
QNX Overview
Based on material from:
 Sebastien Marineau-Mes & Colin Burgess

 Jason Clarke, QNX Field Application Engineer

All content copyright QNX Software Systems

History

Developed in early ‘80s for the Intel 8088.
Initially used in “larger” non-embedded projects (44k kernel)
Migrated to POSIX model / compatibility
Added Photon GUI
Rewritten to support SMP (Neutrino)
Member of Eclipse Foundation (Momentics)
Sold to Harman International Industries for application in

automotive systems
Purchased by Research in Motion (RIM)

> Blackberry Playbook Tablet
Ported to large number of platforms

> PowerPC, x86, MIPS, SH-4, ARM, StrongARM, XScale

2

All content copyright QNX Software Systems 3

1985: First memory-
protected RTOS

1997: First RTOS to
support symmetric
multiprocessing (SMP)

A History of Software Innovation

1980 1985 1990 1995 2000 2005

1980: First commercially
available microkernel OS

1982: First RTOS to
support a hard disk on
a PC

1992: First RTOS to
offer built-in fault-
tolerant networking

1994: US patent for
scalable microkernel
windowing system

2002: First RTOS
vendor to deliver
Eclipse-based IDE

2005: First to offer
“bound” multi-
processing

QNX2 QNX4 QNX6

1990: First
POSIX-certified
RTOS

2007: Introduces hybrid
software model and opens
source code

All content copyright QNX Software Systems

Features

Micro-kernel Architecture
>CPU Scheduling
>Inter-process Communication
>Interrupt Redirection
>Timers

Protected User Process Space
>Process Lifecycle
>Memory Management
>Device Drivers

Configurable for scalability
Messaging-based architecture

4

All content copyright QNX Software Systems 5

Microkernel Architecture

File
System Networking Multi-mediaWindowingProcess

Manager

Application

Microkernel
+

Process Manager
are the only trusted

components

Microkernel
Arm, Mips, SH4

PowerPC, XScale, X86

µK
Message Bus

 Applications and Drivers
 Are processes which plug into a message bus
• Reside in their own memory-protected address
 space

• Have a well defined message interface
• Cannot corrupt other software components
• Can be started, stopped and upgraded on the fly

Shared Memory -
Large data sets and

hardware access

Application

Inter-Process Communication

Processes communicate by sending messages

Using messages cleanly decouples
processes

POSIX calls built on messages
fd = open(“/dev/tcpip”, ,,,)
read, write, stat, devctl, …
close

Other POSIX calls as well
> realtime signals
> pipes and POSIX mqueues
> mutexs, condvars, semaphores
> barriers, sleepon
> reader/writer locks

Audio DriverFlash File
System

Process
Manager

Network
Driver

Graphics
Driver File System

Application

/dev/tcpip /dev/ser1

Microkernel Message-Passing Bus

All content copyright QNX Software Systems

Overview

7

All content copyright QNX Software Systems 8

Separation of Duties – Process
Manager vs. MicroKernel

Messages

Threads

Synchronization

Scheduling

Signals

Channels

Connections

Interrupts

Timers

Pathname

Process

Virtual Memory

procfs

Debug

Loader

Named Sems

imagefs

Resources

Microkernel Process Manager

procnto

All content copyright QNX Software Systems 9

Microkernel Services

Messages

Threads

Synchronization

Scheduling

Signals

Channels

Connections

Interrupts

 Simple pre-emptable operations
 Provides basic system services

> Implements much of the POSIX thread and realtime standard
> Interrupt and exception redirection
> IPC primitives

 Most of the microkernel is hardware independent
> CPU-dependant layer for low-level cpu interfaces
> CPU-specific optimized routines

 Only pieces of code that runs with full system
privilege

 Microkernel does not run “on its own”
> Only reacts to external events: system calls, interrupts,

exceptions

Timers

All content copyright QNX Software Systems 10

Process Manager Services

Implements long, complex
operations and services
> Ex: Process creation and memory management

Is a multi-threaded process that is
scheduled at normal priority
> Competes for CPU with all other threads in the

system

Message driven server
More on this later

Pathname

Process

Virtual Memory

procfs

Debug

Loader

Named Sem

imagefs

Resources

Process Manager

All content copyright QNX Software Systems 11

Process Manager

First process in system
> Created by kernel (init_objects)

Provides core services to other processes
Multi-threaded Process

> First <ncpus> threads are IDLE threads
> Additional threads are threadpool worker threads

Message driven server
Actually a collection of (almost) independent servers
4 message handlers
11(!) resource managers

> These resource managers are actually mini filesystems.

Hard Realtime Performance

Multiple concurrent
scheduling algorithms
 FIFO, Round Robin, Sporadic

Prioritized pre-emptable threads
 256 priority levels
 Fully pre-emptable and

deterministic kernel

Prioritized and nested interrupts
 Interrupt handlers can schedule

a user thread or run custom interrupt
code

Handler x

Handler y

IRQ x

IRQ y (higher)

Thread A

Thread B

Thread B
scheduled

Thread B

Thread C

Thread A

Priority 50

Priority 18

Priority 12

Symmetric Multiprocessing

 Multiple processors sharing
common hardware
> Common memory bus and

address space
> Access to all peripheral devices

and interrupts
> OS manages tasks running on

processors – true concurrency

 Transparent to application programs

 No application software
changes needed

 Automatic thread (~) scheduling across
all CPUs

Thread E

Thread B

Thread C Thread DThread B

Thread BThread A

Route Manager

Thread D

File System Ethernet Driver

QNX Neutrino Realtime Scheduler (OS)

Priority

Thread C Thread E

Memory

Future
CPU

Cache

Future
CPU

Cache

CPU

Cache

CPU

Cache

High-Bandwidth CPU Bus

Thread A

M
es

sa
ge

 B
rid

ge
 (E

th
er

ne
t,

fa
br

ic
, i

nt
er

co
nn

ec
t…

)

Flash File
SystemDatabase

Application

Microkernel

Message
Queues

Networking
Stack

Flash File
System

Application

Microkernel

Internet

Message-Passing Bus

Transparent Distributed Processing

Applications/servers can be
network-distributed without
special code
> Message queues
> File systems
> Services
> Databases
> …

fd = open(“/etc/log_file.dat”,…);
write(fd, …);

fd = open(“/net/$HOSTNAME/etc/log_file.dat”,…);
write(fd, …);

Critical Process Monitor

Critical Process Monitor (HAM) monitors components and sends notification
of component failure

Heartbeat services detect component ‘hang’
Core file on crash can be created for debugging and analysis
Recovery from crash can be:

> Controlled shutdown or system restart
> Restart of only the failed subsystem (driver)

Flash Layout (8260ADS)

Boot Image
> Contains Kernel
> Requires only Flash Filesystem to be in Image

Flash Filesystem
> Fault Tolerant POSIX Compliant Filesystem
> Once Filesystem is Loaded Everything Else Can be Loaded from the Filesystem,

Even Drivers

IPL (Initial Program Loader)
> Sets Up Board and Loads Boot Image
> Sits at Reset Vector

BOOT
IMAGE FLASH FILESYSTEM IPLBOOT

IMAGE 1 FLASH FILESYSTEM IPLBOOT
IMAGE 2

Server

System Upgrade

Flash File
System

Process
Manager

Network
Driver

Graphics
Driver

Microkernel

Application 1 Application 2

Add New Features or Processes on the Fly
> Download New Binary into Filesystem or Ram
> Load New Binary into RAM

Replace Existing Processes Without Reboot
>Download New Binary to Filesystem
>Remove Process Running in RAM
>Load New Binary From the Filesystem

Application 1.1

Zero Down Time Upgrade

New Client

Client
Server
V1.0

/dev/service

Server
V1.1

/dev/service

New version of the server attaches to the same name

New clients connect to new server

Old server exits when all old clients are gone

