
Topmoumoute online natural gradient algorithm

Nicolas Le Roux
University of Montreal

nicolas.le.roux@umontreal.ca

Pierre-Antoine Manzagol
University of Montreal

manzagop@umontreal.ca

Yoshua Bengio
University of Montreal

yoshua.bengio@umontreal.ca

Abstract

Guided by the goal of obtaining an optimization algorithm that is both fast and
yielding good generalization, we study the descent direction maximizing the de-
crease in generalization error or the probability of not increasing generalization
error. The surprising result is that from both the Bayesian and frequentist perspec-
tives this can yield the natural gradient direction. Although that direction can be
very expensive to compute we develop an efficient, general, online approximation
to the natural gradient descent which is suited to large scale problems. We re-
port experimental results showing much faster convergence in computation time
and in number of iterations with TONGA (Topmoumoute Online natural Gradient
Algorithm) than with stochastic gradient descent, even on very large datasets.

Introduction

An efficient optimization algorithm is one that quickly finds a good minimum for a given cost func-
tion. An efficient learning algorithm must do the same, with the additional constraint that the func-
tion is only known through a proxy. This work aims to improve the ability to generalize through
more efficient learning algorithms.
Consider the optimization of a cost on a training set with access to a validation set. As the end
objective is a good solution with respect to generalization, one often uses early stopping: optimizing
the training error while monitoring the validation error to fight overfitting. This approach makes
the underlying assumption that overfitting happens at the later stages. A better perspective is that
overfitting happens all through the learning, but starts being detrimental only at the point it overtakes
the “true” learning. In terms of gradients, the gradient of the cost on the training set is never collinear
with the true gradient, and the dot product between the two actually eventually becomes negative.
Early stopping is designed to determine when that happens. One can thus wonder: can one limit
overfitting before that point? Would this actually postpone that point?
From this standpoint, we discover new justifications behind the natural gradient [1]. Depending on
certain assumptions, it corresponds either to the direction minimizing the probability of increasing
generalization error, or to the direction in which the generalization error is expected to decrease
the fastest. Unfortunately, natural gradient algorithms suffer from poor scaling properties, both with
respect to computation time and memory, when the number of parameters becomes large. To address
this issue, we propose a generally applicable online approximation of natural gradient that scales
linearly with the number of parameters (and requires computation time comparable to stochastic
gradient descent). Experiments show that it can bring significant faster convergence and improved
generalization.

1

1 Natural gradient

Let L̃ be a cost defined as L̃(θ) =

∫
L(x, θ)p(x)dx where L is a loss function over some parameters

θ and over the random variable x with distribution p(x). The problem of minimizing L̃ over θ is often
encountered and can be quite difficult. There exist various techniques to tackle it, their efficiency
depending on L and p. In the case of non-convex optimization, gradient descent is a successful
technique. The approach consists in progressively updating θ using the gradient g̃ = d eL

dθ
.

[1] showed that the parameter space is a Riemannian space of metric C̃ (the covariance of the
gradients), and introduced the natural gradient as the direction of steepest descent in this space.
The natural gradient direction is therefore given by C̃−1g̃. The Riemannian space is known to
correspond to the space of functions represented by the parameters (instead of the space of the
parameters themselves).
The natural gradient somewhat resembles the Newton method. [6] showed that, in the case of a mean
squared cost function, the Hessian is equal to the sum of the covariance matrix of the gradients and
of an additional term that vanishes to 0 as the training error goes down. Indeed, when the data are
generated from the model, the Hessian and the covariance matrix are equal. There are two important
differences: the covariance matrix C̃ is positive-definite, which makes the technique more stable,
but contains no explicit second order information. The Hessian allows to account for variations in
the parameters. The covariance matrix accounts for slight variations in the set of training samples. It
also means that, if the gradients highly disagree in one direction, one should not go in that direction,
even if the mean suggests otherwise. In that sense, it is a conservative gradient.

2 A new justification for natural gradient

Until now, we supposed we had access to the true distribution p. However, this is usually not the
case and, in general, the distribution p is only known through the samples of the training set. These
samples define a cost L (resp. a gradient g) that, although close to the true cost (resp. gradient), is
not equal to it. We shall refer to L as the training error and to L̃ as the generalization error. The
danger is then to overfit the parameters θ to the training set, yielding parameters that are not optimal
with respect to the generalization error.
A simple way to fight overfitting consists in determining the point when the continuation of the
optimization on L will be detrimental to L̃. This can be done by setting aside some samples to
form a validation set that will provide an independent estimate of L̃. Once the error starts increasing
on the validation set, the optimization should be stopped. We propose a different perspective on
overfitting. Instead of only monitoring the validation error, we consider using as descent direction
an estimate of the direction that maximizes the probability of reducing the generalization error. The
goal is to limit overfitting at every stage, with the hope that the optimal point with respect to the
validation should have lower generalization error.
Consider a descent direction v. We know that if vT g̃ is negative then the generalization error drops
(for a reasonably small step) when stepping in the direction of v. Likewise, if vT g is negative then
the training error drops. Since the learning objective is to minimize generalization error, we would
like vT g̃ as small as possible, or at least always negative.

By definition, the gradient on the training set is g =
1

n

n∑

i=1

gi where gi =
∂L(xi, θ)

∂θ
and n is the

number of training samples. With a rough approximation, one can consider the gis as draws from the
true gradient distribution and assume all the gradients are independent and identically distributed.
The central limit theorem then gives

g ∼ N
(

g̃,
C̃

n

)
(1)

where C̃ is the true covariance matrix of ∂L(x,θ)
∂θ

wrt p(x).

2

We will now show that, both in the Bayesian setting (with a Gaussian prior) and in the frequentist
setting (with some restrictions over the type of gradient considered), the natural gradient is optimal
in some sense.

2.1 Bayesian setting

In the Bayesian setting, g̃ is a random variable. We would thus like to define a posterior over g̃ given
the samples gi in order to have a posterior distribution over vT g̃ for any given direction v. The prior
over g̃ will be a Gaussian centered in 0 of variance σ2I . Thus, using eq. 1, the posterior over g̃ given
the gis (assuming the only information over g̃ given by the gis is through g and C) is

g̃|g, C̃ ∼ N

(

I +
C̃

nσ2

)−1

g,

(
I

σ2
+ nC̃−1

)−1

 (2)

Denoting C̃σ = I +
eC

nσ2 , we therefore have

vT g̃|g, C̃ ∼ N
(

vT C̃−1
σ g,

vT C̃−1
σ C̃v

n

)
(3)

Using this result, one can choose between several strategies, among which two are of particular
interest:

• choosing the direction v such that the expected value of vT g̃ is the lowest possible (to
maximize the immediate gain). In this setting, the direction v to choose is

v ∝ −C̃−1
σ g. (4)

If σ < ∞, this is the regularized natural gradient. In the case of σ = ∞, C̃σ = I and this
is the batch gradient descent.

• choosing the direction v to minimize the probability of vT g̃ to be positive. This is equiva-
lent to finding

argminv

vT C̃−1
σ g√

vT C̃−1
σ C̃v

(we dropped n for the sake of clarity, since it does not change the result). If we square this
quantity and take the derivative with respect to v, we find 2C̃−1

σ g(vT C̃−1
σ g)(vT C̃−1

σ C̃v)−
2C̃−1

σ C̃v(vT C̃−1
σ g)2 at the numerator. The first term is in the span of C̃−1

σ g and the second
one is in the span of C̃−1

σ C̃v. Hence, for the derivative to be zero, we must have g ∝ C̃v

(since C̃ and C̃σ are invertible), i.e.

v ∝ −C̃−1g. (5)
This direction is the natural gradient and does not depend on the value of σ.

2.2 Frequentist setting

In the frequentist setting, g̃ is a fixed unknown quantity. For the sake of simplicity, we will only
consider the directions v of the form v = MT g (i.e. we are only allowed to go in a direction which
is a linear function of g).

Since g ∼ N
(
g̃,

eC
n

)
, we have

vT g̃ = gT Mg ∼ N
(

g̃T Mg̃,
g̃T MT C̃Mg̃

n

)
(6)

The matrix M∗ which minimizes the probability of vT g̃ to be positive satisfies

M∗ = argminM

g̃T Mg̃

g̃T MT CMg̃
(7)

3

The numerator of the derivative of this quantity is g̃g̃T MT C̃Mg̃g̃T − 2C̃Mg̃g̃T Mg̃g̃T . The first
term is in the span of g̃ and the second one is in the span of C̃Mg̃. Thus, for this derivative to be
0 for all g̃, one must have M ∝ C̃−1 and we obtain the same result as in the Bayesian case: the
natural gradient represents the direction minimizing the probability of icreasing the generalization
error.

3 Online natural gradient

The previous sections provided a number of justifications for using the natural gradient. However,
the technique has a prohibitive computational cost, rendering it impractical for large scale problems.
Indeed, considering p as the number of parameters and n as the number of examples, a direct batch
implementation of the natural gradient is O(p2) in space and O(np2 + p3) in time, associated re-
spectively with the gradients’ covariance storage, computation and inversion. This section reviews
existing low complexity implementations of the natural gradient, before proposing TONGA, a new
low complexity, online and generally applicable implementation suited to large scale problems. In
the previous sections we assumed the true covariance matrix C̃ to be known. In a practical algorithm
we of course use an empirical estimate, and here this estimate is furthermore based on a low-rank
approximation denoted C (actually a sequence of estimates Ct).

3.1 Low complexity natural gradient implementations

[9] proposes a method specific to the case of multilayer perceptrons. By operating on blocks of
the covariance matrix, this approach attains a lower computational complexity1. However, the tech-
nique is quite involved, specific to multilayer perceptrons and requires two assumptions: Gaussian
distributed inputs and a number of hidden units much inferior to that of input units. [2] offers a more
general approach based on the Sherman-Morrison formula used in Kalman filters: the technique
maintains an empirical estimate of the inversed covariance matrix that can be updated in O(p2). Yet
the memory requirement remains O(p2). It is however not necessary to compute the inverse of the
gradients’ covariance, since one only needs its product with the gradient. [10] offers two approaches
to exploit this. The first uses conjugate gradient descent to solve Cv = g. The second revisits
[9] thereby achieving a lower complexity. [8] also proposes an iterative technique based on the
minimization of a different cost. This technique is used in the minibatch setting, where Cv can be
computed cheaply through two matrix vector products. However, estimating the gradient covariance
only from a small number of examples in one minibatch yields unstable estimation.

3.2 TONGA

Existing techniques fail to provide an implementation of the natural gradient adequate for the large
scale setting. Their main failings are with respect to computational complexity or stability. TONGA
was designed to address these issues, which it does this by maintaining a low rank approximation of
the covariance and by casting both problems of finding the low rank approximation and of computing
the natural gradient in a lower dimensional space, thereby attaining a much lower complexity. What
we exploit here is that although a covariance matrix needs many gradients to be estimated, we can
take advantage of an observed property that it generally varies smoothly as training proceeds and
moves in parameter space.

3.2.1 Computing the natural gradient direction between two eigendecompositions

Even though our motivation for the use of natural gradient implied the covariance matrix of the em-
pirical gradients, we will use the second moment (i.e. the uncentered covariance matrix) throughout
the paper (and so did Amari in his work). The main reason is numerical stability. Indeed, in the
batch setting, we have (assuming C is the centered covariance matrix and g the mean) v = C−1g,
thus Cv = g. But then, (C + ggT)v = g + ggT v = g(1 + gT v) and

(C + ggT)−1g =
v

1 + gT v
= v̄ (8)

1Though the technique allows for a compact representation of the covariance matrix, the working memory
requirement remains the same.

4

Even though the direction is the same, the scale changes and the norm of the direction is bounded
by 1

‖g‖ cos(g,v) .

Since TONGA operates using a low rank estimate of the gradients’ non-centered covariance, we
must be able to update cheaply. When presented with a new gradient, we integrate its information
using the following update formula2:

Ct = γĈt−1 + gtg
T
t (9)

where C0 = 0 and Ĉt−1 is the low rank approximation at time step t − 1. Ct is now likely of
greater rank, and the problem resides in computing its low rank approximation Ĉt. Writing Ĉt−1 =
Xt−1X

T
t−1,

Ct = XtX
T
t with Xt = [

√
γXt−1 gt]

With such covariance matrices, computing the (regularized) natural direction vt is equal to
vt = (Ct + λI)−1gt = (XtX

T
t + λI)−1gt (10)

vt = (XtX
T
t + λI)−1Xtyt with yt = [0, . . . 0, 1]T . (11)

Using the Woodbury identity with positive definite matrices [7], we have
vt = Xt(X

T
t Xt + λI)−1yt (12)

If Xt is of size p × r (with r < p, thus yielding a covariance matrix of rank r), the cost of this
computation is O(pr2 + r3). However, since

Gt =

(
γXT

t−1Xt−1
√

γXT
t−1gt√

γgT
t Xt−1 gT

t gt

)
=

(
γGt−1

√
γXT

t−1gt√
γgT

t Xt−1 gT
t gt

)
, (13)

the cost of computing Gt using Gt−1 reduces to O(pr + r3). This stresses the need to keep r small.

3.2.2 Updating the low-rank estimate of Ct

To keep a low-rank estimate of Ct = XtX
T
t , we can compute its eigendecomposition and keep only

the first k eigenvectors. This can be made at low cost using its relation to that of the Gram matrix
Gt = XT

t Xt:
Gt = V DV T

Ct = (XtV D− 1
2)D(XtV D− 1

2)T (14)
The cost of such an eigendecomposition is O(kr2 + pkr) (for the computation of the eigendecom-
position of the Gram matrix and the computation of the eigenvectors, respectively). Since the cost of
computing the natural direction is O(pr + r3), it is computationally more efficient to let the rank of
Xt grow for several steps (using formula 12 in between) and then compute the eigendecomposition
using

Ct+b = Xt+bX
T
t+b with Xt+b =

[
γUt, γ

b−1

2 gt+1, . . . γ
1
2 gt+b−1, γ

t+b

2 gt+b]
]

3.2.3 Computational complexity

The computational complexity of TONGA depends on the complexity of updating the low rank
approximation and on the complexity of computing the natural gradient. The cost of updating the
approximation is in O(k(k + b)2 + p(k + b)k) (as above, using r = k + b). The cost of computing
the natural gradient vt is in O(p(k + b) + (k + b)3) (again, as above, using r = k + b). Assuming
k + b �

√
(p) and k ≤ b, TONGA’s total computational cost per each natural gradient computation

is then O(pb).
Furthermore, by operating on minibatch gradients of size b′, we end up with a cost per example of
O(bp

b′
). Choosing b = b′, yields O(p) per example, the same as stochastic gradient descent. Empiri-

cal comparison of cpu time also shows comparable CPU time per example, but faster convergence.
In our experiments, p was in the tens of thousands, k was less than 5 and b was less than 50.
The result is an approximate natural gradient with low complexity, general applicability and flexi-
bility over the tradoff between computations and the quality of the estimate.

2The second term is not weighted by 1−γ so that the influence of gt in Ct is the same for all t, even t = 0.To
keep the magnitude of the matrix constant, one must use a normalization constant equal to 1 + γ + . . . + γt.

5

4 Block-diagonal online natural gradient for neural networks

One might wonder if there are better approximations of the covariance matrix C than computing its
first k eigenvectors. One possibility is a block-diagonal approximation from which to retain only
the first k eigenvectors of every block (the value of k can be different for each block). Indeed, [4]
showed that the Hessian of a neural network with one hidden layer trained with the cross-entropy
cost converges to a block diagonal matrix during optimization. These blocks are composed of the
weights linking all the hidden units to one output unit and all the input units to one hidden unit.
Given the close relationship between the Hessian and the covariance matrices, we can assume they
have a similar shape during the optimization.
Figure 1 shows the correlation between the standard stochastic gradients of the parameters of a
16 − 50 − 26 neural network. The first blocks represent the weights going from the input units to
each hidden unit (thus 50 blocks of size 17, bias included) and the following represent the weights
going from the hidden units to each output unit (thus 26 blocks of size 51). One can see that
the block-diagonal approximation is reasonable. Thus, instead of selecting only k eigenvectors to
represent the full covariance matrix, we can select k eigenvectors for every block, yielding the same
total cost. However, the rank of the approximation goes from k to k × number of blocks. In the
matrices shown in figure 1, which are of size 2176, a value of k = 5 yields an approximation of rank
380.

(a) Stochastic gradient (b) TONGA (c) TONGA - zoom

Figure 1: Absolute correlation between the standard stochastic gradients after one epoch in a neural
network with 16 input units, 50 hidden units and 26 output units when following stochastic gradient
directions (left) and natural gradient directions (center and right).

Figure 2 shows the ratio of Frobenius norms ‖C−C̄‖2
F

‖C‖2
F

for different types of approximations C̄ (full
or block-diagonal). We can first notice that approximating only the blocks yields a ratio of .35 (in
comparison, taking only the diagonal of C yields a ratio of .80), even though we considered only
82076 out of the 4734976 elements of the matrix (1.73% of the total). This ratio is almost obtained
with k = 6. We can also notice that, for k < 30, the block-diagonal approximation is much better
(in terms of the Frobenius norm) than the full approximation. The block diagonal approximation is
therefore very cost effective.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number k of eigenvectors kept

Ra
tio

 o
f t

he
 s

qu
ar

ed
 F

ro
be

ni
us

 n
or

m
s

Full matrix approximation
Block diagonal approximation

(a) Full view

5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number k of eigenvectors kept

Ra
tio

 o
f t

he
 s

qu
ar

ed
 F

ro
be

ni
us

 n
or

m
s

Full matrix approximation
Block diagonal approximation

(b) Zoom

Figure 2: Quality of the approximation C̄ of the covariance C depending on the number of eigenvec-
tors kept (k), in terms of the ratio of Frobenius norms ‖C−C̄‖2

F

‖C‖2
F

, for different types of approximation
C̄ (full matrix or block diagonal)

6

This shows the block diagonal approximation constitutes a powerful and cheap approximation of the
covariance matrix in the case of neural networks. Yet this approximation also readily applies to any
mixture algorithm where we can assume independance between the components.

5 Experiments

We performed a small number of experiments with TONGA approximating the full covariance ma-
trix, keeping the overhead of the natural gradient small (ie, limiting the rank of the approximation).
Regrettably, TONGA performed only as well as stochastic gradient descent, while being rather sen-
sitive to the hyperparameter values. The following experiments, on the other hand, use TONGA
with the block diagonal approximation and yield impressive results. We believe this is a reflection
of the phenomenon illustrated in figure 2: the block diagonal approximation makes for a very cost
effective approximation of the covariance matrix. All the experiments have been made optimizing
hyperparameters on a validation set (not shown here) and selecting the best set of hyperparameters
for testing.

5.1 MNIST dataset

The MNIST digits dataset consists of 50000 training samples, 10000 validation samples and 10000
test samples, each one composed of 784 pixels. There are 10 different classes (one for every digit).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.01

0.02

0.03

0.04

0.05

0.06

CPU time (in seconds)

Cl
as

sif
ica

tio
n

er
ro

r

Block diagonal TONGA
Stochastic batchsize=1
Stochastic batchsize=400
Stochastic batchsize=1000
Stochastic batchsize=2000

(a) Train class error
0 500 1000 1500 2000 2500 3000 3500 4000 4500

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

CPU time (in seconds)

Cl
as

sif
ica

tio
n

er
ro

r

Block diagonal TONGA
Stochastic batchsize=1
Stochastic batchsize=400
Stochastic batchsize=1000
Stochastic batchsize=2000

(b) Test class error
0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPU time (in seconds)

Ne
ga

tiv
e

lo
g−

lik
el

ih
oo

d

Block diagonal TONGA
Stochastic batchsize=1
Stochastic batchsize=400
Stochastic batchsize=1000
Stochastic batchsize=2000

(c) Train NLL
0 500 1000 1500 2000 2500 3000 3500 4000 4500

0.05

0.1

0.15

0.2

CPU time (in seconds)

Ne
ga

tiv
e

lo
g−

lik
el

ih
oo

d

Block diagonal TONGA
Stochastic batchsize=1
Stochastic batchsize=400
Stochastic batchsize=1000
Stochastic batchsize=2000

(d) Test NLL

Figure 3: Comparison between stochastic gradient and TONGA on the MNIST dataset (50000 train-
ing examples), in terms of training and test classification error and Negative Log-Likelihood (NLL).

Figure 3 shows that in terms of training CPU time (which includes the overhead due to TONGA),
TONGA allows much faster convergence in training NLL, as well as in testing classification error
and testing NLL than ordinary stochastic and minibatch gradient descent on this task. One can also
note that minibatch stochastic gradient is able to profit from matrix-matrix multiplications, but this
advantage is mainly seen in training classification error.

5.2 Rectangles problem

The Rectangles-images task has been proposed in [5] to compare deep belief networks and support
vector machines. It is a two-class problem and the inputs are 28×28 grey-level images of rectangles
located in varying locations and of different dimensions. The inside of the rectangle and the back-
ground are extracted from different real images. We used 900,000 training examples and 10,000 val-
idation examples (no early stopping was performed, we show the whole training/validation curves).
All the experiments are performed with a multi-layer network with a 784-200-200-100-2architecture
(previously found to work well on this dataset). The learning rate and TONGA hyper-parameters
were selected by trial and error w.r.t. the training error, trying to keep small the overhead due to
natural gradient calculations. Figure 4 shows that in terms of training CPU time (which includes
the overhead due to TONGA), TONGA allows much faster convergence than ordinary stochastic
gradient descent on this task, as well as lower classification error.

6 Discussion

[3] reviews the different gradient descent techniques in the online setting and discusses their re-
spective properties. Particularly, he states that a second order online algorithm (i.e., with a search

7

0 0.5 1 1.5 2 2.5 3 3.5
x 104

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

CPU time (in seconds)

Ne
ga

tiv
e

lo
g−

lik
el

ih
oo

d
on

 th
e

tra
in

in
g

se
t

Stochastic gradient
Block diagonal TONGA

(a) Train NLL error
0 0.5 1 1.5 2 2.5 3 3.5

x 104

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPU time (in seconds)

Ne
ga

tiv
e

lo
g−

lik
el

ih
oo

d
on

 th
e

te
st

 s
et

Stochastic gradient
Block diagonal TONGA

(b) Test NLL error
0 0.5 1 1.5 2 2.5 3 3.5

x 104

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CPU time (in seconds)

Cl
as

sif
ica

tio
n

er
ro

r o
n

th
e

tra
in

in
g

se
t

Stochastic gradient
Block diagonal TONGA

(c) Train class error
0 0.5 1 1.5 2 2.5 3 3.5

x 104

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPU time (in seconds)

Cl
as

sif
ica

tio
n

er
ro

r o
n

th
e

te
st

 s
et

Stochastic gradient
Block diagonal TONGA

(d) Test class error

Figure 4: Comparison between stochastic gradient descent and TONGA w.r.t. NLL and classifica-
tion errors, on both training and on validation sets. Results on the rectangles problem with 900,000
training examples.

direction of is v = Mg with g the gradient and M a positive semidefinite matrix) is optimal (in terms
of convergence speed) when M converges to H−1. Furthermore, the speed of convergence depends
(amongst other things) on the rank of the matrix M . Given the aforementioned relationship between
the covariance and the Hessian matrices, the natural gradient is close to optimal in the sense defined
above, provided the model has enough capacity. On mixture models where the block-diagonal ap-
proximation is appropriate, it allows us to maintain an approximation of much higher rank than a
standard low-rank approximation of the full covariance matrix.
One could worry about the number of hyperparameters of TONGA. However, default values of
k = 5, b = 50 and γ = .995 yielded good results in every experiment.

Conclusion and future work
We bring two main contributions in this paper. First, by looking for the descent direction with either
the greatest probability of not increasing generalization error or the direction with the largest ex-
pected increase in generalization error, we obtain new justifications for the natural gradient descent
direction. Second, we present an online low-rank approximation of natural gradient descent with
computational complexity and CPU time similar to stochastic gradientr descent. In a number of
experimental comparisons we find this optimization technique to beat stochastic gradient in terms of
speed and generalization (or in generalization for a given amount of training time). Even though de-
fault values for the hyperparameters yield good results, it would be interesting to have an automatic
procedure to select the best set of hyperparameters.

References
[1] S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.
[2] S. Amari, H. Park, and K. Fukumizu. Adaptive method of realizing natural gradient learning for multilayer

perceptrons. Neural Computation, 12(6):1399–1409, 2000.
[3] L. Bottou. Stochastic learning. In O. Bousquet and U. von Luxburg, editors, Advanced Lectures on Ma-

chine Learning, number LNAI 3176 in Lecture Notes in Artificial Intelligence, pages 146–168. Springer
Verlag, Berlin, 2004.

[4] R. Collobert. Large Scale Machine Learning. PhD thesis, Université de Paris VI, LIP6, 2004.
[5] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep

architectures on problems with many factors of variation. In Twenty-fourth International Conference on
Machine Learning (ICML’2007), 2007.

[6] Y. LeCun, L. Bottou, G. Orr, and K.-R. Müller. Efficient backprop. In G. Orr and K.-R. Müller, editors,
Neural Networks: Tricks of the Trade, pages 9–50. Springer, 1998.

[7] K. B. Petersen and M. S. Pedersen. The matrix cookbook, feb 2006. Version 20051003.
[8] N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural

Computation, 14(7):1723–1738, 2002.
[9] H. H. Yang and S. Amari. Natural gradient descent for training multi-layer perceptrons. Submitted to

IEEE Tr. on Neural Networks, 1997.
[10] H. H. Yang and S. Amari. Complexity issues in natural gradient descent method for training multi-layer

perceptrons. Neural Computation, 10(8):2137–2157, 1998.

8

