
From dynamics on surfaces to rational

points on curves

Curtis T. McMullen∗

22 January, 1999

M. Jourdain: You mean when I say, ‘Nicole, bring me my slip-
pers...’, I’m speaking in prose?

—Molière, 1670.

1 Introduction

Fermat’s last theorem states that for n ≥ 3 the equation

Xn + Y n = Zn (1.1)

has no integer solutions with X, Y, Z ≥ 1. Inspiring generations of work in
number theory, its proof was finally achieved by Wiles. A qualitative result,
Finite Fermat, was obtained earlier by Faltings; it says the Fermat equation has
only a finite number of solutions (for each given n, up to rescaling).

This paper is an appreciation of some of the topological intuitions behind
number theory. It aims to trace a logical path from the classification of sur-
face diffeomorphisms to the proof of Finite Fermat. The route we take is the
following.

§2. The isotopy classes of surface diffeomorphisms f : S → S form the map-
ping class group Mod(S). Thurston showed the elements of Mod(S) can
be classified into 3 types, depending on their dynamics: finite order, re-
ducible and pseudo-Anosov. We begin by explaining a complex-analytic
approach to this classification, using the geometry of the moduli space
Mg of Riemann surfaces of genus g.

§3. An analytic family of Riemann surfaces C/B determines a classifying map
B → Mg and a monodromy map π1(B) → π1(Mg) = Mod(S). Contin-
uing the study of moduli space, we sketch the Imayoshi-Shiga proof that
there are only finitely many families (truly varying and of fixed genus)
over a fixed 1-dimensional base B. A key step is to show that a family is
determined by its monodromy.

∗Research partially supported by the NSF. 1991 Mathematics Subject Classification:
11G30 (32G15, 57Mxx).
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§4. Next we present Parshin’s trick, using branched coverings, to deduce the
finiteness of sections s : B → C from the finiteness of families C/B.

§5. To begin the transition to algebra, we connect Galois theory to the fun-
damental group, homology and monodromy.

§6. Finally we sketch Falting’s proof of Finite Fermat. Let C be the Riemann
surface defined by the Fermat equation (1.1). Arithmetically, we think of
this curve as a family spread out over a base B = Spec Z − S consisting
of (most of) the prime numbers. An integral solution can be reduced
mod p, so it determines a section of C/B. The role of the monodromy is
played by the action of the Galois group of Q/Q on the homology of C.
By controlling the dynamics of the Galois group, we find there are just
finitely many families C/B, hence finitely many sections of C/B, hence
finitely many solutions to the Fermat equation (1.1).

In retrospect it seems Fermat, like his contemporary M. Jourdain, was unwit-
tingly speaking of not just number theory but topology.

This paper is based on a lecture given at MSRI in 1997 in recognition of
Thurston’s term as director, 1992-97, and inspired in part by an essay of Little-
wood [Lit]. For historical accounts and detailed proofs of the developments we
outline here, see the references and notes collected at the end. I would like to
thank N. Elkies, B. Mazur, R. Taylor and the referees for their help.

2 Complex analysis and dynamics on surfaces

Let S be a smooth oriented surface of genus g ≥ 0. By a simple loop α ⊂ S we
mean an unoriented embedded circle that cannot be shrunk to a point. Let S
be the set of isotopy classes of simple loops on S. The intersection pairing

i : S × S → {0, 1, 2, 3, . . .}

is defined so i(α, β) is the minimum possible number of transverse intersections
between representatives of α and β.

The mapping class group Mod(S) is the group of isotopy classes of orientation-
preserving diffeomorphism f : S → S; the group law is composition. There is a
natural action of Mod(S) on (S, i).

In this section we discuss a dynamical classification of elements of Mod(S),
that sheds light on the behavior of their iterates fn : S → S.

Example: the torus. For g = 1, we have Mod(S) ∼= SL2(Z) because the
mapping class group acts faithfully on the homology H1(S, Z) ∼= Z2. Moreover
a simple loop can be recorded by its slope in homology, giving an isomorphism
between S and the rational points on a circle:

S = PH1(S, Q) ∼= P(Q2) ⊂ RP1 = R ∪ {∞}.
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Then Mod(S) acts on S by Möbius transformations, preserving the form

i
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The automorphisms of a torus can be classified into 3 types, depending on
their dynamical behavior.

1. Finite order. The mapping f∗ : H1(S, R) → H1(S, R) has complex eigen-
values, and fn = id for some n > 0.

2. Reducible. The map f∗ has a multiple eigenvalue of ±1. Then f preserves
a rational slope p/q ∈ PH1(S, R), and so it stabilizes a simple loop α ∈ S.
Thus f or f2 is a Dehn twist about α.

3. Anosov. The mapping f∗ has real eigenvalues K±1, preserving a pair of
irrational slopes λ± ∈ PH1(S, R).

Using the identification S ∼= R2/Z2, the linear action of f∗ ∈ SL2(Z) gives
a linear, area-preserving map F : S → S isotopic to f . In the Anosov
case, F preserves the pair of foliations F± of S by lines of slope λ±. The
leaves of F+ are stretched by a factor of K, and those of F− are shrunk
by 1/K. For any α, β ∈ S, the loop Fn(α) is nearly parallel to F+, with
length comparable to Kn; thus the intersection number satisfies

i(Fn(α), β) ≍ Kn →∞ (2.1)

as n→∞.

Higher genus. Now suppose S has genus g ≥ 2. To generalize the classification
above, let us say f ∈Mod(S) is:

2′. Reducible if there exists a finite set α1, . . . , αn ∈ S, permuted by f , with
i(αi, αj) = 0; and

3′. Pseudo-Anosov if there is an expansion factor K > 1 such that the inter-
section number i(fn(α), β) grows like Kn for all α, β ∈ S.

Our main goal in this section is to sketch the proof of Thurston’s result:

Theorem 2.1 (Classification of Surface Diffeomorphisms) Any mapping
class f ∈Mod(S) is either reducible, pseudo-Anosov or of finite order.

In the pseudo-Anosov case, the proof also furnishes foliations of S with isolated
singularities, whose leaves are stretched by K±1 under a suitable representative
of f .

Remark on surface bundles. An S-bundle C → B determines a monodromy
representation

π1(B)→ Mod(S)
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recording the twisting of the fibers under transport around loops in the base.
The simplest case is that of a 3-manifold fibering over the circle, M3 → S1;
then the image of π1(S

1) is a cyclic group 〈f〉 ⊂ Mod(S). Thurston has shown
M3 admits a metric of constant negative curvature iff f is pseudo-Anosov.

Riemann surfaces. The proof of the classification we present is motivated by:

Theorem 2.2 Let X be a compact Riemann surface of genus g ≥ 2. Then
the conformal automorphism group Aut(X) is finite, and any isotopy class f ∈
Mod(X) is represented by at most one conformal map.

To see this finiteness, first recall a Riemann surface of genus 2 or more is
hyperbolic; that is, the universal cover X̃ of X is isomorphic to the unit disk
∆ ⊂ C. Thus X is the quotient of ∆ by a conformal action of π1(X) ⊂ Aut(∆)
(Figure 1). Since Aut(∆) preserves the metric

ρ =
2 |dz|

1− |z|2 (2.2)

of constant curvature −1 on ∆, we obtain a hyperbolic metric on X canonically
determined by its conformal structure.

The classical Schwarz Lemma states that a holomorphic map f : X → Y
between hyperbolic Riemann surfaces can only shrink the hyperbolic metric;
that is,

d(f(x), f(x′)) ≤ d(x, x′)

for all x, x′ ∈ X . In particular, Aut(X) acts by isometries.

−→

Figure 1. A surface of genus 2 covered by the hyperbolic disk.

Proof of Theorem 2.2. Let f, g : X → X be a pair of isotopic conformal
maps. Since X is compact, in the course of the isotopy points move only a
bounded distance D. Lifting to the universal cover, we obtain a pair of analytic
maps f̃ , g̃ : ∆→ ∆ with d(f(x), g(x)) ≤ D in the hyperbolic metric (2.2). Since
the ratio of Euclidean to hyperbolic distance tends to zero at the boundary
of the disk, we have f̃ = g̃ on S1. But an analytic map is determined by its
boundary values, so f̃ = g̃ and thus f = g.

4



Thus the natural map Aut(X)→ Mod(X) is injective; in particular, Aut(X)
is discrete. On the other hand, Aut(X) is also compact, because it preserves
the hyperbolic metric on X ; thus the automorphism group of X is finite.

Teichmüller space. To relate Mod(S) to Aut(X), we now introduce the
Teichmüller space Teich(S) of all complex structures on S.

A point in Teich(S) is specified by a Riemann surface X together with a
diffeomorphism h : S → X . The map h provides a marking of X by S; for
example, it gives an identification between π1(S) and π1(X). Two marked
surfaces (h : S → X) and (g : S → Y ) define the same point in Teich(S) if
g ◦ h−1 : X → Y is isotopic to a conformal map.

The mapping-class group Mod(S) acts on Teich(S) by changing the marking;
that is, f ∈Mod(S) acts by

f · (h : S → X) = (h ◦ f−1 : S → X).

The moduli space of Riemann surfaces of genus g = g(S) is the quotient space:

M(S) = Teich(S)/ Mod(S).

From the definitions it is immediate that f ·X = X in Teich(S) if and only
if f is represented by a conformal automorphism of X . But Aut(X) is finite,
so we can then conclude that f has finite order. Thus to classifying elements
f ∈ Mod(S), one is led to consider the dynamics of f on Teichmüller space.

Length functions. Next we introduce the geodesic length functions

ℓ : S × Teich(S)→ R+,

assigning to each simple loop α ⊂ S the length ℓα(X) of the geodesic repre-
sentative of h(α) in the hyperbolic metric on X . These ℓα provide coordinates
making Teich(S) into a smooth manifold, diffeomorphic to a ball of dimension
6g − 6.

By Gauss-Bonnet, the hyperbolic area of X is a constant, π(4g − 4). Thus
the only way the shape of X can degenerate is by a thin neck pinching off. More
precisely, letting

L(X) = inf{ℓα(X)}
denote the length of the shortest geodesic loop on X , we have:

Theorem 2.3 (Mumford) For any r > 0, {X : L(X) ≥ r} is a compact
subset of the moduli space M(S).

A short geodesic is the core of a long, thin tube, and we have:

Proposition 2.4 There is an ǫ0 > 0 such that if:

{α1, . . . , αn} = {α : ℓα(X) < ǫ0},

then i(αi, αj) = 0 and n ≤ 3g − 3.
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The count 3g − 3 is purely topological: it is the maximum number of disjoint
simple loops on S with no pair isotopic.

Distance between Riemann surfaces. As a final ingredient to the study of
surface diffeomorphisms, we introduce a metric on Teich(S) such that Mod(S)
acts by isometries.

The Teichmüller metric is defined by

d(X, Y ) =
1

2
log inf

{
K ≥ 1 :

there exists a K-quasiconformal map

f : X → Y respecting markings

}
·

Here a diffeomorphism f : X → Y is K-quasiconformal if f ′ : TX → TY sends
infinitesimal circles to ellipses with major and minor axes in ratio 1 ≤ M/m ≤
K. Just as conformal maps are hyperbolic isometries, quasiconformal maps
distort lengths of closed geodesics by a bounded factor; we have:

1

K
ℓα(X) ≤ ℓα(Y ) ≤ Kℓα(X) (2.3)

when there is a K-quasiconformal map f : X → Y .

Proof of Theorem 2.1 (Classification of Surface Diffeomorphisms).
Since Teich(S) is simply-connected, we can identify Mod(S) with π1(M(S)), the
orbifold fundamental group of moduli space. A mapping-class f then determines
a free homotopy class of loop γ : S1 → M(S). The strategy of the proof is to
seek the shortest representative of γ.

To this end, define the translation length of f by

τ(f) = inf
X∈Teich(S)

d(X, f ·X). (2.4)

We distinguish 3 cases.

I. τ(f) = 0, achieved. If f has a fixed-point X ∈ Teich(S), then by defi-
nition the marking h : S → X transfers f to the isotopy class of a conformal
automorphism F : X → X . Since Aut(X) is finite, F has finite order, so f has
finite order as well.

II. τ(f) > 0, achieved. Next suppose we can find a Riemann surface such
that d(X, f ·X) = τ(f) > 0. Then the isotopy class of f can be represented by a
K2-quasiconformal map F : X → X , where K = exp(τ(f)) > 1. By a theorem
of Teichmüller, outside a finite set of singularities there exist complex charts in
the domain and range such that this optimal map F is an affine stretch:

F (x + iy) =
x

K
+ iKy.

Because d(X, f ·X) is minimized, the lines of stretch are preserved by F , defining
a pair of invariant singular foliations F± whose leaves are stretched by K±1.
Thus for α, β ∈ S, the loop Fn(α) is stretched along F+ as n → ∞, so the
intersection number satisfies

i(Fn(α), β) ≍ Kn
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and f is pseudo-Anosov.

III. τ(f) is not achieved. Finally suppose the infimum in (2.4) is not
achieved. Consider a sequence Xn ∈ Teich(S) with d(Xn, f · Xn) → τ(f).
The corresponding loops γn : S1 → M(S) must exit every compact subset of
moduli space, else we could extract a convergent subsequence. Thus by Mum-
ford’s theorem the length of the shortest hyperbolic geodesic on Xn must shrink
to zero. We will show the short geodesics on Xn reveal the reducibility of the
mapping-class f .

Since d(Xn, f ·Xn) is bounded, there is a uniform K such that f is represented
by a K-quasiconformal map

Fn : Xn → Xn.

Let ǫ = ǫ0/K3g−3, and choose n large enough such that the shortest loop γ ∈ S
on Xn has length ℓγ(Xn) < ǫ.

Let
A = {α : ℓα(Xn) < ǫ0} ⊂ S

be the set of all isotopy classes of short loops on Xn; then |A| ≤ 3g − 3 by
Proposition 2.4. On the other hand, the bound (2.3) on the length distortion of
K-quasiconformal maps implies the loops

〈γ, Fn(γ), F 2
n(γ) . . . , F 3g−3

n (γ)〉

have lengths less than

〈ǫ, Kǫ, K2ǫ, . . . , K3g−3ǫ = ǫ0〉,

so they all belong to A. Thus γ = F i
n(γ) for some 1 ≤ i ≤ 3g − 3, and hence f

is reducible.

Figure 2. The moduli space of a torus,M1 = H/SL2(Z).

The torus, reprise. For genus g = 1, Teich(S) is isomorphic to the upper
half-plane H with Mod(S) ∼= SL2(Z) acting by Möbius transformations. The
moduli spaceM1 = H/SL2(Z) is the (2, 3,∞) orbifold, a sphere with one cusp
and two cone-points (Figure 2). Every nontrivial loop onM1 is either
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• represented by a geodesic,

• homotopic to a cone point, or

• homotopic to a short loop around the cusp.

These possibilities correspond to the Anosov, finite order, and reducible mapping-
classes respectively.

3 Families of Riemann surfaces

In this section we will show an argument similar to the classification of surface
diffeomorphisms leads to a proof of:

Theorem 3.1 (Geometric Shafarevich conjecture) For a given base B and
genus g ≥ 2, there are only finitely many truly varying families C/B with fibers
of genus g.

Definitions. By a family C/B we mean the data of:

• a 1-dimensional complex manifold B, connected, forming the base of the
family; and

• a 2-dimensional complex manifold C, the total space, equipped with a
holomorphic fibration π : C → B; such that

• the fibers Ct = π−1(t) are compact Riemann surfaces of genus g; and

• B is isomorphic to B − P , the complement of a finite set P (possibly
empty) in a compact Riemann surface B.

A family is locally constant if Ct
∼= Cu for all t, u ∈ B; otherwise it is truly vary-

ing. We regard two families C, C′ over B as the same if there is an isomorphism
C ∼= C′ respecting the projections to B.

The proof of finiteness we will sketch, due to Imayoshi and Shiga, is based
on a Schwarz Lemma for moduli space.

Complex geometry of Mg. Let Mg denote the moduli space of Riemann
surface of genus g ≥ 2; Tg its universal covering, Teichmüller space; and Modg =
π1(Mg) the mapping-class group.

There is a natural complex structure on Mg such that any family C/B
determines a holomorphic classifying map

F : B →Mg,

defined by F (t) = [Ct], and a monodromy representation

F∗ : π1(B, t)→ Mod(Ct) ∼= π1(Mg),

recording the twisting of the fiber under transport around closed paths in the
base.
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With the complex structure lifted from Mg, Tg is isomorphic to an open,

bounded domain in C3g−3. Lifting F to the universal cover B̃ of B, we obtain
a bounded analytic map

F̃ : B̃ → Tg ⊂ C3g−3.

Thus if B̃ is isomorphic to Ĉ or C, then F̃ must be constant and therefore all
families C/B are trivial.

Now consider the case where B is hyperbolic, i.e. B̃ ∼= ∆. Even in this case,
the boundedness of Tg controls the geometry of maps F̃ : ∆→ Tg. This control
is made precise by Royden’s theorem:

Theorem 3.2 (Modular Schwarz Lemma) Any holomorphic map F : B →
Mg is distance-decreasing from the hyperbolic metric on B to the Teichmüller
metric on Mg. In fact d(F (s), F (t)) ≤ d(s, t)/2.

We regard this theorem as a Schwarz Lemma for maps with targetMg.

Example: Monodromy over ∆∗. Let C/∆∗ be a family of Riemann surfaces
of genus g over the punctured disk ∆∗ = {t : 0 < |t| < 1}. In the hyperbolic
metric, ∆∗ has a cusp at t = 0; as r tends to zero, the hyperbolic length of
the circle S1(r) also tends to zero. The classifying map F : ∆∗ →Mg shrinks
distances, so the generator of the monodromy group

F∗(π1(∆
∗)) = 〈f〉 ⊂ Modg

has translation length τ(f) = 0. By the classification of surface diffeomorphisms,
f is reducible or of finite order. Thus a finite iterate fn is simply a product of
Dehn twists (a classical observation of Lefschetz).

Proof of Theorem 3.1 (Geometric Shafarevich Conjecture). Mimicking
the proof of finiteness of Aut(X), we will show there are only finitely many truly
varying families C/B by showing the space F of all classifying maps F : B →
Mg is compact and discrete.

I. Irreducibility. Fix a basepoint t ∈ B. As for a mapping-class, we say C/B
is reducible if the monodromy group

H = F∗(π1(B, t)) ⊂Mod(Ct)

preserves a collection of disjoint simple loops {α1, . . . , αm} on Ct.
Suppose C/B is reducible, and let α be simple loop on Ct with finite mon-

odromy. After passing to a finite covering of B, we can assume α is invariant
under π1(B). By a theorem of Wolpert, the geodesic length L(u) = ℓα(Cu)
(now globally well-defined) is subharmonic; that is ∆u ≥ 0. By the maximum
principle, L(u) is constant on B.

Consider the smallest convex subsurface D ⊂ Ct carrying all loops such
as α with finite monodromy. Using the rigidity of D and an argument with
quasifuchsian groups, one can show that ∂D = ∅. Thus D = Ct, and the family
C/B is trivial.
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Summing up, a truly varying family C/B is irreducible.

II. Compactness. To show F is compact, we begin by showing the basepoint
F (t) must lie in a compact subset of moduli space. By Mumford’s theorem, it
suffices to find ǫ > 0 such that the length of the shortest geodesic on [Ct] = F (t)
satisfies L(Ct) ≥ ǫ.

Choose a finite set of closed paths γ1, . . . , γn on B generating π1(B, t).
By Royden’s theorem, there is a uniform bound K ≥ 1 (depending only on
max ℓ(γi)) such that the monodromy of C/B around γi is represented by a
K-quasiconformal map fi : Ct → Ct.

Let ǫ = ǫ0/K3g−3. Suppose the shortest loop α1 on Ct has length less than
ǫ, and let {α1, . . . , αm} enumerate all loops on Ct shorter than ǫ0, in order of
increasing length. Since m ≤ 3g − 3 there is an index p such that

Kℓαp
(Ct) < ℓαp+1

(Ct).

Now fi changes the lengths of loops by at most a factor of K (by (2.3), so fi must
permute the loops {α1, . . . , αp}. Since 〈fi〉 generates the full monodromy group
F∗(π1(B)), the system of curves {α1, . . . , αp} is invariant over the entire base
B, and thus C/B is reducible. Hence C/B is trivial, contrary to our assumption
that C/B is a truly varying family.

Thus F (t) lies in the compact set {X ∈ Mg : L(X) ≥ ǫ} for all F ∈ F . Since
F : B →Mg is distance decreasing, the family F is bounded and equicontinuous
on each compact subset of B. Thus any sequence has a convergent subsequence,
and hence F is compact.

III. Discreteness. Finally we show F is discrete. If F, G ∈ F are close enough,
then they are homotopic. We will show this implies F = G.

Since F and G are homotopic, there are lifts

F̃ , G̃ : ∆→ Tg ⊂ C3g−3

with
sup
t∈∆

d(F̃ (t), G̃(t)) ≤ D (3.1)

in the Teichmüller metric on Tg.

By a theorem of Fatou, a bounded analytic function such as F̃ has well-
defined boundary values F̃ (t) for almost every t ∈ S1. In a truly varying family,

the boundary values lie in ∂Tg, since the image F̃ (∆) is properly embedded in
Teichmüller space.

Now ∂Tg contains a countable union of complex hypersurfaces A, parame-
terizing curves with nodes that arise as limits of curves of genus g. Along a
given component of A, the nodes are marked by a set of simple closed curves on
S. But the monodromy F∗(π1(B)) is irreducible, so there are no distinguished

simple closed curves on S, and thus (almost all) the boundary values of F̃ lie in
∂Tg −A.

On the other hand, one knows that the ratio of the Euclidean metric on Cn

to the Teichmüller metric on Tg tends to infinity at points in ∂Tg−A, so by (3.1)
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we have F̃ (t) = G̃(t) for almost every t ∈ S1. Since a holomorphic function is
determined by its boundary values, we have F = G.

IV. Finiteness. Having shown F is compact and discrete, we conclude that
the set of potential classifying maps for C/B is finite. The classifying map
F : B → Mg determines the family C/B up to finitely many choices (limited
by |Hom(π1(B), Aut(Ct))|), and hence there are only finitely many truly varying
families C/B of genus g.

From the proof we also record:

Corollary 3.3 (Rigidity) A truly varying family C/B is determined up to
finitely many choices by its monodromy F∗ : π1(B)→ Modg.

4 Branched covers

In this section we present Parshin’s argument bounding the number of holomor-
phic sections of a family C/B in terms of the number of families D/B of higher
genus. (The same construction was used by Kodaira to construct truly varying
families over a compact base.)

Theorem 4.1 Given a genus g ≥ 1 and a base B, there exists a genus h ≥ 2
and a finite-to-one map

{
Families C/B with fibers of genus g,

equipped with sections s : B → C

}
→
{

Families D/B

with fibers of genus h

}
.

For each t ∈ B, the surface Dt is a covering of Ct branched over the single point
s(t) ∈ C(t).

Here we regard (C, s) and (C′, s′) as the same if there is an isomorphism
C ∼= C′ over B sending s to s′.

Proof. Given a pointed topological surface (S, p) of genus g, we can form the
covering space

π : T → (S, p)

corresponding to the kernel of the map

π1(S, p)→ H1(S, Z/2) ∼= (Z/2)2g.

Letting P = π−1(p), we can similar form the branched covering U → T corre-
sponding to the map

π1(T − P )→ H1(T − P, Z/2).

Since |P | > 1, any small loop around a point of P is nonzero in H1(T −P, Z/2),
and hence U → T is branched over every point in P .
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The composite branched covering U → (S, p) is canonical, so the corre-
sponding family of branched coverings Dt → (Ct, s(t)) fit together to form a
family D/B. The original family C/B is a quotient of D/B by a subgroup of
Aut(D/B), and the graph of the section, s(B) ⊂ C, corresponds to the fixed-
point set of an element of Aut(D/B). Since Aut(D/B) is finite, the family D/B
determines C/B and s : B → C up to finitely many choices.

−→

Figure 3. A surface of genus 3 is a double cover of a torus branched along 4 points.

Example. Let (S, p) = (R2/Z2, 0) be a flat torus. Then (T, P )→ (S, p) covers
S by degree 4, with P the points of order 2 on T . The covering U → T , branched
over P , has genus 33 and deck group (Z/2)5; it is the compositum of 5 double
coverings, each of the form shown in Figure 3.

Corollary 4.2 (Geometric Mordell Conjecture) A truly varying family C/B
of genus g ≥ 2 has only a finite number of sections s : B → C.

Proof. For each section s : B → C, we can form the family D/B of genus h ≥ 2
branched over s(B). The number of truly varying families D/B is finite, so the
number of pairs (C, s) is finite up to automorphism over B. But Aut(C/B) is
finite, so the number of sections s : B → C is finite as well.

5 Monodromy over a field

To begin the passage from geometry to arithmetic, in this section we discuss
relatives of the fundamental group, homology and monodromy that can be con-
structed via algebraic geometry.

Valuations. Let B be a compact Riemann surface. Algebraically, B is specified
by its field of meromorphic functions K = K(B).

A (discrete) valuation on K is a surjective homomorphism

v : K∗ → Z,
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defined on the multiplicative group of K and satisfying v(f+g) ≥ min(v(f), v(g)).
All valuations are of the form

vp(f) = ordp(f),

where ordp(f) = n (or −n) if f has a zero (or pole) of order n at p. Thus the
points of B can be recovered as the valuations of K.

Algebraic π1. Let K denote the algebraic closure of K. The Galois group
Gal(K/K) is a first approximation to an algebraic version of π1(B).

To describe this Galois group topologically, recall that the profinite comple-
tion of a group G is the inverse limit

Ĝ = lim
←−

G/N

over all normal subgroups N of finite index. For any space E, let π̂1(E) denote
the profinite completion of π1(E).

Every algebraic extension of K is of the form K ′ = K(B
′
), where B

′ → B

is a finite covering branched over a finite set P ⊂ B. Since B
′
is determined by

a subgroup of finite index in π1(B − P ), we can take the limit over all possible
P and obtain:

Gal(K/K) = lim
←−

P

π̂1(B − P ).

Thus the algebraic closure K detects the fundamental group of B ‘punctured
everywhere’.

Ramification. To construct a Galois group closer to π1(B), let us say a field
extension K ′/K of degree d is ramified over a valuation vp if there are fewer
than d extensions of vp to a valuation v′ on K ′. The ramified valuations vp

correspond exactly to the branch points p of B
′ → B.

Let KP ⊂ K denote the field generated by all finite extensions of K ramified
only over vp, p ∈ P ⊂ B. Then for any finite set P ⊂ B we have

Gal(KP /K) ∼= π̂1(B − P ). (5.1)

In particular we can recover π̂1(B) as a Galois group by taking P = ∅.
Monodromy. Let C/B be a family over a base B = B − P . With the Galois-
theory version (5.1) of π1(B) in hand, we now turn to the construction of an
algebraic relative of the monodromy map

F∗ : π1(B, t)→ Mod(Ct).

The first step is to retreat from the mapping-class group, by replacing π1(Ct)
with the family of groups H1(Ct, Z) ∼= Z2g. We then obtain a linear represen-
tation

ρ : π1(B, t)→ Aut(H1(Ct, Z)) = GL2g(Z), (5.2)

recording the twisting of homology around loops on the base.
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Next fix a prime ℓ, and let Zℓ = lim
←−

Z/ℓn denote the ℓ-adic integers. Note

that any prime p 6= ℓ becomes invertible in ℓ; the local ring Zℓ is the completion
of Z at ℓ. By reducing mod ℓn we obtain a system of finite representations

ρℓn : π1(B)→ GL2g(Z/ℓn)

that fit together to determine a map

ρ̂ℓ : Gal(KP /K) ∼= π̂1(B) → GL2g(Zℓ).

This ℓ-adic Galois representation is nothing more than the completion at ℓ
of the monodromy on integral homology (5.2). Our goal is to reconstruct ρ̂ℓ

using the methods of algebraic geometry.

The Jacobian. The first step is to use the Jacobian to build an algebraic
version of the homology of C.

Let X be a compact Riemann surface of genus g ≥ 1. A divisor D =∑
ap · p ∈ Z[X ] is a finite formal sum of points of X ; its degree is

∑
ap. A

principal divisor is one of the form

D = (f) =
∑

p

vp(f) · p,

where f ∈ K∗(X) is a meromorphic function and vp(f) is the valuation of f at
p. The Jacobian of X is the quotient

Jac(X) = Div0(X)/{(f) : f ∈ K∗(X)}

of divisors of degree zero by principal divisors.
By a theorem of Abel, the Jacobian is a complex projective torus, or Abelian

variety, alternatively described as:

Jac(X) = Ω(X)∗/H1(X, Z) ∼= Cg/Λ.

Here Ω(X) is the vector space of holomorphic 1-forms θ on X ; these pair linearly
with cycles γ ∈ H1(X, Z) by

〈γ, θ〉 =

∫

γ

θ ∈ C.

Fixing q ∈ X , there is a natural embedding

X → Jac(X)

sending p to the divisor p− q, and inducing an isomorphism on homology:

H1(X, Z) ∼= H1(Jac(X), Z). (5.3)

Moreover the map Xg → Jac(X) given by (pi) 7→
∑

(pi− q) is surjective. Using
this surjectivity one can derive algebraic equations for Jac(X) as a projective
variety in terms of equations for X .

14



For any Abelian variety A of dimension g, let A[n] ∼= (Z/n)2g denote its
points of order n. Then from (5.3) we have

H1(X, Z/ℓn) ∼= Jac(X)[ℓn].

Since the group law on Jac(X) is algebraic, the finite set Jac(X)[ℓn] is defined
by a system of algebraic equations and can be constructed without reference to
the topology of X . This is the desired algebraic version of homology.

Families of Abelian varieties. We can now associate to each family C/B a
family of Abelian varieties A/B with At = Jac(Ct). For any n ≥ 0, the family
of groups At[ℓ

n] ∼= (Z/ℓn)2g becomes trivial after passing to a finite covering of
the base, and thus the deck transformations determine a representation

ρℓn : π1(B)→ Aut A[ℓn] = GL2g(Z/ℓn).

Since the target is finite, we obtain a system of representations of π̂1(B) ∼=
Gal(KP /K), K = K(B), compatible under the map

A[ℓn+1]→ A[ℓn]

given by multiplication by ℓ. Passing to the limit as n→∞, we obtain a purely
algebraic construction of the ℓ-adic representation

ρ̂ℓ : Gal(KP /K)→ GL2g(Zℓ). (5.4)

This is the desired algebraic version of monodromy.

Moduli of Abelian varieties. For one final perspective on (5.4), we recall
that the moduli space of (principally polarized) Abelian varieties is given by
the quotient Ag = Hg/Sp2g(Z), where Hg is the Siegel upper halfspace of g × g
symmetric complex matrices Z with Im(Z) positive definite.

From a family C/B we obtain maps

B
F→Mg

Jac→ Ag

whose composition Jac ◦F classifies the family A = Jac(C)/B. Passing to profi-
nite fundamental groups, we obtain a sequence of successively coarser mon-
odromy representations:

Gal(KP /K) ∼= π̂1(B) → π̂1(Mg) → π̂1(Ag) → GL2g(Zℓ).

The first map records the action of the Galois group of the base on all finite
covers of the fibers; the last, on the ℓ-adic homology of the fibers. This last
representation is the ℓ-adic monodromy ρ̂ℓ.

6 Finite Fermat

In this section we finally sketch the proof of:
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Theorem 6.1 (Finite Fermat) For n ≥ 4, the equation

Xn + Y n = Zn (6.1)

has only a finite number of integral solutions with gcd(X, Y, Z) = 1.

In brief, the idea of the proof is to think of the Riemann surface C ⊂ P2(C)
defined by (6.1) as a family C/B spread out over the prime numbers p ∈ Z. The
fiber Cp is the reduction of C mod p. An integral solution to the Fermat equation
gives a coherent family of points on each fiber Cp, and hence a section of C/B.
The condition n ≥ 4 implies the genus bound g(C) ≥ 2; thus Finite Fermat
follows from an arithmetic version of the finiteness of sections for families C/B.

To understand the sense in which the Fermat equation determines a family
C/B, we begin with a study of the base.

Spec Z. The spectrum of the ring of integers Z is the space

Spec Z = {0, 2, 3, 5, 7, 11, . . .}

consisting of the prime numbers p ∈ Z, plus the ‘generic point’ 0. This space
comes equipped with a topology and a sheaf O that plays the role of the sheaf
of holomorphic functions on a Riemann surface. The global sections of O are Z

itself, and the field of meromorphic functions becomes K(B) = Q.
One can also see the prime numbers as points by considering valuations on

K(B) = Q. Indeed, every valuation v : Q∗ → Z is of the form

vp(r/s) = ordp(r) − ordp(s)

for some prime number p ∈ Z, where ordp(r) is the largest n such that pn divides
r.

The shape of a prime. A valuation v on a field K determines:

• A local ring Ov = {f : v(f) ≥ 0} ⊂ K;

• The maximal ideal mv = {f : v(f) > 0} in Ov;

• A residue field k = Ov/mv; and

• A local fundamental group G = Gal(k/k) .

For example, if B is a compact Riemann surface, K = K(B) and v = vp for
p ∈ B, then Ov is the ring of meromorphic functions analytic at p, and the map

Ov 7→ Ov/mv = k ∼= C

is simply the point evaluation f 7→ f(p). Since C is algebraically closed, the
local fundamental group G at p is trivial, reflecting the contractibility of p.
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In contrast, a prime p ∈ Z behaves more like a circle than a point. For the
corresponding valuation v = vp on K = Q we have

Ov = Z(p) = {r/s : (s, p) = 1}
mv = pZ(p)

k = Fp
∼= Z/pZ

G = Gal(Fp/Fp) = Ẑ.

The local fundamental group G = Ẑ (the profinite completion of Z) is (topo-
logically) generated by the Frobenius automorphism σp of Fp sending x to xp.

Since π̂1(S
1) = Ẑ as well, we are led to picture a prime as a topological circle.

The fibers of C. Let C/B be a family over a Riemann surface B. Then the
fiber Cp over p ∈ B can be described as the reduction of C to a curve over the
residue field C = Op/mp.

Similarly, if C ⊂ P2 is a plane curve defined by a homogeneous equation
F (X, Y, Z) ∈ Z[X, Y, Z], then for each prime p ∈ Spec Z we can reduce F mod
p to obtain a curve Cp in the projective plane over Fp. We say C has good
reduction at p if Cp is smooth.

Loops in the base. When C is smooth to begin with, it has good reduction
outside a finite set of primes S; removing these points from the base, we obtain
a family with smooth fibers Cp, p 6∈ S. Thus the natural base for C is

B = (Spec Z)− S = Spec S−1Z.

By analogy with (5.1), the fundamental group of the base is

π̂1(B) = Gal(QS/Q),

where QS is the maximal algebraic extension of Q unramified outside S.
For example, the Fermat curve is given in the affine chart Z 6= 0 by the

equation f(x, y) = xn + yn = 1, with differential

df(x, y) = nxn−1dx + nyn−1dy.

So long as p does not divide n, the equation f = df = 0 has no solutions in F
2

p

and Cp is smooth. On the other hand, df vanishes identically when p divides n,
so the prime divisors of n give exactly the points of bad reduction S.

For each prime p 6∈ S, the Frobenius σp ∈ Gal(Fp/Fp) lifts to an element
of Gal(QS/Q), well-defined up to conjugacy, that we also denote by σp. By a
theorem of Čebotarev, the Frobenius elements are dense in Gal(QS/Q). One
can picture a prime p as a loop in the base B = (Spec Z) − S, and σp as the
corresponding element in π̂1(B). Monodromy around these ‘prime loops’ plays
a crucial role in the study of families defined over Q.

Homology and monodromy. Let C be a curve of genus g defined over Q,
with smooth fibers over B = Spec Z − S. Fix a prime ℓ and replace S with
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S∪{ℓ}. Then the Jacobian A = Jac(C) and the map x 7→ ℓx on A have natural
definitions over Q with good reduction outside S.

From the geometric theory of the Jacobian, discussed earlier, there is a
natural isomorphism

A[ℓn] = H1(C, Z/ℓn).

At the same time A[ℓn] has coordinates lying in a finite extension of Q, so we
get an action of the Galois group on the homology of C. Taking the limit as
n→∞, we obtain the ℓ-adic Galois representation

ρ̂ℓ : π̂1(B) = Gal(QS/Q) → AutH1(C, Zℓ) ∼= GL2g(Zℓ).

This linear action of π̂1(B) on the homology of C is the arithmetic version of
the monodromy.

Solutions to Fermat’s equation and branched covers. Now suppose
we have relatively prime integers (X, Y, Z) (such as (1, 0, 1)) solving Fermat’s
equation Xn + Y n = Zn. Then P = [X : Y : Z] ∈ P2(Q) gives a rational point
on the Fermat curve C. Using Parshin’s trick, we obtain a Riemann surface D
with a covering D → C branched over P , with the genus of D controlled by
that of C. By studying this covering arithmetically, one can show D is defined
over a finite extension K/Q with good reduction outside a finite set of primes
S, where (K, S) depends only on C. Finally D determines the rational point
P ∈ C up to finite ambiguity.

Thus to prove Theorem 6.1(Finite Fermat), it suffices to establish:

Theorem 6.2 (Arithmetic Shafarevich conjecture) Fix a number field K,
a finite set of primes S of K and a genus g ≥ 2. Then there are only finitely
many curves C of genus g defined over K with good reduction outside S.

Sketch of the proof. For concreteness we treat the case K = Q. Let A =
Jac(C), adjoin ℓ to S and let

ρ̂ℓ : Gal(QS/Q)→ GL2g(Qℓ)

be the monodromy representation. Let σp ∈ Gal(QS/Q) be a lift of the Frobe-
nius for each prime p 6∈ S. Since the conjugacy class of σp is determined by p,
the trace

Tr(σp) = Tr(ρ̂ℓ(σp))

is well-defined.
The strategy of the proof is to show that there are only finitely many possi-

bilities for ρ̂ℓ, and that each determines A and hence C up to finite ambiguity.
We will sketch the main steps, and indicate their resonance with ideas in the
geometric proof of §3.

1. Semisimplicity. The representation ρ̂ℓ is semisimple. In particular, ρ̂ℓ

is determined (up to conjugacy) by its trace

Tr ◦ρ̂ℓ : Gal(QS/Q)→ Zℓ.
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This semisimplicity is like the irreducibility of the monodromy

F∗ : π1(B)→ Mod(S)

demonstrated in §3. For example, if F∗(π1(B)) were reducible, generated by
Dehn twists about disjoint, homologically nontrivial loops, then ρ̂ℓ would be
unipotent rather than semisimple, with the same trace as the trivial represen-
tation.

2. Finite generation. There is a finite set of primes T disjoint from S
such that the traces 〈Tr(σp) : p ∈ T 〉 determine ρ̂ℓ.

This statement is similar to the finite generation of π1(B). One first shows
that different representations can be distinguished over an extension K/Q of
degree d ≤ d(ℓ, g). According to Hermite, there are only finitely many such ex-
tensions unramified outside S; and by Čebotarev, there is a finite set of primes T
such that for each K, 〈σp : p ∈ T 〉 represents every conjugacy class in Gal(K/Q).
The traces of these σp then determine ρ̂ℓ.

3. The Weil bounds. For any prime p 6∈ S, the trace of the Frobenius lies
in Z and obeys a bound |Tr(σp)| ≤ N(p, g) independent of C.

Weil showed the number of points on a curve over a finite field can be
computed by applying the Lefschetz fixed-point formula to the Frobenius; more
precisely,

|C(Fp)| =
∑2

i=0(−1)i Tr(σp|Hi(C, Qℓ))

= 1− Tr(σp|H1(C, Qℓ)) + p.
(6.2)

Each trace above actually lies on Z. Since

H1(C, Qℓ)
∗ = H1(C, Zℓ)⊗Qℓ,

we see the trace of the monodromy, Tr(σp), is the same as the middle term
in the Lefschetz formula, namely the trace of the Frobenius on H1. On the
other hand, |C(Fp)| is bounded above by Riemann-Roch; there is a rational
map C(Fp)→ P1(Fp) of degree 1 < d = O(g), so we have

|C(Fp)| ≤ d(g)|P1(Fp)| = O(gp).

By (6.2), we have |Tr(σp)| = O(gp) as well. (The Riemann hypothesis for curves
over finite fields, also proved by Weil, gives the sharper bound |Tr(σp)| ≤ 2g

√
p.)

Combining (1–3), we deduce:

Only finitely many representations ρ̂ℓ occur for fixed (S, g).

Remark: Lengths of primes. The Weil bound is reminiscent of the Modular
Schwarz Lemma (Theorem 3.2), i.e. the contracting property for holomorphic
maps F : B → Mg. For example, when g = 1 each α ∈ SL2(Z) determines a
closed loop onMg whose Teichmüller length satisfies

2 cosh(ℓα(Mg)) = |Tr(α)|.
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Since F shrinks the hyperbolic metric on B by at least a factor of two, for
α ∈ π1(B) we obtain the a priori bound:

|Tr(F∗α)| ≤ 2 cosh(ℓα(B)/2).

Is the Weil bound perhaps a measurement of the ‘hyperbolic length’ of the
loop represented by a prime?

4. Isogeny. The representation ρ̂ℓ determines A up to isogeny over Q.
A homomorphism φ : A→ B between Abelian varieties of the same dimen-

sion is an isogeny if its kernel is finite. If |Ker(φ)| is relatively prime to ℓ, then
φ induces an isomorphism

A[ℓn]→ B[ℓn]

for every n, and hence an isomorphism between the ℓ-adic representations ρ̂ℓ

for A and B. Hence the best one can hope for is that ρ̂ℓ determines A up to
isogeny, and indeed this is the case.

This result is an arithmetic version of the rigidity of families C/B, i.e. the
fact that a truly varying family is determined by its monodromy (Corollary 3.3).

5. Heights. Given A, there is an upper bound h(B) ≤ h0 on the height of
any Abelian variety B isogenous to A over Q.

Let Ω(A) be the 1-dimensional vector space of holomorphic sections of the
canonical bundle of A = Cg/Λ. Any θ ∈ Ω(A) lifts to a constant form

θ = C dz1 · · · dzg

on Cg. The arithmetic structure of A determines an additive subgroup of integral
g-forms,

Ω(A)Z = Zθ0 ⊂ Ω(A).

The intrinsic height h(A) measures the volume of the complex manifold A(C)
with respect to the minimal integral form:

h(A) = −1

2
log

(
1

2g

∫

A(C)

|θ0|2
)

.

The pulled-back volume increases under an isogeny π : A→ B:
∫

A

|π∗(θ0)|2 = deg(A/B)

∫

B

|θ0|2;

however in compensation one usually finds a shift in the minimal integral form,

[Ω(A)Z : π∗Ω(B)Z] =
√

deg(A/B),

and thus h(A) = h(B). Taking into account the less usual isogenies, one still
obtains a bound h(B) ≤ h0 depending only on A.

In the case of Riemann surfaces, a natural height on the moduli spaceMg is
given by h(X) = − logL(X), where L(X) is the length of the shortest geodesic.
To replace Mumford’s theorem that

Mg(ǫ) = {X : L(X) ≥ ǫ > 0}
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is compact, we have:
6. Finiteness. The set of Abelian varieties A/Q with height h(A) ≤ h0 is

finite.
Let us define the naive height of A/Q by

H(A) = log max{|p1|, |q1|, . . . , |pn|, |qn|},

where (pi/qi)
n
i=1 are the rational numbers appearing in suitable equations defin-

ing A. It suffices to show H(A) is controlled by h(A).
To convey the idea of the result, suppose A is the elliptic curve with equation

y2 = x(x− 1)(x− p/q),

0 < p/q < 1/2. Then H(A) = log q. Clearing denominators, we obtain the
minimal integral form

θ0 =
dy

x(x − 1)(qx− p)

on A, with volume

∫

A

|θ0|2 = 2

∫

C

|dx|2
|x(x − 1)(qx− p)| ≍

log(q/p)

q2
≤ log q

q2
·

The intrinsic height is essentially log(1/ vol(A)), so we find h(A) ≍ log q ≍
H(A). Thus a bound on h(A) pins A down to a finite set.

The general case entails the delicate construction of an arithmetic moduli
space for higher-dimensional Abelian varieties.

Combining (4–6), we deduce:

Only finitely many Abelian varieties A/Q correspond to a given
Galois representation ρ̂ℓ.

7. Polarizations. The last step in the proof is to show: The curve C is
determined by the Abelian variety A = Jac(C) up to finitely many choices.

The intersection pairing of topological 1-cycles on C gives a symplectic form

ω : ∧2H1(A, Z) = ∧2H1(C, Z) → Z.

The form ω is called a principal polarization of A; it determines a flat metric
making A into a Kähler manifold of total volume 1.

The classical Torelli Theorem states that C is uniquely determined by the
pair (A, ω). To show A alone determines C up to finite ambiguity, it suffices to
show the set of principal polarizations falls into finitely many orbits under the
action of Aut A.

To give an idea of the proof, we sketch instead a related result for a real torus
T = Rn/Zn. Instead of principal polarizations, we consider positive definite
quadratic forms q : H1(T, Z)→ Z determining flat metrics on T of total volume
1. We will show such q fall into finitely many orbits under the action of Aut T .
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The set of all pairs (T, q) determines a discrete set Q ⊂M, where

M = SOn(R)\SLn(R)/SLn(Z)

is the moduli space of flat tori of volume 1. On the other hand, because q is
an integral form, the q-length of the shortest geodesic loop satisfies L(T, q) ≥ 1.
By a result of Mahler (a precursor to Mumford’s theorem),

{(T, g) ∈M : L(T, g) ≥ 1}

is compact, so Q is finite. Thus there are only finitely many possibilities for q
up to the action of AutT .

Conclusion. Combining (1-7), we deduce that only a finite number of curves
C/Q of genus g have good reduction outside S.

The methods can be generalized to an arbitrary number field K.

With the Shafarevich conjecture in hand, Parshin’s covering trick yields:

Corollary 6.3 (Arithmetic Mordell’s Conjecture) A smooth curve C of
genus g ≥ 2 defined over a number field K has only a finite number of K-
rational points.

In particular, the Fermat equation with n ≥ 4 has only a finite number of
solutions.

More on arithmetic topology. The parallel approaches to the Shafarevich
conjectures, detailed above, are but one instance of the interplay between topol-
ogy, complex geometry and number theory. We conclude by mentioning a few
more examples and references.

1. The action of the Galois group Gal(Q/Q) on the homology of a curve
C can be refined to a representation into the arithmetic mapping-class

group M̂od(C). This mixture of Galois theory and topology, especially in
the case C = P1 − {0, 1,∞}, forms the basis for Grothendieck’s theory of
‘dessins d’enfants’, and has been the subject of much recent activity [Sn].

2. The intrinsic height of an abelian variety, formulated above, is an example
of Arakelov geometry, which aims to treat the finite and infinite places of
a field on an equal footing [La2], [So].

3. The analogy between number fields and functions fields of Riemann sur-
faces goes back at least to Weil [Wl2].

4. A dictionary between complex-analytic Nevanlinna theory and Diophan-
tine approximation has been developed by Vojta, leading to another proof
of Mordell’s conjecture [Voj1], [Voj2].

5. Mochizuki has developed the methods of Teichmüller theory in the p-adic
setting [Mo].
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6. Finally we mention that Mazur and others have suggested one should
picture the primes p ∈ Spec Z not just as loops, but as knots in a 3-
sphere. Class field theory then parallels the investigation of the homology
of branched covers of S3, and Iwasawa theory provides the analogue of the
Alexander polynomial for a prime.

In support of the correspondence

Spec Z ←→ S3,

note that Spec Z is ‘simply-connected’ (there are no unramified extension
of Q), and a ‘homology 3-sphere’ (Hp(Spec Z, Gm) = 0 except in dimen-
sions p = 0 and p = 3 [Maz1, p. 538]).

Ideas from number theory can also inform research on 3-manifolds; for
examples, see Reznikov’s papers on ‘arithmetic topology’ [Rez1], [Rez2,
§14].

7 Notes

§1. The proof of Fermat’s last theorem appears in [Wi], [TW]; for surveys, see
[RS], [Ri] and [DDT].

§2. Thurston’s classification of surface diffeomorphisms is outlined in [Th1] and
developed in detail in [FLP]; here we present Bers’ complex-analytic approach
[Bers]. Mumford’s compactness theorem appears in [Mum]; for a related result
due to Weil, see [Wl1]. For more about the hyperbolic geometry of surfaces, see
Buser’s text [Bus].

The theme of short geodesics, appearing here in the proofs of the classifi-
cation of surface diffeomorphisms and of the geometric Shafarevich conjecture,
is also seen in Thurston’s work on rational maps and hyperbolic 3-manifolds
via iteration on Teichmüller space [Mc1]. The theory of hyperbolic 3-manifolds
fibering over the circle is presented in [Th2] and [Ot]; see also [Mc2, §3], [Br].

We remark that by Mostow rigidity and the Hyperbolization Conjecture,
the mapping-class group Mod(M3) is expected to be finite for most closed 3-
manifolds.

§3. The geometric Shafarevich conjecture was proved by Arakelov, generalizing
Parshin’s treatment of the case of a compact base B [Ar], [Par]. The proof
sketched here is a slight variant of that by Imayoshi and Shiga [IS]; we use
Wolpert’s result that ℓα(X) is subharmonic [Wol].

A systematic introduction to the complex geometry of Teichmüller space is
provided by the texts [Gd], [IT], [Le], and [Nag]. These books present Bers’
model for Teichmüller space as a bounded domain, and cover Royden’s theorem
that the Teichmüller and Kobayashi metrics coincide.

The finiteness of families C/B also holds for genus g = 1 if we require that
C admits a section s : B → C. Without a section, there may be infinitely
many families of elliptic curves C/B for a given classifying map F : C →M1.
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Similarly one can construct infinitely many curves C/Q of genus 1 with a fixed
locus of bad reduction (and C(Q) = ∅); see [Maz2, p.241].

§4. The geometric Mordell conjecture was formulated by Lang and proved by
Manin [La1, p. 29], [Man]; see also [Gr]. Parshin’s trick appears in [Par]. The
same construction was used by Kodaira to exhibit truly varying families C/B
over a compact base [Ko].

For an alternate proof of the geometric Mordell conjecture, one can repeat
the argument of §3 using the fact that a section of C/B determines a classifying
map F : C/B →Mg,1 to the moduli space of pointed Riemann surfaces of genus
g.

Deligne proved quite generally that for any smooth complex projective family
of varieties V/B, the number of possible linear monodromy representations of
dimension n for a fixed B is finite [De2]. More precisely, if t ∈ B is a basepoint
and dimHi(Vt, Q) = n, then there are at most N(B, n) possibilities for the map

ρ : π1(B, t)→ GL(Hi(Vt, Q)) ∼= GLn(Q)

up to conjugacy.

§5. A detailed treatment of the Jacobian of a Riemann surface can be found in
Griffiths and Harris [GH].

§6. The arithmetic conjectures of Mordell and Shafarevich were proved by
Faltings [Fal]. Our sketch follows Deligne’s presentation [De1]. See also [Sz] (es-
pecially §5.2 on the arithmetic of the covering D → C). More about arithmetic
on curves, leading up to Falting’s theorem, can be found in Mazur’s survey
[Maz2] and the collection [CS].

Work on the Weil conjectures is surveyed in [Ka]. The finiteness of the
number of principal polarizations of a given abelian variety is proved in [NN];
see also Milne’s article [CS, Ch. V, §18].
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volume 121–122, 1985.
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