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INTRODUCTION 

The concepts of size and shape are fundamental to the analysis of 
variation in living organisms. Ahd yet, as noted by Simpson, Roe and 
Lewontin (1960), there is at present no general agreement on practical 
definitions of size and shape. The adoption of a generally applicable 
method of measuring size and shape variation would be particularly 
timely as so much effort is being devoted to the study of morphological 
and physiological variation within and between plant and animal 
populations (Anderson, 1954; Prosser, 1955). 

Parting biometrical variation into size and shape components is 
often highly desirable as the size of most organisms is more affected 
than their shape by fluctuations of the external environment; size 
variation is also more likely to reflect heterogeneity of samples with 
respect to age-composition. Shape tends thus generally to provide 
more reliable indications than size on the internal constitution of or­
ganisms; this makes the analysis of size and shape a basic step in the 
study of biometrical variation. 

The present study of the Painted Turtle (Chrysemys pieta mar­
ginata) is an attempt to evaluate the applicability of principal com­
ponent analysis to size and shape variation in groups of living or­
ganisms. The beginnings of principal component analysis are probably 
to be found in the works of Karl Pearson (1901). The statistical 
properties of principal components were investigated in detail by 
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Hotelling in 1933. Anderson (1958) has given the most comprehen­
sive recent exposition. Principal component and related forms of 
multivariate analysis have been used by a number of authors (Black­
ith, 1960; Teissier, 1955; Wright, 1954) in attempts to describe com­
plex growth patterns in terms of a minimum number of basic trends. 
Recent biometrical studies of character-complexes (Bailey, 1956; 
Kraus and Choi, 1958; Olson and Miller, 1958) have made increas­
ingly clear that, whenever the discovery of genetical, developmental 
and functional relationships is contemplated, joint consideration of all 
characters becomes indispensable and multivariate statistical tech­
niques are indicated. However, the relationships of principal com­
ponents with the concepts of size and shape do not appear to have been 
ever examined in detail. This is the main purpose of the present note. 
A comparative analysis of sex dimorphism in several species of turtles 
will be presented later. 

Among the vertebrates, turtles are perhaps those that are most 
readily suitable to studies of variation in overall size and shape. Due 
to a rigid bony carapace, consistent measurements of body dimensions 
can be obtained. Further, interesting changes of proportions occur 
in the shell during growth (Mosimann, 1958). Sexual dimorphism in 
body size and proportions is common. Finally, for aquatic species like 
the one studied here, shape is probably of major adaptive significance 
because of the importance of streamlining for locomotion in a dense 
fluid medium. 

MATERIAL AND DATA 

Eighty-four specimens of Midland Painted Turtles (Chrysemys piela 
marginata) were collected in a single day (August 2, 1956) from a 
small stagnant pond of the St. Lawrence Valley, at Coteau Landing, 
35 miles southwest of Montreal, Canada. This material can therefore 
safely be assumed to represent a single local population. Specimens 
are preserved in the Department of Biology of the University of 
Montreal. Only individuals for which the sex was externally dis­
cernible are included in the present analysis, one abnormal male being 
excluded. Carapace dimensions were measured in three mutually per­
pendicular directions of space: length, maximum width, and height. 
More detailed definitions of these measurements have been given be­
fore (Mosimann, 1958). Thus each specimen is represented in this 
study by a set of three measurements 



PIERRE JOLICOEUR AND JAMES E. MOSIMANN 341 

(length, width, height) 
hereafter designated 

x = (Xl, X2, X3) 
for convenience. Measurements rounded to the nearest millimeter are 
listed in Table 1. Several facts are explicit from examination of the 
data. ( 1) In general, long individuals are also wide and high, and 
inversely, short individuals are narrow and low. Clearly this reflects 
the fact that length, width and height are influenced by one general 
factor of variation, size. (2) However, some individuals of the same 
length show different widths or heights and these differences of pro­
portions constitute shape variation. (3) In addition it can be seen 
that females attain a larger size than males and also (4) that they 
tend to be higher relative to length. 

TABLE 1 
CARAPACE DIMENSIONS OF PAINTED TURTLES (Chrysemys pieta marginata) IN MM. 

24 Males 24 Females 

length width height length width height 

93 74 37 98 81 38 
94 78 35 103 84 38 
96 80 35 103 86 42 

101 84 39 105 86 40 
102 85 38 109 88 44 
103 81 37 123 92 50 
104 83 39 123 95 46 
106 83 39 133 99 51 
107 82 38 133 102 51 
112 89 40 133 102 51 
113 88 40 134 100 48 
114 86 40 136 102 49 
116 90 43 137 98 51 
117 90 41 138 99 51 
117 91 41 141 105 53 
119 93 41 147 108 57 
120 89 40 149 107 55 
120 93 44 153 107 56 
121 95 42 155 115 63 
125 93 45 155 117 60 
127 96 45 158 115 62 
128 95 45 159 118 63 
131 95 46 162 124 61 
135 106 47 177 132 67 

BIVARIATE ANALYSIS 

Whereas the preceding points can be detected by inspection of the 
data, they are brought out more clearly by plotting pairs of measure-
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ments of the various individuals as dots in cartesian coordinate sys­
tems. In the resulting bivariate scatter diagrams (Figures 1 and 2), 
the facts noted above are now graphically evident: (1) dots are spread 
along the diagonal of each diagram according to size differences and 
( 2) scattered about it because of shape variation. ( 3) In both dia­
grams females extend further to the right than males since they grow 
larger and (4), in the first diagram, they tend to be above males of 
equal length because of greater relative height. 

These phenomena have been made considerably more obvious by 
outlining the clusters of dots with ninety-five per cent equal frequency 
ellipses. The equation of the latter can be written in matrix notation 
as: 

where X = (Xl, X2), the pair of coordinates of the locus of the 

ellipse; X' = [ i:] , the column-vector obtained by transposing X; 

X = (Xl, X2), the pair of coordinates of the center of the ellipse and 

h f [Wll W12] . t e row-vector 0 sample means; W = W21 W22 ,the mverse of 

the matrix of the equation of the ellipse and the covariance matrix of 
the sample. The value of c2 is equal to that of chi-square with two 
degrees of freedom (Anderson, 1958: 54), which is 5.99 at the 95 per 
cent level. The elements of the bivariate mean vectors and covariance 
matrices for Figures 1 and 2 are all included in the trivariate statistics 
(Table 2). 

To determine an equal frequency ellipse, the direction cosines 

U = [g:: g~:] of its principal axes and the diagonal form A = 

[ ~1 A~] of its covariance matrix are calculated, the subscripts in 

U and A always being ordered by convention so that A1 > A2. In this 

. [cose sine] . study, the elements of matnx U = . e e were obtamed from 
-sm cos 

5-place trigonometric tables after evaluating angle e from tan 2e 
2 W12 and A was then calculated as A = UWU', where 
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FIGURE 1 
Bivariate scatter diagram of carapace height and length. Males, solid circles; females, 

hollow circles. 
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Bivariate scatter diagram of carapace width and length. Males, solid circles; females, 
hollow circles. 
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U' is the transpose of matrix U. The principal components of the co­
variance matrix Ware the variances Al and 1..2 of the observations along 
the principal axes of their equal frequency ellipses, the direction co­
sines of these axes being (Ull, U12) for the first and (U2l, U22) for 
the second. 

Providing the coordinate axes are graduated in the same scale, the 
extremities of the principal axes of a 95 per cent equal frequency 
ellipse are determined by the following vector equations: 

major axis 
minor axis 

(Xl, X 2 ) = (Xl, X2) -+- V 5.99/'1 (Ull, U12) 
(Xl, X2) = (Xl, X2) -+- V 5.99}'2 (U2l, U22). 

The above equations lay bare the analogy of bivariate with univariate 
confidence intervals. After these extremities have been plotted, the 
ellipse can be graphed either by means of an ellipsograph (such as 
the one made by Riefler) or following a standard drafting procedure. 

Were the parameter mean vector and covariance matrix known, and 
were the distribution of our observations exactly bivariate normal, 
then equal frequency ellipses would be true confidence intervals. Al­
though this is not the case, our ellipses are estimates of true confidence 
intervals. Moreover, their main raison d'etre in the present study is 
their descriptive validity, and the latter is confirmed by visual com­
parison with the clusters of dots of the data. On the other hand, with 
small samples, the effect of extreme observations is considerable and 
equal frequency ellipses should be used with caution. Their biometri­
cal utilization has been thoroughly discussed by Defrise-Gussenhoven 
(1955). 

TRIVARIATE ANALYSIS 

While bivariate scatter diagrams with equal frequency ellipses have 
brought out size and shape differences rather satisfactorily, the present 
problem is basically trivariate. The well-justified popularity of bi­
variate techniques stems no doubt largely from the relative simplicity 
of bivariate computations as well as from the ease of preparation of 
bivariate scatter diagrams. Graphing is considerably more difficult in 
three than in two dimensions, and it becomes geometrically impossible 
when more than three variables are analyzed jointly. Algebraically 
and numerically, however, multivariate statistical techniques remain 
identical in pattern beyond the bivariate level. 
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FIGURE 3 

The trivariate scatter diagram of carapace length, width and height viewed perpen­
dicularly to the first and third principal axes of males. 
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The trivariate scatter diagram of carapace length, width and height viewed perpen­
dicularly to the second and third principal axes of males. 
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Inasmuch as the frequency distribution of observations is approxi­
mately ~ultivariate normal, a sample can be summarized by its mean 
vector X and covariance matrix W. In the trivariate case, 

X = (Xl, X2, X3) and W = [~~~ ~~: ~~:] 
W3l W32 Wa3 

The trivariate statistics relative to (length, width, height) in the 
present study are listed in Table 2. The elements of the mean vector 
of females are greater than those of males, reflecting the greater size 
of the former sex. The elements of covariance matrices are also greater 
in females, which reflects a greater range of size variation. 

Earlier in this paper the analysis was restricted to that {)f the 
marginal distributions of the variables two by two. All components 
of X and W were perforce ignored at anyone time except those cor­
responding to two of the variables. Thus the components of X other 

than (Xl, X3) and those of W other than [Ww
ll 

WW
13

] were auto-
31 33 

matically discarded in the bivariate analysis of (Xl, Xa). In other 
words, carapace length and height were analyzed as if width had not 
been measured, etc. Multivariate techniques alone can take all 
variables into account jointly and thus provide a unified analytical 
approach. 

TABLE 2 
MEAN VECTORS X AND COVARIANCE MATRICES W 

24 Males 24 Females 

length width height length width height 

X (113.38 88.29 40.71) (136.00 102.58 51.96) 

[ 138.77 79.15 37.38 ] [ 451.39 271.17 168.70 ] 
W 79.15 50,04 21.65 271.17 171.73 103.29 

37.38 21.65 11.26 168.70 103.29 66.65 

With the present trivariate data, a joint scatter diagram of all 
variables is fortunately still possible. Slanted views of the tridimen­
sional scatter diagram have been calculated and illustrated (Figures 
3 and 4), the clusters of male and female dots being represented by 
ellipsoids. 

Analogously with bivariate principal components, multivariate prin­
cipal components are the variances of observations along the principal 
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axes of multidimensional equal frequency ellipsoids. In the present 
case, with three variables, the latter are tridimensional ellipsoids. The 

evaluation of the direction cosines U = [g~~ g~: g~: ] of the 
U3l U32 tr33 

principal axes and of the corresponding covariance matrix A = 

[ 
~l f2 g ] is an eigenvalue and eigenvector problem. Its best 
o 0 1.3 

general solution is probably the Jacobi method of matrix diagonaliza­
tion (White, 1958: 395), a generalization of the procedure already 
described for bivariate covariance matrices. The results of principal 
component analysis of our data are given in Table 3. 

TABLE 3 
COVARIANCE MATRICES A AND MATRICES OF DIRECTION COSINES U OF THE PRINCIPAL AXES 

24 Males 24 Females 

[ 195.28 0.00 o.OOJ [ 680.40 0.00 o.OOJ 
A 0.00 3.69 0.00 0.00 6.50 0.00 

0.00 0.00 1.10 0.00 0.00 2.86 

[ .84012 .49190 .22854 J [ .81263 .49549 .30676 J 
U -.48811 .86938 -.07696 -.54537 .83213 .10062 

-.23654 -.04690 .97049 -.20540 -.24907 .94645 

TYPES OF VARIATION CORRESPONDING TO THE PRINCIPAL COMPONENTS 

The types of variation occurring in the directions spanned by the 
principal axes can best be judged from the equations of the latter. 
Thus the equation of the first principal axis of males is 

or 
Xl - 113.38 

.84012 

X 2 - 88.29 

.49190 
X3 - 40.71 = Y

l 
_ 147.99 

.22854 

upon substitution of the numerical values given in Table 3. The value 
of Yl is obtained by rotation of X as explained later. In fact, for a 
given set X = (Xl, X2, Xs), the value of Yl is equal to that of the 
linear compound U llXl + U l2X2 + U l3X3. It is noteworthy that the 
direction cosines of the Yl-axis are all positive. Because of this, the 
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equation of the major axis corresponds to a simultaneous increase (or 
decrease) of all variables. For instance, a positive deviation of 100 
units in Y I corresponds approximately to deviations of (+84, +49, 
+23) millimeters in (Xl, X2, X3), that is in carapace (length, width, 
height). For this reason, and since growth is generally defined as the 
increase in size of an organism, the first principal component is in­
terpreted as a growth trend. The use of a linear compound like 
Y I = U IlXI + U 12X2 + U 13Xa as a size measure should be very prac­
tical in many types of studies, although it calls for careful distinction 
from the usual volumetric or ponderal definition of size. Size was for 
instance defined as a volume estimate from a non-linear compound 
(YI = k Xl X2 X3) and compared with direct volume measurements 
by Mosimann (1958). 

A feature of special significance is the difference in relative magni­
tude of the direction cosines of male and female major axes, particu­
larly those corresponding to carapace height. UI3 equals .22854 and 
.30676 in males and females respectively. A positive deviation of 
100 units in size thus corresponds approximately to a deviation in 
height of +31 mm. in females, but only to +23 mm. in males. This 
expresses the lower relative growth rate of carapace height in males, 
a phenomenon noticeable in Figure 1 and brought out previously by 
regression analysis (Mosimann, 1958). 

The second principal axis of males has the equation 

or 
Xl - 113.38 _ X 2 - 88.29 _ Xa - 40.71 - Y _ 18 8 

- - - 2 .2 
-.48811 .86938 -.07696 

with numerical values. The direction cosines of this second axis differ 
in sign, and this trend of variation corresponds to a joint increase of 
one variable and decrease of others. A positive deviation of 100 units 
in Y 2 would correspond approximately to deviations of (-49, +87, 
-8) millimeters in carapace (length, width, height). This second prin­
cipal component is thus a trend of shape variation. The direction 
cosines of the third principal axis also differ in sign, and the third 
principal component is similarly interpreted as shape variation. 

The results of the analysis of size and shape variation of the present 
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data are summarized in Table 4. It is seen that females are much 
more variable than males in size and slightly more so in shape. 

TABLE 4 
SIZE AND SHAPE VARIATION 

24 Males 24 Females 

Principal 1st 2nd 3rd 1st 2nd 3rd 
axes (major) (inter- (minor) (major) (inter- (minor) 

mediate) mediate) 

Magnitude 
of 195.28 3.69 1.10 680.40 6.50 2.86 
variance 

0/0 of 97.61 1.84 0.55 98.64 0.94 0.41 total 

Size Shape Shape Size Shape Shape 

Nature of joint contrast contrast joint contrast contrast 

variation variation of length of length variation of length of length 
of all vs. width vs. height of all vs. width and width 

dimensions mostly mostly dimensions mostly vs. height 

SCATTER DIAGRAMS OF SIZE AND SHAPE 

The principal axes of an ellipsoid are mutually perpendicular. The 
principal axes of equal frequency ellipsoids can therefore be used as 
new orthogonal coordinate axes. Heretofore the sets of measurements 
(length, width, height) have been interpreted as dots in the orthogonal 
coordinate system of variables X = (Xl, X2, Xs) or 

X' = [i: ] in colum-vector notation. 
Xa 

The new coordinates Y of the same dots on principal axes with direc­
tion cosines U are given by Y' = UX' 

or [~J [ g~~ g~: g~: ] 
U3 l U32 U33 

in extended matrix notation. The operation transforming the X- into 
the Y -coordinates is commonly referred to as a rotation. The sets of 
values of the new variables have been represented in two-dimensional 
scatter diagrams (Figures 5 and 6). The latter constitute views of 
the tridimensional diagram (Figures 3 and 4) seen in the direction 
of principal axes. 
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To determine 95 per cent equal frequency ellipses of groups of dots 
in bivariate scatter diagrams of the elements of Y = (YI , Y2, Y3 ), the 
covariance matrices of these new variables must be known. These 
could of course be calculated directly from the values of Y. However, 
it is much simpler to rotate the X-covariance matrices to the Y-axes. 
Thus a sample with covariance matrix Won the X-axes has covariance 
matrix UWU' on the Y-axes since Y' = UX'. Upon rotation to the 
male principal axes, the male covariance matrix assumes its diagonal 
form, A, while the female covariance matrix remains non-diagonalized 
to the extent to which it differs from that of males. The reverse situa­
tion occurs when rotating to female principal axes. 
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FIGURE 5 
View perpendicular to the second and third principal axes of males; blown-up portion 

of Figure 4. 

The cross sections of the male (Figure 5) and female (Figure 6) 
ellipsoids in the plane of (Y 2, Y 3) are both flattened in the direction 
of height. This suggests that there is less shape variation in carapace 
height than in carapace length and width. This may have no bio­
logical significance, however, since the order of magnitude of carapace 
height is smaller than that of length and width and all dimensions are 
expressed in millimeters. The influence of scales of measurement on 
principal components is discussed by Anderson (1958: 279). Stand­
ardizing variables (Teissier, 1955: 345) is certainly often preferable 
when only one group of observations is considered; the standard 
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deviation of each variable is taken then as its unit and the covariance 
matrix becomes the correlation matrix. In the present case, however, 
this was not done as it would have led to different scales of measure­
ment for males and females. 

The cluster of female observations is clearly above that of males 
in Figures 5 and 6; this expresses the markedly greater carapace 
height of females. Although principal component analysis brings out 
well this difference of shape between the sexes, analyzing multivariate 
differences between groups of observations calls generally for discrimi­
nant functions. Discriminatory analysis leads to trends of maximum 
variation between groups of observations in the same way as prin­
cipal components lead to trends of maximum variation within groups. 
The use of discriminant functions has been illustrated and discussed 
recently by Jolicoeur (1959). However, in the present study, the 
major interest lies in the nature and the magnitude of variation within 
local populations, and this calls for principal component rather than 
discriminatory analysis. 

o 
30 o o 

15 

o 

• 0 00 

~o~o 
o O. 8) 0\ 

0
/0 0 0.

0 
o· •• • 

•• : ~/ .... o •• 0 

. /- .. 

-5 

-15 • -10 

Yz Yz 

-15 o 15 30 12 16 20 

FIGURE 6 
View perpendicular to the second and third principal axes of females. 

DIVERGENCE IN SHAPE DURING GROWTH 

The major axis of each sex projects merely as a point on the plane 
of its own second and third principal axes (Figures 5 and 6). Cor­
respondingly, size variation is absent in the scatter diagram of each 
sex with respect to its second and third principal components. On the 



352 SIZE AND SHAPE VARIATION IN THE PAINTED TURTLE 

other hand, male and female major axes are not parallel and the size 
variation of each sex is present with respect to the second and third 
principal components of the other sex. Thus large females tend to 
congregate upward from their mean in Figure S and large males down­
ward from their mean in Figure 6. 

The extent and the manner in which males and females diverge in 
shape as they increase in size can be judged from the projection of 
the major axis of each sex on the plane of the second and third axes 
of the other. These projections are indicated by arrows (upwards 
from the mean of females in Figure S; downwards from the mean of 
males in Figure 6). Each arrow corresponds to a length of V S. 991.1 
units and its extremity can thus be visualized as the tip of an ellipsoid 
whose projections are the 9S per cent equal frequency ellipses repre­
sented. It is clear from this graphical analysis that there is a pro­
gressive divergence of relative carapace height between the sexes 
during growth. Also, carapace width appears to grow at a slightly 
higher rate in females. 

CONCLUSIONS 

Painted Turtles exhibit considerable variation in carapace dimen­
sions. While the general nature and the magnitude of variation 
can be perceived by inspection of the data, they are made much more 
explicit by bivariate scatter diagrams and equal frequency ellipses. 
When considering multiple characters, however, multivariate statistical 
techniques are necessary to a unified analytical approach. Applied to 
carapace length, width and height, principal component analysis dis­
closes three uncorrelated and mutually perpendicular trends of varia­
tion. The first principal component corresponds to a direction of 
size increase and can therefore be interpreted as a growth trend. 
The second and third principal components correspond to disjoint 
variation of the various characters and are consequently interpreted 
as trends of shape variation. Female painted turtles vary much more 
than males in size and slightly more in shape. While small turtles of 
both sexes are of comparable size and shape, females reach a greater 
size and their carapace becomes relatively higher than that of males. 

The divergence in shape of males and females during growth is ex­
pressed by the difference in direction between the major axes of their 
covariance matrices. But covariance matrices are necessarily unequal 
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when their principal components are not identical in direction and in 
length. The very fact that groups of living organisms have unequal 
covariance matrices can thus be of considerable biological significance 
since the way in which shape differences relate to size differences is of 
major importance in all biological disciplines directly or indirectly 
concerned with development and growth. Assuming covariance mat­
rices of sets of data to be equal, as often done in theoretical statistics, 
would therefore frequently be unrealistic and misleading from the 
viewpoint of the biologist. Proper attention can be paid to growth 
divergences between groups of living organisms if principal com­
ponent analysis is used. The latter seems the most promising method 
for the study of size and shape variation in complexes of biometrical 
characters. 

The use of straight or curved lines is very common in relative 
growth studies and it has been customary to regard departures of data 
from growth curves as having little biological meaning. Such an 
attitude is difficult to maintain, however, when deviations of biometri­
cal characters from growth curves are found to be correlated. The 
description of relative growth data in terms of several axes of varia­
tion, one of size and the others of shape, appears therefore more ap­
propriate than their description in terms of a simple growth curve. 
The latter would generally constitute an over-simplification and would 
result in a loss of biological information. 

At first, principal component analysis is most likely to be regarded 
by the non-mathematician as a highly arbitrary set of manipulations. 
Such a reaction should be readily dismissed, however, as soon as the 
geometrical meaning of the method is considered: principal component 
analysis merely leads to new angles of viewing data, angles best suited 
to disclose the nature and the magnitude of size and shape variation. 

SUMMARY 

The applicability of principal component analysis to size and shape 
variation in living organisms is illustrated by a study of male and 
female painted turtles. Numerical and geometrical aspects are dis­
cussed in detail and it is concluded that principal component analysis 
of size and shape variation would be appropriate in relative growth 
studies whenever multiple biometrical characters are considered. 
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