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Interactive Aesthetic Curve Segments

Abstract To meet highly aesthetic requirements in in-
dustrial design and styling, we propose a new category
of aesthetic curve segments. To achieve these aesthetic
requirements, we use curves whose logarithmic curvature
histograms(LCH) are represented by straight lines. We
call such curves aesthetic curves. We identify the overall
shapes of aesthetic curves depending on the slope of LCH
α, by imposing specific constraints to the general formula
of aesthetic curves. For interactive control, we propose
a novel method for drawing an aesthetic curve segment
by specifying two endpoints and their tangent vectors.
We clarify several characteristics of aesthetic curve seg-
ments.

Keywords an aesthetic curve segment · logarithmic
curvature histogram · the radius of curvature

1 Introduction

Aesthetic appeal is vital for the market success of indus-
trial products. Since the characteristic lines of a car body,
for example, are very important for its aesthetic impact,
curves in industrial design and styling need to meet aes-
thetic requirements. Most curves and surfaces used in
conventional CAD systems are based on polynomial or
rational parametric forms. However, these curves and
surfaces, such as NURBS, are not adequate for highly
aesthetic requirements. One of the reasons is the diffi-
culty in controlling the curvature. Though the continu-
ity of curvature can be easily satisfied, it is very hard to
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Fig. 1 (a) An aesthetic curve segment (α = 2.0) and (b) its
approximation by a cubic Bézier curve segment.

control the variation of curvature which dominates the
distortion of reflected shapes on curved surfaces. Rep-
resentation of a circular arc with NURBS is a typical
example; achieving constant curvature requires special
and unnatural settings of the weights and the knot vec-
tor. Fig.1 shows another example, where (a) shows one
of the desirable curve segments, and (b) shows an ap-
proximation of (a) with a cubic Bézier curve. Although
the shape is simple, the Bézier curve segment has unde-
sirable curvature changes.

Harada et al. have shown that many of the aesthetic
curves in artificial objects and the natural world are
curves whose logarithmic curvature histograms(LCH -
to be described in Section 2 ) can be approximated by
straight lines [6,19]. They claimed that two typical aes-
thetically beautiful curves, the Clothoid curve (also known
as a Cornu spiral, Euler Spiral or linarc) and the logarith-
mic spiral, have the property, where the slopes of their
LCH are −1 and 1, respectively. These facts mean that
the curves with linear LCH have a potential to meet the
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highly aesthetic requirements in industrial design. In this
paper, we call this category of curves with linear LCH
aesthetic curves and denote the slope of the LCH as α.

Our goal in this paper is to devise an algorithm that
can draw an aesthetic curve segment interactively. Miura
presented the general formula of aesthetic curves [12,11],
which is defined as the function of arc length. However,
drawing aesthetic curves is not trivial. Rather, the exer-
cise poses numerous challenges since the possible ranges
of parameters, such as the arc length, are not clearly
defined. Moreover, when drawing the curve, we do not
know the endpoint of the curve unless we draw the curve,
since this process requires numerical integration. This
greatly prevents user’s controllability. For practical use,
the improvement of controllability of aesthetic curves is
indispensable. Furthermore, the overall shape or geomet-
ric features of an aesthetic curve with an arbitrary value
of α(other than 1 or −1) has not been revealed yet.

Our main contributions are the following:

Identifying the overall shapes of aesthetic
curves: We identify the overall shapes of aesthetic curves
by imposing specific constraints to aesthetic curves so
that they become congruent under similarity transfor-
mations. By using these constraints, the formulas of aes-
thetic curves are derived as a function of arc length or
tangential angle. The tangential angle is the angle be-
tween the tangent line to the curve and x-axis. We find
that the circle involute is also included in aesthetic curves
as α = 2. We clarify the shape change of the spiral and
the behavior of the point of inflection and the point of
infinite curvature, depending on α.

Interactive drawing of an aesthetic curve segment:
We propose a novel method for drawing an aesthetic
curve segment by specifying two endpoints and their
tangents. When α is specified, our aesthetic curve seg-
ment has similar controllability to a quadratic Bézier
curve segment. Numerical integrations are necessary for
drawing an aesthetic curve segment. However comput-
ing points on an aesthetic curve segment on the screen
within the maximum error of 1×10−10 actually requires
less than several milliseconds.

Clarifying the characteristics of aesthetic curve
segments: We demonstrate the features of aesthetic
curves and their evolutes for various control points and
α. Generally, change of α slightly affects the shape of the
curve, but drastically alters its evolute. We show that the
position of control points and α dictates whether a curve
segment can be drawn.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the relevant literature. Section 3 derives
the formulas of aesthetic curves and clarifies the overall
shapes and characteristics. Section 4 presents a method
for interactively drawing a curve segment by specifying
three control points. The final two sections present sum-
mary and discussions.

2 Related Work

There are many definitions of fairness of curves. Some
of them are the curves with minimum strain energy, the
curves that can be drawn with a small number of French
curve segments, and the curves whose curvature plots
consist of few monotone pieces[3]. See [15] for a collection
of definitions. Historically, the curves that approximate
elastica, which are idealized thin beams, were pursued [4,
9]. Since an idealized thin beam has the minimum elas-
tic energy, the minimization of a fairness functional is
widely used for fairing curves and surfaces. Such fairness
functionals include the minimum strain energy and the
minimum curvature variation [14,5].

Other approaches are related to more direct control
of curvature or its variation. Nutbourne et al introduced
intrinsic splines with which a designer specifies the cur-
vature over the arc length and the curve is calculated
by integrating the curvature plot [16]. Roulier et al. de-
scribed monotonous curvature conditions when two end
points and their signed curvatures are given [17]. Meek
et al. presented a guided clothoid spline passing thor-
ough given points using clothoid segments, circular arcs,
and straight line segments [8]. Higashi et al. proposed
a smooth surface generation method that controls cur-
vature distribution by determining a surface shape from
the evolutes of the four boundary curves [7]. Miura in-
troduced a unit quaternion integral curve for more direct
manipulation of its curvature and variation of curvature
than Bézier or B-spline curves [10]. Wang et al. described
a shape control method based on sufficient monotone
curvature variation conditions for planar Bézier and B-
spline curves [18]. Moll et al. [13] proposed minimal en-
ergy curves that satisfy endpoint constraints for a path
planning of flexible wire. It is somewhat similar to our
research in that it finds curves that satisfy endpoint con-
straints. However, the curves and the method for finding
a curve segment satisfying endpoint constraints are dif-
ferent from ours.

Harada et al. introduced the logarithmic curvature
histogram(LCH) to quantitatively find a common prop-
erty of many aesthetic curves [6,19]. They assumed that
the curves are planar and their curvature varies monot-
onously and showed that the LCH of many of aesthetic
curves in artificial and the natural objects can be approx-
imated by straight lines. Such objects included birds’
eggs and butterflies’ wings as well as a Japanese sword
and the key lines of automobiles. They insist that there
is a strong correlation between the slope of the straight
line in the LCH of a curve and its impression.

The LCH can be interpreted as follows: Let s and ρ
be the arc length and the radius of curvature, respec-
tively. When a curve is subdivided into infinitesimal seg-
ments such that ∆ρ/ρ is constant, the LCH represents
the relationship between ρ and ∆s in a double logarith-
mic graph. See Fig.2. If we assume that the LCH of a
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Fig. 2 (a) A curve and (b) its logarithmic curvature his-
togram.

curve can be represented by a straight line whose slope
is α, we obtain,

log
∆s

∆ρ/ρ
= α log ρ + c, (1)

where c is a constant [12,11]. Eq.(1) is the fundamental
equation of aesthetic curves.

3 Formulas and Overall Shapes of Aesthetic
Curves

3.1 Formulas in Standard Form

In this section, we derive the formulas of aesthetic curves
in standard form for identifying the overall shapes of
aesthetic curves. In order to derive the formula of an
aesthetic curve with the slope of LCH α, we consider a
reference point Pr on the curve. The reference point can
be any point on the curve except at ρ = 0 or ρ = ∞. The
following constraints are placed at the reference point.
See Fig. 3.

– Scaling: ρ = 1 at Pr.
– Translation: Pr is placed at the origin.
– Rotation: The tangent line to the curve at Pr is par-

allel to x-axis.

Then the standard form can be obtained by transforming
an aesthetic curve such that the above constraints are
satisfied.

Using differentials, Eq.(1) can be modified as

ds

dρ
= ρα−1ec. (2)

Let Λ = dρ/ds at the reference point Pr. In this case, Λ =
e−c and 0 < Λ < ∞. Using Λ, Eq.(2) can be modified as

ds

dρ
=

ρ(α−1)

Λ
. (3)

The arc length s and the tangential angle θ are set to 0
at the reference point Pr. Integrating Eq.(3) with respect
to ρ, we obtain,

s =
{

1
Λ log ρ if α = 0

1
Λα (ρα − 1) otherwise (4)
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Fig. 3 The aesthetic curve in standard form I.

Solving Eq.(4) with respect to ρ, we obtain

ρ =
{

eΛs if α = 0
(Λαs + 1)

1
α otherwise

(5)

Eq.(5) is the Cesàro equation of aesthetic curves. A Cesàro
equation is an intrinsic equation that specifies a curve
in terms of s and ρ. From the fundamental theorem of
the local theory of curves in differential geometry [1],
curves satisfying Eq.(5) differs by a rigid motion; that is,
if curves c1 and c2 satisfy Eq.(5), there exists an orthogo-
nal linear map R and a vector T such that c2 = R·c1+T .

Using Eq.(3) and the relationship of ds = ρdθ, we
obtain
dθ

dρ
=

ds

ρdρ
=

ρα−2

Λ
(6)

By setting θ = 0 at the reference point and integrating
Eq.(6) with respect to ρ, we obtain

θ =

{
1
Λ log ρ if α = 1
ρα−1−1
Λ(α−1) otherwise

(7)

Since ρ changes from 0 to ∞, s and θ may have a upper or
a lower bound depending on α. These bounds are shown
in Table 1.

Solving Eq.(7) with respect to ρ, we obtain

ρ =
{

(eΛθ) if α = 1
((α − 1)Λθ + 1)

1
α−1 otherwise

(8)

The point on the aesthetic curve P (θ) whose tangential
angle is θ is defined on the complex plane as

P (θ) =

{ ∫ θ

0
e(1+i)Λψdψ if α = 1∫ θ

0
((α − 1)Λψ + 1)

1
α−1 eiψdψ otherwise

(9)

where i is the imaginary unit. The point at θ = 0 defined
by Eq.(9) goes through the origin and its tangent vector
is [ 1 0 ]T.

Substituting Eq.(5) into dθ
ds = 1

ρ , and integrating it
with respect to s setting θ = 0 when s = 0, we obtain

θ =


1 − e−Λs if α = 0
log (Λs+1)

Λ if α = 1
(Λαs+1)(1− 1

α )−1
Λ(α−1) otherwise

(10)



4 Norimasa Yoshida, Takafumi Saito

Table 1 The upper and lower bounds of s and θ standard
form II.

s θ
UB LB UB LB

α < 0 − 1
Λα

- α < 1 1
Λ(1−α)

-
α = 0 - - α = 1 - -
α > 0 - − 1

Λα
α > 1 - 1

Λ(1−α)

*UB represents the upper bound and LB represents the lower
bound.

Then the point on the aesthetic curve C(s) whose arc
length is s is defined on the complex plane as

C(s) =


∫ s

0
ei(1−e−Λu)du if α = 0∫ s

0
e
i
(

log (Λu+1)
Λ

)
du if α = 1∫ s

0
e
i

(
(Λαu+1)(1−1/α)−1

Λ(α−1)

)
du otherwise

(11)

Eq.(9) and Eq.(11) represent the same curve. The tan-
gential angle θ and the arc length s are related by Eq.(10).

3.2 Standard form I and Overall Shapes

To identify the overall shapes of aesthetic curves and see
how the curves change depending on the slope of LCH α,
we consider aesthetic curves of constant Λ. In Section 3.3,
aesthetic curves of arbitrary Λ(≥ 0) is considered. On
any aesthetic curves of α 6= 1, there always exists a point
such that dρ/ds(= Λ) = 1. Setting such a point as Pr,
aesthetic curves can be represented in standard form I.
As for the aesthetic curves of α = 1, assuming dρ/ds = 1
restricts the possible shapes since dρ/ds = const. at any
point on the curve. However, this assumption is useful
for understanding the overall shapes of aesthetic curves.

We investigate the behavior of aesthetic curves for θ
and s evaluated as a function of ρ where ρ ranges from 0
to ∞. Fig.4 represents the graphs of s with respect to ρ
(Eq.(4)) and those of θ with respect to ρ (Eq.(7)) when
α = −1, 0, 0.5, 1, 2 and 3. s and θ are either finite or in-
finite at the points of ρ = 0 or ρ = ∞, which determines
the behavior of the curve depending of α, as shown in
Table 2.

Fig.5 represents the overall shapes of aesthetic curves
with various αs using the formulas of tangential angle.
By definition, θ = 0 and ρ = 1 at the origin. From Tables
1 and 2, we can figure out the following characteristics
of aesthetic curves in standard form I depending on the
value of α.

The aesthetic curves of α < 0: As θ approaches
−∞, the curve spirally converges to the point at ρ = 0.
The arc length to that point is infinite. The point of θ =

1
1−α , the upper bound, is the point of inflection because
ρ = ∞. Since the arc length to that point is finite, the
point of inflection exists (not at infinity). When α = −1,
the aesthetic curve is the Clothoid curve.

(a)  α=-1

(b)  α=0

(c)  α=0.5

(d) α=1

(e)  α=2

(f)  α=3

Fig. 4 The graphs of s and θ with respect to ρ are shown
when α = −1, 0, 0.5, 1, 2, and 3.

Table 2 Arc length s and tangential angle θ at ρ = 0 and
ρ = ∞.

At ρ = 0 At ρ = ∞
s θ s θ

α < 0 infinite∗1 infinite∗3 finite∗5 finite∗7

α = 0 infinite∗1 infinite∗3 infinite∗6 finite∗7

0 < α < 1 finite∗2 infinite∗3 infinite∗6 finite∗7

α = 1 finite∗2 infinite∗3 infinite∗6 infinite∗8

α > 1 finite∗2 finite∗4 infinite∗6 infinite∗8

*1 The arc length to the point at ρ = 0 is infinite.
*2 The arc length to the point at ρ = 0 is finite.
*3 The curve converges to the point at ρ = 0 swirling in-
finitely.
*4 The tangential direction is determined at ρ = 0.
*5 The point of inflection exists (not at infinity).
*6 The point of inflection is at infinity.
*7 Either the point of inflection exists or the direction of
divergence is determined.
*8 The curve converges to the point at ρ = ∞ swirling in-
finitely.

The aesthetic curve of α = 0: The characteristics
of this curve are different from that of α < 0 in the point
at θ = 1

1−α (ρ = ∞). The point of inflection exists at
infinity because the arc length to that point is infinite.

The aesthetic curves of 0 < α < 1: The charac-
teristics of these curves are different from that of α = 0
in the point at θ = −∞(ρ = 0). As θ approaches −∞,
the curve spirally converges to the point at ρ = 0. The
arc length to that point is finite.
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(g) =1  (logarithmic spiral

(h) =2 (circle involute)

(i) =5 
The point of inflection(The point at =0

Converges to the point at 

The arc length to that point is infinite.

Converges to the point at =0.

The arc length to that point is finite.

The point of inflection is 

at infinity.

Spirally diverges
(a,b) is the range of the tangential angle.

The point of inflection exists

in a finite distance.

Fig. 5 The overall shape of aesthetic curves in standard form
I with various αs

The aesthetic curve of α = 1: The characteristics
of this curve are different from those of 0 < α < 1 in
the point at θ = ∞(ρ = ∞). As θ approaches ∞, the
curve spirally diverges toward the point at ρ = ∞. The
arc length to that point is infinite. The aesthetic curve
of α = 1 is the logarithmic spiral.

The aesthetic curves of α > 1: The characteristics
of these curves are different from those of α = 1 in the
point at θ = 1

1−α (ρ = 0). At the point of θ = 1
1−α , the

lower bound, the tangential direction is determined. The
arc length to that point is finite. The aesthetic curve of
α = 2 is the circle involute.

The aesthetic curves of α = ±∞: If we take the
limit of Eq.(8) as α approaches ±∞, we get ρ = 1. There-
fore, when α = ±∞, the aesthetic curve becomes a circle
with radius 1.

3.3 Standard Form II

Standard form I is useful for understanding the overall
structure of aesthetic curves. Aesthetic curves in stan-
dard form II can represent all the possible shapes of the
logarithmic spiral (α = 1) and is used for drawing an
aesthetic curve segment.

In standard form II, we consider aesthetic curves of
arbitrary value of Λ(≥ 0). Aesthetic curves in standard
form II include those in standard form I as the case of
Λ = 1. Fig.6 shows aesthetic curves in standard form II
with various Λ when α = −1,1 and 2. As shown in
Fig.6(b), all the possible shapes of the logarithmic spiral
(α = 1) can be represented. When α(6= 1) is specified, all
the aesthetic curves are congruent under similarity trans-
formations without depending on the value Λ( 6= 0). From
Eq.(5), it can be easily understood that when Λ = 0, ρ
becomes constant. Thus, an aesthetic curve become a
circle without depending on α when Λ = 0.

4 Interactive Drawing of an Aesthetic Curve
Segment

4.1 Drawing Algorithm

In this section, we propose a method for interactive con-
trol of an aesthetic curve segment using standard form II.
The idea of this method is to search for a curve segment
in standard form II that fits a similar triangle defined by
the three control points.

Suppose that α is specified and three control points
Pa, Pb, and Pc are given as shown in Fig.7(a) on the left.
Without loss in generality, we assume |PaPb| ≤ |PbPc|.
If this does not hold, the coordinates of Pa and Pc are
swapped. As shown in Fig.7(a) on the right, P0 is placed
at the point whose tangential angle is 0 on the aesthetic
curve in standard form II, P2 is placed at the point whose
tangential angle is θ′d. P1 is the intersection point of the
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(a) a=-1 (Clothoid curve)

(b) a=1 (logarithmic spiral)

(c) a=2 (circle involute)

L=0.02L=0 L=0.05

L=0.2
L=1L=0.5

L=0.02L=0 L=0.05

L=0.2 L=1

L=0.02L=0 L=0.05

L=0.2 L=1L=0.5

L=0.5

Fig. 6 Aesthetic curves in standard form II with α = −1, 1, 2.

tangential lines at P0 and P2. If the triangle P0P1P2 is
a similar triangle of the triangle PaPbPc, then the curve
segment defined by PaPbPc can be drawn by transform-
ing the points on the aesthetic curve in Fig.7(a) on the
right such that P0, P1 and P2 are transformed to Pa, Pb

and Pc. Note that there might be a case that a similar
triangle is not found. Thus the position of control points
and α dictate whether a curve segment can be drawn.

The similarity of two triangles can be decided by com-
paring two pairs of angles. Since θd is the change of the
tangential angle from Pa to Pc, θ′d = θd. Now we need to
find Λ such that θe = θ′e. This can be done by changing
the value of Λ using the bisection method, which will be
described shortly. See Fig.6 again to see how aesthetic
curves in standard form II changes their shapes depend-
ing on Λ. When α > 1, the integration range of 0 to θd

(Fig.7(a)) may cause a problem because Λ may become
infinity. To avoid this, we use the integration range of
−θd to 0 (Fig.7(b)) when α > 1. In this case, the bi-
section method is used to find Λ such that θf = θ′f . Λ
has a upper bound depending on the integration range
when α 6= 1. As described in Section 3.3, θ may have
a upper or lower bound depending on α. When α < 1,

aP

bP

cP

0P 1P

2P

eθ

dθ

'fθ

'dθ

aP

bP

cPfθ

dθ

0P

1P 2P

'dθ'eθ

(a) The case of α<1

(b) The case of α>1

Fig. 7 Two configurations for drawing aesthetic curve seg-
ments.

the integration range of [0, θd] is used. Since the upper
bound of θ is 1/(Λ(1−α)), θd ≤ 1/(Λ(1−α)) must hold.
Therefore, 0 ≤ Λ ≤ 1/(θd(1−α)). When α > 1, the inte-
gration range of [−θd, 0] is used. Since the lower bound is
1/(Λ(1−α)), −θd ≥ 1/(Λ(1−α)) must hold. Therefore,
0 ≤ Λ ≤ 1/(θd(α − 1)). When α = 1, there is no upper
bound for Λ, so the bisection method is extended so that
Λ(≥ 0) can be arbitrarily large. The pseudo code for the
bisection method is shown in Appendix A.

For computing the points on aesthetic curves, Eq.(11)
(the formula by arc length) is better than Eq.(9)(the
formula by tangential angle) especially when the curve
segment include the (nearby) point of inflection. At the
point of inflection, ρ becomes ∞, which causes Eq.(9) nu-
merically unstable. When the curve segment approaches
the shape of a circular arc(when Λ approaches 0), 0

0 may
arise in Eq.(11). In this case, Eq.(9) is better. There-
fore, when α <= 0.5 and Λ > 1 × 10−2, we use Eq.(11).
Otherwise, we use Eq.(9). We use an adaptive Gaussian
quadrature method for numerical integration.

4.2 Curve Shapes and Drawable Regions

Fig.8(a)-(c) show aesthetic curve segments with the same
control points but with different αs. It is known that two
curves may look identical on the screen, yet reveal sig-
nificant shape differences when plotted to full scale on a
large flatbed plotter [2]. In such a situation, their evo-
lutes (or curvature plots) reveal substantial differences.
Though the curve segments in (a)-(c) look similar, their
evolute are different substantially. In (d)-(f), we show
three aesthetic curve segments with different αs. As the
triangle formed by the control points gets closer to an
isosceles triangle, aesthetic curve segments with differ-
ent αs get closer (to a circular arc).

The position of control points and α dictates whether
a curve can be drawn. Fig.9 shows the drawable regions
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(b) a=0 (c) a=2(a) a=-2

(e) a=-0.2,0.5,1.2(1) (f) a=-0.2,0.5,1.2(2)(d) a=-1,0.5,2

a=0.5

a=1.2

a=-0.2
a=0.5

a=2

a=-1
a=0.5

a=1.2

a=-0.2

Fig. 8 In (a)-(c), aesthetic curve segments with their evolute
and radii of curvature are shown. (d)-(f) show three aesthetic
curve segments with different αs.

of aesthetic curves with various αs. In (a)-(l), each rect-
angle is placed with their corners at (±1,±1). The first
control point is placed at (−1, 0) and the third control
point is placed at (1, 0). The second control point is
moved within the rectangle. If an aesthetic curve seg-
ment is drawable, the pixel of the second control point is
drawn with white. If not, the point is drawn with black.
Since the straight line is not included in aesthetic curves,
the curve segment cannot be drawn when the control
points are collinear.

As shown in Fig.9(g) and (h), there is little restriction
for the placement of control points when α is between
0.1 and 1. As α becomes smaller than 0 or gets larger
than 1, the drawable regions get smaller. This is because
the shape of aesthetic curves gets closer to a circle as
α gets smaller than 0 or gets larger than 1 as shown in
Fig.5. The second control point can be placed outside
the rectangle if it is within the drawable region.

The drawable regions of Fig.9 were experimentally
constructed so that the maximum error is within 1 ×
10−8. If we allow the drawable region to get slightly
smaller, we can decrease the maximum error up to 1 ×
10−10. In this case, the black (not drawable) region gets
slightly larger especially when α is around 0. For practi-
cal purposes, we can use the maximum error of 1×10−10.
When θd gets very large(close to π), the desired accu-
racy may not be achieved or the computational efficiency
is decreased since the integration range gets relatively
large. However, to draw an aesthetic curve segment, it
is somewhat unusual to place the second control point
such that θd gets larger than π/2.

4.3 Computational Cost

The computation time of an aesthetic curve segment
varies depending on α as well as the integration range

(a) a=-3 (b) a=-2 (c) a=-1

(d) a=-0.5 (e) a=-0.1 (f) a=0

(g) a=0.1 (h) a=0.2 to 1.0 (i) a=1.1

(j) a=1.5 (k) a=2 (l) a=3

Fig. 9 The drawable regions of aesthetic curve segments
with various αs.

and the number of points on the curve computed. In our
implementation, the points of an aesthetic curve segment
are computed with the constant step of tangential angle
of around 0.02 in radian, which is close to 1 deg. More so-
phisticated computation using both the tangential angle
and the arc length is preferable, though. Nevertheless,
for drawing a curve segment on the screen, the constant
step of tangential angle is satisfactory in most cases.
We measured the computation time on a Pentium D
3.2GHz computer. We placed the first and the third con-
trol points at the same positions as in Fig.9 and moved
the second control point randomly within the drawable
region in the blue rectangle using the mouse. The total
computation time of an aesthetic curve segment, not in-
cluding the drawing time, is composed of the time of the
bisection method and the time for computing points on
the curve. Table 3 shows the total computation time with
the maximum error of 1 ×10−10, the percentage of the bi-
section method against the total computation time, and
the standard deviation of the total computation time.
As Table 3 shows, an aesthetic curve segment can be
computed within less than several milliseconds. Though
numerical integrations are necessary for computing the
points on an aesthetic curve segment, our implementa-
tion shows that it gives fully interactive control.
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Table 3 The Computation time of an aesthetic curve seg-
ments(not including drawing).

TCT (ms) PB (%) σ (ms)
α = −1 1.01 32 0.30
α = 0 1.59 46 0.76
α = 1 0.96 37 0.43
α = 2 0.75 29 0.24

TCT, PB, σ represent the total computation time, the per-
centage of the bisection method against the TCT, and the
standard deviation of the TCT, respectively.

5 Discussion

Aesthetic curves are very fascinating, since they can be
considered as a generalization of the Clothoid, the log-
arithmic spiral, the circle involute, and the circle. This
paper has shown the overall shapes of aesthetic curves of
arbitrary α. As shown in Fig.5, the overall shapes of aes-
thetic curves gets closer to the shape of a circle when α
gets smaller or larger than 0. Therefore, aesthetic curves
are meaningful when α is near 0 for practical use. An
aesthetic curve segment of α < 0 can be connected to a
straight line segment, since the point of inflection exists.

We have presented a method for interactively draw-
ing an aesthetic curve segment by specifying three con-
trol points and α. An aesthetic curve segment has the
convex hull property, but is not affinely invariant. It is in-
variant under similarity transformations. When connect-
ing two segments, G1 continuity can be easily achieved
by placing the three consecutive control points such that
they are collinear. For achieving G2 continuity, more
tight restriction is imposed for the placement of the con-
trol points. There is some room for improving the com-
putation of an aesthetic curve segment. Eq.(9) and (11)
can be directly integrable when α = 1 or 2, and the bisec-
tion method might be replaced by a more sophisticated
technique.

To inspect the geometric quality, we compare the
swept surface of an aesthetic curve segment (α = 2) with
its approximated surface using reflection lines. For cre-
ating the approximated surface, we approximate the aes-
thetic curve segment by a cubic Bézier curve segment so
that the positions, tangential directions, and curvatures
coincide at two endpoints, and then sweep the segment
by a line segment. See Fig.1 for the aesthetic curve seg-
ment and its approximation by a cubic Bézier curve seg-
ment. Fig.10 shows the swept aesthetic surface (left) and
its approximated surface (right). When the two surfaces
are rotated about x-axis, the reflection line of the swept
aesthetic surface moves monotonously, whereas that of
its approximated surface oscillates. Fig.11(a) shows the
approximation of Fig.1(a) by a cubic B-spline curve that
consists of three cubic Bézier segments. Uniform B-spline
curve segments are created so that they interpolates four
points on the aesthetic curve segments and their tan-
gential directions at these points are colinear, and then

(a) (b)

(c) (d)

Fig. 10 In (a)-(d), the reflection lines of the swept sur-
face(left) of an aesthetic curve segment of α = 2 and its ap-
proximated surface(right) by a cubic Bézier curve are shown.
The reflection line of the approximated surface oscillates
when the two surfaces are rotated.

(b) Enlarged Evolute of (a) (a) Spline curve segments

Fig. 11 Approximation of an aesthetic curve segment (Fig.
1(a)) by three Bézier curve segments. Its enlarged evolute is
shown in (b).

converted to Bézier curve segments. The four points on
the aesthetic curve segment are placed so that their arc
lengths are separated equidistantly. As shown in Fig.11(b),
the approximated curve segments exhibit undesirable cur-
vature change and the reflection line of the swept sur-
face oscillates similarly as in the approximated surface
of Fig.10, though the amplitude is smaller. From these
results, an aesthetic curve segment has a potential to
meet highly aesthetic requirements in industrial design
and styling.

The application of aesthetic curve segments includes
designing 2-dimensional objects as well as 3-dimensional
objects. In case of 3-dimensional design, aesthetic curves
can be used, for example, as a guide to design the sil-
houettes of an object. Finding the intrinsic property of
aesthetic space curves and surfaces is attractive, though.
In fairing of surfaces, our aesthetic curve segment can
be used as the constraints for key lines. Another appli-
cation of our aesthetic curve segment is CAD systems.
Since our aesthetic curves can be converted into spline
curves, such as Bézier or B-spline within a specified pre-
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cision, it is possible to use aesthetic curve segments in
many CAD systems.

6 Conclusions

This paper has presented a new category of aesthetic
curve segment. An aesthetic curve segment can be drawn
by specifying two endpoints and their tangents. Thus
an aesthetic curve segment has similar controllability to
a Bézier curve segment of degree 2. The radius of cur-
vature of aesthetic curves versus the arc length varies
monotonously and smoothly. Therefore, a very high qual-
ity curve segment can be easily controlled by three con-
trol points and α. Decreasing α makes the curve seg-
ment become closer to its control polygon. A circular
arc can be represented by placing control points so that
they form an isosceles triangle. Although numerical in-
tegrations are necessary for computing the curve seg-
ment, our implementation showed that the points on
aesthetic curves can be computed in less than several
milliseconds on the screen within the maximum error of
1×10−10. Aesthetic curves are defined such that the log-
arithmic curvature histograms of curves are represented
by straight lines with slope α. We identified the overall
shapes of aesthetic curves by considering their standard
form.

Future research includes more efficient computation
of curve segments, higher accuracy, the connection of sev-
eral segments, and the extension to surfaces. In order to
utilize various kinds of existing shape processing tech-
niques, the approximation of the aesthetic curves with
conventional curves, such as NURBS, is also an impor-
tant subject. We envision that our aesthetic curve seg-
ment can be used for designing products as well as in
many applications for computer graphics.
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Appendix A: The pseudo code for the bisection
method

double bisection(double alpha, int maxIteration) {
double lmin = 0.0,lmax = 1.0, f;
int i = 0, enlarge = 0;
if ( alpha == 1.0 ) enlarge = 1;
else if ( alpha < 1.0 )

lmax = 1 / (thetaD * (1 - alpha));
else if ( alpha > 1.0 )

lmax = 1 / (-thetaD * (1 - alpha));
Lambda = (lmin + lmax) * 0.5;
do {

if ( alpha <= 1)
f = thetaE -ComputeThetaEdash(Lambda);

else f = thetaF - ComputeThetaFdash(Lambda);
if ( fabs(f) < EPS ) return Lambda; // found
double pLambda = Lambda;
if ( (f < 0.0 && alpha <= 1.0) ||

(f > 0.0 && alpha > 1.0) ) ) {
if ( enlarge ) lmax *= 10.0;
Lambda += (lmax - Lambda)*0.5;
lmin = pLambda;

}
else {

enlarge = 0;
Lambda -= (Lambda-lmin)*0.5;
lmax = pLambda;

}
i++;

} while ( i < maxIteration );
return -1;// not found

}




