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PREFACE

OSP (an Operating System Project) is both an implementation of

a modern operating system, and a exible environment for generat-

ing implementation projects appropriate for an introductory course in

operating system design. It is intended to complement the use of most

standard textbooks on operating systems and contains enough projects

for up to three semesters. These projects expose students to many es-

sential features of operating systems, while at the same time isolating

them from low-level machine-dependent concerns. Thus, even in one

semester students can learn about page replacement strategies in vir-

tual memory management, cpu scheduling strategies, disk seek time

optimization, and other issues in operating system design.

OSP consists of a number of modules, each of which performs a

basic operating systems service such as device scheduling, cpu schedul-

ing, interrupt handling, �le management, memory management, pro-

cess management, resource management, and interprocess communica-

tion. By selectively omitting any subset of modules, an instructor can

generate a project in which the students are to implement the missing

parts. Projects can be organized in any desired order so as to progress

in a manner consistent with the lecture material.

The OSP Project Generator provides the instructor with a conve-

nient environment in which to create projects. It generates a \partial

load module" of standard OSP modules to which the students link

their implementation of the assigned modules. The result is a new and

complete operating system, partially implemented by the student. Ad-

ditionally, the project generator automatically creates \module.c" �les

containing procedure headings and declarations of requisite data struc-

tures for each of the assigned modules. These �les can be given as part

of a project assignment in which the students are to �ll in the proce-

dure bodies. This ensures a consistent interface to OSP and eliminates

iii



iv PREFACE

much of the routine typing, both by the instructor and by the students.

The heart of OSP is a simulator that gives the illusion of a com-

puter system with a dynamically evolving collection of user processes

to be multiprogrammed. All the other modules of OSP are built to

respond appropriately to the simulator-generated events that drive the

operating system.

The di�culty of the job streams generated by the simulator can

be adjusted by manipulating the simulation parameters. This yields

a simple and e�ective way of testing the quality of student programs.

There are also facilities that allow the students to debug their programs

by interacting with OSP during simulation.

The present version of OSP is written in C and runs under 4.3

BSD UNIX1 (and ULTRIX) on the VAX-11 family of computers, SUN-

3 and SUN-4 workstations, DEC DS5000/200 (the DECstation), and

the Sequent 80386-based multiprocessor. Under System V, OSP runs

on the HP 300 workstation series and on AT&T 3B2. It also runs under

Mach on the NeXT workstation, and is expected to be ported to several

other machines in the near future.

OSP was developed at SUNY|Stony Brook, and borrowed sev-

eral important ideas from an earlier project headed by Art Bernstein.

The underlying model in OSP is not a clone of any speci�c operating

system. Rather it is an abstraction of the common features of several

systems (although a bias towards UNIX can be seen, at times). The

modules described in Sections 1.5 through 1.10 were designed to hide

a number of low-level concerns, yet still encompass the most salient

aspects of their real-life counterparts in modern systems. Their imple-

mentation is well-suited as the project component of an introductory

course in operating systems. A more advanced project can be built

around the last two modules, which deal with interprocess communica-

tion. Their design is more detailed and gives students the opportunity

to work in a realistically \dirtier" environment.

This book is structured as follows. The �rst chapter constitutes the

OSP programmer's manual and reference guide. Section 1.2 presents

the overall architecture ofOSP, and theOSP modules are described in

detail in the remaining sections. Included in each of the latter sections

is a brief discussion of the general concepts of operating system design

as they relate to the module in question.

1UNIX is a registered trademark of AT&T Bell Laboratories.
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Chapter 2 is a user's guide that explains to the students how to

run their programs, the meaning of the statistics and error messages

generated by OSP, and how to submit their assignments.

The last chapter is an instructor's guide. It explains how to ftp

OSP from Stony Brook, how to prepare and structure programming

assignments, and what to look for in grading them. In the Appendix,

we provide a number of sample assignments, which can be used in a

course.

We would like to gratefully acknowledge the contributions of Kit

Lo, Nathan Tam, and Andrew Moncrie�e who implemented the �rst

version of OSP. Subsequent enhancements are due to Jusuf Anwar,

Lawrence Kwok, and Sankar Raman. Many people have used prelimi-

nary versions of OSP in their classes and have given us valuable feed-

back. In particular, we would like to thank Amr El Abbadi, Michael

Fischer, Larry Hall, Bruce Parker, Mark Roth, and Gene Stark.
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1

PROGRAMMING OSP

This chapter is organized as follows. We �rst discuss the modular in-

terface of OSP, and suggest guidelines to be followed when faced with

an OSP programming assignment. This is followed by a brief account

of the functionality of the OSP modules and their interconnection. We

then present the architecture of the underlying simulated machine and

the data structures used to represent it.

The main body of Chapter 1 contains a detailed description of all

of the OSP modules. This description includes, for each module M,

two interface tables: one speci�es the calling sequences of the routines

internal to module M that may be used by other modules; and the

other speci�es the calling sequences of the external routines that belong

to other modules but are used by M.

To obtain a general knowledge of the internals ofOSP, it is advised

to �rst read Sections 1.1 through 1.4. Other sections need be read only

when speci�c modules have been assigned as a project. Occasionally,

it will be necessary to consult the glossary to �nd de�nitions of data

types referred to in one module, but de�ned in another.

OSP is written in the C programming language. As such, the def-

initions of all data types and procedure de�nitions are given in C.

1.1 Getting Started

OSP is a collection of modules that together implement a modern-

day operating system. Several times during the semester, you will be

1



2 CHAPTER 1 PROGRAMMING OSP

given an assignment in which you are to implement one or more of

the OSP modules. You will also be given instructions on how to com-

pile and link your modules with the rest of the OSP system (see also

Chapter 2). The end result will be a new and complete operating sys-

tem, which you can run in the simulated environment provided by the

SIMCORE module of OSP.

When a module M is assigned as a project, your job is to sup-

ply the code for the internal routines of M. This code should rely on

the external routines to perform various functions delegated to other

modules. In the course of implementingM, you may �nd it helpful to

write some additional routines to carry out auxiliary tasks. Since these

routines do not appear in the table of internal routines, they cannot be

called by other modules.

To clarify, let us consider a speci�c example. Suppose you have been

asked to implement module CPU (cpu scheduling). After having read

the Preface, Sections 1.1 through 1.4, and Chapter 2, the �rst thing

to do is turn to Section 1.7. Here you will �nd a detailed description

of CPU, as well as the tables of internal and external routines for this

module.

CPU has three internal routines: cpu init( ), insert ready( ), and

dispatch( ). Therefore, to implement this module you will have to sup-

ply the code for these routines, following the guidelines that appear in

Section 1.7. These guidelines are not entirely self-contained, and you

are therefore expected to know the material from the course text con-

cerning cpu scheduling.

CPU has four external routines: prepage( ) and start cost( ) of mod-

uleMEMORY (memory management), and set timer( ) and get clock( )

of module SIMCORE (the simulator). These routines should be used

to help you implement the cpu scheduler. For example, to prepage a

process and to estimate the cost of the prepaging, you should make use

of the routines prepage( ) and start cost( ). Both of these routines are

external to CPU but internal to MEMORY. Similarly, to set the time

quantum for round-robin scheduling and to obtain the current simu-

lated time, you should call the routines set timer( ) and get clock( ) of

SIMCORE.
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1.2 Architecture of OSP

OSP consists of ten primary modules whose interaction is depicted in

Figure 1.1. In this diagram an arrow between modules, say from M to

N , means that routines in M may call routines in N . The following

table gives the names of the modules plus a short description of their

functionality.

SIMCORE core of the simulator

DIALOG run-time interface to OSP

INTER general interrupt handling

IOSVC I/O monitor calls

DEVINT device interrupts

PAGEINT page fault interrupts

PROCSVC process management monitor calls

TIMEINT timer interrupts

MEMORY memory management

CPU cpu scheduling

DEVICES device management

FILES �le organization

RESOURCES resource management

SOCKETS interprocess communication

PROTOCOLS protocol support for the SOCKETS module

The architecture of the simulated computer consists of a cpu, two disks,

a drum used as a swap area for virtual memory, a vectored interrupt

facility, and virtual memory hardware.

1.2.1 CPU

Associated with the cpu are the following hardware components:

� interval timer

� clock

� interrupt vector

� page table base register

Module SIMCORE (Section 1.3) provides routines to set the interval

timer and to read the contents of the clock. The page table base register
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and the interrupt vector are described below.

The simulated machine also consists of I/O devices in the form of

two disks and a drum, which are used for user I/O and virtual memory

management, respectively. Routines to initiate I/O on these devices are

provided by SIMCORE. Disks are described in detail in Section 1.8

(module DEVICES), and the drum is discussed in Section 1.6 (module

MEMORY).

1.2.2 Interrupt Vector

The type of OSP interrupts is de�ned as follows:

typedef enum f

iosvc, devint, pagefault, startsvc, termsvc,

killsvc, waitsvc, sigsvc, timeint

g INT TYPE;

Interrupt handling is discussed in Section 1.5. The simulated vectored

interrupt facility has the following structure:

typedef struct int vector node INT VECTOR;

struct int vector node f

INT TYPE cause; /* cause of the interrupt */

PCB *pcb; /* pcb to start/kill, if cause = */

/* startsvc/killsvc; pcb that caused */

/* page fault, if cause = pagefault */

int page id; /* page that caused page fault */

int dev id; /* device that caused devint */

EVENT *event; /* event assoc'd with waitsvc/sigsvc */

IORB *iorb; /* iorb assoc'd with iosvc call */

g;

INT VECTOR Int Vector; /* the interrupt vector */

1.2.3 Physical Memory

The simulated computer provides hardware support for paged virtual

memory. In particular, memory is divided into �xed-size page frames

(of size PAGE SIZE bytes), a page table base register (PTBR) is pro-

vided, and the drum serves as a swap area for user processes. The data

structures corresponding to physical memory now follow.
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PAGE TBL *PTBR; /* page table base register */

PAGE TBL is the data type for page tables, and is de�ned in Sec-

tion 1.6 (module MEMORY). PTBR is a cpu register used to locate

the page table of the current process. Also, the �eld PTBR!pcb pro-

vides a convenient way to access the process control block (pcb) of that

process.

typedef struct frame node FRAME;

struct frame node f

BOOL free; /* true, if the frame is free */

PCB *pcb; /* process that owns the frame */

int page id; /* virtual page id � index into */

/* the page table pcb!page tbl */

BOOL dirty; /* true, if frame was modified */

int lock count; /* # of I/O locks on this frame */

int *hook; /* user can hook anything here */

g;

FRAME Frame Tbl[MAX FRAME];

The last entry, hook, is part of many standard data types in OSP. It

facilitates the \hook-up" of whatever additional information the user

may want to incorporate in the standard structures, e.g., to add addi-

tional �elds to these structures.

1.2.4 General Data Types

The following type de�nitions appear throughout this chapter.

typedef enum f

false, true /* the Boolean data type */

g BOOL;

typedef enum f

fail, ok /* OSP routines' exit codes */

g EXIT CODE;

typedef enum f

read, write /* type of I/O requests */

g IO ACTION;
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typedef enum f

load, store /* type of memory references */

g REFER ACTION;

1.3 The Simulator { Module SIMCORE

The events that drive the OSP modules are generated by a simulator

implemented in SIMCORE. This module simulates the execution of

user programs, which in turn are multi-programmed by the rest of

OSP. In addition, SIMCORE simulates an interval timer and I/O

devices. This is the only module of OSP that is not intended as a

project for students. The particular types of events generated are:

� requests for process creation, termination, and abortion

� requests to synchronize processes on signals

� virtual memory references

� timer interrupts

� I/O requests

� device interrupts

� requests for resources

� requests to send and receive messages over sockets

SIMCORE uses a set of simulation parameters to decide how often

to generate events of a given type, and to determine other aspects of

the simulation environment; e.g., the length of the simulation, the cpu

time quantum, etc. As described below, simulation parameters can be

changed interactively by the user. A complete account of the simulation

parameters is given in Chapter 2.

The simulator \charges" the various modules of OSP for cpu time,

I/O activity, and other resources, so that it may accumulate statistics

that can be used to estimate the performance of the modules writ-

ten by the students. Statistics include: cpu time used, cpu utilization,

system throughput, memory utilization, number of I/O operations per-
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formed on the various devices, and the number of page faults and page

replacements.

In order to prevent corruption to the integrity of the system state,

the simulator monitors all events in the system, keeping its own copy of

the system state. In many cases, this enables SIMCORE to verify the

correctness of the behavior of student modules. Whenever it detects an

unanticipated and fatal error in the behavior of a module, execution is

terminated and an informative error message is issued. If the simulator

deems the error to be non-fatal, it issues a warning and continues. For

example, a reference to virtual memory that should have caused a page

fault but did not, will result in the simulator terminating, while not

using the \dirty bit" optimization in memory management will result

in a warning. In general, SIMCORE is able to recognize and report a

wide variety of errors and ine�ciencies in student programs.

Internal Routine Called By

siodev ( iorb ); DEVICES

IORB *iorb;

Performs the I/O operation speci�ed in the iorb.

siodrum ( action,pcb, page id, frame id ); MEMORY

IO ACTION action;

PCB *pcb;

int page id, frame id;

Transfers page between main memory and the

drum; action is either read or write; with read

the page page id is brought from the drum into

the frame frame id ; with write the contents of the

frame frame id is saved in the swap area for the

process represented by pcb, in the block designated

for the page page id .

int get clock ( ); MEMORY,

Returns the current simulated time; may be used

for implementing the \working set" memory man-

agement strategy, aging-based cpu scheduling poli-

cies, or to trigger deadlock detection.

CPU,

RESOURCES

set timer( time quantum ); CPU,
int time quantum; T IMEINT

Resets the simulated timer.
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The Debugging Interface to SIMCORE

SIMCORE lets the programmer view the system status (e.g., the state

of memory and the devices, statistics) during simulation. A simulation

parameter, called snapshot interval , may be set by the user to indicate

how often during simulation the system status is to be displayed. The

user may also request a snapshot by hitting CTRL-Z. Each snapshot

break also presents an opportunity for users to change the simulation

parameters, and, as explained in module DIALOG, internal variables

of their modules.

Internal Routine (SIMCORE debugging calls) Called By

change sim params ( ); DIALOG

Changes simulation parameters at snapshot breaks.

Prompts the user for the appropriate changes.

print sim frame tbl ( ); DIALOG

print sim dev tbl ( ); DIALOG

print sim rsrc tbl ( ); DIALOG

print sim socket tbl ( ); DIALOG

print sim open �les tbl ( ); DIALOG

print sim pcb pool ( ); DIALOG

print sim disk map ( ); DIALOG

print sim waiting queue ( ); DIALOG

print sim prrb queue ( ); DIALOG

These routines print the contents of the frame, de-

vice, resource, and socket tables, as well as the sta-

tus of all active pcb records, disks, and queues. The

importance of these routines is that they display

the status of these data structures as they should

be according to the simulator.

After each snapshot is taken, or after a warning or an error message

is issued, SIMCORE calls the routines at snapshot( ), at warning( ),

and at error( ) of DIALOG, respectively. The programmer can cus-

tomize these \at"-routines to view the state of system tables or change

simulation parameters by calling the routines provided by the debug-

ging interface to SIMCORE .

Another important debugging feature of OSP is its trace facility.

The student can direct the simulator to produce a list of all events

(relevant to the speci�c assignment) that occurred during a simulation
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run. In case of an error, examining the trace of events may help locate

the cause of the error. Many OSP data structures contain an id �eld.

The value of this �eld is usually set by SIMCORE so that instances of

a data structure can be easily identi�ed within a trace. For other data

structures, the id �eld can be set by the programmer as an optional

debugging aid. In either case, it will be stated as a comment in the

de�nition of a data structure whose responsibility it is to set the id

�eld.

External Routine Host Module

extern at snapshot ( ); DIALOG

Called after a snapshot is taken; allows the pro-

grammer to alter simulation parameters and pro-

gram variables.

extern at warning ( ); DIALOG

extern at error ( ); DIALOG

These routines are called right after a warning or an

error message is printed by SIMCORE; students

can use these routines to display internal variables

of their programs exactly as they are at the mo-

ment when SIMCORE discovers an error. One can

also use the routines in the debugging interface to

SIMCORE to display the system status.

1.4 Run-time Interface and Debugging {

Module DIALOG

This module provides three routines: at snapshot( ), which is called

by the simulator after each snapshot is taken or when the user hits

CTRL-Z on the keyboard; at warning( ), which is called right after

a warning is issued; and at error( ), which is called when an error is

detected.

The contents of these routines depends on how the student intends

to use the dialogue facility of OSP. If the student wants just to see

the system status, then at snapshot( ) need only issue a prompt about

continuing the simulation. If, on the other hand, the student wants to
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change simulation parameters, such as snapshot interval , trace switch ,

or the job-stream intensity, which are local variables of SIMCORE,

at snapshot( ) must call change sim params( ) of SIMCORE. This rou-

tine prompts the user for the parameters to be changed and then per-

forms the changes. Note that the at snapshot( ) routine supplied with

the standard DIALOG module does call change sim params( ).

Like at snapshot( ), the routines at warning( ) and at error( )

can be used to display the status of the system by calling

print sim frame tbl( ), print sim dev tbl( ), and other routines that con-

stitute the debugging interface to SIMCORE. The status of variables

local to the modules implemented by the student can also be displayed

here. This is useful as it shows the status of these variables right at the

moment when SIMCORE detects an error or issues a warning.

Dynamically changing the values of variables local toOSP modules

implemented by students is also possible. Consider such a student mod-

ule M. The programmer should write a routine, say tune M( ), incor-

porate it into M, and then call it from at snapshot( ). This routine,

being local to M, will be able to change the value of any variable in-

sideM. Care should be exercised when writing the routines tune M( )

to ensure that they have no undesirable side e�ects. The same technique

can be used to change the values of variables local to M from inside

the routines at warning( ) and at error( ). The interface to DIALOG is

given next:

Internal Routine Called By

at snapshot ( ); SIMCORE

Provides a run-time interface to OSP; allows the

user to change simulation parameters and program

variables for debugging purposes.

at warning ( ); SIMCORE

at error ( ); SIMCORE

Like at snapshot( ), but invoked at the time a warn-

ing or an error message is printed.

External Routine Host Module

extern change sim params ( ); SIMCORE

Changes simulation parameters during snapshot

breaks.
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External Routine (continued) Host Module

extern print sim frame tbl ( ); SIMCORE

extern print sim dev tbl ( ); SIMCORE

extern print sim rsrc tbl ( ); SIMCORE

extern print sim sockets tbl ( ); SIMCORE

extern print sim open �les tbl ( ); SIMCORE

extern print sim pcb pool ( ); SIMCORE

extern print sim disk map ( ); SIMCORE

extern print sim waiting queue ( ); SIMCORE

extern print sim prrb queue ( ); SIMCORE

These routines print the contents of the frame, de-

vice, resource, and socket tables, as well as the sta-

tus of all active pcb records, disks, and queues; the

importance of these routines is that they show the

status of these data structures as they should be

according to the simulator.

1.5 Interrupt Handling { Module INT ER

An interrupt is an event, such as the completion of an I/O operation or

a monitor call, that causes the computer to stop normal processing and

execute an instruction speci�cally reserved for the occasion. Normally,

this instruction directs the cpu towards a kernel routine that interprets

the interrupt and performs certain operations in response. In the pro-

cess of generating an interrupt, the hardware records the cause of the

interrupt and the address of the appropriate kernel routine in a reserved

memory location called the interrupt vector. In OSP, interrupts can

be of the following types:

Hardware interrupts:

� timer interrupt: timeint

� page fault: pagefault

� device interrupt: devint
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Monitor calls:

� I/O (read, write): iosvc

� process control

� start: startsvc

� kill: killsvc

� terminate: termsvc

� signal: sigsvc

� wait: waitsvc

Interrupts are supported in the simulated machine by means of the

interrupt vector data structure Int Vector (p. 5). An interrupt is gen-

erated, usually by the simulator but also by routines such as refer( ),

acquire( ) or release( ), by calling procedure gen int handler( ) of this

module; the cause of the interrupt is passed along in the interrupt vec-

tor. The general interrupt handler then calls a special-purpose handler,

based on the cause of the interrupt. In an actual computer system,

the act of invoking gen int handler( ) and recording the cause of the

interrupt in Int Vector is done in hardware. In OSP, since the com-

puter itself is simulated by SIMCORE, it is the responsibility of the

programmer to set up Int Vector and call gen int handler( ) when an

interrupt is to be simulated.

If a process was running at the time of an interrupt, its pcb can

be found in PTBR!pcb. If no process was running at that time, then

either PTBR = NULL, or PTBR!pcb!status 6= running . Usually,

PTBR!pcb is also the pcb of the process that caused the interrupt,

with the notable exceptions startsvc, killsvc, and pagefault .

For interrupts of type startsvc, killsvc, and pagefault , which

necessitate storing a pcb in the interrupt vector, the stored pcb

(Int Vector.pcb) typically is not the one of the process that issued the

monitor call. For example, in the case of a startsvc interrupt, the pro-

cess to be started (inserted into the ready queue) is a newly created

process that has never run before. In the case of a killsvc, the process to

be killed might be not the one that is currently running but one of the

processes involved in a deadlock. The same is often true about page

fault interrupts, which may be caused by I/O devices trying to lock

main memory pages, rather than due to normal memory-referencing

by running processes.
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Interrupt processing represents a golden opportunity to take care

of cpu scheduling concerns (see also module CPU, Section 1.7). In par-

ticular, when gen int handler( ) is entered, one should compute the

just-completed cpu burst of the interrupted process, and update the

accumulated cpu time of this process. (The cpu burst is obtained by

subtracting the current contents of the clock from the last dispatch �eld

of the pcb.) Additionally, just before exiting gen int handler( ), routine

dispatch( ) of CPU should be called to reschedule the ready processes.

Since the cpu scheduler may be called as part of interrupt process-

ing, the running process before and after the interrupt may be di�erent.

The programmer should save the pcb of the process running before the

interrupt, if it is needed for later use.

One word of caution about cpu scheduling. Because of the sim-

ulated nature of OSP, an interrupt may take place while another

interrupt is being processed, i.e., interrupts may become nested. To

keep track of nested interrupts, gen int handler( ) should maintain a

static variable, say interrupt nest level , with initial value 0. Each time

gen int handler( ) is entered, this variable must be incremented by 1; it

must be decremented by 1 just before leaving the routine. Since, as ex-

plained below, a new process cannot be scheduled inside a nested call

to gen int handler( ), updates to accumulated cpu and last cpuburst

should be made only when interrupt nest level = 1, i.e., in the outer-

most invocation of gen int handler( ).

Similarly, the call to dispatch( ) should be made just before leav-

ing the outermost invocation of gen int handler( ). SIMCORE will is-

sue an error if rescheduling is attempted within a nested invocation of

gen int handler( ), as this act makes little sense: processes scheduled in

this way will be immediately rescheduled again, when control returns

to the earlier invocations.

The modules for the special-purpose handlers are IOSVC, for I/O

monitor calls; DEVINT, for device interrupts; PAGEINT, for page

faults; PROCSVC, for process control monitor calls; and TIMEINT,

for timer interrupts. They are described in the following subsections.

The central OSP data structure underlying general interrupt han-

dling is Int Vector (p. 5). The OSP data structures that the general

interrupt handler will need to \pass along" for special-purpose handling

are IORB (p. 34), for I/O monitor calls; DEV ENTRY (p. 34), for de-

vice interrupts; PTBR (p. 6) and PAGE TBL (p. 24), for page faults;

and PCB (p. 18) and EVENT (p. 18), for process control monitor calls.
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The interface to module INTER is given by the following tables.

Internal Routine Called By

gen int handler ( ); SIMCORE,

Normally called by SIMCORE; may also be

called by MEMORY in case of a page fault, by

RESOURCES to signal the release of a resource,

by FILES to request I/O, by DEVINT to sig-

nal completion of an I/O, or by PROTOCOLS to

enforce ow control. This routine determines the

cause of the interrupt and calls appropriate inter-

rupt handler.

MEMORY,

FILES,

DEVINT ,

RESOURCES,

PROT OCOLS

External Routine Host Module

extern int get clock ( ); SIMCORE

Used to calculate cpu burst and accumulated cpu

time.

extern iosvc handler ( /* iorb */ ); IOSVC

/* IORB *iorb; */

Handles read/write monitor calls.

extern devint handler ( /* dev entry */ ); DEVINT

/* DEV ENTRY *dev entry; */

Handles device interrupts: de-queues iorb, unlocks

memory page involved in the completed I/O oper-

ation, signals event associated with the iorb.

extern pagefault handler(/* pcb,page id */); PAGEINT

/* PCB *pcb;

int page id; */

Handles page faults.

extern start handler ( /* pcb */ ); PROCSVC

extern kill handler ( /* pcb */ ); PROCSVC

extern term handler ( /* pcb */ ); PROCSVC

/* PCB *pcb; */

Called to handle startsvc/killsvc/termsvc inter-

rupts, respectively.
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External Routine (continued) Host Module

extern wait handler ( /* event */ ); PROCSVC

/* EVENT *event; */

Called in response to a waitsvc interrupt; suspends

the current process.

extern signal handler ( /* event */ ); PROCSVC

/* EVENT *event; */

Called in case of sigsvc interrupts.

extern timeint handler ( ); T IMEINT

Handles timer interrupts; calls set timer( ).

extern dispatch ( ); CPU

Gives control of the cpu to one of the processes in

the ready queue.

1.5.1 Timer Interrupt Handling {

Module T IMEINT

The architecture of the simulated machine underlying OSP contains

an interval timer that is used for process scheduling. Module

SIMCORE simulates the timer by decrementing its value as simu-

lated time moves forward. When the value of the timer reaches zero,

SIMCORE initiates a timer interrupt.1 On exiting the general inter-

rupt handler, a new process is scheduled. The job of TIMEINT is to

simply reset the timer to the speci�ed value.

Internal Routine Called By

timeint handler ( ); INT ER

Handles timer interrupts; calls set timer( ).

External Routine Host Module

extern set timer ( /* time quantum */ ); SIMCORE

/* int time quantum; */

Called by timeint handler( ) to reset the simulated

interval timer.

1This interrupt may be delayed by 2|3 time units because SIMCORE may turn

interrupts o� while performing other services.
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1.5.2 Process Management Monitor Calls {

Module PROCSVC

Process control interrupts sigsvc, waitsvc, killsvc, termsvc, and startsvc

are handled by PROCSVC. The startsvc interrupt is generated by the

simulator when a new process arrives in the system. The termsvc

and killsvc interrupts are generated when a process terminates nor-

mally or abnormally (is killed). Both interrupts are usually due to

SIMCORE, but killsvc may also be initiated byRESOURCES to delete

deadlocked processes. The kill and terminate handlers must purge all

pending, but not active, iorb's associated with the terminated process

(purge iorbs( )), release its resources (giveup rsrcs( )), purge its opened

sockets (purge sockets( )), and deallocate its memory (deallocate( )).

Monitor calls sigsvc and waitsvc provide an event-based facility for

synchronizing processes. Any number of processes can wait on a sin-

gle event E, and signaling that event has the e�ect of awakening all

processes waiting on E. Signaling an event E is done by setting the

event �eld of Int Vector to point to E, the cause �eld of Int Vector

to sigsvc, and calling gen int handler( ). The general interrupt handler

will in turn call signal handler( ), which sets the happened ag of the

event to true, indicating that the event has occurred. The signal han-

dler inserts all processes waiting on E back into the ready queue, using

the routine insert ready( ). The status �eld of each such process must

then be set to ready , and the pcb!event pointer to NULL.

Suspending the currently running process, say P , on an event E

is done by setting the event �eld of Int Vector to point to E, the pcb

�eld of Int Vector to point to P 's pcb, and then generating a waitsvc

interrupt. This invokes wait handler( ), via gen int handler( ), which

checks if the event passed to it as a parameter has already occurred. If

so, then it simply returns P to the ready queue. Otherwise, it suspends

P by setting the status ag of P 's pcb to waiting, and placing this pcb

into the queue associated with the event E. The pcb!event pointer is

also set to point to E.

Some interrupt handlers set the status �eld of PCB to change the

status of a process. Namely, kill handler( ) and term handler( ) set the

process status to done , while wait handler( ) sets it to waiting . On the

other hand, processes are marked as ready or running by insert ready( )

and dispatch( ) of module CPU.

Signal handler( ) and start handler( ) call insert ready( ) to insert
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a process into the ready queue|when a process is awakened by the sig-

naling of an event, in the case of signal handler( ); and when a process

is newly created, in the case of start handler( ).

Processes and events in OSP are represented by the prede�ned

data types PCB and EVENT :

typedef struct event node EVENT;

struct event node f

int event id; /* used by trace facility; */

/* set by simulator */

BOOL happened; /* true, if event has occurred */

PCB *waiting q; /* queue of pcb's suspended */

/* on this event */

int *hook;

g;

typedef enum f running, ready, waiting, done g STATUS;

typedef struct pcb node PCB;

struct pcb node f

int pcb id; /* set by the simulator */

int size; /* process size in bytes; */

/* set by the simulator */

int creation time; /* set by the simulator */

int last dispatch; /* last pcb dispatch time */

int last cpuburst; /* length of prev cpu burst */

int accumulated cpu; /* accumulated cpu time */

PAGE TBL *page tbl; /* ptr to process page table */

STATUS status; /* process status */

EVENT *event; /* event used to suspend pcb */

int priority; /* may be used by scheduler; */

/* user-defined */

PCB *next; /* optional next pcb pointer */

PCB *prev; /* optional prev pcb pointer */

int *hook;

g;

The interface tables for PROCSVC now follow:
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Internal Routine Called By

start handler ( pcb ); INT ER

kill handler ( pcb ); INT ER

term handler ( pcb ); INT ER

PCB *pcb;

These are used to handle startsvc/killsvc/termsvc

interrupts; kill and terminate handlers also call

purge iorbs( ) of DEVICES to remove the pend-

ing (but not active) I/O requests of the pro-

cess in question, purge sockets( ) of SOCKETS to

remove its opened sockets, giveup rsrcs( ) of

RESOURCES to release the resources held by the

process, and deallocate( ) to deallocate its memory;

start handler( ) also calls insert ready( ).

signal handler ( event ); INT ER

EVENT *event;

Called in case of a sigsvc interrupt; wakes processes

up by inserting them into the ready queue via calls

to insert ready( ).

wait handler ( event ); INT ER

EVENT *event;

Called in response to a waitsvc interrupt; suspends

the current process.

External Routine Host Module

extern deallocate ( /* pcb */ ); MEMORY

/* PCB *pcb; */

Called by kill handler( ) and term handler( ) to

deallocate memory of a terminated process.

extern purge iorbs ( /* pcb */ ); DEVICES

/* PCB *pcb; */

Called by kill handler( ) and term handler( ) to

purge all pending (but not active) iorb's of the ter-

minated process.
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External Routine (continued) Host Module

extern purge sockets ( /* pcb */ ); SOCKET S

/* PCB *pcb; */

Called by kill handler( ) and term handler( ) to

purge all sockets associated with the terminated

process.

extern giveup rsrcs ( /* pcb */ ); RESOURCES

/* PCB *pcb; */

Called by kill handler( ) and term handler( ) to re-

lease all resources held by the terminated process.

extern insert ready ( /* pcb */ ); CPU

/* PCB *pcb; */

Called by start handler( ) and signal handler( ) to

insert processes into the ready queue.

1.5.3 Page Fault Handling { Module PAGEINT

Page faults are generated within moduleMEMORY when a reference

is made to a virtual page that is not resident in main memory. A page

fault may not necessarily be caused by the currently running process; it

may also occur due to a device that needs to lock a page that is not in

main memory at the time. Therefore, for pagefault interrupts, the pcb

of the process associated with the interrupt is the one that is explic-

itly stored in Int Vector.pcb rather than the one found in PTBR!pcb.

Routine pagefault handler( ) calls get page( ) ofMEMORY to retrieve

the missing page from the drum and to �nd a suitable frame in main

memory in which to insert the page. Page fault handling is described

in detail in Section 1.6.

Internal Routine Called By

pagefault handler ( pcb, page id ); INT ER

PCB *pcb;

int page id;

Called in case of a page fault; calls get page( ) to

bring the desired page of the current process into

the memory.
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External Routine Host Module

extern get page ( /* pcb, page id */ ); MEMORY

/* PCB *pcb;

int page id; */

Called to bring the desired page in; get page( ) im-

plements the virtual memory management policy

by deciding which frames to replace; also saves dirty

pages on the drum.

1.5.4 Device Interrupt Handling { Module DEVINT

A device interrupt is generated by SIMCORE to signify the completion

of an I/O operation on a disk device. In response to such an interrupt,

module DEVINT will �rst issue a sigsvc interrupt to inform the process

that had requested this I/O that the request has now been serviced.

DEVINT then removes the serviced iorb from the device queue by call-

ing deq io( ) of module DEVICES. The routine deq io( ) �nds the iorb

associated with the interrupting device in the device table (p. 34). The

signaling of user processes by DEVINT upon interrupts is what realizes

asynchronous user I/O inOSP. User I/O and device interrupt handling

is discussed fully in Section 1.8.

Internal Routine Called By

devint handler ( dev entry ); INT ER

DEV ENTRY *dev entry;

De-queues the iorb, unlocks memory pages involved

in this I/O operation, and signals the process whose

iorb has just been serviced.

External Routine Host Module

extern deq io ( /* iorb */ ); DEVICES

/* IORB *iorb; */

Removes the I/O request from the device queue;

submits the next iorb for execution according to

the chosen disk scheduling strategy; the device is

found in iorb!dev id .
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External Routine (continued) Host Module

extern gen int handler ( ); INT ER

Called to signal the event of I/O completion and to

unblock the process waiting on the event speci�ed

in iorb!event .

1.5.5 I/O Monitor Calls { Module IOSVC

IOSVC handles requests for user I/O. Such request are made by mod-

ule FILES in response to read/write calls to the physical �le system.

IOSVC's basic task then is to enqueue iorb's to the appropriate device

queues. Procedure enq io( ) of module DEVICES, which does the ac-

tual device scheduling, is called for this purpose. More details on I/O

requests can be found in Sections 1.8 and 1.9.

Internal Routine Called By

iosvc handler ( iorb ); INT ER

IORB *iorb;

Handles read/write monitor calls; enqueues iorb's.

External Routine Host Module

extern enq io ( /* iorb */ ); DEVICES

/* IORB *iorb; */

Puts the request on the queue of the appropriate

device; the device is found in iorb! dev id.

1.6 Memory Management {

Module MEMORY

Virtual memory is a memory management technique that provides the

programmer with the convenient illusion of an address space that may

be substantially larger than physical main memory. Implicit in such a

scheme is that a program need not reside completely in main memory

in order to execute.

Paging is a form of virtual memory where user programs are divided



MEMORY MANAGEMENT 23

into �xed-size units called pages, physical memory is divided into �xed-

size units called page frames, and the size of a page is the same as the

size of a frame. It is common to distinguish between the terms virtual

address space, the pages of a user program, and physical address space,

the page frames of physical memory.

To implement virtual memory, a fast disk or drum is needed to store

an image of the virtual address space of each user process. Furthermore,

when a reference to a virtual address is generated by an executing

process, the virtual address must be translated into a physical address.

Virtual address translation is complicated by the fact that the pages of

a process may be scattered anywhere in memory, and some pages may

not reside in physical memory at all.

Assuming the referenced virtual page is memory-resident, address

translation works basically as follows: the id number of the virtual page

is used to index into the page table of the executing process, where the

id of the frame containing the page can be found. The page table of the

currently executing process is pointed to by a special-purpose register

known as the page table base register . Techniques to speed up address

translation include the use of a fast associative memory, in which a

subset of the page table entries are stored.

A reference to a virtual page not in physical memory results in a

page fault . The desired page must be swapped into physical memory

from the storage device, possibly replacing a page if all page frames

are occupied at the time. Which page to replace is a function of the

\page replacement policy" of the memory manager. The page tables of

the processes whose pages were swapped in or out this way must be

updated to reect the new state of physical memory.

OSP is designed to support paging in a number of ways. As de-

scribed in Section 1.2.3, physical memory is divided intoMAX FRAME

page frames of size PAGE SIZE bytes each. As such, the conversion of

a virtual address into a page table index is achieved via integer divi-

sion of the virtual address by PAGE SIZE . A simulated drum is pro-

vided whose swap area is accessible via calls to the SIMCORE routine

siodrum( ). Furthermore, a page table base register, PTBR, is available

as a global variable. Page tables are represented by a prede�ned data

type of OSP:

typedef struct page entry node PAGE ENTRY;

struct page entry node f

int frame id; /* frame that holds this page */
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/* set by simulator */

BOOL valid; /* true, if page in main memory */

int *hook;

g;

typedef struct page tbl node PAGE TBL;

struct page tbl node f

PCB *pcb; /* pcb that owns this page table */

PAGE ENTRY page entry[MAX PAGE];

int *hook;

g;

int Prepage Degree; /* regulates degree of prepaging */

Other relevant data types are: FRAME (p. 6), Frame Tbl (p. 6), PTBR

(p. 6), PCB (p. 18), IORB (p. 34), and Int Vector (p. 5).

Paging works as follows in OSP. The simulator simulates an access

to virtual memory on behalf of the currently executing process by call-

ing the routine refer( ) of this module. It should be emphasized that

refer( ) simulates a sequence of operations typically performed in hard-

ware. A pointer to the page table of the current process is in PTBR.

A pointer to the pcb of that process can be found in PTBR!pcb, as

usual.

As described in detail below, the overhead associated with paging

can be reduced by implementing a \dirty bit" scheme. This technique

requires refer( ) to set the dirty bit of the accessed frame whenever

the action argument indicates that the memory reference may change

the contents of memory (action = store). Refer( ) then proceeds to

translate the given virtual address to a physical address.

If the desired virtual page is found to be in physical memory then

all is well. Otherwise, refer( ) initiates a page fault interrupt described

later. Note that the page fault handler may call the cpu scheduler,

which may in turn assign the cpu to another process. Therefore, after

a page fault, PTBR!pcb may point to the pcb of another process. So,

if the programmer needs to know the pcb of the process that made the

memory access (e.g., in order to set the dirty bit on), then PTBR!pcb

should be saved before initiating the page fault interrupt.

If at any time a page becomes involved in an I/O operation, then the

DEVICES module will lock that page to protect it from being swapped

out. DEVICES does this by calling lock page( ), which increments the
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lock count �eld of the frame holding the page in question. Note that a

\count" rather than a \ag" is used because, in principle, a frame may

be involved in more than one ongoing I/O operation, if multiple devices

start data transfer into or from the frame at about the same time.

When the I/O is done, the DEVICES module will decrement lock count

by calling the unlock page( ) routine. If unlocking is not performed at

this point, the simulator will issue a warning. Notice that since the

page to be locked must be in main memory, lock page( ) may have to

bring the page into memory. As in refer( ), this is done by causing a

page fault interrupt.

A page fault interrupt can be initiated by setting Int Vector.cause

to pagefault , Int Vector.page id to the id of the page that caused the

interrupt, Int Vector.pcb to point to the pcb of the process that owns

the page, and calling the general interrupt handler.

A call to gen int handler( ) results in the suspension of the current

process and transfer of control to the PAGEINT module (the page-fault

interrupt handler). PAGEINT is passed a pcb and a fault-producing vir-

tual page id and must now come up with a free frame for the referenced

virtual page. This is done by calling get page( ), where the page alloca-

tion and replacement policies are actually implemented. If a free frame

is available, get page( ) copies the desired virtual page from the drum

into this frame. Otherwise, get page( ) must select a suitable page to re-

place and then bring in the desired page. The page to be replaced must

reside in a frame with a lock count of 0. The dirty ag of the frame

should also be checked by get page( ) to see if contents of the frame

need to be copied to the drum. The actual page transfer is performed

by calling siodrum( ) of SIMCORE (start I/O on drum).

When a page is sought for replacement, it should be kept in mind

that a locked frame cannot be allocated to a new process, even if this

frame is marked as free. A free yet locked frame may arise when a

process is killed or terminated in the midst of an ongoing I/O opera-

tion associated with this process. The consequences of allocating such

a frame to another process are highly undesirable, resulting in the phe-

nomenon known as I/O interlock.

Observe that the number of locked frames can never exceed the

number of devices. Since the number of devices is much smaller than

the number of frames, SIMCORE assumes that there always exist

unlocked frames that can be used to satisfy the get page( ) request.

Page transfers are not treated in the same way as normal user I/O,
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as such transfers appear to happen instantaneously.2 The simulator

keeps track of page swaps that occur as a result of calls to siodrum( ).

It charges the module a certain number of time units for each swap,

and produces a report on how much page tra�c the virtual memory

management scheme is generating.

Dirty bit optimization can be incorporated through the dirty ag

of the FRAME data type. A frame's dirty ag should be set to false

when a page is swapped into it from the drum. It should be set to true

whenever the page resident in the frame is referenced by refer( ) with

the action argument indicating store (from a register into main mem-

ory), or by lock page( ), when the iorb.action argument indicates read

(from disk into main memory). The simulator keeps track of the dirty

pages to prohibit their overwriting without proper updating of the pro-

cess image in the swap area. If such overwriting occurs, the simulator

generates an error message, and terminates. Even though implement-

ing the \dirty bit" strategy is not mandatory, the simulator issues a

warning each time a \clean" page is swapped out, for it considers such

a swap redundant.

What we have so far described is demand-paging memory manage-

ment. The student is also free to implement prepaging by trying to

anticipate the pages that a process is likely to access when it is dis-

patched. The standard OSP process dispatcher �rst calls the routine

prepage( ) of MEMORY. If prepaging is not being implemented, then

the body of this routine can be left empty, in which case pure demand

paging will result.

Exactly how much of a process is to be prepaged may a�ect the ef-

�ciency of the whole system, and is left for the user to decide. For

instance, the user may choose to swap in only the \working set"

of pages for each process, as in the standard implementation of the

MEMORY module supplied with OSP. To help implement the work-

ing set strategy, the routine get clock( ) of SIMCORE and the size

�eld in the PCB data type can be used. The working set of pages can

be kept in an array associated with the page table of each process.

Do not forget to free the memory occupied by the working set data

structure when the process terminates; see deallocate( ) below.

A global variable Prepage Degree (ranging from 0 to 10) can be

used to regulate the amount of prepaging. This variable is one of the

2The illusion of instantaneous page transfer is a simplifying assumption in OSP.
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simulation parameters; it is set at the beginning of simulation, but can

be changed at snapshot breaks. The simulator insists however, that this

variable will not be changed under any other circumstances.

Module MEMORY also supplies a cost-function associated

with prepaging, start cost(pcb). It returns the cost of executing

prepage(pcb), i.e., COST OF PAGE TRANSFER times the number of

pages that need to be swapped in or out in order to prepage the pro-

cess represented by pcb. The constant COST OF PAGE TRANSFER

is declared in the heading of the MEMORY module. Start cost( ) can

be used by the cpu scheduler to decide the priorities of processes. It

may return di�erent cost estimates at di�erent times because, depend-

ing on the current state of memory, some of the requested pages may

already be in memory and some pages of other processes may have to

be swapped out.

Procedure deallocate(pcb) returns all frames occupied by the pro-

cess represented by pcb to the pool of free frames. A frame is deallo-

cated by clearing its free ag and the valid ag of the associated page.

Deallocate( ) is called when a process terminates or is killed; therefore,

there is no need to save the newly freed pages on the drum.Deallocate( )

does not need to check whether a frame is unlocked since, as explained

above, free frames that are locked by ongoing I/O cannot be allocated

to other processes anyway. If a student's memory management mod-

ule maintains dynamic data structures for processes (such as \working

sets" of pages), deallocate( ) is an ideal place to free the memory allo-

cated to such structures when the associated process terminates.

Internal Routine Called By

memory init ( ); SIMCORE

Called once to allow for the initialization of internal

data structures; the body of this routine can be left

empty, if no initialization is needed.

prepage ( pcb ); CPU

PCB *pcb;

Prepages the process speci�ed in the argument.

int start cost ( pcb ); CPU

PCB *pcb;

Calculates the cost of prepaging in terms of the

number of pages to be swapped in or out, times

the cost of page transfer.
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Internal Routine (continued); Called By

deallocate ( pcb ); PROCSVC

PCB *pcb;

Called by the terminate and kill handlers to deal-

locate pages occupied by the terminated process

represented by pcb.

get page ( pcb, page id ); PAGEINT

PCB *pcb;

int page id;

Implements page allocation and replacement; if re-

placement, decides which frame to replace; brings

the desired page into main memory and saves the

old frame contents on the drum, if needed; calls

siodrum( ) of SIMCORE to do the actual page

transfer; sets valid/invalid and other ags.

lock page ( iorb ); DEVICES

unlock page ( iorb );

IORB *iorb;

Called to lock/unlock the speci�ed page; mem-

ory locking is used to protect pages involved

in active I/O operations from being swapped

out; locking/unlocking is done by increment-

ing/decrementing the lock count �eld of the cor-

responding frames.

refer ( logic addr, action ); SIMCORE

int logic addr;

REFER ACTION action;

Called by SIMCORE to simulate memory access

by cpu; logic addr is a logical address within the

virtual memory of the current process; it is con-

verted to a physical address using the page table

pointed to by PTBR; the action parameter in-

dicates whether this is a store operation, which

changes the memory contents, or a load opera-

tion, which does not; this information is needed for

\dirty bit" optimization.
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External Routine Host Module

extern siodrum ( /* action,pcb, SIMCORE

page id, frame id */ );

/* IO ACTION action;

PCB *pcb;

int page id, frame id; */

Transfers page between main memory and the

drum; action is either read or write; with read ,

the page page id is brought from the drum into

the frame frame id ; with write the contents of the

frame frame id is saved in the swap area of the pro-

cess represented by pcb, in the block designated for

the page page id .

extern int get clock ( ); SIMCORE

Returns the current value of the OSP clock;

can be used to implement the working set page-

replacement policies.

extern gen int handler ( ); INT ER

Is called to simulate page faults.

1.7 CPU Scheduling { Module CPU

Given a set of processes ready and waiting to execute, cpu schedul-

ing is essentially the task of deciding which of these processes should

be allocated the cpu next. The goal of cpu scheduling is to improve

cpu utilization, system throughput, response time, and other perfor-

mance characteristics. Typically, scheduling decisions are made when

the cpu is interrupted by an I/O device, a monitor call, or the interval

timer. The cpu scheduler decides on the relative priority of processes

by looking at characteristics such as age, expected memory and cpu

requirements, time of last dispatch, etc.

In OSP, cpu scheduling is the function of CPU. This mod-

ule exports the procedures insert ready( ) and dispatch( ). Procedure

insert ready(pcb) inserts pcb into the queue of ready processes based on

the cpu scheduling algorithm of the OSP programmer's choice. It also
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changes the status �eld of the process to ready . Calls to insert ready( )

occur in module PROCSVC, when a process is newly created or awak-

ened by a signal.

In insert ready( ), it is advised to verify that the pcb being in-

serted into the ready queue is not already present in the queue. De-

pending on the actual implementation of the ready queue, inserting a

process twice may disconnect the queue, unintentionally making some

ready processes inaccessible. Since these stranded processes can never

be rescheduled, statistics such as turnaround time will be adversely

impacted.

Procedure dispatch( ) is called just before exiting the general inter-

rupt handler. The �rst thing to do when dispatching a process is to

check if another process was running before dispatch( ) was called (i.e.,

PTBR 6= NULL and PTBR!pcb!status = running). If so, insert this

process into the ready queue, otherwise it may never enter the ready

queue again, which eventually will lead to a warning or even an error

issued by SIMCORE.

Procedure dispatch( ) must next choose a process in the ready

queue, typically the one at the head, to be allocated the cpu. This

is e�ected by updating the global variable PTBR to point to the page

table of this newly scheduled process (PTBR = current pcb!page tbl),

and by setting the status �eld of this process's pcb to running . If no pro-

cess is to be run, PTBR is set to NULL. It is important to keep PTBR

up-to-date, since the simulator monitors the contents of this register

and will issue a fatal error if it discovers that PTBR was not updated

appropriately (e.g., if it points to the page table of a waiting process).

Just before exiting, the dispatcher sets the pcb �eld last dispatch of the

process to be run next to the value of the current clock, obtained from

get clock( ) of SIMCORE.

The process that is dispatched can be either prepaged into main

memory prior to obtaining control of the cpu (by calling prepage( )

of MEMORY), or pure demand paging can be used. In the former

case, the cost of the prepaging operation, dependent on how many

pages need to be swapped in at the given time, can be determined by

calling start cost( ), also of moduleMEMORY. This cost can be used

to decide where in the ready queue to insert a process. That is, it may

a�ect the priority of the process.

It should be noted that SIMCORE makes no assumptions about

the structure of the ready queue, nor about the division of responsibil-
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ities between insert ready( ) and dispatch( ). The only rule to observe

here is that the former must actually insert its argument pcb into the

ready queue, while the latter must dispatch some ready process. As

a result, a wide variety of scheduling strategies can be implemented

within the framework of OSP.

The get clock( ) routine of SIMCORE and the creation time

�eld of the PCB data type can be used to implement \aging";

i.e., the policy of gradually increasing the priority of jobs that have

been waiting in the system for long periods of time. The pcb �elds

last dispatch , last cpuburst , and accumulated cpu can also be used

to make priority-based scheduling decisions. When a process is �rst

created, SIMCORE initializes last dispatch to a negative number,

last cpuburst and accumulated cpu to 0, and creation time to the cur-

rent value of the simulator clock. The general interrupt handler is re-

sponsible for keeping last cpuburst and accumulated cpu up to date

(see Section 1.5), while last dispatch is updated by dispatch( ). Note

that prepaging a process takes time and SIMCORE may advance the

clock after each prepage( ) call. Therefore, the �eld last dispatch must

be set only after the process is prepaged; otherwise, the simulator may

issue an error if it �nds a discrepancy between its own last dispatch

time and the student's.

The interval timer of OSP allows round-robin-based cpu schedul-

ing algorithms to be implemented. The timer is set using the routine

set timer( ) of SIMCORE. The simulated hardware decrements the

value of the timer with each simulated cpu cycle and, when this value

becomes zero, SIMCORE generates a timer interrupt.

The global variable Quantum, declared below, is an OSP simula-

tion parameter that provides a convenient way of adjusting the time

quantum used in round robin scheduling. An initial value, speci�ed by

the user, is given to Quantum by SIMCORE at the beginning of sim-

ulation. Thereafter, it may be changed at snapshot breaks.3 Note that,

by itself, Quantum has no e�ect on timer interrupts unless it is passed

to set timer( ) as a parameter.

int Quantum; /* time quantum for round robin */

Other data types relevant to cpu scheduling are: PCB (p. 18) and

PTBR (p. 6).

3Actually, SIMCORE insists that Quantum be changed only at snapshot breaks.
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Internal Routine Called By

cpu init ( ); SIMCORE

Called once to allow for the initialization of data

structures internal to CPU; the body of cpu init( )

can be left empty, if no initialization is needed.

insert ready ( pcb ); PROCSVC

PCB *pcb;

Inserts a process into the queue of ready processes

according to some scheduling policy.

dispatch ( ); INT ER

Designates a process to run.

External Routine Host Module

extern prepage ( /* pcb */ ); MEMORY

extern int start cost ( /* pcb */ );

/* PCB *pcb; */

Prepage( ) prepages the process represented by pcb;

start cost( ) calculates the cost of prepaging, but

does no actual page transfer.

extern set timer ( /* time quantum */ ); SIMCORE

/* int time quantum; */

Resets the simulated interval timer; permits round-

robin-based scheduling.

extern int get clock ( ); SIMCORE

returns the current simulator clock; can be used to

implement \aging" policies.

1.8 Device Management {

Module DEVICES

The purpose of module DEVICES is to manage e�ciently the secondary

storage devices|disks, in the case of OSP. This is accomplished via

the judicious scheduling of I/O requests made by processes as they

execute in a multi-programmed environment. Since OSP is a sim-
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ulated system, I/O requests are generated \at random" by module

SIMCORE in the form of read/write commands to the �le system

module FILES (Section 1.9). That is, a user request to read or write

a �le at a speci�ed position within the �le is translated into a request

to read or write a block of data at a corresponding disk address. This

translation of �le positions to disk addresses is performed by the rou-

tines readf ( ) and writef ( ) of FILES.

Disk devices in OSP are quite simple: there is only one surface

per device, which is divided into a �xed number, MAX TRACK , of

concentric tracks. Each track contains the same number of blocks, and

a block holds PAGE SIZE bytes. Therefore, in OSP the unit of I/O

data transfer, the disk block, is the same as the unit of main memory,

the page frame. Each track contains a total of TRACK SIZE bytes.

MAX BLOCK , the maximum number of blocks on a device, is related

to the other constants as follows: MAX BLOCK = MAX TRACK �

TRACK SIZE/PAGE SIZE . Note that all OSP disk devices have the

same number of tracks and blocks. In a real system these parameters

might vary from device to device, and would thus appear in the entries

of the device table. However, OSP does not sacri�ce much by making

this assumption.

A number of algorithms have been proposed for disk scheduling.

Their objective is, given a set of outstanding I/O requests, to minimize

the total number of tracks traversed by the read/write head of the

disk in servicing the requests. The simplest of these algorithms is �rst-

come-�rst-serve (FCFS). More elaborate approaches include shortest-

seek-time-�rst (SSTF), in which the request closest to the current head

position is serviced next; SCAN, where the disk head sweeps from one

end of the disk to the other, servicing requests as it goes; and C-SCAN,

a variant of SCAN that upon reaching the outer end of the disk im-

mediately returns to the beginning of the disk, without servicing any

requests on the return trip. LOOK and C-LOOK are versions of SCAN

and C-SCAN, respectively, that move the head only as far as the last

request (as opposed to the last track) in each direction.

The main data structure of module DEVICES is the device table,

which contains an entry for each disk device in the system. An im-

portant component of a device table entry is the queue of I/O request

blocks (abbr., iorb's), representing the outstanding I/O requests for the

device. An iorb is assembled by module FILES and added to the iorb

queue for the device in question using procedure enq io( ) of this mod-
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ule. Exactly where in the device queue the iorb is inserted depends

on the disk scheduling strategy being implemented. Queues of iorb's

do not have to be simple linked lists. E�cient implementation of some

strategies (e.g., SSTF and LOOK) may require more elaborate indexed

structures.

When a device is not in use, the DEVICES module can initi-

ate a pending I/O request by calling siodev( ) (start I/O device) of

SIMCORE. The simulator �rst simulates the I/O and, at some time

later, a device interrupt. SIMCORE produces the interrupt by �rst set-

ting the appropriate �elds in the interrupt vector data structure and

then calling the general interrupt handler, which in turn transfers con-

trol to the device interrupt handler (see modules INTER andDEVINT).

The device interrupt handler calls deq io( ) of the DEVICES module in

order to delete the iorb of the completed I/O operation and to initiate

another I/O operation, if at least one request is still pending. Deq io( )

also noti�es the �le organization module, FILES, about completion of

I/O by calling notify �les( ).

To simplify things slightly, all I/O requests are assumed to involve

a single disk block, and thus, since the block size equals the page size,

one page of main memory. Naturally, the block id and page id of an

I/O request are stored in the request's iorb, along with other pertinent

information. Data types for device scheduling are given next.

typedef struct dev entry node DEV ENTRY;

struct dev entry node f

int dev id; /* device id � index into Dev Tbl; */

/* set by simulator */

BOOL busy; /* the busy flag; true, if busy */

BOOL free blocks[MAX BLOCK];

/* block i is free if and only if */

/* free blocks[i] = true */

IORB *iorb; /* iorb serviced by this device */

int *dev queue; /* optional ptr to device queue */

int *hook;

g;

DEV ENTRY Dev Tbl[MAX DEV];

typedef struct iorb node IORB;

struct iorb node f

int iorb id; /* used by the trace facility; */
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/* set by simulator */

int dev id; /* assoc'd dev; index into Dev Tbl */

IO ACTION action;/* read or write */

int block id; /* block involved in the I/O */

int page id; /* buffer page in main memory */

PCB *pcb; /* pcb that issued the request */

EVENT *event; /* event to be used to synch I/O */

OFILE *file; /* assoc'd entry in open file tbl */

IORB *next; /* optional next iorb in dev queue */

IORB *prev; /* optional prev iorb in dev queue */

int *hook;

g;

Other relevant data types are: EV ENT (p. 18), PCB (p. 18), and

OFILE (p. 39).

The �elds in the above data types are mostly self-explanatory, but

a few comments are in order. Track numbers on a device range from

0 to MAX TRACK � 1. A device number dev id is an index into the

device table, Dev Tbl , and ranges from 0 to MAX DEV �1. The �eld

free blocks in DEV ENTRY is a bit-vector of free space on the device.

It indicates which blocks of the device are free (free blocks[i] = true)

and which are not (= false). More details on disk storage allocation

can be found in the section on �le organization, Section 1.9.

Observe that the IORB data type refers to the disk block involved

in an I/O operation rather than the track. Therefore, when implement-

ing policies such as LOOK or SSTF, the user has to convert block num-

bers into track numbers using the aforesaid constants TRACK SIZE

and PAGE SIZE . It should be noted that SIMCORE is unable to

di�erentiate between LOOK and SCAN, and C-LOOK and C-SCAN;

although each of these strategies is acceptable, the statistics generated

by SIMCORE will be those for LOOK and C-LOOK, respectively. Fur-

thermore, SIMCORE assumes that at the very beginning each device's

disk head is positioned at track 0.

To guard against the problem of I/O interlock, where a page frame

involved in an ongoing I/O operation is accessed unwittingly by another

process, any page frame that is the target of an active I/O operation

must be locked. This is accomplished by calling the lock page( ) proce-

dure of MEMORY just prior to starting the actual data transfer, i.e.,

before the call to siodev( ). Procedure unlock page( ) has the opposite

e�ect on memory; it is called by deq io( ) when an I/O operation has
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completed.

Note that an iorb contains the virtual address of the bu�er in main

memory from which the data is to be read or written. This corresponds

to the Direct Virtual Memory Access (DVMA) I/O architecture used

in some advanced computer systems such as the SUN-3 workstation.

Older architectures, such as the IBM 370, use Direct Memory Access

(DMA) I/O, which requires physical main memory addresses in iorb's.

Using DVMA in OSP, as well as in the SUN-3 architecture, leads to

simpler and cleaner I/O software.

User I/O in OSP is asynchronous: the execution of a user program

may continue asynchronously after a read/write command has been

issued. This is made possible by the fact that each I/O operation is

associated with an event (see the read/write commands of FILES) on

which the user process can synchronize in order to test the completion

of the speci�ed I/O operation. Events are discussed more fully in Sec-

tion 1.5.2. As a result, a device queue may contain more than one iorb

from the same process.

The routine purge iorbs( ) is called from module PROCSVC when a

process terminates or is killed. This routine removes all pending iorb's

associated with the process. However, it should not remove iorb's as-

sociated with ongoing I/O operations, as these operations cannot be

interrupted. Note that for the iorb's that are removed, the associated

I/O operations are never initiated; therefore the main memory pages

referred to by these iorb's need not be unlocked|they were never

locked in the �rst place. Also, for each iorb purged from a device queue,

purge iorbs( ) must make a call to notify �les( ) of module FILES to let

it know that the corresponding I/O request will not be serviced. Since

only the process that owns an iorb can wait on the event associated

with the iorb, signaling this event is not necessary when the process

terminates or is killed.

For each device, the user must keep track of when it is free or busy.

It is an error to start a busy device, while leaving a device idle when

its queue is non-empty will result in a warning. Initially all devices are

assumed idle. Subsequently, a device becomes busy when an siodev( )

command is executed on that device. The completion of an I/O oper-

ation on a device triggers a devint interrupt, which is propagated to

module DEVICES via a call to deq io( ) by the device interrupt handler.
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Internal Routine Called By

devices init ( ); SIMCORE

Allows for the initialization of data structures in-

ternal to DEVICES; the body of this routine can be

left empty, if no initialization is needed.

enq io ( iorb ); IOSVC

IORB *iorb;

Enqueues I/O requests to devices.

deq io ( iorb ); DEVINT

IORB *iorb;

Called by the device interrupt handler when the

device whose id is found in iorb!dev id is done;

it de-queues the iorb and submits the next one for

execution; iorb is the iorb serviced by the device.

purge iorbs ( pcb ); PROCSVC

PCB *pcb;

Called by the kill and terminate handlers to remove

all pending (but not active) iorb's when a process

is killed or terminates.

External Routine Host Module

extern siodev ( /* iorb */ ); SIMCORE

/* IORB *iorb; */

Starts the I/O speci�ed in the iorb.

extern lock page ( /* iorb */ ); MEMORY

extern unlock page ( /* iorb */ ); MEMORY

/* IORB *iorb; */

Called by enq io( )/deq io( ) to lock/unlock the

page speci�ed in iorb.

extern notify �les ( /* iorb */ ); FILES

/* IORB *iorb; */

Called by purge iorbs( ) to inform FILES that the

iorb has been purged and will not be serviced; or

by deq io( ) to notify FILES about completion of

the I/O operation associated with the iorb.
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1.9 File Organization { Module FILES

Module FILES implements the �le system of OSP. To keep things

simple, a at directory structure consisting of a single directory is used.

This is in contrast to the hierarchical �le structures of systems such

as UNIX and MS-DOS. Standard �le system commands are provided

by FILES, including openf ( ), closef ( ), readf ( ), and writef ( ). Besides

manipulating the directory structure, these commands maintain a table

of open �les and manage the storage space for �les on the simulated

disk devices of OSP.

All information needed to access a �le is kept in an i-node data

structure associated with the �le. A �le's i-node can be found via the

directory: given the name (a character string) of a �le, the directory

should provide fast retrieval of the �le's i-node from the disk where the

�le is stored.

The purpose of the open �le table is to provide fast access to an

in-memory copy of an opened �le's i-node. It also allows a �le, say F ,

to be independently opened by di�erent processes at the same time.

Each such opening of F will correspond to an entry in the open �le

table, and each of these entries will point to the i-node of F . Our usage

of i-nodes and the open �le table is pretty much in the spirit of UNIX.

Unlike UNIX, OSP does not maintain permanent �les: �les are created

and deleted anew with each session with the simulator.

As described in Section 1.8, each disk device is represented as an

entry in the device table. For �le organization, the relevant �eld within

a device table entry is the free-space bit-vector: free blocks[i] is set to

true if and only if block i of the corresponding disk is free. Keeping

this bit-vector current is one of the tasks of the FILES module. The

OSP type de�nitions for �le organization now follow.

typedef struct file dir entry node FILE DIR ENTRY;

struct file dir entry node f

char *filename;

INODE *inode;

int *hook;

g;

typedef struct inode node INODE;

struct inode node f
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int inode id; /* set by programmer (optional) */

int dev id; /* device id; index into Dev Tbl */

int filesize;

int count; /* # open files assoc'd with i-node */

int allocated blocks[MAX BLOCK];

/* info on where file is stored */

int *hook;

g;

typedef struct ofile node OFILE;

/* entry in table of open files */

struct ofile node f

int ofile id; /* used by the trace facility; */

/* set by simulator */

int dev id; /* device where the file resides */

int iorb count; /* # of this file's pending iorb's */

INODE *inode; /* pointer to this file's i-node */

int *hook;

g;

Other relevant data types are: EV ENT (p. 18), PCB (p. 18), IORB

(p. 34), PTBR (p. 6), PAGE TBL (p. 24), Int V ector (p. 5),

DEV ENTRY (p. 34), and Dev Tbl (p. 34).

Note that although the formats of directory entries, open �le table

entries, and i-nodes are prede�ned in OSP, the actual structure of the

�le directory, open �le table, and i-node pool are left to the programmer

to decide. In the case of the directory, a search tree or hash table should

be used to provide e�cient access to a �le's i-node.

We now describe the routines exported by FILES. In OSP, the

simulator does not explicitly issue requests for the creation or deletion

of �les. Instead, when a �le is opened for the �rst time, it is created,

and when it is closed for the last time, it is deleted. Therefore, routines

for �le creation and deletion are not part of the module's interface.

Procedure openf ( ) has two parameters: �lename , a character

string, and �le, an entry in the open �le table. The second parameter,

of type OFILE , is allocated by the simulator and passed to openf ( ) in

template form. It will be the responsibility of openf ( ) to �ll in the tem-

plate. Openf ( ) �rst searches the �le directory for �lename . If the �le is

not found it calls a �le creation procedure. This procedure is not called

by the routines outside of FILES, and thus is not part of the interface
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table; its format is determined by the student or by the instructor.

Guidelines for writing a �le creation procedure appear below.

After checking the directory for �lename , and creating an entry for

it if not found, openf ( ) initializes the OFILE template. This is done by

setting the inode �eld to point to the appropriate i-node, copying the

relevant information from that i-node into the template, and setting

the �eld iorb count to 0. The i-node associated with the �le is either

found in the directory, if the �le already exists, or is otherwise a by-

product of the �le creation procedure. Note that the device id, dev id ,

must be recorded in the OFILE parameter, even though it also appears

in inode.4 Openf ( ) then increments the count �eld of the �le's i-node

by 1, and exits. SIMCORE assumes that �le can always be opened,

since, as in UNIX, openf ( ) creates a �le if it does not exist.5

Procedure closef ( ) disconnects the OFILE entry for the �le from

the open �le table and decrements the count of the �le's i-node by

one. If the resulting value is zero, then closef ( ) executes a �le deletion

procedure (which, again, is not part of the interface).

It is possible that the �le to be closed still has unserviced iorb's,

which should not go unserviced. Therefore, closef ( ) checks the number

of pending iorb's associated with the �le. If pending iorb's exist, then

the �le is not closed and fail is returned; otherwise the �le is closed

and ok is returned. The number of unserviced iorb's for a �le is a

�eld in the OFILE data structure. It is incremented by readf ( ) and

writef ( ), and decremented by notify �les( ). The latter routine is called

by DEVICES each time an I/O operation is completed or when an iorb

is purged from a device queue.

File creation/deletion procedures may vary depending on the spe-

ci�c requirements of the instructor. However, the following guidelines

should be followed. To create a new �le, it is necessary to create a

new INODE and a new FILE DIR ENTRY . The i-node is initialized

by choosing a device, and by setting the �lesize and count �elds to 0.

Choice of device may depend on several di�erent criteria: storage avail-

ability, space allocation strategy, and so on. All information relevant

to this decision can be found in Dev Tbl . File deletion frees the blocks

4In real systems, �elds such as �lesize and allocated blocks are also likely to be dupli-

cated in OFILE.
5In UNIX, the conditions under which a �le cannot be opened are rare, and do not arise

in OSP.
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occupied by the �le (found in the i-node of the �le), returns its i-node

to the pool of i-nodes, and deletes its entry in the directory.

The array inode!allocated blocks stores information about the disk

blocks allocated to a �le. This information allows one to transform logic

addresses within the �le into physical addresses on the device.

Procedures readf ( ) and writef ( ) �rst �ll in the iorb template

passed as an argument by the simulator. The iorb template is uninitial-

ized, except that iorb!event points to a valid EVENT data structure,

which is also a template. The event template must be initialized by set-

ting the happened �eld to false and the waiting q �eld to NULL. The

user process that called readf ( )/writef ( ) may continue asynchronously,

and later suspend itself on the iorb event if it reaches a point where it

needs the result of the call. This event will be signaled byDEVINT upon

completion of the associated I/O operation.

To initialize the iorb template, readf ( )/writef ( ) must �nd the pcb

of the process that requested the read/write. Since this process must be

the current one, its pcb can be accessed via the page table base register

(PTBR!pcb). The physical address on the disk needed in the iorb is

obtained by translating the position argument of readf ( )/writef ( ) into

a block id using the information in inode!allocated blocks . It should be

remembered that a track consists of a whole number of blocks (of size

PAGE SIZE bytes), and a block is the unit of data transfer. Thus, each

call to readf ( ) or writef ( ) a�ects only one block. Having �nished the

assembly of the iorb, these routines increment the number of pending

iorb's associated with the �le. Eventually, they generate an interrupt,

in the form of an I/O monitor call, to place the iorb in the device

queue. They return ok in case of a success, and fail if the position is

out of range (see later) or if the device does not have enough room (in

case of writef ( )). In case of failure, readf ( )/writef ( ) do not cause an

interrupt, but simply exit, returning control back to the simulator.

The interrupt corresponding to an I/O monitor call is e�ected by

setting Int Vector to point to the appropriate IORB , setting the cause

to iosvc, and then calling gen int handler( ). The general interrupt han-

dler will pass control to module IOSVC, which in turn calls enq io( ) of

DEVICES. The student must be aware of the fact that the cpu scheduler

may be called as part of interrupt processing. Therefore, the running

processes before and after the interrupt may be di�erent. If the pro-

gram still needs the pcb of the process that was running before the

interrupt occurred, this pcb must be saved for later use.
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Procedure readf ( ) always reads the entire block containing within

its range the �le position indicated by the position argument. If the

position is out of range, readf ( ) returns fail . For readf ( ), the position

is considered to be within range if 0 � position < inode.�lesize. Notice

that �le positions start from 0 and end at filesize� 1.

Procedure writef ( ) places data in the block containing the �le po-

sition within its range. If this reference is pointing past the end of �le,

the �le is expanded by the appropriate number of blocks. To explain,

let the position argument to writef ( ) have the value x. This means

that the reference is made to block number b = b x
PAGE SIZE

c of the

�le (block numbers start with 0). The number of the last block in the

�le is b last = b filesize�1
PAGE SIZE

c. If b > b last then b � b last new blocks

will have to be allocated to the �le to satisfy the request. Writef ( )

returns fail if either the current reference is out of range (which, for

writef ( ), means that position < 0) or if there is no room on the disk

to expand the �le.

Like the creation and deletion routines, storage allocation is a local

procedure whose format is not prescribed by OSP. In order to �nd

free blocks on a device, it examines the device's free blocks bit-vector

in the device table. Having found enough room, it updates the arrays

inode!allocated blocks and Dev Tbl[dev id]:free blocks to reect the

new blocks assigned to the �le. Any correct storage allocation strategy

will be tolerated by SIMCORE, provided that no �le spans more than

one device. However, the simulator will issue a warning whenever it

believes that the device has enough room, while the storage allocation

strategy claims otherwise (i.e., writef ( ) returns fail).

Internal Routine Called By

�les init ( ); SIMCORE

Allows for the initialization of internal data struc-

tures; the body of this routine can be left empty, if

no initialization is needed.

openf ( filename, file ); SIMCORE

char *filename;

OFILE *file;

Opens the �le by �lling in the OFILE-template �le.

Creates the �le, if it did not exist before.
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Internal Routine (continued) Called By

EXIT CODE closef ( file ); SIMCORE

OFILE *file;

Returns fail if the �le is not closed (because of as-

sociated pending I/O); otherwise returns ok .

EXIT CODE readf ( file, position, SIMCORE

page id, iorb );

EXIT CODE writef ( file, position, SIMCORE

page id, iorb );
OFILE *file;

int position, page id;

IORB *iorb;

These routines �ll in the iorb template supplied

by the simulator and then cause an I/O interrupt;

fail is returned if the I/O operation cannot be per-

formed. Position is the position within the �le for

this I/O request; page id is the main memory page

address where the data is to be input/output.

notify �les ( iorb ); DEVICES

IORB *iorb;

Decrements the number of pending iorb's as-

sociated with the �le; called by deq io( ) or

purge iorbs( ).

External Routine Host Module

extern gen int handler ( ); INT ER

Called to place an I/O request.

1.10 Resource Management {

Module RESOURCES

In a multi-programmed system, processes compete for access to the

resources of the system, e.g., cpu cycles, memory space, �les, I/O de-

vices, etc. This can result in deadlock : a circular wait among a set of
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processes, each waiting for a resource held by another process in the

set. Implicit in this de�nition is that the resources are non-sharable and

that no process is willing to relinquish a resource before its request for

additional allocation is satis�ed.

The purpose of module RESOURCES is to manage the allocation

of resources to user processes. To e�ectively deal with the problem

of deadlock, either of two methods can be implemented: deadlock de-

tection, where from time to time the system state is checked for the

existence of a deadlock; and deadlock avoidance, where resources are al-

located in such a way as to render deadlock impossible. The global vari-

able Deadlock Method , whose declaration appears below, determines

which strategy is being used. Its value is entered as one of the sim-

ulation parameters, and can be changed during snapshot breaks. The

simulator insists, however, that this variable not be changed under any

other circumstances.

In the case of deadlock detection, a deadlock recovery algorithm

should be executed when a deadlock is detected. Recovery techniques

include killing one or more processes in order to break the circular wait,

or preempting resources from one or more of the deadlocked processes.

The former technique is the one of choice for RESOURCES.

Within OSP, we will not be concerned with the exact nature of

resources. Rather, they are abstract entities created by SIMCORE.

All the information module RESOURCES needs to know about a re-

source can be found in the global data structure Resource Tbl ; e.g.,

the total number of instances of the resource in the system, the number

of instances currently available, and a ag indicating whether or not

the resource is sharable. A sharable resource cannot lead to a dead-

lock, while a non-sharable one can. Note that the simulator will issue

a warning each time a request for a sharable resource is denied.

To implement a resource management policy, the student must

keep track of how many instances of each resource are currently al-

located to each active process. These numbers must be updated when

acquire( ) and release( ) are called, the primary procedures exported by

RESOURCES. In constructing a data structure that reects the current

state of resource allocation, it is useful to know that the number of ac-

tive pcb's in the system cannot exceed the global constant MAX PCB .

It should be noted, however, that the ids of these pcb's can be arbitrar-

ily large and so pcb ids cannot be used for indexing into the resource

allocation data structure (but they can be used for hashing).
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User requests for resources take the form of simulator-generated

calls to acquire( ). When a request occurs, module RESOURCES must

determine if the request can be satis�ed. This decision depends on the

policy being used. For deadlock detection, a request can be satis�ed if

the number of free resource instances is su�cient. For deadlock avoid-

ance, the decision-making process may be more involved. For example,

to guarantee that a deadlock will never occur, the well-known banker's

algorithm uses information about the maximum number of instances

of each resource type that a process may ever need.

A request is represented as a resource request block (rrb).

SIMCORE supplies an rrb with each call to acquire( ). If an acquire( )

request can be satis�ed, the resource allocation data structure should

be updated by decreasing the number of free instances of the resource

type allocated. If a request cannot be satis�ed, the rrb is appended to

a list in the entry for the resource in the resource table. The process

that issued the request is suspended by means of a waitsvc interrupt

on an event contained in the rrb. More precisely, the rrb points to an

EVENT data structure created by the simulator. Before generating

the waitsvc interrupt, acquire( ) must initialize the event by setting the

happened ag to false. Note that only the process that owns the rrb

can be suspended on the rrb's event.

The waitsvc interrupt always suspends the currently running pro-

cess and ignores the �eld pcb in the data structure Int Vector . One

must ensure that this is indeed the process that issued the resource re-

quest. If another interrupt occurred between entry to acquire( ) and the

waitsvc interrupt, it is possible that a di�erent process has gained con-

trol of the cpu. The pcb of the process that called acquire( ), pointed

to by PTBR!pcb at the moment acquire( ) was entered, should be

saved to guard against the problem of suspending the wrong process.

Event-related interrupts are described more fully in Section 1.5.2.

As alluded to above, the resource manager may need to know the

maximal needs of a process to implement deadlock avoidance. This

information is provided in the rrb as �eld max need . The �rst time a

process tries to acquire a resource, its maximal needs for all resources

can be found in the rrb parameter to acquire( ). In subsequent calls to

acquire( ) by this process, the �eld max need can be ignored.

Procedure release( ), also called by the simulator, should increase

the number of free resource instances and examine the list of rrb's

attached to the resource. If one can now be satis�ed, which again de-
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pends on the strategy being implemented, it decreases the number of

free resources, and signals the rrb's event via a sigsvc interrupt. The

prede�ned data types for resource management are the following.

typedef struct rrb node RRB;

struct rrb node f

int rrb id; /* set by simulator */

PCB *pcb; /* the requesting process */

RESOURCE *rsrc; /* the requested resource */

int quantity; /* requested quantity */

int max need[MAX RSRC];

/* max need for each resource; */

/* used with deadlock avoidance */

EVENT *event; /* event to signal when */

/* this request is fulfilled */

RRB *next; /* optional next rrb in rsrc queue */

RRB *prev; /* optional prev rrb in rsrc queue */

int *hook; /* user can hook anything here */

g;

typedef struct resource node RESOURCE;

struct resource node f

int rsrc id; /* set by simulator; used for */

/* indexing into the resource tbl */

int total qty; /* tot # of this rsrc's instances */

int avail qty; /* # of available rsrc's instances */

BOOL sharable; /* true if sharable; else false */

RRB *rrb; /* queue of rrb's to this resource */

int *hook;

g;

RESOURCE Resource Tbl[MAX RSRC];

typedef enum f

avoidance, detection

g DEADLOCK TYPE;

DEADLOCK TYPE Deadlock Method;

/* detection or avoidance */

Other relevant data types are: PCB (p. 18), PTBR (p. 6), PAGE TBL

(p. 24), and EVENT (p. 18).
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To trigger a deadlock detection procedure, a call to get clock( )

of SIMCORE can be used. The clock can be checked on each

call to acquire( ), and if enough time has elapsed since the previ-

ous check, deadlock detection can be initiated. In deadlock detec-

tion mode, SIMCORE prints a message whenever it detects a dead-

lock. In deadlock avoidance, deadlocks should not occur, and therefore

SIMCORE will issue an error if it �nds a deadlock.

In conjunction with deadlock detection, students need to implement

a deadlock recovery algorithm. In OSP, deadlocks can be removed by

killing one or more of the processes involved in the deadlock. Processes

are killed by generating a killsvc interrupt.

Finally, the routine giveup rsrcs( ), which takes the single argu-

ment pcb, releases all resources held by the process represented by pcb.

This routine is called by the kill and terminate interrupt handlers of

PROCSVC. After releasing the resources, giveup rsrcs( ) should attempt

to satisfy a pending resource request, signaling the appropriate pro-

cess if successful. Note, however, that the event associated with an rrb

owned by the killed or terminated process should not be signaled, as

no other process can be awakened by this event.

Internal Routine Called By

resources init ( ); SIMCORE

Called once by the simulator to allow for the initial-

ization of data structures internal to RESOURCES;

the body of this routine can be left empty, if no ini-

tialization is needed.

EXIT CODE acquire ( rrb ); SIMCORE

RRB *rrb;

Returns ok if the request is granted.

release ( rsrc, qty ); SIMCORE

RESOURCE *rsrc;

int qty;

Releases speci�ed number of resource instances.

giveup rsrcs ( pcb ); PROCSVC

PCB *pcb;

Called by kill handler( ) and term handler( ) to re-

lease all resources held by a process.
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External Routine Host Module

extern gen int handler ( ); INT ER

Called by acquire( ) to produce a waitsvc interrupt

and suspend a process, or to produce a killsvc in-

terrupt and kill processes entangled in a deadlock;

it is also called by release( ) to signal the release of

resources.

extern int get clock ( ); SIMCORE

Returns the current time; can be used to trigger

deadlock detection.

1.11 Interprocess Communication {

Module SOCKET S

A socket is a bidirectional port that a process creates in order to send

and receive messages. A socket normally has a name or an address

bound to it. A process can specify that a connection be established

between a local socket that it has created (the so-called host socket)

and a socket belonging to another process (the peer socket); it need only

know the name of the peer socket. After establishing the connection,

the processes are free to exchange messages.

Sockets evolved due to extensive research among the UNIX 4.2BSD

design team to address the lack of an adequate interprocess communi-

cation facility in earlier versions of UNIX. Prior to sockets, the stan-

dard mechanism used was the pipe, which requires processes wishing

to communicate to have a common parent process; pipes thus support

only intramachine communication. Sockets, on the other hand, support

communication between any two processes, independent of their loca-

tion. In fact, in UNIX 4.2BSD, pipes have been implemented through

sockets.

The purpose of module SOCKETS is to implement a simpli�ed,

yet realistic version of UNIX sockets. We begin with a brief overview of

UNIX sockets, and then discuss our simpli�cations. The main reference

source for our presentation of sockets, and of protocols given in the

next section, is the text The Design and Implementation of the 4.3BSD
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UNIX Operating System, by Samuel J. Le�er, Marshall K. McKusick,

Michael J. Karels and John S. Quarterman, Addison-Wesley, 1989.

Sockets provide a uniform and convenient interface for communicat-

ing messages between processes, one that is independent of the under-

lying hardware; e.g., the physical network. The actual communication

is carried out by the protocols, the subject of Section 1.12. This separa-

tion of concerns is reected in the layered manner in which sockets are

implemented: user requests come into the socket layer but are serviced

at the protocol layer. Protocols can be added or deleted without a�ect-

ing the socket-layer interface to user processes. This layered approach

is similar to the one used in the implementation of the �le system:

read/write commands to the �le system are independent of the phys-

ical nature of the devices where the �les are stored; the actual I/O is

the responsibility of the device management module.

It is important to realize that a peer socket may not reside on the

same machine as the host socket, and thus cannot be directly manip-

ulated by the host socket's machine. The peer socket's machine may

even run a di�erent operating system! One can therefore form the fol-

lowing picture about communication between sockets: A user process

asks the socket layer to send a message from a host socket to a peer

socket. The socket layer processes the request by updating a data struc-

ture associated with the host socket, and then asks the protocol layer

to do the dirty work. The protocol layer, being aware of the specif-

ics of the network, selects an appropriate \vehicle" (protocol) to carry

out the communication. The message is delivered to the peer socket,

provided that the peer socket has enough space in its input bu�er to

accommodate the message. Otherwise, the message is queued, usually

at the sending socket.6 A schematic view of the relationship between

the socket and protocol layers appears in Figure 1.2.

Sockets come in various avors. Two important ones are stream and

datagram sockets. Stream sockets provide bidirectional, reliable and se-

quenced communication, without loss of data or duplication. They do

not preserve message boundaries. Stream sockets require an explicit

connection to be made before sending or receiving data. Datagram

sockets do not guarantee reliable communication. Messages may be lost,

6In intermachine communication, messages sometimes travel via intermediate sockets,

in which case a message may be queued at an intermediate socket, if the destination socket

cannot accept the message.
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FIGURE 1.2 Communication between Sockets

duplicated, or may arrive out of order. However, message boundaries

are preserved|messages are queued at the receiving socket, each mes-

sage being held in a special datagram message bu�er designed speci�-

cally to preserve message boundaries. Datagram sockets do not require

establishing a connection before sending or receiving data.

Associated with a socket is the communication domain in which it

lives. A communication domain de�nes a family of protocols, normally

one per socket type, that is suited to a particular communication archi-

tecture (communication domains are organization- or vendor-speci�c).

Consequently, communication domains also de�ne the format of socket

addresses. The two most well-known domains are the UNIX domain

for intramachine communication, and the Internet domain for commu-

nication across networks. The name format for the UNIX domain is

ordinary �le system paths, such as /usr/local/news.cs . Processes com-

municating in the Internet domain use Internet addresses (names),

which consist of 32-bit host number and a 32-bit port number, and

the DARPA Internet protocol family (TCP/IP for stream sockets and

UDP for datagram sockets).

Stream sockets are commonly used in a client/server mode of com-

munication. Consider a server process, such as a �le server or a yellow-

pages server; the latter provides clients with addresses of other servers.

The server process �rst opens a socket, say s, and binds a name to
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s, say SERVSOC , such that SERVSOC is known globally throughout

the network. The server then uses s in a listen command to receive

connection requests from potential client processes. For each incoming

connection request, the server may issue an accept command, with s as

a parameter, to create a new socket connected to a socket in the client

process. To complete the picture, the server usually forks o� a process

to manage the just-completed connection to the client.

At the other end, a process in need of SERVSOC 's service creates

a socket for itself, say r, and issues a connect command with r and

SERVSOC as parameters. If successful, the client will now be able to

communicate with SERVSOC using its local socket r. The server may

reside anywhere in the network and it is a function of the protocol layer

to locate it and initiate the connection.

In UNIX, sockets are implemented as part of the �le system so

that they appear pretty much like �les to processes. When a socket is

created, a socket descriptor, which resembles a UNIX �le descriptor, is

returned, and can be used in subsequent socket system calls. A socket

descriptor serves as an index into the per-process open �le table; a �eld

in the i-node structure identi�es the socket as a special �le. In this way,

applications can use the standard �le system calls in conjunction with

socket-speci�c calls.

1.11.1 Representation of Sockets in OSP

The socket facility of OSP has been designed in the spirit of UNIX,

with a number of simpli�cations. First, the socket interface is sepa-

rate from that of the �le system. Besides being consistent with the

modular construction of OSP, this separation allows the �le system

and the socket facility to be assigned as independent projects. Second,

since OSP simulates only one machine, there is only one communi-

cation domain: the OSP domain (cf. UNIX domain) for intramachine

communication. Within the OSP domain, there is exactly one proto-

col for stream sockets (PR STREAM ) and one for datagram sockets

(PR DGRAM ). The proper protocol is automatically chosen for a given

socket type. Finally, there is no listen command in SOCKETS. A server

process explicitly creates a host socket, which it then provides as a

parameter to accept( ), for each server/client connection.

Since OSP currently supports only intramachine communication,

one could argue that just one layer, the socket layer, instead of two
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layers is enough. However, the layered approach discussed above pro-

vides a more realistic picture of a modern interprocess communication

facility. The enumeration types used by the socket layer follow �rst.

typedef enum f stream,dgram g SO TYPE;

typedef enum f send, recv,accept,recvfrom g SO ACTION;

Other relevant enumeration types used by the socket layer are: BOOL

(p. 6) and EXIT CODE (p. 6).

Module SOCKETS is responsible for handling socket system calls

issued by the simulator, namely: sockets init( ), to initialize the pro-

tocol switch structures (explained below); get so name( ), to retrieve

the character string representing the name of a socket; open sock( ), to

create a socket; close sock( ), to close a socket; accept sock( ), to mark

a stream socket as accepting a connection; connect sock( ), to establish

a connection between two stream sockets; send sock( ) and recv sock( ),

to communicate data between two stream sockets; sendto sock( ) and

recvfrom sock( ), to communicate messages between two datagram

sockets; and �nally purge sockets( ), to remove the open sockets of a

terminated process.

A socket is de�ned by the SOCKET data type, which is conceptu-

ally similar to a combination of the INODE and OFILE data types of

module FILES.

typedef struct socket node SOCKET;

struct socket node f

int so id; /* used by trace facility; */

/* set by simulator */

SO TYPE so type; /* socket type: stream/dgram */

BOOL is connected; /* true, if connected */

BOOL is accepting; /* true, if accepts connections */

PCB *pcb; /* pcb that owns this socket */

int so inbuf; /* buffer for incoming data */

int num msg; /* only for dgram sockets */

DGRAM BUF *dgram msg list;

PR SW *pr sw; /* protocol switch-struct ptr */

PRRB *prrb; /* protocol request block ptr */

BOOL so error; /* indicates error, if any; */

/* e.g., when peer terminates */

int *hook; /* user can hook anything here */

g;
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Many of the �elds in SOCKET data types are self-explanatory,

but several comments are in order. Regarding the �eld so type ,

SIMCORE will randomly choose a socket type when it calls

open sock( ) to create a new socket. The ow of data in OSP is simu-

lated only|no data is actually exchanged. As such, the integer so inbuf

is used to indicate the amount of data in a socket's input bu�er, while

the contents of the bu�er are left unspeci�ed. This �eld is updated

whenever data is added to or removed from the socket. The size of the

bu�er is limited to the constant MAX DATA.

The Boolean variables is connected and is accepting are peculiar

to stream sockets, which must establish a connection before sending or

receiving data. As described above, processes communicate via stream

sockets using a client/server model of communication. The server cre-

ates a socket for itself and calls accept sock( ) to indicate that it is

willing to accept a connection request. The is accepting �eld will be

set to true at that time. Later, a client process may issue a connec-

tion request, which can be satis�ed since is accepting is true at the

server. Once the two sockets are connected, is connected becomes true

for both the client and server sockets, and stays so until the connection

is broken.

Given a communication domain, a protocol consists of a number of

routines that together implement the services provided by a particular

type of socket within the domain. Recall that OSP supports one do-

main (intramachine) having two protocols: the PR STREAM protocol

for stream sockets and the PR DGRAM protocol for datagram sockets.

The �eld pr sw of SOCKET points to a protocol switch: a structure

containing pointers to the procedures that constitute the protocol. De-

pending on the type of the socket, these routines will either be those of

PR STREAM or PR DGRAM . Protocol switches are described more

fully in the next subsection.

In the �eld prrb, every socket has a pointer to a protocol request

block. This is used by the protocol layer to queue a request that cannot

be granted immediately. (The de�nition of the prrb data type appears

in Section 1.12, p. 67.) For example, a process issuing a send request

on a stream socket will be suspended if the peer socket's bu�er lacks

su�cient space. This aspect of the socket layer is similar to resource

management, module RESOURCES, and protocol request blocks are

akin to resource request blocks. As explained later, processes may be

suspended on send or receive requests to stream sockets, but only on
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receive requests to datagram sockets.

The �eld num msg is used only by datagram sockets. It indicates

the number of messages queued at the socket for reception. The �eld

dgram msg list points to a queue of message descriptors that enables

datagram sockets to distinguish individual messages within the in-

put bu�er, and thus preserve message boundaries. This is in contrast

to stream sockets, where the ow of data is treated as a continuous

stream of bytes and no structure is imposed on messages. The data

type DGRAM BUF is given by:

typedef struct dgram buf node DGRAM BUF;

struct dgram buf node f

char *so name; /* name of sending socket */

int num bytes; /* # of bytes in message */

DGRAM BUF *next msg; /* next message */

g;

Note that, as for the �eld so inbuf of SOCKET , only the size of a

message is considered, and not its actual contents. The size of a message

can range from 1 to MAX DATA bytes, and hence the number of mes-

sages that can be queued at a datagram socket may vary. Since the size

of the input bu�er is limited to the constant MAX DATA, the total of

all the num bytes �elds in the queue cannot exceedMAX DATA. Unlike

stream sockets, in the datagram case, a send request that threatens to

overow the peer socket's bu�er is discarded, since datagram sockets do

not guarantee reliable communication. Note that SIMCORE will not

generate a request to send a message of size more than MAX DATA.

The SO ENTRY structure is used to associate socket names (char-

acter strings) to sockets, and performs a function similar to that of the

�le directory (cf. FILE DIR ENTRY in module FILES). The name of

a socket is given as a parameter when the socket is opened.

typedef struct so entry node SO ENTRY;

struct so entry node f

char *so name; /* name bound to socket */

SOCKET *socket; /* the corresponding socket */

SO ENTRY *next; /* list of socket entries */

g;

Socket entries are kept in the socket directory that, like the �le di-

rectory, should provide e�cient access to the socket structure, given a
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socket name. Each socket entry is associated with exactly one socket;

i.e., a socket can be owned by exactly one process and cannot be

shared. The process that creates the socket is its only owner. In some

cases, a protocol may need to know the name of a socket given only a

pointer to its socket structure. Module SOCKETS exports the routine

get so name( ) for this purpose.

Other data type relevant to sockets are: PCB (p. 18), PRRB (p. 67),

and PRCB (p. 66).

1.11.2 Socket-Protocol Interface

The �eld pr sw of the SOCKET data type points to a protocol switch:

a structure containing pointers to the procedures that constitute the

protocol. Depending on the type of the socket, these routines will either

be those of PR STREAM or PR DGRAM .

Although protocol switches introduce a level of indirection, they

serve as a consistent interface to the protocol layer. This observation is

most easily understood in the case of multiple communication domains.

By going through the switch, socket layer routines can call a generic,

with respect to the communication domain, protocol layer routine for

a desired service. Given that the switch has been properly set when the

sockets layer is �rst started up, the routine appropriate for the domain

at hand will ultimately be called.

SIMCORE will pass pointers to the two switches when it calls

sockets init( ), which in turn must initialize the �elds of the switch

structures to point to the appropriate protocol layer procedures. (Pro-

cedure sockets init( ) is explained more fully in Section 1.11.6.) Now,

when a socket is opened, say of type stream, open sock( ) sets the

socket's pr sw �eld to point to the stream protocol switch; for a data-

gram socket, the datagram protocol switch is used. The data type

PR SW is now de�ned:

typedef struct pr sw node PR SW;

struct pr sw node f

int protocol id; /* 0 =PR STREAM ; 1 =PR DGRAM */

SO TYPE so type; /* socket type: stream or dgram */

/* routines common to stream and datagram */

void (*pr attach)();
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void (*pr detach)();

union protocol routines f

/* stream-specific routines */

struct stream only routines f

EXIT CODE (*pr connect)();

EXIT CODE (*pr disconnect)();

void (*pr accept)();

void (*pr send)();

void (*pr recv)();

void (*pr notify recvd( );

g pr stream;

/* datagram-specific routines */

struct dgram only routines f

EXIT CODE (*pr sendto)();

void (*pr recvfrom)();

g pr dgram;

g pr routines;

int *hook;

g;

The simulator creates uninitialized switch structures, one for stream

sockets and one for datagram sockets, and provides SOCKETS with

pointers to these structures by calling sockets init( ); this routine is

responsible for initializing these switches appropriately. For instance,

they should be set so that pr sw!pr routines.pr stream.pr send( ) will

point to the routine stream send( )|see the table of SOCKETS external

routines for the actual names of protocol routines to be used in switch

structures.

Routines that are speci�c to either the stream protocol or the data-

gram protocol are kept in a union in the PR SW structure. This reects

the fact that for a given socket, only stream routines or datagram rou-

tines, exclusively, will be called. To invoke a protocol routine, the socket

layer simply calls the corresponding routine in the protocol switch

pointed to by the �eld pr sw of the socket structure. This, of course, will

result in a one-level indirect call to the actual protocol routine. For ex-

ample to invoke the protocol routine for sending to a stream socket, the
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socket layer would call pr sw!pr routines.pr stream.pr send( ). Ob-

serve that the socket does not need to know exactly which protocol

is to be used. Everything has been taken care of at the time the proto-

col switch was initialized and when the pr sw �eld of SOCKET was

set. Of course, one could simply keep the pointers to the protocol rou-

tines directly in the socket structure, but this would lead to duplication

of these pointers in each socket, thereby wasting memory and possibly

leading to inconsistency problems when protocols are changed.

1.11.3 Calls Common to Stream
and Datagram Sockets

We now describe in some detail the procedures implemented in the

socket layer. A call to open sock( ) opens and thereby creates a socket.

The parameters are a pointer to a SOCKET structure (allocated by

SIMCORE), the socket type and the name to be given to the socket

(a pointer to a string of characters). The following guidelines should be

followed in writing the open sock( ) procedure:

� Check the socket directory to see if a socket with this name already

exists. If so return fail : unlike a �le, a socket cannot be opened

twice. Like module FILES, where a table of open �les is main-

tained, a table of open sockets should be maintained. The number

of sockets that can be opened at any given time is limited to the

constant MAX OPEN SOCKETS . If the table of open sockets is

full then return fail ; otherwise update the table of open sockets

appropriately.

� Fill in the SOCKET template provided by SIMCORE as a pa-

rameter; i.e., initialize the �elds so type , is connected , is accepting ,

so inbuf , pcb, prrb, and so error . Also, the pr sw pointer should

be set to point to the appropriate protocol switch structure|see

sockets init( ).

� Create a new SO ENTRY structure and �ll in the socket name and

the socket pointer. Add the new entry to the socket directory.

� Call the protocol routine pr attach( ) and return ok. As described

in Section 1.12, each protocol maintains a list of protocol control

blocks (prcb), representing the sockets in need of the protocol's

service. Procedure pr attach( ) will allocate a prcb for the newly
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created socket and add it to the protocol's prcb list.

A call to close sock( ) discards a socket. For datagram sockets,

which do not guarantee reliable communication, close sock( ) �rst calls

the protocol routine pr detach( ) to allow the protocol to detach itself

from the socket by deallocating the socket's prcb. If there is a pend-

ing request (prrb) for this socket, pr detach( ) simply discards it along

with the prcb. Upon returning from the protocol routine, the table of

open sockets is updated and the socket's entry in the socket directory

is deleted.

For stream sockets, the protocol routine pr disconnect( ) is called

to remove the connection between the socket and its peer. One of the

parameters to pr disconnect( ) is purge ag , which should be set to

false, indicating that the disconnection is due to a normal closing. The

protocol should return fail , and consequently so should close sock( ), if

there is a request pending at the peer socket|stream sockets promise

reliable delivery of data and the protocol must therefore refuse to close

sockets that have not �nished transmission. Otherwise, pr disconnect( )

updates various data structures (the host prcb, the peer prcb, and

the peer's socket structure) to reect the disconnection, and returns

ok. The socket may then be closed by updating its socket structure

(is connected gets false), calling pr detach( ), and deleting its entry in

the socket directory. Note that the peer socket structure is not updated

at the socket layer|in real systems it may reside on another machine

and it is up to the protocol layer to locate and update the peer socket.

Internal Routine (general socket calls) Called By

EXIT CODE open sock (so type, socket, SIMCORE

so name);
SO TYPE so type;

SOCKET *socket;

char *so name;

Opens a new socket of type so type and gives it

the name so name . Returns fail if a socket with

so name already exists.

EXIT CODE close sock (socket); SIMCORE

SOCKET *socket;

Closes an existing socket.
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1.11.4 Calls Speci�c to Stream Sockets

A call to accept sock( ) marks a stream socket as ready to accept an

incoming connection by setting the socket's is accepting �eld to true.

It then calls the protocol routine pr accept( ); included in the call is a

pointer prrb to a protocol request block, which accept sock( ) obtained

as a parameter from SIMCORE. Let P be the user process (simulated

by SIMCORE) that called accept sock( ). Then pr accept( ) will sus-

pend P on the event associated with the prrb until a connection request

arrives.

A call to connect sock( ) establishes a connection between two ex-

isting stream sockets. The actual connection is created by the protocol

routine pr connect( ). Procedure connect sock( ) should return fail if

the host socket is not of type stream or is already connected (since

a stream socket can be connected to at most one peer socket), or if

pr connect( ) returns fail. Otherwise, connect sock( ) marks the host

socket as connected and returns ok . As when sockets are disconnected,

the responsibility of updating the peer socket is delegated to the pro-

tocol layer.

A call to send sock( ) results in the eventual transfer of data from

the user's address space to the peer socket's input bu�er. Besides the

socket structure of the host socket, the parameters to send sock( ) are

datalen , the amount of data to be transferred (and not actual data),

and prrb, a pointer to a protocol request block. The protocol routine

pr send( ) is called to perform the actual data transmission. Procedure

send sock( ) should return fail if the host socket is not of type stream

or is not connected. If the peer socket's bu�er lacks su�cient space

to accommodate the message, then pr send( ) suspends the sending

process on the event associated with prrb.

A call to recv sock( ) retrieves data from a socket's input bu�er. Be-

sides the socket structure, the parameters to recv sock( ) are datalen ,

the amount of data to be received, and prrb, a pointer to a protocol

request block. Since there is no real data exchange, recv sock( ) sim-

ulates the receive action as follows: if at least datalen data resides in

the bu�er, then the �eld so inbuf of the socket structure is updated

appropriately, and the protocol routine pr notify recvd( ) is called. (By

calling pr notify recvd( ), the protocol layer can decide if a previously

suspended send sock( ) request can now be accommodated.) Otherwise,

the routine pr recv( ) is called in order to suspend the receiving process

on the event associated with prrb.
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Internal Routine (stream socket calls) Called By

EXIT CODE connect sock (socket, SIMCORE

peer so name);
SOCKET *socket;

char *peer so name;

Makes a connection between two stream sockets.

EXIT CODE accept sock (socket, prrb); SIMCORE

SOCKET *socket;

PRRB *prrb;

Marks the stream socket as accepting a connection.

The prrb pointer is delivered to the protocol layer

via a call to pr accept( ). The protocol layer will

suspend the process on the prrb event until a con-

nection request arrives. Returns fail if socket not

of type stream or already connected.

EXIT CODE send sock (socket, datalen, SIMCORE

prrb);
SOCKET *socket;

int datalen;

PRRB *prrb;

Sends data of length datalen to the peer stream

socket. The parameter prrb is used by the protocol

layer to suspend the process, if it has to.

EXIT CODE recv sock (socket, datalen, SIMCORE

prrb);
SOCKET *socket;

int datalen;

PRRB *prrb;

Retrieves data from the stream socket's input

bu�er. In case of insu�cient data, the protocol layer

is called to suspend the process.

1.11.5 Calls Speci�c to Datagram Sockets

A call to sendto sock( ) transmits data from one datagram socket to an-

other. Since datagram transmission is connectionless, the name (char-

acter string) of the destination socket must be given explicitly as a

parameter. Procedure sendto sock( ) �rst checks if the socket type is

dgram and then calls the protocol routine pr sendto( ) to perform the
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Internal Routine (datagram socket calls) Called By

EXIT CODE sendto sock (socket, SIMCORE

peer so name, datalen);
SOCKET *socket;

char *peer so name;

int datalen;

Sends data of length datalen to a datagram socket

given by peer so name.

EXIT CODE recvfrom sock (socket, SIMCORE

datalen, prrb, sender);
SOCKET *socket;

int datalen;

PRRB *prrb;

char **sender;

Retrieves data from a datagram socket's input

bu�er. Sender is a return parameter.

actual transfer. Unlike the stream case, the protocol layer is not pro-

vided with a prrb when pr sendto( ) is called: if the request to send

data to the destination datagram socket cannot be immediately sat-

is�ed, then it is simply discarded and fail is returned. In this case,

sendto sock( ) returns fail as well.

A call to recvfrom sock( ) retrieves data from the input bu�er of

a datagram socket. Recall that datagram-based communication pre-

serves message boundaries; i.e., a message obtained due to a single

recvfrom sock( ) call should correspond to a message transmitted due

to a single sendto sock( ) request. Message boundaries are preserved

in module SOCKETS through the use of the list of datagram message

descriptors (�eld dgram msg list of SOCKET ) associated with every

datagram socket. Each message in the list is kept in a DGRAM BUF

structure, which enables the socket layer to identify the name of the

socket from which the message was transmitted.

Besides the socket structure, the parameters to recvfrom sock( ) are

datalen , the amount of data to be received; prrb, a pointer to a pro-

tocol request block; and sender, the address of a pointer to a string

of characters representing the name of the socket whose message is

ultimately consumed by the recvfrom sock( ) call. Sender is a return

parameter whose value is set when a message is chosen from the data-
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gram socket's message list. It is up to the programmer to decide which

message is returned to the process. For example, one could use a FIFO

strategy, or select the �rst message that is big enough to satisfy the

request. Whatever the strategy, if more data is present in the message

than requested, the excess data is discarded. If less data is present than

requested, then whatever is available is returned. Since no data is ac-

tually communicated in OSP, recvfrom sock( ) simulates the receive

action by updating the �elds so inbuf and num msg , and deleting the

selected message from the message list. If the socket's input bu�er is

empty (socket!so inbuf = 0) at the time recvfrom sock( ) is invoked,

the protocol routine pr recvfrom ( ) is called in order to suspend the

receiving process on the event associated with prrb.

1.11.6 Miscellaneous Socket Calls

Procedure sockets init( ) is called by SIMCORE once in order to ini-

tialize the protocol switch structures and any other data structure in-

ternal to SOCKETS. In particular, SIMCORE provides as parameters

to sockets init( ) two pointers to already existing but uninitialized pro-

tocol switch structures PR SW . One switch structure should be ini-

tialized to point to the PR STREAM protocol routines and the other

to the PR DGRAM protocol routines. Furthermore, the pointers to

these switch structures should be saved. They will be needed when-

ever a new socket is opened to initialize the pr sw �eld of the socket's

SOCKET data structure. The choice of pointer for this �eld will, of

course, depend upon the type of the socket.

Procedure purge sockets( ), called by PROCSVC when a process ter-

minates or is killed, removes any sockets left unclosed by the process.

Upon �nding such a socket in the table of open sockets, purge sockets( )

executes a section of code that is similar to the code of close sock( )

with one exception: it calls the protocol routine pr disconnect( ) with

purge ag set to true when a stream socket is to be disconnected. Con-

sequently, pr disconnect( ) will disconnect the socket even if there is a

request pending at the peer socket. Recall that under normal discon-

nection (purge ag = false), pr disconnect( ) will return fail if there is

a pending request at the peer.

The last miscellaneous routine is get so name( ), which retrieves the

name of a socket given only a pointer to this socket's data structure.

This routine can be used by the PROTOCOLS module, which does not
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have direct access to the socket directory.

Internal Routine (miscellaneous calls) Called By

sockets init (stream pr sw, dgram pr sw); SIMCORE

PR SW *stream pr sw, *dgram pr sw;

Called once by SIMCORE to allow for the initial-

ization of the two protocol switch structures and

any other internal data structures.

purge sockets (pcb); PROCSVC

PCB *pcb;

Purges the open sockets of process represented by

pcb. Called by PROCSVC when a process termi-

nates or is killed.

char *get so name (socket); PROT OCOLS

SOCKET *socket;

Searches the socket directory and returns a pointer

to the character string representing the name of the

socket.

External Routine Host Module

extern stream attach ( /* socket*/ ); PROT OCOLS

extern dgram attach ( /* socket */ ); PROT OCOLS

/* SOCKET *socket; */

Called by open sock( ) to inform the appropriate

protocol that another socket requires its services.

Protocol will allocate a prcb and append it to its

prcb list.

extern stream detach ( /* socket */ ); PROT OCOLS

extern dgram detach ( /* socket*/ ); PROT OCOLS

/* SOCKET *socket; */

Called by close sock( ). Deallocates the prcb allo-

cated to the socket.

extern stream accept ( /* socket, prrb */ ); PROT OCOLS

/* SOCKET *socket;

PRRB *prrb; */

Called by accept sock( ) to suspend the process un-

til a connection request arrives.
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External Routine (continued) Host Module

extern stream connect (/* socket,peer name */); PROT OCOLS

/* SOCKET *socket;

char *peer name; */

Called by connect sock( ) to establish a connection between

two stream sockets.

extern stream disconnect (/* socket,purge flag */); PROT OCOLS

/* SOCKET *socket;

BOOL purge flag; */

Called by close sock( ) and purge sockets( ) to remove a

connection. When called by close sock( ), purge ag will

be false indicating that the disconnection is normal. In this

case stream disconnect( ) will return fail if there is a pend-

ing prrb. When called by purge sockets( ), purge ag will

be true and stream disconnect( ) will forcefully disconnect;

a pending prrb will be discarded.

extern stream send (/* socket,datalen,prrb */); PROT OCOLS

/* SOCKET *socket;

int datalen;

PRRB *prrb; */

Called by sock send( ) to perform actual transfer of data;

will suspend process if peer socket's input bu�er lacks suf-

�cient space.

extern stream recv (/* socket,datalen,prrb */); PROT OCOLS

/* SOCKET *socket;

int datalen;

PRRB *prrb; */

Called by recv sock( ) to suspend process when insu�cient

data in socket's input bu�er.

extern stream notify recvd ( /* socket*/ ); PROT OCOLS

/* SOCKET *socket; */

Called by recv sock( ) after retrieving data from the input

bu�er of socket . Noti�es the protocol layer that more space

is available in the input bu�er of this stream socket, so

that a pending send request by this socket's peer can be

initiated.
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External Routine (continued) Host Module

externEXIT CODEdgram sendto(/*socket, PROT OCOLS

peer name, datalen*/ );

/* SOCKET *socket;

char *peer name;

int datalen; */

Called by sendto sock( ) to perform actual trans-

fer; will discard message if receiving socket's bu�er

lacks space.

extern dgram recvfrom ( /* socket, datalen, PROT OCOLS

prrb */ );

/* SOCKET *socket;

int datalen;

PRRB *prrb; */

Called by recvfrom sock( ) when no data is present

in the datagram socket's input bu�er.

1.12 Protocol-Level Support for Sockets {

Module PROT OCOLS

OSP supports interprocess communication in the form of sock-

ets, which are implemented in a layered fashion: user-level re-

quests are directed to module SOCKETS, which relies on mod-

ule PROTOCOLS to actually service the requests (see Figure 1.2,

p. 50). PROTOCOLS exports two sets of procedures: those for pro-

tocol PR STREAM and those for protocol PR DGRAM . Protocol

PR STREAM achieves the reliable communication o�ered by stream

sockets by enforcing end-to-end ow-control; i.e., suspending a sending

process if the receiving socket's bu�er is full. Protocol PR DGRAM

realizes datagram-based communication. To better understand the re-

lationship between the socket and protocol layers, it is suggested that

Section 1.11 be read before reading this section.

As described in Section 1.11, the protocol layer interacts with the

socket layer via two protocol switch structures, one for stream sockets

and one for datagram sockets. Each protocol switch contains point-
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ers to the protocol routines needed to provide the services o�ered

by the speci�c socket type. Although they introduce a level of indi-

rection in accessing the protocol routines, protocol switches serve as

a uniform interface to the protocol layer. For example, to establish

a connection between two stream sockets, procedure connect sock( )

of SOCKETS calls pr sw!pr routines.pr stream.pr connect( ), without

knowing which protocol will actually be used. This call results in the

invocation of procedure stream connect( ) of PROTOCOLS. Moreover,

connect sock( ) would issue exactly the same call if another protocol

were substituted for the one currently supported by OSP .

The data types employed by PROTOCOLS are now given. The

�rst two are not prede�ned in OSP but their use should facilitate the

implementation of the protocol layer.

typedef struct pr entry node PR ENTRY;

struct pr entry node f

int protocol id; /* 0 =PR STREAM, 1 =PR DGRAM; */

/* set by programmer */

PRCB *prcb; /* list of protocol control blocks */

int *hook;

g;

A protocol entry structure can be used to represent each proto-

col implemented in the protocol layer. The procedure protocols init( )

should allocate and initialize these structures when called by the sim-

ulator. The �eld prcb points to a list of protocol control blocks, which

represents the sockets currently using this protocol, and their connec-

tions, if any.

typedef struct prcb node PRCB;

struct prcb node f

char *host so name; /* name of host socket */

SOCKET *host socket;/* socket using this protocol */

SOCKET *peer socket;/* peer connected to this host */

PRCB *next; /* optional next prcb */

PRCB *prev; /* optional prev prcb */

g;

Protocol control blocks are allocated and initialized by

stream attach( ) and dgram attach( ). These routines are called by the

socket layer to inform the protocol of the existence of a new socket.
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Fields of type SOCKET refer to socket structures, the main data struc-

ture of the socket layer (p. 52). For stream sockets, the �eld peer socket

is set by stream connect( ). Datagram-based communication is con-

nectionless. When a datagram send/receive request is received by the

protocol layer it is accompanied by the name of the peer socket; the

host so name �elds of the prcb list of the datagram protocol entry can

then be examined to locate the peer socket. Finally, prcb's are deleted

by stream detach( ) and dgram detach( ).

Protocol control blocks play an important role in distributed sys-

tems. They provide access to the socket structures of peer processes

that may be located anywhere within the network. Even though

OSP supports only intramachine communication, it is still designed

so that peer sockets are inaccessible at the socket layer, and accessible

at the protocol layer only through prcb's.

The protocol request block (prrb) data type is prede�ned inOSP as

follows:

typedef struct prrb node PRRB;

struct prrb node f

int prrb id; /* used by trace facility, */

/* set by simulator */

int protocol id; /* 0=PR STREAM, 1=PR DGRAM */

SOCKET *socket; /* socket involved in request */

SO ACTION so action; /* requested action */

int msglen; /* msg length to be transmitted */

EVENT *event; /* event for waitsvc and sigsvc */

PCB *pcb; /* process that issued request */

int *hook;

g;

The protocol layer assembles a prrb each time a socket layer request

cannot be immediately satis�ed. For example, a send request must

be put on hold if the input bu�er of the peer socket lacks su�cient

space to accommodate the message. In order to safeguard against errant

pointers, all prrb's, and their associated event structures, are allocated

by the simulator. They are then passed to the socket layer via simulator-

generated calls to socket routines, and ultimately to the protocol layer

via socket layer calls to protocol routines.
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1.12.1 Stream Protocol Calls

We now describe in some detail the procedures exported by the protocol

layer.

Procedure stream attach( ) is called by the socket layer when a

stream socket is created. A prcb is allocated for the new socket, initial-

ized appropriately, and then appended to the prcb list of the stream

protocol entry structure.

Procedure stream detach( ) is called when a stream socket is closed.

The prcb allocated to this socket is removed from the prcb list of the

stream entry structure and then deallocated.

Procedure stream accept( ) is called by accept sock( ). A prrb, pro-

vided in template form by the simulator via the socket layer, is assem-

bled. The event �eld of the prrb is used to suspend the calling process

until a connection request arrives. (Process control monitor calls are

explained in Section 1.5.2.)

Procedure stream connect( ), called by connect sock( ), estab-

lishes a connection between two stream sockets. The parameters to

stream connect( ) are the host socket structure and the name of the

peer socket to which the connection should be made. The exit code

fail is returned if the peer socket cannot be found in the prcb list of

the stream socket entry, if the peer is not accepting connections, or if

the peer is already connected. Otherwise a connection is established by

updating the host and peer prcb's, the peer socket structure, signaling

the peer process using the event in the peer socket's prrb, and return-

ing ok. The host socket structure is modi�ed at the socket layer upon

return from this routine.

Procedure stream disconnect( ) removes a connection. The param-

eters to stream disconnect( ) are the host socket structure and the vari-

able purge ag . A value of false for purge ag indicates that the dis-

connection is normal, i.e., due to socket layer routine close sock( ).

In this case, if there is a request pending at the host socket,

stream disconnect( ) should return fail|stream sockets promise reli-

able delivery of data and the protocol must therefore refuse to close

sockets that have not �nished transmission. Otherwise, the connection

is removed by updating the host and peer prcb's, the peer socket struc-

ture, and returning ok.

A value of true for purge ag means that the disconnection is due

to the termination of the process that owns the host socket. In this case,

disconnection proceeds as above, even if there is a request pending at
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the host socket. The peer process associated with the prrb is awakened

by the prrb event, and the �eld so error of the peer socket is set to

true. This will convey to the peer process that the process to which it

was connected has terminated.

Procedure stream send( ) is called by send sock( ) to send data to a

connected socket. The parameters to stream send( ) are the host socket,

the length of the data to be transmitted, and a prrb to be used to

suspend the calling process if the send request cannot be immediately

satis�ed. This procedure �rst locates the peer socket via the host's

prcb. The following scenarios are then possible:

1. The input bu�er of the peer socket has su�cient space to accom-

modate the data transfer, and no receive request is pending at the

peer socket. Then stream send( ) performs the transfer simply by

updating the integer �eld so inbuf of the peer socket|as described

in Section 1.11, ow of data is simulated in OSP by keeping track

of the amount of data in a socket's input bu�er; the data content

is left unspeci�ed.

2. The peer socket cannot accommodate the data and no receive re-

quest is pending at the peer socket. In this case, stream send( )

will transfer as much data into the peer socket's input bu�er as

space permits|once again by updating the peer socket's so inbuf

�eld. Procedure stream send( ) then assembles its prrb parameter

requesting transfer of the remaining data, attaches the prrb to the

host socket structure, and uses the prrb event to suspend the pro-

cess that issued the send request.

3. The peer socket can accommodate the data and a receive request

is pending at the peer socket. Then stream send( ) performs the

transfer by updating the peer socket's so inbuf �eld. If this input

bu�er now contains su�cient data to satisfy the pending request,

the so inbuf �eld of the peer socket is updated once again, this

time to reect the receive action; the peer socket's prrb �eld is set

to NULL, and the process suspended on the request is awakened by

signaling the event in the peer socket's prrb. Otherwise, i.e., when

the pending receive request can still not be satis�ed, stream send( )

just returns.

4. The peer socket cannot accommodate the data and a receive re-

quest is pending at the peer socket. Then, as described in case (2),
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stream send( ) transfers as much data as possible into the input

bu�er of the peer socket, and suspends the sending process on a re-

quest to transfer the remaining data. The input bu�er of the peer

socket will now be full, and stream send( ) can safely signal the

process awaiting the arrival of data at the peer socket.

Procedure stream recv( ) is called by recv sock( ) if there is not enough

data in a socket's input bu�er to satisfy a receive request. The param-

eters to stream recv( ) are the host socket, the length of data to be

received, and a prrb allocated by the simulator. This procedure assem-

bles the prrb, attaches it to the host socket, and suspends the process

that issued the call to recv sock( ) on the event contained in the prrb.

Procedure stream notify recvd( ) is called by recv sock( ) of the

socket layer to inform the protocol layer that more space is available

in a socket's input bu�er. It �rst checks if a send request is pend-

ing at the peer socket. If not, stream notify recvd( ) simply returns.

Otherwise, it initiates a transfer of data into the host socket's input

bu�er. If there is enough space to fully accommodate the request, then

stream notify recvd( ) updates the so inbuf �eld of the host socket, sets

the prrb �eld of the peer socket to NULL, and signals the process sus-

pended on the event contained in the peer socket's prrb. If the message

Internal Routine (stream protocol calls) Called By

stream attach (socket); SOCKET S

SOCKET *socket;

Called by open sock( ); allocates a prcb for the

socket and adds it to the protocol's prcb list.

stream detach (socket); SOCKET S

SOCKET *socket;

Called by close sock( ) and purge sockets( ); de-

taches the socket from the protocol by removing

the socket's prcb from the protocol's prcb list.

stream accept (socket, prrb); SOCKET S

SOCKET *socket;

PRRB *prrb;

Called by accept sock( ) to suspend process until a

connection request arrives.
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can only be partially accommodated, then stream notify recvd( ) sets

the so inbuf �eld of the host socket to MAX DATA, and decrements

the msglen �eld of the peer socket's prrb accordingly.

Internal Routine (stream calls, continued) Called By

EXIT CODE stream connect (socket, SOCKET S

peer so name);
SOCKET *socket;

char *peer so name;

Called by connect sock( ) to establish connection

between two stream sockets.

EXIT CODE stream disconnect (socket, SOCKET S

purge flag);
SOCKET *socket;

BOOL purge flag;

Called by close sock( ), with purge ag set to false,

to remove a connection between two stream sock-

ets. Returns fail if there is a pending prrb at the

peer socket. Also called by purge sockets( ), with

purge ag set to true; disconnects even if there is

pending prrb, which is discarded.

stream send (socket, datalen, prrb); SOCKET S

SOCKET *socket;

int datalen;

PRRB *prrb;

Called by send sock( ) to send data from one stream

socket to another. Blocks sending process, if receiv-

ing socket lacks su�cient space. Wakes up process

at the receiving socket if it had been suspended on

a receive request.

stream recv (socket, datalen, prrb); SOCKET S

SOCKET *socket;

int datalen;

PRRB *prrb;

Called by recv sock( ) if not enough data in the

socket's bu�er; will block process till requested

amount of data arrives.
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Internal Routine (stream calls, continued) Called By

stream notify recvd (socket); SOCKET S

SOCKET *socket;

Called by recv sock( ) to initiate possible pending

send request; may wake up peer process if send re-

quest is serviced entirely.

1.12.2 Datagram Protocol Calls

Procedure dgram attach( ) is called by the socket layer when a data-

gram socket is created. A prcb is allocated for the new socket, initial-

ized appropriately, and then appended to the prcb list of the datagram

protocol entry structure.

Procedure dgram detach( ) is called when a datagram socket is

closed. The prcb allocated to this socket is removed from the prcb

list of the datagram entry structure and then deallocated.

Procedure dgram sendto( ) is called by sendto sock( ) of the socket

layer to send data from one datagram socket to another. The parame-

ters to dgram sendto( ) are the host socket, the length of the message to

be sent, and the name of the peer socket. The exit code fail is returned

if the peer socket cannot be found in the prcb list of the datagram

socket entry, or if the peer socket is not of type dgram. Otherwise, the

following scenarios are possible:

1. There is enough space in the peer socket's input bu�er to accom-

modate the message, and no receive request is pending at the peer

socket. Then dgram sendto( ) appends a new message descriptor to

the peer socket's �eld dgram msg list (p. 1.11.1), and updates the

peer socket's so inbuf and num msg �elds.

2. There is enough space in the peer socket's input bu�er to accom-

modate the message, and a receive request is pending at the peer

socket. Then dgram sendto( ) only needs to set the prrb �eld of the

peer socket to NULL and wake up the process suspended on the

receive request by signaling the event in the peer socket's prrb. This

amounts to the suspended process receiving the just-arrived mes-

sage. Note that the length of the message received may not be the

same as the length requested, but exactly one message is received;

i.e., message boundaries are preserved as required of datagram-
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based communication.

3. The peer socket cannot accommodate the message. Then

dgram sendto( ) simply discards the message by returning without

any further action. (Remember that datagram-based communica-

tion is not reliable.)

Procedure dgram recv( ) is called by recvfrom sock( ) of the socket layer

when no message is present in the host socket's input bu�er. This pro-

cedure assembles its prrb parameter, attaches it to the host socket

structure, and suspends the calling process on the event contained in

the prrb.

Internal Routine (datagram protocol calls) Called By

dgram attach (socket); SOCKET S

SOCKET *socket;

Called by open sock( ); allocates a prcb for the

socket and adds it to the datagram protocol's prcb

list.

dgram detach (socket); SOCKET S

SOCKET *socket;

Called by close sock( ) and purge sockets( ); de-

taches the socket from the datagram protocol by

removing the socket's prcb from the protocol's prcb

list.

EXIT CODE dgram sendto (socket, SOCKET S

peer so name, datalen);
SOCKET *socket;

char *peer so name;

int datalen;

Called by sendto sock( ) to send data from one

datagram socket to another; will discard message

if receiving socket lacks su�cient bu�er space.

dgram recvfrom (socket, datalen, prrb); SOCKET S

SOCKET *socket;

int datalen;

PRRB *prrb;

Called by recvfrom sock( ) to suspend process on a

receive request.
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Internal Routine (miscellaneous calls) Called By

void protocols init ( ); SIMCORE

Called by the simulator to allow for the initializa-

tion of protocol entry structures and other internal

data structures.

External Routine Host Module

extern gen int handler ( ); INT ER

Called to wake up or suspend processes.

extern char *get so name (/* socket */); SOCKET S

/* SOCKET *socket; */

Searches the socket directory and returns pointer

to the character string representing the name of

the socket.
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USING OSP

2.1 Getting Started

Welcome to theOSP user's guide. Over the course of the semester, your

instructor will assign a series of projects in which one or more modules

of OSP are to be implemented. OSP assumes that for each assign-

ment a separate directory is installed in the class account. Throughout

this chapter we will be using �OS class acnt as the name of the class

account, and assign.xyz as the name of the directory for a given as-

signment.

Working under UNIX, it is a good idea to take steps toward pro-

tecting your �les from unauthorized copying. The most convenient way

to do this is by putting the command

umask 077

in the .login �le in your home directory. Then type \source

�/.login". This will ensure that the �les and directories you create

will not have read or write permission for anyone other than yourself.

If you have already created �les or directories prior to performing this

procedure, you can still protect them by typing \chmod 700 filename"

for each �le you wish to protect.

Before starting to implement a module of OSP, copy the following

�les from the assignment directory �OS class acnt/assign.xyz:

1. The Make�le { contains all the instructions for compiling your

modules and linking them to OSP;
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2. For each moduleM that you are asked to implement, theM.c �le;

3. The source �le dialog.c { contains routines you can use for debug-

ging (see Section 1.4).

The M.c �les contain skeletons of the modules (in C format) to be

implemented. A module skeleton consists of declarations of all stand-

ard OSP data structures needed by the module, and headings of all

exported routines, i.e., routines called by other modules. Module skele-

tons ensure a consistent interface to OSP: you need only �ll in the

empty bodies of the exported routines. You may create your own inter-

nal data structures and write your own internal routines, but you should

not change any declarations originally given to you in the skeleton.

2.2 Compiling OSP

Student-implemented modules are compiled and linked to OSP as fol-

lows:

1. Make sure that theM.c �le are in the same directory as the Make-

�le.

2. Type the UNIX command \make".

If your modules are syntactically correct, and the above guidelines have

been observed, the M.o �les for each module and the executable �le,

called OSP, will be created in the same directory as Make�le.

2.3 Running OSP

To run the simulator, just type \OSP". When the simulator starts, it

will prompt you for the simulation parameters. The simulator uses

these parameters to decide whether the system should be I/O-bound

or cpu-bound, how often there should be a memory, I/O, or resource

request, how long the simulation should run, etc. The instructor will

probably specify the parameters that are expected in the �nal run(s),

but for debugging purposes you can choose your own. Simulation pa-
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parameter valid range suggested range

process creation intensity 1 to 10 4 to 10

avg cpu time per process 20 and up 60 to 500

overall event frequency 1 to 10 4 to 10

share of memory events 1 � m � 10� i� r � s same

share of I/O events 1 � i � 10�m� r � s same

share of resource events 1 � r � 10�m� i� s same

share of sockets events 1 � s � 10�m� i� r same

sockets simulation mode s(tream) / d(gram) / b(oth) same

cpu time quantum 5 to 4 � � �/5 to �

degree of prepaging 0 to 10 0 to 4

memory reference pattern l(ocal) / r(andom) same

deadlock detect/avoid d / a same

simulation time 2,000 and up 20,000 to 100,000

number of snapshots 1 to 30 2 to 10

trace switch 1 (on)/ 0 (o�) same

interactive run y / n same

TABLE 2.1 OSP Simulation Parameters: m, i, r, s denote shares of

memory, I/O, resource, and socket events, respectively; � denotes the

average cpu time per process.

rameters speci�ed at the beginning of a run are saved in the �le

simulation.parameters in your working directory, and by renaming

this �le you can create archives of di�erent sets of simulation parame-

ters. To run OSP with the parameters saved in an archives �le, simply

type

OSP a parameter file

Table 2.1 describes the simulation parameters used by OSP.

Most of the parameters are self-explanatory. The intensity of pro-

cess creation determines the average number of active processes at any

given time during simulation. Intensity 1 corresponds to about 1.5 ac-

tive processes on the average, while intensity 10 corresponds to about

15 processes. When the current number of active processes signi�cantly

deviates from the intended number, the simulator speeds up or slows

down its process creation activity accordingly. Average cpu time per

process is the average amount of time a process will use the cpu. The

overall event intensity indicates the rate at which I/O, resource, and

memory requests will be generated in the system. The total number

of requests is then divided in accordance with the three parameters
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indicating the share of each type of request. The memory referencing

pattern generated by OSP may be either random or local. The latter

realizes the \locality principle" where the referencing of memory by

processes drifts slowly from page to page without many sudden jumps.

The l/r option enables comparative testing of such memory manage-

ment strategies as prepaging, working set model, and others.

Once the parameters have been entered, module SIMCORE will

begin generating events that simulate the execution of user programs.

In addition, SIMCORE simulates the interrupts of the timer and I/O

devices. The particular types of events generated are:

� requests for process creation, termination, and abortion

� requests for suspending and awakening processes

� requests to send and receive messages over sockets

� I/O requests

� requests for resources

� references to virtual memory

� timer interrupts

� device interrupts

During simulation, you may view periodically the system status,

e.g., the state of memory and devices, various statistics accumulated

by the simulator, etc. The simulation parameter snapshot interval indi-

cates how often during simulation the system status is to be displayed.

A snapshot can also be requested by hitting CTRL-Z. Each snapshot

break also presents an opportunity to interactively change the simu-

lation parameters, and, perhaps, variables local to modules you have

implemented (also see Section 1.4).

The interactive run parameter, if set to \no", prohibits the run-

time change of simulation parameters at snapshots, and simulation

will proceed without interruption. This can save you time when in-

teraction with OSP is not needed. In the noninteractive mode, the

output generated by the simulator and your program is saved in the

�le simulation.run. If this �le already exists, it will be overwritten.

However, if OSP is run with the \-a" option (OSP -a), the new run

will be appended to the old one(s). In interactive mode, the output
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is directed to the screen and is not saved in a �le. However, you can

always use the UNIX script facility to record the terminal session.

Normally, the events generated by OSP will be di�erent from run

to run, since the simulator is driven by a random number generator.

Sometimes it may be useful to repeat the previous sequence of events

generated by the simulator, for example, to compare di�erent versions

of the same module or to reproduce an error message exactly as it oc-

curred in the previous run. The \-d" option (for debugging) can be used

for this purpose. First runOSP per normal, entering the simulation pa-

rameters interactively. As described above, the simulation parameters

are saved in the �le simulation.parameters; what we didn't mention

is that the seed used by the random number generator is also saved in

this �le. To direct the simulator to reuse this seed on the next run, and

thus reproduce the sequence of events generated in the previous run,

type1

OSP -d simulation.parameters

Since in the non-interactive mode the standard output is redirected

into a �le, you cannot use stdout to print messages on the screen.

If this becomes necessary|for example, to generate a prompt for in-

put that will direct module MEMORY to switch from one memory

management algorithm to another|another �le attached to the de-

vice /dev/tty should be opened. Messages printed on this �le are not

redirected and will appear on the screen. For example,

terminal_fp = fopen("/dev/tty","w");

fprintf(terminal\_fp, "\nHello... Want something? ");

scanf("%s", answer);

fclose(terminal_fp);

will print a message to the terminal and then read from the standard

input.

1If OSP is run on a parameter �le, say my.parameters, the seed is saved in that �le.

The events of the previous run can then be reproduced by running \OSP -d my.parameters".
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2.4 Interpreting the Statistics

The simulator accumulates statistics that reect the amount of re-

sources consumed by the various modules. They can be used to es-

timate the performance of your modules. Moreover, if you �nd that

the statistics being reported deviate largely from those produced by

OSP.demo, then a bug may be lurking in your implementation. Most

signi�cant are the following indicators:

� system throughput

� average waiting time per process

� average turnaround time per process

� cpu utilization

� memory utilization

Superior performance is reected in lower system throughput, aver-

age waiting time, and average turnaround time; and in higher cpu and

memory utilization. Note that the average turnaround time of processes

is generally a better indication of system performance than the system

throughput. This is because the latter is more susceptible to such arbi-

trary factors as the number of processes left in the waiting and ready

queues at the end of simulation.

OSP also generates a number of auxiliary statistics:

� total number of tracks swept on each device

� average number of tracks swept per I/O request

� average turnaround time per read/write request

� total number of pages swapped in

� total number of pages swapped out

These statistics reect the quality of the device management and page

replacement and allocation strategies. The lower these numbers are, the

better. In fact, these latter statistics are usually more indicative about

the quality of device schedulers and memory managers than system

throughput and other parameters in the �rst category. The output of
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the simulator also contains information about the number of locked

and dirty frames, the status of the frame and device table, the average

number of active processes during simulation, etc. Like the statistics,

this information is useful for gauging performance and debugging.

Statistics generated by OSP.demo can also be used for demon-

strating material presented in class. For example, by altering the length

of the cpu time quantum, one can see its e�ect on the overall system

throughput, average process turnaround time, and other statistics.

Likewise, by varying the degree of prepaging the student can ob-

serve the e�ect of prepaging on the number of page faults, on the total

number of pages swapped in or out, and on the average turnaround

time. For instance, an increase in the prepaging degree will noticeably

reduce the number of pages swapped in due to page faults, However,

prepaging will increase the number of pages swapped in each time a

process is dispatched for execution. Because of this tradeo�, the overall

number of pages swapped in or out should decrease until an optimal de-

gree of prepaging is reached (usually 2 to 4). At this point, the number

of swapped pages will start to go up. The optimal degree of prepag-

ing depends on how good the prepaging algorithm is at guessing which

pages might be needed in the future. The e�ectiveness of prepaging

may depend on other factors as well. For example, if the time quantum

is short or if interrupts are frequent, processes may not be able to enjoy

bene�ts of prepaging. (Why?)

In order to better understand the behavior of the LRU page re-

placement algorithm, you can run OSP.demo with randomized and

localized memory referencing patterns. The number of page replace-

ments will be less under the localized pattern. The intensity of memory

references should be set su�ciently high (e.g., at least 2) to ensure that

the random uctuations do not obscure this e�ect.

Similarly, it can be demonstrated that usually the average

turnaround time per read/write request increases with the intensity of

I/O requests. There may be some exceptions though. For instance, if the

disk scheduling algorithm is very good at scheduling closely grouped re-

quests, then the average turnaround time may actually decrease. How-

ever, this trend is temporary, and an even higher I/O intensity will

cause the turnaround time to increase.

For resource handling, the average process turnaround time and

the system throughput are the main parameters to watch. However,

for deadlock avoidance, the size of the waiting queue is also an inter-
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esting parameter. For deadlock detection, a parameter of interest is the

number of processes killed, since it indicates the quality of the deadlock

resolution algorithm.

Sometimes changing simulation parameters and algorithms may

have unexpected e�ect on the statistics generated by OSP. This is

partly due to the fact that, as in any complex system, di�erent factors

may work in opposite directions. For instance, under a high intensity

of resource requests, better cpu scheduling will give SIMCORE an op-

portunity to generate more such requests. This may result in a higher

number of suspended processes than would be the case under a less suc-

cessful cpu scheduling strategy. Likewise, poorly conceived cpu schedul-

ing, device scheduling, or resource handling strategies may slow down

the processing. One might expect that under these circumstances the

number of active processes should begin to grow. However, this won't

happen on a grand scale, since the simulator will try to avoid ooding

the system with a large number of processes. On the other hand, the

throughput will be lower and the turnaround time will be greater, as

expected.

2.5 Submitting Assignments

As before, we assume that �OS class acnt/assign.xyz is the direc-

tory for the current assignment. The instructor will place several �les

of simulation parameters in this directory, such as

run.with.trace

run.high.event.intensity

and will ask you to use these parameter �les for the �nal run. You may

also submit simulation runs with your own parameters, if requested

by the instructor. The routine hand in in the assignment directory

automates this process. To submit your runs make sure that:

1. The source code of your modules is in the current working directory.

2. Your program compiles correctly with the original Make�le that

you copied from the assignment account.2

2The original Make�le may be modi�ed to suit one's particular needs during the de-
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3. The parameter �les to be used for the �nal runs are readable. Do

not attempt to create parameter �les by any means other than by

running OSP; if a parameter �le is incorrect, OSP may suspend

itself, and the output will not be produced.

4. The \interactive run" parameter is set to `n'.

Next, type:

�OS class acnt/assign.xyz/hand in

The hand in program asks for the names of the students that have

worked jointly on the assignment, and informs them if and when they

have submitted this assignment before. Don't worry|hand in will al-

ways ask for authorization to override a previous submission. Then it

compiles your modules and links them to the rest of OSP. After compi-

lation, it asks which parameter �les to use (expecting just the top-level

names, not full path names) and executes the program with each of the

parameter sets speci�ed. The top-level name of any student-supplied

parameter �le should be di�erent from any of the top-level names of

parameter �les in the assignment directory of the class account. This

is because, hand in �rst searches the assignment directory for param-

eter �les; if unsuccessful, only then will it search the student's current

working directory.

Before each run, you are given a chance to insert comments in the

output, if you or the instructor so desire. These comments will con-

veniently appear just before the output generated by the run. The

hand-in program places a �le consisting of the sources of your mod-

ules, the output of compilation, and the output of the simulation

runs, into an unreadable �le in a subdirectory of the class account.

A copy of the output (excluding the sources) can also be found in the

simulation.run �le of your working directory.

An assignment can be submitted more than once, but only the last

version will be saved in the class account. However, since the submission

time and date are recorded in each version submitted, an assignment

cannot be submitted after the deadline without the permission of the

instructor.

It is important to keep in mind that hand in executesOSP in non-

interactive mode, so the messages printed on stdout will not appear

bugging phase. However, the hand in program requires that the original Make�le be used.
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on the screen. As explained earlier, you can open a �le on /dev/tty

to view such messages.

2.6 Errors and Warnings

In order to prevent corruption to the integrity of the system state, the

simulator maintains its own internal copy which cannot be accessed

by the other modules. Whenever an inconsistency is detected by the

simulator, it terminates with an informative error message or issues

a warning and continues. For example, a reference to virtual memory

that should cause a page fault but doesn't, will result in the simulator

terminating with an error, while if the \dirty bit" optimization is not

used in memory management, a warning is issued. All error and warning

messages are self-explanatory.

OSP has rather sophisticated error-checking capabilities and,

therefore, if no error is reported during a simulation run, it is

a strong indication that your program is correct. Since, however,

OSP simulation is driven by a random sequence of events, errors can

occur in one run but not in another. Therefore, to verify correctness of

your OSP implementation, you should run it on several di�erent sets

of simulation parameters.

Sometimes you may get a segmentation fault , one of the di�cult-

to-detect programming errors. In a large modular system like OSP,

segmentation faults are even harder to pinpoint, especially when the

debugger points in the direction of one of the modules you did not

write. However, there is only a slim chance that an OSP module is to

blame. Usually the segmentation fault is a result of a bad parameter

passed to the external routines of the module you are implementing.

The segmentation fault may also be caused by a modi�cation to a data

structure in the header of a template �le module.c. This should not be

done under any circumstances. One �nal advice: using lint, the C type

checker, may help spot problems at an early stage.
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INSTRUCTOR'S GUIDE

3.1 Introduction

This chapter provides information on the following subjects:

Installing OSP { We describe how to ftpOSP from Stony Brook

and install it in the proper directories in the instructor's account;

how to compile the OSP sources; and, how to compile several

administrative programs. These programs can be used by the in-

structor to generate OSP student programming assignments and

to manage the submission of student programs.

The Directory Structure of OSP { OSP consists of directo-

ries for the sources, object modules, executables, administrative

programs, the assignment generator, and for the assignments them-

selves.

Suggested Use of OSP { We suggest a sequence of OSP

assignments appropriate for one-, two-, and three-semester courses

in Operating Systems. Grading criteria for the various assignments

are also discussed.

3.2 Directory Structure of OSP

Once installed, OSP makes use of the following directories:

./lib.arch { This directory contains the object modules that when

85



86 CHAPTER 3 INSTRUCTOR'S GUIDE

properly linked yield the executable for OSP. Here arch is the

name of the computer architecture: there will be a separate direc-

tory for each supported architecture, e.g., ./lib.sun3, ./lib.sun4,

and ./lib.vax11.

./demo { This directory contains executables of the form

OSP.demo.arch (try it, you'll like it).

./bin { This directory is home to osp.startup, the start-up shell

script, and osp.compile, the compilation shell script. It also con-

tains the executables for the project generator, gen, and the rou-

tines used by students to submit their assignments for grading,

run osp and submit. The project generator and the submission

routines will have an architecture type appended to their name. It is

essential that the executables submit and run osp have protection

modes 4711 and 711, respectively. These modes are automatically

set by osp.startup.

./admin { This directory contains the sources of the project gen-

erator and the submission routines. It also includes the Make�les

used by ./bin/osp.compile and ./bin/osp.startup.

./admin lib { This directory contains the object modules of the

administrative programs from ./admin.

./solutions { Contains the sources to all OSP modules, except

SIMCORE, which are intended for the instructor's use only. As

such, these �les have been encrypted using the UNIX crypt com-

mand. The encryption password is \avigail" (without the quotes).

To de-crypt, say, the solution for module CPU, type

crypt < cpu.c.cr > cpu.c

and enter the encryption password when prompted.

./gen { This directory contains various �les used by the

OSP assignment generator gen.

./assign.i.arch { Each time the OSP assignment generator is

used, the instructor is asked for the name of the directory in which

to place the �les needed by the students to carry out the assignment.

Here, again, arch is the name of the architecture. We suggest using

the names ./assign.1, ./assign.2, and so on.

An assignment directory will contain a demo version ofOSP, which

can be used by the students to familiarize themselves with the simu-
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lator and the assignment; and by the instructor for preparation of the

assignment, grading, etc. (see Sections 3.4 and 3.6 for more details).

An assignment directory will also contain the skeletons of the C

modules to be implemented by the students for that assignment. Stu-

dents will need to copy these skeleton �les into their private directories.

The assignment directory may also contain several �les of simulation

parameters the students are to use when submitting the assignment (see

Section 3.5), and �les containing the results of running OSP.demo on

these parameter �les.

Finally, an assignment directory contains the Make�le the stu-

dents should use to link the modules implemented for this assignment

with the rest of OSP (./assign.i.arch/osp.o); and the shell script

hand in, to be used by the students to submit the assignment. The

student submissions will be automatically placed in the submissions

directory within the assignment directory. With the exception of the

simulation parameters and results of OSP runs, each �le in an assign-

ment directory is created automatically by the gen program.

3.3 FTP'ing and Installing OSP

The �rst step in obtaining and installing OSP is to create a separate

account, say osp, in which to ftp the OSP �les. Problems may arise if

you are running UNIX System V and login into that account via the

\su osp" command. We suggest using \su - osp" instead; this sets up

the environment to OSP 's liking. This problem does not arise under

4.3 BSD UNIX.

OSP can be obtained from SUNY at Stony Brook via an anony-

mous ftp account. If you are not familiar with the UNIX ftp command,

do a \man ftp" to print the UNIX manual entry for ftp. From the

home directory of your osp account, type the following:

ftp cs.sunysb.edu

login: anonymous

password: user@machine.site.domain

cd pub/OSP

binary

get Tarfile.Kernel.Z

get Tarfile.arch.Z
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quit

The second and third lines are, of course, prompts from the sys-

tem to which you should respond as indicated: \anonymous" to

the login prompt, and your e-mail address to the password prompt

(e.g., \rob@tacos.stanford.edu"). The �le Tar�le.Kernel.Z con-

tains ASCII �les and is independent from the computer architecture

on which you intend to use OSP. In Tar�le.arch.Z, \arch" is a com-

puter architecture (e.g., sun3, vax11, next) of your choice. If you plan

to use OSP on di�erent machines, you will have to transfer several �les

Tar�le.arch.Z, one for each architecture. Use the ftp command \dir"

to �nd out which architectures OSP is currently available for.

The above ftp session should result in the transfer of the �les

Tar�le.Kernel.Z and Tar�le.arch.Z from the anonymous ftp ac-

count at Stony Brook to the home directory of the osp account on

your local machine. To make sure that �les were not damaged in tran-

sit, you can enter the command \dir" during the session to �nd out

the sizes of the original �les, and compare them to the number of bytes

actually transferred.

The �les Tar�le.Kernel.Z and Tar�le.arch.Z are compressed

tar-�les. To extract the OSP directory structure, do the following

(again from the home directory of your osp account):

uncompress Tarfile.Kernel.Z

uncompress Tarfile.arch.Z

tar xf Tarfile.Kernel.Z

tar xf Tarfile.arch.Z

The sources of the OSP modules can be compiled by typing:

./bin/osp.startup

./bin/osp.compile

The shell scripts osp.startup and osp.compile prompt you for the

type of the computer architecture you are currently logged on to, e.g.,

vax11, sun3, sun4, hp300, etc. If you intend to use OSP on more

than one type of architecture, you should repeat the installation pro-

cedure on a machine of each type|object �les created on one machine

in all likelihood cannot be used on another.

The shell script osp.startup creates the executables of the project

generator and submission routines, which are also placed in ./bin. The



GENERATING PROJECTS 89

shell script osp.compile compiles and links the OSP modules. In ad-

dition, these shell scripts set the appropriate access modes for various

�les. Therefore, it is advised to execute these scripts also when OSP is

copied from one account to another, or when �le ownership is changed.

The object �les created by osp.compile are placed in the directory

./lib.arch

where arch is the architecture type. In addition, an executable

./demo/OSP.demo.arch is created. This is a demonstration version

of OSP which can be used to familiarize yourself and the students with

the simulator and its capabilities.

3.4 Generating Projects

One of the nice features of OSP as far as the instructor is concerned,

is that programming assignments are generated automatically by the

routine ./bin/gen.arch. Here arch is, as before, the architecture type

of the machine you are currently logged on to. Projects generated by

gen.arch will run properly only if used on a machine of the same

architecture type.

Using the gen program is quite simple. It �rst prompts you, in a

menu-driven fashion, for the names of the modules that are to be imple-

mented by the student as part of the assignment. It then prompts you

for the name of the directory (the so-called \assignment directory") in

which the �les needed by the students to carry out the assignment are

placed. (The architecture name will be automatically appended to the

name of the assignment directory.) These �les are OSP.demo (the stu-

dents can run this to see how the standard OSP modules perform); the

Make�le that the students should use to compile and link their modules

with the object �le osp.o; the �le osp.o itself; and the \templates" for

the modules to be written by the student. These are simply the xxx.c

�les (e.g., devices.c, memory.c), one for each module named in the

response to the generator's previous prompts. These �les contain the

declarations of all external data structures and procedures needed by

the module in question, as well as the headings (i.e., the formal param-

eter structure) of the procedures the students are to implement as part

of this module. Thus all that is left for the student to type in is the

body of these procedures. In the course of implementing the module,
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the students will typically write some procedures of their own, which

they will add to these xxx.c �les.

The executable OSP.demo, created by the generator for the as-

signment, is di�erent from the demo ./demo/OSP.demo.arch men-

tioned earlier, in that all messages unrelated to the modules of the

assignment will be masked out. This is needed to eliminate the infor-

mation glut (and in order not to overwhelm the student who may not

yet be familiar with the concepts used in other OSP modules). Ad-

ditionally, the project generator creates a shell script called hand in

and a directory called submissions inside the assignment directory.

The hand in script should be used by the students to submit their

programming assignments, which will be automatically placed in the

submissions directory.

3.5 How to Submit Assignments

Another nice feature of OSP is that it provides a program that the

instructor can use to have students submit their assignments in a con-

venient and \safe" fashion. In particular, students should execute the

routine:

./assign.i.arch/hand in

The students are then asked to supply the name of a parameter �le with

which to run their own version of OSP (more information about using

hand in can be found in Chapter 2). This parameter �le can be one

created by the instructor (which the instructor presumably has bench-

marked so that assignments can be graded on a consistent basis), or

one created by the students to illustrate special capabilities of their im-

plementation of the assignment. The hand in script will then compile

the student's sources and run the executable with the given parameter

�le. Having �nished with one run, hand in will prompt the user for

another parameter �le; it will exit if the student speci�es no �le. The

combined output from the compilation stage and the simulation runs

will be placed in

./assign.i.arch/submissions/login id.run

and the combined sources of the student's program in
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./assign.i.arch/submissions/login id.src

where \login id" is the student's login id. Students will not have access

of any kind to these output �les, so they cannot be tampered with. A

copy of the �le ./assign.i.arch/submissions/login id.run will be

left in the student's current directory in the �le simulation.run.

Students may submit their programs any number of times. Each

new submission overwrites the previous one. Each time hand in is

used, the current time is recorded, so the instructor can verify dead-

lines. In addition, with each run, hand in records whether it is per-

formed with the parameters �le given by the instructor or one chosen

by the student. This is needed to prevent the students from using \eas-

ier" sets of parameters than those requested by the instructor, and can

be enforced by placing parameters �les in the class assignment direc-

tory: if a student speci�es a parameter �le whose name is identical to

one in the assignment directory, hand in uses the �le in the assign-

ment directory; if the name matches no �le in the assignment directory

then the parameters �le is taken from the student's current working

directory, and an appropriate message is inserted in the output.

3.6 Suggested Assignment Schedule and
Grading Criteria

We have found that students without prior exposure to modular

systems may have di�culty in getting going on their very �rst

OSP assignment. Usually this is due to a lack of understanding of

the meaning and role of the interface to a module. We suggest that

you spend some time explaining these concepts and that you direct

students to Section 1.1, \Getting Started", of Chapter 1.

When assigning projects to the students we suggest that at least

the following three parameters �les be used:

./assign.i.arch/correctness

./assign.i.arch/performance.low

./assign.i.arch/performance.high

The �rst �le should contain parameters specifying a short simulation

run (say, 10000 units of time) with the trace switch on. The trace

generated by the simulator will make it easier to check correctness of
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student programs. The other two �les may contain parameters with

low and high event intensity, respectively. These two �les should have

longer simulation times (e.g., 30000 { 40000 time units) and the trace

facility should be o�. All three �les should indicate \non-interactive

run." To generate these parameter �les, simply run

./assign.i.arch/OSP.demo

and enter the desired parameters when prompted by the simu-

lator. After the run, the parameters will be saved in the �le

simulation.parameters, which can then be renamed into one of

the three aforesaid �les. Additionally, the output generated by each

run of OSP.demo in noninteractive mode is saved in the �le

simulation.run. This �le can then be renamed into either of:

./assign.i.arch/run.correctness

./assign.i.arch/run.performance.low

./assign.i.arch/run.performance.high

depending on the run, and used both by the instructor and the students

for comparison with the output generated by the students' programs.

To test the MEMORY module, it may be instructive to prepare

a parameter �le that requests the simulator to generate memory refer-

ences according to the \locality" principle, and another one that directs

the simulator to generate memory references randomly. This may be

used to demonstrate the impact of prepaging and other strategies.

The following is an example of a project schedule appropriate for a

one-semester introductory course in Operating Systems:

1. CPU, INTER, and TIMEINT

2. MEMORY and PAGEINT

3. DEVICES and DEVINT

The order of assignments is not critical, although students should

have a general understanding of such concepts as interrupt vector, pro-

cess scheduling, ready queue, and PCB, before embarking on the �rst

assignment. It is also a good idea to give a short tutorial prior to each

assignment. We found it useful to devote some time during the �rst such

tutorial to explain to the students the idea of the module interface on

which OSP is built. In particular, students should understand the dif-

ference between internal and external routines in the interface and also
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the role of the data structures through which modules communicate

with each other.

For the second semester, the following projects can be assigned:

1. FILES and IOSVC

2. PROCSVC

3. RESOURCES (deadlock avoidance/detection).

For a more advanced course, a one-semester project on interprocess

communication is suitable. The following OSP modules can be used:

1. SOCKETS

2. PROTOCOLS

By varying the simulation parameter \sockets simulation mode" (see

Table 2.1 of Chapter 2), the project can be designed to proceed in

stages: �rst, stream sockets only; followed by datagram sockets only;

and �nally both.

Due to time considerations, it may be appropriate to ask the stu-

dents to work in teams of two. The instructor is also free to generate

projects that require students to use programs they have written for

previous assignments. To allow students who failed to complete the

earlier parts of the project to keep up with the course, the standard

OSP modules can be substituted for the missing parts.

Regarding grading criteria, we suggest that student programs be

evaluated on the following criteria:

� absence of errors

� absence of warnings

� programming style

� overall quality of the statistics generated by the simulator

Students should be encouraged to experiment with their programs

by varying the values they assign to simulation parameters (or, perhaps

even implementing alternative algorithms) to see how performance is

impacted. They should become aware of the tradeo�s in operating sys-

tem design, for experience shows that they may unknowingly disturb
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one statistic in an attempt to improve another. For example, excessive

prepaging of memory can eliminate page faults almost completely, but

may signi�cantly increase page tra�c to and from the disk. Likewise,

delaying the processing of I/O requests can improve the performance

of the SSTF disk scheduling discipline, but may also negatively impact

the average process turnaround time.

It should be noted that the statistics produced by OSP.demo are

not the best ones possible. This is done on purpose: student's statistics

should compare favorably with those of OSP.demo, or else it is likely

that the student's implementation is poorly conceived.
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SAMPLE ASSIGNMENTS

A.1 CPU Scheduling (2 weeks)

WHAT TO DO: Implement module CPU of OSP. The project �les

are in the directory

�class account/asg1.arch

To start, copy

�class account/asg1.arch/Makefile

�class account/asg1.arch/cpu.c

�class account/asg1.arch/dialog.c

into your directory.

In cpu.c you have to implement a mixture of round-robin with pri-

ority scheduling. Namely, processes will be interrupted whenever a time

quantum expires, but the ready queue will not be FCFS. Instead, stu-

dents should use a priority-based scheduling algorithm that takes into

account factors such as the age of processes, the cost of prepaging, the

amount of time a process has been waiting since its last cpu burst, and

other related parameters. You should experiment with these priorities

to obtain:

� lower turnaround time

� lower waiting time

� higher cpu utilization

95
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Submit three runs. The simulation parameters for the �nal run are in

the �les

�class account/asg1.arch/par.trace

�class account/asg1.arch/par.low

�class account/asg1.arch/par.high

The �rst parameter �le will induce a short simulation run with

the trace switch on. The par.low �le will test your program on a low

frequency of new process arrivals, while in par.high this frequency is

high.

To compare your results with the statistics generated by the stan-

dard cpu scheduler, check the following �les:

�class account/asg1.arch/statistics.low

�class account/asg1.arch/statistics.high

The standard OSP version of module CPU implements a scheduling

strategy similar to the one you were asked to implement. Explain in

not more than one page why your statistics are better or worse than

the standard ones.

HOW TO SUBMIT:

1. Include your name(s) and account(s) in your source �le; do not

submit the hard copy.

2. Attach to your source �le a 1/2 { 1 page explanation of your

statistics, per the discussion above.

3. Submit the above runs using the hand in program (type

�class account/asg1.arch/hand in and follow the prompts).

A.2 File Organization Module (3 weeks)

WHAT TO DO: Implement module FILES of OSP. The project �les

are in the directory

�class account/asg2.arch

To start, copy
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�class account/asg2.arch/Makefile

�class account/asg2.arch/files.c

�class account/asg2.arch/dialog.c

into your directory.

In module FILES, there aren't that many ways to a�ect the statis-

tics; they should be approximately the same as the standard ones.

So, watch for any signi�cant deviations. You can, however, lower the

turnaround time by allocating blocks to �les as close as possible to each

other; this should cut down on disk head movement. The statistics of

interest are:

� turnaround time

� waiting time

� throughput

� number of tracks swept by disk heads

Submit three runs. The simulation parameters for the �nal run are in

�class account/asg2.arch/par.trace

�class account/asg2.arch/par.low

�class account/asg2.arch/par.high

The �rst parameter �le will induce a short simulation run with the trace

switch on. The par.low �le will test your program on a low frequency

of new process arrivals, while in par.high this frequency is high.

To compare your results with the statistics generated by

OSP.demo, check the following �les:

�class account/asg2.arch/statistics.low

�class account/asg2.arch/statistics.high

Explain in not more than one page your strategy of allocation of disk

blocks, and why your statistics might be better or worse than the stan-

dard ones.

HOW TO SUBMIT:

1. Include your name(s) and account(s) in your source �le; do not

submit the hard copy.

2. Attach to your source �le a 1/2 { 1 page explanation of your

statistics, per the discussion above.
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3. Submit the above runs using the hand in program (type

�class account/asg2.arch/hand in and follow the prompts).

A.3 Memory Management (3 weeks)

WHAT TO DO: Implement moduleMEMORY of OSP. The project

�les are in the directory

�class account/asg3.arch

To start, copy

�class account/asg3.arch/Makefile

�class account/asg3.arch/memory.c

�class account/asg3.arch/dialog.c

into your directory.

InMEMORY you have to implement and compare LRU and FIFO

page replacement algorithms, both with prepaging. Try di�erent de-

grees of prepaging and �nd the best value in terms of the number of

pages swapped in or out. Explain your results. The statistics of interest

are:

� number of pages swapped in/out (the most important parameter

for this assignment)

� turnaround time

� waiting time

� throughput.

Submit ten runs, as explained below. The simulation parameters for

the �nal runs are in

�class account/asg3.arch/par.trace

�class account/asg3.arch/par.low.local

�class account/asg3.arch/par.low.random

�class account/asg3.arch/par.high.local

�class account/asg3.arch/par.high.random

The �rst parameter �le will induce a short simulation run with the

trace switch on. The par.low �le will test your program on a low
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frequency of new process arrivals and memory references; in par.high

these frequencies are high. The su�xes local/random indicate which

memory reference pattern is used. You should use each parameter �le

twice, once with LRU and once with FIFO.

Note that you will have to submit all runs at once, i.e., in one session

of the hand in routine, since hand in overrides previous submissions.

To do so, you should design your program to ask for a directive from the

terminal as to whether to run under LRU or FIFO. Consult Section 2.3

of Chapter 2 on how to use the �le /dev/tty for sending messages to

the terminal during a non-interactive run.

To compare your results with the statistics generated by

OSP.demo, which implements the LRU strategy, see the following

�les:

�class account/asg3.arch/statistics.low.local

�class account/asg3.arch/statistics.low.random

�class account/asg3.arch/statistics.high.local

�class account/asg3.arch/statistics.high.random

Explain in not more than one page your strategy of memory allocation

and why your statistics might be better or worse than the standard

ones.

HOW TO SUBMIT:

1. Include your name(s) and account(s) in your source �le; do not

submit the hard copy.

2. Attach to your source �le a 1/2 { 1 page explanation of your

statistics, per the discussion above.

3. Submit the above runs using the hand in program (type

�class account/asg3.arch/hand in and follow the prompts).

A.4 Resource Management (3 weeks)

WHAT TO DO: Implement module RESOURCES of OSP. The

project �les are in the directory

�class account/asg4.arch
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To start, copy

�class account/asg4.arch/Makefile

�class account/asg4.arch/resources.c

�class account/asg4.arch/dialog.c

into your directory.

InRESOURCES, you have to implement a deadlock detection strat-

egy. Choose an appropriate deadlock detection interval. One of the most

important decisions to make is which processes to kill in case of dead-

lock. This will strongly a�ect the throughput of the system. Describe

your strategy of killing processes and explain your results. The statistics

of interest are:

� throughput (the most important parameter for this assignment)

� turnaround time

� waiting time

� cpu utilization

Submit three runs. The simulation parameters for the �nal run are in

�class account/asg4.arch/par.trace

�class account/asg4.arch/par.low

�class account/asg4.arch/par.high

The �rst parameter �le will induce a short simulation run with the trace

switch on. The par.low �le will test your program with low frequency

of new process arrivals and requests for resources; in par.high these

frequencies are high.

To compare your results with the statistics generated by

OSP.demo, see the following �les:

�class account/asg4.arch/statistics.low

�class account/asg4.arch/statistics.high

Explain in not more than one page your strategy of resolving deadlocks

and why your statistics might be better or worse than the standard

ones.

HOW TO SUBMIT:

1. Include your name(s) and account(s) in your source �le; do not

submit the hard copy.
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2. Attach to your source �le a 1/2 { 1 page explanation of your

statistics, per the discussion above.

3. Submit the above runs using the hand in program (type

�class account/asg4.arch/hand in and follow the prompts).
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BOOL { the boolean data type, 6

DEADLOCK TYPE { enumeration type for deadlock handling

methods, 46

DEV ENTRY { the device entry data type, 34

DGRAM BUF { datagram bu�ers type, 54

Deadlock Method { global variable determining deadlock

handling method, 46

Dev Tbl { the device table data structure, 34

EVENT { data type for events, 18

EXIT CODE { exit codes used by OSP routines, 6

FILE DIR ENTRY { data type for an entry in �le directory, 38

FRAME { the frame data type, 6

Frame Tbl { the frame table, 6

INODE { the UNIX-style i-node data type, 38

INT TYPE { the type of interrupts, 5

INT VECTOR { the interrupt vector data type, 5

IORB { the input/output request block data type, 34

IO ACTION { the type of input/output requests, 6

Int Vector { the interrupt vector, 5

MAX BLOCK { the number of blocks on a device, 33

MAX DATA { size of the socket bu�er, 53

MAX DEV { size of the device table, 34

MAX FRAME { size of the physical memory, 6
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MAX PAGE { the maximum size of page tables, 24

MAX PCB { maximum number of active pcb's at any given time, 44

MAX RSRC { maximum number of resources in system resource

table, 46

MAX TRACK { the number of tracks on a device, 33

OFILE { data type for entries in the open �le table, 39

PAGE ENTRY { the page entry data type, 23

PAGE SIZE { the size of a page in bytes, 5

PAGE TBL { the page table data type, 24

PCB { the process control block data type, 18

PRCB { the protocol control block data type, 66

PRRB { the protocol request block data type, 67

PR ENTRY { the protocol entry data type, 66

PR SW { the protocol switch structure, 55

PTBR { the page table base register, 6

Prepage Degree { global variable regulating degree of

prepaging, 24

Quantum { global variable holding the time quantum, 31

REFER ACTION { the type of memory references, 7

RESOURCE { data type for resource entries in resource table, 46

RRB { the resource request block data type, 46

Resource Tbl { the resource table, 46

SOCKET { the socket data type, 52

SO ACTION { the type of socket actions, 52

SO ENTRY { the socket entry data type, 54

SO TYPE { socket types, 52

STATUS { process status type, 18

TRACK SIZE { the track size on each of the devices, 33


