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1. Introduction. Let X be a Hilbert space, and let A and P denote

operators on 3C. We consider the tensor product A ® B acting on the

product space 3C®3C. (For a good account of tensor products of

Hilbert spaces and operators, the reader may consult [l, pp. 22-26].)

When X is finite dimensional, so that A and B can be regarded as

matrices, it is a well known and pretty fact that the eigenvalues of

A ®B are precisely the products of the form a/3 where a, fl are eigen-

values of A, B respectively. The purpose of the present note is to

prove the following infinite dimensional generalization of this result.

Theorem. If A and B are bounded linear operators on an arbitrary

Hilbert space 3C, and if a (A), a(B) denote their respective spectra, then

the spectrum of A® B is the set of products a(A)o(B).

2. In the sequel, all spaces under consideration will be complex

Hilbert spaces, and all operators will be assumed to be bounded and

linear. The set of all operators on a Hilbert space X is denoted by

£(3C), and the spectrum of any operator P is denoted, as above, by

a(T).
First Proof of the Theorem. We employ the fact that tensor

products of operators on 3C can be identified with multiplications on

the Hilbert-Schmidt class, regarded as a Hilbert space under the

Schmidt norm. The procedure for making this identification is a

standard one and the following abbreviated account is lifted from

Dixmier [l, pp. 93-96]. First, construct the Hilbert space 3C' opposed

to 3C, i.e., the space whose elements and law of addition are identical

with those of 3C, but with the reversed inner product (x | y) = (y, x)

and with multiplication of a vector by a scalar redefined as X o x

= Xx. Note that there is a one-one correspondence A<^>A' between

£(3C) and £(3C') defined by A'x = Ax for all x. Concerning this cor-

respondence, we record the following fact.

Lemma 1. a(A') = [(r(^4)]*, the set of complex conjugates.

The proof of this lemma consists of an easy computation which we

omit.
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Next, form the tensor product 3C'®3C and with each decomposable

vector z®xE3C'®3C associate the operator rZfIE£(3C) defined by

T,.*iy) = iy, z)x,      y E 3C

(Observe that in this formula z is regarded as an element of 3C.) The

following lemma is essentially [l, Proposition 6, page 96].

Lemma 2. The correspondence z®x-+Tz,lc possesses a unique exten-

sion to a Hilbert space isomorphism <p of 3C'®3C onto the Hilbert space

91 of Hilbert-Schmidt operators on 3C. Moreover, if A, BE&i'X), then

A'®B is carried by <j> onto the operator MiB, A*)E£i$l) defined by

MiB, A*)X = BXA*for all ZE31-

Now let \p be any isomorphism of 3C onto K!'. (That such an iso-

morphism exists is assured by the fact that 3C and 3C' have the same

dimension.) For each AE&i'X), denote by Ao the element of £(3C)

satisfying the equation Ai =ipAip~l. The tensor product of \p with

the identity mapping on 3C is an isomorphism of 3C®3C onto 3C'®3C

that carries each operator A®BE£i3C®3£) onto the operator

Ai ®BE£iW®W). Thus by Lemma 2 we have

oiA ® B) = o-iAi ® B) = o-iMiB, Ao*)).

On the other hand, by Lemma 1

o-iA) = <K.4o') = Kilo)]* = *(A?),

and consequently o-(.<4)o-(73) = o-(B)o-C4*). Thus the proof of the theo-

rem reduces to showing that for arbitrary operators C and D on 3C,

(I) o-iMiC, D)) = viQo-iD).

Operators of the form MiC, D): X—>CXD have been studied by

Lumer and Rosenblum [5], and in particular they show [5, Theorem

10] that the equality (I) is valid when M(C, D) is regarded as an

operator acting on the Banach space £(3C). While this is not quite

our situation (our MiC D) acts on the Hilbert space 31), it is not

hard to see that the arguments of Lumer and Rosenblum remain valid

in this case, except that [5, Lemma 2] must be given a new proof

to take into account the fact that the identity operator is not in 91.

Thus we complete the first proof of the theorem by proving the follow-

ing lemma.

Lemma 3. For AE £(3C), let LA, RaE £(3l) be defined by setting for

XEVl, LAiX)=AX and RAiX)=XA, respectively. Then <riLA)
= aiRA)=aiA).
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Proof. Let J(X) =X* for XEVl. Then J is an involuntary isom-

etry on 31 and Ra = JLa*J. Since o-(JUJ) = [a(U)]* for every

PG£(9t), it suffices to consider P„. Next, since La-\i=La — XI, it

suffices to prove that A is invertible on X when and only when La

is invertible on 31. Moreover, one half of this is trivial: if A is inverti-

ble on X, then La-^La = LaLa-i^I^i- The proof will be completed

by showing that if LA is invertible, then A is invertible too. Accord-

ingly, let La be invertible on 31. For any xGX, the operator Tx,x be-

longs to 31, so there exists 7VG31 such that AN=TX,X. But then

A(Nx) =||x||2x, and it follows that A maps X onto itself. Hence it

remains only to verify that A has trivial null space. But if .4x = 0,

then La(Tx,x) = Tx,az = 0 so that P„,» = 0 and consequently x = 0.

Second Proof of the Theorem. The operator A®l3c on X®X

can be regarded as an infinite diagonal matrix with the operator A

in each position on the diagonal [l, p. 25]. It follows easily that

<r(A®lw)=a(A), and similarly that <r(LjC®73) =<r(B). Since A®B

= (.4<8>1)(1®P), and (A®1) commutes (1®B), a standard applica-

tion of the Gelfand representation theorem shows that

o-(A ® B) C <r(A ® l)<r(l ® B) = <r(A)<r(B).

The proof of the reverse inclusion o(A)a(B) Eo(A ®B) we split into

cases by making a slightly unusual partition of the spectra of A and

P. Write 7r(^4) for the approximate point spectrum of A [3, page 51]

and write <j>(A) for the balance of the spectrum o(A)\ir(A). Concern-

ing the set <t>(A) we shall need the facts that (i) 4>(A) is an open set

and (ii) if \E<f>(A), then X is an eigenvalue of A*. That <i>(A) is open

can be seen in various ways. On the one hand, it follows from the

topological fact that 7r(^4) is compact and contains the boundary of

a(A) (see, e.g. [4, Theorem 4.11.2]). On the other hand, it can be

verified directly by a slight modification of any of the standard proofs

that the resolvent set is open (see, e.g. [2, §3]). Fact (ii) is an easy

consequence of the closed graph theorem.

Case I. o.Ett(A), (3Gt(P)- There exist sequences {x*} and {y*| of

unit vectors in X along which A—al and B—131 tend to zero. But

then

[A ® B - a/3(l ® l)](xk ® yk)

= [(A - al) ® B + al ® (B - /31)](x* ® yk)

= (A - al)x* ® Byk + ax* ® (B - /31)y*

which tends to zero as k—>°o, so that a&E^(A®B).

Case II. aE<t>(A), PE<t>(B). We have aG*^*) and pEHB*),
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whence    by    Case    I,    aPEoiA* ®B*) =o[iA ®B)*].    Thus    ofi
E<riA®B).

Case III. aEiriA), PE4>iB) or aE<t>iA), ftEir(73). We treat the
case aEiriA), faE<l>iB); the other case is handled similarly. Suppose

first that a = 0. Let ft be any element of ir(7?), and note that from

Case I, ar3 = a@o = OEo'iA®B). Thus we may assume that a5^0, and

similarly by taking adjoints that ft^O. We know that aG<r(4*); if

aEiriA*), then since PEiriB*), the desired result follows by appeal-

ing to Case I and taking adjoints. Thus we may even assume that

ocE<j>iA*). Now introduce a real parameter t, 1 St < °°, and consider

pairs of the form [ta, fa/t]. For t sufficiently close to 1, we have

taE4>iA*) and @/tE<t>iB) since <j>iA*) and <£(73) are open sets. Hence

there exists t0>l such that for l^Kto, taE4>iA*) and fa/tE<biB)

and such that toaE^iA*) or P/toEftiB). Suppose toaE^iA*) but

P/toE<t>iB). Then p/t0EviB*),so that from Case I we have iha)iP/to)

= ctp~Eo-i[A ®B]*), and hence aftE<r(;4 ®B). The case taaE<piA*)

and fa/toE^iB) is handled similarly with the help of Case I, and the

only case remaining to be dealt with is toocE^iA*), fa/toE^iB). In

this case, let /„ be a sequence of real numbers satisfying 1 <tn <to and

tn—tto- Then for each ra, tnaE4>iA*), so that tnaE^iA), and from

Case I, itna)ifa/to)E<riA®B). Since itn/t0)af3-+af3 and <riA®B) is
closed, afaEaiA®B), and the proof is complete.

3. Concluding remarks.

(1) Two proofs of the above theorem are given because each has its

own merits. The first argument shows the intimate connection be-

tween the operator A ®B and the operator X—>AXB on the Hilbert-

Schmidt class. The second proof sets forth a technique for attacking

spectral problems that seems fairly useful. In particular, if 3C is

taken to be any of the Schatten norm ideals [6], the spectra of the

operators X—*AXB and X-+AX ±XB on 3C can be shown to be

<r(i4)<r(7?) and aiA)± <r(73) by arguments very similar to the second

argument given above. (For 3£=£(3C) much more general results

are obtained in [S].)

(2) It is not hard to see that the line of argument used in Lemma 3

also shows that the approximate point spectra of A and LA (in the

notation of that lemma) coincide. Indeed, even the continuous and

residual spectra of A and LA coincide.

(3) The authors have recently proved that every operator of the

form A ® !%> where A is nonscalar and 3C is an infinite dimensional

Hilbert space is a commutator. This fact, together with the result of

this note, shows that there exist commutators with arbitrarily pre-

scribed spectra.
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KIRZBRAUN'S THEOREM AND KOLMOGOROV'S
PRINCIPLE1

EDWARD SILVERMAN

Let B be a Banach space. A distance function p on B is a non-

negative valued function which is continuous, positively homogeneous

of degree one and subadditive. If A is a set and if x and y map A

into B then we write xpy if p(x(a)—x(b)) ^p(y(a)—y(b)) for all

a, bEA. If A is a &-cell, if B is Euclidean space, if p is the norm and if

P is Lebesgue area, then Kolmogorov's Principle, K.P., asserts that

Px^Py if xpy [H.M.]. Lebesgue area is a parametric integral of the

type considered by McShane [M], for smooth enough maps. In this

paper we consider other such integrals, not necessarily symmetric,

for which a type of K.P. holds. We conclude with a minor application

to a Plateau problem.

The proof of K.P. follows from

Kirzbraun's Theorem. If AEE" and t: A—>En is Lipschitzian,

then there exists an extension T of t, T: En-^En, and T is Lipschitzian

with the same constant as t [S].

The proof of the version of K.P. in which we are interested depends

upon an embedding of P" in m, the space of bounded sequences [B],
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