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Executive Summary

High-dimensional modeling is becoming ubiquitous across the sciences and engineering
because of advances in sensor technology and storage technology. Computationally-oriented
researchers no longer have to avoid what were once intractably large, tensor-structured data
sets. The current NSF promotion of “computational thinking” is timely: we need a focused
international effort to oversee the transition from matrix-based to tensor-based computational
thinking. The successful problem-solving tools provided by the numerical linear algebra com-
munity need to be broadened and generalized. However, tensor-based research is not just
matrix-based research with additional subscripts. Tensors are data objects in their own right
and there is much to learn about their geometry and their connections to statistics and operator
theory. This requires full participation of researchers from engineering, the natural sciences,
and the information sciences, together with statisticians, mathematicians, numerical analysts,
and software/language designers. Representatives from these disciplines participated in the
Workshop. We believe that the NSF can help ensure the vitality of “big N” engineering and
science by systematically supporting research in tensor-based computation and modeling.

1Prepared by Charles Van Loan (Workshop Organizer) with editorial assistance from Sri Priya Pon-
napalli and Stefan Ragnarsson (Workshop Scribes) and financial assistance from Lenore Mullin and
Frank Olken (NSF Program Managers). Award number 0908059. The Workshop was held in Arling-
ton, Virginia at the National Science Foundation, February 20-21, 2009. The Workshop web site is at
http://www.cs.cornell.edu/cv/TenWork/Home.htm.



PART I. INTRODUCTION

1. What Are Tensors?

A tensor is an element of a tensor product of vector spaces. Up to a choice of bases,
this can be represented as a multidimensional array of numerical values upon which algebraic
operations generalizing matrix operations can be performed. In this representation, the entries
in a k-th order tensor are identified by a k-tuple of subscripts, e.g., A(i1, i2, i3, i4). A matrix
is a second-order tensor. A vector is a first-order tensor. A scalar is a tensor of order zero.

The discretization of a continuous multivariate function on a grid yields a tensor, e.g.,
A(i, j, k, �) might house the value of f(w, x, y, z) at (w, x, y, z) = (wi, xj, yk, z�). In other
settings, a tensor might capture an n-way interaction, e.g., A(i, j, k, �) is a value that captures
an interaction between four variables/factors.

Tensors have been around since the middle of the 1800s and with varying levels of abstrac-
tion, play an important role in physics, engineering, and mathematics. For example, Einstein’s
whole theory of relativity was written in tensor format. Our use of the term will be specific
and concrete: a tensor is an n-way array of real (or complex) numbers. The manipulation of
such objects involves multilinear algebra. For an abstract, non-numerical treatment of that
subject, see Greub (1978).

2. Tensor-Based Computation Is Not New

Over the last four decades the fields of chemometrics and psychometrics developed an in-
frastructure for tensor-based computation, see Tucker (1966). Understanding this research
and its intersection with numerical linear algebra is essential. The multiway analysis texts by
Smilde, Bro, and Geladi (2004) and Kroonenberg (2008) and the survey article by Kolda and
Bader (2009) are excellent for this purpose with their many references. See also the exposi-
tory papers by Bro (1997) and Bro (2006). A separate literature concerned with large-scale
tensor computations has developed within the quantum chemistry and electronic structures
communities. See White et al (1999), Head-Gordon et al (2003), Hirata (2003), and Chan et
al (2007). Each of these research threads brings something unique to the table. The different
camps must intermingle so as to avoid reinvention of the wheel.

3. It Is Increasingly About Big Data and High Dimension

In his acceptance speech for the Innovations Award at KDD 2007, U. Fayyad mentioned
that Yahoo! Inc. has approximately five petabytes of data obtained via crawls that involve
billions web pages. Another “big data” framework arises in the analysis of large social networks,
where there are hundreds of millions of nodes with billions of conversations. See Leskovec and
Horvitz (2008). Collecting and storing large datasets of sensor data, social network data, fMRI
medical data is easier than ever with commodity, terabyte disks. This data explosion creates
deep research challenges that require scalable, tensor-based algorithms.

The “volume” of a tensor is the product of the component dimensions n1, n2, . . . , nd and
therein lies the curse of dimensionality. In many applications N = n1n2 · · ·nd is big primarily
because d is big. And d is getting bigger because researchers are interested in developing more
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sophisticated models that capture multiple interactions instead of idealized, overly-simplistic
pairwise interactions.

The development of tensor-based methods in the numerical optimization community illus-
trates this point. Research in this area started with tensor methods for nonlinear equations,
where the Newton iteration is augmented with a low-rank approximation to the next term
in the Taylor series after the Jacobian. The technique was later extended to an optimization
strategy by including low-rank approximations to the third- and fourth-order tensors beyond
the Hessian matrix. See Schnabel and Frank (1884), Schnabel and Chow (1991), Chow, Eskow
and Schnabel (1994), Feng and Schnabel (1996), Bouaricha and Schnabel (1997), Feng and
Pulliam (1997), Bader and Schnabel (2003), and Bader (2005).

In statistical settings there has been a comparable effort to “use more” terms in the power
series expansion for a multivariate function f(x1, x2, . . . , xn). Truncated versions of the expan-
sion provide a framework for modeling and computation. Typically, the higher-order cumulants
in the expansion are ignored, e.g., the 3rd cumulant skewness and 4th cumulant Kurtosis both
of which are tensors. These tensors describe higher-order dependence of random variables and
in financial modeling situations can be used to estimate higher-order portfolio statistics. Just
as Principal Components Analysis (PCA) identifies components that account for variation
in covariance, Principal Cumulant Components Analysis (PCCA) identifies components that
take into account variation in all higher-order cumulants simultaneously. See Morton and Lim
(2009). An argument can be made that the current economic crisis was prompted, in part, by
the adoption of crude, tensorless, approximations of risk. See Nocera (2009).

4. A Research Community Is Building

The workshop/conference profile of tensor-based computation has steadily increased during
the past five years. We mention the Tensor Decomposition Workshop (2004, American Institute
of Mathematics), the Workshop on Tensor Decompositions and Applications (2005, Luminy,
France), and various minisymposia held at MMDS 2006, ICIAM 2007, MMDS 2008, 2008
SIGKDD, and the 2008 SIAM National Meeting. This upward trajectory of interest will
continue; the 2009 SIAM National Meeting will have several NSF-supported minisymposia
relating to tensor computation.

The articles by Kilmer and Martin (2004), Drineas, Golub, Lim, and Mahoney (2006),
and Mahoney, Lim, and Carlsson (2009) nicely track the research coalitions that are forming
to address tensor-related issues and large-scale computation. SIAM J. Matrix Analysis and
Applications had a special tensor issue in 2008. On the educational front, we note that the
recent introductory textbook by Eldén (2007) on data mining and pattern recognition includes
a chapter on tensor computation. Numerical multilinear algebra is becoming more and more
fundamental and is finding its way into mainstream scientific computing curriculum.

5. A New Chapter is About to be Written

A tensor can be regarded as a higher-order matrix. Conversely, a matrix with nested block
structure can be regarded as a tensor. For example, A(1 : n1, 1 : n2, ..., 1 : n6) is an n1-by-n2

block matrix whose entries are n3-by-n4 block matrices whose entries are n5-by-n6 matrices
of real numbers. Given these point-of-view options, it is no surprise that the insurgence of
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tensor-based scientific computing heralds the beginning of a new chapter in the field of matrix
computations, a field that seems to “kick up” its level of thinking about every twenty years:

1960’s ⇒

1980’s ⇒

2000’s ⇒

Scalar-Level Thinking

⇓

Matrix-Level Thinking

⇓

Block Matrix-Level Thinking

⇓

Tensor-Level Thinking

⇐ The factorization paradigm: LU ,
LDLT , QR, UΣV T , etc.

⇐ Cache utilization, parallel com-
puting, LAPACK, etc.

⇐
New applications, factorizations,
data structures, nonlinear analy-
sis, optimization strategies, etc.

Computational thinking in the linear algebra area has a unique way of spreading from the
specific to the general. The numerical PDE community prompted the development of the first
sparse matrix solvers during the 1950s and 1960s, a technology that now permeates the sciences
and engineering. Similar application-driven, coming-of-age stories apply to orthogonal matrix
computations (statistics, the 1970s), structured matrix computations (control engineering,
the 1980s), parallel matrix computations (real-time signal processing, the 1980s), and most
recently, sample-based matrix computations (information science, the 2000s).

The development of tensor-based methods is well underway in a host of application areas. It
is important to identify these areas and the common ground between them from the standpoint
of algorithms, analysis, and software.

6. From Matrix to Tensor: A Complex Extrapolation

While it is important to tap into the traditions of numerical linear algebra, we must be
mindful that tensor-based research is not just matrix-based research with additional subscripts.
The extrapolation is complex and worthy of multiple perspectives. Tensors must be appreciated
as data objects in their own right. They come equipped with their own geometry, their own
statistics, and a measure of nonlinearity–attributes that are frequently lost when a tensor
problem is reshaped into a matrix problem for the sake of computational convenience.

It is particularly important to appreciate the algorithmic and statistical perspectives when
developing a tensor-based method. The reason we represent data in matrix form is to take
advantage of the nice properties of vector spaces: structural properties (SVD), algorithmic
properties, and statistical properties (PCA). These provide a clean framework. They are natu-
ral mathematical structures that provide algorithmic and statistical benefits. Tensor structures
provide greater descriptive flexibility, but with this comes a computational cost. It is essential
to appreciate this fact.

To understand high dimensions, it is sometimes necessary to study functions and opera-
tors, and not just vectors, matrices and tensors. This perspective can shed light on intrinsic
issues and yield more concise proofs. It also permits the computational scientist to focus on
dimensionality issues without worrying about indices. See Beylkin and Mohlenkamp (2002,
2005).
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PART II. SOME APPLICATION DOMAINS

7. Tensor-Based Data Analysis and Mining

The surging interest in tensors is prompted, in part, by a proliferation of data-intensive ap-
plications. The scientific and engineering communities are awash in a sea of high-dimensional,
multi-indexed data sets. Tensor methods are required to expose the underlying patterns.

Data in many disciplines inherently has more than two axes of variation and can be ar-
ranged as tensors (multiway arrays). Tensor decompositions have proven to be successful in
extracting the underlying structure in such datasets. However, analyzing tensors is still chal-
lenging. Algorithms fitting tensor models depend heavily upon the initial set-up, i.e., number
of components and the initialization of the component matrices. Also, models handling missing
data and supervised learning are still being developed.

The 3-dimensional case is particularly important in situations that concern sequences of
related images (matrices). Traditional numerical linear algebra is not enough in these data
mining applications; a comprehensive set of numerical multilinear algebra tools will be required
to spot patterns in n-way data. See Drineas, Golub, Lim, and Mahoney (2006), Sun (2007),
Savas (2008), Kolda and Sun (2008), Sun, Tsourakakis, Hoke, Faloutsos, Eliassis-Rad (2008),
and Acar and Yener (2009). Examples of tensor-based data analysis in the medical setting
include Acar, Bingol, Bingol, Bro, and Yener (2007) and De Vos, Vergult, De Lathauwer, De
Clercq, Van Huffel, Dupont, Palmini, and Van Paesschen (2007).

Huang, Ding, Luo, and Li (2008) identify important connections between well-known clus-
tering strategies and certain tensor factorizations and algorithms. Hyperspectral data analysis
is also rich in tensor computations, see Zhang, Wang, Plemmons and Pauca (2008).

The act of spotting patterns and redundancies in high-dimensional data sets requires a
refinement of matrix-based techniques. Paying attention to tensor geometry and making use
of cumulants is important. For non-Gaussian data not derived from independent factors, ten-
sor decomposition techniques for factor analysis such as Principal Component Analysis (PCA)
and Independent Component Analysis (ICA) are inadequate. Seeking a small, closed space of
models which is computable and captures higher-order dependence leads to a proposed exten-
sion of PCA and ICA called Principal Cumulant Component Analysis (PCCA). Estimation
can be achieved by maximizing over a Grassmannian. See Morton and Lim (2009).

8. Tensor-Based Information Science

An important research thread in the evolving field of information science involves the
development of mathematical tools that can be used to describe the properties and behavior of
networks and graphs. Linear algebra has long played a central role. However, with increased
frequency, researchers are developing models that are multilinear in nature. Consequently,
there is a need to develop an infrastructure that supports tensor computation in this area.
See Kolda, Bader, and Kenny (2005), Dunlavy, Kolda, Kegelmeyer (2006), and Leskovec and
Faloutsos(2007). Tensors are finding application in text analysis, analysis of semantic graphs
and social networks, and multilingual information retrieval. See Bader, Berry, and Browne
(2007), Bader, Harshman, and Kolda (2007), and Chew, Bader, Kolda, and Abdelali (2007).
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We mention that tensor factorizations were a topic of interest at the 2009 Conference on
Geometrical Models of Natural Language Semantics held in Athens.

9. Tensor-Based Signal/Image Processing

Numerical multilinear techniques are permeating the field of signal processing. For a nice
introduction to these developments, see De Lathauwer and De Moor(1998) and Kofidis and
Regalia(2001). Tensor models have been used for the analysis of EEG/ERP signals since
mid-1980s. Various computational neuroscience applications are discussed in Acar and Yener
(2009). Video compression, handwritten digit classification, and blind identification have ten-
sor formulations. See Ding, Huang, and Luo (2008), Savas and Eldén (2007), and Comon
(2004).

The “tensor faces” work of Vasilescu and Terzopoulos (2002) demonstrated the advantage
of tensor-based representations when dealing with ensembles of facial images. As an analytical
tool, the N-mode singular value decomposition is a natural choice when there are N modes to
the data set, e.g., facial geometries, expressions, head poses, lighting conditions, etc.

Independent component analysis is in the process of being generalized through the ap-
plication of some well-known tensor decompositions. Matrix-displacement theory, which has
prompted the development of fast signal processing algorithms in the past, has been extended
to the higher-order case using tensor-displacement structures. See Grigorascu and Regalia
(1999). The overall role of cumulants and higher order statistics in signal processing is grow-
ing thereby creating a demand for fast, tensor-based algorithms.

10. Tensor-Based Computational Biology

As biology becomes more combinatoric, discrete, and data-intensive, tensor analysis will
grow in importance. See Alter and Golub (2005), Omberg, Golub, and Alter (2007), and
Acar, et al. (2007). There is great promise for the application-driven development of new
tensor mathematics and algorithms. Future algorithms for integration and comparison of dif-
ferent large-scale data will come from the mathematical modeling of DNA microarray data.
An example of this is the development of a higher-order tensor decomposition based on the
generalized singular value decomposition. Models have been created using matrix and tensor
computations, where the patterns uncovered in the data, correlate with activities of cellular
elements. The operations, such as data reconstruction in subspaces of selected patterns, simu-
late experimental observation of the correlations and possibly also causal coordination of these
activities. These models predict previously unknown biological as well as physical principles.

It is worth remembering that the spread of tensor-based methods in any application area
depends upon the availability of high-quality, easy-to-use software. This is particularly true in
biology since the mathematization of the subject is relatively new compared to chemistry and
physics.

11. Tensor-Based Simulation in Chemistry and Physics

Tensor-based models and computations arise in many areas of simulation in chemistry
and physics, yet there are still many fundamental and technical challenges that inhibit the
production of practical and efficient simulation tools. Some of the largest matrix problems in

6



all of computational science and engineering arise in this area making it an excellent venue
for the development of tensor methods that scale. See Grotendorst (2000), Lechner, Alic, and
Husa (2004), and Hachmann and Chan (2006).

Tensor-based, quantum-mechanical simulations that involve upwards of 10000 electrons are
being developed. See Bai, Chen, Scalettar, and Yamazaki (2007).

12. Tomorrow

Our tour through application areas is not meant to be exhaustive. For example, there
are interesting tensor threads in the area of quantum computing. Climate modeling has huge
datasets that are naturally multi-dimensional. Several areas of engineering such as control
engineering, where there is a great tradition of advanced matrix computations, appear to be
on the verge of “going multilinear.” The overall point we are making is that the spread of
tensor-based modeling and computation is pervasive and bound to continue.

13. The Babel Factor

It is inherently more difficult to describe a tensor computation than a matrix computation.
There are vectors of subscripts and an exponential number of ways to carry out operations such
as transposition. Loop nestings are deeper in tensor computations with many more possible
rearrangements. To cope with these challenges, each application area tends to have its own
notation. For example, the Einstein and Dirac notations find favor in physics and chemistry
because they offer a certain economy. The downside is that those notations inhibit the flow of
algorithmic ideas to other application communities.

It is pointless to recommend the adoption of a universal tensor notation. However, it would
be extremely useful to have a “thesaurus” that shows how to articulate typical calculations
in the different notations and a companion collection of Latex macros to facilitate the writing
of tensor-related documents. For the sake of new-idea propagation, researchers should respect
the diversity of tensor notations and broaden their exposition accordingly.

PART III. SOFTWARE/LIBRARY ISSUES

14. The Software Challenge

We need to make tensor computations as “easy” as matrix computations. New libraries will
be required if the latest and greatest algorithmic ideas are to be accessible to researchers in the
sciences and engineering. It is unclear whether there is enough of a “common denominator”
across tensor applications to warrant the development of a tensor LAPACK; packages may
have to be specialized to domain areas such as biology and information science.

Portability, reusability, reliability, correctness, and modularity needs to be reconciled with
the computational scientists’ need for efficiency, especially on massively parallel multi-core
architectures. Tensor-based algorithms are ideal for these computing environments and algo-
rithmic research should take advantage of these systems. Zhang, Berry, Lamb and Samuel
(2009) discuss parallelizing the nonnegative tensor factorization on multi-core architectures.
Additional high-performance contributions have come from the lattice field theory community
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as part of the DOE SciDAC initiative. However, it would clearly make sense for there to be
a more general framework for expressing numerical algorithms. There are several significant
issues, including abstraction of mathematical structures (such as linear spaces), memory man-
agement, data layout, and data exchange (XML schema and the like). Given the effort spent in
designing and building supercomputers for quantum chromodynamics, physicists are reluctant
to accept small degradations in performance in exchange for the long-term benefits of portable
software. Thus, the development of software frameworks that addresses this particular tension
is a priority.

From a software engineer’s perspective, we need to make use of high-level languages and
garner respect for the importance of maintainability. A library of test problems supported by
the community would facilitate the assessment of new algorithms and implementations. This
was the case for the field of numerical optimization, particularly during the 1980s and 1990s.
See Averick, Carter, More, and Xue (1992).

15. Matlab

The Matlab environment is excellent for the rapid prototyping of algorithmic ideas and
its widespread use makes it possible to reach application communities relatively easily. In
support of tensor computation, there is the N-Way toolbox of Anderson and Bro (2000) and
the tensor class work of Bader and Kolda (2006). There is also support for sparse and factored
tensors. See Bader and Kolda (2007). Matlab is frequently the environment of choice for
experimentalists and theoreticians who are venturing into computation for the first time. Thus,
it is important for the system to be tensor-friendly if tensor-based thinking is to propagate
throughout the sciences.

16. Towards a LAPACK for Tensors

As we mentioned, it is probably too early for a formal, comprehensive LAPACK-style ini-
tiative. However, it is very important for the tensor computation community to track research
developments associated with high-performance numerical linear algebra. Topics include the
exploitation of the multicore architectures, the use of self-tuning linear algebra code-generators,
the exploitation of recursive data structures, and the extrapolation of the BLAS philosophy.
See Dongarra, Gannon, Fox, and Kennedy (2007), Demmel et al (2005), K̊agström, Ling, and
Van Loan (1999), and Elmroth, Gustavson, Jonsson, and K̊agström (2005).

Of course, it is not enough for an implementation to be fast–it must be numerically reli-
able. The issue of floating point stability in tensor computations has hardly been considered.
Long chains of matrix manipulations are frequently involved in multilinear settings and it is
absolutely essential that we build a numerically sound infrastructure upon which the CSE
community can depend. In other words, respect for the shortcomings of floating arithmetic
must find its way into the domain of tensor computations. A tensor LAPACK cannot be
wholly successful until this happens.

17. Domain-Specific Software Tools for Tensor Computation

Can we define convenient and useful abstractions for the domain of tensor computations
that can be automatically transformed for efficient parallel execution? The task of develop-
ing software for high-performance scientific computing is becoming increasingly difficult due
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to deepening memory hierarchy and architectural heterogeneity (e.g. multicore CPU’s and
GPU’s). A promising approach to addressing this problem is the development of domain-
specific abstractions that are both convenient for application developers as well as amenable
to automated compiler transformation for efficient execution on different targets.

The Tensor Contraction Engine is a very successful, domain-specific compiler for a class
of tensor expressions arising in quantum chemistry. See Auer, et al (2006), Baumgartner, et
al (2005), Bibireata, et al (2004), and Hartano, et al (2005). In this context, there is interest
in developing compilers that can automatically parallelize and optimize for data locality in
codes that are rich in affine loop nests. See Lam et al (1997), Lu et al (2005), Bondhugula,
Hartono, Ramanujam, and Sadayappan (2008), and Bondhugula, Baskaran, Krishnamoorthy,
Ramanujam, Rountev, and Sadayappan (2008).

18. The FFT Message

Multidimensional FFT computations have a lot in common with tensor contractions in that
both are (a) rich in matrix-vector products, (b) highly parallelizable, and (c) plagued with
all kinds of data-locality obstacles. Moreover, in both computational settings the Kronecker
product has a prominent role to play. See Van Loan (1992). For these reasons it makes
sense for the tensor community to be aware of high-performance FFT research. Indeed, FFT
computations can be structured using the language of tensors and this has resulted in a design
framework for high-performance codes. See Granata, Conner, and Tolimieri (1992a, 1992b)
and Huang, Johnson, and Johnson (1991). There may also be a lesson to learn from the wildly
successful FFTW system that automates the generation of optimal implementations. See Frigo
and Johnson (2005).

19. Programming Languages and Array Theory

Currently, the design of high-performance tensor software requires (a) an ability to reason
at the index-level about the constituent contractions and the order of their evaluation and (b)
an ability to reason at the block matrix level in order to expose fast, underlying Kronecker
product-like operations. Progress in numerical multilinear algebra will be inhibited without
the development of languages and systems that provide high-level support for this type of
computational thinking. Notation is a major challenge in multilinear settings where vectors of
subscripts and recursion rule the day.

Theorizing about indices and compositions of indices is essential and critical to the analysis
and optimization of high-dimensional array computing. Determining if there are boundary
conditions (and eliminating them) in the software realm is important to the development
of scalable programs. Since the watershed design of APL in the 1970s, there has been a
longstanding interest in the theory of arrays within the programming language community.
This literature and its ramifications for tensor-based computation needs to be understood and
built upon. See Jenkins and Mullin (1990), Rosenkrantz, Mullin, and Hunt (2006), and Hunt,
Mullin, Rosenkrantz, and Raynolds (2008).

Of particular interest is the Psi calculus, a calculus of indexing with shapes that provides
optimal, verifiable, reproducible, scalable, and portable implementations of both hardware and
software. It uses normal forms composed of multilinear operations on Cartesian coordinates
that are transformed into simple abstract machines: starts, stops, strides, count, up and down
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the processor/memory hierarchy. All of this is can be automated. The Psi reduction allows
one to prove that two tensor expressions are equivalent not just at the algorithmic level but
at the level where the algorithm is “lifted” to a higher dimension to reflect processor/memory
levels.

The Psi Calculus tensor notation was implemented in a C++ library and successfully
tested with basic image and video processing applications. See Helal (2001). The work in
Helal, El-Gindy, Mullin, and Gaeta (2008) and Helal, Mullin, Gaeta, and El-Gindy (2007)
further developed the Psi Calculus tensor library to solve a higher-dimensional problem of
Multiple Sequence Alignment in computational biology, using the dynamic programming algo-
rithm. To handle the computational complexity using the multicore hardware and the clusters
of computing nodes, a master/slave cubical partitioning model and a peer-to-peer diagonal
partitioning model were developed. Both partitioning models keep the same tensor structure
and are not based on lower dimension decompositions. To further reduce the complexity, a
search space reduction technique has been developed. See Helal and Sintchenko (2009).

PART IV. ALGORITHMIC CHALLENGES

20. Coping With the Curse of Dimensionality

There are several approaches to the curse of dimensionality that attend the manipulation
of high-order tensors. Approximation and separability are of paramount importance. By rep-
resenting functions of many variables as sums of separable functions, one obtains a method to
bypass the curse of dimensionality. See Beylkin and Mohlenkamp (2002, 2005) and also Hack-
bush and Khoromskij (2007) and Hackbush, Khoromskij, and Tyrtyshnikov (2005). Research
in this direction should torque software development. In order to have multiple users of the
same software across various applications, we need adaptive algorithms that assure accuracy
and map well onto some “standard” data structure. This, in turn, requires a systematic method
of approximating and representing operators, in particular, those of mathematical physics.

Tensor networks are another vehicle for representing huge vectors that arise in the context
of solving Hamiltonian eigenvalue problems in quantum chemistry. A tensor network is a way
of representing a very high-order tensor by connecting many low-order tensors through con-
tractions. In this way, vectors of order n = 2100 (for example) can be successfully approximated
with many fewer than n numbers. Data-sparse representations of vectors through tensor net-
works promises to be important in problems with exponentially large dimension. See Chan
(2004).

21. To and From the Numerical Linear Algebra Framework

Ongoing threads of research in the field of matrix computations include (a) the search for
new computable matrix decompositions that broaden the set of solvable problems, (b) the
exploitation of special structures such as sparsity and symmetry, and (c) the careful framing of
numerical rank and conditioning issues through the singular value decomposition. See Golub
and Van Loan (1996).

Generalizations of these interconnected pursuits are evident at the tensor level. However,
multilinear complexities abound making it apparent that you can only run so far with the
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classical numerical linear algebra paradigm. For matrices, it is obvious what a particular
decomposition reveals. This is not always true with tensors. For matrices, our interest in
data-sparse representations grows with n. For tensors, it is more likely to grow with the order
d and that requires very different strategies. For matrices, the concept of rank is crystal clear
while for tensors it is fuzzy and ambiguous.

Research in the emerging field of numerical multilinear algebra requires a different mind
set. Numerical linear algebra has a lot to offer, but it is not the whole story. The issue of
flattening is a case in point. A tensor is flattened (or “matricized” or “unfolded”) by cutting
it into “matrix-thin” pieces and then assembling the slices into a block matrix, e.g.,

A(1 :n1, 1:n2, 1:n3) → [ A(:, 1, :) A(:, 2, :) · · · A(:, n2, :) ] .

This kind of reshaping of a tensor opens the door to matrix computations. For example, the
higher order SVD amounts to a set of flattened tensor SVDs. See De Lathauwer, De Moor,
and Vandewalle (2000a). This is extremely useful in certain multiway analysis applications.
However, in other settings there is a loss of information when the tensor elements are scrambled
together through matrix multiplication updates of the flattening. Caveat emptor. It would be
handy to have a consumer’s guide to flattening.

We should also be receptive to the fact that the “tensorization” of matrix problems is
sometimes constructive. For example, a block matrix is a flattened 4-th-order tensor with the
(k, �) entry of block (i, j) corresponding to tensor entry (i, j, k, �). A tensor decomposition of
the data set might make more sense than a matrix decomposition. We need to be able to spot
tensor problems that are disguised as matrix problems.

22. The Decomposition Paradigm

The classical PARAFAC/CANDECOMP and Tucker tensor decompositions are discussed
in Kolda and Bader (2009) together with several variants. See also Comon (2001). Choosing
the “right” decomposition depends on the underlying application. For example, the three-way
DEDICOM (decomposition into directional components) is an algebraic model with similar-
ities to multidimensional scaling for the analysis of asymmetric 3-way arrays. PARAFAC2
is a modification of the popular PARAFAC (parallel factors) model that is less constrained
and allows for different objects in one mode. See Bader, Berry, and Browne (2007), Bader,
Harshman, and Kolda (2007), and Chew, Bader, Kolda, and Abdelali (2007).

Instead of looking for the single magic decomposition, it might make “data analysis sense”
to apply a range of decompositions to a given problem and draw inferences from the union of
the insights that they each provide. In the mean time, the search continues for tensor-level
generalizations of the QR factorization and various eigenvalue decompositions. See Kilmer,
Martin, and Perrone (2008). There are also variational approaches that can be used to extend
the notion of eigenvalues and singular values to tensors. See Lim (2005) and Qi (2005).

New factorizations and techniques are being invented that can extract critical information
from ultra-large, tensor-structured matrices through sampling. See de La Vega, Kannan,
Karpinski, and Vempala (2005), Drineas, Kannan, and Mahoney (2006), Frommer, Mahoney,
and Szyld (2007), and Mahoney, Maggioni, and Drineas (2008). The importance of sampling
techniques for tensors is bound to increase as problem size grows.
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23. Tensor Rank

Tensor rank is a much trickier issue than matrix rank. This complicates the problem of
computing the distance of a given tensor a specified set of rank-deficient tensors. For example,
a random 2-by-2-by-2 tensor has rank three with probability .79 and rank two with probability
.21. This kind of a split between full rank and reduced rank does not occur with matrices.
Rank-related nearness questions for tensors become ill-posed. See Kolda (2003), de Silva and
Lim (2008), and Friedland (2008). More can be said when the underlying tensor has certain
symmetries as shown in Kofidis and Regalia (2002) and Comon, Golub, Lim, and Mourrain
(2008).

An alternative approach to tensor rank is to regard the rank of a d-th order tensor as a
d-tuple of integers, see De Lathauwer, De Moor, Vandewalle (2000b) and Eldén and Savas
(2009). Seeking a low-rank representation of a tensor is a way of compressing the data. A
Jacobi-like procedure that embodies the compression idea is given in Martin and Van Loan
(2008). We mention that various complexity issues in computer science can be posed as tensor
rank problems, see Landsberg (2005).

The well-known Eckart-Young theorem can be used to express the approximation error of
matrices by their SVD. Although the exact errors can not be expressed using singular values of
reformulated/folded matrices of tensors, error bounds for tensor decompositions have recently
been derived in Ding Huang, and Luo (2008).

24. Sparsity and Symmetry

Sparse tensors occur frequently in the information sciences (§8). Krylov methods, well
known and highly successful in matrix setting, can be generalized to compute low rank ap-
proximations to sparse tensors. See Savas and Eldén (2009).

Many tensors can have interesting and complicated symmetries. However, outside of the
supersymmetric case, there appears to be little algorithmic work that addresses this issue.

25. Nonnegativity

The nonnegative factorization problem for matrices involves the approximation of a non-
negative matrix A with a low rank product FGT where F and G are themselves nonnegative.
Interest in such factorizations has exploded with the growth of information science.

Nonnegative tensor decompositions are useful in a wide variety of applications ranging
from document analysis to image processing to bioinformatics. They can be used for spectral
unmixing in material identification with hyperspectral data, and to analyze massive global
multivariate climate datasets. See Chicocki, Zdunek, Choi, Plemmons, Amari (2007). Impos-
ing a nonnegativity constraint in a tensor factorization in image rendering allows for editing,
see Lawrence (2006). Bader, Berry, and Browne (2007) use a nonnegative tensor factorization
in an application that involves tracking email messages over time.

Nonnegative versions of the PARAFAC model have been developed that require the solution
of a succession of nonnegative least square problems. Sparsity can be exploited. See Kim
and Park and Eldén (2007), Park and Kim (2008), and Lim and Comon (2009). Improved
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Newton-type algorithms for the problem are currently being developed that overcome many
computational deficiencies of existing methods. See Kim, Sra, and Dhillon (2008).

26. Multilinear Optimization

Most of the optimization procedures used to compute compressed tensor representations
follow the alternating least squares (ALS) approach. The attractiveness is obvious. By freez-
ing all but one vector component, a multilinear computation becomes a linear computation.
This can be thought of as a nonlinear generalization of block Gauss-Seidel because the idea is
to solve for one block of variables at a time while holding all the others fixed. For examples
of this strategy, see De Lathauwer, De Moor, and Vandewalle (2000), and Martin and Van
Loan (2008). Nonlinear least squares methods have been proposed for fitting the CANDE-
COMP/PARAFAC model. See Paatero (1999) and Tomasi and Bro (2006).

It is important for the tensor computation community to explore new ways for handling
the structured nonlinearity that is the hallmark of multilinear problems. New optimization
approaches for tensor computations are being developed that solve for all variables simul-
taneously. Although this leads to a complex nonlinear optimization problem, initial results
indicate that all-at-once optimization for fitting CANDECOMP/PARAFAC is competitive
with ALS. See Acar, Kolda, Dunlavy (2009). In some important exact data cases, CANDE-
COMP/PARAFAC just amounts to computing a matrix eigenvalue decomposition. See De
Lathauwer (2006) and De Lathauwer, De Moor, and Vandewalle (2004). In the case of noisy
data, these algorithms can be used for starting values.

Other approaches to compute a Tucker model are Newton and quasi-Newton methods
defined on a product of Grassmann manifolds, see Eldén and Savas (2009) and Savas and Lim
(2008) and the related work in Ishteva, De Lathauwer, Absil, and Van Huffel (2009).

Fitting a tensor decomposition is, after all, a non-linear optimization problem. Alternating
least squares is from the 1970s and with faster machines, it is about time we had new and
improved optimization strategies. Collaboration between optimization experts and tensors
experts will be essential.

27. Conclusions

It would be a mistake to conclude from the outline-form of this report that there are
crisply-defined subdivisions within the tensor research community. Algorithmic advances will
be driven by the rich interconnections that exist between applications and the themes that we
have identified. See Figure 1. Undoing the “curse of dimensionality” in any particular area
of applications will undoubtedly lead to new technologies and have far-reaching implications
throughout mathematics and computational science and engineering.

In many respects, the “tensor” grand challenge is to enable solutions to the grand challenge
problems confronting data-deluged researchers in other fields. Funding initiatives for tensor-
related research should be considered a priority given current levels of support for information
technology, biotechnology, climate modeling, and other critical areas that require sophisticated
modeling and the analysis of large, multidimensional datasets.

By regarding tensors as tools for describing mathematical objects in high dimensions, it is
clear that the development of computational multilinear algebra should parallel the develop-
ment of analytical tools for spaces of high dimension. In fact, the distinction is rather artificial
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Figure 1: The “Geometry” of the Tensor Research Community

since nonlinear approximation is the key tool that underpins both areas of research. In a very
practical sense, multilinear algebra and an appropriate approximation theory are critical to
the advancement of mathematics in applications where the curse of dimensionality is the main
obstacle. The workshop highlighted the breadth of these problem areas even though there was
only enough time to focus on a subset of pertinent issues.
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