
The Paradoxical
Success of Aspect-

Oriented Programming

Johan Östlund

Friedrich Steinmann

Introduction

❖ AOP sets out to increase modularity and
structure of code by enabling the
modularization of cross-cutting concerns

❖ AOP is a promising new technology; in many
ways like OO once was

❖ AOP is being adopted by increasing numbers,
both in industry and academia

❖ AOP works against independent development
and understandability of code, two of the
primary purposes of modularization

❖ Thus, AOP’s success as a means of achieving
modularization is paradoxical

2

AOP
- a Moving Target

❖ Each AOPL comes with it’s own
(unambiguous) formal description of what
AOP is

❖ No single definition that is

~ common to all AOPLs and

~ sufficiently distinguishes it from other, long
established programming concepts

❖ There is though a common understanding
what AOP is good for, namely modularizing
cross-cutting concerns

3

The Aspect Formula

❖ The (probably) best known definition AOP is

aspect-orientation = quantification +
obliviousness

4

Obliviousness

❖ Obliviousness means that a program has no
knowledge of which aspects modify it or when

❖ Obliviousness as a defining characteristic of
AOP has been questioned by the AOP
community

❖ Some say hat obliviousness is what
distinguishes AOP from event-driven systems

❖ Obliviousness comes more as a side-effect of
quantification

5

Quantification

❖ Quantification means that an aspect can affect
arbitrarily many different points in a program

❖ Quantification is widely accepted as a defining
characteristic of AOP

6

The Aspect Formula,
cont’d

❖ The sentence “In programs P, whenever
condition C arises perform action A” captures
how an aspect (C, A) affects a given program P,

❖ but says nothing about P’s knowledge of the
aspect (C, A), and thus nothing about
obliviousness

❖ As the context provided to an action A is
provided by the aspect (C, A) and not by the
program P the program is oblivious to which
program elements an aspect relies on, as
opposed to a function call where arguments
are explicitly passed to the function

7

Interpretations of the
Aspect Formula

❖ Translated in terms of AspectJ the parts of the
formula read

~ P is the execution of a program, which
includes the execution of advice

~ C is a set of pointcuts specifying the target
elements of the aspect in the program and
the context in which they occur (mostly
variables, but also stack content)

~ A is a piece of advice that depends on the
context captured by C; and

~ the quantification is implicit in the weaver

8

Playing with the Formula

❖ Using different formulations of the condition
C we can investigate AOP, or really the above
definition

9

Awareness Extreme

❖ Consider a condition C such as

In programs P, whenever an aspect is
referenced, perform its associated action A

❖ This expresses nothing more than the
semantics of a standard procedure call

❖ This shows that quantification can be
completely independent of obliviousness, as all
places where condition C can arise are marked
in the program text

❖ The programmer of P needs to now about
which aspects are there, how they are named
and how they work

❖ This is not AOP, but it shows that the
“definition” of AOP is quite stretchable

10

Obliviousness Extreme

❖ Consider a condition C such as

In programs P, whenever Random indicates it,
perform action A

❖ This means that all points in a program are
implicitly marked, but execution of A remains
uncertain

❖ The programmer of P may be aware of AOP,
but has no knowledge of the existence or
behavior of any aspect

11

Taming Obliviousness

❖ The two previous examples are at the far
extremes of the interpretation of the AOP
formula

❖ There are, of course, less extreme
interpretations of the formula

12

Annotations

❖ Consider a condition such as

In programs P, whenever condition C arises
where element B is referenced,
perform action A

❖ B may be an abstract annotation

❖ Enables the programmer to deny aspects access
where it is not wanted by not referencing B,
but this means that the programmer must
know of the aspects

❖ This is more or less equivalent to inserting a
dynamically bound procedure call

❖ For massively crosscutting-concerns the
annotations may very well turn out as
annoying as the scattering of code that the
aspect was to modularize

13

Annotations, cont’d

❖ Using annotations reduces obliviousness to a
level where the programmer of P knows that
aspects may interact with the points marked B
in P, but not which aspects or when

❖ However, annotations can act as interfaces
between the program and the aspects,
translating some of the best practices of OOP
to AOP

14

Annotations, cont’d

❖ Consider the following condition C

In programs P, whenever condition C arises,
add annotation B

❖ Obviously the aspect could add the advice
directly, but that would mean going back to
the original formula

15

Taming Quantification

❖ If and where aspects advice a program may
very well seem random to a programmer

❖ Many propose tool support as a remedy to
this, but tools can only mark the possible
pointcut-“shadows” and not where and when
advice are actually executed

❖ Keeping track of exactly where aspects advice
an evolving program is not a trivial task

❖ One way of reducing this randomness is to use
an explicit list of elements to be adviced

In programs P, whenever execution reaches one
of the points in {p1, ..., pn}, perform action A

❖ This is, of course, tedious and error prone for
any interesting program

16

Taming Quantification,
cont’d

❖ Generally the quantification property of AOP
suffers from the the problem that conditions
are extremely sensitive to changes in the
program (known as the fragile pointcut
problem)

❖ Some researchers expect that this can be
addressed by using better languages for
expressing conditions, i.e. semantic pointcut
languages.

❖ However, for an aspect to be useful in any
interesting way it needs to reference the
program context, at which point a semantic
pointcut language cannot help,

❖ unless automatic program understanding is
invented, which would revolutionize
programming as a whole and render AOP, as
well as every other technique known today,
obsolete

17

Modularity

❖ A module has a well defined interface which
declares exactly what travels in and out of it

❖ This enables developers to work on different
parts of a system (more or less) independently

18

Modules and Interfaces

❖ Interfaces form the border between modules

❖ Interfaces represent the coupling between
modules

~ If the interface between two modules is
empty, there is no coupling between them

❖ Interfaces should be made as explicit as
possible to enable independent development

19

AOP and Modularity

❖ AOP breaks the modularity of the program by
modularizing cross-cutting concerns

❖ One could argue that this is for a good cause -
and thus worth it

❖ What happens when cross-cutting concerns
crosscut each other? And as soon as an aspect
is woven it is part of the program and thus is a
candidate for weaving of other aspects

20

AOP and Modularity,
cont’d

❖ Of course one could introduce annotations in
the program to mark the places that should be
adviced by aspects, but this makes AOP no
different from a subroutine call

❖ It also reintroduces the very scattering of a
concern that AOP was to avoid

21

Conclusion

❖ AOP sets out to modularize cross-cutting
concerns, but it’s very nature breaks
modularity

❖ It appears as this paradox cannot be resolved
by tweaking the mechanics of AOP, because
you end up with something which is very close
to what we already have

❖ As a way of organizing code AOP does a good
job by localizing a scattered concerns, but at
the same time it breaks modularity of the
program

❖ Thus, AOP’s success as a means of achieving
modularization is paradoxical

22

