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1. Introduction

. For over two decades the Yang-Baxter equation (YBE) has been studied as the
master equation in integrable models in statistical mechanics and quantum field
theory. Recent progress in other fields— C*-algebras, link invariants, quantum groups,
conformal field theory, etc.—shed new light to the significance of YBE, and has aroused
interest among many people.

In the literature YBE first manifested itself in the work of McGuire! in 1964 and
Yang® in 1967. They considered a quantum mechanical many-body problem on a
line having ¢ ;<;6(x; — x;) as the potential. Using a technique—known as Bethe’s
Ansatz—of building exact wavefunctions, they found that the scattering matrix fac-
torized to that of the two-body problem, and determined 1t exactly. Here YBE arises
as the consistency condition for the factorization.

In statistical mechanics, the source of YBE probably goes. back to Onsager’s star-
triangle relation, briefly mentioned in the introduction to his solution of the Ising
model® in 1944. Hunt for solvable lattice models has been actively pursued since
then,* 3 culminating in Baxter’s solution of the eight vertex model® in 1972. Another
line of development was the theory of factorized S-matrix in two dimensional quantum
field theory.” Zamolodchikov pointed out® that the algebraic mechanism working here
is the same as that in Baxter’s and others’ works.

In 1978-79 Faddeev, Sklyanin and Takhtajan proposed the quantum inverse
method® 1? as a unification of the classical integrable models (=soliton theory) and
the quantum ones mentioned above. In their theory the basic commutation relation
of operators is described by a solution of YBE (this terminology itself is due to them).
In the beginning of 1980s, the study of YBE has been actively performed in Leningrad,
Moscow and other places.'!:'? These works led to the idea of introducing certain
deformations of groups or Lie algebras,'37*¢ as called quantum groups by Drinfeld.'”
At about the same time there appeared the discovery of new invariants of links,'® and
subsequently the aspect of YBE as the braid-type relation has been brought to

* Also to be published in Braid Groups, Knot Theory and Statistical Mechanics, eds. C. N. Yang and M. L.
Lie (World Scientific, 1989).
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attention. Closely related structures have also been revealed in the conformal field
theory.t®~21

The present article is aimed to be an introduction to YBE for nonspecialists. About
the state of the matter up to 1982 good review papers are available.'*'2 We have tried
here to include some of the more recent developments (within my limited knowledge),
with the emphasis on the role of quantum groups.

The text is organized as follows. Sec. 2 is devoted to basic definitions, properties and
elementary examples of solutions of YBE. In Sec. 3 the classical YBE is defined, and
the structure of its solutions is depicted following Belavin-Drinfeld.?? In Sec. 4 the
quantized universal enveloping aigebra U,g is introduced. Known facts about its
representations and Drinfeld’s universal R matrix are briefly summarized. As an
application, in Sec. 5 the trigonometric solutions of YBE related to the vector represen-
tation of classical Lie algebras are described. Solutions corresponding to ‘higher’
representations can be obtained by the fusion procedure.?? Sec. 6 outlines this method.
In Sec. 7 the solutions of YBE of the ‘face-model’ type are discussed together with the
braid representations induced by them.

2. The Yang-Baxter Equation

2.1. Formulation

Let V¥ be a complex vector space. Let R(u) be a function of ue C taking values in
End(V ® V). The following equation for R(u) is called the Yang-Baxter equation
(YBEY) '

Ry;(WR,3( + v)Ry3() = Rys(0)Ry3(u + v)Ry2(1). 2.1)
Here R, signifies the matrix on V®3, acting as R(u) on the ith and the jth components
and as identity on the other component; e.g. R,;3() = I ® R(u). The variable u is called

the spectral parameter. Often a solution of (2.1) is referred to as an R matrix.
In most cases we assume that N = dim ¥ < oo, Upon taking a basis of V and writing

Rw=Y RYW)E; ® Ey,
Eij = (6ia5jb)a.b=1,...,Na

* one sees that (2.1) amounts to N® homogeneous equations for the N “ unknowns RY(x).
Let P € End.(V ® V) denote the transposition ' ‘

Px®@y=y® x.

If R(u) has the property
| R(0) = const. P, | 22)

then (2.1) is identically satisfied for u = 0 or v = 0. We call (2.2) the initial condition.

|
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22 Examples
Here are some typical examples of solutions of (2.1) in the case V = C2.

Example 2.1. (McGuire,! Yang?)

14u
R(w) = ?i =P+ul
1+u
Example 2.2 |
sin(n + u)
R() = sinu siny
B sing sinu
sin(n + u)
Example 2.3. (Baxter®)
a(u) d(u)
_ blu) clu)
RO=L ww b |

d(u) a(u)
where |
a(u) = o(n)0y ()6, (n + u)
b(u) = 65(n)6; (u)8(n + u)
c(u) = 0:(n)6o ()00 (n + u)
() = 6,0)6,(W0, (1 + .
The §,(u) denote the elliptic theta functions
B () = fjl (1 — 2p™ "2 cos 2mu + p**~1)(1 — p"),

(2.3)
6,(u) = 2p'®sinnu ﬁ (1 — 2p"cos 2nu + p?")(1 — p").
n=1

In all cases the initial condition (2.2) is fulfilied. In examples 2.2 and 2.3, the
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parameters #, p are arbitrary. In fact these three are connected by specialization:
Example 2.3 —2=° Example 2.2 "9, Example 2.1.

Let us verify that example 2.1 solves YBE. Since both sides of (2.1) are polynomlals
in u of degree 2, it suffices to check (2.1) for 3 values of u.

u = 0: valid because of (2.2),
u=CD:P23+UI=P23+UI,
u= —=uv. (P12 — UI)PIS(P23 + UI) = (P2v3 + UI)P13(P12 b UI)

The last equation reduces to the relations in the symmetric group ®; (12)(13)(23) =
(23)(13)(12), (12)(13) = (13)(23).

Examples 2.2-2.3 can be handled in the same spirit.
2.3. Braid relations

Frequently YBE is also written in terms of the matrix

R(u) = PR@). | (2.4)

Let m > 2, and define matrices on V®™ by Rw=I® ® R)® QI (Ii(u) in the
(i + Dth slot),i = 1,...,m — 1. One has then

RwR () = KRR if |i—jl>1,
(2.5)
R R + 0)Ripy 0) = Ry(0)Rpa (u + )R, (0).

In the absence of the spectral parameters u, v, (2.5) is nothing other than Artin’s braid
relations. One notices that for the special values such that u = u + v = v, the Ri(u)
actually give rise to a representatlon of braid groups. The choice u = v = 0 usually
leads to the trivial representation R, /(0) = const. I (the initial condition (2. 2)). In certain
circumstances it makes sense to take u = v = 00, leading to interesting results. See 5. 3,
71.5. below.
2.4. Generalizations

The above formulation of YBE admits the following extensions.

(i) Instead of working with a fixed vector space V, one can equally well cons1der
a family of vector spaces & = {V} and operators {Ryy-(u) € End . (V® V')}y.ves.
YBE(2.1) is then an equation in Endc(V; ® V; @ V3), where R;;(u) = Ryy,(u), Vi€ 7.
Suppose V; = V, = V. Regarding End(V® V;) = End(V)® &, o = EndC(V3) let -
us write Ryy, (1) as T(u) = Y 1) Ey; with t;(u) € . In this notation (2.1) becomes

R(u — 0)Tu) ® Tv) = T(®) ® TU)R(u — v). (2.6)
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Here T(u) ® T(v) = Zt,-j(u)tk,(v)E,-j® E,;, etc. (notice the ordering of the t;(u) and
tu(v)). Equation (2.6) can be viewed as giving commutation relations among the
generators t,;(u) of an abstract algebra s7; YBE for R(u) guarantees the associativity of
o/ thus defined. An important feature of (2.6) is that the map

A >A @, Atyu)= ; ta(t) ® ti;(w)

preserves the relations (2.6) (A is a ‘comultiplication’). The formulae (2.1) and (2.6) are
the basic algebraic constituents in the quantum inverse method.®:1°
(i) One may consider YBE for a function of two variables R(u, u'):

R12(u1,“2)R13(“1au3)R23(u2»“3) = Ry3(uz, u3)Ry5(uy, us)Ry5(uy, uy).  (2.7)

Equation (2.1) is a special case of (2.7) where the (u, u’)-dependence enters only through
the difference

R(u,u’) = R(u — u'). (2.8)

Recentiy Au-Yang, Baxter, McCoy, Perk and others?#25 have found remarkable new
solutions to (2.7) in which the spectral parameters live on curves of genus > 1. The
difference property (2.8) does not hold for these solutions.

3. The Classical Yang-Baxter Equation

3.1 Classical limit
. A solution of YBE is said to be quasi-classical if it contains an extra parameter %
(‘Planck constant’) in such a way that as A — 0 it has the expansion

R(u, h) = (scalar) x (I + hr(u) + O(h?)). (3.1

The r(u) € End(V ® V) in (3.1) is called the classical limit of R(u, ). For instance,
Examples 2.1-2.3 are all quasi-classical (take u — u/h in Example 2.1, 7 = # in Examples
2.2-2.3). For quasi-classical R(u,#), YBE (2.1) implies the following classical Yang-
Baxter equation (CYBE) for r(u):

[r12() ry3(u + 0)] + [r12(W), r23(0)] + [rya(n + v), r23(®)1 = 0. (3.2)

As for the significance of CYBE in classical integrable systems and its algebraic/
geometric meaning, see Refs. 12, 26 and 27.

There are important examples of solutions of YBE which are not quasi-classical (e.g.
Refs. 24, 25, 28 and 29). Nevertheless quasi-classical solutions constitute an interesting
class, and we shall henceforth restrict our attention to this case.
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3.2 Universal solution

The characteristic feature of CYBE is that it is formulated using solely the Lie algebra
structure of End(¥). Let g be a Lie algebra, and let () be a g ® g-valued function. In
terms of a basis {X,} of g, write '

rw) =) rwX, ® X, .(3.3)

with C-valued functions r#*(u). Let further rW=Yr"wX,®X,®IleU g)®3 and
so on, where U g denotes the universal enveloping algebra. One has then

[r12(u), ra3(0)] = Z P r’(n)X, ® [X,,X,]® X,, etc.,

so that each term in (3.2) actually lies inside g®3. For each triplet of representations
(m;, V)i =1,2,3)of g, (m; ® nj)(r,-j(u)) gives a matrix solution of CYBEmm ¥V, ® V, ® Vs.
In this sense a g ® a-valued solution is a ‘universal’ solution of CYBE.
3.3 Belavin-Drinfeld theory

When g is a finite-dimensional complex simple Lie algebra, solutions of CYBE have
been studied in detail by Belavin and Drinfeld.?? In the sequel we fix an orthonormal
basis {X,} of g with respect to a nondegenerate invariant bilinear form on g, and set |

=YX, ®X,.
I

By r(u) we will mean a g ® g-valued meromorphic solution of (3.2) defined in a
neighborhood of 0 € C. It is said to be nondegenerate if det(r**(4)) # 0 in the notation
of (3.3).

Theorem.?? Let r(4) be a nondegenerate solution of (3.2). Then

(1) r(u) extends meromorphically to the whole complex plane C, with all its poles

being simple. ‘
(2) T = {the set of poles of r(u}} is a discrete subgroup relative to the addition of C.
(3) As a function of u there are the following possibilities for the r**(u).

rank I = 2: elliptic function,

rank I' = 1: trigonometric function
(ie. a rational function in the variable e

const. u)
]

rank T’ = 0: rational function.

Belavin-Drinfeld show further that (i) elliptic solution exists only for g = sl(n), in
which case it is unique (up to certain equivalence of solutions), (ii) trigonometric
solutions exist for each type, and can be classified using the data from the Dynkin
diagram for affine Lie algebras.. '
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34 Examples .
Here are two typical examples in the Belavin-Drinfeld classification.

Example 3.1. The simplest rational solution is
t

r{u) =—.
u

Example 3.2, Let g = b @ (@,g,) be the root space decomposition. Choose X, € g, 80
that (X,, X_,) = 1, and let '

x>0

r=3% (X,®X_,~X_,®X,) (sum over the positive roots). (3.4)

Then
2t

r)=r—t+-——, x =e", (3.5)
1—x

is a trigonometric solution.

4. The Quantized Universal Enveloping Algebra

41 Quantization :

Given a solution r(x) € g ® g of CYBE, one may ask whether there exists a quasi-
classical R(u, #) having r(u) as its classical limit.>*> One has then to decide where such
an object should live. A naive candidate is Ug ® Ug; as it turns out, however, it is more
natural to deform (or ‘quantize’) the algebra Ug according to each r(u). Motivated by
this ‘quantization’ problem, Drinfeld developed a general theory of quantum groups.*’
In this section, we shail describe a representative class of quantum groups, the quantized -
universal enveloping algebra U,g'* (also called a g-analog of Ug'¢), which is related to
the trigonometric solutions of Example 3.2. As for the case related to Example 3.1, see
Ref. 15. "
4.2. The algebra Ug

Hereafter g will denote a Kac-Moody Lie algebra of finite or affine type. The
corresponding generalized Cartan matrix A = (a;); <;, ;<15 Symmetrizable in the sense
that there exist nonzero integers d, satisfying d;a;; = d;a;;. Fix such {d,}. Fix also a
nonzero complex number g such that g% s 1. We define U,g to be the associative
C-algebra with 1, with 4] generators

and relations

klk] = kjki! kik;l = ki_lk,' = 1,

kinJ—rki_l _ qid.-a,;_,-/2X1__—t ,
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- ki—ki?
LX X7 = Oy g — o
1-ay v 1- a;j tyl-ay—viy L Ty | # ]
yerl LY R aHEr =0 (£,
v= g

Here we have used the notations from g-analysis

]t = LS

nl [n)![m — n]! ’ 1<j<m

Setting formally k; = g%"/ and letting g — 1 one recovers the commutation relations
among the Chevalley generators {¢; = X;", f; = X; , h;} 1 <i<i Of 0.
The following comultiplication A, antipode S and counit e endow U,ga Hopfalgebra

structure:
AXF) = XFQk'+k® b. 6 Ak)=k; ®k;,

S(XE)= —q¥4XF,  Sk)y=k,

gX ) =0, g(k) = 1.

The Hopf algebra U,g was introduced by Kulish-Reshetikhin'? (for g = sl(2)),
Drinfeld*® and the author!® (for a Kac-Moody algebra with symmetrizable generalized
Cartan matrix). Our normalization here follows Ref. 16.
4.3. Representation theory

It has been shown by Lusztig?® and Rosso®! that for generic values of g the
representation theory of U,g does not change from the classical case ¢ = 1.

Theorem.>®3! Let dimg < oo, and assume that g is not a root of unity. Then an
irreducible integrable g-module can be deformed to that of U,g. The dimensionality of
é4ch ‘weight space is the same as in the case g = 1. |

Example. Let g = sI(2), and let | be a positive integer. Setting
0 M1l

0 [ —11[2]
wxH=| 0 VI —2103] = 'n(X]),

NARNI
0

12
121

n(ky) = . s

—lj2
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one gets the ‘quantum deformation’ of the (I + 1)-dimensional irreducible representa-
tion of s[(2). Here we have set

q"—q™
=1 = 4.1
[u] pp— (4.1)

For g a root of unity, the situation resembles the modular representation. In this
case Lusztig3? developed a highest weight theory by modifying the definition of U,g.

For affine Lie algebra g of ADE type, Frenkel and Jing*? constructed the vertex
operator representations of Ug.
44. Universal R matrix :

Drinfeld constructed a ‘universal R matrix’ 2 € U,g ® U,g that enjoys the following
properties:'’

¢ o Ala) = ZA(@)# ! for aelUg,
(A ® id.)e@ - .@13@23,

wheres(x ® y) = y® x,andif # = Y a; ® bithen #,, = ), 0, ® b ® 1, #y3 = Ya;®
1®b, B3 =) 10a; @b € (Uqg)®3. (To be precise, Drinfeld uses certain completion
of U,g, and ® is to be understood in the topological sense. See Ref. 17 for details.)
Let § be affine, and let § = [§, §]/(the center of §). Let #' denote the analog of #
for &'. Consider the automorphism T, of U,g given by T.XE = x¥'X§&, TX{ =
XX(i # 0), where i = 0 is the distinguished vertex in the Dynkin diagram of §. Set

R(x) = (T, @ id)(X').
From (4.2) it follows that %8(x) solves YBE in the multiplicative parametrization

] R12(X)R 13 (x¥)R23(y) = 9923(y)ﬂ13(xy)9?12(x).

The r-matrix (3.5) is the classical limit of %(x) corresponding to the nontwisted loop
algebra § = g ® C[4,47'], dimg < co. (The classical limit for twisted loop algebras
can be found in Ref. 22.)

Properties of # for finite dimensional g are discussed also in Ref. 34.

5. R Matrix for the Vector Representation

5.1. Linear equations for R

Let us turn to the problem of constructing finite dimensional matrix solutions of
YBE. Until the end of this paper we shall assume that g is not a root of unity, unless
it is stated explicitly. Retaining the notations §' = g ® C[4, A71],dimg < o0 asin 4.4,
let n: U,§' — Endc(V) be a finite dimensional representation. Regarding U,g as a

el Vb S i =

sl ot

el RIS s TS wigeen

e

R

T e st S b =
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subalgebra of U, §’, we denote the restriction |y, by the same letter 7. We assume that
at ¢ = 1 the latter specializes to an irreducible representation of g. (An irreducible
representation of g always lifts to U,g (see 4.3), but not always to U, 4§’ unless g is of
type A4,, cf. Ref. 15.)

Denoting by P € End(V ® V) the transposition, set

R(x) = P(r @ n){(#(x)).
From (4.2) one then has

[Rx),r@m)(A@)]=0 for aeUg, (5.1a)
R0 (x='n(X &) @ (ko) ! + (ko) ® n(X5))

= (n(XE) ® n(ko) ™" + (ko) ® x*'m(XF))R(). (5.1b)

In fact these linear equations uniquely determine R(x) up to a scalar factor.**
Equation (5.1a) means that R(x) belongs to the centralizer of the diagonal action of
U,gin ¥V ® V. Taking a basis {P;} of Endy (V' ® V) one can write

R(x) = ; Pi(X) P - - (52

The coefficients p, (up to an overall factor) are to be determined from (5.1b).
5.2 Vector representation _

As an example let us consider the vector representation (w, V,, = CY) of the classical
Lie algebras g = sI(N), o(N), or sp(N) with N even. The R matrix in this representation
has been calculated in Refs. 36 and 35.

As in the classical case we have the decomposition as U,g-module

VA1®VA1= VvZAIG-)VAz o fOl‘ g=SI(N),
=V, @ VA,V for -~ g=0(N),sp(N),

where V;,,, V4, or ¥, denotes the analog of the symmetric tensor, the antisymmetric
tensor or the trivial representation, respectively. Let P4, P,,, Py denote the corre-
sponding orthogonal projectors relative to a U,g-invariant scalar product on V. The
spectral decomposition (5.2) for the R matrix then reads as follows.
g = sl(N):

R(x) = (gx — g7 )Py, — (@ 'x — q)Py,, | (5.3)

g = o(N), sp(N):
R(x) = (¢"%x — 1)(gx — a7 )Pya, — (@"*x — 1){g'x — q)Py,

+ e(x — ") g *x — q°) Py, (5.4)

" 4——j
e . §
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where for convenience we have set
e=+1 for o(N),
=—1 for sp(N).

Together with the obvious relation 1 = Y « P, the projectors are given by the following
formulae.

g = sI(N):
Set
T = qP2A1 — q'—‘l.lJA2 . (553)
Then

T*! = g*! Z E;® E; + Z E;®E; +(q— q7) Z Ei®E;. (3-3b)

i iS5
g = o(N), sp(N):
Set
T=qP,, — q Py, + eq VTR, ,
(5.6a)
N2 —Nj2

q q —& - €
§="—5—" "+ "),
1—4

Then we have

T+ ':-qil Z Eii®Eii+ z Eij®Eji+q¢1 Z E;® Ey;
i ofi#:j:;‘j—_"j’ {EL

+@—q7") Y (Ea®E; — e:6;¢' Eyi ® Eye), (5.6b)

isj
S =& Z giqu?—jEj/i ® Eji’ .

Herei' =N+ 1 —i,e,=1fori<i’,g =¢fori>i', and
13 I




3770 M.Jimbo

5.3. Centralizer algebras ‘
As we have noted in 2.3, if an R matrix is trigonometric, i.e. a polynomial in |

x = e“(c # 0) up to a scalar factor, then its leading term in x gives rise to a represen- |
tation of the m string braid group B,, for any m > 2. Let T be defined by (5.5) or (5.6), |
andset T=I1® " ®T® - ®le Endqu(V‘g’"') (T in the (,i + 1)-th slot). One has

then
T-I}=7}T,- if li—jl>1,

13

(5.7) |

In fact, the above T is the image under 7 @ = of the universal R matrix corresponding

to U,g(<= U,&).>*
Let g = sl(N). From (5.5a) one has in addition to (5.7)

(T — (T + a7 =0. (58) |

The relations (5.7) and (5.8) mean that the braid representation factors through Iwahori’s |
Hecke algebra®” H,,(q) for the symmetric group:

B, - H,(q) 2= End(V®™).

Moreover p,, commutes with the multidiagonal action of U,g given via the (m — 1)-fold
‘teration of the comultiplication A™ : U,g — (U,8)®™,

A(m)(Xit)'____ i ki®”'®ki®)j(ii @k?@"'@k:’_l-
j=1

Proposition.>® For generic g, the two subalgebras of End(V®™)
2®" 0 A™(U,g)  and  pu(Hn(9))

are commutant to each other.

This is a g-version of Weyl’s reciprocity concerning the action of the symmetric
group and the general linear group.

In the case g = o(N) or sp(N), similar statement is true.324° What replaces Hn(q) is |
the Birman-Wenzl-Murakami algebra,>®**° a g-analog of Brauer’s centralizer algebra. |
Its quotient appears as the algebra generated by T; and S; defined similarly from (5.6).

6. The Fusion Procedure

6.1 Construction of R matrices |
Many of the solution of YBE known so far have been obtained by direct methods— |

assuming certain symmetries or guessing the functional form and solving the cubic |
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equation (2.1) for R(u). As for the quasi-classical solutions corresponding to (3.5) and
its relatives, there are alternative approaches. One s to solve the linear equations (5.1).
The other is the so-called fusion procedure initiated by Kulish, Reshetikhin and
Sklyanin.?? This method is an analog of a standard technique to get irreducible repre-
" sentations of Lie algebras—form a tensor product of fundamental representations and
decompose it. In this section we shall describe the idea of the construction.
6.2. The fusion procedure

" For later use we formulate the fusion procedure for the R-type matrices. Thus let
{Ryy-(u) e Homc(VR V', V' ® V)}y.vres be a family of solutions of YBE written in
the form

By, () ® DI ® Ry + 0) Ry, () @ 1)
=(I®R,,0) Ry, +)@NI® Ry, ). (6.1)
Here both sides map V, @ V, @ V3 to V3@ V, ® V. We begin with the following

observations.
(i) Fix uy, u,, and put

Rygyv-) = (Ryy-(t + 1) ® )(I ® Ry + u2))- (6.2a)
Then (6.1) remains valid by replacing Iim,i by Rv,,l@,,,l,yl, (i = 2,3). Likewise if we define
RV"V@V’(“) = (1 ® RVV"V’(u + “1))(RVV"V(“ +u) ® I), (6.2b)

then (6.1) holds with Ky, gy, in place of Ry, (i = 1,2)
(ii) Let W; < V, be u-independent subspaces such that

Ryy, () (W, @ W) = W, @ W,. (6.3)

Then (6.1) is true for the restrictions ﬁn v, W\wew,
In the notations of (6.2a), let us choose the subspace

W=R,,(u,—u)(VRV)c VRV, (6.4)
Using YBE (6.1) one finds

Rygyy ()W ® V") = (Ryy( + ;) @ (I ® Ryt + 1))
x (Ryyl, — 1) @DV @V V")

= (I ® Rypluy — uy))(Ryprlu + 1) ® 1)
x (I ® Ryplu + w)) (V'@ VO V")

- V”'® W,
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so the condition (6.3) is satisfied for W, = Iiyi,,i(u2 —u) )V ®WV)c Vi @V,W, =V,
and W, = V. By the same token one has '

Ryygr@(V' @ W) c W@ V".

With an appropriate choice of u, — u, the W in (6.4) becomes a proper subspace,
affording nontrivial new R matrices

RVWV”(u) = ﬁV®V'V"(”)|W®V" ’ (6.5a)
RV"W(u) = IiV"V®V'(u)§V"®W- (6.5b)

6.3 Symmetric tensors

Let us illustrate the construction above by taking the trigonometric solution R(x)
(5.3) for g = sI(N). We shall use the multiplicative parameter x = e¢*. There are two
cases for which this R matrix degenerates, namely:

R(g%) ¢ Py, s R(@2) oc Py,.

Here we consider the former case. Let ¥, = CN, Vap, = Pyp (Va, ® V,,). Taking
V=V =V"=V, and W =V,,, in(6.5b)one has

L 1@ k@) R ® D)

VA, ®Vaa,

RVAleM(x) =

Likewise taking V = V' = V, , V" = W = ¥,,, in (6.5a) one obtains
By 1 (00 = (B G D@D ® Ry o, (66
By the construction, these matrices commute with the diagonal action of U,g. Let
VzA1 ® VZA1 = V4Al @ VZA1+A2 @ VzA2

be the irreducible decomposition, and let Py, , Paa,+4,> P24, denote the corresponding
orthogonal projectors. Then the spectral decomposition of (6.6) is given by

Ry, 12 () = (% = D)(g*x — DPus,
+(g%x — D(g* — X)Pyp, 14, + (g% — x}g* — X)Paa, -
In a similar manner one can construct R matrices Ry where ¥V, V' are general
symmetric or antisymmetric tensors (cf. Refs. 23 and 38).

Cherednik*! gave a prescription to get the R matrix of type sI(N) for an arbitrary |
pair of irreducible representations. His method applies also to the elliptic extension.

]
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7. Face Models

11. Vertex vs. face models

In statistical mechanics, each solution of YBE defines a two-dimensional solvable
lattice model; the matrix elements R} of an R matrix stand for the statistical weights
(Boltzmann weights) of local configurations. Usually with YBE (2.1) one associates the
so-called vertex models, where the interaction takes place among the freedom on four
edges round a lattice site, or a vertex. There are models that have dual features, in the
sense that the interaction takes place among the freedom on the four sites round a face.
These are called the interaction-round-a-face models,® or face models for short. Here
YBE takes a slightly different form (though the two are mathematically equivalent).
An interesting feature is that the face formulation allows to treat the case g = a root
of unity, by restricting the range of freedom on sites. These ‘restricted’ face models and
the braid representations they induce play important roles in statistical mechanics,
conformal field theory and operator algebras (see (7.4) and (7.5)).
1.2. Formulation

Let W(u) be a solution of YBE (2.1) on V ® V. We say that it is of face-type if the
following hold.

(i There is a direct sum decomposition V = @), , .« Vs into subspaces V,, indexed
by some (possibly infinite) set &.

(iiy The composition of the maps

Vo @ Vyo 2 VO VEL VRV V0 ® Vi

vanishesunlessa=a’,b=>b",c=c¢,d =d’'. We set
a b
w
(d 4
In terms of these operators, YBE takes the form
O LIS D
W ulWw ut+v )W v
gEZB’ (e d g d f g

v)W(; iu+v)W<; lc)u) (7.1)

Both sides map V,, ® V. ® V4 to V,, ® V., ® V,,. In the literature the case where
a

d ¢

u) =po W(u) oi€ Homc(l/ab ® V;;c’ V;zd ® V;ic)

ol

ges

dim V,, = 0 or 1 is mainly considered; the W(

u) are treated as numbers subject

to the relations (7.1). See Ref. 5.
1.3. A vertex-face correspondence

Asin Sec. 5, let § = g ® C[4,471] be a nontwisted loop algebra (dim g < o), and
let R(x) = P(n ® m)(%(x)) be the trigonometric R matrix associated with a fixed finite




3774 M. Jimbo

dimensional irreducible representation (r, V") of U,§'. Let

& = the set of dominant integral weights of g.

For each a € & there exists an irreducible representation (see (4.3)) U,g — End(V,). The
tensor module is completely reducible3! with respect to U,g, so that one has

V.V =@V, ®V. (72
b

Here V,, stands for the multiplicity part. We set ¥, = 0if ¥, does not appear inV, @V
Consider now 1 ® R(x) € End(V, ® V* ® V™). Since this matrix commutes with the
action of U_g, it gives rise to a map

m®ma@m®mﬁwb@m®mem®m
d

a

foreacha,d € . We let W(d

starting from a ‘vertex-type’ R matrix, one gets a face-type solution of YBE (7.1). This |

construction is due to Pasquier.*?
7.4. Vector representation

As an example, let us take again the R matrix (5.3) for g = sI(N), = = the vector

representation. Let of = {e; — ¢&,...,6y —e}(e=(e; + + ey)/N) denote the set of
weights occurring in 7, where the ¢; are orthonormal vectors related to the fundamental

weights via A, = g, + -+ + & — ie. Defining V,, by (7.2) one sces that dim ¥V, <]
Clearly dim V,, = 0 unless b — a has the form ¢; — &. Forae & we define the coordi-

nates a, by
a,=(a+p,peZ, ped,

where p signifies half the sum of the positive roots. Using the symbol [1] in (4.1), one

has the following expression®? for the nonvanishing Boltzmann weights W (;

a a+ [ [1+ ul
w = ,
(a +u a+ Zp‘u) [1]

a a+p _[a,—a,—u]
(a+ﬂ a+,u+vu)_ [a, — a,] ’ (1 #v), (73)
a at+v __[u] [au“av+1][au—av—1] 172
(a+# a+u+vu)_m( [a, — a,]? ) ’ (1 #).

The case g = sl(2) first appeared in Ref. 44. For the type o(N) or sp(N), see Ref. 45.

i’ u) (g" = x) to be the composition map. In this way,

Y
ul
C
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If we replace [u] by the elliptic theta function 0, (nu/L) in (2.3) (L #0 being a
parameter), the W (;
solutions have been found by direct methods, and the above trigonometric one came
as their degenerations. The fusion procedure for (7.3) is discussed in Ref. 46.
Let I be a positive integer. Consider the specialization of g to the root of unity

lc) u) above still solve YBE (7.1). Historically such elliptic

q=e"rL, L=1+g. (7.4)

Here g = N signifies the dual Coxeter number for sI(N). Denoting by 8 = ¢, — gy the
maximal root, we set

S, ={aeF|(a,0)<I}.

1t can be shown*3 43 that, for the value (7.4) of g, YBE closes among the restricted set

b u)} . We call them restricted face models.
a,b,c.de Y}

of Boltzmann weights {W (Z

From the statistical mechanics point of view, the restricted face models are of par-
ticular interest. In the simplest case of sI(2), their one point functions are known to be
given in terms of the Virasoro characters in the minimal unitary series.*”*8 Similar
results have been established for a wide range of models.*?46:4%

1.5. Fusion paths and braid representation

Let us consider the braid representation arising from (7.3). Unlike the ‘vertex models’
of (5.3), the representation space for the ‘face models’ does not have the tensor structure.

Let m > 2. We call a sequence of weights p = (o, 4y, ...,8,)(a; € &) fusion path if
for each i V, appearsin V,_ ® V™. Forae ¥, let ¥,,(a) be the vector space spanned
a

i IZ‘ oo) the leading term of

by the fusion paths such that a, = a. Denoting by W(

(1.3) in the variable x = g¢*, we setfori = 1,...,m — 1

OO)P’, P € V(@)

a; Gy

-
:

Here the sum is over p’ = (4}, a}, ..., 4y) € ¥,(a) such that a; = g; for j # i. From the
foregoing discussions it is clear that the W, afford a braid representation on ¥,,(a). As
in the vertex case it factorizes through the Hecke algebra. ,

When g is the root of unity (7.4) we define the space of restricted fusion paths ¥,,,(a)
using % in place of &. With the choice a = 0, the Hecke algebra representations on
¥,,(0) coincide with the unitarizable irreducible representations of Hoefsmit3° and
Wenzl.5! They also arise as the monodromy representations of N-point correlation
functions in conformal field theory.1®:2° As for the types o(N) or sp(N), such face
type representations of the Birman-Wenzl-Murakami algebra have been studied by

Murakami.>?

B o T i T DO SN 2 A € TR

o=

S S
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