| CLIMATE-RELATE K-ESS2 Earth's Sy | Stems K-ESS2-1. Use and share observations of local weather conditions to describe patterns over time. | 4a, 4b | SEP4. Analyzing and Interpreting Data | ESS2.D.
Weather and
Climate | CC1. Patterns | | Science
Knowledge is
Based on
Empirical
Evidence | |------------------------------------|--|---|--|---|---------------------------------------|---|---| | K-ESS3 Earth and | Human Activity K-ESS3-2. Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather. | 5c, 7c, GPa | SEP1. Asking
Questions and
Defining
Problems;
SEP8.
Obtaining,
Evaluating,
and
Communicatin
g Information | ESS3.B: Natural Hazards; (ETS1.A: Defining and Delimiting an Engineering Problem) | | Interdependence of Science, Engineering, and Technology; Influence of Engineering, Technology, and Science on Society and the Natural World | | | | K-ESS3-3. Communicate solutions that will reduce the impact of humans on the land, water, air, and/ or other living things in the local environment. | 7c, 4c | SEP8. Obtaining, Evaluating, and Communicatin g Information; | Developing | CC2. Cause and Effect | | | | K-PS3 Energy | K-PS3-1. Make observations to determine the effect of sunlight on Earth's surface. | 1a | SEP3. Planning and Carrying Out Investigations | Possible Solutions) PS3.B: Conservation of Energy and Energy Transfer | CC2. Cause and Effect | | Scientific
Investigations
Use a Variety of
Methods | | 2-ESS1 Earth's Pla | ace in the Universe 2-ESS1-1. Use information from several sources to provide evidence that Earth events can occur quickly or slowly. | | SEP6. Constructing Explanations and Designing Solutions | ESS1.C: The
History of
Planet Earth | CC7. Stability and Change | | | | 2-ESS2 Earth's Sy | stems 2-ESS2-3. Obtain information to identify where water is found on Earth and that it can be solid or liquid. | | SEP8. Obtaining, Evaluating, and | ESS2.C: The
Roles of Water
in Earth's
Surface | CC1. Patterns | | | | 3-LS4 Biological E | volution: Unity and Diversity 3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change. | 3c | SEP7. Engaging in Argument from Evidence | LS4.D:
Biodiversity | CC4. Systems
and System
Models | Interdependence
of Science,
Engineering, and
Technology | | | 3-ESS2 Earth's Sy | stems 3-ESS2-1. Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. 3-ESS2-2. Obtain and combine information to | 4b | SEP4. Analyzing and Interpreting Data SEP8. | ESS2.D:
Weather and
Climate | CC1. Patterns | | | | 3-ESS3 Earth and | describe climates in different regions of the world. Human Activity 3-ESS3-1. Make a claim about the merit of a | GPb | Obtaining,
Evaluating,
and
Communicatin
g Information
SEP7. | Weather and Climate ESS3.B: | CC2. Cause | Influence of | Science is a | | 4-ESS3 Earth and | Human Activity 4-ESS3-1. Obtain and combine information to | | Engaging in Argument from Evidence SEP8. | Natural Hazards (Note: This Disciplinary Core Idea is also addressed by 4-ESS3-2.) ESS3.A: | and Effect CC2. Cause | Engineering, Technology, and Science on Society and the Natural World | Human
Endeavor | | | describe that energy and fuels are derived from natural resources and their uses affect the environment. | | Obtaining,
Evaluating,
and
Communicatin
g Information | Natural
Resources | and Effect | of Science, Engineering, and Technology; Influence of Engineering, Technology, and Science on Society and the | | | | 4-ESS3-2. Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans. | GPb | SEP6. Constructing Explanations and Designing Solutions | ESS3.B: Natural Hazards; (ETS1.B: Designing Solutions to Engineering Problems) | CC2. Cause and Effect | Natural World Influence of Engineering, Technology, and Science on Society and the Natural World | | | 4-PS3 Energy | 4-PS3-2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. | | SEP3.
Planning and
Carrying Out
Investigations | PS3.A:
Definitions of
Energy; PS3.B:
Conservation
of Energy and | CC5. Energy and Matter | | | | 5-LS1 From Molec | ules to Organisms: Structures and Processes 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. | | SEP7. Engaging in Argument from Evidence | LS1.C:
Organization
for Matter and
Energy Flow | CC5. Energy and Matter | | | | 5-LS2 Ecosystems | : Interactions, Energy, and Dynamics 5-LS2-1. Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. | | SEP2. Developing and Using | in Organisms LS2.A: Interdependent Relationships | Models | | | | | | | Models | in Ecosystems;
LS2.B: Cycles
of Matter and
Energy
Transfer in
Ecosystems | | | | | 5-ESS2 Earth's Sy | 5-ESS2-1. Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. | 2a | SEP2.
Developing
and Using
Models | ESS2.A: Earth
Materials and
Systems | _ | | | | 5-ESS3 Earth and | 1 | 6c, 6d, GPg | SEP8. Obtaining, Evaluating, and Communicatin g Information | ESS3.C:
Human
Impacts on
Earth Systems | CC4. Systems
and System
Models | | Science
Addresses
Questions Abou
the Natural and
Material World | | CLIMATE-RELATE
MS-PS1 Matter an | ED MIDDLE SCHOOL STANDARDS d Its Interactions MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. | | SEP8. Obtaining, Evaluating, and Communicatin g Information | PS1.A:
Structure and
Properties of
Matter; PS1.B:
Chemical
Reactions | CC6. Structure and Function | Interdependence
of Science,
Engineering, and
Technology;
Influence of
Engineering,
Technology, and
Science on | | | MS-PS4 Waves an | d their Applications in Technologies for Information MS-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. | Transfer | SEP2. Developing and Using Models | PS4.A: Wave
Properties;
PS4.B:
Electromagneti | CC6. Structure and Function | Society and the
Natural World | | | MS-LS1 From Mole | ecules to Organisms: Structures and Processes MS-LS1-6. Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. | | SEP6. Constructing Explanations and Designing Solutions | LS1.C: Organization for Matter and Energy Flow in Organisms; PS3.D: Energy in Chemical Processes and Everyday Life | CC5. Energy
and Matter | | Science
Knowledge is
Based on
Empirical
Evidence | | MS-LS2 Ecosyster | ns:Interactions, Energy, and Dynamics MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. | | SEP4.
Analyzing and
Interpreting
Data | LS2.A:
Interdependent
Relationships
in Ecosystems | CC2. Cause and Effect | | | | MS-ESS2 Earth's S | MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. | 3c | SEP7.
Engaging in
Argument from
Evidence | LS2.C:
Ecosystem
Dynamics,
Functioning,
and Resilience | CC7. Stability and Change | | | | | MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services. | | SEP7. Engaging in Argument from Evidence | LS2.C: Ecosystem Dynamics, Functioning, and Resilience; LS4.D: Biodiversity and Humans; (ETS1.B: Developing Possible Solutions) | CC7. Stability and Change | Influence of Engineering, Technology, and Science on Society and the Natural World | Science
Addresses
Questions Abou
the Natural and
Material World | | | MS-ESS2-5. Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. | | SEP3. Planning and Carrying Out Investigations | in Earth's
Surface
Processes;
ESS2.D: | CC2. Cause and Effect | | | | | MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. | 5b | SEP2. Developing and Using Models | Weather and
Climate
ESS2.C: The
Roles of Water
in Earth's
Surface
Processes;
ESS2.D:
Weather and
Climate | CC4. Systems
and System
Models | | | | | MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. MS-ESS3-2. Analyze and interpret data on natural | | SEP6. Constructing Explanations and Designing Solutions SEP4. | ESS3.A:
Natural
Resources | CC2. Cause and Effect CC1. Patterns | Influence of Engineering, Technology, and Science on Society and the Natural World Influence of | | | | hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. | | Analyzing and Interpreting Data SEP6. Constructing Explanations | Natural
Hazards ESS3.C: Human Impacts on | CC2. Cause and Effect | Engineering, Technology, and Science on Society and the Natural World Influence of Engineering, Technology, and | | | | MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems. | | and Designing Solutions SEP7. Engaging in Argument from Evidence | ESS3.C: Human Impacts on Earth Systems | CC2. Cause and Effect | Science on
Society and the
Natural World
Influence of
Engineering,
Technology, and
Science on | Science
Addresses
Questions Abouthe Natural and | | | MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. | | SEP1. Asking
Questions and
Defining
Problems | ESS3.D:
Global Climate
Change | CC7. Stability and Change | Society and the
Natural World | Material World | | MS-ETS1 Enginee | ring Design MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. | | SEP1. Asking
Questions and
Defining
Problems | ETS1.A: Defining and Delimiting Engineering Problems | | Influence of
Science,
Engineering, and
Technology on
Society and the
Natural World | | | HS-ESS2 Earth's S | HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth's systems. | 2f | SEP2. Developing and Using Models; SEP4. Analyzing and Interpreting Data | ESS2.A: Earth
Materials and
Systems;
ESS2.D:
Weather and
Climate | CC7. Stability and Change | Influence of Science, Engineering, and Technology on Society and the Natural World | | | | HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth systems result in changes in climate. | 1a, 1d, 1e,
2, 2a, 2b,
2c, 2d, 2e,
2f, 4, 4f, 4g,
5, 5a, 5e | SEP2. Developing and Using Models | ESS2.A: Earth
Materials and
Systems;
ESS2.D:
Weather and
Climate;
(ESS1.B: Earth
and the Solar
System) | and Effect | | Science
Knowledge is
Based on
Empirical
Evidence | | | HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. | 2d | SEP2. Developing and Using Models | ESS2.D:
Weather and
Climate | CC5. Energy and Matter | | | | | HS-ESS2-7. Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth. | За | SEP7.
Engaging in
Argument from
Evidence | ESS2.D:
Weather and
Climate;
ESS2.E:
Biogeology | CC7. Stability and Change | | | | HS-ESS3 Earth an | d Human Activity HS-ESS3-1. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. | | SEP6. Constructing Explanations and Designing Solutions | ESS3.A:
Natural
Resources; | CC2. Cause and Effect | Influence of
Science,
Engineering, and
Technology on
Society and the
Natural World | | | | HS-ESS3-2. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. | | SEP7.
Engaging in
Argument from
Evidence | (ETS1.B:
Developing
Possible | | Influence of
Science,
Engineering, and
Technology on
Society and the
Natural World | Science
Addresses
Questions Abou
the Natural and
Material World | | | HS-ESS3-3. Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human | | SEP5. Using Mathematics and | Solutions) ESS3.C: Human Impacts on | CC7. Stability and Change | Influence of
Science,
Engineering, and | Science is a
Human
Endeavor | | | populations, and biodiversity. HS-ESS3-4. Evaluate or refine a technological solution that reduces impacts of human activities on natural systems. | | Computational Thinking SEP6. Constructing Explanations and Designing | ESS3.C: Human Impacts on Earth Systems; | CC7. Stability and Change | Technology on Society and the Natural World Influence of Science, Engineering, and Technology on | | | | HS-ESS3-5. Analyze geoscience data and the results from global climate models to make an evidence based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. | 5c, GPa,
GPb, GPe | SEP4. Analyzing and Interpreting Data | (ETS1.B: Developing Possible Solutions) ESS3.D: Global Climate Change | CC7. Stability and Change | Society and the Natural World | Scientific Investigations Use a Variety of Methods; Science Knowledge is Based on | | | HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. | | SEP5. Using
Mathematics
and
Computational
Thinking | (ESS2.D:
Weather and
Climate);
ESS3.D:
Global Climate
Change | CC4. Systems
and System
Models | | Based on
Empirical
Evidence | | HS-ETS1 Enginee | ring Design HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. | | SEP1. Asking
Questions and
Defining
Problems | ETS1.A: Defining and Delimiting Engineering Problems | | Influence of
Science,
Engineering, and
Technology on
Society and the
Natural World | | | | HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. HS-ETS1-3. Evaluate a solution to a complex real- | | SEP6. Constructing Explanations and Designing Solutions SEP6. | ETS1.C:
Optimizing the
Design
Solution | | Influence of | | | | HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex | | SEP6. Constructing Explanations and Designing Solutions SEP5. Using Mathematics | Developing
Possible
Solutions
ETS1.B: | CC4. Systems | Influence of Science, Engineering, and Technology on Society and the Natural World | | | HS-LS2 Ecosysten | the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem. ns: Interactions, Energy, and Dynamics HS-LS2-1. Use mathematical and/or | | Mathematics and Computational Thinking SEP5. Using | Developing
Possible
Solutions | and System
Models | | | | | computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. HS-LS2-2. Use mathematical representations to | | Mathematics
and
Computational
Thinking
SEP5. Using | Interdependent
Relationships
in Ecosystems
LS2.A: | Proportion, and Quantity CC3. Scale, | | Scientific
Knowledge is | | | support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. | 3e | Mathematics and Computational Thinking SEP2. Developing and Using Models | Interdependent
Relationships
in Ecosystems;
LS2.C:
Ecosystem
Dynamics,
Functioning,
and Resilience | Proportion, and Quantity | | Knowledge is Open to Revision in Light of New Evidence | | | HS-LS2-6. Evaluate the claims, evidence, and | | SEP7. | Ecosystems;
(PS3.D:
Energy in
Chemical
Processes) | CC7. Stability | | Scientific | | | reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity. | 7d, 7e, GPc | Engaging in
Argument from
Evidence | Ecosystem Dynamics, Functioning, and Resilience LS2.C: Ecosystem Dynamics, Functioning, and Resilience; LS4.D: Biodiversity and Humans; (ETS1.B: Developing Possible | and Change CC7. Stability and Change | | Knowledge is Open to Revision in Light of New Evidence | | HS-LS4 Biological | Evolution: Unity and Diversity HS-LS4-4. Construct an explanation based on evidence for how natural selection leads to adaptation of populations. | | SEP6. Constructing Explanations and Designing Solutions | Solutions) LS4.C: Adaptation | CC2. Cause and Effect | | Scientific
Knowledge
Assumes an
Order and
Consistency in
Natural Systems | | | | I | I | | CC2. Cause | | | | | HS-LS4-5. Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. HS-LS4-6. Create or revise a simulation to test a | 1e | SEP7. Engaging in Argument from Evidence SEP5. Using | LS4.C:
Adaptation
LS4.C: | and Effect CC2. Cause | | |