 2009].
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