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Carlyle Circles and the Lemoine Simplicity of Polygon Constructions

Duane W. DeETeMpLE, Washington State University

DuaNe W. DeTempLE: I received my Ph.D. from Stanford University in
1970, where I wrote my dissertation on bounded univalent functions under
the supervision of M. M. Schiffer. I have been at Washington State
University since then, with the exception of the 1981-82 year when I was a
visiting associate professor at Claremont Graduate School. My current
research areas include combinatorial geometry and graph theory.

1. Historical Comments and Introduction. Until very late in the eighteenth
century the only regular polygons known to have Euclidean straightedge and
compass constructions were precisely the ones shown in Book IV of Euclid’s
Elements. This situation changed abruptly on March 30, 1796, when one month
before his nineteenth birthday Carl Friedrich Gauss made the first entry in his
notebook [7}:

Principia quibus innititur sectio circuli, ac divisibilitas geometrica in septemdecim
partes elc.

Mart. 30 Bruns [igae].

Principle of the circle’s division, and how one geometrically divides the circle
into seventeen parts, and so forth.

March 30 [ Braunschweig |

Gauss had discovered that besides the regular polygons of 2" - 3, 2" - 4,2" - §
and 2" - 15 sides, there were a number of other constructible polygons, including
the 17-gon. Gauss secured priority to his discovery by publishing an announcement
on June 1, 1796, which appeared in the “Intelligenzblatt der Allgemeinen Liter-
aturzeitung,” the first and only time he published in a journal of advance notices.
In his short note he wrote that “This discovery is really only a corollary of a theory
with greater content, which is not complete yet, but which will be published as
soon as it is complete” ([1], [7]). The full meaning of Gauss’ pronouncement came
in 1801 with the publication of his monumental Disquisitiones Arithmeticae [6). Its
final two sections (articles 365 and 366) discuss the issue of polygon constructibil-
ity. Recasting the problem in terms of constructing the N vertices of the polygon
on a given circle, Gauss stated his result as follows.

In general therefore in order to be able to divide the circle geometrically into
N parts, N must be 2 or a higher power of 2, or a prime number of the form
2™ + 1, or the product of several prime numbers of this form, or the product
of one or several such primes into 2 or a higher power of 2.

The sufficiency of the condition follows readily from Gauss’ analysis. The neces-
sity, however, is not obvious and Gauss never published a proof of this assertion.
The first proof is credited to Pierre L. Wantzel (1814-48) [15].
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Primes of the form 2™ + 1, and therefore necessarily of the form F, = 22+ 1,
are the Fermat primes. Gauss knew that F, =3, F, =5, F, = 17, F; = 257 and
F, = 65537 were prime, and he knew that Euler had shown Fs to be composite.
Even today no other Fermat primes have been found, although the smallest
unsettled cases are F,,, F,,, and F,,. (The primality status of Fermat numbers as
of 1983 can be found in Keller [8], and a shorter but more recent table is included
in Young and Buell [17]).

Beyond the brilliant theoretical breakthrough of Gauss there is still an intrigu-
ing puzzle: how can one devise a sequence of steps with straightedge and compass
which constructs a regular N-gon? Gauss expressed interest in this problem,
although he did not offer explicit geometric constructions. Throughout the last
century, and even into present times, numerous constructions have been contrived
for the 17-gon (see [1], [2] for historical comments). J. F. Richelot’s construction of
the 257-gon required a total of 194 pages, published in four parts in Crelle’s
journal in 1832. A Professor O. Hermes labored for ten years on the construction
and associated algebra of the 65537-gon. The work filled a trunk which was
donated to the Mathematical Institute at Gottingen. Nearly a century later it
remains stored in an attic there, in all likelihood having never been read.

In what follows we show that a remarkably uniform procedure to construct the
regular F,-gons is afforded by consistent use of an idea attributed to the Scottish
historian Thomas Carlyle (1795-1881). Before turning his attention to the literary
arts, the young Carlyle taught mathematics, translated Legendre’s influential
Elements de Géométrie into English, and, important for our purposes, devised an
elegant geometrical solution to quadratic equations. His idea is based on what we
will call the Carlyle circle construction, which we describe in the next section. In
the remaining sections we will demonstrate constructions of the 5-, 17- and
257-gon which employ the Carlyle circle method, and, at least in a general way, we
also discuss the method’s applicability to the 65537-gon.

Our unified approach has two nice features: first, the correctness of the
constructions is easy to verify, and second, the constructions are highly efficient.
For the pentagon the procedure is similar to the popular construction from
antiquity found in Ptolemy’s Almagest, but with a slight twist at the end. For the
17-gon we rediscover a method of Smith [12] which appeared in 1920, but again we
can offer a small improvement. The 257-gon is fairly difficult at the concrete level
of actually using the Euclidean tools with sufficient accuracy to produce a convinc-
ing construction, but at the conceptual level the procedure is remarkably straight-
forward in its use of 24 Carlyle circles. Indeed, one becomes convinced that the
style of construction needs no change to handle the 65537-gon.

A quantita}tive measure of the simplicity of a geometric construction was devised
in 1907 by Emile Lemoine (1840-1912), and is described in Eves [5] this way.
Consider the following five operations.

S,: to make the straightedge pass through one given point.

S,: to rule a straight line.

C,: to make one compass leg coincide with any point.

C,: to make one compass leg coincide with any point of a given locus.

C;: to describe a circle.

If these operations are performed m,, m,, n,, n,, ny times respectively in a con-
struction then m S, + m,S, + n,C, + n,C, + n;C; is the symbol of the construc-
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tion. The total number of operations m, + m, + n, + n, + n, is called the
simplicity of the construction, where we note that a low value of simplicity
corresponds to an efficient construction. In what follows we will assume that we
use a single noncollapsing compass'. Simplicity is improved by having circles with a
common radius, or a common center, described in succession since the compass
would not have to be reset, or one of its legs would not require repositioning.

As an example, the construction of a circle and two lines which cross orthogo-
nally at the circle’s center (if we begin with the circle, C;, then draw a line through
the circle’s center, S; + §,, and finally erect the perpendicular bisector, 2C, +
2C; + 28, + S,) has symbol 3§, + 2S5, + 2C, + 0C, + 3C, and simplicity 10. If
the first two steps in the construction just described are reversed (begin with a line,
S,, and then draw a circle centered on the line, C, + C;) then the symbol is
28, + 28, + 2C, + C, + 3C5, but the simplicity is still 10.

The constructions we will describe for regular polygons have lower simplicity
measures than their competitors and are perhaps nearly optimal. An interesting,
but apparently open, problem is whether or not it can be proved that a given
construction has optimal Lemoine simplicity.

2. Carlyle Circles. A variety of methods to construct the roots of a quadratic
equation are known, but the one of Carlyle we now describe is especially attractive.
It appeared in Leslie’s Elements of Geometry with the remark “The solution of
this important problem now inserted in the text, was suggested to me by Mr.
Thomas Carlyle, an ingenious young mathematician, and formerly my pupil” (see
[5D.

Beginning with the usual Cartesian x, y-axes and a unit distance, our intention
is to construct the roots of the quadratic equation x? — sx + p = 0, where s and p
are given signed lengths. To this end, plot the points 4(0,1) and B(s, p). The
circle which has the segment 4B as a diameter will be called the Carlyle circle Cs,
of the given quadratic equation. The center of C,, is at M(s/2,(1 + p)/2), which
can be constructed as the midpoint of AB. It will later be found useful to notice
that M is also the midpoint of S(s,0) and Y(0,1 + p), where the advantage derives
from being able to locate S and Y on the x- and y-axes, respectively.

If we suppose C, , crosses the x-axis at H(x,0) and Hy(x,,0), with x; > x,,
we have the two cases shown in Fic. 1. For p of either sign we observe that
X, +x, =s. For p <0 the intersecting chords theorem for FiGUrRe 1(a) shows
OH, - OH, = OA - OC; that is, (x;) - (=x,) = (1) - (=p). For p > 0, the inter-
secting secants theorem for Fic. 1(b) shows x, - x, = p. In all cases, then,

(x—x)(x—x,)=x*—sx+p, s=x,+x,, p=xxy,
and so we conclude the following theorem:

If the Carlyle circle Cg , intersects the x-axis at x, and x,, these are the roots of
x2—sx+p=0.

An alternate proof can be based on the Pythagorean theorem.

'"The modern noncollapsing compass permits one to draw with ease a circle centered at a given
point whose radius is the distance between two other points. If one only has a collapsing compass, the
type assumed by Euclid, then it is surprisingly cumbersome to transfer lengths and consequently the
simplicity numbers of most constructions is greatly increased.
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J Y(©,1 +p)
40, 1) C(O, p)
H, S(s, O\
o
A0, 1)
(Y(©0,1 + p) O|H, H, S(s,0)
€, p)| B(s, p)
(a) Case p <0 (b) Case p > 0

Fic. 1

The quadratic equations we will consider later all have real roots, but it should
be pointed out that complex roots are also related to the Carlyle circle. Suppose
the y-coordinate (1 + p)/2 of the center of C, , exceeds the circle’s radius

[ 1]

a condition which reduces to having a negative discriminant A = s> — 4p. The
circle C; , does not intersect the x-axis, which reflects the fact that the quadratic
equation has a pair of complex conjugate roots z,z, =s/2 + 3iV— A. We will
now verify that any circle centered on the x-axis and orthogonal to C, , will meet
the vertical line through the center of C , at

s

(E—;—\/——A) and (5, - %m)

To see this, consider the circle centered at (£, 0) which is orthogonal to C; e 1ts

equation is
s 2 1+p)\?
(X—§)2+y2=(5—§)+( 5 )—rz,

and setting x = s/2 we find

14+p\?
y2=( ) —r?= —1A.

2

Therefore any such orthogonal circle can be used to construct z,, and z,, with the
y-axis now interpreted as the imaginary axis of the complex plane.

3. Construction of the Regular Pentagon. We assume that we have already
constructed the unit circle and the x, y-axes. Following Gauss we view the problem
as the construction of the roots of z° — 1 = 0. The root z, = 1, corresponding to
the point Py(1,0), can be factored out to show that the remaining points
P,, P,, P;, P, correspond to the roots of the quartic equation z* + z3 + z2 +
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z + 1 =0. Letting ¢ = e2>™/° these roots are €', e2, %, ¢*, which we observe sum
to —1.
Two other sums of roots are of special interest, namely,

My =¢' +¢&*=2cos(2m/5)
m, =&+ &> =2cos(4m/5).
It is simple to check that

(1)

Mo+ m = —1, Mo M= —1, Mo > 0>m,. (2)
From (2) it follows that n, and 7, are, respectively, the larger and smaller root
of the quadratic equation x> + x — 1 = 0, and therefore they can be constructed
by means of the Carlyle circle C_, | which has center M(-1/2,0). M is
constructed as the midpoint of OQ, where Q(—1,0). The Carlyle circle centered at
M and passing through A(0, 1) then intersects the x-axis at Hy(n,,0) and H (7, 0).
In view of (1), circles of unit radius centered at H, and H, will intersect the
original unit circle at Py, P,, P;, P,, thereby forming the desired pentagon
P,P,P,P,P, as shown in FIGURE 2.

A Py
@
gl ol Iyl o H,/>p
Py
P,

FiG. 2

Beginning with the unit circle and the x, y-axes as given, the construction just
described has symbol 25, + S, + 8C, + 0C, + 4C;, for a Lemoine simplicity of
15. The popular construction of Ptolemy (see [4], [15]) proceeds in the same way
through the construction of H,, but then takes AH, as the distance between
successive vertices of the pentagon, resulting in a simplicity of 16 to locate all five
vertices.

4. Construction of the Regular Heptadecagon (17-gon). Letting & = e?™/17,

our task here is to construct the roots &!,&%,...,¢!® of the equation z'® +
z% 4+ -+ +z + 1 = 0. Gauss’ idea was to arrange these roots in a cycle in which

each root is a gth power of its predecessor:
2 15 16
el e8,e8,...,e% &% =gl (3)

Since £™ = ¢™ (M1 we can see that corresponding to the prime p = 17 there
must be found a g for which

g"#1(modp), 1<r<p-2 and g?'=1(modp). (4)
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A positive integer g which satisfies the conditions of (4) for p is said to be a
primitive root of the prime p. For any Fermat prime p > 3, g = 3 is always a
primitive root. This follows from the fact that 3 is a quadratic nonresidue by the
quadratic reciprocity theorem, and any nonresidue is a primitive root because the
size of the multiplicative group is a power of 2. With this choice the cycle (3)
becomes

9
81, 83, 8), 810, 813, 85, 815, 81], 816, 814, 88, 87, 84, 812, 82, 86. (5)

Next, Gauss considered the sums of the terms of various subcycles of (5), which
are called periods. A typical example is the period n,, = &' + &” + & + --- +¢%
For notational convenience a period will be represented by an I-tuple of the
exponents of ¢ which occur in the sum, and so the two periods of length eight are
expressed as

Moo = (1,9,13,15,16,8,4,2)
M, = (3,10,5,11,14,7,12,6). (6)
There are four periods of length four, namely,
Mo.4 = (1,13,16,4), M54 = (9,15,8,2)
M4 = (3,5,14,12), M3,4 = (10,11,7,6).

There are eight periods of length two, but only two are needed for the construc-
tion,

(7)

Mo.s = (1,16) = 2cos(27/17)

Mg = (13,4) = 2cos(8w/17). ®)
From (8), and using (7), we easily see that
Mo,8 + Ma,8 = Mo, 4> No,8 " M4,8 = M1,4> Mo,8 > Ma4,5- (9)
Similarly it is straightforward to calculate that
No,4 T M2,4 = Mo,2> Mo,4 " M2a = — 1, No,4 > M2,4 (10)
Ni,4 T N34 = M125 N4 " M3,4 = — 1, N,4 > N34 (11)
Mozt M= —1, Mo2 M= — 4 Mo,2 > M1,2- (12)

The inequalities in (10) and (11) are geometrically obvious, and since a calculation
shows that (1o, — 154) - (0,4 — m34) = 2ng, — m, ) it then follows that
No,2 > 1M1,, as claimed in (12).

Equations (8)-(12) readily lead to the construction of the regular 17-gon as
shown in FiIGURE 3. It is assumed that we are given the unit circle centered at O
and the x, y-axes. From (12) we see that M., and n, , are, respectively, the larger
and smaller roots of the quadratic equation x? + x — 4 = 0 whose corresponding
Carlyle circle C_, _, is centered at M(—1/2, — 3 /2). Therefore:

(i) Draw the perpendicular bisector of QO, using a circle at Q through O and
the existing circle. This construction has Lemoine symbol 28, + S, +
2C, + C5 and locates Q'.

(i) Draw a circle at Q' through P, (symbol 2C, + C,) to locate M,,.

(iii) Draw the Carlyle circle at M, (symbol 2C, + C;) to locate H, ,(n,, ,,0)
and H, ,(n, ,,0).
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H,, My,

Fic. 3

From equations (10) and (11) we see that Carlyle circles centered at M, (371, ,,0)
and M, ,(3m, ,,0) will locate H (1, 4,0) and H, ,(n, ,,0). Therefore:

(iv) Draw the perpendicular bisectors of OH0 , and OH 122 using the same
circle at O (symbol 48, + 25, + 3C, + 3C,). This locates M, , and M| ,.

(v) Draw the Carlyle cucles at MO’2 and M, , (symbol 4C; + 2C5) to locate
H,,and H ,.

Turning next to Equﬁtion (9), we see that H, g(n, 3,0) requires a Carlyle circle at
M, ,. Therefore:

(vi) Set the compass to radius QH, , and draw a circle at O (symbol 3C, + C5)
to locate Y(0,1 + 7, ,).
(vii) Draw the line YH, (symbol 285, + 8.
(viii) Draw the perpendlcular bisector to YHO’4 (symbol 28, + S, + 2C, + 2C5)
to locate M, 4.
(ix) Draw the Carlyle circle at M, , (symbol 2C, + C;) to locate H,g.

In view of equation (8), the following step locates P, and P,,, which correspond
to ¢! and &', respectively. Except for laying off the distance P, P,, this completes
the construction.

(x) Set the compass to unit radius and draw a circle at H|, ¢ (symbol 3C; + C5)
to locate P; and Pi.

The ten steps described above have total symbol 10S, + 5S, + 23C, + 0C, +
13C,, for a simplicity of 51. However, two simple modifications can reduce the
simplicity of the construction to 45.* First, the costly double bisection of step (iv)
can be avoided by using half-scaled Carlyle circles to locate M, and M, ,. This
requires a perpendicular bisector of Q'O, but since the compass is already set at

*Qur thanks to the referee for suggesting these modifications.
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unit radius the symbol is 25, + §, + C, + C5. We also need a circle of radius OQ’
at O (symbol 2C; + C,). Since there is no more need for step (iv) the simplicity is
reduced by four. Step (viii) can also be replaced by a less costly procedure.
Following step (vi) the perpendicular bisector of OY can be constructed with
symbol 28, + S, + C, + Cj, since the compass need not be reset for the circle at
Y. Step (vii) now locates M, , and so we have further reduced the simplicity by
two. Altogether the modified Carlyle construction has symbol 85, + 4§, + 22C,
+ 11C;, for a simplicity of 45.

The Smith construction [12] is similar to that described in (i)—(x), but it requires
a perpendicular bisector at H,,, which increases the simplicity to 58. The
construction of Richmond [11] (also shown in [13], [16], and elsewhere) seems to
appear more often than its efficiency warrants. Even arranging for several circles
to do double duty, as in the modified Carlyle construction, the simplicity is 53
(which constructs P;; the simplicity increases to 60 to locate P,.) The compara-
tively recent construction of Tietze [14], also described in Hall [7], can be done
with simplicity 50. Neither reference provides a proof of the construction, and
indeed Hall remarks that “the proof that it is correct requires extensive calcula-
tion.” His assessment applies equally well to the method of Richmond.

5. Construction of the Regular 257-gon. Since g = 3 is also a primitive root of
257, the roots of z%%¢ + 225 + .-+ +1 = 0 are ordered in the cycle

81, 83, 89, 827, 881, 8243, 8215, e, 8165, 8238, 8200, 886,
where & = 2™ /%7, The period of length [ = (p — 1)/2" which contains the term
€% is denoted by
-1
Nk = Z sgﬁnk, k=2".
n=0

In particular, n,; = —1 and we also observe that n; , = 7, , when j = i (mod k).
To set up the hierarchy of quadratic equations to be solved in succession, it is

necessary to know the sum, product, and relative size of pairs of periods. This

allows the construction of the periods by means of the appropriate Carlyle circles.
The addition formulas

Ni2k t Njwk, 2k = Nk (13)

are obvious. Formulas for products require effort but perhaps less than expected.
The following sample calculation of 1 g4 * 113, 64 illustrates some useful principles
of computation. Since m, 4 = (1,241,256,16) and 73, o4 = (64,4,193,253) are
represented by quadruples of exponents, the product we seek corresponds to a
modulo 257 addition table.

M32,64
64 4 193 253
M0, 64 1 65 5 194 254
241 48 245 177 237
256 63 3 192 252
16 80 20 209 12
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The main diagonal, it can be checked, is 755 ¢4 = (65,245,192,12), and the
“diagonal” just below it is 7ss ¢4 = (48, 3,209, 254). Altogether we find that

No,64 ° M32,64 = M33,64 T Mss 64 + M23. 64 + M1 64- (14)

Thus products can be computed by knowing which periods of the same length
contain the terms in the first column.

The right side of (14) can be simplified by use of the addition formulas (13),
giving
(15)
The derivation of (15) is actually enough from which to deduce the general formula
obtained by increasing the first subscripts by j. That is,

No,64 * M32,64 = M1,32 T M23,32-

(16)

Additional discussion of these computational details can be found in Rademacher
[10].

The last algebraic difficulty is the ordering of 7;,, and n;,; 5. It is obvious
that m, ¢ > 73,64 but showing that n, ;s > 1,4 is somewhat delicate. The
methods described in Klein [9] and Rademacher [10] for the 17-gon can be
extended to the present case however, thus allowing the identification of the larger
and smaller root of a pair.

The results of the calculations are shown in TABLE 1. The same information is
contained in Bishop [3], but in a different form, since we have used formula (13) to
simplify the expressions for the period products. Since it will be sufficient to
construct the point P, on the unit circle whose x-coordinate is cos(2w/257) =
(1/2)my, 128, WE observe that we need only construct two of the period pairs of
length 4 and six of length &.

N6 Mi+32,64 = Mj+1,32 T Nj+23,32-

TaBLE 1
Products of Required Period Pairs Order of Period Pairs
Mo,2 " M,z = —64 M0,2 > M1,2
N4 Myroa= —16, j=0,1 No,4 > MN2,4> M1,4 > M3.4
Mg M+as= —2+T3M,12+21,04 MNo,8 > Ma4,8> M2,8 > Me, 8>
j=0,1,2,3

N1,8 < Ns,8 N3,8 < M7,8

M6 Mi+s 16 = M2+ Mg+ Miras + 27,458
j=0,...,7

Mo, 16 > M8, 16> Na,16 ~ N12,16> M2, 16 > M10, 165
N6, 16 < M4, 16> M1,16 = M9, 16> M5,16 = M13, 16>
N3,16 = N11,160 7,16 = M15, 16

N,32 M+16,32 = M16 T Mj+1,16

142,16 T M)+5,16
j=0,1,7,8,9,15

M0,32 > M16,32> M8,32 < M24,32>
MN1,32 > 7,32 M9,32 < M25,325
7,32 < N23,32> M15,32 > M31,32

Nj64 " M+32,66 = M+1,32 T Mjs23,32
j=0,24

0,64 > M32,64> M24,64 < M56,64

70,128 * M64,128 = 156,64

N0,128 > M4, 128

Translating the results of the table into an explicit construction is straight-for-
ward, although we must be alert to carrying out the required procedure in an
efficient manner. Beginning with the first row of information in TABLE 1 we see
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that . , and 7, , are the larger and smaller roots, respectively, of x> + x — 64 =
0, and so the first step is to construct the center M(—1/2, — 63 /2) of the Carlyle
circle C_; _¢,. Successive distance doublings along the positive x-axis will locate
T(31,0), and then swinging an arc from Q'(—1/2,0) of radius Q'T, will locate M,
on the perpendicular bisector x = —1/2 of O and Q(—1,0). As shown in FIGURE
4, the Carlyle circle C_; _, then locates Hy ,(n, ,,0) and H; ,(n, ,,0).

A
H1;2//— < Hy S T
ofP,3 7 15 31
1 63
)
Fic. 4

The construction of the four periods of length 64 is depicted in FiGUre 5. The
point Y(0, — 15) is located by swinging an arc from O of radius OS, where S(15, 0)
was constructed in the previous step. The midpoint M, , of YH, , is the center of
the Carlyle circle which determines H, 47, ,4,0) and H, ,(n, 4,0). Similarly the
points at x = n; , and x = n;, are found by the Carlyle circle centered at the
midpoint M, , of YH, .

Fic. 5

The remaining pairs of periods are constructed in an analogous way, although
extra distance transfers are required because of the more complicated product
expressions shown in TaBLE 1. A circle of unit radius centered at H,, ;,3 will cross
the unit circle at P, and P,s;, which completes the construction up to laying off
the distance PyP; to locate all of the vertices of the 257-gon.
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To optimize the simplicity of the construction it is essential to transfer distances
efficiently. For example some useful savings in constructing 1 14, 14, 16> M8, 16> M12. 16
are possible when advantage is taken of the relation my 15 * Mg 16 + 14,16 * M12,16 =
31,2 + 2m, 4. The construction of the three other quadruples of periods of length
sixteen are aided by the corresponding algebraic relations.

Beginning with the wunit circle and the x, y-axes, the construction of
P(cos(2 /257), sin(27r /257)) has symbol

945, + 478, + 275C, + 0C, + 150C,

for a Lemoine simplicity of 566. Among the 150 circles are 24 Carlyle circles.

6. Remarks on the Construction of the Regular 65537-gon. We have already
observed that g = 3 is a primitive root of p = 65537. The sum, product, and
relative order of period pairs must then be computed (one feels sorry for the
computerless Hermes!). The first line of the required table of information is

Moz T M= —1, Moo M2 = —2", No,2 > M1,2- (17)

The product formula derives from the fact that the exponent sums evenly divide
into quadratic residues and nonresidues. Drawing the Carlyle circle C_; _,1s may
place impossible demands on any compass we own, but at the conceptual level
there is no problem.

Successive levels in the hierarchy of quadratic equations require 2,4,8,...
Carlyle circles. Working upwards however, and assuming the worst case possibility
that the product formulas and sums involve all distinct periods, the largest possible
number of Carlyle circles required is 1,2, 6, 30, 270, 4590, . .. . Actually the 4590 is
spurious, since there are only 2!° periods with 2° terms and so these can all be
computed with 2° = 512 Carlyle circles. Even though we know little about the
details of the construction, we can conclude that the construction we seek requires
1+24+44+8+ - +512+270+ 30+ 6 +2+ 1 =1332 or fewer Carlyle
circles.
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